


Motivic coaction on generalized
hypergeometric functions

Deepak KAMLESH

St Cross College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hilary 2024

2



Acknowledgements

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 724638). This project has also received funding from the
University of Oxford under the COVID-19 Scholarship Extensions Fund.

This journey wouldn’t have started without my acceptance into the doctoral
programme at Oxford. Thus, my first and foremost thanks go to my advisor,
Francis Brown, for his generousness in providing me with this opportunity. I am
also grateful to him for his infinite patience and kindness in allowing me the space
to grow as a researcher at my own pace.

In the same vein, I am grateful to our research group and regular visitors for
providing me with support, both mathematical and moral, that has helped me
throughout my journey. These include, in no particular order, Adam Keilthy, Alex
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Abstract

This thesis deals with the motivic coaction and single-valued map for hypergeo-
metric functions. It is known that hypergeometric functions have series expansions
whose coefficients can be expressed in terms of multiple zeta values and multiple
polylogarithms, the classical Beta function being a motivating example. Multi-
ple zeta values are examples of periods, complex numbers that can be expressed
as algebraically defined integrals, and exhibit an action under the motivic Ga-
lois group, leading to a transcendental extension of the classical Galois theory.
This suggests a natural question as to whether such group actions can be carried
over to the hypergeometric functions in a way that is still compatible with the
term-by-term action on the series coefficients. This question becomes even more
pertinent when considering integrals relevant to physics, such as Feynman integrals
in dimensional regularization, which can be evaluated in terms of hypergeometric
functions. Feynman integrals are fundamental to computations in precision collider
physics, making them an active area of current research. Thus, the appearance of
periods and motivic Galois structures in physics are a rich source of investigation
in fundamental physics and have played a vital role in the last few decades.

In this thesis, I focus on one aspect of this, which I will refer to as the coaction
conjecture for hypergeometric functions. Concretely, a conjecture was proposed,
and numerical evidence was provided by Abreu-Britto-Duhr-Gardi-Matthew for
a coaction formula for hypergeometric functions that is faithful to the term-by-
term action on their Taylor series coefficients. This conjecture was proved in
the case of one-dimensional integrals by the work of Brown-Dupont. The key
novelty in their work was the use of a generalized Ihara formula that allows for the
computation of the coaction at all orders. The conjecture was further explored in
the general setting by the work of Britto-Mizera-Rodriguez-Schlotterer, where the
strategy was to use the Knizhnik–Zamolodchikov equation to derive series expansion
for the hypergeometric functions in terms of multiple zeta values and multiple
polylogarithms and recast the coaction conjecture to an equivalent one formulated
in terms of the series coefficients. There has also been recent progress, of which I
am a part, that was made in collaboration with Hadleigh Frost, Martijn Hidding,
Carlos Rodriguez, Oliver Schlotterer and Bram Verbeek, where we bridge the two
approaches mentioned above to give a Lie algebraic reformulation of the coaction
conjecture as well as applications of the new approach to computing the single-



valued (trivial monodromy) map for hypergeometric functions. I will cover this
development in this thesis. I also give an alternative proof of the coaction conjecture
in a one-dimensional case that extends to a proof of the coaction conjecture in a two-
dimensional case, which is a new result. This result in dimension two also proves
an old conjecture on open superstring amplitudes due to Schlotterer-Stieberger and
its reformulation in terms of the coaction of periods by Drummond-Ragoucy.
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Chapter 1

Introduction

The classical Beta function has an exponential series expansion near the origin in
terms of the single zeta values ζ(k) :=

∑
n≥1

1
nk , k ∈ N, k ≥ 2,

β(x, y) =

∫ 1

0

tx(1− t)y
dt

t(1− t)
, x, y ∈ C, Re(x) > 0 , Re(y) > 0 ,

x y

x+ y
β(x, y) = exp

(∑
n≥2

(−1)n−1ζ(n)
n

((x+ y)n − xn − yn)
)
. (1.0.1)

This is interesting from a number-theoretic perspective because of the appearance
of zeta values, which are, in fact, examples of periods. A period [49] is a complex
number whose real and imaginary parts can be expressed as an integral of a rational
function (over Q) over a domain defined by polynomial inequalities with coefficients
in Q. Examples include many important numbers in mathematics and physics
such as π, log(α) for α ∈ N, multiple zeta values, special values of L-functions,
perturbative string amplitudes, scattering amplitudes etc. The ring of periods is
important because of their rich algebraic structure, including the existence of a
group action by a group scheme GMT called the motivic Galois group as envisioned
by Grothendieck. This action has only been computed in some cases, such as for
logarithms, multiple zeta values [21], iterated integrals on the upper half plane [22]
etc. and is often written down in terms of the dual coaction of the Hopf algebra
O(GMT ), which is the ring of functions of the group scheme GMT .

Going back to the example of the Beta function in equation 1.0.1, this means that
the RHS has a term-by-term coaction, and it is thus natural to ask whether this
structure can be imported to the LHS in a compatible way. For the Beta function
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B(x, y) = xy
x+y

β(x, y) this is given simply by

∆(B) = B ⊗B . (1.0.2)

This encapsulates the coaction on an infinite number of periods, the zeta values
and explains the uniformity in their coaction1 formula

∆(ζ(n)) = ζ(n)⊗ 1 + 1⊗ ζ(n) , n ∈ N, n ≥ 2 . (1.0.3)

Such algebraic structure for integrals become particularly important if one imagines
physically relevant integrals on the left of the equation 1.0.1 such as Feynman
integrals, amplitudes in quantum field theory, string theory etc. Since Feynman
integrals are crucial in making precision predictions for collider experiments [10],
studying their mathematical structure is necessary to come up with efficient methods
for their computation. Hence, the search for coaction properties of Feynman
amplitudes has been an active area of research since Cartier’s vision [27] of a cosmic
Galois group that encodes symmetries of physical quantities. Francis Brown arrived
at the first instance of this phenomenon [25] for a family of convergent Feynman
graphs following the work of Bloch-Esnault-Kreimer [9].

A further level of complexity is added, however, when one deals with Feynman
integrals in dimensional regularization, which evaluates to hypergeometric func-
tions. In this case, the Feynman integrals are not periods in the usual sense, but
their Laurent coefficients are periods, such as the example of Beta function 1.0.1.
Nevertheless, as we saw, it is possible to extend a coaction formula 1.0.2 to the
Beta function itself, which is compatible with the term by term coaction. This
observation was extended to the family of hypergeometric functions in a series of
papers [1], [2], [4], [5] by Samuel Abreu, Ruth Britto, Claude Duhr, Einan Gardi
and James Matthew. Specifically, they proposed a general coaction formula for
hypergeometric functions. Also, they verified for several examples, at low orders
or in some cases to all orders, that the proposed formula is compatible with the
term-by-term coaction formula on the series expansion of the corresponding hyper-
geometric function. The surprising phenomenon here is that the coaction defined
on the two sides comes from quite different structures with no apparent relation
and yet is still compatible.

Brown-Dupont explored this phenomenon further in [26], where they put the
coaction conjecture above in a rigorous framework and proved it in the case of
one-dimensional hypergeometric integrals. The key new development was the

1For simplicity, we drop the reference to motivic and deRham periods for now, which would
be required for a more precise formulation. Their definitions are needed and will be given in
Chapter 2.
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application of a generalized version of the Ihara formula that works at the level of
generating series of periods and thus allows for computation of the coaction at all
orders.

Another point of view was taken in [12] where the authors made use of the
Knizhnik–Zamolodchikov (KZ) differential equation for hypergeometric functions
to derive series representation in terms of multiple polylogarithms (MPLs) and
multiple zeta values (MZVs) and gave equivalent criteria for the coaction conjecture
in terms of an ‘adjoint’ operation that they computed explicitly in low orders.
Another recent progress was announced in a collaboration [35] involving myself,
Hadleigh Frost, Martijn Hidding, Carlos Rodriguez, Oliver Schlotterer and Bram
Verbeek where we bridge the two approaches mentioned above to give a Lie algebraic
reformulation of the coaction conjecture as well as applications of the new approach
to compute the single-valued (trivial monodromy) map for multiple polylogarithms
and hypergeometric functions. A companion paper [36] will give detailed proofs of
the results announced in [35]. I cover a part of this development in this thesis. In
particular, I will cover the above-mentioned reformulation of the coaction conjecture
including proofs. I will also discuss some of the results on the construction of the
single-valued map though we will be concise in this thesis and follow a slightly
different approach2 than what is expected to appear in [36]. Additionally, based
on my independent work, I provide alternative proofs of some of the results in [26]
and prove a couple of cases of the coaction conjecture in dimension two which is a
new result. The origin of the conjectural coaction property in a two-dimensional
case also goes back to a 2012 paper of Schlotterer-Stieberger [51] where the α’
expansion of open superstring amplitudes was studied. In the cases considered,
the α’ expansion has an expression purely in terms of multiple zeta values, which
satisfies an elegant property. It was observed that the coefficients of higher depth
multiple zeta values can be determined in terms of the coefficients of single zeta
values at least to low orders and that this holds generally was left as a conjecture.
The fact that this phenomenon can be explained in terms of the coaction was
elucidated in a 2013 paper by Drummond-Ragoucy [34]. This conjecture also
follows from the results of this thesis.

We should also note that the work in [1], [2] goes beyond coaction formulae for
integrals. They give a combinatorial coaction formula for generic one-loop Feynman
diagrams in terms of operations called cuts and contractions of a graph. These
results were further extended by the work of Matija Tapušković in [53, 54]. Similarly,
the coaction formula for Feynman integrals has also been looked at in cases where
they evaluate to higher genus or higher dimensional integrals, which is the next

2The changes relative to [36] are highlighted in section 5.6 via remark 5.6.6 and 5.6.7.
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frontier for collider computations3. However, in this thesis, we will be limited in
scope to focusing only on the coaction conjecture for hypergeometric functions.

Outline of the report - This thesis is organized as follows. Chapters 2 and 3 cover
some preliminary background. Chapter 2 briefly discusses definitions and results
related to periods, multiple polylogarithms, multiple zeta values, and the motivic
coaction of periods. We also introduce the generalized Ihara coaction formula
worked out in [26].

Hypergeometric functions are multi-valued functions and such integrals fit naturally
under the realm of twisted deRham theory. Chapter 3 focuses on the notion of
twisted periods and the interpretation of hypergeometric functions as twisted periods
of the punctured Riemann Sphere. The description of the coaction conjecture in
this setup following the work of [12] is also included in this chapter.

In Chapter 4, we cover many results, with proofs, about the generating series of
multiple zeta values, also known as the Drinfeld associator. These will be crucial in
proving our main result in Chapter 5. However, they only appear in section 5.5, so
this chapter may be skipped in the first instance until needed later on. It should
be noted that some of the results in this chapter may be new and of independent
interest in its own right.

Chapter 5 is the very core of this text. In this chapter, we recall the connection
between hypergeometric functions and multiple polylogarithms by using the KZ
equation. Then, we derive equivalent criteria for the coaction conjecture in terms
of certain identities for generating series of multiple polylogarithms and multiple
zeta values. At the end of this chapter, we also include an application to compute
the single-valued map for hypergeometric functions by using a purely algebraic
approach described in [28]. The results in this section are also meant to lay the
groundwork for analogous results in higher genus / dimensional settings [10] and
this hope has already started to bear fruit. We make a brief remark on this later
in the text.

In Chapter 6, we finally give a proof for some explicit instances of the coaction
conjecture in dimensions one and two by using the equivalent criteria from Chapter
5. Chronologically speaking, the results in this chapter were initially obtained
independently of the ones in chapter 5. However, the proofs in this report have
been slightly modified to be in sync with the current progress. We also explain
how the coaction formulae we prove in dimension two lead to the solution of an old
conjecture about the series expansion of open superstring tree amplitudes [51], [34].

3Please refer to the survey article [10] and the extensive references therein for further informa-
tion.
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Finally, there are some commutator identities that are required in a long proof in
section 5.5 and these are covered in the appendix 7.

One final point to note before we proceed is that coaction formulae exist not at the
level of periods but at the level of motivic periods [24], which are certain disembodied
avatars of the period integrals. The ring of motivic periods is conjectured to be
isomorphic to the ring of periods, but this is not yet known. We only know that
there is a surjective map from motivic periods to complex periods. So whenever
we work with periods, choices are involved when we take a lift to motivic periods,
which can not be avoided at the moment.
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Chapter 2

Periods, Motivic Coaction and
Multiple Zeta Values

2.1 Periods

The elementary definition of periods [49] states that “a period is a complex number
whose real and imaginary parts can be represented as an absolutely convergent
integral of a rational function with rational coefficients over an integration domain
which can described in terms of polynomial inequalities with rational coefficients”.
Examples of periods include algebraic numbers, pi, logarithm of rational numbers,
etc.

For our purposes, however, we need to work with the cohomological interpretation of
periods, which is briefly discussed in the next section. Further details are available
in references [21], [24] and [39].

2.1.1 Cohomological interpretation of periods

Let X be an algebraic variety defined over Q and Y ⊂ X a sub-variety.

Definition 2.1.1. We denote by H∗dR(X,Y) the relative algebraic deRham coho-
mology1 of X relative to Y . It is a finite-dimensional vector space over Q.

Definition 2.1.2. We denote by H∗B(X, Y ) := H∗(X(C), Y (C);Q) the relative
Betti cohomology of the pair of spaces (X, Y ). It is a finite-dimensional vector space
over Q. We also denote the corresponding Betti homology group by HB

∗ (X, Y ).

1The relative algebraic deRham cohomology is defined in the textbook [44].
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With the prescribed notation2, we have Grothendieck’s comparison theorem [43],
which is an algebraic analogue of the classical deRham’s theorem.

Theorem 2.1.3 (Comparison Isomorphism). There is a canonical isomorphism of
the relative cohomology groups,

compB,dR : H i
dR(X, Y )⊗Q C→ H i

B(X, Y )⊗Q C . (2.1.1)

Remark 2.1.4. Note that the comparison isomorphism does not preserve the rational
structure.

Definition 2.1.5 (Periods). The ring of periods is defined as the subset of complex
numbers that appear as a coefficient of a matrix of the comparison isomorphism
2.1.1.

Example 2.1.6. Let us consider X = Gm = Spec(Q[t, t−1]) and Y = ∅. Then we
have

H1
dR(X) = Q [

dt

t
] , H1(X(C),Q) = Q [γ] , (2.1.2)

where γ is the counterclockwise oriented unit circle and the period pairing gives∫
γ

dt

t
= 2πi . (2.1.3)

2.1.2 Motivic periods and coaction

A period can have multiple integral representations. Motivic periods are disembod-
ied integrals that keep track of the different representations of a period.

Notation 2.1.1. We writeH•(X, Y ) to denote the triple (H•dR(X, Y ), H•B(X, Y ), compB,dR).
We will denote elements of H•dR(X, Y ), HB

• (X, Y ) and H•dR(X, Y )∨ by [ω], [σ] and
[ν] respectively.

Definition 2.1.7 (Motivic periods). The ring Pm of motivic periods is defined as the
Q-vector space generated by the symbols [H•(X, Y ), [σ], [ω]]m, with [σ] ∈ HB

• (X, Y ),
[ω] ∈ H•dR(X, Y ), after factorisation modulo the following equivalence relations.
The multiplicative structure is given by tensor product on the components.

(1) Bilinearity : [H•(X, Y ), [σ], [ω]]m is bilinear in [ω] and [σ].

(2) Change of variables : If f : (X1, Y1)→ (X2, Y2) is a Q-morphism of pairs of
algebraic varieties, [σ1] ∈ HB

• (X1, Y1) and [ω2] ∈ H•dR(X2, Y2), then

[H•(X1, Y1), [σ1], f
∗[ω2]]

m = [H•(X2, Y2), f∗[σ1], [ω2]]
m,

2We will also allow Y to be the empty set ∅, in which case we will mean the usual non-relative
cohomology.
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where f ∗ and f∗ are the pull-back and the push-forward of f , respectively.

(3) Stoke’s formula : For every triple Z ⊂ Y ⊂ X,

[H•(Y, Z), [∂ σ], [ω]]m = [H•(X, Y ), [σ], [δ ω]]m .

where ∂ is the connecting morphism for relative singular homology and δ is
the connecting morphism for relative deRham cohomology.

Definition 2.1.8 (Period map). Note that the ring of motivic periods comes
equipped with a homomorphism called the period map, which is given by the
evaluation of integrals,

per : Pm −→ P ,[
Hk(X, Y ), [σ], [ω]

]m 7−→ ∫
σ

ω . (2.1.4)

The theory of motivic periods is related to the theory of another ring, the de Rham
periods.

Definition 2.1.9 (deRham periods). The ring of deRham periods denoted PdR, is
defined [24] analogously to motivic periods except that it is generated by symbols
of the form [H•(X, Y ), [ν], [ω]]dR with [ν] ∈ H•dR(X, Y )∨ and [ω] ∈ H•dR(X, Y ).

Definition 2.1.10 (Motivic coaction). The space of deRham periods forms a Hopf
algebra and the space of motivic periods is a Hopf comodule over it [24]. Let
{ei}i=1,...,n be a Q-basis of Hk

dR(X, Y ) and
{
ěi
}
i=1,...,n

the associated vector dual

basis of Hk
dR(X, Y )∨. Then the coaction is given by

∆: Pm −→ Pm ⊗ PdR,

[Hk(X, Y ), σ, ω]m 7−→
n∑

i=1

[Hk(X, Y ), σ, ei]
m ⊗ [Hk(X, Y ), ěi, ω]

dR . (2.1.5)

2.2 Multiple zeta values and Multiple polyloga-

rithms

Definition 2.2.1 (Multiple zeta values). Multiple zeta values are a multi-parameter
generalization of the classical zeta values and are defined as the infinite sum below

ζ(n1, . . . , nr) =
∑

0<k1<...,kr

1

kn1
1 . . . knr

r

(2.2.1)

where the ni’s are positive integers with nr ≥ 2. We refer to ζ(n1, . . . , nr) as a
multiple zeta value with weight n1 + . . .+ nr and depth r.
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Similarly, we have functions defined similarly to the above called multiple polyloga-
rithms.

Definition 2.2.2 (Multiple polylogarithms in one variable). The infinite sum

Lin1,...,nr(z) :=
∑

0<k1<...,kr

zkr

kn1
1 . . . knr

r

(2.2.2)

defined for positive integers ni with nr ≥ 2 is called a multiple polylogarithm in
one variable with weight n1 + . . .+ nr and depth r. It converges absolutely on the
open unit disk and extends continuously to the closed unit disc.

Multiple zeta values are an important class of periods. In fact, they exhibit multiple
integral representations. By the work of Goncharov-Manin [42], for instance, it
is known that they are periods of the moduli space of curves of genus zero at n
points. Additionally, they also exhibit a representation as iterated integrals which
makes them periods of the motivic fundamental groupoid of the thrice punctured
projective line [21].

Definition 2.2.3 (Iterated integrals). Let k = R or C and M be a smooth manifold
over k. For a piecewise smooth path γ : [0, 1] −→M and smooth k-valued 1-forms
ω1, . . . , ωn on M we define the iterated integral as∫

γ

ω1, . . . , ωn :=

∫
0≤t1≤...≤tn≤1

f1(t1)dt1 . . . fn(tn)dtn .

Here γ∗(ωi) = fi(t)dt are the pull-back of the forms ωi to the unit interval for
i ∈ {1, . . . , n}.

The iterated integrals are closed under multiplication.

Lemma 2.2.4. The iterated integrals satisfy the shuffle product formula∫
γ

ω1 . . . ωr

∫
γ

ωr+1 . . . ωr+s =
∑

σ∈Σ(r,s)

∫
γ

ωσ(1) . . . ωσ(r+s) (2.2.3)

where Σ(r, s) is the set of (r + s)-shuffles:
Σ(r, s) = {σ ∈ Σ(r + s) : σ−1(1) < . . . < σ−1(r) ∩ σ−1(r + 1) < . . . < σ−1(r + s)}.

Multiple zeta values can be represented as an iterated integral in the following way.

Example 2.2.5. Let M = C \ {0, 1}. Let ω0 =
dz
z
, ω1 =

dz
1−z be complex valued

1− forms on M and γ(t) = t be the inclusion of the unit interval on M , then we
have

ζ(n1, . . . , nr) =

∫
γ

ω1ω
n1−1
0 ω1ω

nr−1
0 . . . ω1ω

nr−1
0 . (2.2.4)
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Example 2.2.6. Similarly, if we don’t fix the endpoint and take γ : [0, 1] −→ C to
be a smooth path in M such that γ(0) = 0 and γ(1) = z then we get the multiple
polylogarithms in one variable

Lin1,...,nr(z) =

∫
γ

ω1ω
n1−1
0 ω1ω

nr−1
0 . . . ω1ω

nr−1
0 . (2.2.5)

The motivic coproduct for iterated integrals was first computed by Goncharov [41].
To write down this formula, it would be convenient to introduce another notation
that accounts for varying endpoints of integration.

Notation 2.2.1. Let ai ∈ C for i = 0, 1, . . . , n+ 1. Then we define

I(a0; a1, . . . , an; an+1) :=

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) . (2.2.6)

In the new notation, the coproduct on the Hopf algebra of polylogarithms (taken
modulo iπ) is given by

∆(Im(a0; a1, . . . , an; an+1))

=
∑

0=i1<i2<...<ik<ik+1=n

Im(a0; ai1 , . . . , aik ; an+1)⊗

[
k∏

p=0

Iω(aip ; aip+1, . . . , aip+1−1; aip+1)

]
.

(2.2.7)

This can be upgraded into a coaction by defining

∆(iπ) = π ⊗ 1 . (2.2.8)

Note that the coaction on motivic multiple zeta values is obtained by setting z = 1.

2.3 Multiple polylogarithms in more than one

variable

In what follows, we will need to work with iterated integrals over logarithmic
forms beyond just ω0 =

dz
z
, ω1 =

dz
1−z . We may also encounter iterated integrals

with singularities in contrast to what we have seen before. So we will modify our
notation a bit and work with the one common in physics literature so as to be in
sync with the work in [12], [35] and [36]. This is described below.
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Notation 2.3.1. Let A = {a1, . . . , an} be a generic alphabet of complex numbers.
Then, we define,

G(a1, a2, . . . , an; z) :=

∫ z

0

dt

t− a1
G(a2, . . . , an; t) . (2.3.1)

We also impose G(∅; z) = 1 .

Remark 2.3.1. The iterated integrals above may be divergent at the endpoints.
This is resolved via shuffle-regularization, that is by using the shuffle property
2.2.4 of iterated integrals along with the initial condition, G(0; z) = log(z) and
G(z; z) = − log(z).

In order to keep track of the dependence on any number of variables, we introduce
the generating series

G[ ea1 ea2 ... ean
a1 a2 ... an ; z] =

∞∑
r=0

∑
a1,a2,...,ar∈A

ea1ea2 . . . earG(ar, . . . , a2, a1; z) (2.3.2)

= 1 +
∑
a1∈A

ea1G(a1; z) +
∑

a1,a2∈A

ea1ea2G(a2, a1; z) + . . . (2.3.3)

The generating series above satisfies the Knizhnik–Zamolodchikov (KZ) equation
[47]

∂

∂z
G[ ea1 ea2 ... ean

a1 a2 ... an ; z] = G[ ea1 ea2 ... ean
a1 a2 ... an ; z]

n∑
i=1

eai
z−ai

. (2.3.4)

Remark 2.3.2. For A = {0, 1} we get the generating series of multiple polylogarithms
in one variable.

G(e0, e1; z) :=
∑

w∈{e0 , e1}∗
G(w)w . (2.3.5)

Further, setting z = 1 in the above we get the generating series of regularized
multiple zeta values [15], also known as the Drinfeld associator,

G(e0, e1; 1) = Φ(e0, e1) =
∑

w∈{e0 , e1}∗
(−1)d(w)ζ(w)w . (2.3.6)

Here, d(w), called the depth of ζ(w), is defined as the number of occurrences of e1
in the word w.

19



2.3.1 Ihara coaction formula

We have already seen the coaction formula for iterated integrals due to Goncharov.
However, it will be much more convenient to work instead with the (generalized)
Ihara formula [23, 26], which compactly packages Goncharov’s formula at the level
of generating series. For convenience we will drop the tensor notation and write am

instead of am ⊗ 1 ∈ Pm ⊗ Pω and aω instead of 1⊗ aω ∈ Pm ⊗ Pω.

Theorem 2.3.3 (Ihara formula). The motivic coaction on the generating series of
multiple polylogarithms is given by

∆Gm[ ea1 ea2 ... ean
a1 a2 ... an ; z] =

Gm
[
e
′
a1

e
′
a2

... e
′
an

a1 a2 ... an
; z
]
Gdr[ ea1 ea2 ... ean

a1 a2 ... an ; z]

(2.3.7)

where the e
′
aj

for j = 1, . . . , n are conjugates of the eaj given by

e
′

aj
= Gdr[ ea1 ea2 ... ean

a1 a2 ... an ; z = aj] eaj Gdr[ ea1 ea2 ... ean
a1 a2 ... an ; z = aj]

−1
. (2.3.8)

Remark 2.3.4. We will often set a1 = 0 in which case e
′
0 = e0 itself.

For A = {0, 1} we get the coaction of the generating series of MPLs in one variable.

∆Gm(e0, e1; z) = Gm(e0, e
′

1; z)Gdr(e0, e1; z) (2.3.9)

where the conjugate e
′
1 is equal to

e
′

1 = Φdr(e0, e1) e1 (Φ
dr(e0, e1))

−1 . (2.3.10)

The coaction of the Drinfeld associator is obtained by setting z = 1 in 2.3.9.

In analogy to the Ihara formula in the one variable case 2.3.9, we will often refer
to the terms

Gdr[ ea1 ea2 ... ean
a1 a2 ... an ; z = aj] (2.3.11)

in 2.3.7 as generalized Drinfeld associators.
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Chapter 3

Configuration space integrals,
twisted periods and coaction

Hypergeometric integrals are multi-valued functions. Twisted deRham theory is
the right framework for dealing with them. In this chapter, we will recall the
interpretation of hypergeometric functions as twisted periods of the configuration
space of the punctured Riemann sphere and express the coaction conjecture in this
setup. We start by setting up notation on configuration spaces of the punctured
Riemann sphere following [12].

3.1 Configuration spaces

We denote a genus-zero Riemann surface by

CP1 := C ∪ {∞} . (3.1.1)

Let n, p ∈ N.

Definition 3.1.1 (Configuration space). For a a topological space X, the configu-
ration space of p distinct points on X is defined as

Confp(X) := Xp\{(x1, x2, . . . , xp) | xi = xj for some i ̸= j} . (3.1.2)

Let X := CP1\{(n− p) points} be a Riemann Sphere with (n− p) punctures. We
denote by C(n,p) := Confp(X), the configuration space of p distinct points on X.
We also impose the following condition: 1 ≤ p ≤ n−3. Note that the configuration
space C(n,p) is p dimensional.
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Let us denote the inhomogeneous coordinates of the configuration space by zi for
i = 2, 3, . . . , p+1 and the inhomogeneous coordinates of the (n−p) fixed punctures
by z1 and zj for j = p+ 2, p+ 3, . . . , n.

We use the Möbius transformation to fix three coordinates and set

(z1, zn−1, zn) = (0, 1,∞) . (3.1.3)

Further, we assume the fixed punctures z1, zp+2, zp+3, . . . , zn−1 to be real and ordered
as below.

0 = z1 < zp+2 < zp+3 < · · · < zn−2 < zn−1 = 1 . (3.1.4)

In what follows, the hypergeometric integrals that we will consider will only involve
integrals over coordinates z2, . . . , zp+1 of the configuration space and so the fixed
punctures z1, zp+2, zp+3, . . . , zn will be referred to as the unintegrated variables.

3.2 Twisted periods and hypergeometric func-

tions

Hypergeometric functions can be interpreted as twisted periods on the configuration
space of punctured Riemann spheres where the twist is defined in terms of the
Koba-Nielsen factor.

The Koba–Nielsen factor KN(n,p) is defined as

KN(n,p) =
∏

2≤i≤p+1

(
zs1i1i

∏
i<j≤n−1

z
sij
ij

)
(3.2.1)

where the difference between punctures is denoted by

zij = zi−zj (3.2.2)

and sij will be thought of either as ‘generic’ real numbers or formal variables.

