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Abstract

In this dissertation, we present a study of W Z production in proton-proton colli-
sions at a center-of-mass energy of 7 TeV. The data analyzed was collected by the
ATLAS detector and corresponds to an integrated luminosity of 4.6 fb~! provided by
the Large Hadron Collider in 2011. We select W Z events in the fully leptonic decay
mode with electrons, muons, and missing transverse energy in the final state.

Events are required to have three isolated leptons with significant transverse mo-
mentum, a large missing transverse energy, a Z candidate reconstructed from two of
the selected leptons, and a W candidate reconstructed from the missing transverse
energy and third lepton. The major backgrounds to the W Z signal in the leptonic
decay channel are Z+jets events, ZZ production, Z+photon events, and events with
top quarks. We estimate the Z4jets and top quark background contributions from
data and take the expected contribution for the other background processes from
simulation.

We observe 317 W Z candidates in data, with a background expectation of 68+ 10

events. The total production cross section is extracted from the selected sample using

il



Abstract

a maximum likelihood method and is determined to be 19.013 (stat) 0.9 (syst) £0.4
(lumi) pb, which is consistent with the next-to-leading Standard Model prediction of
17.6717 pb.

W Z production in the Standard Model includes a contribution from the WW Z
triple gauge boson vertex. If new physics beyond the Standard Model exists and
interacts with W and Z bosons, the coupling of the WW Z vertex could differ from
the Standard Model prediction. We set limits on anomalous triple gauge boson cou-
plings using the transverse momentum spectrum of Z bosons in the selected sample.
We derive the 95% confidence interval for three model-independent anomalous triple
gauge couplings using a frequentist approach and set the most stringent bounds to

date on two of the three parameters.
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Chapter 1

Overview

In this dissertation, we present a study of W Z production in proton-proton col-
lisions at /s = 7 TeV. The data analyzed was collected by the ATLAS detector in
2011 and corresponds to an integrated luminosity of 4.6 fb~! provided by the Large
Hadron Collider. We select W Z events in the fully leptonic decay mode, with elec-
trons, muons, and missing transverse energy in the final state. We extract the W2
production cross section from the observed events and derive limits on anomalous
triple gauge boson couplings using the transverse momentum spectrum of Z bosons
in the selected sample.

The thesis is organized as follows. In Chapter [2, we motivate the study of WZ
events at the LHC and introduce anomalous triple gauge couplings. Previous measure-
ments of W Z physics at both the LEP and Tevatron accelerators are summarized, and
the theoretical background behind W Z production at the LHC is presented. Chap-
ter 3| summarizes the LHC design and performance and describes how we measure

the integrated luminosity delivered by the accelerator. In Chapter {4 we give a brief
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overview of the ATLAS detector, focusing on the parts of the detector which are used
in identifying and reconstructing W2 — (vl events.

We describe the reconstruction of electrons, muons, and missing transverse energy,
used in selecting WZ events, in Chapter []] The ATLAS trigger system and the
triggers used to select the WZ data sample are presented in Chapter [6 In Chapter [7]
we describe the simulation of the W Z events used for the analysis.

We select WZ events by requiring three isolated leptons, each with significant
transverse momentum, and missing transverse energy in the event, as described in
Chapter[§ Events from other physics processes which pass our event selection include
Z+jets, ZZ, Z + ~, and top quark events. We estimate the expected contribution
of Z+jets and top quark events from data, as discussed in Chapter [9] The expected
contributions from ZZ and Z -+ events are taken from simulation. In Chapter |10} we
present the measurement of the W2 production cross section. Using the transverse
momentum of the Z boson in the selected W Z events, we extract the 95% confidence
interval for values of the anomalous triple gauge couplings. The method for setting
limits on the anomalous couplings and the results are presented in Chapter |11}

The analysis presented in this thesis is published in an abbreviated form by the
ATLAS Collaboration [37]. An internal ATLAS note [34], from which parts of this

thesis are adapted, provides more detail than the paper.



Chapter 2

Motivation and Background

2.1 Introduction to Electroweak Physics

For more than 50 years, understanding electroweak interactions has been a major
goal of particle physics. In 1957, Schwinger first suggested the existence of a triplet of
vector bosons whose couplings could generate both the weak interactions and electro-
magnetism [137]. In 1961, Glashow showed that by adding an additional vector boson
to the theory, the electromagnetic and weak interactions could be linked with under-
lying symmetries [92]. With major contributions from Weinberg [145], Salam [136],
Higgs [104], and others, the unified electroweak theory was fully established by 1968.

The electroweak theory predicts the existence of three massive gauge bosons: the
W+, W=, and Z° bosons, in addition to the massless photon. Additionally, the
theory requires at least one more particle to break the high energy symmetry of the

electromagnetic and weak forces and to give mass to the W+, W~, and Z° bosons.

In the simplest model of symmetry breaking, the additional particle is the scalar
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Higgs boson, which gives mass to the W and Z bosons in the process of electroweak
symmetry breaking. In addition to the new particles, the electroweak theory predicts
a host of interactions, from neutral current interactions of fermions to interactions
between the W and Z bosons themselves, that were not yet observed at the time of
the theory’s development.

Experimental support of the unified electroweak theory first came in 1973 from
the Gargamelle bubble chamber at CERN. Experimenters observed the scattering
of muon antineutrinos off electrons, a neutral current interaction mediated by the
Z boson [103]. In 1983, the UA1 and UA2 experiments observed the direct pro-
duction of the W and Z bosons from proton-antiproton collisions provided by the
Super Proton Synchrotron accelerator at CERN [14] 45]. Experiments on the Large
Electron Positron (LEP) collider at CERN (1989-2000) as well as the Tevatron at
Fermilab (1983-2011) continued to verify predictions of the electroweak theory and
made precision measurements of many of its parameters.

The electroweak theory is a cornerstone of the Standard Model of particle physics.
Combined with quantum chromodynamics, which describes the interactions of the
strong force, the model describes three of the four fundamental forces in nature. Grav-
ity is not included in the Standard Model. The Standard Model has 19 parameters
and 17 particles which are the excited states of underlying fields. The fundamental
particles consist of 3 charged leptons, 3 neutrinos, 6 quarks, 4 gauge bosons, and the
Higgs boson. Through interactions with the leptons and quarks, the Higgs boson
can also give those particles an effective mass. One of the important features of the

Standard Model is that the fields respect local gauge symmetry, and any measurable
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quantity of a particle is independent of the local phase of its field. The existence
of the gauge bosons is a direct consequence of requiring the theory to respect local
gauge invariance. Additionally, interactions described by the electromagnetic and the
strong force respect charge (C) and parity (P) symmetries. Electroweak interactions
violate both symmetries maximally and show small violation of the combined CP
symmetry. Detailed introductions to the Standard Model, including full descriptions
of the electroweak theory, are available in References [97, [133], [I0T]. An interesting
discussion of the importance of the values of the parameters of the Standard Model
is available in Reference [54]. For a full presentation of the field theory formulation

of the Standard Model, see Reference [134].

2.2 Motivation for studying W7 production

Before the Large Hadron Collider began colliding protons in 2010, several impor-
tant questions about electroweak physics remained unanswered. To answer many of
these questions, studying diboson production at the LHC is essential. Among these

remaining questions, three significant ones are:

1. Is there a scalar Higgs boson as predicted by the simplest model of electroweak

symmetry breaking?
2. What do vector boson interactions at the TeV scale look like?

3. Is there evidence of new interactions or particles hiding in the interactions or

production of W and Z bosons?
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In July 2012 both the CMS and ATLAS experiments announced the discovery
of a new particle consistent with the Higgs boson, observed primarily in final states
consisting of pairs of photons, pairs of W bosons, and pairs of Z bosons [38, [72]. Now
that a new particle has been found, we must measure its mass and its couplings to
the gauge bosons to confirm that it behaves as predicted by the electroweak theory.
We must also check whether or not its couplings to fermions are consistent with the
model in which its interactions with fermions give them mass. Much work remains,
but the answer to the first question looks affirmative from the 2011 and 2012 LHC
dataset.

The discovery of a particle consistent with the Higgs boson also begins to an-
swer the second question in the list above, but the full answer must come from more
detailed studies of vector boson interactions. There are two separate issues. First,
without the Higgs boson or another new particle, the scattering of vector boson pairs
off each other grows as a function of the center-of-mass energy, v/3, of the interaction
and begins to violate unitarity at the TeV scale. The Feynman diagrams illustrat-
ing WW and WZ scattering in the Standard Model are shown in Figure 2.1 In
the simplest model, the Higgs boson is responsible not only for breaking electroweak
symmetry but also for regularizing vector boson scattering by introducing another
diagram whose contribution cancels the divergences from the pure vector boson dia-
grams. Diagrams showing the Higgs boson contribution to WW and W Z scattering
are shown in Figure 2.2l Even if the production and decay rates of the new particle
look consistent with a Standard Model Higgs boson, it will be necessary to measure

the rates of diboson production to extract the small signal of diboson scattering and
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confirm that the rate is consistent with the addition of diagrams that include the

Higgs boson. Measuring the vector boson scattering processes will require 100s of

fb=! of data at /s = 14 TeV.

w
q
q w w q w w w
Z/W z
q’ w/z w/z q’ w/z w/z q’ W w

(a) (b) ()

Figure 2.1: WIW and W Z scattering diagrams at the LHC. The virtual Z in diagrams
(b) and (c) could be replaced by a photon as well.

q w/z w/z

Figure 2.2: WW and W Z scattering diagrams, at the LHC, which include a Higgs
boson contribution.

The second distinctive feature of vector diboson production at the TeV scale is
the accessibility to vertices involving three and four gauge bosons. The three leading
order diagrams that contribute to Standard Model W Z production at the LHC are
shown in Figure 2.3] and the triple gauge coupling at the W Z vertex can be seen
in Figure 2.3(c)}

The existence of these vertices is a direct consequence of gauge invariance; more-

over, the values of the triple gauging couplings (TGCs) and quartic gauge couplings

7
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- wooq w
V4 q’ V4
(a) (b) (c)

Figure 2.3: Leading order WZ production at the LHC. Figure (c¢) shows the WW Z
triple gauge coupling vertex.

(QGCs) are fixed exactly by gauge symmetry. Measuring these couplings is an impor-
tant confirmation of the full implications of gauge symmetry in electroweak physics.

Measuring the triple and quartic gauge couplings via diboson production is im-
portant not only as a confirmation of electroweak physics and gauge invariance, but
also because the uncertainty on the couplings measured values leaves open the possi-
bility that the couplings differ from the Standard Model predictions. If the couplings
do differ, it could point to the interaction of new, heavy particles at the vertices.
The new particles could be heavier than the LHC is able to directly produce. The
new particles could be from any model of physics beyond the Standard Model; the
only requirement is that they must couple to the vector bosons. A Feynman diagram
illustrating the interaction of new particles at the WW Z vertex that would lead to
non-Standard Model triple gauge couplings is shown in Figure

Section briefly motivates the search for physics beyond the standard model.
New physics could alter diboson production in other ways. Several theories pre-
dict new particles which could be directly produced at the LHC which would decay
to diboson pairs. Diboson pair production from the decay of heavy particles is a

prediction of certain parameter spaces of Supersymmetry [135] [128] 94 [144] [146],
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Figure 2.4: Potential new physics contributions to W Z production. In Figure a, new
physics contributes at the WIWW Z vertex and alters the triple gauge coupling. The W'
and Z’ particles shown here could be SUSY or Technicolor particles, or particles from
any new theory as long as they couple to W and Z bosons. They can be too heavy to
be directly produced by the LHC. In Figure (b), a strongly produced W’ (including
technirhos, for example) or charged Higgs boson could decay to a W Z pair. In Figure
(c), weakly-produced supersymmetric neutralinos (N2) and charginos (C) in certain
parameter spaces of SUSY could decay to a pair of lightest neutralinos (N;) and W
and Z bosons.

Technicolor [85], and generic W’ and Z" models [111].

It is important to measure the production of all vector boson pairs. In this thesis,
we focus on the measurement of WZ production. While WW and ZZ final states
are crucial decay modes of the Higgs boson, the W Z final state cannot be the decay
product of a neutral Higgs. Therefore, measuring W Z production at the LHC serves
as an essential cross check on diboson production as a background to the Higgs
searches and measurements.

Measuring W Z production is also important because it allows us to look for the
direct production of new, heavy, charged particles to which WW and ZZ produc-
tion are not sensitive. New physics which could decay to W Z pairs include charged
Higgs bosons [I132] and particles in certain phase spaces of Supersymmetry (SUSY),
Technicolor, and generic W' models [I31]. Figure [2.4(b)| shows an example of WZ

production from the decay of a strongly-produced charged Higgs, W', or charged
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technicolor particle such as a technirhos. Figure [2.4(c)[shows how a weakly-produced
chargino, (', and neutralino, Ny, could decay to a pair of W and Z bosons and a pair
of the lightest neutralinos, Ny, in certain parameter sets of SUSY. Weakly-produced
neutralinos and charginos are favored in some models of SUSY in which the squarks
and gauginos are heavy [44].

Finally, W Z production serves as a background to several important searches
for new physics. WZ — (vl production is the largest source of Standard Model
events with three, isolated, high pr leptons, so it serves as a major background to
multi-lepton SUSY analyses. It also contributes background to analyses that look for
final states with two leptons and missing transverse energy, including WW — (vlv
production, ZZ — ¢fvv production, and many models of new physics.

WW production was first observed with the LEP accelerator by the DELPHI
experiment in 1996 [80]. WZ production, as a charged final state, could not be
produced by electron-positron collisions; W Z production was first observed at the
Tevatron in 2007 [3].

Experimental efforts at the LEP and at the Tevatron have measured predictions
and parameters of electroweak physics to high accuracy. The mass of the W boson was
measured to 0.02% by the CDF experiment [58]. The couplings between the vector
bosons and the fermions was measured by the experiments on LEP to accuracies
ranging from 0.01% to 1%, depending on the assumptions made about the relationship
between the couplings [§]. Constraining the triple and quartic gauge couplings has
remained difficult, however, because of the high center-of-mass energies necessary to

probe the vertex. As discussed in Section [2.6] low energy measurements of precision
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electroweak quantities provide some indirect constraints on triple gauge couplings, but
these constraints assume certain relationships between the different coupling. LEP
provided the first direct measurements of triple gauge couplings in the WW final
state and experiments at the Tevatron improved these measurements, but in general

the values of the couplings are only known within 1%-30% accuracy.

2.3 Motivation for Looking for New Physics

The Standard Model has proved enormously successful in describing the interac-
tions of fundamental particles at energies we have been able to test. The relationship
between the electron spin magnetic moment and the value of the fine structure con-
stant is measured to agree with the Standard Model prediction within one part per
billion [I02]. So far, there has been no conclusive experimental evidence that any
of the predictions of the Standard Model are incorrect. Among the most compelling

exceptions to this statement are the following experimental results:

1. Neutrino Masses — The observation of neutrino oscillations requires that the
neutrinos have non-zero mass [95]. In the Standard Model, neutrinos are mass-
less. To give the neutrinos mass, several extensions are proposed. The simplest
extensions, including right handed sterile neutrinos or heavy Majorana neutri-

nos, only affect the neutrino sector.

2. Measurement of B — D"~ 1, decays — The BaBar experiment observes a
three sigma disagreement with the Standard Model predictions of the branching

ratio comparison of BR(B — D7~ 1) to BR(B — D™{~17,), where £ is an

11
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electron or muon and both D and D* decays are measured [I13]. These ratios
are sensitive to new physics such as a charged Higgs boson (which couples more
strongly to the tau than to the electron or muon), but the results are not
compatible with the simplest two Higgs-doublet model that includes a charged

Higgs boson.

3. Measurement of v, — U, oscillations — The MiniBooNE experiment observes
an excess of anti-electron neutrino events in a measurement of the Vy — Ve
oscillation probability [123]. No such excess is observed in electron neutrino
events, suggesting that anti-neutrinos might oscillate to a new type of sterile
anti-neutrinos; if so, CP symmetry is broken and no such oscillation occurs for

the neutrinos.

There is also strong observational evidence the Standard Model may not be a
complete description of matter in the universe, even if it is internally consistent.
To the previous list we add perhaps the most compelling experimental support for

extensions to the Standard Model:

1. Dark Matter — there is an abundance of astronomical evidence for matter in-
teracting gravitationally at cosmological scales that is not made up of Standard
Model particles [140]. There are compelling theoretical calculations arguing
that the dark matter might be composed of heavy particles that interact with
Standard Model particles at roughly the weak scale [48]. Supersymmetry and
other theories provide candidates for dark matter particles. However, the only
non-controversial experimental evidence that dark matter interacts with Stan-

dard Model particles is indirect, and, at this stage, the possibility that the signal

12
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could be due to astronomical sources, such as pulsars, is not yet ruled out [12].

There are also theoretical arguments for the existence of physics beyond the Stan-
dard Model. We briefly mention a few of the questions which motivate many models

of new physics:

1. Why is the Higgs mass of order 100 GeV when there are arguments [120] for its

natural mass to be on the order of the Planck scale, 10*° GeV?

2. Why is there no CP violation in quantum chromodynamics when it exists in

the electroweak sector?
3. What is the physics behind the form of the Higgs potential?

4. Is there a universal symmetry which unites all three forces described by the

Standard Model? Can the symmetry be extended to include gravity?

5. What happens at the Planck scale, when gravity becomes incompatible with

the Standard Model?

6. Why are there 3 families of particles that appear identical except for their

masses?

Possible solutions to these questions motivate an expanse of theoretical models de-
scribing new physics, from Supersymmetry [120] to Technicolor [85] to Kaluza Klein
Bosons [10] to Grand Unified Theories [91] to many more, that predict signatures that
may be observable at the LHC. These questions leave open the possibility that the
Standard Model, as successful as it is, is not the complete description of the interac-

tions of fundamental particles. As it has been so successful in describing interactions
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up to the TeV scale, the Standard Model must be a low energy approximation of any
new physics model. The data so far has shown no evidence for any particular model
of new physics, so it is reasonable to look for new interactions or new particles in a
model-independent way.

New particles or interactions could show up anywhere. As shown in Figure [2.4(a)
and discussed in Section [2.2] looking for anomalous triple gauge couplings in WZ
production allows us to look for new particles that interact with only the W and Z
weak gauge bosons; these new particles can be heavier than those that the LHC could

produce directly.

2.4 W/ Production at the LHC

The leading order contributions to W Z production at the LHC are shown in
Figure 2.3l The contributions that are next-to-leading order (NLO) in the strong
coupling, s, are shown in Figure 2.5 Leading-order WZ production is possible
only through quark-antiquark interaction, but the next-to-leading order terms include
production from quark-gluon interactions. As the gluon content of the proton is
significant at LHC, the NLO contributions are important. Indeed, at /s = 7 TeV
the NLO terms nearly double the cross-section calculated at leading-order [46], 56].

The details of the theoretical W Z Standard Model cross section used in this anal-
ysis are discussed in Section . The total cross section at /s = 7 TeV calculated

to next-to-leading order with MCFM [55] is:

oW, =17.6%1% pb (2.1)
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(e)
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Figure 2.5: NLO Feynman diagrams for WZ production. These are the next-to-
leading order QCD terms which contribute to WZ production [108]. Straight lines
represent quarks, gluons are shown by spiraling lines, and wavy lines correspond to
W or Z bosons.
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The largest sources of theoretical uncertainty on the predicted cross section are due
to uncertainties on the parton distribution functions and on the choice of QCD renor-
malization and factorization scale.

The production cross section of various vector boson processes at the LHC is
shown in Figure . The cross section times branching ratio to leptons, o x BR(W —
lv,Z — 00), is shown for processes including W, Z, and « bosons for proton-proton
collisions with center-of-mass energies between 7 and 14 TeV, from simulation [56].
The cross sections shown include decays of both the W and Z bosons to one lepton
species, as this is the most common decay channel in which we observe these processes.
For the W+~ and Z~ processes, the photon is required to have pr > 25 GeV. For the vy
cross section, one photon must have pr > 25 GeV and the second photon must fulfill
pr > 10 GeV. These selections are reasonable requirements for identifying photons in
the detector.

After production, the W and Z bosons decay in 1072° seconds. Using the decay
branching fractions as reported in the Particle Data Group [127], the expected fraction
of WZ decays to each channel are reported in Table 2.1 The branching ratio for
the WZ — (vil process is 0.365% for each leptonic decay channel. There are four
combinations that include final states with electrons and muons: evee, evuu, pvee,
and prpp. In total, these decay processes constitute 1.5% of all W Z decays. Decays
including hadrons make up 90.3% of all decays. We will not consider these decays in
this analysis.

While the fully leptonic mode WZ — (vl is a small subset of all W Z events, it

has the advantage that relatively few other processes produce three isolated, high pr
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Figure 2.6: NLO boson production in proton-proton collisions for collisions with a
center-of-mass energy ranging from 7 to 14 TeV. The cross section shown includes the
branching fraction to one lepton type. Photon cross sections impose plh > 25 GeV
on the first photon and pJ. > 10 GeV on the second photon (only applicable to v7.)

[56]
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Table 2.1: W Z branching fractions. In the table, £ includes electron and muon decays;
7 decays are included separately.

Decay mode  Fraction of Decays

WZ — tvil 1.5%
WZ — tvvv 4.3%
WZ — burt 0.7%
WZ - tvij 15.1%
WZ — vl 0.7%
W2z — tvvy 2.2%
WZ = tvrt 0.4%
WZ — 1vjj 7.5%
WZ — gl 4.5%
WZ — jjvv 2.4%
WZ — jjr1 13.5%
WZ — jjjj 47.3%

leptons and missing transverse energy from the neutrino. After the full event selection
used in this analysis, W Z — fvll events constitute 77% of all expected events. With
a clean sample, we can make a precise measurement of the W27 cross section.

By contrast, selecting W Z events with a hadronic decay in either the W or Z
boson does not yield a clean sample. For example, selecting W Z events with a
leptonically decaying W boson and a hadronically decaying Z boson includes 15% of
all WZ events. However, the inclusive W production cross section is 95 nb, a factor
of 5,000 larger than the predicted W Z cross section, and many of the W events
include two or more jets that will pass the W2 — fvjj selection. The measurement
of WZ — (lvjj was recently performed by ATLAS [36]. After all selections, WZ
events contribute 0.28% of all expected events. The WW diboson processes can
also contribute fvjj events that are indistinguishable from W Z events; it contributes
1.25% of all expected events. The uncertainty on the measurement of the combined

WW +W Z cross section in the ¢vjj final state is 30% and is dominated by systematic
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uncertainty. For comparison, the measurement of the W Z cross section in the fully
leptonic decay mode presented in this thesis has a total uncertainty of 9% and is
dominated by statistical uncertainty.

Additionally, we can select a sample of WZ — (vl events with straightforward
selection requirements, which gives us an inclusive sample with relatively little reliance
on theoretical predictions for event acceptance. In contrast, to select W27 — flvjj
events, more aggressive selection requirements, including vetoes on additional jets in
the events, are necessary. This requires a stronger reliance on the Standard Model
predictions of event acceptance, and therefore the semi-leptonic channel is less useful
in looking for beyond the Standard Model physics which might be produced with

additional jets or leptons in the event.

2.5 Triple Gauge Couplings

2.5.1 Standard Model Triple and Quartic Gauge Couplings

Several years before the W and Z bosons were discovered, the importance of mea-
suring the heavy vector boson self couplings was already identified as an important
test of the gauge nature of the weak bosons [50]. In the Standard Model, electromag-
netism is described by the Abelian gauge symmetry U(1). Due to the Abelian nature
of the symmetry, the quanta of the electromagnetic field, the photon, can not couple
to itself. This can be also be understood another way: the photon only interacts with
particles with electric charge, and because the photon itself is electrically neutral, it

can’t interact with itself.
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Before symmetry breaking, however, the electroweak interaction is described by
the gauge symmetry SU(2) x U(1), which is non-Abelian. To preserve gauge invari-
ance under this symmetry group, the electroweak Lagrangian must include specific
terms that correspond to self-couplings between the gauge bosons. These terms in-
clude both interactions among three gauge bosons (triple gauge couplings) and among
four gauge bosons (quartic gauge couplings.) After symmetry breaking, these inter-
action terms describe interactions among the W+ W~ Z and 7 bosons. The triple
gauge couplings are described by a term of the electroweak Lagrangian which takes

the following form:

Lwwy = — ig[(W,, W™ — WHHW,,)(A” sin by — Z¥ cos bw) 22)

+ W, W (A" sin Oy — Z" cos Oy )]
where let represents the gauge field corresponding to the W boson, Z, represents

the Z boson field, A, represents the photon field, 0y is the weak mixing angle or

Weinberg angle, and X, is defined as:
X =0.X, —0,X, (2.3)

where X represents any of the W, Z, or A fields. The coupling g is the SU(2) weak

coupling parameter and it is related to the electric charge e and fy by:

S (2.4)

sin QW

For a complete explanation of the Lagrangian description of the Standard Model, see
Reference [I34]. To see the triple gauge coupling term before electroweak symmetry

breaking, see Reference [108].
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The Standard Model includes all self-interactions of the gauge bosons that are
consistent with gauge invariance, symmetric under SU(2) x U(1), and renormalizable.
Equation shows that the allowed triple gauge vertices in the Standard Model are
the WTW~=Z and WTW ™+ vertices. Moreover, the strength of the couplings at
the vertices is fixed by gauge invariance as well. These can also be extracted from

equation [2.2] and they are:

gww~y = —€
(2.5)

gwwz — —€ cot QW

where e is the electric charge. The allowed triple gauge interactions are illustrated in

Figure 2.7

Zpy

Figure 2.7: The triple gauge boson vertices that exist in the Standard Model.

The contribution to the electroweak Lagrangian that describes the quartic cou-

plings between gauge bosons is:

2
Lwwvy = — %{[QW:W_“ + (A¥ sin Oy — Z* cos Oy )*)?

— [WIW, + WIW, + (A¥sin by — Z* cos Oy ) (A" sin Oy — Z” cos HW)]2}
(2.6)

and the allowed vertices are WHWHtW W= WHW = yy, WtW~Z~, and WTW~ZZ.
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The coupling values are:

62

gwwww = o O
GWWry = ¢’
IWwzy = e? cot Oy
gwwzz = € cot® Oy

and the vertices corresponding to these quartic gauge couplings are shown in Fig-

ure 2.8

W+ W+ w+ Z/ Y

w- w- w- Zfy
(a) (b)

Figure 2.8: The quartic gauge boson vertices that exist in the Standard Model.

2.5.2 Anomalous Triple Gauge Couplings

As discussed in Section [2.3] it is interesting to look for new physics in a model
independent way. The effective Lagrangian method is one such model-independent
approach [6]. The effective Lagrangian parametrization represents the dynamical
content of a new theory in the low energy limit, which must be consistent with the
Standard Model. By including the most general set of terms consistent with the

symmetries of Standard Model, the approach is independent of the details of the
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new physics at higher energies, and therefore model-independent. The assumption is
made that the energy scale of new physics, A, is above the energy scale probed by the
experiment [83]. Therefore, the new physics model under consideration only appears
in virtual interactions at vertices where the incoming and out-going particles belong
to the Standard Model. All possible vertex terms involving the Standard Model
particles, which respect the symmetries of the Standard Model, are written down in
an expansion in powers of 1/A. As A is assumed to be large relative to all external
momenta, the series can be truncated at some small power and a finite number of
new interactions with arbitrary couplings can be studied. For a formal overview of
the effective Lagrangian approach, see Reference [14§]. For its specific application to
the anomalous triple gauge couplings, see References [0, 83| 149].