We also extend this notation by defining

sij = sji and sii = 0 (3.2.3)

for 1 ≤ i, j ≤ n− 1.

The genericity condition imposes that we must have

sij /∈ Z and
∑
(i,j)

sij /∈ Z (3.2.4)
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where the last sum is over all distinct unordered pairs (i, j).

Finally, the twist is defined to be single-valued form ω(n,p) = d logKN(n,p).

Definition 3.2.1 (Koba-Nielsen connection). Let OC(n,p) denote the structure sheaf
on C(n,p) and Ω1

C(n,p) the sheaf of differential 1-forms on C(n,p). Then the twist 1-form

ω(n,p) defines an integrable connection on C(n,p) called the Koba-Nielsen connection
[48].

∇ω(n,p)
= d+ ω(n,p)∧ : OC(n,p) → Ω1

C(n,p) . (3.2.5)

3.2.1 Twisted (co)-homology groups and periods

Definition 3.2.2. The twisted deRham cohomology group denoted Hk
dR(X,∇ω(n,p))

is defined as the cohomology of C(n,p) with coefficients in the integrable connection
(OC(n,p) ,∇ω(n,p)

)

Hk
dR(X,∇ω(n,p)) := Hk

dR(X, (OC(n,p) ,∇ω(n,p)
)) . (3.2.6)

It is known that the cohomology groups vanish except in the top dimension [6, 50]
and that the dimension of the pth twisted cohomology group Hp

dR(X,∇ω(n,p)) is
equal to d(n,p) where

d(n,p) =
(n−3)!

(n−3−p)!
. (3.2.7)

Concretely, the pth twisted deRham cohomology group Hp
dR(X,∇ω(n,p)) is a Q(sij)

vector space generated by equivalence classes of closed p-forms up to exact p-forms
with respect to the differential ∇ω(n,p)

.

The sheaf of horizontal sections of the connection ∇ω(n,p)
, denoted Lω(n,p)

:=

ker(∇ω(n,p)
) is a local system (locally constant sheaf) on C(n,p). We also have

the dual local system L∨ω(n,p)
defined as the sheaf of horizontal sections of the

dual connection ∇∨ω(n,p)
= ∇−ω(n,p)

. The dual local system L∨ω(n,p)
is generated over

Q(exp(2πisij)) by the Koba-Nielsen factor.

∏
2≤i≤p+1

(
zs1i1i

∏
i<j≤n−1

z
sij
ij

)
. (3.2.8)

Definition 3.2.3. The twisted singular homology group denoted HB
k (X,Lω(n,p)

) is

defined as the homology of C(n,p) with coefficients in the local system Lω(n,p)
. The

dual singular homology group HB
k (X,L∨ω(n,p)

) and the singular cohomology group

Hk
B(X,Lω(n,p)

) are defined similarly.
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Just like the deRham cohomology groups, the dual singular homology groups
HB

k (X,L∨ω(n,p)
) vanish everywhere except the top dimension. And the pth twisted

homology group HB
p (X,L∨ω(n,p)

) is a Q(exp(iπsij) vector space generated by equiva-

lence classes of ‘loaded’ cycles γ(n,p) ⊗KNγ(n,p) where γ(n,p) is a closed p-cycle on

C(n,p)and KNγ(n,p) is a section of the Koba-Nielsen factor on γ(n,p).

Note that going forward we work with the complex vector spaces of cohomology
groups obtained by extending the scalars to C. This will be implicit in the notation.

To define hypergeometric function as twisted periods we need to work with integrals
over open bounded domains of C(n,p). These are not closed cycles on C(n,p)but they
are locally finite cycles on C(n,p). So we also consider the locally finite homology1

groups HB,lf
k (X,L∨ω(n,p)

).

There are relations between the various singular homology and cohomology groups.
Assuming the genericity condition 3.2.4, we have for instance, the isomorphism of
homology groups [7],

HB,lf
k (X,L∨ω(n,p)

) ∼= HB
k (X,L∨ω(n,p)

) . (3.2.9)

Theorem 3.2.4. The singular cohomology group is related to the dual homology
group by the universal coefficient theorem

Hk
B(X,Lω(n,p)) ∼= HB

k (X,L∨ω(n,p))∨ . (3.2.10)

Finally, we have the twisted version of the comparison isomorphism [29].

Theorem 3.2.5. There is an isomorphism between the twisted cohomology groups

Hk
dR(X,∇ω(n,p)) ∼= Hk

B(X,Lω(n,p)) . (3.2.11)

Using the universal coefficient theorem 3.2.10 we can rewrite the RHS above in
terms of the dual homology group

Hk
dR(X,∇ω(n,p)) ∼= HB

k (X,L∨ω(n,p))∨ . (3.2.12)

Assuming the genericity condition we can work with the locally finite homology
group

Hk
dR(X,∇ω(n,p)) ∼= HB,lf

k (X,L∨ω(n,p))∨ . (3.2.13)

1The locally finite homology group of a space is defined using complexes of formal infinite
sums of singular chains in contrast to the classical singular homology which works with finite
chains. For a formal definition see [11].
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Finally, this isomorphism can be rephrased in terms of a bilinear pairing

HB,lf
k (X,L∨ω(n,p))⊗Hk

dR(X,∇ω(n,p))→ C . (3.2.14)

Once a basis γ
(n,p)
a ⊗ KN

γ
(n,p)
a

, a ∈ {1, . . . , d(n,p)} and ω
(n,p)
b , b ∈ {1, . . . , d(n,p)} of

the pth locally finite dual homology group and pth deRham cohomology group
respectively is fixed in the above pairing, the matrix of twisted periods is given by

F
(n,p)
ab = ⟨γ(n,p)

a ⊗KN
γ
(n,p)
a
|ω(n,p)

b ⟩ =
∫
γ
(n,p)
a

KN
γ
(n,p)
a

ω
(n,p)
b . (3.2.15)

3.2.2 Twisted basis of cycles and forms

A basis of twisted forms and cycles for the pth (co)homology groups was written
down in [12] and we will introduce it in this section.

In the proposed basis, the twisted ‘locally finite’ cycles γ
(n,p)
a correspond to bounded

regions of the real section of C(n,p), with boundaries contained in the union of
hyperplanes {zij = 0} appearing in the Koba–Nielsen factor KN(n,p). And as for

KN
(n,p)

γ
(n,p)
a

we choose the section of KN(n,p) on γ
(n,p)
a so that each factor zij in the

expression for KNn,p

γ
(n,p)
a

is positive. We will work with this choice implicitly and

often omit the Koba-Nielsen factor in the basis of cycles. So one can think of the
factor KN(n,p) appearing in the period integral F

(n,p)
ab as

KN(n,p) =
∏

2≤i≤p+1

(
|z1i|s1i

∏
i<j≤n−1

|zij|sij
)

(3.2.16)

to reflect our choice of section.

As mentioned in section 2.3 of [12], the basis of bounded cycles corresponds to
regions labeled by distinct real orderings of the p integrated variables zi1 , zi2 , . . . , zip
among the (n−p) unintegrated variables in their fixed order and thus can be
expressed combinatorially via the following recipe.

Let us write A⃗ = (A1, A2, . . . , Ap+1) to denote a partition of the ordered list of
unintegrated variables zp+2, . . . , zn−2 into possibly empty parts Aj.

Then we write

γ
(n,p)

A⃗,⃗i
= (1, A1, i1, A2, i2, A3, . . . , Ap, ip, Ap+1, n−1, n) (3.2.17)

to denote the interspersing of the variables to be integrated among the unintegrated
ones.
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Writing Ak = (ak1, ak2, . . . , akℓk) we can interpret the sequence . . . , Ak, ik, Ak+1, . . .
as the range zakℓk < zik < zak+1,1

for the associated integration variable zik . If
however we have Ak = ∅ or Ak+1 = ∅ then we replace the above with zik−1

< zik
and zik < zik+1

respectively.

Corresponding to the above choice of basis of cycles, an associated basis of forms
is proposed to eliminate any poles with respect to sij’s in the series expansion of
F (n,p).

We strip off the total differential and write

ω
(n,p)

A⃗,⃗i
= ω̂

(n,p)

A⃗,⃗i

p+1∏
k=2

dzk , where (3.2.18)

ω̂
(n,p)

A⃗,⃗i
=

∑
j1∈{1,A1}

si1,j1
zi1,j1

∑
j2∈{1,A1,i1,A2}

si2,j2
zi2,j2

. . .
∑

jp∈{1,A1,i1,A2,...

...,Ap−1,ip−1,Ap}

sip,jp
zip,jp

. (3.2.19)

We also state a basis ν
(n,p)

A⃗,⃗i
for the dual deRham cohomology group Hk

dR(X,∇ω(n,p))
∨.

They are derived from the basis of cycles γ
(n,p)

A⃗,⃗i
in the sense that each ν

(n,p)

A⃗,⃗i
has

logarithmic singularities with unit residues along the boundaries of γ
(n,p)

A⃗,⃗i
.

To describe the dual forms we first write a basis cycle as a product of intervals2 in
the form below.

γ
(n,p)

A⃗,⃗i
= {zbi1 < zi1 < zci1} × {zbi2 < zi2 < zci2} × · · · × {zbip < zip < zcip}

so that the integral on the top form can be written as∫
γ
(n,p)

A⃗,⃗i

( p+1∏
k=2

dzk

)
=

∫ zci1

zbi1

dzi1

∫ zci2

zbi2

dzi2 . . .

∫ zcip

zbip

dzip

i.e. for each integrated puncture zik , the indices bik and cik label the variables
adjacent to it in the ordering (3.2.17).

Finally, this allows us to write the dual forms as

ν
(n,p)

A⃗,⃗i
= ν̂

(n,p)

A⃗,⃗i

p+1∏
k=2

dzk (3.2.20)

ν̂
(n,p)

A⃗,⃗i
=

(
1

zi1,bi1
− 1

zi1,ci1

)(
1

zi2,bi2
− 1

zi2,ci2

)
· · ·

(
1

zip,bip
− 1

zip,cip

)
.

2This choice is in general not unique but leads to the same cohomology class for dual differential
forms in any case.
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3.2.3 Coaction conjecture for hypergeometric functions

The following coaction formula is conjectured [3, 5, 12]

∆F
(n,p)
ab =

d(n,p)∑
c=1

F (n,p)
ac ⊗ F

(n,p)
cb , (3.2.21)

to be consistent with the coaction of Taylor coefficients in the series expansion of
F (n,p).

We must be a bit careful here since the coaction is defined only at the motivic level
and so the above formula should be adjusted. The motivic and deRham lift of the
twisted periods can be defined analogously to how the motivic and deRham periods
were defined in the previous section just by changing the cohomology groups with
cohomology with coefficients [26]. So the correct form of the conjecture is to replace
the LHS with its motivic version, whereas on the RHS, we replace the left factor
with its motivic version and the right factor with its deRham counterpart.

∆F
(n,p),m
ab =

d(n,p)∑
c=1

F (n,p),m
ac ⊗ F

(n,p), ω
cb . (3.2.22)

Equivalently, in terms of the period matrix we have

∆F (n,p),m = F (n,p),m F (n,p), ω (3.2.23)

where we drop the tensor notation going forward by writing am for am⊗1 ∈ Pm⊗Pω

and aω for 1⊗ aω ∈ Pm ⊗ Pω.

In the final chapter of this text, we will prove the above coaction formula when
p = 1 and n = 4, 5 as well as for p = 2 and n = 5, 6. The case (n, p) = (4, 1)
corresponds to the classical Beta function for which the above coaction is already
known while the case (n, p) = (5, 1) corresponds to Gauss’s 2F1 hypergeometric
function for which the coaction conjecture was proved in [26]. However, we will
give alternative proofs in this report by making use of certain equivalent criteria
for the coaction conjecture which is discussed in the chapter 5. This alternative
approach will also allow us to prove the coaction conjecture for (n, p) = (5, 2), (6, 2)
which are new results. This result will also lead to a proof of the conjecture due to
Schlotterer-Stieberger [51] and its reformulation due to Drummond-Ragoucy [34]
on open superstring amplitudes that was alluded to in the introduction.
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Chapter 4

Drinfeld associator and the initial
value series

The focus of this chapter is to derive a series expansion for the Drinfeld associator
in terms of a certain operator defined in terms of a derivation on the free Lie
algebra in two variables. This allows us to write down explicitly the coefficients of
conjugate Drinfeld associators which is required to prove some conjugate identities
in section 5.5. We will work solely over the f -alphabet 5.1.2.

The results in this chapter will only be needed in section 5.5 so the reader may
skip them until required later on.

4.1 Derivation and the circle operator

Let g = LieK [e0, e1] be the free Lie algebra generated by letters e0 and e1 over a
field K. Let U(g) denote the universal enveloping algebra of g. Note that g embeds
into U(g).

To each element y of the Lie algebra g we can associate a derivation Dy on U(g) as
follows. For y ∈ g, define

Dye0 = 0, Dye1 = [e1, y] (4.1.1)

and extend the derivation to all of U(g) by using the product rule of differentiation.

For y ∈ g and x ∈ U(g), we define the circle operator, a right action of g on U(g)
as

x ◦ y := xy −Dyx . (4.1.2)
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In what follows, we will also need to work with the derivation D̂ which complements
D. For y ∈ g, define

D̂ye0 = [e0, y], Dye1 = 0 (4.1.3)

and extend as a derivation to all of U(g).

Note that for all y ∈ g and x ∈ U(g) we have

Dyx+ D̂yx = [x, y] . (4.1.4)

We also have the complementary circle operation ◦̂ defined as follows. For y ∈ g
and x ∈ U(g) we define

x ◦̂ y = xy − D̂yx . (4.1.5)

From equation 4.1.4 it follows that we have

x ◦̂ y = xy − D̂yx = xy − ([x, y]−Dyx) = yx+Dyx . (4.1.6)

4.2 Circle operator expansion

The following theorem is due to Francis Brown [18] though we include an indepen-
dent proof below.

Theorem 4.2.1 (Circle Operator Expansion formula). For j ∈ N, there exist words
p2j, w2j+1 ∈ Q⟨e0, e1⟩ of length 2j and 2j + 1 respectively such that the motivic
and deRham Drinfeld associators have the following series expansion using circle
operators,

Φm(e0, e1) =
( ∞∑
j=0

(f j
2 )

mp2j
)
◦

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
mwi1 ◦ . . . ◦ wir , (4.2.1)

Φdr(e0, e1) =
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
drwi1 ◦ . . . ◦ wir (4.2.2)

where the circle operator is to be computed from left to right. Moreover, p2, w2j+1 ∈
LieQ[e0, e1], that is, p2, w2j+1 are in fact commutators in e0, e1 for j ∈ N.

We fix K = Q and g = LieQ[e0, e1] in this section. Note that U(g) = Q ⟨e0, e1⟩.

Recall that the Q algebra of motivic multiple zeta values in the f-alphabet is
generated by non-commutative letters fk for k ≥ 3 odd and f2 where f2 commutes
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with all fk. Therefore, we can express the motivic Drinfeld associator in the form
below

Φm(e0, e1) =
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
mW2j,i1,...,ir (4.2.3)

for some words W2j,i1,...,ir ∈ U(g). Further, observe that due to the weight grading
on motivic multiple zeta values, we have that W2j,i1,...,ir is a word of length 2j +
i1 + . . .+ ir. Note that we will just write Wi1,...,ir in case r = 0 and consider also
the deRham Drinfeld associator,

Φdr(e0, e1) =
∑
r≥0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
dr Wi1,...,ir . (4.2.4)

Note that there is no canonical isomorphism between the Q algebra of motivic
MZVs and the algebra in the f-alphabet; however, the form of the results that
follow in this section won’t depend on the choice of isomorphism itself.

Lemma 4.2.2. For k = 2 or k ≥ 3 odd, the word Wk ∈ U(g) that appears in the
ansatz 4.2.3, 4.2.4 is actually a commutator in e0, e1, that is, Wk ∈ Lie[e0, e1].

Before we prove this result let us recall some prerequisites.

Let R be a commutative unital ring of characteristic zero. Let R⟨e0, e1⟩, R⟨⟨e0, e1⟩⟩,
denote the ring of polynomials and the ring of power series in non-commutative
letters e0, e1 with coefficients in R respectively. Let ∆S denote the coproduct on
R⟨⟨e0, e1⟩⟩ which is defined on the generators by

∆S(ej) = ej ⊗ 1 + 1⊗ ej, j = 0, 1, (4.2.5)

and extended to the power series ring as a ring homomorphism.

Then, note that a polynomial word W (e0, e1) ∈ R⟨e0, e1⟩ satisfies

∆S(W (e0, e1)) = W (e0, e1)⊗ 1 + 1⊗W (e0, e1) (4.2.6)

if and only if W (e0, e1) is a commutator in e0, e1, that is, W (e0, e1) ∈ Lie[e0, e1],
by Friedrichs’ theorem [46].

Let us fix R to be the algebra of motivic multiple zeta values. Also, recall that the
motivic Drinfeld associator satisfies

∆S(Φ
m(e0, e1)) = Φm(e0, e1)⊗ Φm(e0, e1) . (4.2.7)

Now, we can give a proof of lemma 4.2.2.
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Proof. Making use of our ansatz 4.2.3 in the series coproduct 4.2.7 we get that∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
m∆S(W2j,i1,...,ir) =∑

j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
mW2j,i1,...,ir

⊗
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
mW2j,i1,...,ir . (4.2.8)

For k = 2 or k ≥ 3 odd, let us compare the coefficient of fk on both sides of the
equation above. On the left side we have ∆S(Wk), whereas on the right side we
have Wk(e0, e1)⊗ 1 + 1⊗Wk(e0, e1). Therefore, Wk(e0, e1) ∈ Lie[e0, e1].

The same proof holds for Φdr(e0, e1) except there is no W2 term since f dr
2 = 0.

Next, we have a result that gives the structure of the coefficient words W2j,i1,...,ir in
the ansatz 4.2.3.

Lemma 4.2.3. For j, r ≥ 0 and i1, . . . , ir ∈ 2N+ 1 we have

W2j,i1,...,ir = W2j ◦Wi1 ◦ . . . ◦Wir (4.2.9)

where the circle operator is to be evaluated from left to right.

In this section, let ∆m denote the motivic coaction on the algebra of motivic
multiple zeta values. Then, Ihara’s coaction formula tells us that

∆m(Φ
m(e0, e1)) = Φm(e0, e

′

1) Φ
dr(e0, e1) (4.2.10)

where
e
′

1 = Φdr(e0, e1) e1 (Φ
dr(e0, e1))

−1 . (4.2.11)

Recall also that the motivic coaction on the f-alphabet is given by deconcatenation,

∆m(f
j
2fi1fi2 . . . fir)

m = (f j
2 )

m

r∑
q=0

(fi1fi2 . . . fiq)
m(fiq+1 . . . fir)

dr (4.2.12)

for j ≥ 0, r ≥ 0 and i1, . . . , ir ≥ 3 and odd.

Finally, we have the proof of lemma 4.2.10.
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Proof. We prove this result by induction. First, note that for r = 0 and j ̸= 0 or
for j = 0 and r = 1, there is nothing to prove. So, the base case is covered, and
the induction step follows from the following argument. Observe that

Φdr(e0, e1) = 1 +
∑

i1∈2N+1

f dr
i1
Wi1 + . . . (4.2.13)

and therefore
(Φdr(e0, e1))

−1 = 1−
∑

i1∈2N+1

f dr
i1
Wi1 + . . . . (4.2.14)

Therefore, we can write the deRham conjugate as

e
′

1 = Φdr(e0, e1) e1 (Φ
dr(e0, e1))

−1 = e1 −
∑

i1∈2N+1

f dr
i1
[e1,Wi1 ] + . . . . (4.2.15)

Now, making use of our ansatz 4.2.3 in Ihara’s coaction formula 4.2.10 we get that
the left side is equal to∑

j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

∆m

(
(f j

2 )
m fm

i1
fm
i2
. . . fm

ir

)
W2j,i1,...,ir(e0, e1)

=
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m

r∑
q=0

fm
i1
fm
i2
. . . fm

iq f
dr
iq+1

. . . f dr
ir W2j,i1,...,ir(e0, e1) ,

(4.2.16)

whereas the right side is equal to∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m fm
i1
fm
i2
. . . fm

ir W2j,i1,...,ir(e0, e
′

1)

×
∑
r≥0

∑
i1,i2,...,ir∈2N+1

f dr
i1
f dr
i2
. . . f dr

ir Wi1,...,ir(e0, e1)

=
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m fm
i1
fm
i2
. . . fm

ir W2j,i1,...,ir(e0, e1−
∑

i1∈2N+1

f dr
i1
[e1,Wi1 ]+. . .)

×
∑
r≥0

∑
i1,i2,...,ir∈2N+1

f dr
i1
f dr
i2
. . . f dr

ir Wi1,...,ir(e0, e1) . (4.2.17)

From the left side of the Ihara coaction, we see thatW2j,i1,...,ir(e0, e1) is the coefficient
of

∆m

(
(f j

2 )
m fm

i1
fm
i2
. . . fm

ir

)
= (f j

2 )
m

r∑
q=0

fm
i1
fm
i2
. . . fm

iq f
dr
iq+1

. . . f dr
ir (4.2.18)
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and thus in particular the coefficient of

(f j
2 )

m fm
i1
fm
i2
. . . fm

ir−2
fm
ir−1

f dr
ir . (4.2.19)

Consider also the coefficient of the above f-word on the right side. The motivic
part of the word, (f j

2 )
m fm

i1
fm
i2
. . . fm

ir−2
fm
ir−1

, appears as a contribution from

Φm(e0, e
′

1) = 1 + . . .+ (f j
2 )

m fm
i1
fm
i2
. . . fm

ir−2
fm
ir−1

W2j,i1,...,ir−1(e0, e
′

1) + . . . (4.2.20)

with the accompanying word

W2j,i1,...,ir−1(e0, e
′

1) , (4.2.21)

whereas, the deRham part of the word, f dr
ir , appears either as a contribution from

e
′

1 = Φdr(e0, e1) e1 (Φ
dr(e0, e1))

−1 = e1 − f dr
ir [e1,Wir(e0, e1)] + . . . (4.2.22)

in W2j,i1,...,ir−1(e0, e
′
1) or as a contribution from the second factor

Φdr(e0, e1) = 1 + f dr
ir Wir(e0, e1) + . . . (4.2.23)

in the Ihara coaction. In the latter case, we can ignore the deRham contribution
from e

′
1 and get

W2j,i1,...,ir−1(e0, e1)Wir(e0, e1) . (4.2.24)

as part of the coefficient of

(f j
2 )

m fm
i1
fm
i2
. . . fm

ir−2
fm
ir−1

f dr
ir . (4.2.25)

For the former case, consider the word below

W2j,i1,...,ir−1(e0, e
′

1) = W2j,i1,...,ir−1(e0, e1 − f drir [e1,Wir(e0, e1)] + . . .) . (4.2.26)

and the coefficient of f dr
ir in it. Since

e
′

1 = e1 − f dr
ir [e1,Wir(e0, e1)] + . . . (4.2.27)

for every appearance of e1 in the word W2j,i1,...,ir−1(e0, e1), considering only one e1
at a time, we get the term −fir [e1,Wir(e0, e1)]. Thus, taking them all together we
get the coefficient of fir as

−DWir (e0,e1)
W2j,i1,...,ir−1(e0, e1) . (4.2.28)

Finally, adding the two contributions we get the coefficient of

(f j
2 )

m fm
i1
fm
i2
. . . fm

ir−2
fm
ir−1

f dr
ir as (4.2.29)
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W2j,i1,...,ir = W2j,i1,...,ir−1(e0, e1)Wir(e0, e1)−DWir (e0,e1)
W2j,i1,...,ir−1(e0, e1) (4.2.30)

= W2j,i1,...,ir−1(e0, e1) ◦ Wir(e0, e1). (4.2.31)

Hence, by induction, we get that

W2j,i1,...,ir = W2j ◦Wi1 ◦ . . . ◦Wir . (4.2.32)

Finally, we have the proof of Theorem 4.2.1.

Proof. Follows from the discussion in this section along with lemma 4.2.3 and 4.2.2
after taking p2j = W2j and w2j+1 = W2j+1.

Our main goal in the following two sections is to write down the coefficients of the
Drinfeld conjugate Φdre1(Φ

dr)−1 in terms of derivations.

Also note that going forward, we will only be working with deRham periods, so we
will drop the dr superscript from the f -alphabet for ease of notation.

4.3 Coefficients of the inverse series

We first need to understand the coefficients of the inverse Φdr(e0, e1)
−1.

We know that
Φdr(e0, e1)

−1 = Φdr(e1, e0) . (4.3.1)

In this chapter, for a word x(e0, e1) ∈ U(g), we write←→x (e0, e1) to denote x(e1, e0),
that is the word obtained by swapping e0 and e1 in x.

From 4.3.1 it is clear that we have for all i ∈ 2N+ 1,

←→wi (e0, e1) = −wi(e0, e1) . (4.3.2)

Next, we need to understand how the swapping operation affects the derivations
and the circle operator.

Lemma 4.3.1. For all x ∈ U(g) and y ∈ g, we have

←−→
Dyx = D̂←→y

←→x . (4.3.3)
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Proof. Since the derivation is linear it is enough to assume that x is a monomial
word in U(g). Then, by the product rule, Dy acts on x as follows. If only the
letter e0 occurs in x, then Dyx = 0 and the result is clear. Otherwise, for each
occurrence of the letter e1 in x, Dy replaces that e1 by [e1, y] and adds it to the

output. Finally the swapping operator in
←−→
Dyx changes x by ←→x and y by ←→y which

causes all the [e1, y]’s to be replaced by [e0,
←→y ]. And thus we get D̂←→y

←→x as the
result.

Lemma 4.3.2. For all x ∈ U(g) and y ∈ g, we have

←−→x ◦ y =←→x ◦̂←→y . (4.3.4)

Proof. From lemma 4.3.1 we have

←−→x ◦ y =
←−−−−−→
xy −Dyx =←→x ←→y −

←−→
Dyx =←→x ←→y − D̂←→y

←→x =←→x ◦̂←→y =←→y ←→x +D←→y
←→x

(4.3.5)
and the last two equations follow from 4.1.5 and 4.1.6 respectively.

Corollary 4.3.3. The coefficient of fi1 . . . fir in the series Φdr(e0, e1)
−1 is equal to

←→wi1 ◦̂ . . . ◦̂←→wir (4.3.6)

Proof. Follows from equation 4.3.1 and lemma 4.3.2.

4.4 Coefficients of the conjugate series

Our next result is about the coefficients of the conjugate series Φdr(e0, e1)e1Φ
dr(e0, e1)

−1.
To be clear, we are looking at the coefficients of the words in the f -alphabet in
terms of words in e0, e1. To motivate this result we describe a few computations.

1. The coefficient of 1 is e1. This is clear since the constant term in both Φ and
Φ−1 is 1.

2. The coefficient of fi for i ≥ 3 odd is

wi e1 + e1
←→wi . (4.4.1)

Since the term fi comes either from Φ with a coefficient of wi or from Φ−1

with a coefficient of ←→wi .
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3. To figure out the coefficient of fi1fi2 we have to look at all the shuffle products
that could lead to the appearance of the term fi1fi2 in the conjugate product
series and we get

(wi1 ◦ wi2)e1 + wi1 e1
←→wi2 + wi2 e1

←→wi1 + e1(
←→wi1 ◦̂←→wi2) (4.4.2)

corresponding to the shuffle terms

fi1fi2�1, fi1�fi2 , fi2�fi1 , 1�fi1fi2 . (4.4.3)

From the above examples, the pattern is now clear. To be precise we introduce the
following notation. For monomial words u, v and z in the f -alphabet we define

C(u, v; z) := coefficient of z in the shuffle productu�v . (4.4.4)

Also, for a word fi1 . . . fir in the f -alphabet, we define

w(fi1 . . . fir) := wi1 ◦ . . . ◦ wir , and (4.4.5)

ŵ(fi1 . . . fir) :=
←→wi1 ◦̂ . . . ◦̂←→wir . (4.4.6)

With the prescribed notation above we can write down the coefficient of the Drinfeld
conjugate series.

Lemma 4.4.1. For r ∈ N, the coefficient of fi1 . . . fir in the series Φdr(e0, e1)e1Φ
dr(e0, e1)

−1

is equal to ∑
{(u,v): fi1 ...fir ∈u� v}

C(u, v; fi1 . . . fir)w(u)e1ŵ(v) . (4.4.7)

Proof. Clear from looking at all deshuffles of the word fi1 . . . fir and the coefficients
of the corresponding components in the series Φ and Φ−1.

We are at a stage where we can write down the above coefficients purely in terms
of derivations. To motivate this result we again describe a few examples.

1. The coefficient of 1 is e1.

2. Using equation 4.3.2 we get that the coefficient of fi for i ≥ 3 odd is

wi e1 + e1
←→wi = wi e1 − e1wi = [wi, e1] = −Dwi

e1 . (4.4.8)

3. The coefficient of fi1fi2 for i1, i2 ≥ 3 odd and distinct is

(wi1 ◦ wi2)e1 + wi1 e1
←→wi2 + wi2 e1

←→wi1 + e1(
←→wi1 ◦̂←→wi2) = Dwi2

Dwi1
e1 (4.4.9)
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as can be easily verified. Similarly, for i1 = i2 ≥ 3 odd we get

(wi1 ◦ wi1)e1 + 2wi1 e1
←→wi1e1(

←→wi1 ◦̂←→wi1) = Dwi1
Dwi1

e1 (4.4.10)

which is identical to the previous case when i1 and i2 are distinct.

This leads us to the following theorem.

Theorem 4.4.2 (D. Kamlesh). For i1, . . . , ir ∈ 2N+ 1, the coefficient of fi1 . . . fir
in the series Φdr(e0, e1)e1Φ

dr(e0, e1)
−1 is equal to

(−1)lDwir
. . . Dwi1

e1 . (4.4.11)

Convention: Before we proceed with the proof, we want to set a convention for
this chapter. For the sake of simplicity and clarity, going forward, we treat all
the indices ij as distinct. This way of representation does not cause any loss of
information and serves as a unifying notation. To illustrate with an example let us
discuss the example 3 again when i1 = i2. So when we consider the deshuffles of
f 2
i1
, we write

fi1fi2�1, fi1�fi2 , fi2�fi1 , 1�fi1fi2 . (4.4.12)

instead of
f 2
i1
�1, fi1�fi1 = 2f 2

i1
, f 2

i1
�1 (4.4.13)

since we are treating i1 and i2 as distinct indices. Also, following the first formula-
tion, the coefficient of f 2

i1
in the conjugate series Φdr(e0, e1)e1Φ

dr(e0, e1)
−1 will be

written as

(wi1 ◦ wi2)e1 + wi1 e1
←→wi2 + wi2 e1

←→wi1 + e1(
←→wi1 ◦̂←→wi2) = Dwi2

Dwi1
e1 . (4.4.14)

This observation allows us to rewrite lemma 4.4.1 as follows by setting all the
shuffle coefficients C(u, v;w) to 1.

Lemma 4.4.3. For r ∈ N, the coefficient of fi1 . . . fir in the series Φdr(e0, e1)e1Φ
dr(e0, e1)

−1

is equal to∑
{(u,v): fi1 ...fir ∈u� v}

C(u, v; fi1 . . . fir)w(u)e1ŵ(v) =
∑

{(u,v): fi1 ...fir ∈u� v}

w(u)e1ŵ(v) .

(4.4.15)

Remark 4.4.4. Next, we add a small observation that will be used in the proof of
theorem 4.4.2 below. For every pair (u, v) such that fi1 . . . fir ∈ u� v, we clearly
have that

fi1 . . . firfir+1 ∈ ufir+1 � v and fi1 . . . firfir+1 ∈ u� vfir+1 . (4.4.16)
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Conversely, for any pair (ũ, ṽ) such that fi1 . . . firfir+1 ∈ ũ� ṽ, either ũ or ṽ must
have the letter fir+1 at its end. So we must be able to write either

(ũ, ṽ) = (ufir+1 , v) or (ũ, ṽ) = (u, vfir+1) . (4.4.17)

Proof. For arbitrary r, consider the derivation of the coefficient of fi1 . . . fir . We
have

−Dwir+1

( ∑
{(u,v): fi1 ...fir ∈u� v}

w(u)e1ŵ(v)
)
=

∑
{(u,v): fi1 ...fir ∈u� v}

(
−Dwir+1

(w(u)e1ŵ(v))
)
.

(4.4.18)
Focusing on the bracketed term on the right-hand side we get

−Dwir+1
(w(u)e1ŵ(v)) = −Dwir+1

(w(u))e1ŵ(v)+w(u)(−Dwir+1
e1)ŵ(v)+w(u)e1(−Dwir+1

(ŵ(v))) .

(4.4.19)
In particular

−Dwir+1
e1 = [wir+1 , e1] = wir+1e1 − e1wir+1 = wir+1e1 + e1

←−→wir+1 (4.4.20)

and so the middle term can be rewritten as

w(u)(−Dwir+1
e1)ŵ(v) = w(u)(wir+1e1 + e1

←−→wir+1)ŵ(v) . (4.4.21)

Putting above in the original bracketed term we get

−Dwir+1
(w(u)e1ŵ(v)) =

(
−Dwir+1

(w(u))e1ŵ(v) + w(u)wir+1e1ŵ(v)
)

(4.4.22)

+
(
w(u)e1

←−→wir+1ŵ(v) + w(u)e1(−Dwir+1
(ŵ(v)))

)
. (4.4.23)

The last term can be modified using

−Dwir+1
= D−wir+1

= D←−−→wir+1
(4.4.24)

to get

−Dwir+1
(w(u)e1ŵ(v)) = (w(u)wir+1−Dwir+1

w(u))e1ŵ(v)+w(u)e1(
←−→wir+1ŵ(v)+D←−−→wir+1

ŵ(v)) .

(4.4.25)
Using the definition of the circle operators along with equation 4.1.2 and 4.1.6, we
have

−Dwir+1
(w(u)e1ŵ(v)) = (w(u) ◦ wir+1)e1ŵ(v) + w(u)e1(ŵ(v) ◦̂←−→wir+1) (4.4.26)

= w(ufir+1)e1ŵ(v) + w(u)e1 ̂w(vfir+1) . (4.4.27)
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Therefore, the derivation of the coefficient of fi1 . . . fir is

−Dwir+1

( ∑
{(u,v): fi1 ...fir ∈u� v}

w(u)e1ŵ(v)
)

(4.4.28)

=
∑

{(u,v): fi1 ...fir ∈u� v}

(
w(ufir+1)e1ŵ(v) + w(u)e1 ̂w(vfir+1)

)
(4.4.29)

=
∑

{(u,v): fi1 ...fir ∈u� v}

(
w(ufir+1)e1ŵ(v)

)
+

∑
{(u,v): fi1 ...fir ∈u� v}

(
w(u)e1 ̂w(vfir+1)

)
(4.4.30)

=
∑

{(u,v): fi1 ...firfir+1
∈ufir+1

� v}

w(ufir+1)e1ŵ(v)+
∑

{(u,v): fi1 ...firfir+1
∈u� vfir+1

}

w(u)e1 ̂w(vfir+1))

(4.4.31)

=
∑

{(ũ,ṽ): fi1 ...firfir+1
∈ ũ� ṽ}

w(ũ)e1ŵ(ṽ) . (4.4.32)

This is the coefficient of fi1 . . . firfir+1 by proposition 4.4.3 and the last two
steps use remark 4.4.4 discussed before the proof. Since the coefficient of 1 in
Φdr(e0, e1)e1Φ

dr(e0, e1)
−1 is e1, we get the required result by induction.

Next, we study conjugates when there are two Drinfeld factors involved.

Let e(1, 0), e(1, 1), e(2, 0), e(2, 1) be non-commutative letters and consider the con-
jugate below.

Φ(e(1, 0), e(1, 1))Φ(e(2, 0), e(2, 1)) e(2, 1)Φ(e(2, 0), e(2, 1))−1Φ(e(1, 0), e(1, 1))−1 .
(4.4.33)

Let us denote by X := Φ(e(2, 0), e(2, 1)) e(2, 1)Φ(e(2, 0), e(2, 1))−1, the inner con-
jugate. Let w ∈ Lie[e0, e1] be a commutator in letters e(1, 0), e(1, 1). For j = 1, 2
we write w(j) := w(e(j, 0), e(j, 1)). Further, let us define

Dw(1)(X) = [X,w(1)] (4.4.34)

for all w ∈ Lie[e0, e1]. Then, X does the work of e1 in theorem 4.4.2 and we get
that

Φ(e(1, 0), e(1, 1))Φ(e(2, 0), e(2, 1)) e(2, 1)Φ(e(2, 0), e(2, 1))−1Φ(e(1, 0), e(1, 1))−1

= Φ(e(1, 0), e(1, 1))X Φ(e(1, 0), e(1, 1))−1 =
∑
l≥0

∑
i1,...,il

(−1)lfi1 . . . filDwil
(1) . . . Dwi1

(1) X
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=
∑
l≥0

∑
i1,...,il

(−1)lfi1 . . . filDwil
(1) . . . Dwi1

(1)

(∑
m≥0

∑
j1,...,jm

(−1)mfj1 . . . fjmDwjm (2) . . . Dwj1
(2)(X)

)
.

(4.4.35)

To simplify the above expression, let u, v be words in the f -alphabet such that
fi1 , . . . fir occurs in the sum u�v. Then, we can write u = fia1 . . . fial and v =
fib1 . . . fibm where l +m = r and aj, bk are distinct letters from the list i1, . . . , ir.
Note that we must have a1 < a2 < . . . < al and b1 < b2 < . . . < bm since aj, bk must
preserve the internal ordering of i1, . . . , ir for fi1 , . . . fir ∈ fia1 . . . fial�fib1 . . . fibm
to hold.

Then, the coefficient of fi1 . . . fir in the conjugate series 4.4.33 can be written as∑
(u,v):fi1 ...fir∈u�v

(−1)r Dwial
(1) . . . Dwia1

(1)Dwibm
(2) . . . Dwib1

(2)X . (4.4.36)

We can simplify the above expression further by extending the definition of Dw(2)

to Lie[e(1, 0), e(1, 1), e(2, 0), e(2, 1)] by setting

Dw(2)(w
′(1)) = 0 (4.4.37)

for all w′ ∈ Lie[e0, e1].

Theorem 4.4.5 (D. Kamlesh). The coefficient of fi1 . . . fir in the conjugate series
4.4.33 is equal to

(−1)rDwir (1)+wir (2)
. . . Dwi1

(1)+wi1
(2)(e(2, 1)) . (4.4.38)

Proof. From 4.4.36 we know that the coefficient of fi1 . . . fir is equal to∑
(u,v):fi1 ...fir∈u�v

(−1)r Dwial
(1) . . . Dwia1

(1) Dwibm
(2) . . . Dwib1

(2) e(2, 1) . (4.4.39)

where u = fia1 . . . fial and v = fib1 . . . fibm .

First, we focus on the expression below,

Dwial
(1) . . . Dwia1

(1)Dwibm
(2) . . . Dwib1

(2) e(2, 1) . (4.4.40)

By definition 4.4.37, Dwibm
(2) acts on any Dwiaj

(1) by zero and thus Dwibm
(2) com-

mutes with Dwiaj
(1). Therefore, we can push Dwibm

(2) to the left in the above

equation. If bm > al then we push Dwibm
(2) all the way to the left or if a1 > bm then

we leave Dwibm
(2) inert. If not, there exists k ∈ 1, . . . l such that ak > bm > ak−1
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and in this case we push Dwibm
(2) to the left until it sits between Dwiak

(1) and

Dwiak−1
(1). We repeat the same procedure for Dwibm−1

(2). Note that by definition

of the above procedure, Dwibm−1
(2) never gets pushed beyond Dwibm

(2) and so the

process is still valid. We repeat this procedure until Dwib1
(2) is also exhausted and

in the end, we are left with a rewriting of 4.4.40 as follows

D
wir (ϵ

(u,v)
r )

. . . D
wi1

(ϵ
(u,v)
1 )

e(2, 1) (4.4.41)

where ϵ
(u,v)
j takes values in 1, 2 depending on the pair (u, v). As we sum over the

pairs (u, v) such that fi1 . . . fir ∈ u�v then the sequence ϵ
(u,v)
r , . . . , ϵ

(u,v)
1 covers all

binary sequences in letters 1 and 2 and thus we can rewrite equation 4.4.39 as

(−1)r
(
Dwir (1)

+Dwir (2)

)
. . .
(
Dwi1

(1) +Dwi1
(2)

)
(e(2, 1)) . (4.4.42)

Since Dw is linear in w we can write above as

(−1)rDwir (1)+wir (2)
. . . Dwi1

(1)+wi1
(2)(e(2, 1)) . (4.4.43)

Remark 4.4.6. The above result can be extended when working with conjugates
with more than two factors by appropriate extensions of the definition of derivations.
This fact will be used in section 5.5.

4.5 Initial value series

For i ∈ 2N + 1, let Mi denote the abstract generators of a Lie algebra. In this
section, we are interested in series of the form

Mdr =
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

(fi1 . . . fir)
drMi1 . . .Mir . (4.5.1)

In particular, we want to prove conjugate identities for the series Mdr, analogous to
what we saw earlier for the Drinfeld associator. Such series appear in section 5.2
where they will be referred to as an ‘initial value series’. The results in this section
will only be needed in section 5.5 so the reader may skip them until required later
on.

Our first goal is to find the inverse of the series Mdr. So we write down the ansatz

(Mdr)−1 =
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

fi1 . . . firWi1,...,ir (4.5.2)
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and we want to compute the terms Wi1,...,ir .

Using the relation
Mdr(Mdr)−1 = 1 (4.5.3)

and comparing coefficients of the words fi1 . . . fir in both sides we make the following
observations.

1. The constant term of (Mdr)−1 is 1.

2. Looking at the coefficient of fi1 we get

Mi1 +Wi1 = 0 . (4.5.4)

So we have Wi1 = −Mi1 for all positive odd integers i1 ≥ 3.

3. The coefficient of fi1fi2 can be found by looking at words whose shuffle
product has the term fi1fi2 in it. We have four possibilities -

fi1fi2�1, fi1�fi2 , fi2�fi1 , 1�fi1fi2 . (4.5.5)

Looking at the coefficient contribution from each term we get the relation

Mi1Mi2 +Mi1Wi2 +Mi2Wi1 +Wi1,i2 = 0 . (4.5.6)

Using 4.5.4 and simplifying we get that Wi1,i2 = Mi2Mi1 .

The general pattern of the coefficient equation is now clear. To state it precisely
we define some notation. For positive odd indices i1, . . . , ir and words fi1 . . . fir we
define

M(fi1 , . . . , fir) = Mi1 . . .Mir and (4.5.7)

W (fi1 , . . . , fir) = Wi1,...,ir . (4.5.8)

Then we get the following relation after comparing coefficients in 4.5.3.∑
{(u,v): fi1 ...fir ∈u� v}

C(u, v; fi1 . . . fir)M(u)W (v) = 0 . (4.5.9)

Recall that we treat all the letters fki ’s as distinct for ease of computation, and
thus, we can simplify the above as follows.∑

{(u,v): fi1 ...fir ∈u� v}

M(u)W (v) = 0 . (4.5.10)

We use this relation to prove the following lemma.

42



Lemma 4.5.1. The coefficient of fi1 . . . fir in the series (Mdr)−1, Wi1,...,ir is equal
to

(−1)rMir . . .Mi1 . (4.5.11)

Proof. We prove this result using induction. We have already checked a couple of
base cases. So let r be a positive integer and assume that the lemma is true for all
positive integers less than or equal to r, that is,

Wi1,...,ij = (−1)jMij . . .Mi1 (4.5.12)

for positive integers j ≤ r. We will prove the result for r + 1.

We split the pairs (u, v) such that C(u, v; fi1 . . . fir+1) = 1 into two types. First, we
have the pairs where the word u ends in the letter fir+1 and similarly we have the
second type of pairs where the word v ends in the letter fir+1 .

Note that any pair (ufir+1 , v) from the first type can be changed into a pair
(u, vfir+1) from the second type and vice versa. Further, the transfer of the letter
fir+1 along with our induction hypothesis 4.5.12 leads to the relation

M(ufir+1)W (v) +M(u)W (vfir+1) = 0 . (4.5.13)

except when u = fir+1 since in that case v = fi1 . . . fir and the term Wi1,...,ir is
unknown.

However, the above equation 4.5.13 when used with the relation 4.5.10 cancels all
the term except the one associated with u = fir+1 and so we do indeed get

M(fir+1)W (fi1 . . . fir) +M(1)W (fi1 . . . firfir+1) = 0 . (4.5.14)

Again, by making use of the induction hypothesis 4.5.12 in the above relation we
get

(−1)rMir+1Mir . . .Mi1 +Wi1,...,ir+1 = 0 . (4.5.15)

This proves the lemma.

Our next goal is to work out an analogous result to 4.4.2 for the initial value series
M.

Let e0, e1 be non-commutative variables such that [e0,Mi], [e1,Mi] ∈ g = Lie[e0, e1]
for i ≥ 3 odd. Then, for every positive odd integer i ≥ 3, we define a derivation
DMi

on U(g) by setting

DMi
(e0) = [e0,Mi], DMi

(e1) = [e1,Mi] (4.5.16)

and then extending the derivation by the Leibniz rule.
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Note that the above definition implies

DMi
(w) = [w,Mi] (4.5.17)

for any word w(e0, e1) ∈ U(g).

Let X ∈ Lie[e0, e1]. We want to compute the coefficients of the conjugate series
(Mdr)−1XMdr and we start by looking at some examples.

1. The coefficient of 1 is X.

2. The coefficient of fi1 is

−Mi1X +XMi1 = [X,Mi1 ] = DMi1
X . (4.5.18)

3. The coefficient of fi1fi2 can be worked out by looking at the deshuffles again
and we get

Mi2Mi1X −Mi2XMi1 −Mi1XMi2 +XMi1Mi2

= [[X,Mi1 ],Mi2 ] = DMi2
DMi1

X . (4.5.19)

The general pattern is clear and we reintroduce some notation to state it precisely.
For positive odd indices i1, . . . , ir and words fi1 , . . . , fir we define

M(fi1 , . . . , fir) = Mi1 . . .Mir and (4.5.20)

W (fi1 , . . . , fir) = Wi1,...,ir = (−1)rMir . . .Mi1 . (4.5.21)

The below result is then clear.

Lemma 4.5.2. The coefficient of fi1 , . . . , fir in the conjugate series (Mdr)−1XMdr

is equal to ∑
{(u,v): fi1 ...fir ∈u� v}

W (u)XM(v) . (4.5.22)

However, we want to express the above coefficient in terms of derivations and the
corresponding result is below.

Theorem 4.5.3 (D. Kamlesh). The coefficient of fi1 . . . fir in the conjugate series
(Mdr)−1XMdr is equal to

DMir
. . . DMi1

(X) . (4.5.23)
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Proof. We prove this result by induction. The first few cases have already been
checked. So assume that the result is true for positive integers less than equal to r
and we will prove the result for r + 1.

From proposition 4.5.2 we know that the coefficient of fi1 , . . . , fir+1 in the conjugate
series (Mdr)−1XMdr is equal to ∑

{(ũ,ṽ): fi1 ...fir+1
∈ ũ� ṽ}

W (ũ)XM(ṽ) . (4.5.24)

By remark 4.4.4 we can split it into a sum∑
{(u,v): fi1 ...firfir+1

∈ufir+1
� v}

W (ufir+1)XM(v)+
∑

{(u,v): fi1 ...firfir+1
∈u� vfir+1

}

W (u)XM(vfir+1) .

(4.5.25)
Again, using remark 4.4.4, we can also drop the factor of fir+1 from the sum pairs
to get ∑
{(u,v): fi1 ...fir ∈u� v}

W (ufir+1)XM(v)+
∑

{(u,v): fi1 ...fir ∈u� v}

W (u)XM(vfir+1) (4.5.26)

Then making use of the M and W notation 4.5.20 we can rewrite above as∑
{(u,v): fi1 ...fir ∈u� v}

[(−Mir+1)W (u)XM(v) +W (u)XM(v)(Mir+1)] (4.5.27)

= −Mir+1DMir
. . . DMi1

(X) +DMir
. . . DMi1

(X)Mir+1 (4.5.28)

= [DMir
. . . DMi1

(X),Mir+1 ] = DMir+1
DMir

. . . DMi1
(X) (4.5.29)

where the last two lines make use of the induction hypothesis and proposition
4.5.2.
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Chapter 5

Equivalent criteria for the
coaction conjecture

The results in this chapter were achieved as part of a collaboration with Hadleigh
Frost, Martijn Hidding, Carlos Rodriguez, Oliver Schlotterer and Bram Verbeek.
This progress was first announced in [35] and a more detailed work is meant to
appear in a future article [36].

In this chapter we explore the connection between period matrices of hypergeometric
functions and series expansion in multiple zeta values and multiple polylogarithms.
Our strategy is as follows. The matrix of twisted periods is known to satisfy the KZ
differential equation. Since the generating series of multiple polylogarithms solves
the KZ equation, this allows us to express the period matrix as a series expansion
in polylogarithms up to a factor of initial values comprising of multiple zeta values
computed by taking boundary limits. This allows us to derive equivalent criteria
for the coaction conjecture in terms of the series coefficients by making use of the
Ihara formula. To be completely general we will work abstractly in this chapter
and not deal with any explicit period matrices. We will come back to the coaction
conjecture in explicit cases in the next chapter. For reasons of convenience and
aesthetics, we will also work with a slightly different notation in this chapter, which
is discussed below.

5.1 Setup

Let n ∈ N. We work with a holomorphic function F = F (n) of n-variables

F (n) = F (n)(z1, . . . , zn) (5.1.1)
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defined on the coordinates

{(z1, . . . , zn ∈ Cn)| zi ̸= 0, 1 and zi ̸= zj, for 1 ≤ i ̸= j ≤ n} . (5.1.2)

We also set
z0 = 0, zn+1 = 1 . (5.1.3)

We should think of the function F (n) as a stand-in for the period matrix of
hypergeometric functions. It is already known that[50, 6, 55] such period matrices
satisfy matrix-type KZ equations1. Hence, we may suppose that the function F
satisfies the following partial differential equations for k = 1, . . . , n,

∂

∂zk
F (z1, . . . , zn) = F (z1, . . . , zn)

( n+1∑
j=0,j ̸=k

ek,j
zk − zj

)
(5.1.4)

where we think of ek,j’s as the abstract generators of a Lie algebra satisfying the
infinitesimal braid relations2 :

ei, j = ej, i if i ̸= j , (5.1.5)

[ei,j, ek,l] = 0 if i ̸= j ̸= k ̸= l and (5.1.6)

[ei, j + ej, k, ei, k] = 0 if i ̸= j ̸= k (5.1.7)

for i, j, k, l = 0, 1, . . . , n+ 1.

We denote the differential factor on the right by

X
(n)
k,F :=

n+1∑
j=0, j ̸=k

ek,j
zk − zj

(5.1.8)

so that we may write

∂

∂zk
F (z1, . . . , zn) = F (z1, . . . , zn)X

(n)
k,F . (5.1.9)

Since F (n) satisfies linear differential equations we can solve for it in terms of
iterated integrals. Concretely, we get a solution to 5.1.4 on the branch

0 = z0 < z1 . . . zn < zn+1 = 1 (5.1.10)

1A proof of this using the notion of S-bracket will appear in [36].
2The existence of braid relations for the ei,j ’s is also known and a new proof will appear in

[36].
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by integrating along the path

(0, 0, . . . , 0)→ (0, . . . , 0, zn)→ (0, . . . , 0, zn−1, zn)→ . . .→ (z1, . . . , zn−1, zn) .
(5.1.11)

This gives a series expression for F as

F (z1, . . . , zn) =

IG
[
e∗n,0 en,n+1

z0 zn+1
; zn

]
. . .G

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
. . .G

[
e∗1,0 e1,2 ... e1,n+1

z0 z2 ... zn+1
; z1

]
(5.1.12)

where
I := lim

zn→0
. . . lim

z1→0
F z

−e∗1,0
1 . . . z

−e∗n,0
n (5.1.13)

is the initial value factor and the starred entries for k = 1, . . . , n are given by

e∗k,0 = ek,0 +
k−1∑
j=1

ek,j . (5.1.14)

Note that we have e∗1,0 = e1,0. Also, observe that the series of polylogarithms
G(−; zk) in 5.1.12 depends only on zk and the variables with higher indices, that
is, zk+1, . . . , zn, but not on z1, . . . , zk−1.

For simplicity, we will sometimes abbreviate the series of polylogarithms in 5.1.12
as

Gk = G(zk;
−→
e∗k,j) := G

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
(5.1.15)

and write
F (z1, . . . , zn) = IGn . . .G1 . (5.1.16)

Remark 5.1.1. It is known that the initial value factor I can be expressed in terms of
multiple zeta values3 and we usually write it in terms of the f -alphabet of multiple
zeta values [19, 20] which is described below.

Definition 5.1.2 (f -alphabet). The Q-algebra of motivic multiple zeta values is
non-canonically isomorphic to the Q-algebra of polynomials in the commutative
letter f2 and non-commutative letters fk, for each odd weight k ∈ 2N + 1, with
multiplication given by shuffle product.

The coaction of a word in the f-alphabet is given by deconcatenation,

∆(f j
2fi1fi2 . . . fir)

m = (f j
2 )

m

r∑
q=0

(fi1fi2 . . . fiq)
m(fiq+1 . . . fir)

dr (5.1.17)

3This is known by the work of Terasoma on Selberg integrals [55].
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where j ≥ 0, r ≥ 0 and i1, . . . , ir ∈ 2N+ 1.

In the rest of this text, we fix an isomorphism to the f -alphabet. It is known that
the coefficients of ζ(2) and the odd zeta values ζ(2N+ 1) in the Drinfeld associator
can be written as a commutator which we denote by wk. So we have an expression
of the form

Φ(e0, e1) = 1 + f2w2 + f3w3 + f5w5 + . . . (5.1.18)

The above mentioned features and more properties of the Drinfeld associator
are covered in section 4. Also note that the choice of the isomorphism to the
f -alphabet may change the commutators wk but the form of the results in this text
is independent of this choice and will stay the same.

Before proceeding to the next section we also recall the Ihara coaction formula for
ease of reference.

The motivic coaction on the generating series Gk is given by

∆Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
=

Gm
[
e∗k,0 e

′
k,k+1 ... e

′
k,n+1

z0 zk+1 ... zn+1
; zk

]
Gdr
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
(5.1.19)

where the conjugates e
′

k,j are defined by

e
′

k,j = Gdr
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk → zj

]
ek,j (Gdr

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk → zj

]
)−1 .

(5.1.20)

Here, the notation zk → zj means that we set zk = zj in the generating series. We
note again that the terms in the generating series are shuffle-regularized to remove
any endpoint singularities.

5.2 Equivalent criteria

Theorem 5.2.1 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). The
following statements are equivalent -

1.
∆(Fm) = Fm F dr . (5.2.1)

2.
∆(Im) = Im Idr (5.2.2)
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and for 1 ≤ k ≤ n, we have

∆(Gm
k ) = (IdrGdr

n . . .Gdr
k+1)

−1Gm
k (IdrGdr

n . . .Gdr
k+1)Gdr

k . (5.2.3)

3. ∆(Im) = Im Idr and for 1 ≤ k ≤ n, k + 1 ≤ j ≤ n+ 1, we have

(IdrGdr
n . . .Gdr

k+1)
−1 e∗k,0 (IdrGdr

n . . .Gdr
k+1) = e∗k,0 and (5.2.4)

(IdrGdr
n . . .Gdr

k+1)
−1 ek,j (IdrGdr

n . . .Gdr
k+1) =

Gdr(zk = zj;
−→
e∗k,j) ek,j Gdr(zk = zj;

−→
e∗k,j)

−1. (5.2.5)

4. For k ≥ 1, there exists P2k, M2k+1 such that

Im = PmMm where (5.2.6)

Pm =
∞∑
j=0

(f j
2 )

m P2j and (5.2.7)

Mm =
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
mMi1Mi2 . . .Mir , (5.2.8)

and the terms P2j, Mi are the abstract generators of a free Lie algebra
satisfying the following commutator relations.