We can use the effective Lagrangian approach to model any set of interactions.
In this thesis, we are interested in studying the high energy behavior of electroweak
physics and in looking for new physics that interacts with W and Z bosons. This
corresponds to the effective Lagrangian terms which describe the general triple gauge
boson vertex. The relevant terms of the effective Lagrangian that describe the WWV

vertex, where V' = Z or ~, are [83], [149)]:
Lywy = QWWV{Z'QY(W,IVW“V” - W;VVW“”) + mVWJW,,VW

A
+ i%WIMW,fV”A — g WIW,(0"V" + 9"V

(2.8)
+ gy MWW, — W)V,

5 X 5
iRy W,V 4 i W, WV
w

where gy wy are the value of the Standard Model couplings described by equation [2.5

and X, = %ew,\pX A This expansion does not include operators of dimension 8 and
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higher, which are small if A is large relative to the momentum of the initial and
final state particles. With V = Z or v, the 14 parameters g}, kv, \v, g1, 95, Kv,
and Ay are the most general model-independent couplings associated to the WWV
vertex. To recover the Standard Model triple gauge vertices in equation the

general couplings must take the values:
(2.9)

Any deviation from the coupling values in equation [2.9| are called anomalous triple
gauge couplings (aTGCs). Measuring non-zero anomalous coupling values would be
direct evidence of new physics beyond the Standard Model.

The interactions associated to the g}, k1, and v couplings in equationviolate
CP invariance. To simplify the search for anomalous couplings, we drop these terms
and assume that the new physics does not produce additional sources of CP violation
at low energies. Moreover, measurements of the electron electric dipole moment might
offer more constraining limits than measurements at the LHC on the existence of CP-
violating terms [107]. Following the procedure set by LEP and the Tevatron, we also
do not further consider the g} coupling, which violates charge conjugation symmetry.
That leaves us with six couplings describing the general WW'V vertex, three of which
belong to the WW Z vertex and three of which belong to the WWW~ vertex.

The same approach can be applied to couplings describing a triple gauge vertex
involving only neutral gauge bosons, the Z and photon, as shown in Figure [2.9 The
couplings associated to terms with one on-shell Z boson, one on-shell photon, and an

off-shell photon or Z denoted by V' are parametrized by eight couplings: h}, hY, hY
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and h). Interactions associated with the first two couplings violate CP invariance,
whereas the latter two respect it. The vertex with two on-shell Z bosons and an
off-shell photon or Z boson, denoted by V, is described by four couplings: f} and
fY. All four couplings violate charge conjugation, and the two f}” couplings do not
respect CP invariance. For a full description of neutral triple gauge couplings, see

Reference [96].

ZWy

Zy

Figure 2.9: Neutral triple gauge vertices, which do not exist in the Standard Model.

Several of the coupling parameters can be expressed in terms of physical quantities
of the W and Z bosons, in particular the magnetic and electric dipole and quadrupole
moments of the W and Z bosons. For details, see Reference [83].

Theoretical arguments about the structure of the terms in equation [2.8] assuming
weak coupling to the vector bosons from the new physics, and assuming that the
Higgs boson or another scalar field breaks electroweak symmetry, leads to a theoretical
upper bound on the values of the anomalous couplings on the order of O(WZ—Q‘QV) [83].
Therefore, if the scale of new physics is A = 1 TeV, the largest reasonable value of the
couplings would be around O(1072). However, if electroweak symmetry is strongly
broken or if the new physics couples strongly to the W and Z bosons, these upper

limits are not valid.
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Measurements based on different final states are sensitive to different anomalous
couplings. WW production is sensitive to all the terms in equation 2.8, W+ pro-
duction is sensitive only to the vertices involving a photon, and W2 production is
sensitive only to the WW Z terms. To extract information from WW production
about the six couplings to which it is sensitive, assumptions about the relationship
between the photon couplings and the Z couplings must be made.

Anomalous couplings increase the production cross section for these processes for
most values of the couplings, although for a narrow range of couplings the produc-
tion cross section actually decreases. The presence of anomalous couplings can also
affect kinematic distributions sensitive to the v/3 of the interaction, including the pr
distributions of the bosons or the diboson invariant mass. More information about
the effect of anomalous couplings for the W Z system is provided in Section [11.2]

The approach begun by the LEP experiments and continued at the Tevatron is
to use measurements of diboson production to set limits on the values of the anoma-
lous couplings. We follow this approach in this analysis. Considering only terms
which conserve C, P, and C'P, and keeping only couplings that contribute to W2

production, equation [2.8| reduces to:

A
L = gl (W, Wz — WEZ, W) + ik WIW, 20 + i W W, 27 (2.10)
gwwz myy,

Therefore, W Z production is sensitive to the couplings g7, k7, and Az. We search

for deviations from the Standard Model values reported in equation by defining:

(2.11)
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In this analysis, we set limits on the values of Ag?, Akyz, and A\z. The limit
setting procedure is discussed in Section [I1.6] Searching for direct production of
any specific particles, including technirhos or neutralinos or charginos, would require
tuning the selection requirements toward the specific model. In this analysis, we make
an inclusive measurement of W2 production, and use our selected sample to search
for model independent anomalous couplings.

The terms in equation that are associated to AgZ and Ay are proportional
to §, the square of the center-of-mass energy of the interaction, in W Z production.
The terms associated to Aky are proportional to v/3. Therefore, WZ production
is more sensitive to anomalous values of AgZ and Az than to anomalous values of
Akz, because the former will have more impact on the cross section and kinetic
distributions.

The effective Lagrangian approach assumes that the scale of new physics is large
relative to the center-of-mass energy of the experiment. If this assumption is not
true, then the higher order terms in 1/A that were neglected in equation become
as important as the terms that were kept. The finite series shows pathologies and, in
particular, can violate unitary as energy increases.

To enforce unitary, either the full Lagrangian of the higher energy physics must be
written down, or a form factor can be added to the effective couplings that cuts off the
effect of the new interactions above a certain energy scale. Both of these approaches
introduce assumptions about the type or scale of new physics, and do not preserve
the model-independent nature of the effective Lagrangian approach. Introducing a

form factor is the simpler of the two approaches and can be done by replacing the
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anomalous couplings introduced in equation [2.8] with energy-dependent couplings:

«

a—>a(§)z—(1+§/A%F)n

(2.12)

where a represents any of the anomalous coupling parameters, n is the exponent
chosen to ensure unitarity, and App is the form-factor or cut-off scale above which
the effect of the anomalous couplings is negligible. The cut-off scale Apr is set by the
new physics scale A, but they do not have to be equivalent. For the WIWW Z vertex, a
choice of n = 2 is sufficient to ensure unitarity [83].

The advantage of using a form factor is that it guarantees that the model we are
studying respects unitarity at all energies. There are two main disadvantages. First,
the choice of form factor scale no longer makes the approach completely independent,
and the measurement of anomalous couplings will depend on the choice of form factor.
Second, the choice of form factor may make it harder to see the effects of new physics.
For example, if there is new physics around 2 TeV, or higher, and a cut-off scale of
2 TeV is chosen to damp the anomalous contributions at this scale, then it will be
harder to see the signal of the new physics.

For our analysis, we have chosen to search for anomalous WW Z couplings in two

scenarios:
2. no form factor

The first condition nominally allows us to compare our results with measurements
made at LEP and at the Tevatron. However, using the same cutoff scale as these

experiments prevents us from exploiting the gain in sensitivity from the higher center
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of mass energy at the LHC. In reporting our results with no form factor, we report the
most model independent limits on the values of the anomalous couplings. Moreover,
if the theoretical arguments that the maximum value of the couplings should be order
O(1072) hold true, then unitary violation would only occur at center of mass energies
significantly above the LHC energy, and the form-factor becomes unnecessary [83].
Sectiondiscusses the effect of anomalous couplings in the W Z system at /s =
7 TeV at the LHC. To compare the effect of the couplings at different center-of-mass
energies and in proton-antiproton versus proton-proton collisions, see Figures [2.10
and [2.11] These distributions show the ratio of the WZ production cross section with
a specific value of one anomalous coupling to the W27 Standard Model cross section,
for anomalous values of Ag? in Figure and Akyz and Az in Figure m The
specific value of the couplings simulated is chosen to correspond to either the lower
or upper bound of the 99% expected Confidence Interval (see Section for the
anomalous coupling analysis presented in this thesis. The ratio between anomalous
and Standard Model W Z production is shown for two values of the cut-off scale and
for both proton-proton and proton-antiproton collisions, as a function of the center-

of-mass energy of the collider. The results were simulated with MCFM [55].

As seen in Figure [2.10| and [2.11] the presence of anomalous couplings usually

increases the WZ production cross section, although for certain values of Ag# the
cross section decreases. As mentioned previously, Az and AgZ are more sensitive
to the collision energy than Aky, as the latter grows as v/§ while the former grow
as §. For the same hadron energy, proton-antiproton collisions are more sensitive

to the presence of anomalous couplings than proton-proton collisions. As seen in

29



Chapter 2: Motivation and Background

| —— pp,A=o0

~

— pp, A=2TeV
— pp,A=2TeV

—— pp,A=e

5 10 15 20 25 30 35 40
Vs [TeV]

L5 T " -
— pp, A=2TeV
14— pp,A=2Tev
I R N
= 13} ph; A=
S

0 5 10 15 20 25 30 35 40
Vs [TeV]

Figure 2.10: WZ production with anomalous Ag#? couplings as a function of /s.
The ratio between the W Z cross section where AgZ = —0.06 (left) and the Standard
Model W Z cross section, for both pp and pp collisions, is shown for two different
values of the cut-off scale A. The right plot shows the same quantity, for AgZ = 0.1
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Figure 2.11: W Z production with anomalous Axz and Az couplings as a function
of y/s. The ratio between the WZ cross section where Ary = 0.6 and the Standard
Model W Z cross section, for both pp and pp collisions, is shown for two different
values of the cut-off scale A. The right plot shows the same quantity, for Az = 0.05.
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Figure 2.3 the leading order diagram with the triple gauge vertex is from quark-
antiquark annihilation, for which the proton-antiproton parton distributions are more
favorable than the proton-proton parton distribution functions.

The effect of the cut-off scale A is also evident in Figures and 2.11] In fact,
including a form factor of 2 TeV in the model effectively renders the LHC at /s = 7
TeV no more sensitive to the presence of anomalous couplings that the Tevatron at
1.96 TeV, since the form factor suppresses the higher energy contributions to which
the LHC is more sensitive. We emphasize that the limits we measure assuming no form
factor (A = oo) are the more sensible limits, as well as the more model independent

results.

2.6 Previous Measurements

2.6.1 Previous W27 Cross Section Measurements

The first W Z production cross section measurement was made by the CDF collab-
oration in 2007 [57] with 1.1 fb~! at /s = 1.96 TeV, as mentioned previously. Only
the LHC and the Tevatron have made direct measurements of the W Z production
cross section. The most recent W Z cross section measurements from the Tevatron
and from the LHC, not including the results of this analysis, are summarized in
Table 2.2

The most precise measurements of the W Z production cross section are made in

the fully leptonic decay mode. At the Tevatron, the most precise measurements have

an uncertainty of 15% (D0) and 20% (CDF). The ATLAS measurement performed
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Table 2.2: Previous measurements of W Z production cross section. Results from the
Tevatron are measured at /s = 1.96 TeV and from the LHC at /s = 7 TeV. Only
published results are reported here.

Process Channel Experiment Lumi [fb™'] Theory [pb] =~ Measurement [pb]  Ref.
pp—WZ il CDF 7.1 352021 3.9350% () 050 (we) 3]
pp—WZ et DO 8.6 3.21£0.19 4.501088 [70]
w—WZ (et ATLAS 1.02 17.3453 20.573 8 (sea) 1T (0er)  [63]
pp—WZ lvgq DO 4.3 3.2140.19 3.37%3 [71]

pp— WW +WZ lvqq CDF 4.6 15.1+0.8 174433 67|
pp— WW +WZ tvqq CMS 5.0 65.6 4 2.2 68.9+8.7+9.8 [68]
pp—WZ+27Z  (vbb, tebb,vvbb  CDF+DO 7.5-9.5 44402 4.47 +0.647573 2

with an integrated luminosity of 1.02 fb~! has a total uncertainty of 17%.

2.6.2 Previous Limits on Ag?, Akz, and \; from Diboson

Production

The first direct study of the WW Z vertex was performed at LEP. Although WZ
production was not accessible at LEP, information about the WW Z vertex can be
obtained from the WW final state. The three W W production diagrams at LEP are
shown in Figure 2.12] including a contribution from the WW Z triple gauge coupling

vertex shown in Figure 2.12(b)|

e+ w e+ w e+ w
4

e~ ———— w e w e w

(a) (b) ()

Figure 2.12: WW production diagrams at LEP. The diagram in (b) includes the
WW Z triple gauge vertex.

If the neutrino-exchange diagram (Figure [2.12(a))) were the sole contribution to
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WW production, the rate would grow with s and eventually diverge. Similarly, if only

the diagrams in Figure [2.12(a)| and [2.12(b)| contributed, WW production would still

diverge, though at a slower rate. It is only when contributions from all three diagrams
in Figure|2.12are considered that WW production respects unitarity at high center of
mass energies. On account of this behavior, the presence of the WW Z vertex can be
detected by measuring WW production. The LEP measurement of W W production,

shown in Figure [2.13] confirms that that all three diagrams contribute.

—~ 130 : : I1 7/02/?991_-;
) LEP
~ PRELIMINARY
; 4 u
= F
S
20 - _
’ . —— LR
101 -
YFSWW/RacoonWW
; ....no ZWW vertex (Gentle) :
/;,;/4 _...only v, exchange (Gentle)
O : T T T T T
160 180 200

Vs (GeV)

Figure 2.13: WW production measured at LEP [I38]. The pink dotted line shows
the WW production rate if the only contribution were from neutrino-exchange, as
shown in Figure 2.12(a)] If both the neutrino-exchange and WW+~ (Figure 2.12(c))
diagrams contribute, the rate would follow the red dotted line. The data in black
and green points confirms that WW production is the sum of all three production
diagrams, including the WW Z vertex, as predicted by the blue line.

All four LEP experiments measured the 95% Confidence Level (C.L.) values of

the couplings at the WW~ and WW Z vertex, with the assumption that x, = k7 and
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Ay = Az. The combined results from all four experiments are shown in Table [2.3]

Table 2.3: LEP triple gauge coupling measurements. These parameters were mea-
sured in ete™ — WTW ™ production in each of the four experiments and the combined
results are shown. The kz and Az couplings are measured under the assumption that
they are equal to the 7 couplings. Note that the values of the couplings are directly
reported, not the deviation from the Standard Model couplings, as is the case for the
Tevatron and LHC experiments [7].

Parameter 95% C.L.

gt (0.949, 1.034]
K, =ry;  [0.895, 1.069)
A =Xz [-0.059, 0.026]

At the Tevatron, both the CDF and DO experiments put limits on deviations
from the Standard Model values of the WW Z couplings by studying W2 — (vil
production and reporting the 95% Confidence Level for anomalous coupling values.
The most recent results are reported in Table 2.4, For both the CDF and DO mea-
surements, the transverse momentum of the Z boson in the W Z final state was used
to extract information about the anomalous couplings.

Table 2.4: Tevatron aT'GC measurements of AgZ, Akz, and Az. The results reported
are measured in the process pp — W*Z — (vll. The CDF results are measured with
7.1 fb=! and the DO results with 4.1 fb~! and both results include a form factor with
a cut-off scale of 2 TeV [3], 69)].

Parameter CDF 95% C.L. D0 95% C.L.

Ag? [-0.08, 0.20]  [-0.053, 0.156]
Ak [-0.39,0.90]  [-0.376, 0.680]
Az [-0.08, 0.10]  [-0.075, 0.093]

We performed an ATLAS measurement of the values of the anomalous couplings

by extracting information from the production cross section measured with 1.1 fb1
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at /s = 7 TeV. The limits on Ag{, Akz, and Az from this measurement are shown

in Table 2.5

Table 2.5: Previous ATLAS aTGC measurements of AgZ, Aky, and \z. The results
reported are measured in the process pp — W*Z — (vl¢ with 1.02 fb~! and no form
factor [63].

Parameter  95% C.L.

Ag? -0.16, 0.24]
AHZ [—0.8, 10]
Az [-0.14, 0.14]

The analysis presented in this thesis uses the full 2011 dataset of 4.6 fb~! and
sets limits based on the transverse momentum of the Z boson. We expect a roughly
40% increase in sensitivity to the values of anomalous couplings from the increase in
luminosity and an additional 40% increase in sensitivity from studying the differential

distribution rather than the production rate alone.

2.6.3 Indirect Limits on Ag?, Axz, and \z

The presence of anomalous couplings would affect certain low energy observables,
including the electron dipole moment [107], the muon magnetic moment [83], the b —
s decay rate [83], and parity violation in cesium decays [93]. For example, Figure[2.14]
shows some of the Feynman diagrams that could contribute to a dipole moment for
the electron with anomalous triple gauge couplings. In principle, a measurement of
the electron’s electric dipole moment could be sensitive to the presence of anomalous
couplings, in particular couplings which introduce new sources of C'P violation.

However, low energy limits on anomalous triple gauge couplings are limited by
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Figure 2.14: Some of the diagrams which could contribute to the electron electric
dipole moment with anomalous triple gauge couplings.

the fact that complete cancellations between different terms are possible, and even
likely given theoretical arguments [100]. This is particularly true for low energy
measurements because the scale of the interactions with anomalous couplings is so
large compared to the measurement scale. Therefore, it is necessary to make signifi-
cant assumptions about the relationships between the anomalous couplings in order
to derive limits on their values from measurements of low energy observables [100].
Such assumptions require developing a specific model to motivate the anomalous
couplings, which negates the model independent approach of the effective Lagrangian
parametrization. Therefore, it is not possible to extract significant model independent
limits on anomalous triple gauge couplings from low energy precision measurements.

For more information, see References [100], 83].
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The Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton collider located at CERN
in Geneva, Switzerland. At 26.7 km in circumference, it is the largest scientific
instrument in the world. It is designed to collide protons at a center of mass energy,
Vs, of 14 TeV at an instantaneous luminosity of 1 x 103 cm™2 s™!, making it the
world’s highest energy and highest luminosity proton collider. It is also designed
to accelerate lead ions to 2.76 TeV per nucleon and collide them at luminosities of
1 x 10?" em™2 s~!. The LHC turned on in 2010 and provided collisions at center of
mass energies of 900 GeV, 2.36 TeV, and 7 TeV. The peak luminosity achieved in
2010 was about 2 x 103 cm™2 s7!, and the LHC provided an integrated luminosity
of about 50 pb~! to the ATLAS detector. In 2011, the LHC operated at /s = 7 TeV
and the peak luminosity reached was about 4 x 103 cm™2 s~!. In 2011, the LHC
provided over 5 fb™! to the ATLAS detector. In 2012, the LHC operated at 8 TeV
and delivered 23 fb=! to ATLAS.

The Large Hadron Collider was built in the existing tunnel which housed the
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Large Electron Positron (LEP) accelerator and makes use of existing accelerators at
CERN to accelerate protons to 450 GeV for injection into the LHC. The injection
chain is briefly summarized in Section [3.1] The design of the LHC is summarized in
Section [3.2 and its performance and operation parameters are discussed in Section [3.3]
Finally, in Section the method of measuring the luminosity delivered to the
ATLAS detector is presented. A useful summary of the LHC design is available in
Reference [49] and an in-depth overview can be found in Reference [84]. Sections
and summarize material from these references. Complete technical information

can be found in References [51], [52], and [47].

3.1 Injection Chain

The injection chain for the LHC is shown in Figure[3.1} The first accelerator in the
chain is Linac 2, which replaced Linac 1 in 1978 as the primary accelerator of protons
at CERN. Protons that will eventually make their way into the LHC originate from
a bottle of hydrogen gas at the starting point of Linac 2. The hydrogen atoms pass
through an electric field which strips off their electrons, leaving protons. Linac 2 has
a series of radio frequency cavities that accelerate the protons to 50 MeV, at which
point they are transferred to the Proton Synchrotron Booster (PSB or The Booster.)

The Booster, which began operation in 1972, is composed of four stacked syn-
chrotron rings which accelerate protons from 50 MeV to 1.4 GeV, after which they
are injected into the Proton Synchrotron (PS.) The PS can accept protons of 50 MeV
directly, but at a reduced intensity. The Booster increases the intensity of protons

that the Proton Synchrotron can accept, which is necessary for the high instantaneous
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Figure 3.1: LHC injection chain [116].
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luminosities demanded by the the LHC.

The Proton Synchrotron consists of 277 conventional iron electromagnets arranged
along a circular beam path of circumference 628 meters. It accepts protons from the
Booster, but it can also accelerate ions, electrons, positrons and antiprotons. Ions are
first accelerated by the Linac 3, and then by the Low Energy Ion Ring (LEIR). The
Proton Synchrotron accelerates protons up to 25 GeV. At the time of its construction
in 1959, it was the world’s highest energy particle accelerator.

The 25 GeV protons from the Proton Synchrotron are injected into the Super
Proton Synchrotron (SPS), which began operation in 1976. The SPS measures al-
most 7 kilometers in circumference and has 1317 conventional iron electromagnets.
It can accelerate protons as well as ions, electrons, positrons, and antiprotons. In
1983, running in proton-antiproton mode with a center-of-mass energy of 540 GeV,
it produced the first observed W and Z bosons in the UA1 and UA2 experiments.
Today, the SPS accelerates protons to 450 GeV for injection into the LHC, as well
providing protons directly to several experiments including NA61 [125], NA62 [126],

COMPASS [73], and CNGS [60).

3.2 The Large Hadron Collider Design

The Large Hadron Collider contains over 8000 superconducting magnets and is
designed to accelerate two intense beams of protons to 7 TeV per particle or two
beams of lead ions to 2.759 TeV per nucleon. The beams collide at four different
locations around the ring, corresponding to the center of the ATLAS [61], CMS [59],

ALICE [9], and LHCb [I15] experiments.
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The design energy of the LHC was limited by the size of the existing tunnel from
the Large Electron Position (LEP) accelerator and the superconducting technology
available at the time of its design. The radius of curvature of the LEP tunnel is 2804
m. Using the relation between particle momentum p, magnetic field B, and radius of
curvature R:

plGeV] = 0.3 x B[T] x R[m] (3.1)

we find that for a beam energy of 7 TeV, the bending magnets of the LHC must be
8.33 T. This is higher than the saturation field of iron, and it would be very difficult
to produce a uniform field in an iron electromagnet at this field value. Moreover,
providing this field with iron magnets would require an enormous current, with large
(and expensive) power consumption and problems in distributing the heat load. This
motivates the use of superconducting magnets, which can maintain the 8.33 T field
with less current, lower power consumption, and other associated benefits. At the
time of the LHC design, the most common superconductors were made of Niobium
and Titanium, which could carry magnetic fields of around 5 T at the normal boiling
point of liquid helium, around 4.3 K. As the magnetic field increases, the NbTi alloy
loses its ability to carry current. More exotic superconductors such as Nb3Sn can carry
currents in high magnetic fields at liquid helium temperatures; these superconductors,
however, are brittle and it was difficult to use them for magnet windings. Moreover,
they were very expensive and not fully developed at the time of the start of the
LHC [49).

The solution adopted for the LHC is to use NbTi and to cool the superconductor

to 1.9K. At this temperature, the superconductor stays superconducting in fields

41



Chapter 3: The Large Hadron Collider

up to about 10 T. Superfluid helium at 1.9 K is therefore used, which necessitates
an extensive cryogenic system around the entire beam. There is about 120 tonnes
of helium, mostly in the superfluid state, inside the LHC magnets during normal
operation. Refrigeration is provided by eight large cryogenic helium refrigerators
located around the ring. The longest distance between a refrigerator and a magnet is
3.3 km; over this distance, 0.1 K is gained in transport. Therefore, the refrigerators
cool the helium to 1.8 K and this is sufficient to keep all magnets operating below 1.9
K.

The circumference of the LHC is composed of eight arcs, each 2987 meters long
and connected by 528 meter-long straight sections. The tunnel slopes 1.4% down
toward Lake Geneva. Of the 8000 superconducting magnets, 1232 are the main
bending dipoles. The other 6800 magnets include quadrupole, sextapoles, octopoles,
and single bore dipoles. These are used in focusing the beams, squeezing the beams
before collisions, correcting trajectories, and damping oscillations in beam position.
The tunnel has a diameter of 3.7 m, which makes it very difficult to install two separate
proton rings. To save space, as well as money, the LHC magnets are twin bore, in
which both proton beams are within the same cryostat, with separate magnetic fields
and vacuum pipes for each beam.

The dipole magnets provide the main bending field for the beams. The cross
section of an LHC dipole is shown in Figure [3.2] Each dipole magnet is 16.5 m long,
has an outer diameter of 0.57 meters, and weighs about 28 tonnes. Inside of each
magnet are two separate beam-pipes, each with a diameter of 5 cm. The beam-pipes

are kept at 1.9 K and under vacuum to prevent interactions between the protons in
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the beam and any gas atoms in the beam pipe. The 54 km of vacuum inside the LHC
beam pipe is kept at 107 - 1078 mbar without beam. Surrounding the beam pipe
are the superconducting coils that produce the magnetic field. The superconducting
NbTi cable is wound in two layers in each magnet; the cable in the inner layer has
a diameter of 1.065 mm and a diameter of 0.825 mm in the outer layer. To produce
a magnetic field of 8.33 T, the cables conduct 12 kA of current. Due to this current
and the magnetic field, forces on the order of 10° N per meter are produced across
the conductor. Significant structural elements, including stainless steel collars, are

engineered to withstand these forces.
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Figure 3.2: LHC dipole cross section [I16]. The inner diameter of the beam-pipe is 5
cm and the outer diameter of the magnet is 0.57 meters.
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The LHC is the first proton-proton collider in which synchrotron radiation is non-
negligible. In the bending regions, 0.22 W/m is expected to be emitted at nominal
energy, for a total of 3.9 kW per beam. This radiated energy could cause the tem-
perature of the liquid helium to rise if absorbed by the magnets. If the temperature
rises too far, superconductivity can be lost, causing a magnet quench. To prevent
this, a copper beam screen is placed inside the vacuum tube, whose role is to absorb
the ultraviolet light emitted by the accelerating protons. The copper screen is cooled
to 5 - 20 K by circulation of superfluid helium.

Acceleration is performed by superconducting radio frequency (RF) cavities op-
erating at 400 MHz. The acceleration gradient in the cavities is 5 MV /m. After
accelerating the proton beams from the injection energy of 450 GeV to 7 TeV, the
RF acceleration compensates for the 7 keV of energy lost due to synchrotron radiation

per beam per revolution.

3.3 Accelerator Parameters and Performance

The instantaneous luminosity of the accelerator is a function of the beam param-

eters:

I — Nl?nbfrevfy
4re,, B*

(3.2)
where N, is the number of protons per bunch, n; is number of bunches in the beam,
frev 18 the revolution frequency of the accelerator, «v is the relativistic Lorentz factor,

€, is the normalized emittance, 5* is the beta function at the collision point, and F

is a geometric factor related to the crossing angle of the beams at the collision point.
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[ and € are beam parameters related to the transverse beam size by:

o=ed (3-3)

where o is the width of a Gaussian describing the shape of the beam in the transverse
direction. The beta function generally changes as a function of position along the
beam, and * is the value at the collision point. The emittance € is a measure of the
average spread of particles in position and momentum phase space.

Maximizing the instantaneous luminosity of the accelerator involves a delicate
balancing act of tuning the parameters in equation [3.2] The frequency of revolution
is fixed by the size of the LHC tunnel and the velocity of the protons. The smaller
the crossing angle, the higher the luminosity, and the crossing angle inside ATLAS
is 285 urad. The main parameter which can be controlled by the LHC operation is
£*, and the lower the value of 8*, the higher the luminosity. Increasing the number
of bunches in the beam or the number of protons per bunch increases the luminosity,
but it also increases the total stored energy in the beam. It is important to limit the
stored energy for many reasons, including the possibility of damage to the detectors
or accelerator if control of the beam is lost. For the nominal LHC conditions with
2808 bunches of 10! protons per beam, at 7 TeV, the total stored energy in the two
beams is 362 MJ, which is equivalent to 80 kg of TNT [49].

The LHC beam is divided into 3654 bunches of length 25 ns each. Each bunch
holds roughly 10! protons. At nominal operation, 2808 bunches would be filled; the
remaining bunches are empty due to an injection gap, and a long train called the abort
gap is left empty in case the beam needs to be dumped. In 2011, only 1404 bunches

were filled with a spacing of 50 ns between filled bunches. The proton bunches are
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arranged in bunch trains of 72 bunches, followed by an empty gap of 12 bunches.
The bunch train structure is a remnant of the bunch structure of the injection chain.
Within each bunch, the protons are placed in RF buckets which are 2.5 ns apart, due
to the 400 MHz RF frequency.