(a) For i = 1, . . . , n,

[e∗i,0, M2k+1] = [
i−1∑
j=0

ei, j , M2k+1] = 0 . (5.2.9)

(b) For i = 2, . . . , n+ 1

[e1, i,M2k+1] = −
2i−3∑
j=1

[e1, i , w2k+1(j)] (5.2.10)

where wk(j) := wk(e(j, 0), e(j, 1)) with

e(2a− 1, 0) = e1,0 +
a∑

b=2

e1, b , (5.2.11)

e(2a− 1, 1) = e(2a, 0) = e1, a+1 , (5.2.12)

e(2a, 1) = ea+1,0 +
a∑

b=2

ea+1, b (5.2.13)

defined for a = 1, . . . , n.
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(c) More generally, for i = 1, . . . , n, j = i+ 1, . . . , n+ 1 and k ∈ 2N+ 1,

[ei,j,Mk] = [

j−1∑
t=i

wk(
t∑

r=0,r ̸=i

er,i, ei,t+1) +

j−2∑
t=i

wk(ei,t+1,

t∑
r=0,r ̸=i

er,t+1), ei,j].

(5.2.14)

Note that the wk’s above refer to the commutator coefficients 5.1.18 of the
zeta values in the Drinfeld associator.

Remark 5.2.2. Before proceeding to the proof we briefly discuss the origin of the
definitions and relations introduced in the criteria 4 above.

1. The factorization of the initial value factor I into the series factors P and M
is intimately tied to the coaction property of I. Recall that the Beta function
satisfies the same coaction property and has a series expansion in terms of
single zeta values 1.0.1 which can be split into two factors corresponding
to only even and odd zeta values. This phenomenon can be generalized to
the factorization for I mentioned in the theorem above when higher-depth
zeta values also appear and was first observed in [51], [34] in the context of
tree-level open superstring amplitudes. We will discuss this further at the
end of section 6.2.

2. The identities 5.2.4, 5.2.5 in criteria 3 above involve conjugation by the factor
I (with associated variables P2j,Mi) on the left of the equation, whereas
the right side of the equation consists only of series in the variables eij.
To transform the left side of the equation into a series involving only eij’s
additional relations are required between the Lie variables P2j,Mi and eij.
This is incorporated via the commutator relations listed in criteria 4 . These
relations were already observed to hold numerically in low depths for specific
matrix representations in (4.23) of [12].

Remark 5.2.3. The conjugate terms in the criteria 3 above also appear in [30], [31]
in the context of single-valued iterated Eisenstein integrals, which is an elliptic
analogue.

Proof. I. 1 ⇐⇒ 2 : Suppose that 1 holds, that is, ∆(Fm) = Fm F dr. Then, on
setting zi = 0 for i = 1, . . . , n, we get that

∆(Fm(zj = 0)) = Fm(zj = 0)F dr(zj = 0) (5.2.15)

and hence
∆(Im) = Im Idr . (5.2.16)
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Similarly, setting zi = 0 for i = 1, . . . , n− 1 but not i = n we have that

∆(Im)∆(Gm
n ) = ∆(ImGm

n ) = (ImGm
n ) (IdrGdr

n ). (5.2.17)

Therefore, applying 5.2.16 to the above equation we get

∆(Gm
n ) = (Idr)−1Gm

n IdrGdr
n . (5.2.18)

Repeating the steps above we get 5.2.3 and hence 2 holds.

Now, suppose that 2 holds. Then, multiplying equation 5.2.2 and 5.2.3 for k = n
to 1 we get 5.2.1 and therefore 1 holds.

II. 2 ⇐⇒ 3: Suppose that 2 holds. That is, for 1 ≤ k ≤ n, we have

∆Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
=

(IdrGdr
n . . .Gdr

k+1)
−1Gm

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
× (IdrGdr

n . . .Gdr
k+1)Gdr

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
. (5.2.19)

By Ihara formula 2.3.7, we also know that,

∆Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
=

Gm
[
e∗k,0 e

′
k,k+1 ... e

′
k,n+1

z0 zk+1 ... zn+1
; zk

]
Gdr
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
(5.2.20)

with e
′

k,j as defined in 5.1.20. Equating the two expressions, we can cancel the
rightmost factor and compare the coefficient of weight 1 motivic logarithm in zk on
both sides. Observe that up to weight one we have

Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
= 1+logm(zk)e

∗
k,0+

n+1∑
j=k+1

(
logm(zj−zk)−logm(zj))

)
ek,j+. . .

(5.2.21)
Thus, the coefficient of logm(zk) in 5.2.19 is equal to

(IdrGdr
n . . .Gdr

k+1)
−1 e∗k,0 (IdrGdr

n . . .Gdr
k+1) (5.2.22)

and in 5.2.20 it is equal to e∗k,0. Therefore, we get

(IdrGdr
n . . .Gdr

k+1)
−1 e∗k,0 (IdrGdr

n . . .Gdr
k+1) = e∗k,0. (5.2.23)
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Similarly, the coefficient of logm(zj − zk) in 5.2.19 is equal to

(IdrGdr
n . . .Gdr

k+1)
−1ek,j (IdrGdr

n . . .Gdr
k+1) , (5.2.24)

whereas, in 5.2.20 it is equal to

e
′

k,j = Gdr
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zj

]
ek,j Gdr

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zj

]−1
. (5.2.25)

Thus, we also get the equation

(IdrGdr
n . . .Gdr

k+1)
−1 ek,j (IdrGdr

n . . .Gdr
k+1) =

Gdr(
−→
e∗k,j; zk → zj) ek,j Gdr(

−→
e∗k,j; zk → zj)

−1. (5.2.26)

Conversely, suppose that 3 holds. Then, in the Ihara formula,

∆Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
=

Gm
[
e∗k,0 e

′
k,k+1 ... e

′
k,n+1

z0 zk+1 ... zn+1
; zk

]
Gdr
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
(5.2.27)

we can substitute for e∗k,0 and e
′

k,j with equations 5.2.23, 5.2.26 and take the common
conjugating factor out to get

∆Gm
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
=

(IdrGdr
n . . .Gdr

k+1)
−1Gm

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
× (IdrGdr

n . . .Gdr
k+1)Gdr

[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
. (5.2.28)

III. 3 =⇒ 4 : Recall from remark 5.1.1 that the initial value series I can be
expressed in terms of the multiple zeta values. Since the Q algebra of motivic
multiple zeta values in the f-alphabet is generated by the non-commutative letters
fk for k ≥ 3 odd and f2 where f2 commutes with all fk, we can write the series I
in the form below,

Im =
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
mW2j,i1,...,ir (5.2.29)

for some Lie algebra generators W2j,i1,...,ir . Now, suppose that 3 holds. Then we
have ∆Im = ImIdr. Therefore, we get that,
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∆Im =
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
mW2j,i1,...,ir

×
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
drW2j,i1,...,ir (5.2.30)

since f dr
2 = 0. Recall also that the coaction on the f-alphabet is given by decon-

catenation,

∆(f j
2fi1fi2 . . . fir)

m = (f j
2 )

m

r∑
q=0

(fi1fi2 . . . fiq)
m(fiq+1 . . . fir)

dr (5.2.31)

for j ≥ 0, r ≥ 0 and i1, . . . , ir ∈ 2N+ 1. Therefore, the coaction of Im is also given
by

∆Im =
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m

r∑
q=0

(fi1fi2 . . . fiq)
m(fiq+1 . . . fir)

drW2j,i1,...,ir

(5.2.32)
So let us compare the coefficients on both sides. For j ∈ N ∪ {0}, r ∈ N, the
coefficient of (f j

2 )
mfi1 . . . fir−1 ⊗ fir in 5.2.30 is equal to W2j,i1,...,ir−1Wir , whereas,

in 5.2.32 it is equal to W2j,i1,...,ir . Therefore, by induction, we have that

W2j,i1,...,ir = W2jWi1 . . .Wir (5.2.33)

for all j ∈ N ∪ {0} and r ∈ N. Finally, relabelling the W2j as P2j and Wir as Mir

we get that

Im =
∑
j≥0

∑
r≥0

∑
i1,i2,...,ir∈2N+1

(f j
2 )

m (fi1fi2 . . . fir)
m P2jMi1 . . .Mir (5.2.34)

which can be simplified to
Im = PmMm (5.2.35)

with the notation

Pm =
∞∑
j=0

(f j
2 )

m P2j and (5.2.36)

Mm =
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
mMi1Mi2 . . .Mir . (5.2.37)

Next, we need to derive the commutator relations. In that direction, let us consider
equation 5.2.4 which is valid for k = 1, . . . , n,

(IdrGdr
n . . .Gdr

k+1)
−1 e∗k,0 (IdrGdr

n . . .Gdr
k+1) = e∗k,0 . (5.2.38)
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First, let us fix k. Then, on setting zj = 0 for j = k + 1, . . . , n, the above equation
reduces to

(Idr)−1 e∗k,0 Idr = e∗k,0 . (5.2.39)

Since πdr = 0, we have Pdr = 1, Idr = Mdr and we get

(Mdr)−1 e∗k,0Mdr = e∗k,0 . (5.2.40)

Observe that we have

(Mdr)−1 = 1−
∑

i1∈2N+1

fi1Mi1 + . . . (5.2.41)

and thus the conjugate is equal to

(Mdr)−1 e∗k,0Mdr = e∗k,0 +
∑

i1∈2N+1

[e∗k,0,Mi1 ] + . . . (5.2.42)

Now, let i ∈ N. Then, comparing the coefficient of f2i+1 on both sides of 5.2.40 we
get that

[e∗k,0, M2i+1] = 0 . (5.2.43)

Next, consider the equation 5.2.5 which is valid for k = 1, . . . , n and j = k+1, . . . , n,

(IdrGdr
n . . .Gdr

k+1)
−1 ek,j (IdrGdr

n . . .Gdr
k+1) =

Gdr(zk → zj;
−→
e∗k,j) ek,j Gdr(zk → zj;

−→
e∗k,j)

−1. (5.2.44)

Without loss of generality, let us fix k = 1 and k+1 ≤ j ≤ n and rewrite the above
as follows.

(Idr)−1 e1,j Idr =

Gdr
n . . .Gdr

2 Gdr(z1 = zj;
−→
e∗1,j) e1,j

(
Gdr

n . . .Gdr
2 Gdr(z1 = zj;

−→
e∗1,j)

)−1
. (5.2.45)

As before, the strategy is to look at the coefficients of single zeta values. However,
we need to get rid of the polylogarithms first. We do this by taking the limits
zi → 0 for i = 2, . . . , n in the increasing order of i. This limit has been computed
in the section 5.4 on initial values. It is the result 5.4.3 which we recall here.

lim
zi→0, i≥2

lim
z1→zj

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) e1, l

(
G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

)−1
=

2j−3∏
a=1

Φ(e(a, 0), e(a, 1)) e1,j

2j−3∏
a=1

(
Φ(e(a, 0), e(a, 1))

)−1
. (5.2.46)

55



where the terms e(a, 0), e(a, 1) are the same as the ones defined in 5.2.10.

Note that the inverse of the Drinfeld associator looks like

Φ(e0, e1)
−1 = 1− f2w2 − f3w2 − f5w5 − . . . (5.2.47)

Thus, the coefficient of f2i+1 in the above limit is equal to

2j−3∑
a=1

[w2i+1(e(a, 0), e(a, 1)) , e1,j] . (5.2.48)

Similarly, the coefficient of f2i+1 in the conjugate (Idr)−1 e1,j Idr is equal to [e1,j, M2i+1]
and thus the equality 5.2.45 gives us the commutator relation 5.2.10 as required.

The proof of the relation 5.2.14 follows from similar limit computations in the case
k > 1, so we will skip it here.

IV. 4 =⇒ 3 : First, let us fix some notation. We write

Zl = Z(zl ; e1,0 . . . e1,n+1) := G[ e1,0 e1,2 ... e1,n+1
z0 z2 ... zn+1 ; z1 = zl] (5.2.49)

for l = 2, . . . , n. We often refer to the Zl’s as generalized Drinfeld associators.

We can consider the Drinfeld conjugate defined for l = 2, . . . , n as

e
′

1,l = Zdr(zl ; e1,0 . . . e1,n+1) e1,l Z
dR(zl ; e1,0 . . . e1,n+1)

−1 . (5.2.50)

And we want to prove that for l = 2, . . . , n we have

e
′

1,l = (MdrGdr
n . . .Gdr

2 )
−1 e1,l (MdrGdr

n . . .Gdr
2 ) . (5.2.51)

There are other conjugates to consider as well but the proof of those identities is
similar so the above case is enough for the purpose of illustration.

Going forward we will drop the deRham superscript in the next few sections and
assume it implicitly unless mentioned otherwise. Further, keeping the initial value
constant factors on one side we can rephrase the conjugate identity as

(Gn . . .G2 Zl) e1,l (Gn . . .G2 Zl)
−1 = M−1 e1,l M . (5.2.52)

We will prove the above version provided the variables ek,j and Mk satisfy the
commutator relations mentioned in the theorem. The steps are a bit involved and
will be covered in the next few sections.

Briefly, our strategy is to show that both sides of the equation 5.2.52 have the
same partial derivatives in zk and the same initial limiting values. To this end,
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we first compute all the partial derivatives of the factors Gj and Zl in section
5.3. Next, we compute the initial value limits of the left-hand side in section
5.4. This requires knowledge of analytic continuation of F beyond the standard
simplex. This information is encoded in certain representations of the braid group
which is recalled in section 5.4.1. In section 5.5 we deal with conjugate series of
generalized Drinfeld associators. An explicit computation of the coefficients of
conjugate Drinfeld associators is covered in chapter 4 which will be useful in section
5.5. Finally, we put the results together to get the conjugate identity in section 5.5.

5.3 Partial derivatives

We recall the derivatives of the series of polylogarithms Gk,

∂

∂zk
Gk = Gk

( e∗k,0
zk − z0

+
n+1∑

j=k+1

ek,j
zk − zj

)
. (5.3.1)

We also denote the differential factors by

X
(n)
k,G :=

e∗k,0
zk − z0

+
n+1∑

j=k+1

ek,j
zk − zj

(5.3.2)

so that we may write
∂

∂zk
Gk = Gk X

(n)
k,G . (5.3.3)

Lemma 5.3.1. For k = 2, . . . , n and l = 2, . . . , n+ 1, we have

∂

∂zk
(M−1 e1,l M) = 0 . (5.3.4)

Proof. This is clear since M is a constant series independent of the variables
z2, . . . , zn.

Let us introduce some notation before we compute the partial derivatives of the
polylogarithmic factor G1.

Notation 5.3.1. For k = 2, . . . , n, we write τ(2k) ∈ Sn to denote the transposition
that swaps 2 and k. Note that we impose τ(2k)(0) = 0, τ(2k)(n+ 1) = n+ 1. We
also write ∂k =

∂
∂zk

to denote the partial derivative operator with respect to zk.
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Lemma 5.3.2. For k = 2, . . . , n, we have

∂k G1 = −τ(2k)(X(n)
2,G)G1 +G1X

(n)
k,F . (5.3.5)

where τ(2k) acts on the indices of zj and eij in X
(n)
2,G.

Proof. First, we prove the result for k = 2. Taking the derivative with respect to
z2 in the following equation

F (n) = Gn . . .G1 (5.3.6)

we get that

∂2F
(n) = ∂2(Gn . . .G1), that is (5.3.7)

F (n)X
(n)
2, F = ∂2(Gn . . .G1) by 5.1.9 and thus (5.3.8)

Gn . . .G1X
(n)
2, F = Gn . . .G3 ∂2(G2G1) (5.3.9)

since Gk does not depend on z2 for k ≥ 3. Since the factors Gk are invertible we
can cancel factors on both sides to get

G2G1X
(n)
2, F = ∂2(G2)G1 +G2 ∂2(G1) = G2X

(n)
2,G G1 +G2 ∂2(G1) by 5.3.3. (5.3.10)

Again, cancelling the factor G2 from both sides we get

∂2(G1) = −X(n)
2,G G1 +G1X

(n)
2,F . (5.3.11)

Finally, we can compute the partial derivative with respect to any k = 2, . . . , n by
applying the transposition τ(2k). Precisely,

∂kG1 = τ(2k)(∂2G1) = τ(2k)(−X(n)
2,GG1 +G1X

(n)
2,F ) = −τ(2k)(X

(n)
2,G)G1 +G1X

(n)
k,F

(5.3.12)

since τ(2k)(X
(n)
2,F ) = X

(n)
k,F and τ(2k)G1 = G1.

Corollary 5.3.3. For k = 2, . . . , n we have

∂k(Gn . . .G2) = Gn . . .G2(τ(2k)X
(n)
2,G) . (5.3.13)

Proof. We have
F (n) = Gn . . .G1 . (5.3.14)

Taking partial derivatives on both sides we get

∂kF
(n) = ∂k(Gn . . .G1), that is (5.3.15)
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Gn . . .G1X
(n)
k, F = ∂k(Gn . . .Gn)G1 +Gn . . .Gn∂k(G1) . (5.3.16)

Applying lemma 5.3.2 we get

Gn . . .G1X
(n)
k, F = ∂k(Gn . . .G2)G1 +Gn . . .G2(−τ(2k)(X(n)

2,G)G1 +G1X
(n)
k,F )

(5.3.17)

and thus ∂k(Gn . . .G2)G1 −Gn . . .G2(τ(2k)X
(n)
2,G)G1 = 0 .

(5.3.18)

Finally, cancelling the factor of G1 from both sides we are left with

∂k(Gn . . .G2) = Gn . . .G2(τ(2k)X
(n)
2,G) . (5.3.19)

Corollary 5.3.4. For k = 2, . . . , n we have

∂k (Gn . . .G2)
−1 = −(τ(2k)X(n)

2,G) (Gn . . .G2)
−1 . (5.3.20)

Proof. We have

∂k
(
(Gn . . .G2) (Gn . . .G2)

−1) = ∂k(1) = 0, therefore, (5.3.21)

∂k(Gn . . .G2) (Gn . . .G2)
−1 + (Gn . . .G2) ∂k (Gn . . .G2)

−1 = 0 . (5.3.22)

Applying corollary 5.3.4 we get

Gn . . .G2(τ(2k)X
(n)
2,G) (Gn . . .G2)

−1 +Gn . . .G2 ∂k (Gn . . .G2)
−1 = 0 (5.3.23)

and after cancelling factors, we are left with

∂k (Gn . . .G2)
−1 = −(τ(2k)X(n)

2,G) (Gn . . .G2)
−1 . (5.3.24)

Next, we will compute the partial derivatives of Zl.

Proposition 5.3.5. For For k = 2, . . . , n and l = 2, . . . , n, n+ 1 we have

∂k Zl = −τ(2k)(X(n)
2,G)Zl + Zl (X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
) if k ̸= l and (5.3.25)

∂k Zk = −τ(2k)(X(n)
2,G)Zk + Zk (X

(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk) .

(5.3.26)
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Proof. Case I: k ̸= l.

We have

Zl = G(zl;
−→e1,j) = 1 + (G(zl;

−→e1,j)− 1) = 1 +

∫ zl

0

(
∂1G(z1;

−→e1,j)
)
dz1 . (5.3.27)

From equation 5.1.9 we know that

∂1G1 = G1X
(n)
1, F (5.3.28)

and so we get

Zl = 1 +

∫ zl

0

G1X
(n)
1, F dz1 . (5.3.29)

Taking the partial derivative with respect to zk on both sides in the last equation
we get

∂k Zl = ∂k
(∫ zl

0

G1X
(n)
1,F dz1

)
. (5.3.30)

Since l ̸= k we can use Leibniz’s rule to push the partial derivative inside the
integral and apply the product rule to get

∂kZl =

∫ zl

0

∂k (G1)X
(n)
1,F dz1 +

∫ zl

0

G1 ∂k(X
(n)
1,F ) dz1 . (5.3.31)

Denote the two terms on the right-hand side above by I and II, respectively.
Applying lemma 5.3.2 we get

I =

∫ zl

0

∂k (G1)X
(n)
1,F dz1 = −τ(2k)(X(n)

2,G)

∫ zl

0

G1X
(n)
1,Fdz1 +

∫ zl

0

G1X
(n)
k, F X

(n)
1,Fdz1 .

(5.3.32)
and we call the two terms on the right I(a) and I(b) respectively.

By equation 5.3.27 we can rewrite I(a) as

I(a) = −τ(2k)(X(n)
2,G)

∫ zl

0

G1X
(n)
1,Fdz1 = −τ(2k)(X

(n)
2,G)(Zl − 1) . (5.3.33)

Further, applying lemma 7.0.1 we can rewrite I(b) as

I(b) =

∫ zl

0

G1X
(n)
k, F X

(n)
1,Fdz1 =

∫ zl

0

G1X
(n)
1, F X

(n)
k,Fdz1 . (5.3.34)
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Next, recall equation 5.1.8 and note that we have

∂k X
(n)
1,F = ∂k(

n+1∑
j=0,j ̸=k

ek,j
zk − zj

) =
ek,1

(z1 − zk)2
= ∂1

ek,1
zk − z1

. (5.3.35)

Therefore, term II becomes

II =

∫ zl

0

G1 ∂k(X
(n)
1,F ) dz1 =

∫ zl

0

G1 ∂1
ek,1

zk − z1
dz1 . (5.3.36)

Using integration by parts we get

II =
[
G1

ek,1
zk − z1

]zl
0
−
∫ zl

0

∂1G1
ek,1

zk − z1
dz1 . (5.3.37)

Call the two terms on the right in the above equation by II(a) and II(b) respectively.

Then, we have

II(a) =
[
G1

ek,1
zk − z1

]zl
0
= Zl

ek,1
zk − zl

− ek,1
zk

, (5.3.38)

II(b) = −
∫ zl

0

∂1G1
ek,1

zk − z1
dz1 = −

∫ zl

0

G1X
(n)
1,F

ek,1
zk − z1

dz1 . (5.3.39)

Adding terms I(b) and II(b) we get

I(b) + II(b) =

∫ zl

0

Gl X
(n)
1, F X

(n)
k,F dz1 −

∫ zl

0

G1X
(n)
1,F

ek,1
zk − z1

dz1 (5.3.40)

=

∫ zl

0

Gl X
(n)
1, F

(
X

(n)
k,F −

ek,1
zk − z1

)
dz1 (5.3.41)

=

∫ zl

0

Gl X
(n)
1, F dz1

(
X

(n)
k,F −

ek,1
zk − z1

)
(5.3.42)

since
(
X

(n)
k,F −

ek,1
zk−z1

)
is independent of z1. Following equation 5.3.27 we can rewrite

above as
I(b) + II(b) = (Zl − 1)

(
X

(n)
k,F −

ek,1
zk − z1

)
. (5.3.43)

Finally, we add all the terms together to get

∂kZl = I + II = I(a) + I(b) + II(b) + II(a), that is (5.3.44)

∂kZl = −τ(2k)(X(n)
2,G)(Zl−1)+(Zl−1)

(
X

(n)
k,F −

ek,1
zk − z1

)
+Zl

ek,1
zk − zl

− ek,1
zk

. (5.3.45)
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Expanding the brackets and pairing some terms together we are left with

−τ(2k)(X(n)
2,G)Zl+Zl

(
X

(n)
k,F−

ek,1
zk − z1

+
ek,1

zk − zl

)
+
(
τ(2k)(X

(n)
2,G)−

ek,1
zk

+
ek,1

zk − z1
−X(n)

k,F

)
.

(5.3.46)
Now, note that the last bracketed term above is equal to

τ(2k)(X
(n)
2,G)−

ek,1
zk

+
ek,1

zk − z1
−X

(n)
k,F (5.3.47)

=
ek,0 + ek,1

zk
+

n+1∑
j=2, j ̸=k

ek,j
zk − zj

− ek,1
zk

+
ek,1

zk − z1
−X

(n)
k,F (5.3.48)

=
n+1∑

j=0, j ̸=k

ek,j
zk − zj

−X
(n)
k,F = 0 (5.3.49)

by definition of X
(n)
k,F . Therefore, we are left with

∂kZl = −τ(2k)(X(n)
2,G)Zl + Zl

(
X

(n)
k,F −

ek,1
zk − z1

+
ek,1

zk − zl

)
(5.3.50)

as required to show.

Case II: k = l.

Repeating the steps from the previous case we recall that

Zk = 1 +

∫ zk

0

(∂1G1) dz1 = 1 +

∫ zk

0

G1X
(n)
1, F dz1 (5.3.51)

and thus

∂k Zk = ∂k
(∫ zk

0

G1X
(n)
1,F dz1

)
. (5.3.52)

Applying Leibniz’s rule of differentiation under the integral sign we get

∂k Zk = (G1X
(n)
1,F )|z1→zk +

∫ zk

0

∂k(G1X
(n)
1,F ) dz1 (5.3.53)

and we denote the latter terms by I and II respectively. Precisely, we have

I = (G1X
(n)
1,F )|z1→zk = Zk (X

(n)
1,F )|z1→zk (5.3.54)

and we already know how to evaluate II from the calculation in the previous case.

II =

∫ zk

0

∂k(G1X
(n)
1,F ) dz1 = −τ(2k)(X

(n)
2,G)Zk+Zk

(
X

(n)
k,F −

ek,1
zk − z1

− e1,k
z1 − zk

|z1→zk

)
.

(5.3.55)
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Adding terms I and II we get

∂k Zk = −τ(2k)(X(n)
2,G)Zk +Zk (X

(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk) . (5.3.56)

Since X
(n)
1, F −

e1,k
z1−zk

is convergent as z1 → zk we get a convergent expression in the
equation above. This proves the required result.

Corollary 5.3.6. For k = 2, . . . , n and l = 2, . . . , n, n+ 1 we have

∂k Z
−1
l = Z−1l τ(2k)(X

(n)
2,G)− (X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
)Z−1l if k ̸= l and (5.3.57)

∂k Z
−1
k = Z−1k τ(2k)(X

(n)
2,G)− (X

(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk)Z
−1
k .

(5.3.58)

Proof. The proof is the same in both cases, so we just consider the case when k is
not equal to l. Then, we have

∂k(Zl)Z
−1
l + Zl∂k(Z

−1
l ) = ∂k(Zl Z

−1
l ) = ∂k(1) = 0 . (5.3.59)

Therefore, applying proposition 5.3.5 we get(
−τ(2k)(X(n)

2,G)Zl + Zl (X
(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
)
)
Z−1l + Zl∂k(Z

−1
l ) = 0 . (5.3.60)

After left multiplication with Z−1l and shuffling terms we get

∂k Z
−1
l = Z−1l τ(2k)(X

(n)
2,G)− (X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
)Z−1l . (5.3.61)

Theorem 5.3.7 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). For
k = 2, . . . , n and l = 2, . . . , n+ 1, we have

∂k
(
Gn . . .G2 Zl e1,l Z

−1
l (Gn . . .G2)

−1) = 0 . (5.3.62)

Proof. Write S = Gn . . .G2 and Y = Zl e1,l Z
−1
l . Then, we have

∂k(S Y S−1) = ∂k(S)Y S−1 + S ∂k(Y )S−1 + S Y ∂k(S
−1) with (5.3.63)

∂k(S) = S (τ(2k)X
(n)
2,G) and ∂k(S

−1) = −(τ(2k)X(n)
2,G)S

−1 (5.3.64)

by proposition 5.3.3 and corollary 5.3.4 respectively. Therefore,

∂k(S)Y S−1 + S Y ∂k(S
−1) = S (τ(2k)X

(n)
2,G)Y S−1 − S Y (τ(2k)X

(n)
2,G)S

−1 (5.3.65)
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and thus, ∂k(S)Y S−1 + S Y ∂k(S
−1) = S [τ(2k)X

(n)
2,G, Y ]S−1 . (5.3.66)

Further, we have

∂k(Y ) = ∂k(Zl) e1,l Z
−1
l + Zl e1,l ∂k(Z

−1
l ) . (5.3.67)

Case 1: k ̸= l.

∂k(Y ) =
(
−τ(2k)(X(n)

2,G)Zl + Zl (X
(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
)
)
e1,l Z

−1
l

+ Zl e1,l
(
Z−1l τ(2k)(X

(n)
2,G)− (X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
)Z−1l

)
= −[τ(2k)X(n)

2,G, Zl e1,l Z
−1
l ] + Zl [X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
, e1,l]Z

−1
l

= −[τ(2k)X(n)
2,G, Y ] + Zl [X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
, e1,l]Z

−1
l . (5.3.68)

Conjugating the above equation with S and adding it to equation 5.3.66 we get

∂k(S)Y S−1 + S Y ∂k(S
−1) + S ∂k(Y )S−1 = S [τ(2k)X

(n)
2,G, Y ]S−1

− S [τ(2k)X
(n)
2,G, Y ]S−1 + S Zl [X

(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
, e1,l]Z

−1
l S−1

= S Zl [X
(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
, e1,l]Z

−1
l S−1 . (5.3.69)

Now, recall that

X
(n)
k,F =

n+1∑
j=0

ek,j
zk − zj

(5.3.70)

and consider the commutator

[X
(n)
k, F −

ek,1
zk − z1

+
ek,1

zk − zl
, e1,l] = [

n+1∑
j=0, j ̸=k

ek,j
zk − zj

− ek,1
zk − z1

+
ek,1

zk − zl
, e1,l]

(5.3.71)

= [
n+1∑

j=0, j ̸=1,k,l

ek,j
zk − zj

+
ek,l + ek,1
zk − zl

, e1,l] . (5.3.72)

For 1 ̸= j ̸= k ̸= l we have [ek,j, e1,l] = 0 and [ek,l + ek,1, e1,l] = 0. Therefore, the
commutator above is zero and we get that

∂k
(
Gn . . .G2 Zl e1,l Z

−1
l (Gn . . .G2)

−1) = ∂k(S Y S−1) = 0 . (5.3.73)
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Case II: k = l.

∂k(Y ) = ∂k(Zk) e1,k Z
−1
k + Zk e1,k ∂k(Z

−1
k )

=
(
−τ(2k)(X(n)

2,G)Zk + Zk (X
(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk)
)
e1,k Z

−1
k

+ Zk e1,k
(
Z−1k τ(2k)(X

(n)
2,G)− (X

(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk

)
Z−1k )

= −[τ(2k)X(n)
2,G, Zk e1,k Z

−1
k ]+Zk [X

(n)
k, F −

ek,1
zk − z1

+(X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk , e1,k]Z
−1
k

= −[τ(2k)X(n)
2,G, Y ] + Zk [X

(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk , e1,k]Z
−1
k .

(5.3.74)

Conjugating the above equation with S and adding it to equation 5.3.66 we get

∂k(S)Y S−1 + S Y ∂k(S
−1) + S ∂k(Y )S−1 = S [τ(2k)X

(n)
2,G, Y ]S−1

−S [τ(2k)X
(n)
2,G, Y ]S−1+S Zk [X

(n)
k, F−

ek,1
zk − z1

+(X
(n)
1, F−

e1,k
z1 − zk

)|z1→zk , e1,k]Z
−1
k S−1

= S Zk [X
(n)
k, F −

ek,1
zk − z1

+ (X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk , e1,k]Z
−1
k S−1 . (5.3.75)

Recall that

X
(n)
k, F −

ek,1
zk − z1

=
n+1∑

j=0, j ̸=k

ek,j
zk − zj

− ek,1
zk − z1

=
n+1∑

j=0, j ̸=1,k

ek,j
zk − zj

and (5.3.76)

(X
(n)
1, F −

e1,k
z1 − zk

)|z1→zk =
( n+1∑
j=0, j ̸=1

e1,j
z1 − zj

− e1,k
z1 − zk

)
|z1→zk (5.3.77)

=
( n+1∑
j=0, j ̸=1,k

e1,j
z1 − zj

)
|z1→zk =

n+1∑
j=0, j ̸=1,k

e1,j
zk − zj

. (5.3.78)

Therefore,

∂k(S Y S−1) = S Zk [
n+1∑

j=0, j ̸=1,k

ek,j
zk − zj

+
n+1∑

j=0, j ̸=1,k

e1,j
zk − zj

, e1,k]Z
−1
k S−1 (5.3.79)

= S Zk [
n+1∑

j=0, j ̸=1,k

ek,j + e1,j
zk − zj

, e1,k]Z
−1
k S−1 . (5.3.80)

Since [ek,j + e1,j, e1,k] = 0 for 1 ̸= j ̸= k we get that

∂k (S Y S−1) = 0 . (5.3.81)
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5.4 Initial Value Limits

Our aim in this section is to compute the initial value limit

lim
zj→0, j≥2

Gn . . .G2 Zl (5.4.1)

for l = 2, . . . , n+ 1 where we take the limit in order of increasing j from 2 to n.

Observe that Zl = limz1→zl G1 and therefore

lim
zj→0, j≥2

Gn . . .G1 Zl = lim
zj→0, j≥2

Gn . . .G2 lim
z1→zl

G1 = lim
zj→0, j≥2

lim
z1→zl

Gn . . .G2G1

(5.4.2)
since the factors Gj are independent of z1 for j ≥ 2.

To compute the above limit we will need to work with the analytic continuation of
hypergeometric functions. This is given in terms of a representation of the braid
group which is discussed in the next section.

5.4.1 Representation of the braid group

The following discussion is adapted from Section 5 and Appendix B of [12]. We
will skip the use of motivic superscripts in this section for ease of notation.

For n ∈ N, n ≥ 2 we write Bn to denote the Braid group on n strands. Recall that
Bn is a non-commutative group generated by the symbols σi := σi,i+1, 1 ≤ i ≤ n−1
modulo the relations

σi σj = σj σi for |i− j| ≥ 2 and (5.4.3)

σi σi+1 σi = σi+1 σi σi+1 for 1 ≤ 1 ≤ n− 2 . (5.4.4)

Further, let Sn denote the symmetric group on n letters. There exists a canonical
projection map

pr : Bn → Sn := σi, i+1 7→ σpr
i,i+1 = (i, i+ 1) (5.4.5)

that maps σi,i+1 to the transposition that swaps letters i and i+ 1.

It is known that the braid group Bn acts on the solutions to the differential equations
5.1.4 satisfied by F .

To introduce this group action, we introduce a new notation for the product of
polylogarithmic factors,

G(z1, . . . , zn) = G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) . (5.4.6)
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Note that G(z1, . . . , zn) is a solution to the set of differential equations 5.1.4. It is
obtained by integrating along the path

(0, 0, . . . , 0)→ (0, . . . , 0, zn)→ (0, . . . , 0, zn−1, zn)→ . . .→ (z1, . . . , zn−1, zn)
(5.4.7)

adapted to the choice of branch

0 = z0 < z1 < z2 < . . . < zn−1 < zn < zn+1 = 1 . (5.4.8)

The action of g ∈ Bn on G(z1, . . . , zn) is given by

g
(
G(z1, . . . , zn)

)
= X(g)G(z1, . . . , zn) where X(g) satisfies (5.4.9)

X(g1 g2) = gpr1 (X(g2))X(g1) (5.4.10)

and is given on the generators σi, i+1 by

X(σi,i+1) = Φ(
i−1∑
j=0

ej, i+1, ei,i+1) exp(iπei,i+1) Φ(ei,i+1,
i−1∑
j=0

ej, i) (5.4.11)

for i = 1, . . . , n− 1.

In fact, we know that g
(
G(z1, . . . , zn)

)
is a solution to 5.1.4 adapted to the branch

ordering

0 = z0 < zgpr(1) < zgpr(2) < . . . < zgpr(n−1) < zgpr(n) < zn+1 = 1 (5.4.12)

and is obtained by integrating along the path

(0, 0, . . . , 0)→ (0, . . . , 0, zgpr(n))→ (0, . . . , 0, zgpr(n−1), zgpr(n))→ . . .

. . .→ (0, zgpr(2), . . . , zgpr(n−1), zgpr(n))→ (zgpr(1), . . . , zgpr(n−1), zgpr(n)) . (5.4.13)

Explicitly, we have

g
(
G(z1, . . . , zn)

)
= G(zgpr(n);

−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) where (5.4.14)

G(zgpr(k);
−−→
eg

pr∗
k, j ) = G

[
eg

pr∗
k, 0 eg

pr

k, k+1 ... eg
pr

k, n eg
pr

k, n+1
z0 zgpr(k+1) ... zgpr(n) zn+1

; zgpr(k)

]
(5.4.15)

with eg
pr∗

k, 0 = egpr(k), 0 +
k−1∑
j=1

egpr(k), gpr(j) for k = 1, . . . , n (5.4.16)

and eg
pr

k, j = egpr(k), gpr(j) for k = 1, . . . , n, j = k + 1, . . . , n+ 1 . (5.4.17)
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So we can rewrite equation 5.4.9 as

G(zgpr(n);
−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) = X(g)G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j) . (5.4.18)

Finally, we include a small result that will be helpful later on.

Lemma 5.4.1. Let k ∈ N and g1, . . . , gk ∈ BN . Then, we have

X(g1 . . . , gk) =
1∏

j=k

gpr1 . . . gprj−1X(gj) (5.4.19)

where the product on the right uses a descending order of indices.

Proof. We prove this result by induction. The base case k = 1 is clear so suppose
that k is greater than 1 and that the result is true for all integers less than k. Then,
equation 5.4.10 implies that

X(g1 . . . , gk) = gpr1 . . . gprk−1(X(gk)) X(g1 . . . , gk−1)) . (5.4.20)

By the induction hypothesis, we have

X(g1 . . . , gk−1) =
1∏

j=k−1

gpr1 . . . gprj−1X(gj) (5.4.21)

and putting this in equation 5.4.20 we get

X(g1 . . . , gk) =
1∏

j=k

gpr1 . . . gprj−1X(gj) . (5.4.22)

5.4.2 Computation of the initial value limit

Proposition 5.4.2 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). For
l = 2, . . . , n+ 1, the initial value limit is equal to

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) =

2l−3∏
j=1

Φ(e(j, 0), e(j, 1)) (5.4.23)

where the terms e(j, 0), e(j, 1) are those defined in 5.2.11, 5.2.12, 5.2.13 in section
5.1.
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Proof. We split the proof into two cases.

Case I : l = 2.

Observe that

lim
zj→0, j≥2

lim
z1→z2

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

= lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z2;

−→
e∗2,j) lim

zj→0, j≥2
lim

z1→z2
G(z1;

−→
e∗1,j)

= lim
zj→0, j≥2

lim
z1→z2

G(z1;
−→
e∗1,j) (5.4.24)

since G(zj;
−→
e∗2,j) is independent of z1 for j ≥ 2 and is equal to 1 for zj = 0.

So it is enough to focus on the limit below,

lim
zj→0, j≥2

Z2 = lim
zj→0, j≥2

lim
z1→z2

G1 . (5.4.25)

Consider the differential forms that make up the generating series of iterated

integrals in Z2 = G(z2;
−→
e∗1,j) under the transformation t = z2 u,

dt

t
=

z2du

z2u
=

du

u
, (5.4.26)

dt

t− z2
=

z2 du

z2u− z2
=

du

u− 1
and (5.4.27)

dt

t− zj
=

z2du

z2u− zj
→ 0 as z2 → 0 for j ̸= 0, 2 . (5.4.28)

Therefore, in Z2, only the words with letters e1,0 and e1,2 survive in the limit 5.4.25
and we get that

lim
zj→0, j≥2

Z2 = lim
zj→0, j≥2

lim
z1→z2

G(z1;
−→e1,j) = Φ(e1,0, e1,2) = Φ(e(1, 0), e(1, 1)) (5.4.29)

by definition 5.2.11.

Case II : l > 2.

Observe that the z2 → 0 limit does not commute with the shuffle regularized
integration over 0 < t < zl in Zl as seen below.

∫ zl

0

lim
z2→0

dt

t− z2
=

∫ zl

0

dt

t
= ln(zl), (5.4.30)
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lim
z2→0

∫ zl

0

dt

t− z2
= lim

z2→0

(
ln(z2 − zl)− ln(z2)

)
̸= ln(zl) . (5.4.31)

This hinders our effort to compute the limit of Zl via the same method as we did
for l = 2. To correct for this we bring z1 closer to zl via an action of the braid
group.

Let g = σ1, 2 σ2, 3 . . . σl−2, l−1 ∈ Bn. Then gpr = (1, 2, . . . , l − 2) ∈ Sn is the cycle of
length l − 1 that maps a to a+ 1 for a = 1, . . . , l − 2, maps l − 1 to 1 and a to a
for a = l, . . . , n. Therefore, according to 5.4.9 and 5.4.18,

g
(
G(z1, . . . , zn)

)
= G(zgpr(n);

−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) (5.4.32)

gives a solution to the KZ-equations 5.1.4 adapted to the branch ordering

0 = z0 < z2 < . . . < zl−2 < zl−1 < z1 < zl < zl+1 < . . . < zn < zn+1 = 1 (5.4.33)

and we have

G(zgpr(n);
−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) = X(g)G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j) . (5.4.34)

This allows us to express the required limit as

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

= X(g)−1 lim
zj→0, j≥2

lim
z1→zl

G(zgpr(n);
−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) (5.4.35)

and we focus on the term

G(zgpr(n);
−−→
eg

pr∗
n, j ) . . . G(zgpr(1);

−−→
eg

pr∗
1, j ) . (5.4.36)

For a = 1, . . . n, we have

G(zgpr(a);
−−→
eg

pr∗
a, j ) = G

[
eg

pr∗
a, 0 eg

pr

a, a+1 ... eg
pr

a, n eg
pr

a, n+1
z0 zgpr(a+1) ... zgpr(n) zn+1

; zgpr(a)

]
. (5.4.37)

If 1 ≤ a ≤ l − 2 then 2 ≤ gpr(a) ≤ l − 1 and thus gpr(a) ̸= 1. In this case the limit
limz1→zl G(zgpr(a);−) is convergent. The limit below is equal to one,

lim
zj→0, 2≤j≤l−1

lim
z1→zl

G
[
eg

pr∗
a, 0 eg

pr

a, a+1 ... eg
pr

a, n eg
pr

a, n+1
z0 zgpr(a+1) ... zgpr(n) zn+1

; zgpr(a)

]
= 1 (5.4.38)

since the argument zgpr(a) of the polylogarithm goes to zero.

70



Again, for l ≤ a ≤ n, we have l ≤ gpr(a) = a ≤ n, so G(zgpr(a);−) is independent
of z1 and the limit below is equal to one by the same argument as before.

lim
zj→0, l≤j≤n

lim
z1→zl

G
[
eg

pr∗
a, 0 eg

pr

a, a+1 ... eg
pr

a, n eg
pr

a, n+1
z0 zgpr(a+1) ... zgpr(n) zn+1

; zgpr(a)

]
= 1 . (5.4.39)

On the other hand for a = l− 1, we have gpr(a) = 1 and G(zgpr(a);−) is dependent
only on the variables zl, zl+1, . . . , zn. Thus we can compute the limit z1 → zl via
the same method we used in the case l = 2 to get,

lim
zj→0, j≥2

lim
z1→zl

G
[
eg

pr∗
a, 0 eg

pr

a, a+1 ... eg
pr

a, n eg
pr

a, n+1
z0 zgpr(a+1) ... zgpr(n) zn+1

; z1

]
= Φ(eg

pr∗
l−1, 0, e

gpr

l−1, l) . (5.4.40)

Recall that the equation 5.4.16, 5.4.17 and definition 5.2.11 give

eg
pr∗

l−1, 0 = e1,0 +
l−1∑
j=2

e1, j = e(2l − 3, 0) and e
gpr
l−1, l = e1, l = e(2l − 3, 1) (5.4.41)

on setting a = l − 1.

Putting it all together, equation 5.4.35 gives

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) = X(g)−1Φ(e(2l − 3, 0), e(2l − 3, 1))

(5.4.42)
and we will compute the factor X(g)−1 explicitly.

From equations 5.4.10 and 5.4.11 we know that4

X(g) = X(σ1, 2 σ2, 3 . . . σl−2, l−1) =
1∏

i=l−2

σpr
1, 2 . . . σ

pr
i−1, i X(σi, i+1) and (5.4.43)

X(σi,i+1)
dr = Φ(

i−1∑
j=0

ej, i+1, ei,i+1)
dr exp(iπei,i+1)

drΦ(ei,i+1,

i−1∑
j=0

ej, i)
dr (5.4.44)

= Φ(
i−1∑
j=0

ej, i+1, ei,i+1)
dr Φ(ei,i+1,

i−1∑
j=0

ej, i)
dr . (5.4.45)

Since σpr
1, 2 . . . σ

pr
i−1, i = (1, 2, . . . , i) ∈ Sn we get that

σpr
1, 2 . . . σ

pr
i−1, i X(σi,i+1) = Φ(e0, i+1 +

i∑
j=2

ej, i+1, e1, i+1) Φ(e1, i+1, e1, 0 +
i∑

j=2

e1, j)

(5.4.46)

4Note that this uses a descending product
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and therefore

X(g) =
1∏

i=l−2

Φ(e0, i+1 +
i∑

j=2

ej, i+1, e1, i+1) Φ(e1, i+1, e1, 0 +
i∑

j=2

e1, j) (5.4.47)

and finally by definition 5.2.11, 5.2.12, 5.2.13,

X(g)−1 =
l−2∏
i=1

Φ(e1, 0 +
i∑

j=2

e1, j, e1, i+1) Φ(e1, i+1, e0, i+1 +
i∑

j=2

ej, i+1) (5.4.48)

=
2l−4∏
j=1

Φ(e(j, 0), e(j, 1)) . (5.4.49)

Hence, we can rewrite equation 5.4.42 to get

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) =

2l−3∏
j=1

Φ(e(j, 0), e(j, 1)) (5.4.50)

Corollary 5.4.3. For l = 2, . . . , n+ 1, the conjugate limit is equal to

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) e1, l

(
G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

)−1
=

2l−3∏
j=1

Φ(e(j, 0), e(j, 1)) e1,l

2l−3∏
j=1

(
Φ(e(j, 0), e(j, 1))

)−1
. (5.4.51)

5.5 Conjugate identity

We recommend reading chapter 4 before continuing with this one, especially
Theorem 4.4.2 and onward up to 4.4.5 and finally 4.5.3. The appendix 7 also
contains some results on commutator identities that will be used in a proof in this
section but these results can be referred to as and when needed.

Our aim in this section is to prove the conjugate identity

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) e1, l

(
G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

)−1
= M−1e1, l M (5.5.1)

for l = 2, . . . , n+ 1.
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So we need to understand the structure of both sides of the equation. Towards this
direction, we first make some definitions in the spirit of theorem 4.4.5.

Let l = 2, . . . , n+ 1. Let w(e0, e1) ∈ g be a commutator in e0, e1. We write w(j) to
denote w(e(j, 0), e(j, 1)) for 1 ≤ j ≤ 2l − 3.

For j = 1, . . . , 2l− 3, we extend the derivation Dw(j) defined on Lie[e(j, 0), e(j, 1)]
to
Lie[e(1, 0), e(1, 1), . . . , e(2l − 3, 0), e(2l − 3, 1)] as follows. On the generators
e(j′, ϵ) with j′ = 1, . . . , 2l − 1, ϵ = 0, 1, we define,

Dw(j) e(j
′, ϵ) = [e(j′, ϵ), w(j)] if j < j′ , (5.5.2)

Dw(j) e(j
′, 0) = 0 if j = j′ , (5.5.3)

Dw(j) e(j
′, 1) = [e(j′, 1), w(j)] if j = j′ , (5.5.4)

Dw(j) e(j
′, ϵ) = 0 if j > j′ (5.5.5)

and extend it to Lie[e(1, 0), e(1, 1), . . . , e(2l − 3, 0), e(2l − 3, 1)] via linearity and
the product rule for derivations.

Note that when j = j′ then we just have the usual derivation 4.1.1 in the definition
above.

We can also rephrase the above derivation in the following way. Let w′(e0, e1) ∈ g
be a commutator in e0, e1 and j′ = 1, . . . , 2n− 1, then we have

Dw(j)w
′(j′) = [w′(j′), w(j)] if j < j′ , (5.5.6)

Dw(j) w
′(j′) = (Dw(e0,e1)w

′(e0, e1))|e0→e(j,0), e1→e(j,1) if j = j′ , (5.5.7)

Dw(j) w
′(j′) = 0 if j > j′ . (5.5.8)

Armed with this definition, a repeated application of theorem 4.4.5 gives the
following result.

Proposition 5.5.1. For i1, . . . , ir ∈ 2N + 1, the coefficient of fi1 . . . fir in the
conjugate limit

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) e1, l

(
G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

)−1
=

2l−3∏
j=1

Φ(e(j, 0), e(j, 1)) e1,l

2l−3∏
j=1

(
Φ(e(j, 0), e(j, 1))

)−1
. (5.5.9)

is equal to
(−1)r D∑2l−3

j=1 wir (j)
. . . D∑2l−3

j=1 wi1
(j)(e1,l) . (5.5.10)
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Next, we recall an analogous result for the M series.

For k ≥ 3 odd, we define a derivation DMk
on Lie[e(1, 0), e(1, 1), . . . , e(2n −

1, 0), e(2n− 1, 1)] by
DMk

e(j, ϵ) = [e(j, ϵ),Mk] (5.5.11)

for 1 ≤ j ≤ 2n− 1, ϵ = 0, 1 and extend it to the Lie algebra by the product rule.
The definition above makes sense due to 5.2.14. Further, note that the above
definition implies

DMk
w = [w,Mk] (5.5.12)

for any w ∈ Lie[e(1, 0), e(1, 1), . . . , e(2n− 1, 0), e(2n− 1, 1)].

Proposition 5.5.2. For i1, . . . , ir ∈ 2N + 1, the coefficient of fi1 . . . fir in the
conjugate series (Mdr)−1e1,lMdr is equal to

DMir
. . . DMi1

(e1,l) . (5.5.13)

Proof. Follows from result 4.5.3.

Next, we have a comparison result for the derivations.

Theorem 5.5.3 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). For
k ≥ 3 odd and 2 ≤ l ≤ n+ 1, we have an equality of derivations

DMk
= −D∑2l−3

j=1 wk(j)
. (5.5.14)

on the Lie algebra Lie[e(1, 0), e(1, 1), e(2, 0), e(2, 1), . . . , e(2l − 3, 0), e(2l − 3, 1)].

Proof. We prove this result by induction on n.

Base case: l = 2.

We want to show that
DMk

= −Dwk(1) (5.5.15)

on the Lie algebra Lie[e(1, 0), e(1, 1)] for k ≥ 3 odd where

e(1, 0) = e1,0 , e(1, 1) = e1,2 . (5.5.16)

It is enough to check that the equality holds on the generators e(1, 0), e(1, 1), so
we split the proof into two cases.

Case 1 : e(1, 0).

LHS = DMk
(e(1, 0)) = DMk

(e1,0) = [e1,0,Mk] = 0 (5.5.17)
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by 5.2.9 applied to i = 1, whereas

RHS = −Dwk(1)(e(1, 0)) = 0 (5.5.18)

by 5.5.3 applied to j = 1 = j′.

Case 2 : e(1, 1).

LHS = DMk
(e(1, 1)) = DMk

(e1,2) = [e1,2,Mk] = −[e1,2, wk(1)] (5.5.19)

by 5.2.10 applied to i = 2, whereas

RHS = −Dwk(1)(e(1, 1)) = −[e(1, 1), wk(1)] = −[e1,2, wk(1)] = LHS (5.5.20)

by 5.5.4 applied to j = 1 = j′.

Induction step : Let l > 2. Suppose the result is true for all integers greater than
1 and up to l.

We want to show that the result is true for l + 1. That is, for k ≥ 3 odd, we have

DMk
= −D∑2l−1

j=1 wk(j)
(5.5.21)

on the Lie algebra Lie[e(1, 0), e(1, 1), . . . , e(2l − 1, 0), e(2l − 1, 1)].

It is enough to show that the equality holds on the generators e(1, 0), e(1, 1), . . . , e(2l−
1, 0), e(2l − 1, 1). Now, observe that for 1 ≤ j′ ≤ 2l − 3 and ϵ = 0, 1 we have

RHS = −D∑2l−1
j=1 wk(j)

(e(j′, ϵ)) = −D∑2l−3
j=1 wk(j)

(e(j′, ϵ)) (5.5.22)

by 5.5.5. By the induction hypothesis, we know that

−D∑2l−3
j=1 wk(j)

(e(j′, ϵ)) = DMk
(e(j′, ϵ)) = LHS (5.5.23)

for 1 ≤ j′ ≤ 2l − 3 and ϵ = 0, 1.

So it is enough to check the equality of derivations on e(2l−2, 0), e(2l−2, 1), e(2l−
1, 0), e(2l − 1, 1).

Case 1 : e(2l − 2, 0).

Note that e(2l − 2, 0) = e1, l and

LHS = DMk
(e(2l − 2, 0)) = DMk

(e1, l) = [e1, l, Mk] . (5.5.24)

On the other hand

RHS = −D∑2l−1
j=1 wk(j)

e(2l − 2, 0) = −
2l−1∑
j=1

Dwk(j) e(2l − 2, 0) (5.5.25)
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= −
2l−3∑
j=1

Dwk(j) e(2l − 2, 0)−Dwk(2l−2) e(2l − 2, 0)−Dwk(2l−1) e(2l − 2, 0)

(5.5.26)

= −
2l−3∑
j=1

[e(2l − 2, 0), wk(j)] (5.5.27)

by 5.5.2, 5.5.3, and 5.5.5 respectively.

Further, we know by 5.2.10 applied to i = l that

[e1, l,Mk] = −
2l−3∑
j=1

[e1, l , wk(j)] = −
2l−3∑
j=1

[e(2l − 2, 0), wk(j)] (5.5.28)

and therefore LHS = RHS.

Case 2 : e(2l − 2, 1).

Note that e(2l − 2, 1) =
∑l−1

a=0,a ̸=1 el, a and

LHS = DMk
(e(2l − 2, 1)) = [e(2l − 2, 1),Mk] = [

l−1∑
a=0,a̸=1

el, a, Mk] . (5.5.29)

From the commutator relation 5.2.9 applied to i = l we know that

[
l−1∑
a=0

el, a, Mk] = 0 . (5.5.30)

Therefore, the LHS is equal to

[
l−1∑

a=0,a̸=1

el, a, Mk] = −[e1, l, Mk] = [e1,l

2l−3∑
j=1

wk(j)] (5.5.31)

by the commutator relation 5.2.10 applied to i = l.

Consider also the RHS,

RHS = −D∑2l−2
j=1 wk(j)

(e(2l − 2, 1)) = −
2l−2∑
j=1

Dwk(j)(e(2l − 2, 1)) (5.5.32)

= −
2l−3∑
j=1

Dwk(j)(e(2l − 2, 1))−Dwk(2l−2)(e(2l − 2, 1)) (5.5.33)
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= −
2l−3∑
j=1

[e(2l − 2, 1), wk(j)]− [e(2l − 2, 1), wk(2l − 2)] by 5.5.2, 5.5.4

(5.5.34)

= −
2l−2∑
j=1

[e(2l − 2, 1), wk(j)] = −[
l−1∑

a=0,a̸=1

el, a,
2l−2∑
j=1

wk(j)] . (5.5.35)

We want to express the LHS in terms of factors on the RHS so we need to transform
e1,l. By lemma 7.0.2 we know that

[
l∑

a=0

l∑
b=a+1

ea b, ec, d] = 0 (5.5.36)

for 0 ≤ c ̸= d ≤ l.