The main parameters of the LHC beam and magnets are displayed in Table |3.1]|.
The parameters are shown as designed for the injection energy at 450 GeV and the
nominal operation energy at 7 TeV per beam. The value of certain parameters is also
shown for data-taking during 2011 operation at 3.5 TeV per beam.

Table 3.1: LHC parameters. The designed parameters are shown at the injection
energy (450 GeV) and nominal operating energy (7 TeV) per beam. The actual
operating parameters in 2011, corresponding to a beam energy of 3.5 TeV, are shown
in the last column [84], €1].

Parameter Unit Injection Nominal Operation 2011
(Design) (Design)  (Data taking)

Beam Energy TeV 0.450 7 3.5

Peak instantaneous luminosity s~ lem™2 - 1034 4 x 1033

Average collisions per crossing - 23 15

Bunch spacing ns 25 25 50

Intensity per bunch 10 p 1.15 1.15 1.2

Number of filled bunches 2808 2808 1404

Normalized rms transverse emittance pam 3.75 3.75 2.5

5* m 1.5

Bunch area (20) eVs 1.0 2.5

Bunch length (40) ns 1.71 1.06

Energy spread (20) 1073 0.88 0.22

Beam Current A 0.582 0.582

Synchrotron radiation loss/turn keV - 7

Longitudinal damping time h - 13

Frequency MHz 400.789  400.790

RF voltage/beam MV 8 16

Energy gain/turn (20 min. ramp) keV 485 485

RF power during acceleration/beam kW 275 275

Current in magnets A 763 11850

Stored energy MJ 362 110

Magnetic Field T 0.54 8.33 4.2

Operating Temperature K 1.9 1.9

Bending Radius m 2803.98  2803.98
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The integrated luminosity of the 2011 run at /s = 7 TeV is shown in Figure as
a function of calendar date. The luminosity delivered by the LHC is shown in green.
The luminosity that ATLAS recorded is shown in yellow. The difference between the
delivered and recorded luminosity is due to the fact that ATLAS stays in standby
mode while the LHC begins a fill. In standby mode, the high voltage on the Pixel,
SCT, CSC, MDT, and TGC detectors is lowered to prevent damage to the detectors
in case the beam is not fully controlled. Once the beam is injected, ramped to full
energy, and declared stable by the LHC operation team, the ATLAS detector turns
all high voltages to nominal and begins taking data. Additional requirements on the
condition of each sub-detector during data taking further reduces the luminosity that

is used for analysis, as discussed in Section [3.3]

47



Chapter 3: The Large Hadron Collider

‘.'F| N T T T T T T T | T T T T T T T | T T T T T T T | T T T T T T T _]
o 7 ATLAS Online Luminosity Vs=7 TeV —
E 65 [ LHC Delivered .
8 - []ATLAS Recorded ]
£ 5 Total Delivered: 5.61 fi” =
- - Total Recorded: 5.25 fb” .
e C _
D 41 ]
E - .
g 3 =
£ : N
s 2- -
S :

1— —
0 : L L : + + 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 :
01/03 01/05 01/07 31/08 01/11

Day in 2011

Figure 3.3: Luminosity per day in 2011 [I§].
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3.4 Luminosity Measurement

The instantaneous and integrated luminosity delivered to the ATLAS detector is
measured in two steps. First, dedicated detectors on ATLAS record information re-
lated to the number of proton-proton inelastic collisions that occur while the LHC is
running. This provides both an observed instantaneous rate as well as an integrated
total number of observed inelastic proton-proton collisions. Second, beam scans per-
formed in dedicated LHC runs are used to calibrate the absolute luminosity scale
and to convert the observed rate of proton-proton inelastic collisions to a luminosity
measurement. These dedicated scans are called van der Meer scans [142]. Detailed
information on how the luminosity is measured for the ATLAS detector can be found
in Reference [30] and specifics on the algorithms used for the 2011 data can be found
in Reference [43]. The section closely follows these two references.

The luminosity of a proton-proton collider can be expressed in terms of the rate of

inelastic proton-proton collisions, R;,eastic, and the inelastic cross section, ojneiastic:

Rinelastic

L = “inclastic (3.4)

Oinelastic
The rate of inelastic collisions can be expressed in terms of the average number of
collisions per bunch, u, the frequency of the accelerator revolution f,., and the number

of bunches which cross at the collision point ny:

R = unyf, (3.5)

If we knew 0;pe1qstic and could measure p at all times, we’'d be all set. We measure u
using dedicated luminosity detectors on ATLAS. However, there is an efficiency for

observing inelastic collisions, €, so we do not directly measure p but rather e, which is
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called the visible number of inelastic crossings per bunch, . The efficiency e is the
detection efficiency corresponding to a single inelastic interaction in a bunch crossing.
The efficiency is dependent on the 17 and particle type, and differs for each luminosity

detector [30] and specific luminosity algorithm. We can rewrite equation using
pv* and equation [3.5}

,U/nbfr _ Nvisnbfr _ Mvisnbfr

vis
Oinelastic €0 inelastic Oinelastic

L=

(3.6)

where oV = €0inelastic 19 the visible cross section of inelastic collisions. The lumi-

inelastic
nosity detectors described in the next section extract u** from measurable quantities

during data collection. The dedicated luminosity scans described in Section [3.4.2] are

: V1S
used to calibrate o, ... for each detector.

3.4.1 Luminosity Detectors on ATLAS

There are four detectors on ATLAS for which luminosity measurement is a main
goal: the Minimum Bias Trigger Scintillator (MBTS), the Beam Conditions Mon-
itor (BCM), the Luminosity measurement using a Cherenkov Integrating Detector
(LUCID), and the Zero Degree Calorimeter (ZDC). The properties of each of these

detectors is summarized in Table 3.2 and described below.

Table 3.2: Luminosity detectors on ATLAS [30)].

Detector Pseudorapidity coverage # Readout Channels Type of Detector

MBTS  2.09 < |n| < 3.84 32 scintillator
BCM In| =4.2 8 diamond
LUCID 5.6<|n| <6.0 32 gas Cherenkov
ZDC In| > 8.3 16 calorimeter
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The MBTS is a wheel of scintillators at a distance of £365 cm from the collision
center. The detector’s primary purpose is to provide triggers for minimal collision
activity, particularly for low luminosity running. The wheel is segmented into 16
chambers on each side of the collision point, and the light from the scintillators is
collected by wavelength-shifting optical fibers before being guided to photomultipler
tubes for detection. A hit in the MBTS detector is defined as any signal above the
discriminator threshold.

The BCM detector [141] is composed of two sets of diamond sensors located at
184 c¢m from the collision point along the beam line and at a distance of r = 5.5
cm in the transverse direction. Diamond is chosen as an active sensor for its abil-
ity to withstand the high particle flux - on the order of 10* charged particles per
square centimeter - near the beam pipe. The BCM provides continual feedback on
the beam near ATLAS to the detector and to the LHC. The detector monitors the
rate of charged particles, and with a precise timing of 1-2 ns, it can resolve the dif-
ference between charged particles from proton-proton interactions and particles from
collisions between protons and gas in the beam-pipe, since the latter do not occur at
the interaction point. If there is a large spike in the particle flux, the BCM detector
can issue a direct abort signal to the LHC beam. This protects the detector in case
control of the beam is lost. By monitoring the rate of charged particle interactions,
the BCM detector can also provide information used for determining %%,

The LUCID detector is composed of two sets of 200 tubes, one set on each side of
the interaction point at a distance of 17 m along the beam-pipe [143]. The tubes are

1.5 m long and filled with CyF}q, which produces Cherenkov radiation when charged
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particles go through the detector at velocities greater than the velocity of light in the
gas, which corresponds to a threshold of 2.7 GeV for pions and 9 MeV for electrons.
The tubes have a diameter of 15 mm and are arranged conically, pointing toward the
interaction point. The detector is able to withstand a high particle flux and provides
pointing capability as well as good timing resolution. The primary purpose of LUCID
is to measure V%,

The Zero Degree Calorimeter is located at z = 140 m from the interaction point
and consists of one electromagnetic calorimeter 29 radiation lengths deep and three
hadronic calorimeter modules, each 1.14 interaction lengths deep. The ZDC is placed
right behind the point where the LHC beam pipe transitions from a single pipe for
both beams (necessary for collisions) and separate pipes for each beam (necessary for
bending the two beams). In this location, it is directly in-line with the collision point
in z and therefore is actually located at zero degrees. As there is significant shielding
between the interaction point and the ZDC, primary charged particles do not make
it to the detector from the collision, and its primary purpose is to measure neutrons
and photons.

All luminosity detectors discussed above have front-end electronics that allow fast
processing of signals independently of the ATLAS global data acquisition system. For
the BCM, this is necessary in order to provide prompt feedback to the LHC in case
of beam losses. For all the detectors, this allows measurements of the luminosity even
when ATLAS is not taking data.

The measurement of ”*® relies on two separate types of algorithms. The first type,

called event counting, counts the number of events that pass a minimum threshold for
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an inelastic proton-proton collision. This threshold varies among the detectors and
there are several variations for each detector. For example, in the LUCID detector,
one algorithm requires at least one hit in one tube on either side of the detector
to pass the event threshold. Another algorithm requires a hit on the A-side of the
detector in coincidence with a hit on the C-side. For details on the event counting
algorithms, see Reference [30]. If u << 1, the number of events passing the event
counting threshold can be taken as ;?*, as the chance of two collisions per crossing
is quite low. However, if the probability of multiple collisions in the same crossing is
non-negligible, as it was for most of the 2011 data, this equality does not hold.

Crucially, the detectors also count the number of colliding bunches in which no
inelastic collision is observed. The distribution of the number of collisions per cross-
ing is assumed to follow the Poisson distribution. With this assumption, p“* can
be extracted from the measured probability of detecting at least one collision in a
crossing, P> 1 collision:

__,,Vis

PZ 1 collision — 1—e™*

(3.7)

This method also assumes that the efficiency to detect a single inelastic proton-proton
interaction is constant and does not depend on the number of collisions in the crossing.

As p increases, the precision of the event counting method decreases because
P 1 conision approaches 1. The p value at which the event counting method no longer
works depends on the efficiency of the detector; the lower the efficiency, the lower the
value of P> 1 conision, and the larger the range of validity. For the BCM detector, event
counting worked for the full 2011 run. For the LUCID detector, the method was not

viable for much of the data-collecting period.
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To address the saturation of the event counting method, a second set of algorithms
employing hit counting is used. These algorithms count the number of hits in a
detector in each bunch crossing. Assuming that the number of hits follows a Binomial
distribution and that the probability of a single hit is independent of the number of
collisions per crossing, % can be extracted from a measurement of the number of

hits per crossing. For details, see Reference [43]. The hit counting algorithm was

used for measurements by the LUCID detector in 2011.

3.4.2 Absolute Luminosity Determination

Equation can be written for a more general beam profile as:

- " frn1ng

L= )
273,20 (38)

where n; and ns are the number of protons in each of the two colliding bunches, and

>, is a measure of the beam size in the z direction:

1 [R.(5)ds
Zx_\/ﬁ R, (0) (3.9)

where ¢ is the distance between the center of the two beams and R,(J) is is the

luminosity or number of collisions in arbitrary units. R(0) is the luminosity when the
beams are centered on each other. If the beam profile follows a Gaussian distribution,
>, is its standard deviation.

The number of protons in each beam is measured using Bunch Current Trans-
formers, as described in detail in Reference [13]. These measurements take advantage
of the fact that the beam, as a moving set of charges, produces a magnetic field in

proportion to its current. The beam acts as the primary winding for two DC current
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transformers and two fast beam current transformers which are installed on each ring.
Coils in the secondary winding of the transformers produce a current in response to
the changing magnetic field produced by the beam. This allows continual measure-
ment of the number of protons in each beam. The DC current transformers have high
accuracy for the total beam population but can not measure individual bunch current.
The fast beam current transformers produce measurements for the number of protons
in each individual bunch, normalized by the higher accuracy DC measurements.

Measurements of ¥, and X, are performed for specific calibration runs with ded-
icated van der Meer scans. In these scans, the two beams are first centered on each
other, and the hit rate in each detector, as well as the event rate for each type of
counting algorithm, is recorded. One beam is then moved a distance ¢ in the x direc-
tion, and the rates are recorded. The beams are separated in discrete steps until the
event counting rate approaches zero, and then the beams are stepped back together
and moved in the —z direction. From these measurements, >, can be extracted using
equation The procedure is repeated in the y direction for ,. The results of one
van deer Meer scan in 2011 are shown in Figure for data from a single BCID from
one algorithm in the BCM detector.

Using equation and the measured values of of ny, ny, ¥, and X, the absolute
luminosity can be calculated for the runs in which the van der Meer scans were
vis

performed. During these runs, each luminosity detector measures " using several

counting algorithms. With the absolute luminosity calibration provided by the van

(]

: VLS :
der Meer scans, equation , and the measurement of p"**, a value of o}'%, ... 1is

extracted for each algorithm and each detector. While the visible inelastic cross
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Figure 3.4: LHC beam profile during one van der Meer scan. The visible interaction
rate, 1%, is shown for one event counting algorithm in the BCM detector as a function
of the horizontal separation of the beams during a van der Meer scan in 2011. The
data is shown for a single BCID and is fit with a single Gaussian plus a constant [43].
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section varies from detector to detector, it is independent of the luminosity at which
it is measured. Therefore, once the luminosity is calibrated for each detector, it is not
necessary to remeasure ¥, and Y, for each run, even if the beam parameters change.

The luminosity is individually calculated for each BCID. The central value is
taken from the measurements by the LUCID detector. Systematic uncertainties on
the luminosity measurement are estimated in part by comparing the luminosity mea-
surements from all algorithms and all detectors. Multiple van der Meer scans are used
to estimate the systematic uncertainty on ¥, and X,. One of the largest uncertainties
on the absolute luminosity normalization comes from the measurement of the beam
current. Other systematic uncertainties arise from uncertainties on backgrounds to
the event counting and hit counting algorithms from non proton-proton collisions,
including beam-gas events or hits from long lived photons and neutrons.

For the 2011 data set, the total luminosity delivered to ATLAS is measured to
be 5.61 fb~! with an uncertainty of 1.8% [43]. ATLAS recorded 5.25 fb~! of these

collisions with the nominal detector conditions.
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The ATLAS Detector

A Toroidal LHC Apparatus (ATLAS) is a particle detector designed to study
proton-proton collisions at energies up to y/s = 14 TeV in order both to precisely
measure Standard Model physics processes and to search for evidence of physics
beyond the Standard Model. ATLAS is located at one of the four collision points
along the LHC ring, and proton-proton collisions occur at the heart of its concentric
cylinder design, which follows the 47 detector layout first employed by the Mark I
detector in 1973 [11§].

The design of the detector is motivated by the requirements of a range of physics
studies, from the search for the Higgs boson to searches for new, heavy resonances
to high energy QCD measurements. To meet these physics goals, the detector is
designed to provide precise measurements of electrons, muons, photons, taus, b-jets,
and hadronic jets, with momenta from 1 GeV to several TeV, over a large solid
angle, while withstanding a harsh radiation environment close to the interaction point

and along the beampipe. The main performance goals for the ATLAS detector are
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summarized in Table .11

Table 4.1: The main performance goals of the ATLAS detector. Energy and momen-
tum are listed in GeV and @ indicates a sum in quadrature [28].

Detector Resolution Measurement Trigger
Coverage Coverage
Tracking 0y /pr = 0.05%pr & 1% In| < 2.5
Electromagnetic Calorimeter op/FE = 10%/VE ® 0.7% In| < 3.2 In| < 2.5
Hadronic Calorimeter
Barrel / End-Cap op/E = 50%/VE & 3% In| < 3.2 In| < 3.2
Forward op/E =100%/vVE ®10% 3.1<|n| <4.9 3.1<|n| <4.9
Muon Spectrometer Opr/Pr = 10% at 1 TeV In| < 2.7 In| <24

The main components of the ATLAS detector are shown in Figure The detec-
tor is composed of several main subsystems. Two magnet systems provide a strong
magnetic field to the inner detector and muon spectrometer, respectively, for measur-
ing the momenta of charged particles. The inner detector provides precision tracking
and vertex reconstruction for all charged particles with pseudorapidity |n| < 2.5.
The calorimeters provide precise measurements of the energy of electrons, photons,
hadrons, and hadronic jets within a central region of roughly |n| < 2.5, and provides
coarser hadronic energy measurements up to |n| < 4.9. The large solid angle coverage
of the calorimeter is essential for identifying missing transverse energy from particles
that do not interact with the detector, including Standard Model neutrinos and more
exotic neutral, long-lived particles predicted by models of Dark Matter or Supersym-
metry. The muon spectrometer identifies muons as well as providing an independent,
precision measurement of their position and momentum. The ATLAS detector has a
diameter of 22 meters and is 46 meters long. It weighs 7,000 tons and cost roughly
550 million Swiss francs to build [89)].

Extensive information is available about the ATLAS detector in References [61]
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Figure 4.1: A schematic of the ATLAS detector [28§].

and [62]. For a clear discussion motivating the detector design, see Reference [49]. To
see a comparison between the ATLAS and CMS detectors, Reference [89] is useful.
For an introduction to the physics and designs of detectors, see Reference [99].

The measurements of the W2 — (vl/¢ final state presented in this thesis, where
¢ includes both electrons and muons, require information from nearly the entire AT-
LAS detector. Measurements of muon momenta and position are made using the
inner detector and the muon spectrometer. The inner detector and electromagnetic
calorimeters are used to measure the position and energy of electrons. The inner
detector, electromagnetic, and hadronic calorimeters are used to measure the missing

transverse energy that is the signature of the neutrino.
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4.1 Coordinate System

The coordinate system of the ATLAS detector is oriented by the beam line, which
defines the z-direction. The z-direction points toward the center of the LHC ring,
and y-direction points upward from the origin. The positive z side of the detector is
referred to as the A-side (it points toward the airport), and the negative z side of the
detector is called the C-side (it points toward Charly’s, the pub in St. Genis-Pouilly.)
The azimuthal angle ¢ runs around the z axis with ¢ = 0 coinciding with the z-axis,
and @ is the angle from the z-axis. As the initial 2 momentum of the partons is not
known, it is useful to use the rapidity of the produced particles, as rapidity differences
are invariant to boosts along the beam-axis. Rapidity y is defined as:

1
y=3

E+p.

1
nE_pz

(4.1)

where FE is the particle’s energy and pz is the momentum in the z-direction. Under

the approximation that a particle is massless, equation can be rewritten:
0
n = — Intan 3 (4.2)

where 7 is called the pseudorapidity and n = y for a massless particle. A particle
travelling perpendicular to the beampipe has n = 0; a particle travelling parallel to
the beampipe has n = co. Pseudorapidity is often used rather than rapidity because
it is a geometrical variable and does not depend on any specific particle; therefore,
it is a fixed, geometric coordinate system. Pseudorapidity is preferred over 6 not
only because rapidity differences are invariant to boost along the beam-axis, but also
because particle production from inelastic collisions is roughly uniform in n up to a

kinematic threshold, which corresponds to about |n| =5 in ATLAS. [49]
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To achieve detector coverage over a large range of 7, most detector sub-systems are
divided into three pieces: a central section called a barrel section, and two forward
sections called endcaps. The location of the transition between barrel and endcap
regions varies among the subdetectors.

The z-y plane is called the transverse plane. The energy and momentum of
particles are frequently projected onto the transverse plane; the transverse energy
and momentum are called E7 and pr respectively. The transverse plane is preferred
because the initial transverse energy and momentum of the partons is close to zero.
In contrast, the initial energy and momentum in the z direction is unknown a priori

for hadron colliders, including the LHC.

4.2 Magnetic Field

The magnetic field in ATLAS is produced by four separate magnets. A supercon-
ducting solenoid provides a magnetic field for particles traversing the inner detector.
To measure the momentum of particles traversing the muon spectrometer, a toroidal
magnetic field is produced by a barrel toroid and two endcap toroids. Information on
each of the four magnets in ATLAS is summarized in Table [4.2]

The ATLAS magnetic system is designed to provide a field that allows for ac-
curate stand-alone measurement of muon momentum up to several TeV and up to
In| < 2.7. This ensures that all benchmark physics processes involving leptons, in-
cluding the Higgs decay to leptons, can be accurately measured independently of
the performance of the other subdetectors. To achieve sufficient muon resolution,

the magnet system must provide a strong field without introducing too much mate-
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Table 4.2: ATLAS magnet parameters [89] [61].

Parameter Solenoid Barrel toroid End-cap toroids
Inner diameter (m) 2.4 9.4 1.7
Outer diameter (m) 2.6 20.1 10.7
Axial length (m) 5.3 25.3 5.0
Number of coils 1 8 8
Number of turns per coil 1173 120 116
Conductor size (mm?) 30x4.25 57x12 41x4.25
Bending power (T m) 2 3 6
Peak field (T) 2.6 3.9 4.1
Current (kA) 7.7 20.5 20.0
Stored Energy (MJ) 38 1080 206
Weight (tons) 5.7 830 239

rial that would induce additional multiple scattering. ATLAS adopted an “air-core
toroid” approach, in which a toroidal magnetic field is provided by individual super-
conducting coils, separated by air, in the barrel region. The layout of the magnet
system and the bending power of the toroidal field is shown in Figure Each of
barrel toroid coils is housed in a separate vacuum and cold chamber. On each side,
the endcap toroid coils on are housed together in a single vacuum and cold chamber
and are rotated by 22.5% relative to the barrel toroids to provide a more uniform
field in the transition region. The original ATLAS design had 12 coils in the toroid;
for budget reasons, this was later reduced to 8 coils.

The solenoid provides a magnetic field approximately along the z-direction in the
inner detector, which bends charged particles primarily in the ¢ direction due to
Lorentz forces. The toroid provides a field in the ¢ direction and bending in the

muon spectrometer occurs primarily in the 7 direction.
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Figure 4.2: ATLAS magnet system. On the left, the elements of the ATLAS magnet
system are shown with the solenoid in the center, and the separate barrel and endcap
toroid coils outside. On the right, the bending power of the toroidal field is shown as
a function of n [2§].

4.3 Inner Detector

The inner detector provides precise and efficient tracking coverage out to |n| < 2.5
for charged particles with transverse momentum above 500 MeV. Inner detector tracks
are used to identify electrons and measure their position, to identify photon conver-
sions, to measure the momentum of muons (in combination with measurements from
the muon spectrometer), to assign particles and jets to different primary vertices,
and to correct the measurement of missing transverse energy for contributions from
low-energy particles. With measurements from the inner detector, collision vertices
and the transverse and longitudinal impact parameter of individual tracks are re-
constructed with enough precision to separate tracks from 20 collisions or more in
the same event (see Section |5.2]). Vertex information is also used to distinguish
and measure secondary vertices to identify tracks consistent with the decay of long-

lived particles, including 7 leptons, kaons, lambda baryons, and hadrons containing
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b quarks.

The ATLAS inner detector consists of three separate subdetectors, as illustrated
in Figure 4.3 which shows the trajectory of a charged particle passing through the
inner detector barrel. The Pixel system is composed of 80 million individual silicon
pixels, each with approximately 10 gm position resolution in the bending plane, and
provides 3 layers of precise position measurements closest to the interaction point.
The Pixel detector is encircled by the Semiconductor Tracker (SCT), a silicon strip
detector that provides at least eight measurements for each charged particle traversing
the detector. The final subdetector in the inner detector is the Transition Radiation
Tracker (TRT). The TRT is composed of small gaseous drift tubes that provide 36
additional hits per particle, providing position information that further constrains
the trajectory of particles passing through the inner detector. The parameters of the

Pixel, SCT, and TRT detectors are summarized in Table [4.3]

Table 4.3: ATLAS inner detector parameters. In the table, X is the radiation length
of an electron in the material, and Ay is the nuclear interaction length. Resolution
shown is expected performance [89, [61].

Parameter Total ID Pixels SCT TRT
7 coverage 2.5 2.5 2.0
Material (X/Xy) at n =0 0.3

Material (X/Xo) at n = 1.7 1.2

Material (X/Xo) at n = 2.5 0.5

Material (A/Ag) at max 0.35

Number of hits on track 47 3 8 ~ 36
Radius of innermost layer (cm) 5.0 5.0 30 56
Total number of channels 8.7 x 107 8 x 107 6.2 x 10° 3.5 x 10°
Cell size (R¢ x z/R) 50pm x400pm  80pum x12 cm

Cell size (mm in Rpxcm in 2) 4 %170
Total active silicon area (m?) 62 1.7 60

Sensor thickness (pm) 250 280

Resolution in R¢ (pm) ~ 10 16 170
Resolution in z/R (pm) ~ 80 580
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Figure 4.3: This schematic shows the trajectory (red line) of a high p charged particle
passing through the layers of the ATLAS inner detector barrel [17].

The performance of the ATLAS inner detector tracking is summarized in Ta-
ble [£.4] Examples are given for the expected reconstruction efficiencies, momentum
resolution, and transverse and longitudinal impact parameter resolutions for particles
with varying type, momenta, and 7 location. These values are reported from simula-
tion and test-beam measurements. For a discussion of the detector’s performance as
measured with collision data, see Section

To limit multiple scattering and energy loss by charged particles, and to limit the
conversion of photons in the inner detector, it is important to keep the inactive mate-
rial budget of the inner detector as small as possible. Significant effort has been made
to design the readout, cooling, gas, and support structures of all three subdetectors

with as little material as possible. Still, given the dense silicon sensors themselves and
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Table 4.4: Expected ATLAS inner detector tracking performance. Reconstruction
efficiencies, momentum resolution, and transverse and longitudinal impact parame-
ter (i.p.) resolutions are given for various particle types, transverse momenta, and
pseudorapidities [89].

Parameter Example Particle Value
muons, pr = 1 GeV 96.8%
Reconstruction efficiency pions, pr = 1 GeV 84.0%
electrons, pr = 5 GeV 90.0%
n~=0 n~25
) pr =1 GeV 1.3% 2.0%
Momentum resolution
pr = 100 GeV 3.8% 11%
. . pr =1 GeV 75 200
Transverse i.p. resolution (pm)
pr = 1000 GeV 11 11
=1 GeV 150 900
Longitudinal i.p. resolution (um) br ©
pr = 1000 GeV 90 190

the size of the system, there is significant material in the inner detector, in particular
around |n| = 1.7, which is the transition from the barrel to the endcap. The amount

of material in the inner detector can be seen in Figure |4.4(a)l

4.3.1 Pixel Detector

The Pixel detector provides the first three, high precision measurements of a
particle’s trajectory as it traverses the inner detector. It is composed of three layers
of silicon pixel modules; each module is 20 x 60 mm? and 250 pum thick and contains
46,080 pixels channels. Each individual sensing silicon pixel is bump-bonded to a
readout element. There are 1744 modules in the entire pixel system, which is divided
into two endcap and one barrel sections.

The layers are arranged cylindrically in the barrel region at radii of 50.5 mm,

88.5 mm, and 122.5 mm from the interaction point. In the endcap, the layers are
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Figure 4.4: The amount of material, in radiation lengths, as a function of n in different
parts of the inner detector (left) and before the electromagnetic calorimeter (right).
Extra material is used in simulation studies to estimate the systematic uncertainties
associated to the knowledge of the material budget. A bulk of the material between
the end of the inner detector and the beginning of the calorimeter is the solenoid and
the liquid argon cryostat [35].

arranged as disks transverse to the beampipe are are located at |z| = 495 mm, 580
mm, and 650 mm. The innermost layer of the Pixel detector is called the B-layer and
is particularly useful for reconstructing secondary vertices from long lived particles,
including hadrons with b and ¢ quarks. To minimize the effect of radiation damage,

the Pixels are cooled to -7 degrees C, which reduces leakage current.

4.3.2 Semiconductor Tracker

The Semiconductor Tracker (SCT) is composed of strips of silicon detectors and
is designed to provide eight precision measurements per track after a particle has
passed through the Pixel detector. While additional layers of silicon pixels would
provide higher accuracy measurements than the silicon strips, the cost and complexity

of the electronic channels necessary to read out the Pixel detector would become
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prohibitive. The strip sensors provide adequate resolution at a fraction of the expense
and complexity.

Each individual silicon strip sensor has an area of 6.36 x 6.40 cm? and contains
768 readout strips with 80 pum pitch. Pairs of sensors are wire-bonded together end-
to-end, to form individual strips with a length of 12.8 cm. Two such detector pairs
are then placed back-to-back at a 40 mrad tilt with respect to each other. The small
angle stereo separation of the strips is used to obtain the z measurement of a hit.
There are four layers of these detector pairs, for a total of eight strip layers in total
providing 8 precision measurements in R¢ and 4 measurements in z.

The total SCT detector contains 6.2 million readout channels and has a 16 ym
resolution in R¢ and a 580 pm resolution in z, per module. Individual tracks can be

cleanly separated if separated by more than 200 pm.

4.3.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT) provides 36 additional hits on a track
traversing the inner detector, giving additional precision information in the ¢ (bend-
ing) direction, which contributes to the momentum measurement of charged particles.

This subdetector is composed of Kapton-aluminum straw tubes with a diameter
of 4 mm and a gold-plated W-Re wire of 30 pm diameter. The gas inside the tubes is
a 70% Xe, 27% COq, 3% O, mix. There are 350,000 tubes in total, split into a central
barrel with tubes parallel to the beam-pipe and two end-caps with tubes arranged
radially in disks. When charged particles pass through the tubes, the gas inside

ionizes, and the electrons and ions move under an electric field applied between the
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wire and tube wall. Avalanche multiplication occurs in the high electric field close to
the wire, producing a current signal on the wire, which is read out by the electronics.

In addition to tracking, the detector provides some discrimination between elec-
trons and heavier charged particles, mostly pions, with a measurement of transition
radiation. The space between the tubes is filled with a mesh of polypropylene foil
and flooded with COy gas. When relativistic charged particles cross the boundary
between these two media with different dielectric constants, they emit radiation in
proportion to their Lorentz factor v. For particles of a given energy, lighter particles
radiate significantly more energy. The X-rays emitted from transition radiation are
absorbed by the Xenon in the straw tubes, which kick out electrons that further ion-
ize inside the tube. For a minimum ionizing particle traversing the TRT, the energy
deposited inside a single tube is around 2 keV. A typical energy deposit from an elec-
tron producing transition radiation is 8-10 keV [124]. The TRT readout electronics
have two thresholds, one which corresponds to the ionization signal from a minimum
ionizing particle, and one which corresponds to the signal from an electron producing

transition radiation in addition to ionization.

4.4 Calorimeters

The calorimeters measure the energy and position of electrons, photons, mesons,
and hadronic jets from gluons, quarks, and hadrons. Their measurements are used to
calculate the missing transverse energy in the event (see Section [p.5]). The ATLAS
calorimetry includes an electromagnetic calorimeter (|n| < 3.2), a barrel hadronic

calorimeter (|n| < 1.7), two endcap hadronic calorimeters (1.5 < |n| < 3.2), and
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forward calorimeters (3.1 < |n| < 4.9). An overview of the ATLAS calorimeter

system is shown in Figure

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel

Figure 4.5: A schematic of the ATLAS calorimeters. [17].

The electromagnetic calorimeter is finely segmented for precision measurements
of electrons and photons. The other calorimeters have a coarser granularity, which is
sufficient for jet reconstruction and the calculation of missing transverse energy.

The depth of the electromagnetic calorimeter is greater than 22 radiation lengths
in the barrel and 24 radiation lengths in the endcap. The hadronic calorimeter is
10 interaction lengths thick at 7 = 0. The thickness of the calorimeters ensures that
both electromagnetic showers and hadronic jets are fully contained and well measured.
Additionally, the depth of the calorimeters prevents particles from punching through
to the muon system; the rate of hadronic punch-through is significantly below the
rate of muons from decays in jets [62].

Table 4.5 summarizes the main parameters of the calorimeters in ATLAS.
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Table 4.5: ATLAS Calorimeter parameters [62} [61], T0OS].

Component Layers Coverage Granularity (An x A¢) Depth
EM Calorimeter
Total 3 + presamp In| < 3.2 varies 22 X,
Barrel
Presampler 1 In| < 1.52 0.025 x 0.1 10 mm
Layer 1 (strips) 1 In| < 1.475 ~ 0.003 x 0.1 4.3 Xy
Layer 2 (main) 1 In| < 1.475 ~ 0.025 x 0.025 16 X,
Layer 3 (back) 1 In| < 1.475 0.05 x 0.025 2 Xy
Endcap
Presampler 1 1.5 < |n < 1.8 0.025 x 0.1 4 mm
Layer 1 (strips) 1 1.375 < |n| < 3.2 ~ 0.003 x 0.1 4.0 X,
Layer 2 (main) 1 1.375 < |n| < 3.2 ~ 0.025 x 0.025 20 X,
Layer 3 (back) 1 1.5 < |n <25 0.05 x 0.025 2 Xo
Hadronic Tile Calorimeter
Total 3 In| < 1.7 varies 9.7-13.0 Ao
Layer 1,2 2 In| < 1.7 0.1 x0.1
Layer 3 1 In| < 1.7 0.2x0.1
LAr Hadronic End-Cap Calorimeter
Low n Layers 4 1.5 <|n <25 0.1x0.1 9.7-12.5 Xo
High 7 Layers 4 2.5 < |n| <3.2 0.2x0.2 9.7-12.5 X
Forward Calorimeter
FCAL Layers 3 3.1<|n <49 ~ 0.2 x0.2 9.5-10.5 Ao
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4.4.1 Electromagnetic Calorimeter

The electromagnetic calorimeters are built of an accordion-shaped sandwich with
alternating layers of liquid argon and lead. Electrons and photons produce electro-
magnetic showers as they pass through the lead. The electrons and positrons in these
showers ionize the liquid argon; kapton electrodes in the center of the liquid argon
layer absorb the ionization electrons. The accordion shape of the layers forces elec-
trons and photons to pass through many layers when traversing the detector, while
allowing complete and uniform coverage in ¢. A schematic of a portion of the barrel

liquid argon electromagnetic calorimeter is shown in Figure [£.6]

Towers in Sampling 3
A@xAn =0.0245>0.05

Figure 4.6: A schematic of the barrel ATLAS liquid argon electromagnetic calorime-

ter [L7].

The liquid argon calorimeter has three sampling layers, along with a presam-

pler. The amount of material which a particles passes through before reaching the
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electromagnetic calorimeter is shown in Figure as a function of n. The pre-
sampler detector consists of a thin layer of liquid argon and serves to correct the
energy measurement for energy lost upstream of the calorimeter. The first layer of
the electromagnetic calorimeter is finely segmented in n and is called the strip layer.
The high position resolution enhances photon, electron, and neutral pion separation,
as well as providing a precise position measurement in n for photons and for track
matching for electrons. The second layer is 16 radiation lengths thick and designed
to contain the electromagnetic shower. It provides the main energy measurement for
photons and electrons. The third layer or back section aids in separating electromag-
netic showers from hadronic showers and provides an estimate of energy leaked out
of the electromagnetic calorimeter.
The energy resolution of the electromagnetic calorimeter is:

o(E) _ 10%

E  VE

where E' is the energy of the cluster, o(F£) is its resolution, and @ represents a sum in

& 0.7% (4.3)

quadrature. The constant noise is around 250 MeV per cluster. The signal from the

electromagnetic calorimeter is read out in approximately 5 samples, each 25 ns long.

4.4.2 Hadronic Calorimeters

Hadronic calorimetry spans the range |n| < 2.7 using a variety of different tech-
nologies suited to the required resolution and radiation environment, both of which
change as a function of 7. In the range n < 1.7, the barrel hadronic calorimeter is
composed of alternating tiles of iron and plastic scintillator. Hadronic showers are

generated in the iron; the plastic scintillator produces a light signal proportional to
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the number of minimum ionizing particles in the shower. The light from the shower
is transmitted to photomultiplers via wavelength shifting optical fibers. The signal
from the hadronic calorimeter has a time resolution of 50 ns.

Over the range 1.5 < |n| < 3.2, the hadronic calorimeter is composed of alter-
nating layers of liquid argon and copper. In the forward region, for 3.1 < |n| < 4.9,
the forward calorimeter provides a coarse energy measurement in a high radiation
environment using a dense matrix of copper and tungsten filled with liquid argon.

The pion energy resolution of the hadronic calorimeter (including the electromag-

netic contribution) in the barrel is:

o(E)  55% 3.2 GeV
E = U5 ©23% & ——/— (4.4)

4.5 Muon Spectrometer

The muon spectrometer is the outermost layer of the ATLAS detector and it is
designed to measure, with high precision, the momentum and position of charged
particles up to |n| < 2.7 and to trigger on charged particles up to |n| < 2.4. All
neutral hadrons, photons, and charged particles, except muons, which are produced
in the proton-proton collision lose all their energy to electromagnetic or hadronic
showers before reaching the muon spectrometer, leaving behind a bath of low energy
neutrons and photons. The only high energy (> 1 GeV) particles that reach the
muon spectrometer are neutrinos, which do not interact with the detector at all, and
muons. Therefore, the muon spectrometer serves not only to measure the trajectory
of muons but also to identify charged particles that make it to the spectrometer as

muons.
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The large-n precision coverage of the muon spectrometer is essential for efficiently
reconstructing signals with multiple leptons, including W2 — (vl events and the
Higgs— ZZ — 0000 decay. For Higgs events, roughly two-thirds of leptonically
decaying ZZ pairs include at least one lepton with n > 1.4 [89).

The ATLAS muon spectrometer is designed to provide a stand-alone measurement
of muon momenta, which can be combined with an inner detector track to improve the
resolution. The design goal of the muon spectrometer is to measure the momentum of
a 1 TeV muon to within 10% accuracy. This would allow the identification of a narrow,
heavy resonance that decays to muons with transverse momenta at the TeV scale, if
such a particle exists. The expected muon momentum resolution, %, in ATLAS is
shown in Table [4.6] for both standalone and combined muons. The measured muon
momentum resolution is shown in Figure 4.7, The momentum is measured in a
sample of Z — pp events [31]. Standalone muons are measured solely with the muon
spectrometer; combined muons include information from the inner detector track. For
muons with transverse momentum less than 50 GeV, the inner detector measurement
dominates the measurement. For muons in the range 50 < pr < 100 GeV, both the
muon spectrometer and the inner detector contribute significantly to the momentum
measurement and uncertainty. For high pr muons with transverse momentum above
100 GeV, the muon spectrometer measurement dominates.

The layout of the muon spectrometer is shown in Figures 1.8 through . Mon-
itored drift tubes (MDTSs) provide precise measurements of the muon trajectory over
most of the spectrometer coverage. In the inner layer of the endcap, the rate of inter-

actions from neutrons and photons is too high for the MDTs, and the region between
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Table 4.6: ATLAS muon momentum resolution. Expected muon momentum resolu-
Apr

tion, ==L,
p

T
spectrometer + inner detector track) muons. The expected momentum resolutions

are shown for different momenta muons at example locations in the barrel (n = 0)
and endcap (n = 2) [89).

in ATLAS, for standalone (muon spectrometer only) and combined (muon

Resolution
Muon momentum (GeV)  Standalone Combined
p=10 3.9% 64% 14% 2.4%
p =100 31% 31% 26% 21%
p = 1000 10.5% 4.6% 104% 4.4%
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Figure 4.7: Measured muon momentum resolution, %, in ATLAS, for muons mea-

sured in the muon spectrometer [31].
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2.0 < |n| < 2.7 is covered by Cathode Strip Chambers (CSCs) which provide precision
tracking measurements. In the central region, the muon trigger is provided by Resis-
tive Plate Chambers (RPCs). To handle the higher rate in the forward region, Thin
Gap Chambers (TGCs) are used. There are three layers of precision (MDT or CSC)
chambers over the full spectrometer, called the inner, middle, and outer stations,
respectively. There are also three layers of trigger coverage. For the MDTs, RPCs,
and CSCs, the azimuthal coverage is broken into 16 ¢ sectors. Eight large chambers
span the area between the coils of the toroid and eight small chambers sit inside or
on-top of toroid coils. The layout in ¢ is shown in Figure The large and small
chambers sit at different radi from the beam-line and overlap in ¢ to ensure complete
coverage. The TGCs have a 12-fold ¢ symmetry. A summary of the parameters for

each detector subsystem in the muon spectrometer is given in Table

Thin-gap chambers (T&C)
] | ] Cathode strip chambers (CSC)

Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 4.8: A schematic of the ATLAS muon system. [17].
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Table 4.7: ATLAS muon spectrometer parameters [62] 61].

Parameter MDT CSC RPC TGC
coverage In| <2.7 20< || <27 In| <105 1.05<|n <27
g & (< 2.0 inner layer)  (inner layer) (< 2.4 trigger)
Primary function tracking tracking trigger trigger
Hits per track 20 4 6 9
Chambers 1150 32 606 3588
Channels 339,000 30,700 373,000 318,000
Resolution z/R (pm) 35 (2) 40 (R) 10,000 (2) =~ 3,000 (R)
Resolution ¢ (mm) - 5 10 ~5
Time resolution (ns) - 7 2 4
Area (m?) 5500 27 3650 2900
0.0 o‘.2 0/4 06 0.8 1.0 EM 1.2
[ / Barre Torold 14 |
BML/ a 7 Lf [p EEL
| | ] 1.6
| 1.8
; 2.0
CEIL
| TGC3
|
Ve TGC1 TGC2
EndCap Toroid

Figure 4.9: A schematic of the ATLAS muon system, showing where muons of a given
71 pass through the spectrometer for one quadrant of the detector where the beam-line
is the z-axis. The MDT chambers are shown in light blue. In the barrel, the middle
and outer layers include RPC chambers. The TGC chambers are shown in the endcap
in green. The CSCs are shown in light blue in the inner endcap layer and are a slight
angle to the interaction point. Only the large chambers are shown here.
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Figure 4.10: A schematic of the ATLAS muon system, for one quadrant of the ATLAS
detector, which shows the location of small chambers in z and R. The beam-line runs
along the x-axis. MDT chambers are shown in green in the barrel and in cyan in the
endcap. The RPC chambers are shown in white and the TGC chambers are shown

in magenta. The CSCs are shown in yellow.
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Figure 4.11: A schematic of the ATLAS muon system, for one quadrant of the ATLAS
detector, which shows the location of large chambers in z and R. The legend is the

same as Figure m

80



Chapter J: The ATLAS Detector

Trigger chambers Precision chambers

End-cap
toroid

BO

Figure 4.12: A schematic of the ATLAS muon system, looking in the z-y plane at the
barrel MDT (blue) and RPC (pink) chambers. The chambers in between the toroid
coils are called large chambers and the chambers centered on the coils are called small
chambers.

4.5.1 Monitored Drift Tubes

To achieve the design goal of measuring the momentum of a 1 TeV muon with
10% resolution, the precision muon chambers must be able to measure a deviation
from a straight path with a precision of 50 ym. Over most of the muon spectrometer
coverage, the Monitored Drift Tubes (MDTSs) provide this measurement.

The basic detection element of the MDTs are aluminum tubes with a diameter
of 3 cm, with a 50 yum W-Re wire running down the center. The tubes are filled
with a gas mixture of 93% Argon, 7% CO., and trace amounts of HoO (300 parts
per million). When a charged particle traverses an MDT tube, it ionizes the gas, and
under an electric field provided by keeping the wire at 3,000 V and the wall of the

tube at ground, the ionized electrons drift toward the central wire. Near the wire,
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the electric field is strong enough to cause an electron avalanche, which produces a
detectable current on the wire. Individual tubes have a maximum drift time around
750 ns and a resolution of around 80 pm.

Tracking a muon’s trajectory through several layers of tubes in an MDT chamber
improves the position resolution to 35 pm per chamber. The schematic of an MDT
chamber is shown in Figure MDT chambers are built of two multi-layers of 3-4
tubes each, with a gap between them. The inner stations have chambers with 8 total

layers of tubes; the middle and outer stations have chambers with 6 layers of tubes.

Three or
four drift-
tube layers

Four alignment
rays (lenses in the
middle spacer)

Figure 4.13: Layout of an MDT chamber [27]. The two multilayers containing three
layers of tubes each are shown, along with the support structure and the optical
alignment system (red lines) within the chamber.

In order to achieve 50 pm position resolution over the entire muon track, which
passes through three muon chambers on average, the position of individual tubes,
relative to each other, must be known to 30 pm accuracy over the whole spectrome-
ter. This daunting alignment task is performed by an optical laser alignment system
which continually monitors both the shape of an individual chamber to correct for

deformations from temperature changes, gravitational sag, and the effect of the toroid
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coils turning on and off, and the position of individual chambers with respect to fixed
measurement points in the cavern.

The intrinsic resolution of the tubes and the knowledge of the alignment limit
the momentum resolution for muons with momenta above several hundred GeV. The
contributions to the muon momentum resolution are shown in Figure for stan-
dalone muons, measured solely in the muon spectrometer. For muons with momen-
tum between tens of GeV and several hundred GeV, multiple scattering dominates
the resolution. For low py muons with transverse momentum below 20 GeV, fluctua-
tions in energy loss before the muon enters the muon spectrometer are the dominant

contribution.
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Figure 4.14: Contributions to muon momentum resolution for standalone muons mea-
sured solely with the muon spectrometer [21].
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4.5.2 Cathode Strip Chambers

The maximum hit rate that individual MDT tubes can sustain is around 150
Hz/cm? due to limitations from the long drift-time and the readout electronics. At
nominal luminosity, the rate of interactions from low-energy photons and neutrons
was expected to reach this limit in the forward region of the inner endcap layer.
Therefore, in the region of 2.0 < || < 2.7 in the inner endcap layer, Cathode Strip
Chambers (CSCs) are used instead of MDTs. The CSCs can be operated up to hit
rates around 1000 Hz/cm?, which is sufficient for the expected hit rates in this region.

The CSCs are multiwire proportional chambers whose wires are oriented in the
radial direction. The chamber gas is 30% Ar, 50% COs, and 20% CF,. The readout
is provided by strips on both cathodes. One set of strips runs perpendicular to the
wires and provides the precision 7 measurement; the other set of strips runs parallel
to the wires and proves the ¢ coordinate. Each chamber therefore provides both an
n and a ¢ measurement. There are four layers of CSC chambers on each side of the
detector. The CSCs are installed in a tilted position so that tracks originating from

the interaction point will be normal to the chambers.

4.5.3 Resistive Plate Chambers

The Resistive Plate Chambers (RPCs) provide muon triggers and a measurement
of the ¢ position for muons passing through the barrel. Relative to the MDTs, they
are fast (few ns time resolution) but spatially imprecise (~ 1 cm spatial resolution).

The basic unit is formed by two parallel resistive plates separated by 2 mm and

filled with a gas mixture based on CyHsF,. Electrons from primary ionization are
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multiplied into an avalanche by an electric field of order 4-5 kV/mm. The signal is
read out by metal strips on the outside of the chamber, which are capacitively coupled
to signals inside the gas volume. One set of strips measures the ¢ coordinate and the
other orthogonal set measures the n coordinate.

Each RPC chamber is made from two detector layers, providing two ¢ measure-
ments and two 7 measurements per chamber. Two sets of RPC chambers sandwich
the MDT chambers in the middle station of the spectrometer, and a third layer of

RPC chambers rests against the inside of the MDT outer station chambers (see Fig-

ure [4.12).

4.5.4 Thin Gap Chambers

The Thin Gap Chambers (TGCs) provide the muon trigger and ¢ coordinate
measurement, for muons passing through the endcap. Compared to the RPCs, they
have higher spatial resolution. This aids in separating hits from muons from neutron
and photon background hits, which are significantly more numerous (a factor of 10
or more) in the endcap than in the barrel. The fine granularity is also important
for ensuring accurate pr thresholds for muon triggers, as muons which pass through
the endcap have a much higher total momentum, p, than muons in the barrel for the
same pr. Finally, the three muon trigger stations are physically closer together in the
endcap than in the barrel, and improved granularity is necessary to achieve the same
level of pr discrimination with a shorter lever arm [28].

The TGCs are a form of multiwire proportional chamber with an anode-wire

pitch that is larger than the cathode-anode pitch. On the outside of the chambers,
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there are readout strips perpendicular to the wires. Signals from both the wires
and the strips are read out by the front-end electronics, providing a two-dimensional
position measurement. The chamber is filled with a gas mixture of 55% CO, and
45% n-pentane. There are seven layers of TGC chambers in the middle station of
the endcap, and two layers of chambers in the inner station. Only the middle station

chambers provide information that is used by the Level 1 trigger.
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Reconstruction

This chapter summarizes the reconstruction of physics objects used in the WZ
analysis, including inner detector tracks, vertices, muons, electrons, and missing trans-
verse energy. Charged particles with pr > 400 MeV produce inner detector tracks
which are used in the reconstruction of electrons, muons, and vertices. Missing trans-
verse energy is reconstructed from the calorimeters to identify particles which do
not interact with the detector, including the neutrino from the W leptonic decay.
The reconstruction of calorimeter-based missing transverse energy is modified with
information from the muon spectrometer and with low pr inner detector tracks. The
detector performance in reconstructing muons and electrons is not covered in this

chapter, but is discussed in Sections [7.2.2] and [7.2.3] respectively. The specific selec-

tions applied to muons and electrons in the W Z analysis are discussed in Sections 8.4

and [R.5]
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5.1 Inner Detector Track Reconstruction

Inner detector tracks are reconstructed in ATLAS with several different algo-
rithms, described in Reference [76]. The standard algorithm begins with hits in the
silicon detectors and works from the center of the detector out to the TRT. This is
called the inside-out algorithm. A second algorithm begins with hits in the TRT and
works inward, looking for silicon hits that match the extrapolated TRT track. This is
called the outside-in algorithm and is particularly useful for finding tracks that cor-
respond to photon conversions and to secondary particles from the decay of primary
particles [76]. As the W Z analysis requires only prompt electrons and muons, we will
focus on the standard inside-out algorithm.

The first step in finding inner detector tracks is to construct three dimensional
space-points for hits in the Pixel and SCT detectors. The pixel hits give three di-
mensional hit information automatically. Three dimensional information is obtained
from SCT hits by combining information from hits in two orthogonal strips, as well as
using the beam-spot as a constraint. These space-points are used to build track seeds.
Pairs of space-points are matched to pre-built templates corresponding to tracks con-
sistent with a given momentum and transverse impact range. Wide roads are built
from the seeds and the templates; the roads define an 1 and ¢ range in which to look
for additional hits to associate to the track-seed. The track-fitting procedure finds
track candidates for about 10% of the track-seeds.

After the seeds and roads are formed, the space-points are no longer used; the
track-fitting algorithm directly uses the raw hit information. Hits not associated to

space-points can also be used in the track-fitting stage.
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A track is built iteratively using the extended Kalman filter algorithm [90]. The
Kalman filter algorithm works iteratively to fit the track and to identify which hits
belong to the track. The algorithm fits the first set of hits to estimate track parameters
and uncertainties. A prediction is then made about the location of the next hit. If
a next hit is found whose 2 is consistent with the prediction, the hit is used to
update the estimates of the track parameters, weighting the hit by its uncertainty.
A prediction about the next hit is then made using the updated track parameters,
and so forth until no more hits are found in the silicon detectors. Once a track
candidate is formed, it is refit using a simulated detector geometry with detailed
material description, necessary for simulating the effects of multiple scattering.

After track candidates have been formed from all possible seeds, ambiguities exist
for hits which are associated to more than one track. To resolve these ambiguities,
tracks are ranked according to the number of hits on each track, with different weights
assigned to hits in different layers of the inner detector system. Tracks are penalized
in the ranking if the track traverses an active sensor region where no hit is registered
(called a track hole.) After all tracks have been scored, ambiguous hits are given to
the track with the higher rank. All tracks are then refit, and tracks with too low a
ranking are dropped.

The tracks are extrapolated to the TRT system, and a search is made for TRT
hits within a road consistent with the extrapolated silicon track. The TRT hits do
not change the silicon track parameters at this stage. If TRT hits are found, the
entire track is refit with all associated hits; at this stage, silicon hits can be flagged

as outliers. If the combined track has a higher rank than the silicon track alone, the
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refit combined track is saved. If the silicon track has a higher rank than the refit
track, the associated TRT hits are stored as outliers and the silicon track parameters
are kept.

The baseline requirements in 2011 for a reconstructed inner detector track are:

pr > 400 MeV

In| < 2.5

e > 7 hits in the silicon detectors
e < 2 holes in the Pixels

The number of tracks reconstructed per event depends on the number of collisions
per event, u. The effect of pile-up on the reconstruction of inner detector tracks is
discussed in Reference [41]. The number of baseline reconstructed tracks in an event
is shown in Figure separately for data with an average p of 15, 29, and 32.
For events with (u) = 15, an average of 11.8 tracks per collision are reconstructed.
For events with (u) = 32, an average of 13.2 tracks per collision are reconstructed.
Increasing the hit requirements on inner detector tracks to require > 9 silicon hits
and no holes in the pixel detector produces a track whose reconstruction rate is less
sensitive to pu, called a robust track. The rate of reconstructed robust tracks is 10.3
tracks per collision and is independent of p up to at least 32 collisions per crossing.
The efficiency of reconstructing an inner detector track is defined as the fraction of
of primary particles with p; > 400 MeV and |n| < 2.5 which are matched to a recon-
structed track in simulation. For the baseline tracks, this efficiency is between 70%

and 90% as a function of 7, as shown in Figure [5.1(b)l The efficiency is comparable
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for an event with 1 collision as for an event with 40 collisions. The efficiency for

robust tracks is approximately 5% lower than the baseline track efficiency.
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Figure 5.1: The number of inner detector tracks (left) in data and the inner detector
track efficiency (right) from simulation. Both plots show distributions for datasets
with different p values. The number of inner detector tracks is shown for the baseline
requirements on inner detector tracks. The efficiency is shown separately for baseline
tracks (Default) and for more stringent hit requirements on the tracks (Robust.) [41]

In the W Z analysis, baseline inner detector tracks are used to reconstruct elec-
trons and muons. Baseline tracks are also used in the calculation of missing transverse
energy. Additional hit requirements are placed on the tracks associated with electrons

(see Section [5.4)) and to inner detector tracks used in muon reconstruction (see Sec-

tion [8.4])
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Figure 5.2: The distribution of the number of tracks (left) and the sum pr of tracks
(right) per reconstructed vertex in data and simulation. The simulation is a Pythia
6 minimum bias sample [122].

5.2 Vertex Reconstruction

The reconstruction of vertices in ATLAS is discussed in Reference [22]. Vertices are
found using an iterative vertex finding approach. Seed vertex positions are obtained
by looking for the global maximum in the distribution of z coordinates of tracks.
Starting with the seed position, nearby tracks are combined to form a vertex, and
an iterative x? fit is made to the vertex as additional tracks are included. Outlying
tracks are penalized with a low weight, and the vertex is refit. The down-weighting
continues for a fixed number of iterations. If a track is incompatible with the vertex
by more than 7o, it is used to seed a new vertex. The procedure is performed until no
new vertices can be found. All vertices with at least 2 associated tracks are stored.
If there are multiple vertices in a single event, the vertex with the highest > p2
calculated for all associated tracks is considered the primary vertex.

The resolution on the vertex position depends on the number of tracks associated

to the vertex and on the >~ p2 of the associated tracks. For an event with only a few
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tracks with momentum just above the tracking threshold, the resolution on the z, y
and z vertex position is on the order of 1 mm. For a vertex with \/Z—p% > 8 GeV,
the resolution is around 30 um for the x,y vertex position and around 50 pm for the
z vertex position. The vertex resolution as a function of the /> pZ of the associated
tracks is shown in Figure for both the x and z vertex positions. The y resolution

looks very similar to the x resolution and is not shown.
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Figure 5.3: The vertex z (left) and z (right) resolution as a function of the /3 p2
of tracks fitted to the vertex. Each vertex has at least 3 associated tracks [122].