Further, recall the definition 5.2.11, 5.2.12, 5.2.13 and observe that, for 1 ≤ j ≤
2l − 3, the maximum sub-script index in wk(j) = wk(e(j, 0), e(j, 1)) is equal to l.
Therefore, lemma 7.0.2 applies and we get that

[
l∑

a=0

l∑
b=a+1

ea b,
2l−3∑
j=1

wk(j)] = 0 . (5.5.37)

Therefore,

[
l−1∑
a=0

l−1∑
b=a+1

ea b + e1,l +
l−1∑

a=0,a ̸=1

ea,l,
2l−3∑
j=1

wk(j)] = 0 . (5.5.38)

Thus the LHS is equal to

[e1,l

2l−3∑
j=1

wk(j)] = − [
l−1∑
a=0

l−1∑
b=a+1

ea b +
l−1∑

a=0,a ̸=1

ea,l,
2l−3∑
j=1

wk(j)] (5.5.39)

= − [
l−1∑
a=0

l−1∑
b=a+1

ea b,

2l−3∑
j=1

wk(j)]− [
l−1∑

a=0,a̸=1

ea,l,

2l−3∑
j=1

wk(j)] . (5.5.40)

Since the RHS is equal to

−[
l−1∑

a=0,a̸=1

el, a,
2l−2∑
j=1

wk(j)] = −[
l−1∑

a=0,a ̸=1

el, a, wk(2l − 2)]− [
l−1∑

a=0,a̸=1

el, a,
2l−3∑
j=1

wk(j)]

(5.5.41)
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it is enough to show that

− [
l−1∑
a=0

l−1∑
b=a+1

ea b,
2l−3∑
j=1

wk(j)] = −[
l−1∑

a=0,a̸=1

el, a, wk(2l − 2)] . (5.5.42)

Let us denote the two terms above by I and II, respectively.

Also, recall that

wk(2l − 2) = wk(e(2l − 2, 0), e(2l − 2, 1)) = wk(e1,l,
l−1∑

j=0,j ̸=1

ej,l) . (5.5.43)

Note that for j = 1, . . . , 2l − 4, the maximum sub-script index in wk(j) =
wk(e(j, 0), e(j, 1)) is equal to l− 1. Therefore, lemma 7.0.2 applies and we get that

[
l−1∑
a=0

l−1∑
b=a+1

ea b,
2l−4∑
j=1

wk(j)] = 0. (5.5.44)

Therefore,

I = − [
l−1∑
a=0

l−1∑
b=a+1

ea b,
2l−3∑
j=1

wk(j)] = − [
l−1∑
a=0

l−1∑
b=a+1

ea b, wk(2l − 3)] . (5.5.45)

Now, recall that

wk(2l − 3) = wk(e(2l − 3, 0), e(2l − 3, 1)) = wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l) (5.5.46)

and therefore

I = − [
l−1∑
a=0

l−1∑
b=a+1

ea b, wk(2l − 3)]

= −[
( l−1∑
b=0,b ̸=1

e1,b
)
+
( l−1∑
a=0,a̸=1

l−1∑
b=a+1,b ̸=1

ea,b
)
, wk(

l−1∑
j=0,j ̸=1

e1,j, e1,l)]

= −[
l−1∑

b=0,b ̸=1

e1,b, wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l)]− [
l−1∑

a=0,a̸=1

l−1∑
b=a+1,b ̸=1

ea,b, wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l)].

(5.5.47)
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Next, observe that

[
l−1∑

a=0,a ̸=1

l−1∑
b=a+1,b ̸=1

ea,b,
l−1∑

j=0,j ̸=1

e1,j] = 0 (5.5.48)

by lemma 7.0.3 and

[
l−1∑

a=0,a ̸=1

l−1∑
b=a+1,b ̸=1

ea,b, e1,l] = 0 (5.5.49)

because of distinct indices, that is, relation 5.1.6. Therefore,

[
l−1∑

a=0,a̸=1

l−1∑
b=a+1,b ̸=1

ea,b, wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l)] = 0 (5.5.50)

and we get that

I = − [
l−1∑
a=0

l−1∑
b=a+1

ea b, wk(2l − 3)] = −[
l−1∑

b=0,b ̸=1

e1,b, wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l)] . (5.5.51)

Since II is equal to

II = −[
l−1∑

a=0,a̸=1

el, a, wk(2l − 2)] = −[
l−1∑

a=0,a̸=1

el, a, wk(e1,l,
l−1∑

j=0,j ̸=1

ej,l)] (5.5.52)

it is enough to show that

−[
l−1∑

b=0,b ̸=1

e1,b, wk(
l−1∑

j=0,j ̸=1

e1,j, e1,l)] = −[
l−1∑

a=0,a̸=1

el, a, wk(e1,l,
l−1∑

j=0,j ̸=1

ej,l)] . (5.5.53)

Equivalently, it is enough to show that

[
l−1∑

b=0,b ̸=1

e1,b, wk(e1,l,
l−1∑

b=0,b ̸=1

e1,b] + [
l−1∑

a=0,a̸=1

el, a, wk(e1,l,
l−1∑

a=0,a̸=1

ea,l)] = 0. (5.5.54)

Therefore we can apply lemma 7.0.4 with

x = e1,l , y =
l−1∑

b=0,b ̸=1

e1,b , z =
l−1∑

a=0,a̸=1

ea,l (5.5.55)

provided we show that

wk(e1,l,
l−1∑

b=0,b ̸=1

e1,b) = wk(−
l−1∑

b=0,b̸=1

e1,b −
l−1∑

a=0,a̸=1

ea,l,

l−1∑
b=0,b ̸=1

e1,b (5.5.56)
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and

wk(e1,l,
l−1∑

a=0,a̸=1

ea,l) = wk(−
l−1∑

b=0,b ̸=1

e1,b −
l−1∑

a=0,a̸=1

ea,l,
l−1∑

a=0,a ̸=1

ea,l . (5.5.57)

For this, it is enough to show that the following two commutator relations hold

[e1,l,
l−1∑

b=0,b ̸=1

e1,b)] = [−
l−1∑

b=0,b ̸=1

e1,b −
l−1∑

a=0,a ̸=1

ea,l,
l−1∑

b=0,b ̸=1

e1,b)] (5.5.58)

[e1,l,
l−1∑

a=0,a ̸=1

ea,l)] = [−
l−1∑

b=0,b ̸=1

e1,b −
l−1∑

a=0,a ̸=1

ea,l,
l−1∑

a=0,a̸=1

ea,l)] . (5.5.59)

since in that case, we can replace every occurrence of e1,l by

e1,l = −
l−1∑

b=0,b ̸=1

e1,b −
l−1∑

a=0,a ̸=1

ea,l (5.5.60)

in wk(e1,l,
l−1∑

b=0,b ̸=1

e1,b), wk(e1,l,
l−1∑

a=0,a̸=1

ea,l) . (5.5.61)

Towards that end, recall as we have seen earlier that

[
l∑

a=0

l∑
b=a+1

ea b, ec,d] = 0 (5.5.62)

for 0 ≤ c ̸= d ≤ l. Therefore,

[
l∑

a=0

l∑
b=a+1

ea b,
l−1∑

b=0,b ̸=1

e1,b)] = 0 (5.5.63)

and equivalently

[(e1,0+
l−1∑
b=2

)+(
l−1∑
i=2

(ei,0+
l∑

j=i+1

ei,j))+e1,l+(el,0+
l−1∑
a=2

ea,l), e1,0+
l−1∑
b=2

e1,b)] = 0 . (5.5.64)

Now, by lemma 7.0.3 we know that

[
l−1∑
i=2

(ei,0 +
l∑

j=i+1

ei,j), e1,0 +
l−1∑
b=2

e1,b)] = 0 . (5.5.65)
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Therefore, we can simplify the earlier equation as

[(e1,0 +
l−1∑
b=2

+e1,l) + (el,0 +
l−1∑
a=2

ea,l), e1,0 +
l−1∑
b=2

e1,b] = 0 (5.5.66)

and equivalently

[e1,l, e1,0 +
l−1∑
b=2

e1,b]] = [−e1,0 +
l−1∑
b=2

e1,b − el,0 +
l−1∑
a=2

ea,l,
l−1∑
b=2

e1,b] (5.5.67)

The same proof works for the other commutator relation with 1 replaced by l and
so we are done.

Case 3 : e(2l − 1, 0).

Note that e(2l − 1, 0) = e1,0 +
∑l

a=2 e1,a and

LHS = DMk
(e(2l − 1, 0)) = [e(2l − 1, 0),Mk] (5.5.68)

= [e1,0 +
l∑

a=2

e1,a, Mk] =
l∑

a=2

[e1,a, Mk] (5.5.69)

since [e1,0,Mk] = 0 by 5.2.9. Again, by 5.2.9 we know that for a = 2, . . . , l,

[
a−1∑
b=0

ea,b,Mk] = 0 (5.5.70)

and thus

[e1,a,Mk] = −[ea,0 +
a−1∑
b=2

ea,b,Mk] = −[e(2(a− 1), 1),Mk] . (5.5.71)

Further, by the induction hypothesis and case 2, we know that for a = 2, . . . , l,

−[e(2(a− 1), 1),Mk] = [e(2(a− 1), 1),

2(a−1)∑
b=1

wk(b)] . (5.5.72)

Therefore,

LHS =
l∑

a=2

[e1,a, Mk] = −
l∑

a=2

[e(2(a− 1), 1),Mk] (5.5.73)

=
l∑

a=2

[e(2(a− 1), 1),

2(a−1)∑
b=1

wk(b)] =
l∑

a=2

[ea,0 +
a−1∑
b=2

ea,b,

2(a−1)∑
b=1

wk(b)] . (5.5.74)
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On the other hand,

RHS = −D∑2l−1
j=1 wk(j)

e(2l − 1, 0) (5.5.75)

= −D∑2l−2
j=1 wk(j)

e(2l − 1, 0)−Dwk(2l−1) e(2l − 1, 0) (5.5.76)

= −[e(2l − 1, 0),
2l−2∑
j=1

wk(j)] by definitions 5.5.2, 5.5.3, (5.5.77)

= −[e1,0 +
l∑

a=2

e1,a,
2l−2∑
j=1

wk(j)] . (5.5.78)

Now, observe that the maximum subscript index in wk(j) = wk(e(j, 0), e(j, 1)) for
1 ≤ j ≤ 2l − 2 is equal to l. Therefore, by lemma 7.0.2 we get that

[
l∑

b=0

l∑
a=b+1

ea,b,

2l−2∑
j=1

wk(j)] = 0 (5.5.79)

and thus

[(e1,0 +
l∑

a=2

e1,a) +
l∑

b=2

(eb,0 +
l∑

a=b+1

ea,b),
2l−2∑
j=1

wk(j)] = 0 . (5.5.80)

Therefore, we can rewrite the RHS as

[
l∑

b=2

(eb,0 +
l∑

a=b+1

ea,b),
2l−2∑
j=1

wk(j)] . (5.5.81)

We claim that

l∑
b=2

(eb,0 +
l∑

a=b+1

ea,b) =
l∑

d=2

(ed,0 +
d−1∑
c=2

ec,d) =
l∑

d=2

e(2(d− 1), 1) . (5.5.82)

Proof :

LHS(claim) =
l∑

b=2

(eb,0 +
l∑

a=b+1

ea,b) =
l∑

b=2

eb,0 +
l∑

b=2

l∑
a=b+1

ea,b. (5.5.83)

Consider the following transformation of indices

d = l + 2− b, c = l + 2− a (5.5.84)
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and observe that as b goes from 2 to l, d goes from l to 2. Similarly, as a goes from
b+ 1 to l, then c goes from l+ 1− b to 2 and hence from l+ 1− (l+ 2− d) = d− 1
to 2. Therefore, LHS(claim) is equal to

LHS(claim) =
2∑

d=l

ed,0 +
2∑

d=l

2∑
c=d−1

el+2−c,l+2−d . (5.5.85)

Now, applying the transformation c→ l + 2− c and d→ l + 2− d we get

LHS(claim) =
l∑

d=2

(ed,0 +
d−1∑
c=2

ec,d) =
l∑

d=2

e(2(d− 1), 1) . (5.5.86)

We can apply the result from our claim to the original RHS to get

RHS = [
l∑

b=2

(eb,0 +
l∑

a=b+1

ea,b),
2l−2∑
j=1

wk(j)] (5.5.87)

= [
l∑

d=2

e(2(d− 1), 1),
2l−2∑
j=1

wk(j)] (5.5.88)

= [
l∑

a=2

e(2(a− 1), 1),
2l−2∑
j=1

wk(j)]. (5.5.89)

Recall that the LHS is equal to

LHS =
l∑

a=2

[e(2(a− 1), 1),

2(a−1)∑
b=1

wk(b)] . (5.5.90)

So it is enough to show that for a = 2, . . . , l, j = 1, . . . , 2l − 2 and j > 2(a− 1),

[e(2(a− 1), 1), wk(j)] = [e(2(a− 1), 1), wk(e(j, 0), e(j, 1))] = 0 . (5.5.91)

Or simply put it is sufficient to show that for j > 2(a− 1)

[e(2(a− 1), 1), e(j, 0)] = [e(2(a− 1), 1), e(j, 1)] = 0 . (5.5.92)

We split this into four cases.

Case I(0) : (j, 0) = (2c− 1, 0), 2 ≤ a ≤ l with a+ 1 ≤ c ≤ l.

Note that j = 2c− 1 > 2(a− 1).

[e(2(a− 1), 1), e(2c− 1, 0)] = [ea,0 +
a−1∑
b=2

ea,b, e1,0 +
c∑

d=2

e1,d] (5.5.93)
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= [ea,0, e1,0 +
c∑

d=2

e1,d] + [
a−1∑
b=2

ea,b, e1,0 +
c∑

d=2

e1,d] .

(5.5.94)

For d ̸= a we have [ea,0, e1,d] = 0. Further, [ea,0, e1,0 + e1,a] = 0 and since c > a
there does exist a term e1,a in the sum

∑c
d=2 e1,d. Therefore,

[ea,0, e1,0 +
c∑

d=2

e1,d] = 0 . (5.5.95)

Next, we have

a−1∑
b=2

[ea,b, e1,0 +
c∑

d=2

e1,d] =
a−1∑
b=2

[ea,b, e1,0] +
a−1∑
b=2

[ea,b,
c∑

d=2

e1,d] (5.5.96)

=
a−1∑
b=2

[ea,b, (e1,b + e1,a) +
c∑

d=2,d ̸=b,a

e1,d] = 0. (5.5.97)

Case I(1) : (j, 1) = (2c− 1, 1), 2 ≤ a ≤ l, with a+ 1 ≤ c ≤ l.

[e(2(a− 1), 1), e(2c− 1, 1)] = [ea,0 +
a−1∑
b=2

ea,b, e1,c+1] = 0 (5.5.98)

since 1 ̸= a ̸= b ̸= c+ 1.

Case II(0) : (j, 0) = (2c, 0), 2 ≤ a ≤ l with a + 1 ≤ c ≤ l. Note that j = 2c >
2(a− 1).

Since e(2c, 0) = e(2c− 1, 1), the proof is the same as in the last case.

Case II(1) : (j, 1) = (2c, 1), a = 2, . . . , l with a+ 1 ≤ c ≤ l.

[e(2(a− 1), 1), e(2c, 1)] = [ea,0 +
a−1∑
b=2

ea,b, ec+1,0 +
c∑

d=2

ec+1,d] = 0 (5.5.99)

since the same proof as in I(0) with 1 replaced by c+ 1 works.

Case 4 : e(2l − 1, 1).

Note that e(2l − 1, 1) = e1, l+1 and

LHS = DMk
(e(2l − 1, 1)) = DMk

(e1, l+1) = [e1, l+1, Mk] (5.5.100)
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= −
2l−1∑
j=1

[e1, l+1 , wk(j)] (5.5.101)

= −
2l−1∑
j=1

[e(2l − 1, 1) , wk(j)] (5.5.102)

by 5.2.10 applied to i = l + 1, whereas

RHS = −D∑2l−1
j=1 wk(j)

(e(2l − 1, 1)) (5.5.103)

= −
2l−2∑
j=1

Dwk(j) (e(2l − 1, 1))−Dwk(2l−1) (e(2l − 1, 1)) (5.5.104)

= −
2l−2∑
j=1

[e(2l − 1, 1), wk(j)]− [e(2l − 1, 1), wk(2l − 1)] (5.5.105)

= −
2l−1∑
j=1

[e(2l − 1, 1), wk(j)] = LHS (5.5.106)

by 5.5.2 and 5.5.4 respectively.

Proposition 5.5.4 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). For
l = 2, . . . , n+ 1, we have

lim
zj→0, j≥2

lim
z1→zl

G(zn;
−→
e∗n,j) . . . G(z1;

−→
e∗1,j) e1, l

(
G(zn;

−→
e∗n,j) . . . G(z1;

−→
e∗1,j)

)−1
= M−1e1, l M (5.5.107)

Proof. For r ≥ 0 and i1, . . . , ir ∈ 2N+ 1, the coefficient of fi1 . . . fir in the LHS is
equal to

(−1)r D∑2l−3
j=1 wir (j)

. . . D∑2l−3
j=1 wi1

(j)(e1,l) , (5.5.108)

whereas in the RHS it is equal to

DMir
. . . DMi1

(e1,l) . (5.5.109)

Applying theorem 5.5.3 to the last equation we get

DMir
. . . DMi1

(e1,l) = (−1)r D∑2l−3
j=1 wir (j)

. . . D∑2l−3
j=1 wi1

(j)(e1,l). (5.5.110)
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Finally, the next result completes the proof of theorem 5.2.1 started in this chapter.

Theorem 5.5.5 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). For
l = 2, . . . , n, we have

(Gn . . .G2 Zl) e1,l (Gn . . .G2 Zl)
−1 = M−1 e1,l M . (5.5.111)

Further, in terms of commutators, this is given by

[e1,l,Mr] = [
l−1∑
t=1

wr(
t∑

r=0,r ̸=1

e1,r, e1,t+1) +
l−2∑
t=1

wr(e1,t+1,
t∑

r=0,r ̸=1

er,t+1), e1,l] (5.5.112)

for r ∈ 2N+ 1.

Proof. For the first relation, we know by 5.3.7 and 5.3.1 that for k = 2, . . . , n we
have

∂k(LHS) = 0 = ∂k(RHS) . (5.5.113)

Further, by 5.5.4 we know that

lim
zj→0, j≥2

(LHS) = RHS = lim
zj→0, j≥2

RHS . (5.5.114)

Therefore, LHS = RHS.

Finally, the commutator relation follows from the following application of theorem
5.5.3 and notations 5.2.11 5.2.12, 5.2.13.

DMr(e1,l) = −D∑2l−3
j=1 wk(j)

(e1,l) . (5.5.115)

5.6 Application : Single-valued periods

The multiple polylogarithms are multi-valued functions. However, it is possible to
construct their single-valued versions, that is, meromorphic analogues with trivial
monodromy but the same holomorphic differential. This was first worked out by
Brown in the one-variable case aj ∈ {0, 1} in [17], in the multivariable case5 in
[16] and from a motivic point of view in [23]. Following the work of Brown [23], a
combinatorial construction of the single-valued map was given in [28] by relying
purely on the coproduct and the antipode map of the Hopf algebra of multiple

5See [14] for an independent approach to single-valued polylogarithms in two variables.
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polylogarithms [41, 40]. Our goal in this section is to apply our results on the
motivic coaction to the formulation in [28] to compute the single-valued image of
the function F . We start by first computing this for the initial value series I. We
write sv to denote the single-valued map of multiple polylogarithms and multiple
zeta values.

5.6.1 Initial value series

The values at 1 of the single-valued multiple-polylogarithm in one variable are
referred to as the single-valued multiple zeta values, and these form a Q sub-algebra
of the algebra of multiple zeta values. From [23] (section 7.2 ) we know that the
map sv takes the following simple form for the f -alphabet.

sv fi1fi2 . . . fir =
r∑

j=0

fij . . . fi2fi1 � (fij+1
. . . fir) , sv f2 = 0 (5.6.1)

This allows us to compute the sv map on the initial value series I. To describe this,
we introduce the transpose symbol t, which reverses the order of the generators Mi

in the series M,
(Mi1 . . .Mir)

t = Mir . . .Mi1 . (5.6.2)

Lemma 5.6.1. The single valued map acts on the initial value series I = PM as
follows.

sv I = svM = Mt M . (5.6.3)

Proof. Since sv f2 = 0 we have that

svP = sv
( ∞∑
j=0

f j
2 P2j

)
= 1 . (5.6.4)

Next, considering the f -alphabet with odd letters, we get

svM = sv
( ∞∑
r=0

∑
i1,i2,...,ir∈2N+1

fi1fi2 . . . fir Mi1Mi2 . . .Mir

)
(5.6.5)

=
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

sv(fi1fi2 . . . fir)Mi1Mi2 . . .Mir (5.6.6)

=
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

( r∑
j=0

fij . . . fi2fi1�fij+1
. . . fir

)
Mi1Mi2 . . .Mir (5.6.7)
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=
∞∑
r=0

∑
i1,i2,...,ir∈2N+1

r∑
j=0

(
fij . . . fi1 (Mij . . .Mi1)

t
�fij+1

. . . fir)Mij+1
. . .Mir

)
(5.6.8)

= Mt M . (5.6.9)

Finally, we have
sv I = sv(PM) = svM = Mt M. (5.6.10)

5.6.2 Multiple Polylogarithms

Next, let us focus on the single-valued multiple polylogarithms. As explained in
section 3.4.3 of [28], one can construct single-valued polylogarithms in any number
of variables from the coproduct ∆ and the antipode S in the Hopf algebra of
polylogarithms. This method works as follows.

One first computes the antipode of meromorphic polylogarithms via

S∆G(a1, . . . , aw; z) = 0 , w ≥ 1 . (5.6.11)

Note that the antipode map acts only on the left side of the coproduct and not on
the right side.

Given the antipode of meromorphic polylogarithms, the single-valued map for any
number of variables is given by [28]

svG(a1, . . . , aw; z) = S̃∆G(a1, . . . , aw; z) (5.6.12)

where the operation S̃ acts by taking the complex conjugate of the antipode map
S and multiplying weight-w contributions by (−1)w.

The above construction was used at the level of generating series to write down the
single-valued image for multiple polylogarithms. For purposes of illustration, let
us first state this result in the one variable case, that is, for the generating series
Gn. We use the bar notation z to denote complex conjugation. We also use the
transpose notation t that reverses the order of letters ea,

(ea1 . . . ear)
t = ear . . . ea1 . (5.6.13)

Lemma 5.6.2. The single-valued image of the generating series Gn is given by

svG
[
e∗n,0 en,n+1

0 1
; zn

]
= G

[
e∗n,0 ên,n+1

0 1
; zn

]t
G
[
e∗n,0 en,n+1

0 1
; zn

]
. (5.6.14)
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where ên,n+1 is given by

ên,n+1 = sv e
′

n,n+1 = svΦ(e∗n,0, en,n+1) en,n+1 sv Φ(e
∗
n,0, en,n+1)

−1 . (5.6.15)

Assuming the equivalent criteria of theorem 5.2.1 hold, we have the conjugate
identity 5.2.5

Φ(e∗n,0, en,n+1) en,n+1 Φ(e
∗
n,0, en,n+1)

−1 = I−1 en,n+1 I . (5.6.16)

Thus, applying the single-valued map to the above equation we get

sv Φ(e∗n,0, en,n+1) en,n+1 sv Φ(e
∗
n,0, en,n+1)

−1 = svM−1 en,n+1 svM . (5.6.17)

We can use this relation along with the identity [e∗n,0,M] = 0 to reformulate lemma
5.6.2 as follows.

Lemma 5.6.3. The single-valued image of the generating series Gn is given by

svG
[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1G

[
e∗n,0 en,n+1

0 1
; zn

]t
svM G

[
e∗n,0 en,n+1

0 1
; zn

]
. (5.6.18)

Let us verify that this indeed gives us a single-valued series. First of all, it is clear
that svGn has the same holomorphic differential in zn as Gn. So it is enough to
check that svGn has trivial monodromy. We write Disc0, Disc1 to denote the
monodromy operator for polylogarithms at 0 and 1 respectively. Then, we have

Disc0G
[
e∗n,0 en,n+1

0 1
; zn

]
= exp(2πie∗n,0)G

[
e∗n,0 en,n+1

0 1
; zn

]
and (5.6.19)

Disc0G
[
e∗n,0 en,n+1

0 1
; zn

]t
= G

[
e∗n,0 en,n+1

0 1
; zn

]t
exp(−2πie∗n,0) . (5.6.20)

Therefore, on applying Disc0 to 5.6.18 we get

Disc0 svG
[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1 Disc0G

[
e∗n,0 en,n+1

0 1
; zn

]t
× svM Disc0G

[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1 G

[
e∗n,0 en,n+1

0 1
; zn

]t
exp(−2πie∗n,0)

× svM exp(2πie∗n,0) G
[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1G

[
e∗n,0 en,n+1

0 1
; zn

]t
svM G

[
e∗n,0 en,n+1

0 1
; zn

]
= svG

[
e∗n,0 en,n+1

0 1
; zn

]
(5.6.21)
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since [e∗n,0,M] = 0 and thus we can put the exponential terms together in the
second equation which then cancel out.

The monodromy at 1 is slightly more complicated.

Disc1G
[
e∗n,0 en,n+1

0 1
; zn

]
= Φ(e∗n,0, en,n+1) exp(2πien,n+1) Φ(e

∗
n,0, en,n+1)

−1 G
[
e∗n,0 en,n+1

0 1
; zn

]
.

(5.6.22)
This leads to

Disc1G
[
e∗n,0 en,n+1

0 1
; zn

]t
= G

[
e∗n,0 en,n+1

0 1
; zn

]t
(Φ(e∗n,0, en,n+1)

−1)t exp(−2πien,n+1) Φ(e
∗
n,0, en,n+1)

t .

(5.6.23)
Now, we apply the operator Disc1 to 5.6.18 to get

Disc1 svG
[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1 Disc1G

[
e∗n,0 en,n+1

0 1
; zn

]t
× svM Disc1G

[
e∗n,0 en,n+1

0 1
; zn

]
= svM−1G

[
e∗n,0 en,n+1

0 1
; zn

]t
(Φ(e∗n,0, en,n+1)

−1)t exp(−2πien,n+1) Φ(e
∗
n,0, en,n+1)

t

× svMΦ(e∗n,0, en,n+1) exp(2πien,n+1) Φ(e
∗
n,0, en,n+1)

−1 G
[
e∗n,0 en,n+1

0 1
; zn

]
. (5.6.24)

Thus, for Disc1 to act trivially above, it is enough to show that

(Φ(e∗n,0, en,n+1)
−1)t exp(−2πien,n+1) Φ(e

∗
n,0, en,n+1)

t

× svMΦ(e∗n,0, en,n+1) exp(2πien,n+1) Φ(e
∗
n,0, en,n+1)

−1 = svM . (5.6.25)

Recall that we have svM = Mt M and

Φ(e∗n,0, en,n+1) en,n+1Φ(e
∗
n,0, en,n+1)

−1 = M−1 en,n+1 M . (5.6.26)

Therefore, we get

MΦ(e∗n,0, en,n+1) exp(2πien,n+1) Φ(e
∗
n,0, en,n+1)

−1 = exp(2πien,n+1)M . (5.6.27)

Similarly, with the transverse operation, we also get

(Φ(e∗n,0, en,n+1)
−1)t exp(−2πien,n+1) Φ(e

∗
n,0, en,n+1)

tMt = Mt exp(−2πien,n+1) .
(5.6.28)

Finally, multiplying equation 5.6.28 and 5.6.27 gives 5.6.25 as required. Thus, we
have verified that the formulation in theorem 5.6.2 and 5.6.3 lead to single-valued
polylogarithms in one variable. We state the result in the general case below,
starting with the extension to lemma 5.6.2.
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Proposition 5.6.4. The single-valued image of the generating series of polyloga-
rithms Gk is given by

svG
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
= G

[
e∗k,0 êk,k+1 ... êk,n+1

z0 zk+1 ... zn+1
; zk

]t
G
[
e∗k,0 ek,k+1 ... ek,n+1

z0 zk+1 ... zn+1
; zk

]
(5.6.29)

where we have for j = k + 1, k + 2, . . . , n+ 1,

êk,j = sv e
′

k,j = svG(zk → zj;
−→
e∗k,j) ek,j svG(zk → zj;

−→
e∗k,j)

−1 . (5.6.30)

This result can be reformulated as follows and the same argument as before verifies
the single-valuedness of the expression.

Proposition 5.6.5 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). Sup-
pose that the equivalent criteria in theorem 5.2.1 hold. Then, the single-valued
image of the generating series of polylogarithms Gk is given by

sv(G(zk;
−→
e∗k,0)) = sv

(
MG(zn;

−→
e∗n,0)) . . . G(zk+1;

−−−→
e∗k+1,0)

)−1 G(zk;
−→
e∗k,0)

t

× sv
(
MG(zn;

−→
e∗n,0)) . . . G(zk+1;

−−−→
e∗k+1,0)

)
G(zk;

−→
e∗k,0) . (5.6.31)

Proof. The theorem 5.2.1 holds. Therefore, we can make use of the following
conjugate identity 5.2.5 along with proposition 5.6.4.

(IGn . . .Gk+1)
−1 ek,j (IGn . . .Gk+1) =

G(zk = zj;
−→
e∗k,j) ek,j G(zk = zj;

−→
e∗k,j)

−1 . (5.6.32)

Applying the sv map to the above equation and using 5.6.1 we get

êk,j = sv e
′

k,j = svG(zk → zj;
−→
e∗k,j) ek,j svG(zk → zj;

−→
e∗k,j)

−1

= sv (MGn . . .Gk+1)
−1 ek,j sv (MGn . . .Gk+1) (5.6.33)

We apply this to equation 5.6.29 along with the relation

[e∗k,0,M] = 0 and [e∗k,0,Gj] = 0 (5.6.34)

and take conjugating factors out to get

sv(G(zk;
−→
e∗k,0)) = sv

(
MG(zn;

−→
e∗n,0)) . . . G(zk+1;

−−−→
e∗k+1,0)

)−1 G(zk;
−→
e∗k,0)

t

× sv
(
MG(zn;

−→
e∗n,0)) . . . G(zk+1;

−−−→
e∗k+1,0)

)
G(zk;

−→
e∗k,0) . (5.6.35)

where we have cancelled out the two instances of complex conjugation.
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Remark 5.6.6. It is not necessary to use proposition 5.6.4 to prove this result. One
can directly use the algebraic construction [28] of the single-valued map discussed
earlier in the section to get the above result. This approach will appear in [36].

Remark 5.6.7. Note that the generating series svGk has the same holomorphic
differential in zk as Gk. However, the anti-holomorphic differential is clearly non-
zero. The computation of this anti-holomorphic differential will also appear in
[36].

5.6.3 Hypergeometric functions

We can use the above results to give a compact formulation for the single-valued
image of F .

Theorem 5.6.8 (Frost-Hidding-Kamlesh-Rodriguez-Schlotterer-Verbeek). Suppose
that the equivalent conditions of Theorem 5.2.1 hold. Then, the single-valued image
of F is given by

svF = F t F . (5.6.36)

Proof. By proposition 5.6.5 we have

svF = sv(MGn . . . G1) = sv(MGn . . . G2) (svG1)

= sv(MGn . . . G2)
(
sv(MGn . . . G2)

)−1 Gt
1 sv(MGn . . . G2)G1

= Gt
1 sv(MGn . . . G2)G1 . (5.6.37)

Repeating the above argument for the factor sv(MGn . . . G2) we can rewrite the
above equation as

svFm = Gt
1 . . . Gt

n (svM)Gn . . . G1 . (5.6.38)

Finally, we use lemma 5.6.1 to rewrite 5.6.37 as

svF = Gt
1 . . . Gt

nMtMGn . . . G1 (5.6.39)

= (MGn . . . G1)t (MGn . . . G1) (5.6.40)

= (F )t F . (5.6.41)
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Chapter 6

Application: Proof of the coaction
conjecture

In this chapter, we will prove the coaction conjecture for the period matrix F (n,p)

in the case p = 1 and n = 4, 5 as well as p = 2 and n = 5, 6.

6.1 Dimension 1

6.1.1 (n,p)=(4,1)

In this section, we set n = 4 and p = 1. Then C(n,p)is one-dimensional.

In terms of coordinates we have

C(n,p) = {z2 ∈ C | z2 ̸= 0, z2 ̸= 1}. (6.1.1)

Further the (co)-homology groups are one-dimensional since d(n,p) = (4−3)!
(4−3−1)! = 1.

So the homology basis consists of just one element

γ
(4,1)
1 = {0 < z2 < 1} (6.1.2)

and the cohomology basis is the class of

ω
(4,1)
1 =

s12
z2

dz2 . (6.1.3)

Also, the Koba-Nielsen factor in this case is

KN (4,1) = zs122 (1− z2)
s23 . (6.1.4)
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Therefore, the period matrix is given by

F (4,1) = (F
(4,1)
1,1 ) (6.1.5)

where

F
(4,1)
11 =

∫ 1

0

zs122 (1− z2)
s23

s12
z2

dz2 , Re(sij) > 0 . (6.1.6)

The poles in the integral above can only occur at the end points of integration.
Clearly there is no pole at 1. On the other hand, near zero, the integrand behaves
like s12z

s12−1
2 which integrates out to zs122 and evaluates to 1 after putting in the

boundary values, so the integral is indeed well-defined.

Note that the above period integral can be expressed in terms of the well-known
Beta and Gamma function as follows

F11 =
s12s23

s12 + s23
B(s12, s23) =

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
. (6.1.7)

This is a particularly special situation where we can write down explicitly an
exponential series expansion formula for the period integral F

(4,1)
11 and its ‘motivic’

lift.

F
(4,1),m
11 = exp(

∑
n≥2

(−1)n−1ζm(n)
n

((s12 + s23)
n − sn12 − sn23)) . (6.1.8)

Since the single zeta values have a particularly simple coaction formula

∆(ζm(2n)) = ζm(2n)⊗ 1 , (6.1.9)

∆(ζm(2n+ 1)) = ζm(2n+ 1)⊗ 1 + 1⊗ ζdr(2n+ 1) , (6.1.10)

we can compute the coaction directly as

∆(F
(4,1),m
11 ) = exp(

∑
n≥2

(−1)n−1∆(ζm(n))

n
((s12 + s23)

n − sn12 − sn23))

= F
(4,1),m
11 F

(4,1),dr
11 (6.1.11)

in accordance with the coaction conjecture.

In the next section, we will provide another proof of the above result. Continuing
on we may drop the superscripts (n, p) if it is clear from the context.
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6.1.2 (n,p)=(5,1)

In this section we set n = 5 and p = 1. Then we have

C(n,p) = {z2 ∈ C | z2 ̸= 0 , z2 ̸= z3 , z2 ̸= 1}.

So C(n,p)is still one dimensional but the (co)homology groups are now d(5,1) = 2
dimensional.

We have as our homology basis the classes of following cycles

γ
(5,1)
1 = {0 < z2 < z3} , γ

(5,1)
2 = {z3 < z2 < 1} , (6.1.12)

and as our cohomology basis the classes of following forms

ω
(5,1)
1 =

s12
z2

dz2 ∼=
( s32
z3 − z2

+
s42

1− z2

)
dz2 , (6.1.13)

ω
(5,1)
2 =

(s12
z2

+
s23

z2 − z3

)
dz2 ∼=

s42
1− z2

dz2 . (6.1.14)

And the KZ-factor is

KZ(5,1) = |z2|s12 |z2 − z3|s23 |z2 − 1|s24 . (6.1.15)

Next we can compute using integration by parts and partial fraction identities that
the period matrix F (5,1)(z3) =

(∫
γ
(5,1)
a

KN(5,1) ω
(5,1)
b

)
satisfies the KZ equation

d

dz3
F (5,1)(z3) = F (5,1)(z3)(

E
(5,1)
31

z31
+

(E
(5,1)
34 )

z34
) (6.1.16)

for the matrices

E
(5,1)
31 =

(
s12+s23 0
−s12 0

)
, E

(5,1)
34 =

(
0 −s24
0 s23+s24

)
. (6.1.17)

For convenience of notation we will write E0,z3 = E31 and E1,z3 = E34 and we may
even drop the subscript z3 in this section.
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In this notation a solution to the KZ equation above is given in terms of multiple
polylogarithms as follows.

G(E0, E1; z3) =
∞∑
r=0

∑
a1,a2,...

...,ar∈{0,1}

G(ar, . . . , a2, a1; z3)E
(5,1)
a1,z3

E(5,1)
a2,z3

. . . E(5,1)
ar,z3

. (6.1.18)

Since the KZ equation is linear we can solve for the period matrix F (5,1)(z3) in
terms of the above generating series by multiplying a prefactor matrix of initial
values. Specifically, we have

F (5,1)(z3) = C
(5,1)
0 G(E0, E1; z3) (6.1.19)

where C
(5,1)
0 := limz3→0 F

(5,1)(z3) z
−E0
3 .

To be able to compute the coaction of F (5,1)(z3), we first need to compute the

coaction of C
(5,1)
0 . However, this requires us to first compute the initial value matrix.

In that direction, the z3 limit for the first row of the period matrix, that is, for
the integral over γ1 = 0 < z2 < z3, can be computed by first making a change of
variables z2 = z3t2 to eliminate the dependence of z3 from the integration path and
then taking the limit.

A straightforward change of variables doesn’t work for the second row but we can
make use of the monodromy relations [8, 52] to write the integral over γ2 in terms
of integrals over paths which have no z3 dependence or whose z3 dependence can
be eliminated with a change of variables.

In our case, the monodromy relation comes down to the vanishing of the following
integral ∮

C
(−z2)s12(z3−z2)s23(1−z2)s24ω(5,1)

a (6.1.20)

valid for both a = 1 and 2, obtained by applying Cauchy’s theorem to the contour
depicted on the next page.

So we simply have the following relation∫ ∞
−∞

(−z2)s12(z3−z2)s23(1−z2)s24ω(5,1)
a = 0 . (6.1.21)

The above integral can be split into four intervals for z2 which we correct with
monodromy factors to get relations among period integrals.

1. γneg = (−∞, 0) : All the factors in brackets are positive so we do not make
any changes.
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Re(z2)

Im(z2)

•
z1=0

•
z3

•
z4=1

•
+∞

•
−∞

γneg γ1 γ2 γ3

Figure 6.1: The closed contour C consists of the real line drawn in red and split into
paths γneg, γ1, γ2, γ3, whereas the blue semicircle simply indicates that z5 → ±∞ are
identified on the Riemann sphere and does not contribute to the integral.

2. γ1 = (0, z3) : The first factor in brackets is negative so we can express the

integral in this range as exp(±πs12))F (5,1)
1a with the signs depending on how

we move around zero.

3. γ2 = (z3, 1) : Both the first and second factor are negative so we write

exp(±π(s12 + s23))F
(5,1)
2a .

4. γ3 = (1,∞) : All the factors are negative so we write exp(±π(s12 + s23 +

s24))F
(5,1)
3a where we set γ3 = (1,∞) and F

(5,1)
3a =

∫
γ3
KN (5,1)ωa.

Above gives us two relations, one each for a choice of sign on the exponential factors.
Taking the difference of the two we can eliminate the integral over γneg and get
that

sin(πs12))F
(5,1)
1a +sin(π(s12+s23))F

(5,1)
2a +sin(π(s12+s23+s24))F

(5,1)
3a = 0 . (6.1.22)

We already know how to make a change of variables for the integral over γ2 and γ3
has no dependence on z3. So we can just take the limit as z3 → 0 which gives us
the second row of C0.

C0 =

(
Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23)
0

s12
s12+s23

Γ(1+s24)Γ(1+s12+s23)
Γ(1+s12+s23+s24)

− sin(πs12)
sin(π(s12+s23))

Γ(1+s12)Γ(1+s23)
Γ(1+s12+s23)

Γ(1+s12+s23)Γ(1+s24)
Γ(1+s12+s23+s24)

)
.

(6.1.23)
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Note that we could also have looked at the limit of F (5,1)(z3) as z3 tends to 1. So

we define C
(5,1)
1 := limz3→1 F

(5,1)(z3)(1− z3)
−E1 . Now, we know that the boundary

values are related via the Drinfeld associator as follows.

C
(5,1)
1 = C

(5,1)
0 Φ(E0, E1) . (6.1.24)

To give a preview of what is to come, we note that the above will lead to some
relations involving Beta function that will help us compute its coaction. This is to
be expected because the factor Φ(E0, E1) is a meta-abelian quotient [33, 26] of the
Drinfeld associator and its entries can be written down explicitly in terms of the
Beta function and this suggests that the entries of C1 should also consists of Beta
functions.

Now we can compute the entries of C1 directly by calculating the z3 → 1 limit.
However we give here another recipe for deriving C1 in terms of C0.

Recall that we have

d

dz3
F (5,1)(z3) = F (5,1)(z3)

(E0

z3
+

E1

z3 − 1

)
. (6.1.25)

Define a change of variables y3 = 1− z3 and y2 = 1− z2. Then we can rewrite the
above KZ equation as

− d

dy3
(F (5,1)(1− y3)) = −F (5,1)(1− y3)

( E0

y3 − 1
+

E1

y3

)
. (6.1.26)

Now, let’s analyze F (5,1)(1− y3). First, we have the change in basis of cycles

γ1 = 0 < z2 < z3 ⇔ 1 > y2 > y3 = − γ2(y2, y3) , (6.1.27)

γ2 = z3 < z2 < 1⇔ y3 > y2 > 0 = − γ1(y2, y3) . (6.1.28)

Secondly, we have the modification in the basis for forms

ω1 =
s12
z2

dz2 = −
s12

1− y2
dy2 ∼= −

(s24
y2

+
s23

y2 − y3

)
dy2 , (6.1.29)

ω2 = (
s12
z2

+
s23

z2 − z3
)dz2 ∼=

s24
1− z2

dz2 = −
s24
y2

dy2 . (6.1.30)

Therefore, in the y-variables we have

ω1 = −ω2(y2, y3, 1↔ 4) , ω2 = −ω1(y2, y3, 1↔ 4) (6.1.31)
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where we keep track that we have to swap 1 and 4 in the subscripts of sij’s.

The KZ factor also modifies in alignment with our choice of sections since zi− zj =
yj − yi have the same sign for 1 ≤ i, j ≤ 2 and thus we only have positive terms
inside brackets in the expression for KZ(5,1).

Therefore, in terms of matrix entries we have

F
(5,1)
ij (z3) = F

(5,1)
ij (1− y3) = F

(5,1)
(3−i)(3−j),1↔4(y3) (6.1.32)

for 1 ≤ i, j ≤ 2, since the signs from the basis of cycles and forms cancel out.

These kind of relations will be a general feature so we introduce a new notation Ǎ
for 2× 2 matrices that interchanges entries (i, j) and (3− i, 3− j) as well as swaps
1 and 4 in the indices for sij. Therefore, we have in the new notation

F (5,1)(z3) = F (5,1)(1− y3) = F̌ (5,1)(y3) (6.1.33)

and the updated differential equation

d

dy3
(F̌ (5,1)(y3)) = (F̌ (5,1)(y3))

(E1

y3
+

E0

y3 − 1

)
. (6.1.34)

Comparing with the original equation 6.1.25 we can observe two facts of interest.
First we have the matrix equality

E1 = Ě0 (6.1.35)

which can also be verified by checking the matrix entries. Secondly,

Lemma 6.1.1. The limit as z3 → 1 satisfies C
(5,1)
1 = Č0

(5,1)
.

Proof.
C

(5,1)
1 = lim

z3→1
F (5,1)(z3)(1− z3)

−E1

= lim
y3→0

F (5,1)(1− y3)(y3)
−E1

= lim
y3→0

(F̌ (5,1)(y3))(y3)
−E1

= lim
y3→0

(F̌ (5,1)(y3))(y3)
−Ě0

= Č0
(5,1)

(6.1.36)
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Therefore we can write down the entries of C1 without having to compute the
z3 → 1 limit of F (5,1) and this is stated below.

C1 =

(
Γ(1+s24+s23)Γ(1+s12)

Γ(1+s12+s23+s24)
s24

s24+s23

Γ(1+s12)Γ(1+s24+s23)
Γ(1+s12+s23+s24)

− sin(πs24)
sin(π(s24+s23))

Γ(1+s24)Γ(1+s23)
Γ(1+s24+s23)

0 Γ(1+s24)Γ(1+s23)
Γ(1+s23+s24)

)
.

(6.1.37)

Now let’s focus again on the coaction! We just need two more ingredients.

The first thing is to observe that if we replace the sine factors in the entries of C0

with its argument then the resulting matrix commutes with E0. Concretely, let’s
take

Cπ
0 =

(
Γ(1+s12)Γ(1+s23)

Γ(1+s12+s23)
0

s12
s12+s23

Γ(1+s24)Γ(1+s12+s23)
Γ(1+s12+s23+s24)

− s12
s12+s23

Γ(1+s12)Γ(1+s23)
Γ(1+s12+s23)

Γ(1+s12+s23)Γ(1+s24)
Γ(1+s12+s23+s24)

)
.

(6.1.38)
Then, we have [E0, C

π
0 ] = 0 and as a consequence [E0, C

dr
0 ] = 0. Similarly, we also

have [E1, C
π
1 ] = 0 and [E1, C

dr
1 ] = 0 where Cπ

1 is defined in an analogous way by
getting rid of the factors of π coming from the monodromy relations.

The second ingredient that we need is the matrices C1 and C0 when we set
s23 = 0. Let C̃1 = C1(s23 → 0) , C̃0 = C0(s23 → 0), Ẽ0 = E0(s23 → 0) and
Ẽ1 = E1(s23 → 0). Then, we have

C̃1 =

(
Γ(1+s12)Γ(1+s24)

Γ(1+s12+s24)
Γ(1+s12)Γ(1+s24)

Γ(1+s12+s24)
− 1

0 1

)
, (6.1.39)

C̃0 =

(
1 0

Γ(1+s12)Γ(1+s24)
Γ(1+s12+s24)

− 1 Γ(1+s12)Γ(1+s24)
Γ(1+s12+s24)

)
(6.1.40)

and
C̃1 = C̃0Φ(Ẽ0, Ẽ1) . (6.1.41)

Theorem 6.1.2. The motivic coaction of the initial value matrix is given by

∆(C
(5,1),m
0 ) = C

(5,1),m
0 C

(5,1),dr
0 . (6.1.42)

Proof (D. Kamlesh). Recall that by Ihara’s coaction formula we have

∆(Φm(Ẽ0, Ẽ1)) = Φm(Ẽ0, Ẽ1
′
) Φdr(Ẽ0, Ẽ1) , (6.1.43)
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Ẽ1
′
= Φdr(Ẽ0, Ẽ1) Ẽ1 (Φ

dr(Ẽ0, Ẽ1))
−1 . (6.1.44)

Replacing the deRham Drinfeld associator with initial value matrices from 6.1.24
we get

Φdr(Ẽ0, Ẽ1) = C̃0
−dr

C̃1
dr

(6.1.45)

and so 6.1.44 gives

Ẽ1
′
= C̃0

−dr
C̃1

dr
Ẽ1 C̃1

−dr
C̃0

dr
= C̃0

−dr
Ẽ1 C̃0

dr
(6.1.46)

since we have [E1, C
dr
1 ] = 0 and therefore [Ẽ1, C̃

dr
1 ] = 0.

Using above in the coaction we get

∆(Φm(Ẽ0, Ẽ1)) = Φm(Ẽ0, Ẽ1
′
) Φdr(Ẽ0, Ẽ1)

= Φm(C̃0
−dr

Ẽ0C̃0
dr
, C̃0

−dr
Ẽ1C̃0

dr
) Φdr(Ẽ0, Ẽ1)

= C̃0
−dr

Φm(Ẽ0, Ẽ1) C̃0
dr
Φdr(Ẽ0, Ẽ1)

= C̃0
−dr

Φm(Ẽ0, Ẽ1) C̃1
dr
. (6.1.47)

where the last step uses C̃1
dr
= C̃0

dr
Φdr(Ẽ0, Ẽ1).

Since the coaction preserves products we can use 6.1.47 to get

∆(C̃1
m
) = ∆(C̃0

m
)∆(Φm(Ẽ0, Ẽ1))

= ∆(C̃0
m
) C̃0

−dr
Φm (Ẽ0, Ẽ1) C̃1

dr
. (6.1.48)

Recall that the first row of C̃0
m
is just (1, 0) by 6.1.40 and ∆((1, 0)) = (1, 0). Thus

∆(C̃0
m
) = C̃0

m
C̃0

w
is verified up to the first row.

Applying this to 6.1.48 we get

∆(C̃1
m
) = C̃0

m
Φm(Ẽ0, Ẽ1), C̃1

dr

= C̃1
m
C̃1

dr
(6.1.49)

which is verified up to the first row. But this is enough to determine the coaction
of the first row of C̃1

m
, see 6.1.39, and in particular the first entry of the row and

so we get

∆
(Γm(1+s12)Γ

m(1+s24
)

Γm(1+s12+s24)

)
=

Γm(1+s12)Γ
m(1+s24)

Γm(1+s12+s24)

Γdr(1+s12)Γ
dr(1+s24)

Γdr(1+s12+s24)
(6.1.50)
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that is
∆F (4,1),m(s12, s24) = F (4,1),m(s12, s24)F

(4,1),dr(s12, s24) (6.1.51)

as already observed in the previous section.

Now, since the entries of C
(5,1),m
1 are composed entirely in terms of Beta functions

and sine factors one can use the above result to check that we also have

∆(C
(5,1),m
1 ) = C

(5,1),m
1 C

(5,1),dr
1 and ∆(C

(5,1),m
0 ) = C

(5,1),m
0 C

(5,1),dr
0 . (6.1.52)

And finally, we have the coaction conjecture for Gauss’s 2F1 hypergeometric func-
tion.

Theorem 6.1.3. The motivic coaction of F (5,1),m is given by

∆(F (5,1),m) = F (5,1),m F (5,1),dr . (6.1.53)

Proof (D. Kamlesh). By theorem 5.2.1, criteria 3, it is enough to know that the
following conditions are satisfied.

1. ∆(Cm
0 ) = Cm

0 Cdr
0 .

2. (Cdr
0 )
−1E0 (C

dr
0 ) = 0 .

3. (Cdr
0 )
−1E1C

dr
0 = Φdr(E0, E1)E1Φ

dr(E0, E1)
−1 .

The first condition is just theorem 6.1.2. And we have already noted earlier in the
section that

[E0, C
dr
0 ] = 0 = [E1, C

dr
1 ] . (6.1.54)

Hence, the second condition is also satisfied. Finally, making use of the above
relation and equation 6.1.24, we have

Φdr(E0, E1)E1Φ
dr(E0, E1)

−1 = (Cdr
0 )
−1Cdr

1 E1 (C
dr
1 )
−1Cdr

0 (6.1.55)

= (Cdr
0 )
−1E1C

dr
0 . (6.1.56)

Remark 6.1.4. One can also use equivalent criteria 4 to prove the above theorem.
Briefly, the property ∆(Cm

0 ) = Cm
0 Cdr

0 implies that we have

Cdr
0 = Mdr =

∞∑
r=0

∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
mMi1Mi2 . . .Mir (6.1.57)
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for some matrices Mi, i ∈ N. But then [E0, C
dr
0 ] = 0 implies that [E0,Mi] = 0 for

all i ∈ N. Similarly, the relation Cdr
1 = Cdr

0 Φ(E0, E1) and [E1, C
dr
1 ] = 0 implies that

[E1,Mi] = [wi, E1] on comparing the coefficients of zeta values.

Corollary 6.1.5. The single-valued image of the period matrix F (4,1) and F (5,1) is
given by

svF = F t F (6.1.58)

Proof. This follows from theorem 5.6.8 and theorem 6.1.3.

Remark 6.1.6. Summary of the steps above - Before proceeding to the next chapter
which uses the same argument as this one, we summarize our steps as follows. To
get the coaction of the period matrix F (n,p) for (n, p) = (4, 1) with n− p = 3 we

first identified F (n,p) as a sub-matrix of the initial value matrices C
(5,1)
0 and C

(5,1)
1

for the (n + 1, p) = (5, 1) period matrix. The initial value matrices are related

via the Drinfeld associator C
(n+1,p)
1 = C

(n+1,p)
0 Φ(E0, E1) and thus as a consequence

we also get a relation for the periods of (n, p). We set some of the sij entries to
zero to simplify the matrix entries and the above relation and applied the coaction
formula. The only other feature we needed is the coaction on the Drinfeld associator
itself which follows from the Ihara’s formula as well as the commutator relations
[E0, C

(n+1,p),dr
0 ] = [E1, C

(n+1,p),dr
1 ] = 0. From the work of [13] it is known that we

always get the period relation as observed here and only the commutator relations
need to be known. As long as one can derive this the rest follows and we will this
use approach in the next section.

6.2 Dimension 2

6.2.1 (n,p) = (5,2)

In this section we set n = 5 and p = 2.

So C(n,p) = {(z2, z3) ∈ C × C | z2 ̸= 0, z2 ̸= z3, z2 ̸= 1, z3 ̸= 0, z3 ≠ 1} is two
dimensional and the (co)homology groups are d(5,2) = 2 dimensional as well.

The homology and cohomology basis are listed below.

γ
(5,2)
1 = {0 < z2 < z3 < 1} , γ

(5,2)
2 = {0 < z3 < z2 < 1} , (6.2.1)

ω̂
(5,2)
1 =

s12
z12

(
s13
z13

+
s23
z23

)
, ω̂

(5,2)
1 =

s13
z13

(
s12
z12

+
s32
z32

)
. (6.2.2)
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The Koba-Nielsen factor is

KN (5,2) = |z2|s12|z3|s12|z3 − z2|s23|1− z2|s24|1− z3|s34 (6.2.3)

and we have a 2× 2 period matrix

F
(5,2)
ab =

∫
γa

KN(5,2) ωb , 1 ≤ a, b ≤ 2 . (6.2.4)

One way to study this period matrix is to follow the approach in [26] and integrate
one variable at a time which allows us to express it as a linear combination of
depth 2 Beta quotient of the Drinfeld associator whose coaction can be computed
via Ihara’s formula. However this gets combinatorially complex quite fast and is a
bit unwieldy for higher values of n and p. So we will follow the strategy from the
previous chapter instead.

6.2.2 (n,p) = (6,2)

In this section we set n = 6 and p = 2.

So C(n,p) = {(z2, z3) ∈ C×C | z2 ̸= 0, z2 ̸= z3, z2 ̸= z4, z2 ≠ 1, z3 ̸= 0, z3 ̸= z4, z3 ̸=
1} is again two dimensional with coordinates z2, z3 and one unintegrated puncture
z4. The (co)homology groups are now d(6,2) = 6 dimensional.

The homology and cohomology basis are listed below

γ
(6,2)
1 = {0 < z2 < z3 < z4 < 1} , γ

(6,2)
3 = {0 < z2 < z4 < z3 < 1}

γ
(6,2)
5 = {z4 < z2 < z3 < 1} , γ

(6,2)
2k = γ

(6,2)
2k−1

∣∣∣
2↔3

, k = 1, 2, 3 and (6.2.5)

ω̂
(6,2)
1 =

s12
z12

(
s13
z13

+
s23
z23

)
, ω̂

(6,2)
3 =

s12
z12

(
s13
z13

+
s23
z23

+
s43
z43

)
ω̂
(6,2)
5 =

(
s12
z12

+
s42
z42

)(
s13
z13

+
s23
z23

+
s43
z43

)
, ω̂

(6,2)
2k = ω̂

(6,2)
2k−1

∣∣∣
2↔3

, k = 1, 2, 3

(6.2.6)

where the notation 2↔ 3 means an interchange of indices.

We have the Koba-Nielsen factor

KN(6,2) = |z2|s12|z3|s12|z3 − z2|s23|z4 − z2|s24||z4 − z3|s34|1− z2|s24|1− z3|s35 (6.2.7)
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and the period matrix F (6,2)(z4) satisfies the KZ-equation

d

dz4
F (6,2)(z4) = F (6,2)(z4)

(E(6,2)
41

z41
+

(E
(6,2)
45 )

z45

)
(6.2.8)

for the matrices

E
(6,2)
41 =


s123+s24+s34 0 0 0 0 0

0 s123+s24+s34 0 0 0 0
−s13−s23 −s13 s12+s24 0 0 0
−s12 −s12−s23 0 s13+s34 0 0
−s12 s13 −s12 0 0 0
s12 −s13 0 −s12 0 0

 ,

E
(6,2)
45 =


0 0 −s35 0 −s35 s25
0 0 0 −s25 s35 −s25
0 0 s35+s34 0 −s23−s25 −s25
0 0 0 s25+s24 −s35 −s23−s35
0 0 0 0 s235+s24+s34−s35 0
0 0 0 0 0 s235+s24+s34

 (6.2.9)

and shorthand s123 = s12 + s13 + s23, s235 = s23 + s25 + s35 .