The scatter of vertex location is shown in Figure for one particular run. The
RMS of the vertex position gives an estimate of the size of the beam spot. For this
run, the RMS is 15.7 pm in the x direction, 13.5 pm in the y direction, and 56 mm
in the z direction.

For events with multiple collisions per crossing, the number of vertices should be
a linear function of the number of collisions. For reconstructed vertices, this is true
in data up to events with an average of 15 collisions. For events with more than 15
collisions, the vertex reconstruction efficiency suffers as tracks and vertices begin to

overlap. This can be seen in Figure [5.5, which shows the number of reconstructed
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Figure 5.4: The two dimensional distribution of reconstructed primary vertices with
at least 3 associated tracks in the transverse plane (left) and the y versus z plane
(right) for one run in 2011. There is a 0.08 mrad tilt about the x-axis, shown here,
whereas there is a 0.5 mrad tilt about the y-axis (not shown) [122].

vertices in data versus the average number of collisions per event. A linear fit is
performed from g = 1 to g = 11 and extrapolated to higher values of u. As is
discussed in Section only a few percent of the 2011 dataset has more than
15 average collisions per event. Therefore, the vertex reconstruction inefficiency at

higher pileup is not a concern for this analysis.
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Figure 5.5: The distribution of the average number of reconstructed vertices as a
function of the average number of interactions per bunch crossing [122].

5.3 Muon Reconstruction

5.3.1 Overview

The identification of muons and the measurement of their position, charge, and
momentum is based on information from the inner detector and the muon spectrome-
ter, with input from the calorimeters for certain cases. There are two separate classes
of algorithms for reconstructing muon tracks in the ATLAS detector: STACO [130]
and MUID [4]. Although the algorithms differ, the performances are quite similar,
and the choice of which algorithm to use is fairly arbitrary. We use the STACO set of
algorithms for the W Z analysis, which is discussed below. More details can be found
in References [114], [112], and [82].

There are several challenges in reconstructing muon tracks in the ATLAS muon
spectrometer. First, the toroidal magnetic field traversed by muons in the spectrom-

eter is inhomogeneous, and analytical descriptions of the tracks cannot simply model
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the trajectories. Second, the large separation between measurement stations results
in extrapolation uncertainties. Finally, there is no true three dimensional hit infor-
mation, as the precision MDT and CSC chambers are physically separated from the
RPC and TGC trigger chambers which measure the phi coordinate.

Tracks in the muon spectrometer are reconstructed in several stages. First, hits
in the MDT tubes are calibrated. For each individual tube, a timing constant, ¢y,
is subtracted from the recorded hit time. The t; is the timing offset for a hit from
a prompt particle, relative to the crossing from which the particle came, for each
individual tube due to signal delays on cables and the time of flight it takes for the
particle to reach the tube from the interaction point. After subtraction of the tq, the
time of a hit is a function of the radius at which it traversed the tube. A radius-time
relationship called the r-t function is used to convert the time measurement to a
radius in the tube, known as a drift circle. The r-t function is a function of the tube’s
gas mixture, temperature, pressure, electric field, and magnetic field. Calibration
constants for the r-t functions are calculated on a run-by-run basis for different regions
in the MDTs. An example of the MDT r-t function is shown in Figure

After converting hits to drift circles, sets of drift circles consistent with a straight
line are identified in individual chambers. These short, straight tracks are called
segments, and their reconstruction is discussed below. Next, several segments from
different stations of the spectrometer are combined to form a track, and the track
parameters are extracted from a fit to all hits on the track. The fit function is
a helix modified by parameters that allow the muon to change its momentum and

direction in areas of dense material. The five track parameters 7, ¢, transverse im-
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Figure 5.6: The MDT radius-time (rt) function.

pact parameter dy, longitudinal impact parameter zy, and track curvature q/p are
all expressed in three locations: at the entrance to the muon spectrometer, at the
origin of the detector, and at the primary vertex of the event. The extrapolation
of the muon spectrometer track to the origin or primary vertex is calculated using a
parametrization of energy loss in the calorimeters as a function of the muon’s position
and momentum. Multiple scattering is accounted for with a detailed simulation of
the material in the detector.

If an inner detector track can be matched to the muon spectrometer track, a
combined muon is formed from a combination of the respective track parameters.
For muons with pr < 50 GeV, the inner detector track dominates the measurement
of momentum due to the strong solenoid magnetic field and the fact there is less
material in and before the inner detector than in and before the entrance of the

muon spectrometer, so energy loss fluctuations are smaller in the inner detector.

97



Chapter 5: Reconstruction

For muons with pr > 100 GeV, the muon spectrometer track dominates a muon’s
momentum measurement, as the long lever arm of the spectrometer increases the
small sagittas of high momenta muons. The resolution at high momenta is limited by
the internal alignment of the muon spectrometer, knowledge of the magnetic field, and
the intrinsic resolution of the MDT tubes, including calibrations. In the intermediate
range 50 < pr < 100 GeV, both the muon spectrometer measurement and the inner
detector measurement contribute roughly equally to the combined track’s momentum,

and the resolution is limited by multiple scattering.

5.3.2 STACO Muons

There are three types of reconstructed muons in the STACO class, differing in
whether the main momentum measurement comes from the muon spectrometer, the

inner detector, or from a combination of inputs from both detectors:

e Standalone muons: tracks are reconstructed by the Muonboy algorithm in the
Muon Spectrometer. The track parameters are extrapolated to the beam line

through the simulated detector geometry with average energy loss information.

o Segment-tagged muons: inner detector tracks are extrapolated to the muon
spectrometer. The MuTag algorithm identifies a muon candidate if a segment

in the muon spectrometer can be associated to the extrapolated track.

e Combined muons: If a match can be made between an inner detector track and
a standalone muon reconstructed by Muonboy, the STACO algorithm makes a

statistical combination of the two tracks and computes new track parameters.
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The name STACO, which stands for STAtistical COmbination, is given to the
algorithm which combines inner detector tracks and tracks in the muon spectrometers.
However, STACO is also used to describe the set of reconstructed muons which are

based on the Muonboy algorithm, including segment-tagged and standalone muons.

Segment Reconstruction

Segment reconstruction begins with pairs of MDT drift circles in regions of interest
in the muon spectrometer in which a muon trigger fired. All four lines which are
tangential to the two drift circles are formed. The lines are required to match roads
which point back to the interaction point; if one line does not, it is dropped. The
tangent lines are extrapolated through all other tube layers in the MDT station. If
there is a hit in a tube through which the segment passes, it is preliminarily added
to the segment. Segments can be formed with hits in multiple chambers in the same
station. This happens, for example, at the overlap region between the small and
large chambers, where a single muon could pass through 12 (in the middle and outer
stations) or 18 (inner station) tubes.

After all possible MDT hits have been added, all segment candidates with fewer
than 3 MDT hits are dropped. A straight line fit through all hits on the remaining
segment candidates is performed. Rather than using a pure x? to measure the quality
of the fit, the Muonboy algorithm has a “penalty factor”, XZ, which takes into account
the fact that a genuine muon hit might be masked by a hit from a delta ray which
passes closer to the wire than the muon does. To account for this possibility, hits

with drift radii that are smaller than the other tubes prefer are penalized less than
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hits with larger drift radii. Hits which worsen the X;Q; of the segment are dropped at
this stage [114].

Next, trigger hits are added to the segment. If a trigger hit sits on a straight
line with the track, it provides ¢ information. The ¢ information allows improved
calibration of the drift-times because the position of a hit along the length of the
tube changes the signal propagation time. The position of the hit along the tube can
also change the Lorentz angle on account of the rapidly changing magnetic field. If
a trigger hit is added to the segment, the MDT drift circles are recalculated and the
segment is refit. If no trigger hits can be matched, 5 different ¢ positions are tested,
and the result with the best X;QJ is kept, taking advantage of the signal propagation
time down the MDT wire.

Muonboy creates two classes of segments. Strict segments must have at least 3
MDT hits, two of which must be in different multilayers, and at least one trigger hit.
An example of a strict segment is illustrated in Figure [5.7] After all strict segments
are found, hits which are not associated to strict segments are used to build loose
segments, which only require 3 MDT hits which can all be in one multilayer. Because
the inner layer of the barrel spectrometer does not have trigger chambers, all segments

in the inner layer are loose.

Track Reconstruction and Fit

Starting from strict segments in the middle and outer layers of the spectrometer, a
rough estimate of the muon momentum can be made using the position and direction

of the segment and the assumption that it came from the interaction point. Using
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Figure 5.7: An example of a strict STACO muon segment with hits in both multi-
layers of the MDTs and associated trigger hits [82].
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this preliminary estimate, the track’s trajectory through the magnetic field to the
other layers of the spectrometer is extrapolated. If a matching segment is found in
the next station, it is added to the original segment to make a track candidate. The
momentum estimate is refined, and a new extrapolation is made to the third station,
again checking for segments that can be added to the track candidate. At this stage,
a track candidate is only kept if it contains at least two segments in different stations.

A fit is then performed using the hits from all segments associated to the track
candidate. Hits which are inconsistent with the track, given their Xf), are dropped.
Finally, the track is adjusted to include corrections for energy the muon might lose in
traversing the spectrometer. If the trajectory passes through a dense area, a scattering
center is created in which the muon track is allowed to lose energy and change its
direction. The scattering angle is a free parameter in the final fit, and the energy loss
is parametrized. Between 3 and 5 scattering centers are allowed per track. A final fit
is performed using full hit information as well as the scattering centers. Tracks with

a poor X2 are not kept.

Combined Muon Fit

If an extrapolated track from the muon spectrometer matches an inner detector
track, a combined muon candidate is formed. Combined muons use information from
both the inner detector and the muon spectrometer to improve the muon momentum
resolution. Rather than performing a new fit with information from both detectors,
the STACO statistical combination directly calculates combined track parameters

from the inner detector and muon spectrometer track parameters. The combined
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track parameters, P, with covariance matrix C', are derived from the track parameters
of the inner detector track and the muon spectrometer track, P;p and P,sg, as well

as their respective covariances, Crp and Cg:

(Crp 4+ Chls) x P=C5t x Pip + Cyls x Pys -
5.1

C=(Crp+Cus)”
A x? is also calculated from the track parameters, and tracks with a good x? are kept

as combined muons.

Segment-Tag Muons

After combined muons are formed, unused inner detector tracks and individual
segments not used in a stand-alone track can be used to form segment-tag muons.
To form a segment-tag muon, an inner detector track must match to one segment
in the inner layer of the spectrometer. Around the transition region at |n| = 1.2, a
muon could pass through the spectrometer without traversing any chambers in the
inner layer. In this region, segment-tag muons can consist of an inner detector track
paired with a segment in the middle or outer layer. For segment-tag muons, the track
parameters are taken from the inner detector track. Segment-tag muons are useful
for increasing the efficiency for selecting muons in the transition region and for low
pr muons which may not make it beyond the first layer of the spectrometer.

There are also calo muons built from inner detector tracks and calorimeter energy
depositions consistent with a muon, but these are not used in the W Z analysis. Calo
muons have a relatively high fake rate and are especially useful only for very low pr

muons which do not make it to the first layer of the spectrometer, and for muons at
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7 = 0 where there are no muon chambers.

5.4 Electron Reconstruction

The reconstruction of electrons in ATLAS is discussed in Reference [35] and sum-
marized here. Electron reconstruction is factored into two pieces: cluster reconstruc-
tion and electron identification. In cluster reconstruction, calorimeter clusters and
tracks are loosely matched to build objects that are consistent with electrons. In
the identification process, more stringent selections are placed on the reconstructed
objects to reject backgrounds from jets and photons.

The reconstruction of electrons in the central part of the detector, |n| < 2.47, uses
the sliding window algorithm [IT0]. After pedestal subtraction, the total transverse
energy deposited in all three layers of the calorimeter is summed longitudinally into
calorimeter towers. The size of the tower is set by the 0.025 x 0.025 1 X ¢ granularity
of the middle layer of the electromagnetic calorimeter. A window, or search area, is
3 x5 (n x ¢) calorimeter towers. If the total transverse energy in a window, summed
across all calorimeter towers, is a local maximum and is greater than 2.5 GeV, a seed
calorimeter cluster is formed. The position of the seed cluster is computed as the
energy-weighted 1 and ¢ center of the cluster’s cells. For electrons with pr > 15 GeV
from W or Z decays, the efficiency of seed cluster formation is 100% in simulation.

Once a seed cluster is formed, the cluster is rebuilt using 3 x 7 towers in the barrel
and 5 x 5 towers in the endcaps. The cluster energy is calculated by summing four

contributions:

e Estimated energy deposit in material in front of the calorimeter
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e Measured energy deposit in all towers in the cluster
e Estimated energy deposit outside the cluster (lateral leakage)

e Estimated energy deposit after the electromagnetic calorimeter (longitudinal

leakage)

The estimated terms are parametrized as a function of the measured energy in the
pre-sampler, the separate measured energy in all three layers of the electromagnetic
calorimeter, and the number of collisions in the event. The estimation is based on
detailed simulation of energy deposition in active and inactive regions of the detector.

To count the reconstructed cluster as an electron, an extrapolated inner detector
track must be matched to the position of the cluster within An < 0.05. The phi
matching conditions are asymmetric, relative to the bending direction of the electron,
due to the fact that if the electron radiates a photon, its bending radius will only
decrease. The track must align with the calorimeter cluster within A¢ < 0.1 in the
bending direction, and A¢ < 0.05 on the other side. If there are multiple matched
tracks, preference is first given to tracks with hits in the silicon detectors, and then
to the track with the smallest AR = \/m distance to the seed cluster. The
energy of the electron candidate is taken from the calorimeter cluster measurement
corrected by estimations from simulation, and the n and the ¢ are taken from the

matched track parameters. The transverse energy FEr is calculated as:

Ecluster
= - 5.2
g COSh(ntrack) ( )

Once electrons are reconstructed, further selection requirements are imposed to

increase the purity of the sample and reject fake electrons from jets, pions, or photons.
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This process is called electron identification. On ATLAS, these selection requirements
are grouped into three distinct categories: loose++, medium++, and tight++ elec-
trons. The categories are designed to reject fake electrons with powers of roughly
500, 5000, and 50,000, respectively. The variables used in the identification require-
ments are shown in Table for all three categories. The values corresponding to the
calorimeter selection requirements are calculated in 10 bins of cluster n and 11 bins
of cluster E7. The selection values for an electron with n ~ 0 and with 40 < E7 < 50
GeV are shown in Table 5.2l

The loose++ identification places requirements on the deposited energy and shower
shape in the middle layer of the electromagnetic calorimeter to ensure that the clus-
ter is consistent with an electron shower. Requirements on the energy leakage into
the hadronic calorimeter reduce contamination from hadronic jets. Requirements on
the shower energy and width in the strip layer of the electromagnetic calorimeter, as
well as requirements on the track quality and the match between the track and the
cluster position reduce the photon and 7° contamination and ensure that the electron
position is well measured.

For an electron to pass the medium++ identification, it must pass the full loose++
selection, and must pass many of the loose++ selection variables with tighter require-
ments. Additional shower shape and shower width variables in the strip layer of the
electromagnetic calorimeter are used in the selection of medium++ electrons. To
reduce the number of photon conversions in the sample, a hit is required on the first
layer of the pixel detector (the B-layer.) Finally, to discriminate between charged

pions and electrons, a requirement is placed on the ratio of the number of TRT hits
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passing the high threshold to the total number of TRT hits.

For an electron to pass the tight++ identification, it must pass the full medium++
selection, and must pass many of the medium++ selections with tighter requirements.
Additional requirements are placed on the match between the track and the cluster
(including on the ratio of cluster energy to track momentum), the total number of
TRT hits, and an explicit veto is placed on the electron if it is matched to a converted
photon candidate.

Figures through show distributions of variables used in electron iden-
tification for electrons from Z — ee decays in both data and simulation. These
plots are from the 2010 dataset and simulation, and the agreement between data and
simulation is improved in the 2011 dataset due to improvements of the simulation
material description, the alignment of the inner detector, and improvement in energy

calibrations in data from increased Z — ee statistics in data.
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Figure 5.8: Calorimeter layer 1 energy variables used in electron reconstruction and
identification, shown for electrons in Z — ee events. The left plot shows the fraction
of cluster energy in layer 1. The right plot shows the distribution of energy difference
between the strips of highest and second highest energy divided by the sum. G4
refers to GEANT4 simulation. The “new geo” was an improved geometry introduced
in 2010 [20].
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Table 5.1: Electron identification variables for each of the three categories: loose++,
medium-++-, and tight++.
Category  Selection Description Name

Acceptance In| <2.47 7
Ratio of Er in the first layer of the hadronic calo to  Rpeq
the Er of the EM cluster

Hadronic Leakage Rtig of Er in hadronic calo to Ep of the EM cluster ~ Rpuq
Ratio of energy in 3 x 7 cell to the energy in 7 x 7 R,
cells centered at cluster position

Middle 1 ¢ Lateral shower width within 3 x 5 window of cells: W2

phddle layer of /(5 B /(T E:) — (3 Bm) (3 B0, where E,

calo is energy and 7; is 1 of cell ¢
Energy deposited in middle layer Ey
Looset Shower widt.h: \/(Z Ei(i —imar)?) O E;), where i wgy
. runs over strips in window of Anpx A¢ = 0.0625 x 0.2,

Strlp. layer of EM and 7,4, 18 index of highest-energy strip

calorimeter
Energy difference between max and 2nd max energy  FE,qu0
deposits

Track-cluster An between cluster position in strip layer and track An

matching ) Number of hits in the pixels Npizel

Track quality
Number of total hits in the pixels + SCT detectors Ngi

Loose++ Tighter selections on loose++ variables
Fraction of EM calo energy in first strip layer fi
Energy difference between strip energy of first mini- AFE,

Strip layer of EM  mum and second maximum of cluster

calorimeter S n 0 sh - .

Medium-++ ower shape in shower core in first sampling fm
Shower width in strips, weighted by distance from  wy.
shower max

Track quality Distance of closest approach to primary vertex A
TRT Ratio of high threshold to all TRT hits fur
Conversions Require hits on the b-layer of the pixel NB—layer
Medium-++ Tighter selections on medium-++ variables
A¢ between cluster position in strip layer and the A¢
Track-cluster extrapolated track
; matchin

Tight++ & Ratio of energy of cluster over momentum of track E/p
TRT Number of hits in the TRT NTRT
Conversions Veto if match to reconstructed photon conversions
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Table 5.2: Typical electron selection requirement values

Variable Loose++ Selection  Tight++ Selection

Rhad < 0.011 < 0.008

R, > 0.920 > 0.930

W2 < 0.011 < 0.011

Watot < 2.80 < 2.27

Eratio > 0.80 > 0.835

A, < 0.015 < 0.005

Npizel >1 >1

Msi > 7 > 7

|do| - <1

fur - > 0.08

NB_layer - >1

Ay - —0.03 < A, < 0.015

E/p - 0.70 < E/p < 3.0

NTRT - > 18
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Figure 5.9: Calorimeter layer 1 shower width variables used in electron reconstruction
and identification, shown for electrons in Z — ee events. The left plot shows the
shower width determined in a window corresponding to the cluster size. The right
plot shows the distribution of core shower width measured over 41 strip around the
strip with maximum deposited energy [20].
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Figure 5.10: Calorimeter layer 2 variables used in electron reconstruction and iden-
tification, shown for electrons in Z — ee events. The left plot shows the ratio of
energy in a cluster size corresponding to 3 eta cells by 7 phi cells with respect to the
energy in a cluster size 7 by 7 cells. The right plot shows the distribution of shower
width calculated with a window of 3 by 5 cells using the energy weighted sum over
all cells [20].
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Figure 5.11: The distribution of the fraction of electron energy deposited in the
hadronic calorimeter shown for electrons in Z — ee events [35].
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Figure 5.12: The ratio of calorimeter cluster energy to track momentum for a selec-
tion of barrel electrons in selected W — ev events. The most probable value and
the Gaussian width of a fitted Crystal Ball function are given for both data and
simulation [35].
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Figure 5.13: Track matching variables used in electron identification and reconstruc-
tion, shown for electrons in Z — ee and W — puv events. The An distribution
between the calorimeter cluster and the reconstructed track is shown for endcap elec-
trons (left) and barrel electrons (center), and the A¢ distribution is shown for barrel
electrons (right). The “nominal geometry” was the detector description in place at
the start of LHC data-taking; the “2010 alignment” used data to improve knowledge
of the alignment of the different inner detector sub-systems [35].
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Figure 5.14: The distribution of the fraction of high-threshold hits in the TRT for
electrons selected in Z — ee events [35].

The efficiency of the electron reconstruction and identification selections are dis-
cussed in Section [7.2.3] The reconstruction efficiency is close to 95% for Z — ee
electrons with 15 < Ep < 50 GeV within || < 2.5. The identification efficiency,
given a reconstructed electron, varies from 75% for tight-++ electrons to above 95%
for loose++ electrons. The identification efficiency as a function of the number of re-
constructed vertices in the event is shown in Figure [5.15]for the loose++, medium++,
and tight++ identifications separately. The pileup dependence of the efficiency is dis-

cussed in Section [7.2.1]

5.4.1 Electron Scale Calibration

The energy scale calibration of electrons in the electromagnetic calorimeter is
performed in several steps. These are described in detail in Reference [35], and the
discussion is summarized here. The baseline electronic scale is determined with test-

beam measurements, with an uncertainty around 3% due largely to uncertainties in
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Figure 5.15: The efficiency of selecting an electron given a reconstructed calorimeter
cluster and a good quality track pointing to it for electrons with 20 < Ep < 50 GeV
as a function of the number of reconstructed vertices per event. The identification
efficiency is calculated using a Z — ee sample in data and simulation and is shown
separately for loose, medium, and tight electron selection criteria [20].
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transferring the team-beam results to the ATLAS detector. This calibration is used
to convert the raw signal extracted from each cell in ADC counts into a measurement
of deposited energy. Corrections based on simulation are applied to electromagnetic
clusters to correct for energy loss due to absorption in passive detector material as
well as lateral leakage out of the cluster. Finally, Z — ee decays are used in data to
improve the calibration of the energy scale, and a data-derived correction is applied
to electrons. This correction procedure is described below.

Corrections to the energy scale are derived in dielectron events with an invariant
mass between 80 and 100 GeV. For these events, the known Z mass and shape is used
to correct the measured energy scale. For each electron, the residual miscalibration

is parametrized as a function of the electron n with 26 7 bins:
Emeasured — Etru6<1 4 an) (53)

where E'™¢ is the true electron energy, E™¢**"*d ig the measured energy, and a,, are
n-dependent correction factors. The o, correction factors are determined from a fit

to data across all Z — ee pairs that minimizes the log-likelihood:

Niejpents
my
—1 L:E E —In L;; 5.4
' 7 k=1 ' j(1+(04i+04j)/2> (54)

where ¢ and j are indices denoting the n regions under calibration (one for each
electron in the Z — ee pair), N’ is the total number of events in that region,
my, is the measured di-electron mass in a given decay, and L;;(m) is a probability
distribution function which quantifies the compatibility of an event with the Z boson
line-shape, obtained from simulation. The calibration constants are within 2% in

the central region and within 5% in the forward region. These constants are used to
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correct the measured energy of electrons in data.

Once the corrections have been applied to the measured electron energy, the ratio
between measured and true electron energy is on the order of 1-2% for central elec-
trons [35]. The Z — ee invariant mass distribution for calibrated electrons in data
and electrons in simulation in Figure [7.9,

The energy-scale calibration is cross-checked with J/¢) — ee decays using the
known J/1¢ mass, as well as with W — er decays by comparing the measured track

momentum with the measured energy deposition in the calorimeter.

5.5 [E"** Reconstruction

The missing transverse energy, E7** used in this analysis is calculated from
energy deposits in calorimeter cells which are calibrated with information from the
reconstructed objects to which they are associated. Muons reconstructed in the muon
spectrometer and inner detector tracks also enter into the missing transverse energy
calculation. This calibrated missing transverse energy is called Ref Final and its
reconstruction is detailed in Reference [24].

The reconstructed missing energy is calculated in the z and y directions in the

calorimeter and in the muon spectrometer:
E_’nzlys)s _ E‘v‘miss, calo + E_’miss,u (55)

z z(y) z(y)

The magnitude, E%** and azimuthal angle, ™ of the missing transverse energy is
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calculated as follows from the x and y components:

Ej@iss _ \/(E’—»xmiss)2 I (Ew—»ymiss)2
(5.6)
¢miss — arctan(E;niss/E;niss)

The calorimeter contribution to the missing energy is calculated over each cell of
the calorimeter which is part of a topological cluster for cells within || < 4.5. Clusters
are seeded by cells which have energy deposits greater than 4 times the width of the
Gaussian noise term for that cell. Neighboring cells with energy greater than twice
the noise threshold are added, and finally the neighboring cells of all accumulated cells

are added. Only cells which are part of a cluster contribute to the missing energy

calculation to suppress noise contributions. The calorimeter cell term is defined as:

Neen Neenr

Emiss calo — § E;sin; cos ¢;&  E™S 0 = — § FE; sin 6; sin ¢, (5.7)
=1 =1

The calibration of each cell is based on the association of reconstructed object to
calorimeter cluster. Calorimeter cells are associated to a parent reconstructed object
in the following order: electrons, photons, hadronically decaying tau leptons, jets,
and muons. If a cluster is not associated to any of the preceding physics objects, it
is considered in the Cell Out term. After calibrating the energy scale of the cluster
based on its parent object, the calorimeter term of the missing energy is calculated

as:

mi lo [ miss,e | ramiss omiss,T | 7amiss, jets | romiss, softjets | amiss, calo —~miss, CellOut
EmISS, ca. — E ) E s E ) E > ) E ) J E ) Y E )
2(y) ) TPy TPe) TEa) TEa) Tha) T T

(5.8)
where each term is calculated from the negative sum of its calibrated cell energies, as
described in Equation[5.7and E;, 6;, and ¢; are the energy, polar angle, and azimuthal

angle of the calorimeter cells. The reconstructed objects are:
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. E;Z;S)S “ E;Elys)s 7 and E;&S)S ™ are reconstructed from cells in electrons, photons,

and taus with pr > 10 GeV

Emiss, jets

() is calculated from cells in jets with pr > 20 GeV reconstructed with

the anti-kp algorithm with a cone of AR = 0.6 and calibrated with the jet

energy scale calibrations

miss, softjets
E ) J

) is reconstructed from cells in jets with 7 < pr < 20 GeV recon-

structed with the anti-k7 algorithm with a cone of AR = 0.6 and calibrated

with the hadronic scale calibrations

E_’miss7 calo,

() is reconstructed from cells associated with energy loss by muons in

the calorimeters

E_a’miss7 CellOut

) is calculated from cells in clusters and inner detector tracks not

associated to any other reconstructed object. If one or more reconstructed
tracks with pr > 400 MeV are associated to the cluster, the (sum of) track

momentum is used instead of the cluster energy.

The muon contribution to the missing energy is taken from muons with both an
inner detector and muon spectrometer track within |n| < 2.5, and from muons with
a stand-alone muon spectrometer track for muons with 2.5 < |n| < 2.7. The muon

contribution is:

Efyt=— Y Py (5.9)

selected muons

and it is calculated slightly different for isolated muons and non-isolated muons,
where a non-isolated muon is one that is within AR = \/An? + A¢? < 0.3 from a

reconstructed jet. For isolated muons, the pr is determined from the combined track
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parameters of the inner detector and muon spectrometer track. For isolated muons,
the E;n(lys)s »ealot term is not added to the calorimeter missing energy to avoid double
counting. For non-isolated muons, the muon-spectrometer measurement is taken as
the muon pr.

The resolution of missing transverse energy is studied in Z — pp and Z — ee
events in which there is no true missing transverse energy, except in rare events (1%)
in which a b or ¢ quark decay in a jet produces an energetic neutrino. In Figure [5.16],
the reconstructed missing transverse energy in Z — pp events in shown. As seen in
Figure[5.16] the distribution between data and simulation matches well. The amount
of missing transverse energy is dependent on the number of collisions in the event, as
discussed in Section [7.2.1]

The resolution of the missing transverse energy can be quantified as a function of
the total transverse energy in the event, Y Er, which is the scalar sum of the energy
of all calorimeter cells associated to clusters within || < 4.5. In Z — ¢¢ events, the
resolution of the x and y missing energy components is estimated from the width of
the distributions in bins of Y Er, assuming that the true value is zero. The E™* and
E;”iss resolutions are shown in Figure for Z — ee and Z — pupu events separately.
The resolution is fit with the function: k\/ﬁ, and £ is found to be 0.66 in electron
events and 0.67 in muon events. In a typical W Z event, the missing transverse energy
resolution is around 15 GeV. This is large, but it is not problematic for our analysis
because we do not make any measurements based on distributions of the W boson.
Rather, we extract information about the anomalous triple gauge couplings from the

transverse momentum of the Z boson in the event.
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Figure 5.16: The distribution of EZ'*** in selected Z — pu events [39].
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Figure 5.17: The x and y resolution of EF** in selected Z — ee events (blue dots)
and Z — pp (red dots) events. The resolution of the two EZ*** components is fit
with a £/ Ep function and the fitted curve is drawn for the Z — ee resolution
(blue line). The values for k are also shown on the figure [39].
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Trigger

The ATLAS trigger operates during data-taking to keep the data stream written
to disk a manageable size and to preferentially record interesting events. On aver-
age, only one out of every million collisions is recorded, and the trigger system is
responsible for determining which collisions are saved for further analysis offline. The
ATLAS trigger scheme is summarized in Section [6.1] We look for WZ — (vl events
in the data sample in which a single muon or electron passed the trigger selection.
The muon trigger is described in Section and the electron trigger in Section [6.3]
Details on the trigger selection of W Z events, including the trigger efficiency and

corrections to the efficiency calculated in simulation, are presented in Section [6.5]

6.1 ATLAS Trigger Scheme

The nominal luminosity of the LHC is 103 ecm™2 s™!, which corresponds to a

spacing between proton bunches of 25 ns and an average of about 20 collisions per
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crossing. In 2011, the highest luminosity that the LHC achieved in normal data tak-
ing was about 4 x 103 cm™2 s7! and the bunch spacing was fixed at 50 ns. This
corresponds to a 20 MHz event rate and a 400 MHz collision rate. The event rate is
the rate at which the LHC bunches cross inside the ATLAS detector. The detector
triggers and records information per event. In each event, there may be multiple colli-
sions, and the collision rate is the total rate of inelastic proton-proton collisions. The
final data written to disk is limited by offline storage capacity and offline computing
power [61], and is restricted in practice to between 200 and 400 Hz (exceeding the
original design goal of 100 Hz.) The trigger system is responsible for selecting, within
a few seconds, the one out of every million collisions, on average, that is recorded.
The ATLAS trigger system is broken into three stages: Level 1 (LV1), Level 2
(LV2), and Ewvent Filter (EF). At each stage, the selection of events is refined and
the output rate is reduced. The trigger decision chain is summarized in Figure [6.1]
The Level 1 trigger has 2 us, including delays due to signal transmission, to make
a trigger decision and must reduce the collision rate of 400 MHz to an output rate of
75 kHz. The longest time-of-flight and cable delays are in the TGC system and leave
under 0.5 pus to make a decision. The extremely short decision time limits the data
that can be used in making the trigger decision as well as the technology that can be
used to process the decision. In the MDTs, for example, a full 2.5 us of data is read
out for a single event — this information can not be included in the Level 1 trigger
decision. Likewise, although the inner detector is read out quickly, track finding is a
relatively slow process and is not a part of the first level trigger decision. Moreover,

the time it would take to move all the relevant data to a computer, process the event,
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Figure 6.1: ATLAS trigger scheme. The three levels of the trigger system — Level 1,
Level 2, and Event Filter — are shown along with the latency of the trigger step and
the input and output data rate.
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and return a decision is longer than a few microseconds. Therefore, dedicated custom
electronics processes the Level 1 trigger information as close as possible to the relevant
sub-detectors.

The sub-detectors capable of triggering at Level 1 are: the RPCs, TGCs, electro-
magnetic calorimeter, and hadronic calorimeter. The Level 1 trigger decision is made
locally by each triggering sub-detector system — in the same event, the muon system
and the calorimeters could each flag a Level 1 trigger, without knowing about the
other. The Level 1 trigger objects are: muons, electromagnetic clusters, hadronic tau
decays, jets, missing transverse energy, and total scalar energy. The granularity of
the trigger objects is larger at Level 1 than at further trigger stages.

While the Level 1 decision is being processed, data is read out from all sub-
detectors and stored in 2.5 us buffers. If the trigger decision is to keep the event,
a Level 1 trigger accept is issued to all sub-detectors, and the data from the full
detector is read out. Data from the detector is divided into n and ¢ sections called
Regions of Interest (ROIs) and in general only the data from the Region of Interest
associated to a Level 1 trigger item is examined at Level 2. This allows for faster
processing, as the Level 2 trigger has about 10 ms to make a decision and must reduce
the event rate to a few kHz. For triggers involving missing transverse energy or the
total energy in an event, data from the full calorimeter region must be used. At the
Level 2 decision stage, information from the inner detector is added to muon, electron,
or tau candidates found by the RPCs, TGCS, or calorimeters.

After an affirmative Level 2 trigger decision, data from the full event is transferred

to the Event Filter. The Level 2 and Event Filter trigger decisions are made in
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the same computing cluster located in the ATLAS counting room. Within a few
seconds, on average, the Event Filter decides whether or not to keep an event based
on information from the full detector and reconstruction algorithms based on the full
offline reconstruction. The Event Filter reduces the event rate to the final 200-400

Hz rate.

6.2 Muon Triggers

6.2.1 Muon Level 1 Trigger

Level 1 triggers are found in the RPCs and TGCs by matching hits to pre-defined
roads. Several roads with different widths are used, and the width of the road deter-
mines the minimum p7 threshold of muons whose hits are contained within the road.
The hits from both a low pr and a high pr muon would be matched to a wide road.
Only the hits from a high pr muon would be fully contained by a narrow road.

In the barrel, the RPC station closest to the interaction point, in the middle barrel
station, is called the pivot plane. In the endcap, the TGC station farthest from the
interaction point, in the outer endcap, is designated the pivot plane. If trigger hits
are found in the pivot plane, a straight line is drawn through the hit, the nominal
interaction point, and the other trigger stations. Around this line, a window is defined
in which to look for coincidence hits in the two other trigger stations, called confirm
planes. The wider the window, the lower the pr threshold. Depending on the trigger
item, there must be a coincidence of hits in two stations (the pivot plane plus one

confirm plane) or in all three stations to fire a Level 1 trigger.

124



Chapter 6: Trigger

The two Level 1 muon trigger items used in this analysis are described below:

o L1 mul0 A level 1 trigger item with a pp threshold corresponding to 10 GeV
or higher. In the barrel, the trigger requires a 2-station coincidence and in the
endcap, a 3-station coincidence is required. This was the lowest un-prescaled

Level 1 single muon trigger for the first part of 2011.

o L1 mull A level 1 trigger item with a pr threshold corresponding to 10 GeV or
higher. Unlike the L1 mulO trigger, a 3-station coincidence is required in both

the barrel and endcap.

6.2.2 Event Filter Muon Algorithm

The Muon Girl (MuGirl) algorithm was used as the primary event filter algorithm
in data taking in 2011. MuGirl is also available as an offline muon reconstruction
algorithm.

The main feature of MuGirl that distinguishes it from the Muonboy and Moore
algorithms used primarily in offline reconstruction is that it begins with tracks in the
inner detector and works “inside-out.” [I14] Inner detector tracks are extrapolated to
the entrance of the muon spectrometer, and a road in 7 and ¢ is created around the
extrapolated track. In the inner layer of the spectrometer, the algorithm searches for
MDT hits within the road, and if it finds them, a segment is fit. TGC hits are included
in the endcap inner layer. The segment is used to refine the track parameters, and
the road is extrapolated to the middle layer of the spectrometer, where the process
is repeated, including RPC hits in the barrel. The road is extrapolated to the outer

layer, where segments are again built from hits within the road.
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After segment-fitting and hit association is finished, a set of pre-calibrated neural
network functions are applied to see if the pattern of segments and hits is consistent
with a muon. If the candidate passes this test, a global fit of the complete track is
performed, in which information from both the inner detector and muon spectrometer

is used.

6.2.3 Muon Triggers

The Event Filter level muon triggers used in this analysis are described below:

o EF mul8_MG: A single muon trigger based on the Muon Girl Algorithm which
selects muons with pr > 18 GeV. This trigger is seeded by the L1 _mul0 trigger

at Level 1.

o EF mul8_ MG _medium: A single muon trigger based on the Muon Girl Algo-
rithm which selects muons with pr > 18 GeV. This trigger is seeded by the

L1 mull trigger at Level 1.

6.2.4 Single Muon Trigger Efficiency

The trigger efficiency for a single lepton trigger is defined as:

c o Nleptons firing trigger (6 1)
trigger — .
N, reconstructed leptons from Z bosons

and is measured for muons in the region |n| < 2.4 and for electrons with |n| < 2.5.
The trigger efficiency is measured with the Z tag-and-probe method. A sample of
Z — pp events is identified using offline, reconstructed muons. If one muon from the

Z decay fired the trigger, it is considered a tag muon. The other muon is called the
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probe muon. Probe muons are tested to see if they fired the trigger and enter into
equation [6.1] If both muons associated to the Z boson fired the trigger, they can
both be used as tag muons.

The efficiency of the EF_mul8_MG_medium trigger is shown in Figure for the
barrel and endcap separately. The trigger efficiency for muons increases quickly with
muon momentum in the range 15 < pr < 20 GeV and is flat by 20 GeV. For muons
with pr > 20 GeV, the triggering efficiency is 0.89 in the endcap region and 0.69
in the barrel region [42]. The difference in the trigger efficiency in the barrel and
the endcap is due to the geometric coverage of the RPC and TGC chambers. In the
barrel, the RPC chambers do not fully cover the geometric acceptance that is covered
by the MDT chambers, so it is possible to reconstruct offline muons with MDT hits
that do not pass through trigger chambers. Since the trigger efficiency is measured
with respect to reconstructed offline muons, the fact that the RPC chambers do not
fully cover the area covered by the MDT chambers reduces the trigger efficiency for
muons with |n| < 1.05. If geometric acceptance is factored out, the efficiency of the
RPC chambers for triggering on a muon traversing a chamber is 95% [15]. In the
endcap, the trigger TGC chambers cover a similar fiducial volume to the MDT and
CSC chambers within || < 2.4, so reconstructed offline muons mostly pass through

trigger chambers.
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Figure 6.2: Single muon trigger efficiencies in the endcap (left) and barrel (right)
for the Event Filter trigger EF _mul8_medium. The trigger efficiency is defined in

equation [42].
6.3 Electron Triggers

6.3.1 Electron Level 1 Trigger

The Level 1 electron trigger is based on trigger towers in both the electromagnetic
and hadronic calorimeters within |n| < 2.5 [53]. A trigger tower is an analog sum of
calorimeter cells within a 0.1 x 0.1 window in An x A¢ space. As no track information
is used at Level 1, electron and photon candidates can not be distinguished. The
triggers are therefore called egamma.

The transverse energy of the trigger candidate is estimated using look-up tables.
Within a central window of 2 x 2 trigger towers, the energy in each of the four 1 x 2
or 2 x 1 electromagnetic tower configurations is summed. At least one of the pairs
of trigger towers must pass a predetermined energy threshold. The 12 towers in the
electromagnetic calorimeters surrounding the 2 x 2 central window, as well as the

hadronic towers behind the central electromagnetic tower, are used to estimate the
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isolation. The local energy maximum within the 2 x 2 central window is used as the
position of the trigger candidate, and the region of interest is defined by the 2 x 2
trigger tower. The relevant trigger towers for an electron candidate are illustrated in

Figure (6.3
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{ {
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/ Electromagnetic
calorimeter
Trigger towers (An xA¢ =0.1 x0.1)
i . LT] Electromagnetic
Vertical sums — |+ isolation ring
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Figure 6.3: Electron level 1 trigger logic [2§].

The Level 1 egamma trigger items used in this analysis are:

o L1 EM14 Alevel 1 trigger item with an FEr threshold corresponding to 14 GeV.
e L1 EM16 A level 1 trigger item with Ep threshold 16 GeV.

e L1 _EM1i6vh A level 1 trigger item whose Ep threshold is a function of ¢. In
the regions of the electromagnetic calorimeter with the lowest trigger efficiency,
mostly due to additional inactive material, the Fp threshold is 16 GeV. In areas

with higher efficiency, the threshold is slightly higher. This “variable” threshold
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is the “v” in the trigger name. The “h” stands for “hadronic veto”; the trigger
requires less than 1 GeV of energy deposited in the hadronic calorimeter towers

behind the central electromagnetic cluster. Both the L1_EM16 and L1_EM16vh

triggers are nearly fully efficient for electrons with an Er > 25 GeV.

e L1 EM30 A level 1 trigger item with Ep threshold set to 30 GeV.

6.3.2 Electron Triggers

The electron event filter triggers used in the W Z analysis are described below:

o EF_e20-medium: A single electron trigger which selects electrons with Ep > 20

GeV. The trigger is seeded by the L1_EM14 trigger.

o EF e22 medium: A single electron trigger which selects electrons with Ep > 22

GeV. Seeded by the L1_EM16 trigger.

o LF e22vh_mediuml: A single electron trigger which selects electrons with Ep >
22 GeV. Relative to the EF_e22 medium trigger, a veto is placed on elec-
tron candidates with hadronic activity greater than 1 GeV. It is seeded by
the L1_EM16vh trigger. To recover inefficiencies at high Er due to increased
leakage to the hadronic calorimeter, the trigger is used in an OR with the

EF_e45_mediuml1 trigger.

o FEF_ e45 mediuml: A single electron trigger which selects electrons with Ep > 45

GeV. The Level 1 seed is L1_EM30.
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6.3.3 Single Electron Trigger Efficiency

The single electron trigger efficiency is defined in equation and is measured in
an analogous way to the measurement of the muon trigger efficiency, using a sample
of Z — ee events. The efficiency of the EF_e20_medium trigger as a function of offline
electron transverse energy is shown in Figure The triggering efficiency is a steep

function of transverse energy until 25 GeV, above which the efficiency is almost 100%.
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Figure 6.4: Single electron trigger efficiencies. The efficiency of the e20_medium
single electron trigger at each trigger level as a function of the offline electron Er is
shown [23].

6.4 Trigger Streams and Overlap Removal

Events which fire one of the electron triggers are put into the physics_Egamma data
stream and events which fire one of the muon triggers are put in the physics-Muons
data stream. This analysis uses events from both trigger streams. As a single W2

event could fire both an electron and a muon trigger, the same event could end up in
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both trigger streams. In a typical run, there is about 1% of overlap in total events
between the physics_Egamma and physics_Muons stream. To avoid selecting the same
event from both streams, the following event overlap removal procedure is observed:
1) all events firing one of the selected muon triggers in the physics_Muons data stream
are kept, regardless of the electron trigger status, and 2) events are selected from the
physics_Egamma trigger stream only if they do not fire any of the selected muon

triggers. This event overlap removal is applied at the trigger selection stage.

6.5 WZ Trigger

6.5.1 WZ Trigger Selection

W Z — (vl events have three high pr, isolated leptons, and the probability that
at least one of them fired a single muon or single electron trigger is high, above
98%. We use the lowest pr un-prescaled single muon and electron triggers available.
The momentum and selection requirements of the lowest un-prescaled triggers change
as a function of when the data was collected, as the LHC instantaneous luminosity
increased. The LHC dataset is broken down into several data periods, each of which
contains data taken within a few days or weeks in which the accelerator conditions
were relatively constant. The summary of the triggers used in the W Z analysis in
2011 are shown in Table [6.1]

In Table the Level 1 and Event Filter muon and egamma trigger rates are

shown for one run at a luminosity of 3.5 x 1033 cm=2s71.
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Table 6.1: WZ trigger selection. Events are required to pass the lowest available
un-prescaled single muon or single electron trigger. The trigger at the Event Filter
(EF) level is shown along with the Level 2 (L2) and Level 1 (L1) triggers that seed
it. The specific lepton triggers vary as a function of data-taking period.

EF Trigger Item L2 seed L1 seed Data Period Data %
Muons
EF _mul8_MG L2 mul8_MG L1 _mul0 periods D-I 39%

EF mul8 MG medium L2 mul8 MG _medium Ll mull periods J-M 61%

Electrons
EF _e20_medium L2_e20_medium L1 .EM14  periods D-J 44%
EF _e22_medium L2_e22_medium L1_EMI16 period K 12%
EF_e22vh_mediuml L2_e22vh mediuml1 L1_EM16vh
or periods L-M  44%
EF _e45_mediuml1 L2_e45_medium1 L1_.EM30

Table 6.2: Example trigger rates for the lowest un-prescaled EF and L1 muon and elec-
trons triggers used in data taking period M. These rates are taken from Run 191920
in the luminosity block corresponding to the peak luminosity at 3.5 x 1033 cm™2s71,
and are approximate.

Trigger Item Rate at 3.5 x 1033 cm 2571
L1 mull 10 kHz
EF_mul8_MG_medium 150 Hz
L1_EM16vh 12 kHz
EF _e22vh_medium1 100 Hz
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6.5.2 WZ Trigger Efficiency

The efficiency of triggering a W2 — (vl event is higher than the single electron
or muon trigger efficiency, as there are three chances to fire the trigger. The event

level trigger efficiency is defined as:

w2z o Ntriggered WZ events 6.2
6trigger - ( . )

N, selected WZ events

and is calculated after all W Z event selection requirements have been applied (see
Table , except the trigger requirement. The W Z event level trigger efficiency
is shown in Table [6.5.2] calculated separately for simulated WZ events in all four
channels. The efficiency is highest for the eee channel because the electron trigger is
more efficient than the muon trigger, but for all channels the probability of passing
the trigger is above 98%. The statistical uncertainty on this efficiency is ~ 1% and
the systematic uncertainty due to applying scale factors, discussed in Section [6.5.4]

is less than 1%.

Table 6.3: WZ event trigger efficiencies by channel. The first column shows the
trigger efficiency defined in equation [6.5.2] The second column shows the systematic
uncertainty due to applying scale factors to correct the efficiency in simulation to
that measured in data.

Channel Trigger Efficiency [%] Systematic Uncertainty [%]

eee 99.7 + < 0.05
eep 99.5 + 0.08
e 98.9 + 0.16
i 98.4 + 0.29
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6.5.3 Trigger Matching

After reconstructing a W and Z boson candidate, we require that one of the
leptons from either the Z or W boson is matched to the lepton that fired the trigger.
To pass the trigger matching requirement, at least one of the three final state muons
(electrons) associated to the Z or W boson must be matched to a trigger muon or
electron within AR = \/m < 0.1(0.15). To avoid differences in the measured
efficiency between data and simulation in the pr range in which the trigger efficiency
is rapidly changing, the lepton that is trigger-matched is required to have pr > 20

GeV for muons and Er > 25 GeV for electrons.

6.5.4 Trigger corrections

The efficiency of triggering a WZ event is one input to the overall efficiency of
selecting the events. Since we extrapolate the observed number of events in data to
a measured cross section using the efficiency calculated in simulation, it is important
that the simulation has the same trigger efficiency as the data. We ensure this by
weighting simulated events with a scale factor, S Fi,g4er, Which corrects the efficiency
measured in simulation to the efficiency measured in data. The single muon scale
factor is shown in the lower portion of Figure 6.2l The scale factor differs from 1
slightly in the barrel region because the RPCs had occasional chambers that were
not working or were not properly timed in; these problems were fixed within a few
runs but were not modeled in the simulation. As the W Z event can be triggered by

multiple leptons, the scale factor for the whole event is calculated as a function of all
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reconstructed leptons which are matched to a trigger object:

S Fgper = L Lza[1 = el (63)
T TS woll)]

where N is the number of trigger matched leptons passing the pr requirement and

evo(ln) and €4414(1,) are the single lepton trigger efficiencies for lepton [, in simulation

and data respectively. The event level scale factor can be computed directly from the

Fsingle

scale factors measured for single leptons, SFy, ;o

(1), by recognizing that

6data(ln> = 6MC<ln) X SFsingle (ln) (64)

trigger

The single lepton scale factors are measured for muons as a function of n and ¢

and for electrons they are measured as a function of n and Er.
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Monte Carlo Simulation and W Z7

Signal

This chapter discusses the simulation of the WZ signal in the ATLAS detector.
The generation of Monte Carlo W Z signal events is covered in Section [7.1} To en-
sure that the simulated events match the actual data as much as possible, several
data-derived corrections are applied to simulated objects and events. These correc-
tions, discussed in Section are applied to simulated events for both signal and
background processes. The simulation may not reproduce the data exactly due to
the inexact knowledge of the material description of the detector, as well as uncer-
tainty on the alignment of all detector components. Additionally, occasional detector
problems, such as high voltage trips in a single chamber, affect the efficiency of the
detector but are not in general reproduced in simulation. Distributions of kinematic
variables are shown for the simulated WZ events in Section [Z.3] at both the truth

and reconstructed level. Truth level distributions are taken directly after event gen-
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eration; reconstructed distributions are reconstructed offline after full simulation of
the response of the ATLAS detector and include detector response and experimental

resolutions.

7.1 Generation of WZ Signal Events

We model the WZ — (vll signal production with the MCQNLO 4.0 genera-
tor [88]. MC@NLO generates fully exclusive events with rates and distributions of
observables accurate to the next-to-leading order (NLO) in a.

The hard scatter producing the W2 — (vl final state is calculated to next-to-
leading order with a matrix element calculation in MC@QNLO. This includes one-loop
virtual WZ production and WZ production with an extra gluon or quark in the
final state. The Feynman diagrams for the next-to-leading order contributions to
W Z production are shown in Figure 2.5 To model the fragmentation of quarks
and gluons and the hadronization of the event, the matrix element calculation is
incorporated into HERWIG [74], which performs parton shower simulation.

Both the parton shower simulation and the matrix-element calculation produce
events with W2 + 1 quark or 1 gluon in the final state, such as the diagram shown in
Figure . To avoid double counting of events, a matching procedure is performed,
in which hard (high p7) emissions are kept from the matrix element calculation and
soft (low pr) and collinear emissions are kept from the parton shower simulation. This
matching is achieved by calculating analytically how a first branching in a shower
in the 2 — 2 body process would populate the 2 — 3 body phase space. This

analytic expression is subtracted from the matrix element calculation. The showering
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simulation re-populates the subtracted phase space. With the subtraction technique,
the matching is “smooth” — that is, there is no double counting of events, and the
rate of produced events is accurate to the next-to-leading order cross section. On
account of the subtraction and the fact that the matrix element calculation does not
necessarily produce a larger cross section than the showering in all regions of phase
space, a small fraction of simulated events have negative weights.

We chose MCQNLO to model the W Z signal for two reasons. First, it is one of the
few generators able to produce fully simulated events at NLO in «,. This is impor-
tant because the next-to-leading order terms are almost as large as the leading-order
terms for W Z production at the LHC. Moreover, the kinematics of events produced
to next-to-leading order differ significantly from events produced at leading order,
in particular in the high mass or high pr tails of distributions that are sensitive to
anomalous couplings. Second, MCQNLO 4.0 has the capability to simulate events
with anomalous triple gauge couplings and records event-by-event weights associated
to the anomalous triple gauge coupling terms. The event-by-event weights allow us to
re-weigh events simulated with a particular set of anomalous couplings to any other
value of anomalous couplings. This event reweighting, described in detail in Sec-
tion [11.1, allows us to simulate only one set of W Z events with anomalous couplings,
and to use those events to scan the full range of coupling values when searching for
anomalous couplings in the data.

The simulated W Z standard model and anomalous coupling events are produced
with the parton density function (PDF) set CT10 [109]. Events are simulated with

all permutations of electron, muon, and tau decays of the W and Z bosons, and
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the gauge boson decays are simulated at the matrix element calculation stage. The
TAULO [79] program simulates the decay of the tau leptons to all known final states.
Full spin correlations between the leptons of the Z and W boson are simulated and
the widths of the W and Z bosons are included in the generation. However, Z/v
interference is not included, and the effect of this omission is taken into account by
normalizing the simulated events to the cross-section calculated by the next-to-leading
order calculator MCFM [55], which does include Z/ interference. For details on the
calculation of the theoretical signal cross section, see Section [10.5]

The full list of simulated W Z events is shown in Table[Z.1l We simulate one set of
W Z events consistent with the Standard Model predictions, and one set of W Z events
with anomalous couplings. The set with anomalous couplings is simulated with a form
factor of 100 TeV (see equation for a definition of the form factor). The values
of the anomalous couplings in the simulated sample are set to: AgZ = 0, Axy = 0,
and Az = 0.13. After generation, we can reweight the simulation to any value of
anomalous coupling (see Section . The values of the anomalous couplings with
which we generate the sample are arbitrary, but chosen to ensure sufficient statistics
after reweighting to any value of anomalous coupling not excluded by our previous
analysis with 1 fb=1.

After simulation of the hard scattering process and the fragmentation and hadron-
ization of quarks and gluons, the events are interfaced to a GEANT4 [5] simulation
of the ATLAS detector to simulate the interaction of all final state particles with the
detector. The simulated detector signals are digitized and reconstructed using the

ATLAS reconstruction software framework, Athena [16], in release 17.0. The Pythia
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Table 7.1: W Z signal simulation. The W*Z signal production processes, generator,
number of simulated events, and cross-sections are shown for fully simulated MC
events. Also included is the ATLAS MC ID run number identifying the simulated
process. The MC simulation “filter efficiency,” €fiper, is the efficiency of selecting
events at the generator level. The k-factor corrects to the next-to-leading order
production cross section and is 1.0 for the W Z events because MCQNLO simulates
at NLO. The listed cross sections do not include k-factors or filter efficiencies. ¢
denotes e, and 7. Samples 126089-126106 are produced at anomalous coupling
values Ag? =0, Aky = 0, and Az = 0.13 with a form factor scale A = 100 TeV.

MCID Process Generator  Events  k-factor egyer Cross-section [pb]
126053 WtZ — evee MCQNLO 49999 1.0 1.0 0.04114
126054 W~-Z — evee MCQNLO 50000 1.0 1.0 0.02243
126055 WtZ — evup  MCQNLO 49999 1.0 1.0 0.04114
126056 W~Z — evupy  MCQNLO 49900 1.0 1.0 0.02243
126057 W+Z — evrt  MC@QNLO 50000 1.0 1.0 0.04114
126058 W~-Z — evrt MCQNLO 49950 1.0 1.0 0.02243
126059 W+*Z — pvee  MCQNLO 49999 1.0 1.0 0.04114
126060 W~=Z — pvee MCQNLO 50000 1.0 1.0 0.02243
126061 W+Z — pvpp MCQNLO 49950 1.0 1.0 0.04114
126062 W~Z — pvpp  MCQNLO 50000 1.0 1.0 0.02243
126063 WtZ — pvrt MC@QNLO 49950 1.0 1.0 0.04114
126064 W~=Z — pvrt  MCQNLO 50000 1.0 1.0 0.02243
126065 W+tZ — tvee  MCQNLO 49999 1.0 1.0 0.04114
126066 W~-Z — tvee MCQNLO 49949 1.0 1.0 0.02243
126067 W+tZ — rvup  MCQ@NLO 50000 1.0 1.0 0.04114
126068 W-Z — rvpup  MCQNLO 50000 1.0 1.0 0.02243
126069 W+Z — rvrr - MCQNLO 49950 1.0 1.0 0.04114
126070 W~-Z — rvrr  MCQNLO 50000 1.0 1.0 0.02243
126089-97 WtZ — tve¢ MCQNLO ~ 49995 1.0 1.0 0.05516
126098-106 W~—Z — fvl¢ MCQNLO =~ 49995 1.0 1.0 0.02849
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6 [139] generator is used to model the contribution from other proton collisions in the

same event.