Analogous to the previous chapter we write E0 = E0,z4 = E41 and E1 = E1,z4 = E45

and then a solution to the above differential equation can be expressed as

G(E0, E1; z4) =
∞∑
r=0

∑
a1,a2,...

...,ar∈{0,1}

G(ar, . . . , a2, a1; z4)E
(6,2)
a1,z3

E(6,2)
a2,z3

. . . E(6,2)
ar,z3

. (6.2.10)

We define
C

(6,2)
0 := lim

z4→0
F (6,2)(z4)z

−E0
4 (6.2.11)

which allows us to express the period matrix as

F (6,2)(z4) = C0G(E0, E1; z4) . (6.2.12)

Therefore, it is imperative that we understand the initial values matrix C0. The
z4 dependence on the basis cycles γ1 and γ2 can be eliminated by a change of
variables z2 = t2z4 and z3 = t3z4 but this doesn’t work for the other cycles γ

(6,2)
j

for j = 3, 4, 5, 6.

However, once again monodromy relations between the basis of bounded cycles and
unbounded ones stated below and pictured on the next page come to the rescue.
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Re(z2)

Re(z3)

z4 1

z4

1

γ
(6,2)
1

γ
(6,2)
2

γ
(6,2)
5

γ
(6,2)
6

α
(6,2)
5

α
(6,2)
6

γ
(6,2)
4 α

(6,2)
4

γ
(6,2)
3

α
(6,2)
3

×

×

Figure 6.2: Integration contour γ’s for (6, 2) period integrals and α’s for monodromy
relations. The contours marked × are not needed.

α
(6,2)
3 = {(z2, z3) ∈ R2 | 0 < z2 < z4 < 1 and 1 < z3 <∞}

α
(6,2)
5 = {(z2, z3) ∈ R2 | 1 < z2 < z3 <∞}

α
(6,2)
4 = α

(6,2)
3

∣∣∣
2↔3

, α
(6,2)
6 = α

(6,2)
5

∣∣∣
2↔3

(6.2.13)

The period integrals over the cycles above work better for taking the z4 → 0 limit
since we can eliminate the z4 dependence from the integration limits.

We illustrate one instance of the monodromy relations obtained from the vanishing
of the following integral∫ z3=∞

z3=−∞

∫ z2=z4

z2=0

(z2)
s12(−z3)s13(z2−z3)s23(z4 − z2)

s24(z4 − z3)
s34(1− z2)

s24(1− z3)
s35ω(6,2)

a

valid for a ∈ {1, . . . , 6}.

The integral above can be split into five regions which we correct with monodromy
factors to get relations among period integrals. Note that we keep the range of z2
fixed and we only vary z3.

1. (−∞, 0) : All the factors in brackets are positive so we do not make any
changes.

2. (0, z2) : Then −z3 < 0 so we can express the integral in this range as

exp(±πs13))F (6,2)
2a .
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3. (z2, z4) : z2 − z3 < 0 so we write exp(±π(s13 + s23))F
(6,2)
1a .

4. (z4, 1) : (z4 − z3) < 0 so we write exp(±π(s13 + s23 + s34))F
(6,2)
3a .

5. (1,∞) : (1− z3) < 0 so we write exp(±π(s13 + s23 + s34 + s35))F
(6,2)
α3a .

Eliminating the integral over the range z3 < 0 we get

sin(πs13))F
(6,2)
2a + sin(π(s13 + s23))F

(6,2)
1a + sin(π(s13 + s23 + s34))F

(6,2)
3a

+ sin(π(s13 + s23 + s34 + s35))F
(6,2)
α3 a

= 0 . (6.2.14)

This helps us express the integral over γ3 in terms of integrals over more well
behaved cycles. Similarly, one can compute the rest of the monodromy relations
and use it to compute the initial value C6,2

0 as worked out in [12] which we state
below verbatim and have also verified independently.



F
(5,2)
11 F

(5,2)
12 0 0 0 0

F
(5,2)
21 F

(5,2)
22 0 0 0 0

H
(6,2)
11 H

(6,2)
12 F (4,1)(s12, s24)F

(4,1)(s35, s13+s23+s34) 0 0 0

H
(6,2)
21 H

(6,2)
22 0 F (4,1)(s13, s34)F

(4,1)(s25, s12+s23+s24) 0 0

J
(6,2)
11 J

(6,2)
12 K

(6,2)
11

s13
s13+s34

F̂
(5,2)
12 F̂

(5,2)
11 F̂

(5,2)
12

J
(6,2)
21 J

(6,2)
22

s12
s12+s24

F̂
(5,2)
21 K

(6,2)
22 F̂

(5,2)
21 F̂

(5,2)
22


.

The entries H
(6,2)
1j are given by

H
(6,2)
11 =

s13+s23
s13+s23+s34

F (4,1)(s12, s24)F
(4,1)(s35, s13+s23+s34)

− sin(π(s13+s23))

sin(π(s13+s23+s34))
F

(5,2)
11 − sin(πs13)

sin(π(s13+s23+s34))
F

(5,2)
21

H
(6,2)
12 =

s13
s13+s23+s34

F (4,1)(s12, s24)F
(4,1)(s35, s13+s23+s34)

− sin(π(s13+s23))

sin(π(s13+s23+s34))
F

(5,2)
12 − sin(πs13)

sin(π(s13+s23+s34))
F

(5,2)
22 ,

while the entries H
(6,2)
2j can be obtained from H

(6,2)
1j by relabeling 2↔ 3 at the level

of the Mandelstam variables throughout and are thus given by

H
(6,2)
21 =

s12
s12+s23+s24

F (4,1)(s13, s34)F
(4,1)(s25, s12+s23+s24)

− sin(π(s12+s23))

sin(π(s12+s23+s24))
F

(5,2)
21 − sin(πs12)

sin(π(s12+s23+s24))
F

(5,2)
11

H
(6,2)
22 =

s12+s23
s12+s23+s24

F (4,1)(s13, s34)F
(4,1)(s25, s12+s23+s24)
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− sin(π(s12+s23))

sin(π(s12+s23+s24))
F

(5,2)
22 − sin(πs12)

sin(π(s12+s23+s24))
F

(5,2)
12

The entries J
(6,2)
1j are given by

J
(6,2)
11 =u11F̂

(5,2)
11 + u12F̂

(5,2)
12

− sin(πs12)

sin(π(s12+s24))

s13+s23
s13+s23+s34

F (4,1)(s12, s24)F
(4,1)(s35, s13+s23+s34)

+

[
− sin(πs12) sin(πs34)F

(5,2)
11 + sin(πs13) sin(π(s123+s34))F

(5,2)
21

]
sin(π(s13+s23+s34)) sin(π(s123+s24+s34))

J
(6,2)
12 =u21F̂

(5,2)
11 + u22F̂

(5,2)
12

− sin(πs12)

sin(π(s12+s24))

s13
s13+s23+s34

F (4,1)(s12, s24)F
(4,1)(s35, s13+s23+s34)

+

[
− sin(πs12) sin(πs34)F

(5,2)
12 + sin(πs13) sin(π(s123+s34))F

(5,2)
22

]
sin(π(s13+s23+s34)) sin(π(s123+s24+s34))

,

where the uij are defined below

uij =

(
s12(s123+s24)

(s12+s24)(s123+s24+s34)
−s12s34

(s13+s34)(s123+s24+s34)
−s13s24

(s12+s24)(s123+s24+s34)
s13(s123+s34)

(s13+s34)(s123+s24+s34)

)
ij

.

Also, the hat denotes the following replacement of the arguments of F (5,2),

F̂
(5,2)
ab (s12, s13, s23, s24, s34) = F

(5,2)
ab (s12+s24, s13+s34, s23, s25, s35) .

The entries J
(6,2)
2j can again be obtained from J

(6,2)
1j by relabeling 2↔ 3:

J
(6,2)
21 = J

(6,2)
12

∣∣
(2↔3)

= u12F̂
(5,2)
22 + u11F̂

(5,2)
21

− sin(πs13)

sin(π(s13+s34))

s12
s12+s23+s24

F (4,1)(s13, s34)F
(4,1)(s25, s12+s23+s24)

+

[
− sin(πs13) sin(πs24)F

(5,2)
21 + sin(πs12) sin(π(s123+s24))F

(5,2)
11

]
sin(π(s12+s23+s24)) sin(π(s123+s24+s34))

J
(6,2)
22 = J

(6,2)
11

∣∣
(2↔3)

= u22F̂
(5,2)
22 + u21F̂

(5,2)
21

− sin(πs13)

sin(π(s13+s34))

s12+s23
s12+s23+s24

F (4,1)(s13, s34)F
(4,1)(s25, s12+s23+s24)
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+

[
− sin(πs13) sin(πs24)F

(5,2)
22 + sin(πs12) sin(π(s123+s24))F

(5,2)
12

]
sin(π(s12+s23+s24)) sin(π(s123+s24+s34))

.

Lastly, the entries K
(6,2)
ii related by 2↔ 3 are given by

K
(6,2)
11 =

s12F̂
(5,2)
11

s12+s24
− sin(πs12)

sin(π(s12+s24))
F (4,1)(s12, s24)F

(4,1)(s35, s13+s23+s34)

K
(6,2)
22 =

s13F̂
(5,2)
22

s13+s34
− sin(πs13)

sin(π(s13+s34))
F (4,1)(s13, s34)F

(4,1)(s25, s12+s23+s24) .

Naturally we also need to look at the z4 → 1 limit. So we define

C
(6,2)
1 := lim

z4→1
F (6,2)(z4) (1− z4)

−E1 (6.2.15)

and recall that it satisfies the relation

C1 = C0Φ(E0, E1) . (6.2.16)

As in the previous chapter we can compute C1 by looking at a change of variables

yj = 1− zj , j ∈ {1, . . . , 6} . (6.2.17)

which gives
γa(yj) = γ7−a(zj) (6.2.18)

and
ωa(yj) = ω7−a,1↔5(zj) (6.2.19)

for a ∈ {1, . . . , 6}.

We define the Ǎ notation for 6× 6 matrices so that

Ǎij = A(7−i)(7−j),1↔5 , 1 ≤ i, j ≤ 6 , (6.2.20)

which gives E1 = Ě0 and C1 = Č0.

Finally, we set s24 = s34 = 0 and write C̃0 = C0(s24, s34 → 0), C̃1 = C1(s24, s34 → 0),
Ẽ0 = E0(s24, s34 → 0) and Ẽ1 = E1(s24, s34 → 0).

Then, the first two rows of C̃0 is of the form (A|0) where A is the 2× 2 matrix

A =

(
F (4,1)(s12, s23) 0

0 F (4,1)(s13, s23)

)
(6.2.21)
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and the entries to the right of A are all zero.

On the other hand the first two rows of C̃1 is of the form where (B|∗) where B is
the 2× 2 matrix

B =

(
F

(5,2)
11 (s12, s13, s23, s25, s35) F

(5,2)
12 (s12, s13, s23, s25, s35)

F
(5,2)
21 (s12, s13, s23, s25, s35) F

(5,2)
22 (s12, s13, s23, s25, s35)

)
(6.2.22)

that is we get the period matrix F (5,2) except for relabelling the index 4 by 5. We
won’t need to worry about the entries to the right of B so we ignore them for now.
However, do note that the entries in the first two columns below the
sub-matrix B are all zero.

So the relation Č1 = Č0 Φ(Ě0, Ě1) gives us access to the coaction of the (5, 2) period
matrix by focusing on the top-left (2× 2) sub-matrix on both sides.

Theorem 6.2.1 (D. Kamlesh). The coaction of the initial value matrix C
(5,2)
0 is

given by
∆(C

(5,2),m
0 ) = C

(5,2),m
0 C

(5,2),dr
0 . (6.2.23)

Proof. First of all, replacing the sine factors coming from monodromy relations by
their arguments one can check that we have

[E1, C
dr
1 ] = [E0, C

dr
0 ] = 0 (6.2.24)

Therefore, the coaction on the Drinfeld associator is given by

∆(Φm(Ẽ0, Ẽ1)) = C̃0
−dr

Φm(Ẽ0, Ẽ1) C̃1
dr
. (6.2.25)

using identical arguments as in the previous section 6.1.47.

Similarly we get the coaction on Č1 by following the same argument as 6.1.48.

∆(C̃1
m
) = ∆(C̃0

m
)∆(Φm(Ẽ0, Ẽ1))

= ∆(C̃0
m
) C̃0

−dr
Φm (Ẽ0, Ẽ1) C̃1

dr
. (6.2.26)

We have ∆(Am) = AmAdr since A is a diagonal matrix with (4, 1) periods, that is

Beta function as its entries, see 6.2.21. Therefore, ∆(C̃0
m
) = C̃0

m
C̃0

dr
is verified up

to the first two rows. Also, the first two rows of (C̃0
dr
)−1 is of the form ((Adr)−1|0).

So ∆(C̃0
m
)(C̃0

dr
)−1 = C̃0

m
is verified up to the first two rows. Putting this relation

in 6.2.26 we get
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∆(C̃1
m
) = C̃0

m
Φm(Ẽ0, Ẽ1)C̃1

dr
(6.2.27)

= C̃1
m
C̃1

dr
(6.2.28)

also verified up to the first two rows. However, the form of the C̃1 (see 6.2.22) then
implies that ∆(Bm) = BmBdr which gives that ∆(F (5,2),m) = F (5,2),m F (5,2),dr and
proves the coaction conjecture for (n, p) = (5, 2).

Now that we know the coaction of both (4, 1) and (5, 2) periods we can put
this back in the original initial value matrix C0 to get ∆(Cm

0 ) = Cm
0 Cdr

0 and
∆(Cm

1 ) = Cm
1 Cdr

1 .

Finally, the same argument as in the proof 6.1.2 gives the coaction conjecture for
(n, p) = (6, 2).

Theorem 6.2.2 (D. Kamlesh). The motivic coaction of the period matrix F (6,2) is
given by

∆(F (6,2),m) = F (6,2),m F (6,2),dr . (6.2.29)

Corollary 6.2.3. The single-valued image of the period matrix F (5,2) and F (6,2) is
given by

svFm = (F dr)t F dr (6.2.30)

Proof. This follows from theorem 5.6.8 and theorem 6.2.2.

Remark 6.2.4. Application to open superstring amplitudes - In the work of Schlotterer-
Stieberger in [51], open string amplitudes in genus 0 were observed to have series
expansion in multiple zeta values with elegant properties. To be concrete, note the
following expression for the series expansion of C

(5,2)
0 that was observed in [51].

C
(5,2)
0 = 1 + ζ2P2 + ζ3M3 + ζ4P4 + ζ5M5 + ζ2ζ3P2M3 +

1

2
ζ23M3M3 + ζ6P6

+ ζ7M7 + ζ2ζ5P2M5 + ζ4ζ3P4M3 +
1

5
ζ3,5[M5,M3] + ζ5ζ3M5M3

+
1

2
ζ2ζ

2
3P2M3M3 + ζ8P8 + ζ9M9 +

1

6
ζ33M3M3M3 + ζ2ζ7P2M7

+ ζ4ζ5P4M5 + ζ6ζ3P6M3 +

(
3

14
ζ25 +

1

14
ζ3,7

)
[M7,M3] + ζ7ζ3M7M3

+
1

2
ζ25M5M5 +

1

5
ζ2ζ3,5P2[M5,M3] + ζ2ζ5ζ3P2M5M3

+
1

2
ζ4ζ

2
3P4M3M3 + ζ10P10 + . . . (6.2.31)
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where the letters P2k and M2k+1 are matrix coefficients of ζ(2k) and ζ(2k + 1)
respectively. The matrices themselves have entries which are homogeneous polyno-
mials in sij with degree equal to the weight of the corresponding zeta value which
is denoted by the index. One can see that the higher depth MZVs have coefficients
determined by those of depth one zeta values. This can be reformulated in terms
of the f -alphabet as follows.

C
(5,2)
0 =

( ∞∑
j=0

(f j
2 )P2j

) ∑
i1,i2,...,ir∈2N+1

(fi1fi2 . . . fir)
mMi1 . . . Mir . (6.2.32)

While the above was verified to be true in low orders, the fact that it continues to
hold at all orders was left as a conjecture. This conjecture was reformulated by
Drummond-Ragoucy [34] to be equivalent to the following coaction property.

∆(F (5,2),m) = F (5,2),m F (5,2),dr . (6.2.33)

Since we have already shown this property to be true earlier in this section, this
resolves the above conjecture on open superstring amplitudes.
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Chapter 7

Appendix : Infinitesimal braid
relations and commutator
identities

In this section, we collect together some consequences of the infinitesimal braid
relations 5.1 and commutator relations 5.2.9, 5.2.10 that are used in the proof of
theorem 5.5.3.

Lemma 7.0.1.

[X
(n)
2,F , X

(n)
1,F ] =

[ n+1∑
j=0,j ̸=2

e2,j
z2 − zj

,
n+1∑

k=0,k ̸=1

e1,k
z1 − zk

]
= 0 . (7.0.1)

Proof. First, we collect together terms with z1 in the denominator so we split the
left factor of the commutator into two parts, corresponding to j ̸= 1 and j = 1.

[X
(n)
2,F , X

(n)
1,F ] =

[ n+1∑
j=0,j ̸=2

e2,j
z2 − zj

,
n+1∑

k=0,k ̸=1

e1,k
z1 − zk

]
(7.0.2)

=
[ n+1∑
j=0,j ̸=1,2

e2,j
z2 − zj

+
e2,1

z2 − z1
,

n+1∑
k=0,k ̸=1

e1,k
z1 − zk

]
(7.0.3)

=
[ n+1∑
j=0,j ̸=1,2

e2,j
z2 − zj

,
n+1∑

k=0,k ̸=1

e1,k
z1 − zk

]
+
[ e2,1
z2 − z1

,
n+1∑

k=0,k ̸=1

e1,k
z1 − zk

]
(7.0.4)
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=
n+1∑

j=0,j ̸=1,2

n+1∑
k=0,k ̸=1

[e2,j, e1,k]

(z2 − zj)(z1 − zk)
+

n+1∑
k=0,k ̸=1

[e2,1, e1,k]

(z2 − z1)(z1 − zk)
.

(7.0.5)

We denote the terms in the last equation by I and II respectively.

Observe that

1

(z2 − z1)(z1 − zk)
=

1

(z2 − zk)

( 1

z1 − zk
− 1

z1 − z2

)
(7.0.6)

so we can rewrite II as
n+1∑

k=0,k ̸=1

[e2,1, e1,k]

(z2 − z1)(z1 − zk)
=

n+1∑
k=0,k ̸=1

[e2,1, e1,k]

(z2 − zk)

( 1

(z1 − zk)
− 1

(z1 − z2)

)
(7.0.7)

=
n+1∑

k=0,k ̸=1

[e2,1, e1,k]

(z2 − zk)(z1 − zk)
+

n+1∑
k=0,k ̸=1

[e1,k, e1,2]

(z2 − zk)(z1 − z2)
.

(7.0.8)

We denote the two terms above by II(a) and II(b) respectively.

Next, we want to collect together terms with common denominators so we split I
into three parts according to the following condition on the summation indices.

a. j = k, k ̸= 2 .

b. j ̸= k, k ̸= 2 .

c. j ̸= k, k = 2 .

To be precise, we get I = I(a) + I(b) + I(c) with

I(a) =
n+1∑

k=0, k ̸=1,2

[e2,k, e1,k]

(z2 − zk)(z1 − zk)
, (7.0.9)

I(b) =
n+1∑

j=0, j ̸=1,2,k

n+1∑
k=0, k ̸=1,2

[e2,j, e1,k]

(z2 − zj)(z1 − zk)
, (7.0.10)

I(c) =
n+1∑

j=0, j ̸=1,2

[e2,j, e1,2]

(z2 − zj)(z1 − z2)
. (7.0.11)

Now, consider the sum below.

I(a) + II(a) =
n+1∑

k=0, k ̸=1,2

[e2,k, e1,k]

(z2 − zk)(z1 − zk)
+

n+1∑
k=0,k ̸=1

[e2,1, e1,k]

(z2 − zk)(z1 − zk)
(7.0.12)
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=
n+1∑

k=0, k ̸=1,2

[e2,k, e1,k] + [e2,1, e1,k]

(z2 − zk)(z1 − zk)
+

[e2,1, e1,2]

(z2 − zk)(z1 − zk)
(7.0.13)

=
n+1∑

k=0, k ̸=1,2

[e2,k + e2,1, e1,k]

(z2 − zk)(z1 − zk)
+

[e2,1, e1,2]

(z2 − zk)(z1 − zk)
= 0 (7.0.14)

because of the infinitesimal braid relations [e2,k + e2,1, e1,k] = 0, [e2,1, e1,2] = 0.

Next, we have

I(b) =
n+1∑

j=0, j ̸=1,2,k

n+1∑
k=0, k ̸=1,2

[e2,j, e1,k]

(z2 − zj)(z1 − zk)
= 0 . (7.0.15)

This is because [e2,j, e1,k] = 0 for 1 ̸= 2 ̸= j ̸= k.

Finally, we are left with the sum I(c) + II(b) which we denote by III.

III =
n+1∑

j=0, j ̸=1,2

[e2,j, e1,2]

(z2 − zj)(z1 − z2)
+

n+1∑
k=0, k ̸=1

[e1,k, e1,2]

(z2 − zk)(z1 − z2)
(7.0.16)

We split III into two parts according to whether: a. j = k, b. j ̸= k. Then, we get

III(a) =
n+1∑

j=0, j ̸=1,2

[e2,j + e1,j, e1,2]

(z2 − zj)(z1 − z2)
= 0 (7.0.17)

since [e2,j + e1,j, e1,2] = 0 for j ̸= 2.

For each pair (j, k) with j ̸= k we also have the opposite pair (k, j) and adding
the corresponding terms we get

( [e2,j, e1,2]

(z2 − zj)(z1 − z2)
+

[e1,k, e1,2]

(z2 − zk)(z1 − z2)

)
+
( [e2,k, e1,2]

(z2 − zk)(z1 − z2)
+

[e1,j, e1,2]

(z2 − zj)(z1 − z2)

)
(7.0.18)

=
( [e2,j, e1,2]

(z2 − zj)(z1 − z2)
+

[e1,j, e1,2]

(z2 − zj)(z1 − z2)

)
+
( [e2,k, e1,2]

(z2 − zk)(z1 − z2)
+

[e1,k, e1,2]

(z2 − zk)(z1 − z2)

)
(7.0.19)

=
[e2,j + e1,j, e1,2]

(z2 − zj)(z1 − z2)
+

[e2,k + e1,k, e1,2]

(z2 − zk)(z1 − z2)
= 0

(7.0.20)

since [e2,j + e1,j, e1,2] = 0, [e2,k + e1,k, e1,2] = 0. This proves the lemma.
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Lemma 7.0.2. Let l,m, n be non-negative integers such that 0 ≤ l ̸= m ≤ n, then
we have

[
n∑

j=0

n∑
k=j+1

ej, k, el,m] = 0 . (7.0.21)

Proof. Without loss of generality suppose that l < m. If j ̸= k ≠ l ̸= m, then
[ej,k, el,m] = 0 by 5.1.6. If (j, k) = (l,m), then clearly [ej,k, el,m] = 0. So we are only
left with the terms ej,k where exactly one of j or k is equal to l or m and we get

[
n∑

j=0

n∑
k=j+1

ej, k, el,m] = [
n∑

a=1

(el,a + ea,m), el,m] = 0 (7.0.22)

by relation 5.1.7.

Lemma 7.0.3. For m,n ∈ N with n ≥ 3 and m = 1 or m ≥ n, we have

[
n−1∑
j=2

(ej,0 +
n−1∑

k=j+1

ej,k), em,0 +
n−1∑
l=2

em,l] = 0 . (7.0.23)

Proof. For j, l = 2, . . . , n− 1 and l ̸= j, we have

[ej,0, em,0 + em,j] = 0, [ej,0, em,l] = 0 . (7.0.24)

Therefore,

[
n−1∑
j=2

ej,0, em,0 +
n−1∑
l=2

em,l] = 0 . (7.0.25)

Further, for j, k, l = 2 . . . , n− 1 with l ̸= j, k we have

[ej,k, em,0] = 0, [ej,k, em,l] = 0, [ej,k, em,j + em,k] = 0. (7.0.26)

Therefore,

[
n−1∑
j=2

n−1∑
k=j+1

ej,k, em,0 +
n−1∑
l=2

em,l] = 0 (7.0.27)

and we are done.

Lemma 7.0.4. For k ≥ 3 odd and symbols x, y, z with x+ y + z = 0, we have

[y, wk(x, y)] + [z, wk(x, z)] = 0 (7.0.28)

where wk are the commutators that appear in the circle operator expansion of the
deRham Drinfeld associator in Theorem 4.2.1.
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Before we prove this result we need to recall some background information on
associator relations [32, 33].

Let K be a field. Let K⟨⟨e0, e1⟩⟩ be a non-commutative formal power series ring in
variables e0 and e1.

Let λ ∈ K∗ and Φ(e0, e1) ∈ K⟨⟨e0, e1⟩⟩ a power series in e0 and e1. A pair (λ,Φ) is
said to satisfy the associator equations if the following relations are satisfied.

1. The constant term in Φ(e0, e1) is 1.

2. The power series Φ is group-like, that is,

∆(Φ) = Φ⊗ Φ (7.0.29)

where ∆ is the coproduct on the Hopf algebra K⟨⟨e0, e1⟩⟩ defined by ∆(ej) =
ej ⊗ 1 + 1⊗ ej for j = 0, 1.

3. Pentagon equation :

Φ(t12, t23 + t24) Φ(t13 + t23, t34) = Φ(t23, t34) Φ(t12 + t13, t23 + t34) Φ(t12, t23)
(7.0.30)

where the tij’s satisfy the infinitesimal braid relations 5.1.

4. Hexagon equation :

exp(λx/2)Φ(z, x) exp(λz/2)Φ(y, z) exp(λy/2)Φ(x, y) = 1 (7.0.31)

provided x+ y + z = 0.

From Furusho’s work on associator equations (lemma 5 of [38]), we know that the
associator equations imply the 5-cycle relation

Φ(X12, X23) Φ(X34, X45) Φ(X51, X12) Φ(X23, X34) Φ(X45, X51) = 1 (7.0.32)

where the Xij’s satisfy the relations of the pure sphere braid Lie algebra

Xij = Xji, [Xij, Xkl] = 0 if {i, j} ∩ {k, l} = ∅ and
5∑

j=1

Xij = 0 for i = 1, . . . , 5.

(7.0.33)

We have enough information now to prove lemma 7.0.4. Let wk denote the
commutators that appear in the circle operator expansion of the deRham Drinfeld
associator in Theorem 4.2.1.
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Proof. The deRham Drinfeld associator Φdr satisfies the associator equations [33]
with λ = (2πi)dr = 0 and Furusho’s 5-cycle relation. . Therefore, the w′ks satisfy
the following relations

wk(X12, X23) + wk(X34, X45) + wk(X51, X12) + wk(X23, X34) + wk(X45, X51) = 0 ,
(7.0.34)

wk(x, y) + wk(y, z) + wk(z, x) = 0 (7.0.35)

whenever x+ y + z = 0.

Recall also that
Φdr(e0, e1) Φ

dr(e1, e0) = 1 (7.0.36)

and thus we have
wk(e0, e1) + wk(e1, e0) = 0 . (7.0.37)

Taken together, equation 7.0.34, 7.0.36 and 7.0.37 constitute the relations of the
normalized form of the stable derivation algebra (see section 2.1 of [37], also see
remark 2.2.1). Further, by Ihara’s work on the stable derivation algebra [45], it
follows that the commutator wk satisfy

[y, wk(x, y)] + [z, wk(x, z)] = 0 (7.0.38)

whenever x+ y + z = 0.
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[53] Matija Tapušković, Motivic Galois coaction and one-loop Feynman graphs,
Commun. Number Theory Phys. 15 (2021), no. 2, 221–278.

122
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