7.2 Corrections Applied to Simulation

7.2.1 Pileup Corrections

Data in our sample was taken during the full running period of 2011, during
which the data-taking conditions varied significantly as the accelerator increased in-
stantaneous luminosity. The peak luminosity and the peak number of interactions
per crossing, averaged across all bunches, as a function of day, is shown in Figure [7.1]
The average number of proton-proton interactions per crossing, averaged across all

bunches, varied from 3 to 17 in the course of the data taking.
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Figure 7.1: Peak Luminosity (right) versus day and peak average number of collisions
per event (left) versus day for data collected in 2011. The peak average number of
collisions is the maximum of the mean number of interactions per beam crossing per
day. The mean number of interactions is averaged across all bunches and is calculated
per luminosity block [18].

Each proton-proton interaction contributes particles to the event, and those par-
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ticles in turn contribute hits, tracks, and energy deposits in the detector. The collec-
tive contribution to the detected event from collisions other than the one of interest
is called pileup. For sub-detectors with timing resolution less than 50 ns, such as the
inner detector, only contributions from collisions in the same crossing are relevant.
This is called wn-time pileup. For the calorimeters, which integrate signals over time
periods greater than 50 ns, energy deposits from collisions before the current crossing
can also be important. This contribution is called out-of-time pileup.

The selection of W Z events is affected by pileup in two main ways: 1) the efficiency
of selecting electrons from gauge boson decays changes as a function of the pileup, and
2) the reconstruction of missing transverse energy is sensitive to the pileup, for events
with and without high pr neutrinos. The loss of efficiency for selecting electrons
from Z decays as the number of reconstructed vertices in the event increases can be
seen in Figure [5.15] For tight++ electrons, the efficiency drops from 80% for events
with 2 reconstructed vertices to 73% for events with 17 reconstructed vertices. The
loss of efficiency in selecting electrons is mainly due to enhanced hadronic activity
overlaying the electron shower in the calorimeter. The reconstruction of missing
transverse energy is also affected by pileup. The amount of reconstructed missing
transverse energy in Z+jets events in data, which should have no “true” missing
transverse energy from high pr neutrinos, can be seen in Figure for two subsets
of the dataset with different pileup conditions. The average number of collisions per
crossing was 6 for the first part of the dataset and 12 for the rest of the data. The
fraction of Z+jets events which pass the missing transverse energy requirement of 25

GeV increases by 50% for events with 12 interactions per crossing relative to events
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with 6 average interactions.
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Figure 7.2: E7¥ in Z+jets events with two different pileup conditions. The distribu-
tion of missing transverse energy in Z+jets events in a control region in data shown
separately for events with 6 average collisions per crossing (red) and events with 12
average collisions per crossing (blue).

The simulation takes account of pileup by overlaying additional simulated events
on top of the hard scatter collision of interest. The Monte Carlo is divided into four
different periods to closely reflect the actual data-taking conditions. Each Monte
Carlo period is simulated with a different distribution of p, which is the average
number of collisions per event, averaged over all bunches, calculated per luminosity
block. A luminosity block is a discrete period of data taking in which accelerator and
detector conditions are stable and generally lasts about two minutes. The average
number of collisions per crossing is shown for our data sample in Figure [7.3] along
with the distribution of y for the four different simulation periods.

As both the electron and missing transverse energy reconstruction are sensitive
to pileup, it is important for the simulation of signal and background events that

the pileup conditions in the data are well reproduced by simulation. To ensure the
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Figure 7.3: The distribution of y values per event in data and MC (before reweight-
ing), wherey is the average number of interactions per bunch crossing, averaged over
all bunches, calculated per luminosity block. The Monte Carlo is produced with 4
different distributions of p corresponding to different run periods. Events in Monte
Carlo are reweighted to match the distribution in data.
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same distribution of pileup, the events in simulation are reweighted to have the same
p distribution as events in data. Specifically, each event in simulation, belonging to
a Monte Carlo sample and having a specific g4 and MC period, is reweighted with a

weight calculated as:

La/L o L;/La
Nay/N ~ N;/Na

weight = weightperioa * Weight pilenp = (7.1)

where L ,4 is the luminosity associated to the Monte Carlo period in which the event
falls, L is the total luminosity of the Monte Carlo sample, L; is the fraction of lu-
minosity in data that has the same p as the simulation event, N4 is the number of
events assigned to the MC period, V; is the number of events in the MC sample with
the same value of u and the same MC period, and N is the total number of Monte

Carlo events in the sample.

7.2.2 Muon corrections

To improve the agreement between the reconstruction and performance of muons
in simulation and data, several data-based corrections are made to muons and events
with muons in simulation. These include corrections for the muon reconstruction

efficiency and the muon resolution.

Muon Reconstruction Efficiency

The efficiency of reconstructing and selecting a muon differs slightly between data
and simulation. The muon efficiency in simulation is used to calculate the efficiency

of selecting W Z events, which is a direct input to the calculation of the W Z cross
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section. Therefore, it is important to correct the simulation to have the same muon
reconstruction efficiency as the data.

The muon reconstruction efficiency is measured in both data and simulation us-
ing the Z tag-and-probe method. In this method, Z — p*u~ decays are selected
by requiring two oppositely charged isolated tracks with an invariant mass consis-
tent with a Z boson. One of the tracks must be a combined muon and is called the
tag muon. The second track, called the probe muon, has a looser selection criterion
and is used to test the reconstruction efficiency. If measuring the inner detector effi-
ciency, the probe is required to be a stand-alone muon. If measuring the stand-alone,
segment-tagged muon, or combined muon efficiency, the probe is required to be an
inner detector track. The reconstruction efficiency is the fraction of probes which are
reconstructed as either inner detector tracks (if measuring inner detector efficiency)
or as combined muons (if measuring combined muon efficiency). The matching is
done using a requirement on the angular distance between the reconstructed muon
and the probe. For this analysis, the important efficiencies are the inner detector
muon reconstruction efficiency €;p, the efficiency of reconstructing combined muons,
€cp, and the efficiency of reconstructing segment-tagged muons, egp. The efficiency

is defined by the number of probe muons, N, passing different selection requirements:

Nip Nep Ngr

€&ID = €B=T 37, €SsT = — (72)
Nstandalone NID NID

The detailed selection requirements of the muons used to measure the muon recon-
struction efficiencies can be found in Reference [33]. Both tag and probe muons are
required to have pr > 20 GeV and to be isolated. The measured inner detector re-

construction efficiency is shown in Figure [7.4] as a function of the muon 7. The inner
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detector muon efficiency is between 97% and 100% across the full n range. There
are dips at 7 = 0 and |n| = 1.2 due to hit requirements on the reconstructed inner

detector track.
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Figure 7.4: Inner detector muon reconstruction efficiency. The reconstruction effi-
ciency of muons in the inner detector with respect to stand-alone muons as a function
of n for muons with py > 20 GeV. The Scale Factors, SF, are the ratios between the
data and MC efficiency and are used to correct the efficiency of reconstructing muons
in simulation to match that of the data [33].

The measured efficiencies of reconstructing combined and segment-tagged muons
are shown in Figure as a function of the muon 7. For combined muons, the
reconstruction efficiency is close to 96% for most regions of the detector. At n = 0
and |n| = 1.2, the combined muon efficiency drops to 80%. At n = 0, there is a
gap in the muon chamber coverage to allow services from the inner detector to pass
through. |n| = 1.2 is the transition region between the barrel and the endcap muon
chambers. In this region, muons will not necessarily pass through three or even two
muon chamber stations. Some of these lost muons can be recovered by looking for

segment-tagged muons, which are required to have an inner detector track matched
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with a segment in one or more muon chambers. The efficiency of selecting muons
which are either combined or segment-tagged is close to 100% for the full range,
although the drop at n = 0 is still present because there are no muon chambers there.
The combined + segment-tagged muon efficiency also drops to 96% for muons with

2.5 < |n| < 2.0, which is the region covered by the CSCs.
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Figure 7.5: Combined muon and segment-tagged muon reconstruction efficiency. The
muon reconstruction efficiency with respect to inner tracking efficiency as a function
of n for muons with pr > 20 GeV for combined muons (left) and combined muons
+ segment tagged muons (right). The Scale Factors, SF, are the ratios between the
data and MC efficiency and are used to correct the efficiency of reconstructing muons
in simulation to match that of the data [33].

To correct for the difference between the measured muon reconstruction efficiencies
in data and simulation, a weight called a scale factor, SF, is applied to events in
simulation with a reconstructed muon. The scale factors are calculated as a function
of muon pr, n, and data-taking period. The RPCs had timing problems in some
data-taking periods that affected the hit efficiency in RPC chambers, so a data-period
dependent scale factor is necessary. The simulated events are assigned to Monte Carlo
data periods with fractions consistent with the luminosity of data taken in different

data periods.
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For an event with a single combined muon, the muon reconstruction efficiency
scale factor, S Fiuon reco, 1S calculated as:

data data

€ €

1D CB

Squon reco — STp reco X SFCB reco — N[O X MC (73)
€ID €cB

and similarly for segment-tagged muons. For events with multiple muons, the muon
reconstruction efficiency scale factor for the event is the product of the scale factors
for each muon. The scale factors for the inner detector, combined muon, and segment-
tagged reconstruction efficiencies are shown in the lower portion of Figures and
and are close to 1.0 for all muons, with the exception of combined muons near |n| =

1.2.

Muon Momentum Resolution and Scale

The muon momentum resolution is measured from the width of the dimuon mass
distribution in Z — pu*p~ decays. The measurement is described in detail in Refer-
ence [32]. Differences in the material distribution of the detector (including inactive
parts, like shielding), as well as differences in the magnetic field description between
the detector in simulation and the real detector result in a different muon resolution
in simulation than in data for low momentum muons. For high momenta muons, an
inaccurate description of the detector alignment, or inaccurate timing and gas cali-
bration constants, produce differences in resolution between simulation and data. To
account for differences in momentum resolution, the momentum of muons in simula-
tion is convoluted with an additional Gaussian (a process called smearing) to have
the same resolution of muons in data.

The width of the dimuon mass distribution for Z — u*p~ decays is shown in
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Figure[7.6]for muons in simulation and in data. The selected muons must have pr > 20
GeV, be within |n| < 2.5, and have no nearby calorimeter activity. Data is collected
with the 20 GeV muon trigger and simulation is generated using Pythia Z — puu
events. The simulation has a narrower Z peak, and a smaller muon momentum

resolution, than is observed in data.
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Figure 7.6: Z — pp mass for combined muons in data and simulation.

To measure the muon resolution, the dimuon invariant mass distribution is fit
using a convolution of the Z line-shape and two Gaussians modeling the detector
resolution effects. The Z line-shape includes the Z boson natural width, a term

including photon radiation, and a photon interference term, and is parametrized as:

10=4(z) 8 (e mrrom)  (mmrrm) O

where x is the reconstructed dimuon invariant mass, A, B, C, and o, are fixed pa-

rameters determined from the muon pair invariant mass at particle level, and 7 is a

free parameter in the fit. The Z boson distribution is fit from 60 to 120 GeV, and the
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narrower Gaussian is constrained to contain at least 85% of the dimuon pairs [32].
The muon resolution is taken as the standard deviation of the core Gaussian in the
fit. The dimuon distribution is fit separately in different 7 regions in the detector in
both simulation and data. The fit resolution is shown in Figure for muons re-
constructed with the inner detector track, stand-alone muons, and combined muons.
For all three track types, the resolution is larger in data than in simulation in all
regions of the detector, due to miscalibration and misalignment of the real detector
which is not captured by the simulation, and differences in the material distribution
and magnetic field modeling between the real and simulated detector. For combined
muons, the detector resolution contributes between 2 and 3 GeV to the invariant mass
distribution of dimuon pairs.

To correct the resolution in simulation to that measured in data, the momentum
of simulated muons is smeared and scaled. Both the inner detector track and the
muon spectrometer track are smeared separately, and the combined muon track is
re-fit using the smeared values. For the muon spectrometer track, the smeared muon

Pp(MS) is calculated as a function of the original simulated muon pr(MS):
pr(MS) = pr(MS)(1+ A(MS)) (7.5)
where
A(MS) = (0, 1)ApMS 4 £(0, 1) ApY®pr (7.6)

ApMS and Ap)S are the correction terms to the simulated muon resolution and f(0, 1)
is a random number from a Gaussian distribution with mean 0 and width 1. The
correction terms to the resolution are obtained by producing a series of simulations

with various values of the smearing parameters, and performing a x? minimization fit
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Figure 7.7: Mass resolution for muons in data and simulation, for muons in the inner
detector (top left), muons reconstructed in the muon spectrometer (top right), and
for combined muons (bottom). The resolution is shown in red for muons in simulation
and in black for muons in data [33].

153



Chapter 7: Monte Carlo Simulation and W Z Signal

to select the simulated sample which best matches the resolution observed in data.
For the smearing of the inner detector track, a similar procedure is followed, with the

smeared muon p/-(ID) expressed as:
pr(ID) = pr(ID)(1+ A(ID)) (7.7)

where

A(ID) = f(0,1)Api” (] < 1.9)
(7.8)

A(ID) = f(0,1)ApiPpr/tand (|n| > 1.9)
and 6 is the muon polar angle. For both the ID and MS tracks, Ap; describes

the correction to the multiple scattering term of the resolution. Ap, describes the
correction due to misalignment and miscalibration. In order to obtain the correction
terms to the simulated muon resolution, constraints are placed based on the knowledge
of the amount of possible misalignment and the uncertainty on the material budget.

For combined muons, the smeared muon momentum is calculated from the smear-
ing on the inner detector and muon spectrometer tracks, weighted by the original
contribution of the ID or MS momentum measurement to the track fit. The two mea-
surements are treated as uncorrelated due to the large amount of calorimeter material
between the inner detector and the muon spectrometer. A scale correction S is also
applied to shift the entire distribution to match the location of the peak measured in
data. Using the overall correction to the simulated pr, A(MS) and A(ID), and the
values for the resolution fit from the x? minimization to data, o(MS) and o(ID), the

new measurement of the smeared combined muon p7. is calculated as:

AMS)/o*(MS) + MID)/o*ID), o
1/02(MS) + 1/o*(1D) |

pr(CB) =S x pr(CB) x [1+
The values of the correction terms for our data sample are shown in Table [7.2]
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Table 7.2: Muon momentum resolution and scale correction terms [33].

Correction Term |n| < 1.05 1.05<|n| <17 1.7<|n <20 20<|n <27

S 0.999223 0.998684 0.998207 0.997724
ApiP 0.01607 0.02588 0.03389 0.05116
ApiP 0.000307 0.000331 0.000436 0

Apts 0.02676 0.0452 0.03121 0.02635
Apdts 0.000103 0.000192 0.00008 0.000051

7.2.3 Electron corrections

As for muons, corrections are applied to the resolution and efficiency of recon-
structed electrons in simulation to improve the agreement between simulation and
data. These include corrections for the electron reconstruction efficiency, the electron

identification efficiency, and the electron energy resolution.

Electron Reconstruction and Identification Efficiency

The efficiency of reconstructing and selecting an electron differs slightly between
data and simulation. We used the W Z simulation to calculate the efficiency of select-
ing WZ events, and therefore it is important to correct the simulation to have the
same electron efficiency as the data.

The electron efficiency in simulation is used to calculate the efficiency of selecting
W Z events, which is a direct input to the calculation of the W Z cross section. There-
fore, it is important to rescale the simulation to have the same electron efficiency as
the data.

The efficiency of selecting electrons in ATLAS is factorized into two separate
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pieces: €., the efficiency of reconstructing a cluster and matched-track consistent
with an electron, given a cluster in the calorimeter, and €;gent fication, the efficiency of
an electron passing the identification requirements (loose+-+,medium-++, or tight++,
see Section given a reconstructed cluster and matched track. The total electron

efficiency, in data or in simulation, is the product of these two efficiencies:

€clectron = €reco X €identification (71())

The electron reconstruction efficiency is measured in data and simulation using
the Z — ee tag-and-probe method, which is described in Section for Z — pp
events. Tag electrons are required to be isolated, to pass the tight4++ requirement
and to have 20 < Ep < 50 GeV. All calorimeter clusters are tested for probes. If the
invariant mass of the tag electron and the calorimeter cluster is within 80 < m,, < 100
GeV, the probe is selected. The reconstruction efficiency is defined as the fraction of

probe clusters which have a matched track that passes the basic track requirements

defined in Section (.4}

N, clusters with matched tracks

€reco = (7.11)

Nprobe clusters

The reconstruction efficiency is close to 95% for all electrons with 15 < Epr < 50
GeV [20].

The identification efficiency is measured in data and simulation using the tag-and-
probe method in Z — ee events. The identification efficiency is also measured using
the tag-and-probe method in J/¢ — ee events, where one electron is the tag, and in
W — ev events, where the missing transverse energy from the neutrino serves as the
tag. The details of the measurement of the identification efficiency are described in

Reference [35]. The probe electron is required to have a reconstructed cluster with a
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matching track, and the identification efficiency is the ratio of the number of probes
that pass the selection under study (loose++, medium++, or tight++) to the number

of probes:

€id ; o Nloose++ (7 12)
identi fication — .
N, clusters with matched tracks

and similarly for measuring the medium++ and tight++ identification efficiencies.
The J/1 data is used for electrons with Er < 15 GeV; a weighted average of the
efficiency measured in J/v, Z, and W data is used for electrons with 15 < Ep < 20
GeV, and a weighted average of the Z and W data is used for electrons with Er > 20
GeV. The loose++ identification efficiency, measured in data and in simulation, is

shown in Figure
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Figure 7.8: Electron identification efficiency (left) and simulation corrections (right),
as a function of electron Ep. The identification efficiency shown here is the effi-
ciency of an electron passing the loose++ selection criteria, given a reconstructed
calorimeter cluster and a matched track. The simulation correction is a scale factor
calculated from the ratio of the efficiency measured in data to the efficiency measured
in simulation [20].

To correct the simulation for the difference between the reconstruction and iden-
tification efficiencies measured in simulation and data, a scale factor, SF, is a weight

applied to events in simulation with a reconstructed electron. The scale factor is the
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ratio of the measured efficiency in data to that in simulation. The total scale factor

for each electron is a product of the reconstruction scale factor and the identification

scale factor:

SFelectrcm - SFreco X S-Fidentification =

data
reco

€

Edata

identi fication

MC
reco

EMC

identi fication

(7.13)

For events with multiple electrons, the total event scale factor due to electron selec-

tion is a product of the total scale factor for each electron. The reconstruction and

identification scale factors are calculated in 11 bins of electron 7, and the values are

shown in Table [7.3]

Table 7.3: Electron efficiency corrections to simulation. The scale factors for the
reconstruction efficiency are shown. Identification efficiency scale factors are shown
separately for loose++, medium++, and tight++ electron requirements [20].

Scale Factor

Eta Range Reconstruction loose++ medium++  tight++
—247 <n < =2.01 1.0201 0.978162  0.956077  0.970385
—2.01 <n < —1.52 1.0067 0.989691  0.984517 1.00039
—1.52 <n < —-1.37 1.0097 0.9892 0.9933 1.0294

—1.37<n< =08 1.0017 1.00281 0.998451 1.02121
—08 <n<—-0.1 0.9940 0.993113  0.998374 1.00159
—0.1<n<0.1 0.9916 0.994409 1.01566 1.01284
0.1<n<038 0.9925 0.995224  0.999115 1.00105
0.8 <n<1.37 1.0013 1.00113 0.995048 1.01674
1.37 <np < 1.52 1.0073 0.9927 0.9972 1.0349

1.52 <np <201 1.0057 0.990337 0.98697 1.00659
201 <np <247 1.0230 0.98053 0.957895  0.971479
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Electron Energy Resolution and Scale

The electron energy resolution and scale is determined in data and simulation
using dielectron pairs consistent with the decay of a Z boson. Electrons are required
to have transverse energy greater than 25 GeV, |n| < 2.47, and must pass the medium
identification selection. The dielectron invariant mass distribution is fit by a convolu-
tion of the Z line-shape, described by a Breit-Wigner distribution, and a Crystal Ball
function [147] which describes the detector resolution contribution. For all electron
pairs, the obtained resolution, which is taken as the o-parameter, or width, of the fit
Crystal Ball, is 1.76 GeV in data, and 1.59 GeV in simulation [20]. Scale calibrations
are applied to data (see Section to correct the reconstructed energy of electrons
for energy loss in the detector. The Z — ee invariant mass distribution for calibrated

electrons in data and electrons in simulation in shown in Figure
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Figure 7.9: Z — ee mass for electrons in data and simulation, after calibrations have
been applied to the electron energy scale in data [20)].

To correct the mass resolution in simulation to match the resolution measured in

data, the energy of the electromagnetic cluster associated to the electron, E.ser, iS
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smeared according to the formula:

v/:luster = EClUSteT(l + f(oa O)) (714)

where f(0,0) is randomly sampled from a Gaussian distribution with mean 0 and
width o, and o is the fractional quadratic difference between the total energy res-
olution measured in simulation and the total energy resolution measured in data.
The smearing term, o(n, £), is calculated as a function of the electron cluster n and

energy.
The electron transverse energy, Er, is recalculated after smearing using the track
;. E

cluster
“cluster 7.15
COSh(ntrack) ( )

7.2.4 Trigger Corrections

A scale factor weight is applied to simulated events to match the trigger efficiency

measured in data. This scale factor is discussed in Section [6.5.41

7.3 WZ Signal Distributions in Simulation

This section contains several kinematic distributions of the simulated W Z signal
events, whose generation is described in Section [7.1 For each kinematic variable,
three different distributions are shown. The truth distribution contains all simulated
W Z events at truth level, where truth level means that interaction between the parti-
cles and the detector is not included. The truth, passed selection distribution includes

W Z events at truth level, only for events whose reconstructed objects pass all event
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selections. Finally, the reco, passed selection distribution includes simulated W Z
events after the detector response and reconstruction has been simulated, including
the applications of the Monte Carlo corrections discussed above. The reco, passed
selection distribution only includes events which pass all event selections. The Monte
Carlo corrections are described in the previous section, and the event selections are
summarized in Table 85l These distributions do not include events with selected
electrons or muons from tau decays. All distributions are normalized to unit area.

Figure [7.10| shows the W lepton pr and the missing transverse energy in the
event. For the truth distributions, the missing transverse energy shown is simply the
neutrino pr. Both the lepton pr and neutrino pr distributions at truth level have
a maximum in their distributions at around 30 GeV. The mean of the transverse
momentum distribution is 43 GeV for the W lepton and 47 GeV for the W neutrino.
If the W boson were produced at rest, both the neutrino and lepton pr distributions
should exhibit a Jacobian peak at half the W mass and fall off rapidly after 40 GeV.
However, the average W boson in a W Z event has pr = 56 GeV, and this momentum
significantly smears out the distribution. The reconstructed W lepton pr distribution
after all selections shows the effect of the pr > 20 GeV selection requirement, and
similarly the reconstructed missing transverse energy distribution shows the effect
of the selection of E{p”iss > 25 GeV. The lepton pr resolution is better than the
missing transverse energy resolution, which is evident in the comparison of the true
and reconstructed distributions after selection.

The Z lepton pr distributions are shown in Figure[7.11] separately for the Z lepton

with the higher pr (leading) and the Z lepton with the lower pr (lagging) per event.
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Figure 7.10: W Z signal distributions in simulation: W lepton pr (left) and Eiss

(right).

The highest point of the leading pr distribution, before reconstruction, is around 50

GeV and the mean of the distribution is 65 GeV. The highest point of the lagging pp

distribution is around 30-40 GeV with a mean of 31 GeV. Both reconstructed leptons

are required to have pr > 15 GeV, but only the lagging lepton distribution shows the

effect of this, as there are no leading leptons with pr < 15 GeV after the lepton 7

requirements are imposed. The tail of the lepton py distribution goes to 200 GeV,

and above. As shown in Figure [1.7] the muon momentum resolution for muons with

transverse momentum of 200 GeV is around 4%.
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Figure 7.11: W Z signal distributions in simulation: lepton pr distributions for the
leading (left) and lagging (right) Z lepton.
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The 7 distributions for both W and Z leptons are shown in Figure [7.12] Before
selection, the n distributions have a maximum at 0 and fall off smoothly to |n| < 4.
In event selection, we require W and Z leptons to be within |n| < 2.5, which is clear
for the events which have passed selection. W muons are required to be combined
muons, which require at least 2 stations of muon chamber coverage. There is a gap
in muon chambers at 1 = 0 to allow inner detector services to exit the detector; the
loss of efficiency in this region is clearly seen in the selected W leptons. Additionally,
there is a loss of muon efficiency around || = 1.5 in the transition between the barrel
and endcap chambers. This is also the transition between the barrel and endcap
calorimeters, and there is a loss of electron efficiency there as well. Z muons have
a looser selection (combined muons or segment-tagged), and segment-tagged muons
can have an inner detector track and a segment in only one muon chamber. As a
result, the gaps in the n distribution around 0 and 1.5 are partially filled in for Z

leptons relative to W leptons.
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Figure 7.12: W Z signal distributions in simulation: W lepton (left) and Z lepton
(right) 7.

Once leptons and missing transverse energy are selected, we can reconstruct the
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Z and W bosons. The invariant dilepton mass of the Z boson is shown in Figure[7.13]
The Z boson mass shows the selection requirement 81 < my < 101 GeV at the recon-
struction level. Although the lepton py and 7 resolutions are very good, the detector
resolution effects are apparent for a narrow resonance like the Z boson in which the
reconstructed invariant mass is significantly wider than the true mass with a natural
width of 2.5 GeV. As discussed in Section the muon detector resolution con-
tributes between 2 and 3 GeV to the width of the reconstructed Z boson, and the
electron detector resolution, discussed in Section [7.2.3, contributes between 1 and 2
GeV. The detector resolution effects can be modeled as a Gaussian distribution con-
voluted with the true Z boson Breit-Wigner distribution. The reconstructed dilepton
invariant mass distribution has an asymmetric tail at lower values of Z mass, due to
the contribution from events in which a lepton radiates a photon whose energy is not
accounted for in the calculation of the dilepton invariant mass.

The W transverse mass distribution is also shown in Figure [7.13] We calculate
the W transverse mass, M}", from the missing transverse energy magnitude, Es,
the azimuthal direction of the missing transverse energy, ¢™** and the transverse

momentum and azimuthal angle of the W lepton, respectively p'. and ¢

MY = /2 x ple x Bjfiss x (1 — cos(¢) — ¢miss)) (7.16)

For the truth distributions, the M} is built from the true charged lepton and true
neutrino pr and ¢. The reconstructed distribution shows the effect of the selection
requirement M}Y > 20 GeV. There is a significant difference in the shape between the
reconstructed and truth distributions passing all selections. This is largely due to the

missing transverse energy resolution in the detector, although the lepton pr resolution
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contributes to a lesser degree. At truth level, the distribution has a Jacobian peak at

the W mass. The missing transverse energy resolution smears out the Jacobian peak.
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Figure 7.13: WZ signal distributions in simulation: Z mass (left) and W,,,. (right).

The distribution of Z boson pr is shown in Figure [7.14] The truth distribution
reaches a maximum at 30 GeV and has a mean of 56 GeV (same for the W boson,
whose pr can not be easily reconstructed.) For comparison, single Z boson production
at the LHC produces Z bosons with a mode of pr = 5 GeV. Although the truth and
reconstructed level distributions do not agree exactly at the peak, the tail of the truth
distribution is well modeled after reconstruction. This is important because pZ is one
of the kinematic variables most sensitive to WZ production with anomalous triple
gauge couplings, and the sensitivity is highest at large pZ.

Figure [7.15] shows the Z boson rapidity and 7 distributions. The rapidity dis-
tribution at truth level reaches a maximum at 0 and falls off completely by 4. The
selection requirements select for centrally produced bosons, and after selection the
highest rapidity Z bosons are at 2.5. The pseudo-rapidity n is an approximation to

the rapidity for massless particles; because the Z is massive, the approximation is not
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Figure 7.14: W Z signal distributions in simulation: Z py.
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Figure 7.15: W Z signal distributions in simulation: Z rapidity (left) and Zn (right).

Finally, we can use the selected Z and W bosons to probe the WZ system. In

Figure [7.16] the invariant mass and the rapidity of the WZ system is shown. To

reconstruct the WZ system, the W mass is used as a constraint to solve for the W

four—vector.ﬂ This algorithm does a reasonable job of reconstructing the W2 mass,

as shown in Figure [7.16] The mode of the WZ invariant mass distribution at truth

Tn the case of two real solutions, the solution yielding the lower neutrino |pz| is selected.
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level is 220 GeV, with a mean of 306 GeV and a tail going up to 1000 GeV - WZ
events are often produced highly energetic collisions. The W Z rapidity distribution
shows that W Z pairs are produced centrally, with a central distribution that falls
off to zero by a rapidity of 3. Due to the lepton 1 and pr requirements, the W2
selection preferentially selects for centrally produced W Z pairs. Moreover, selecting
the smaller value of neutrino longitudinal momentum in reconstructing the W boson,

when there are two solutions, biases the reconstructed W Z rapidity toward a central

rapidity.
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g 0.07 b — Truth, passed selection g — Truth, passed selection
- Reco, passed selection w007 Reco, passed selection
«n 006
E 0.06
E 0.05 "“ 005

o
°
2
TTT T[T T [ T T[T I T T[T I T[T [TTTT[TTTT
I I I I I I I
-

J L] 0.03 ﬂ
0.02
0.01
P R e | - I R ——
200 400 600 800 1000 -4 -2 0 2

4
WZ mass [GeV] WZ rapidity

P

Figure 7.16: W Z signal distributions in simulation: WZ mass (left) and rapidity
(right).
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Event Selection

In selecting W Z events, we aim to separate a very small signal from processes
with production cross-sections many orders of magnitude larger. For every trillion
collisions, we expect to reconstruct and identify about one W*Z — (vl'¢’ event.
However, W*Z — (vl'{' events have two distinctive features that allow us to effec-
tively select signal events while strongly rejecting background processes: three high
pr, isolated leptons from the Z and W decays and missing transverse energy from
the neutrino from the W boson.

The selection requirements outlined in this chapter are designed to discriminate
against background events while efficiently selecting W Z signal events. Selection
requirements are imposed on the leptons to ensure that they are in a fiducial region
of the detector in which their momentum can be well measured. After selecting
three high pr, isolated leptons and missing transverse energy, we require that one
pair of oppositely charged leptons has a mass consistent with a Z boson, and that

the missing transverse energy and third lepton pass a selection on W transverse

168



Chapter 8: Event Selection

mass. Finally, event level selections reject a small percentage of events in which the
missing transverse energy cannot be well reconstructed due to electronic noise in the

calorimeters.

8.1 Data Sample

This analysis uses a data sample of proton-proton collisions collected between
April 2011 and October 2011 at /s = 7 TeV at the LHC. This dataset corresponds
to data periods D through M of the 2011 data and has an integrated luminosity of
4.64 fb=!. The luminosity uncertainty for 2011 data is 1.8% [43]. Data is taken from
both the physics_Muons and physics_Egamma trigger streams (see Section .

The data has been reconstructed offline with Athena release 17.0 [16]. The data
is processed by the Standard Model W and Z physics group into the D3PD format,
which is an ATLAS ROOT-based ntuple. The first selection step is performed to
reduce the dataset size by selecting a dilepton sample: events from the muon and
electron trigger streams are kept only if the event contains at least two leptons with
pr > 13 GeV. To further reduce the size of the dilepton dataset, at least one of the
leptons must have pr > 15 GeV and must be a combined muon or an electron passing
the loose++ criteria. This dataset has the NTUP_SMDILEP tag and is the starting

point for the W Z event selection outlined below.
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8.2 Overview of selection

We select WEZ — (vl'l' events by requiring two leptons that are consistent with
a Z boson decay and a third lepton and missing transverse energy that are consistent
with a W boson decay. The leptons can be either electrons or muons. The Z and
W boson can each decay to muons or electrons, and there are four combinations of
lepton flavors which we call channels: eeev, eeuv, ppev, and pppv.

The W Z event selection is broken down into several stages. First, in the event
pre-selection, trigger requirements are imposed and event level selections ensure that
the detector was functioning well at the time the data was collected.

Next, we identify well reconstructed, isolated electrons and muons in our sample.
The leptons must be within |n| < 2.5 and have pr > 15 GeV.

Finally, we use the leptons and missing transverse energy to reconstruct and select
Z and W bosons in the sample. Additional selection requirements are imposed on

the lepton from the W boson to further reject background events.

8.3 Event Pre-selection

The first step in selecting W Z events is to look for events that fired either a single
muon or a single electron trigger. The signal events have three high pr, isolated
leptons, and the probability that at least one of them fired a single lepton trigger
is above 98%. We use the lowest pr un-prescaled single muon and electron triggers
available. The triggers used for the WZ analysis are summarized in Table [6.1] and

details on the trigger selection are provided in Section [6.5]
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There are several event level selections imposed to ensure that the events in our
sample are well measured by the detector. First, we require that the event be taken
during a period when all sub-detectors necessary for the analysis — the inner detector,
calorimeters, muon spectrometer, magnets, luminosity detectors, and trigger and data
acquisition systems — were functioning properly. The data quality is stored in a Good
Run List (GRL) as a function of luminosity block (two minute interval), which is
produced by the data quality group. We require our events to be on a GRL tailored
for analyses which use W bosonsE] The calculated luminosity of our data sample
correctly accounts for events which are vetoed by the GRL.

To reject events that are not consistent with a proton-proton collision, we require
that each event have a reconstructed primary vertex with at least 3 associated tracks.
For each vertex with at least 3 tracks in the event, the sum of the momentum of the

tracks associated to the vertex is calculated:

n tracks
Z pgr tracks (8.1)
i=1
The primary vertex is defined as the vertex in the event for which this quantity is the
largest.

It is essential that the missing transverse energy is well reconstructed in each event
in order to reconstruct the W boson in our events. The Liquid Argon calorimeter
occasionally has large, coherent electronic noise spikes that interfere with the mea-
surement of energy deposition in the calorimeter cells. Events in which a part of

the LAr Calorimeter has been identified as having a noise spike are rejected. This

'datall_7TeV.periodAllYear_DetStatus-v36-prol0_CoolRunQuery-00-04-
08_WZjets_allchannels_DtoM.xml
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requirement rejects about 0.3% of events. Additionally, events are rejected if they
contain a jet with pr > 20 GeV, that does not overlap (AR > 0.3) with a selected
lepton, whose electromagnetic calorimeter signal is out of time with the collision or
consistent with electronic noise in the Liquid Argon Calorimeter. This selection drops

0.1% of events.

8.4 Muon Selection

The muons used in this analysis are reconstructed offline using the STACO algo-
rithm described in Section [5.3] Muons from the decay of the Z boson can be either
combined or segment-tagged muons. Including segment-tagged muons, which are in-
ner detector tracks with one or two matched segments in the muon spectrometer,
increases the efficiency for identifying muons in the transition region of the spectrom-
eter.

Muons are required to fall inside the coverage of the inner detector, |n| < 2.5, and
the transverse momentum of the muons must be larger than 15 GeV.

After selecting STACO combined or segment-tagged muons, we impose additional
selection requirements on the inner detector track associated to the muon. The in-
ner detector track determines the reconstructed momenta for segment-tagged muons,
dominates the momentum resolution for combined muons up to 50 GeV, and con-
tributes roughly equally with the muon spectrometer measurement to the resolution
for muons in the range 50 < pr < 100 GeV [29]. Therefore, it is important that the
inner detector track have enough hits to be accurately constrained. Hit requirements

on the inner detector track for muons also help reject decay-in-flight backgrounds.
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The summary of hit requirements on the inner detector track for muons is listed

in Table [8.1], and details are provided below:

e B-layer: At least 1 hit in the Pixel B-layer if the track crosses an active B-layer

SENnsor.

e Pixels: At least 2 hits in the Pixels. If the track crosses a known dead channel,

it is counted as a hit.

e SCT: At least 6 hits in the silicon strip tracker, where dead sensors crossed are

counted as hits.

o Pizel or SCT Holes: No more than 2 holes on the combined Pixel4+-SCT track.
If the track crosses a working sensor but does not register a hit, it counts as a

hole.

e TRT Hits: If the track has |n| < 1.9, within the full coverage of the TRT

detector, the track must have at least 6 TRT hits, including outliers.

e TRT Outlier Threshold: If the track is within |n| < 1.9, the ratio of TRT Outlier
hits to all TRT hits must be less than 0.9. The outlier requirement must be

also met by tracks with |n| > 1.9 if they have at least 6 TRT hits.

Collectively, the requirements on the inner detector track remove about 2% of
muons with pr > 15 GeV. The distribution of track variables before the selections
have been applied, for W muon candidates in Z + lepton events, can be seen in

Figure [8.I]for the silicon track variables and in Figure[8.2]for the TRT track variables.
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To ensure that all muons used to build the W and Z candidates come from the
primary vertex in the event, requirements are placed on the muon longitudinal impact
parameter, 2y, and on the muon transverse impact parameter, dy. The distance

vertex

between the muon zy and the z position of the primary vertex, z , must meet the

requirement:

vertex

20— % <1 mm (8.2)

Rather than imposing selection requirements directly on the muon dj, selection is
based on the dy significance, which is defined as the transverse impact parameter
dy over its uncertainty. The dy significance for each muon must meet the following
requirement:

|do significance| < 3o (8.3)

Together, these requirements reject cosmic muons, muons from b or ¢ quark decay
in Z + jet and ¢t events, and muons from other vertices in the same event. The W
candidate muon dy and d significance distributions before this selection have been
applied can be seen in Figure [8.3|

The largest source of events containing a Z boson and an additional muon are Z
+ jet events in which a jet produces a muon from b quark, ¢ quark, or meson decay.
To reject muons from hadronic jets, we look for muons that are spatially separated
from jets by imposing an isolation criteria based on the sum pr of inner detector

tracks near the muon candidate. The specific requirement for muon isolation is:

Zn tracks within AR<0.3 tracks
i=1 I <015 (8.4)

muon
Pr

The numerator of the right hand of equation [8.4] which is the sum of the pr of inner

detector tracks in a cone of AR < 0.3 around the muon, is called ptCone30. All inner
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Figure 8.1: The distribution of ID silicon track variables for W candidate muons in
Z + muon events, before the selections on these variables have been applied. The
Z+jets and tt backgrounds are MC normalized by data-driven estimates; all other
processes are taken from MC. The requirements we place on these variables reject

# of Silicon Holes on W candiate muon track
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only a small number of tracks (2% in total).

175



Chapter 8: Event Selection

@ 25T - @ - T R T
C - - c
: F ] : oA - Data i
M ool [ Ldt=461b" \S=7TeV 7 MR [Ldt=a6b" \NS=7Tev COwz E
F e Data b OZ+jets 3]
C ] bzz 1
150— — 10? BZ+y =
[ @zz ] @Top E
100; .Z+’Y - 1
¢ @Top ] 10 =
sof : 5 ]
C _ ] 1 i
08 AP e e i u| E 1 | O S R R
0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4
# of TRT Hits on W candiate muon track Fraction of TRT Outlier Hits on W candiate muon track
(a) We require at least 6 TRT hits (b) We require TRT outlier fraction < 0.9

Figure 8.2: The distribution of TRT ID track variables for W candidate muons in Z
+ third muon events, before the selections on these variables have been applied. The
Z+jets and tt backgrounds are MC normalized by data-driven estimates; all other
processes are taken from MC. The requirements we place on these variables reject
only a small number of tracks.

detector tracks used in the calculation of ptCone30 are required to originate from
the primary vertex, which significantly reduces the contribution from other collisions
within the same event. This isolation requirement, which is imposed on all muons in
the event, can be seen in Figure for the third muon in Z + muon events.

The number of muons that pass each selection requirement in data is reported in

Table 8.2
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Figure 8.3: Muon transverse impact parameter significance. The d, distribution
for negatively charged muons (top left), positively charged muons (top right), and
dy significance (bottom) distributions for the third muon in Z + muon events. A
requirement of dy significance < 3 is applied to reject muons that do not originate
from the primary vertex in the event, including muons from the decay of b and ¢
quarks. The Z-+jets and tt backgrounds are MC normalized by data-driven estimates;
all other processes are taken from MC.
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Table 8.1: Selection requirements for muons.

Selection Details

Algorithm Combined or Segment-Tagged STACO muons
pr pr > 15 GeV

Ui | < 2.5

20 |20] < 1 mm

dy |dy significance| < 30

Isolation ’% < 0.15

> 1 B-layer hit (if expected)
> 2 Pixel Hits
> 6 SCT Hits
ID Track < 3 Pixel+SCT Holes
If |n| < 1.9: > 6 TRT Hits
If |n| < 1.9: # TRTOutliers <0.9

#T RT Outliers+#TRT Hits

o #TRTOutli
If |n| > 1.9 and > 6 TRT hits: #TRTOutlieT;jﬂg’;THm <09

Table 8.2: The number of reconstructed muons in our sample that pass each selection
requirement. Muon selection is performed after the event primary vertex selection.
No events are rejected during muon selection and there may be more than one selected
muon per event. The tighter selection requirements applied to the W muon are not
included at this stage.

Selection Number of Muons Passing
Algorithm 217,503,359
pr 178,349,198
ID Track Hit Requirements 175,185,104
n 175,149,715
20 172,826,936
Isolation 70,576,489
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Figure 8.4: Muon isolation. The sum of the py of all inner detector tracks in a cone of
AR < 0.3 around the muon, divided by the muon pr, for W candidate muons in Z +
muon events. The right plot is a zoom of the left distribution. Selecting muons with
ptc;+3o < 0.15 rejects secondary muons from hadronic jets in both Z + jet and ¢t
events. The Z+jets and tf backgrounds are MC normalized by data-driven estimates;
all other processes are taken from MC.

8.5 Electron Selection

We select well-measured electrons by requiring that the electrons are within the
coverage of the inner detector tracking; the electrons must be reconstructed using
a cluster with |n| < 2.47. To avoid the transition region between the barrel and
endcap calorimeters where energy is not well measured, electrons with clusters with
1.37 < |n| < 1.52 are not accepted.

The energy of the electron candidates is taken from the calorimeter measurement,
while the 7 and ¢ measurements are taken from the track. Using transverse energy
defined with the cluster energy and track 7, we require that electrons have Er > 15
GeV.

Electrons are reconstructed from a cluster in the electromagnetic calorimeter and
a matched track from the inner detector (see Section [5.4)). Reconstructed electrons in

ATLAS are classified into six different qualities: loose, loose++, medium, medium++-,
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tight, and tight++, with increased electron purity and decreased selection efficiency
moving from loose to tight++. The full list of selection variables on which the quality
classification is based is shown in Table [5.1] To select the quality requirements for
the W and Z electrons, we compare the significance of the selected sample for each
combination of W electron quality and Z electron quality, where significance is defined

by:
5
VS + B

where S is the number of simulated signal events passing all selection and B is the

(8.5)

number of expected background events. The number of expected signal and back-
ground events for 4.7 fb~!, along with the significance, is shown in Figure for all
combinations of Z and W electron quality requirements. Requiring the Z electrons
to pass the loose++ requirements and the W electrons to pass the tight++ require-
ments maximizes our expected significance. Qualitatively, this makes sense because
it is harder for two jets to fake a Z — ee candidate than for one jet to fake a W can-
didate, so imposing tight requirements on the W electron reduces background while
keeping the Z electron selection less restrictive increases the signal acceptance.
Some of the readout electronics of the Liquid Argon calorimeter did not function
correctly during data-taking, and some cells were dead or masked as a result of
electronics problems. To ensure that the the energy of the electrons used in our
analysis was measured accurately, the electron candidates are required to pass an
object quality check that removes electrons if the cluster is affected by at least one of

these conditions:

1. The presence of a dead front-end board in the first or second sampling layer,
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Figure 8.5: The number of expected WZ signal and background (Z+jets, Z + v,
tt, and ZZ) events and expected significance of selected sample as a function of
the quality requirement for Z and W electrons, from simulation. The number of
expected events and significance is shown for all four channels combined. The electron
qualities are listed as Z electron quality followed by W electron quality, and the
abbreviations are: L. = loose, M = medium, T = tight, and + stands for ++. The
highest significance, which is highlighted in pink, is obtained by selecting loose++ Z
electrons and tight++ W electrons.
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2. A dead region affecting the three samplings,
3. A masked cell in the core.

Altogether, these requirements on the electron data-quality remove fewer than 1% of
all electrons.

As with muon candidates, electrons are selected to be consistent with coming from
the primary vertex by requiring that the electron zy, with respect to the primary
vertex, meet the condition:

|20] < 1 mm (8.6)

and the dj significance, with respect to the primary vertex, must pass:

|dy significance| < 100 (8.7)

The dy significance requirement is looser for electrons than for muons because Brems-
strahlung radiation causes a broader smearing of the dy significance distribution for
electrons than for muons. This can be seen in Figure [8.6] which shows the dy distri-
bution separately for positive and negative electrons. The energy loss due to Brems-
strahlung causes positive and negative electrons to curve in opposite directions, pro-
ducing complementary asymmetric tails in the d, distributions.

Hadronic jets can leave energy depositions in the calorimeters that are recon-
structed as electrons; jets can also contain real electrons from decays within the jet.
As W and Z decays produce isolated electrons, we select against hadronic back-
grounds by requiring that electron candidates are spatially separated from jets. We

impose two isolation criteria. The first uses the ptCone30 isolation variable also used
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Figure 8.6: Electron transverse impact parameter significance. The d, distribution
for negatively charged electrons (top left), positively charged electrons (top right),
and dy significance (bottom) distributions for the third electron in Z + electron
events. A requirement of dj significance < 10 is applied to reject electrons that do
not originate from the primary vertex in the event. The Z+jets and ¢t backgrounds
are MC normalized by data-driven estimates; all other processes are taken from MC.
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for imposing muon isolation:

Zn tracks within AR<0.3 ptracks
=1 T < 0.13 (88)

electron
by

All inner detector tracks used in the calculation of ptCone30 are required to originate
from the primary vertex, which significantly reduces the contribution from other
collisions within the same event. The second criteria uses the sum of the calorimeter

E7 in a cone of AR < 0.3 around the electron, the FtCone30 isolation variable:

Zn calo cells within AR<0.3 1cells

=1 T <014 (8.9)

electron
E T

The calculation of EtCone30 includes cells from the electromagnetic and hadronic
calorimeters, and excludes a 5 x 7 1 x ¢ grid of cells at the center of the cone where
the electron energy is deposited. The calculation of EtCone30 includes a correction
for energy depositions from other collisions in the same event [19]. The calorimeter-
based isolation distribution can be seen in Figure for the third electron in Z +
electron events.

In rare cases, a muon passing through the calorimeter can radiate an energetic
photon, which converts to an electron-positron pair, one of which may pass our Er
threshold. To ensure that muons are not also reconstructed as electrons in this case,
reconstructed electrons are thrown away if they are within AR < 0.1 of any selected
muon. Similarly, an energetic electron could emit Bremsstrahlung that produces a
nearby electron or positron of sizable energy. If two electrons overlap within A < 0.1,
the lower-pr electron is not counted or selected. The overlap removal affects less than
0.01% of selected electrons.

The electron selection requirements are summarized in Table [8.3] and the number

of electron candidates found in the data sample is shown in Table [8.4]
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Figure 8.7: Electron isolation, where isolation is the distribution of the sum of the
calorimeter Ep in a cone of AR < 0.3 around the electron, divided by the electron
Er, for W candidate electrons in Z + electron events. The right plot is a zoom of the
left distribution. Selecting electrons with M < 0.13 rejects secondary electrons
and jets that mimic electrons from hadronic Jets in both Z + jet and ¢t events. The
Z+jets and tt backgrounds are MC normalized by data-driven estimates; all other
processes are taken from MC.

Table 8.3: Selection requirements for electrons.

Selection Details

Algorithm Central calo + ID track

Er Er > 15 GeV

n In| < 1.37 or 1.52 < |n| < 2.47
Quality loose++

0Q: LAr Quality 0Q &&1446 == 0

20 |20] < 1 mm

dy |dy significance| < 100
Isolation %j@ < 0.14 and ’% < 0.13
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Table 8.4: The number of reconstructed electrons in our sample that pass each se-
lection requirement. Electron selection is performed after the event primary vertex
selection. No events are rejected during electron selection and there may be more
than one selected electron per event. The requirements do not include the tighter
selections applied to the W lepton at this stage.

Selection Number of Electrons Passing
Algorithm 751,729,311
0Q 746,556,814
Er 238,396,088
n 212,194,201
loose++ quality 140,912,755
20 135,258,392
Isolation 86,573,810
Overlap with electrons 86,573,714
Overlap with muons 86,555,518

8.6 WZ Event Selection

A summary of the W Z event selection is shown in Table [8.5]
After the event pre-selection and lepton selection, Z candidates are selected by
requiring two leptons with the same flavor and opposite charge with an invariant mass

consistent with the Z mass:

| M, — 91.1876| < 10 GeV (8.10)

If more than one pair of leptons form a Z candidate, the candidate with the invariant
mass closest 91.1876 is selected.

The invariant mass of Z candidates before the mass requirement is imposed is
shown in Figure 8.8/ Additionally, the number of leptons and reconstructed vertices
in the selected Z sample are shown in Figure B.9] the missing transverse energy
distribution is shown in Figure [8.10] the rapidity of the selected Z bosons is shown

in Figure 8.11] and the n, pr, and ¢ distributions of the leading Z lepton are shown
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Table 8.5: W Z event selection in data and simulation. For requirements on selected
muons and electrons, see Tables and respectively. For details on the trigger
selection, see Table

Selection Details

Good Runs List Event on Good Runs Lists (data only)
Trigger Single muon or electron trigger
Primary Vertex Primary vertex must have at least 3 tracks
Emiss Cleaning No out of time jets with py > 20
ErssCleaning Veto data events w/ LAr Calo noise error flag
7 candidate | My, — 91.1876| < 10 GeV

3 Leptons > 3 electrons and/or muons

W muon requirements Combined muon, pr > 20 GeV

W electron requirements Tight++ quality, pr > 20 GeV
Essselection Episs > 25 GeV

W transverse mass M} > 20 GeV

Trigger Matching One of Z or W leptons must match trigger lepton
Trigger Matched muon pr > 20 GeV

Trigger Matched electron pr > 25 GeV
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in Figures [8.12] .13} and [8.14] The normalization for the processes shown is taken
from their theoretical cross section and the Z — ¢/ Monte Carlo is simulated by
ALPGEN. There are more Z candidates observed in data than predicted by the
simulation; moreover, the Z rapidity and lepton 7 distributions do not agree between
data and simulation in the central region of the detector. This was traced to the
fact that this particular ALPGEN simulation was produced with leading-order parton
distribution functions (CTEQG6L1) that do not seem to reproduce the data well. When
the ALPGEN sample is reweighted to have next-to-leading order parton distribution
functions, the agreement improves [26]. However, as we use data-driven techniques
to estimate the Z+jets background to W Z events (see Section , the discrepancies

between data and simulation in the Z sample are not a concern for this analysis.
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Figure 8.8: The invariant mass distribution of Z — pu (left) and Z — ee (right)
candidates before the Z mass requirement is imposed.

After the Z boson is selected, we require that the event must have a third lepton.
The W candidate lepton must meet stricter criteria than the Z leptons in order to

reduce background from Z+jets events. The additional requirements on the W lepton
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Figure 8.9: The number of selected leptons (left) and reconstructed vertices (right)
in selected Z events.
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are:
1. W candidate lepton py > 20 GeV.
2. W electrons must pass the tight++ quality.
3. W muons must be combined muons.

The transverse momenta distribution of W candidate leptons is shown in Figure [8.15]
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Figure 8.15: Lepton transverse momentum distribution in Z + lepton events. The pp
distribution of the third lepton in Z + lepton events after requiring a third selected
lepton. We require the W candidate lepton to have pry > 20 GeV, which removes
significant background from Z + jet events. The Z+jets and tt backgrounds are MC
normalized by data-driven estimates; all other processes are taken from MC.

To reject Z+jets, ZZ and Z + v backgrounds remaining after requiring three
leptons in the event, we require the event to have missing transverse energy greater
than 25 GeV. The missing transverse energy distribution of events with three selected
leptons, including two which form a Z candidate, is shown in Figure AW
candidate is formed with the third lepton and the missing transverse energy. We

require that the transverse mass of the W candidate (see equation [7.16)), shown in
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Figure [8.17] be greater than 20 GeV to remove Z+jets and ZZ events. In data,
there are more W candidates with a transverse mass between 60 and 80 GeV than
predicted by the simulation. The significance of the excess is between four and five
sigma, depending on the binning of the distribution. The Kolmogorov-Smirnov test
gives a (.03 probability that the data and simulation describe the same distribution.
After much study of this excess, we could not find any systematic explanation for its
source. Moreover, the excess is narrower than the missing transverse energy resolution

of our detector, so it is not consistent with a resonance.
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Figure 8.16: The missing transverse energy distribution for Z + lepton events, after
all selections have been applied to the third lepton. We require EF®s > 25 GeV
to reject Z + jets and ZZ backgrounds. The Z+jets and tt backgrounds are MC
normalized by data-driven estimates; all other processes are taken from MC.

Table shows the expected number of W*Z — (vl signal events passing each
selection requirement for a luminosity of 4.64 fb~!, and Table shows the relative

acceptance for each selection, as calculated in Monte Carlo. The relative acceptance is

defined as the acceptance of each selection step 7 relative to the previous requirement:

NWZ events passing selection ¢
relative acceptance = ors e (8.11)

‘WZ events passing selection i—1
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Figure 8.17: The transverse mass distribution of W candidates after the missing
transverse energy selection. The Z+jets and ¢t backgrounds are MC normalized by
data-driven estimates; all other processes are taken from MC. See text for a discussion
of the discrepancy between data and simulation at the peak.

Finally, because tau decays can produce electrons and muons, we show the expected
number of selected W*Z — 7 + X events in Table 8.8
Distributions of kinematic variables for the selected sample can be found in Sec-

tion [10.21
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Table 8.6: Expected number of WZ — (vll events, calculated from simulation, after
each selection requirement for £ = 4.64 fb~1.

Selection Requirements Events
eee eep e FLpL

WZ — (vll simulated events 1202.26

Muon or electron trigger 1120.78

Primary vertex 1117.91

E5s cleaning 1116.16

Z candidate 218.88 317.37
Three leptons 51.22 70.55 74.82 106.55
Emiss selection 40.50 57.00 59.17 86.44
M, requirement 38.07 54.05 55.67 81.85
Trigger match 38.04 53.99 5529 81.67
Scale factors 37.24 51.77 54.20 78.32

Table 8.7: Relative acceptance of W*Z — (vl'(’ events for each selection requirement,
as calculated in simulation. The relative acceptance is defined in equation 8.11] The
Z and third lepton selection include the acceptance and efficiency of selecting 2 and
3 leptons respectively.

Selection Requirements Acceptance (%)

eee eep  ppe  ppp
W Z — (vl simulated events 100
Muon or electron trigger 93.22
Primary vertex 99.74
Emiss cleaning 99.84
Z candidate 19.61 28.43
Three leptons 23.40 3223 23.57 33.57
Emss gelection 79.07 80.80 79.09 &81.12
M, requirement 93.99 94.82 94.08 94.70
Trigger match 99.93 99.90 99.31 99.78
Scale factors 97.89 95.89 98.04 95.89
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Table 8.8: Expected number of W*Z — 7+ X events, calculated from simulation,
after each selection requirement for £ = 4.64 fb~!.

Selection Requirements Events

eee eep  ppe  ppp
WZ — 17+ X simulated events 1502.83
Muon or electron trigger 950.01
Primary vertex 947.66
Emiss cleaning 942.34
Z candidate 107.07 152.36
Three leptons 298 4.02 439 5.62
Emiss selection 242 3.12 344 4.44
M, requirement, 1.77 238 246 3.49
Trigger match 1.76 2.38 2.44 3.50
Scale factors 171 228 237 3.35

Table 8.9: The number of data events in our sample that pass each selection
requirement.

Selection Requirements Number of Events in Data
All muon + egamma triggered data 806,692,544
Good Runs List 754,558,976
Muon or electron trigger 362,649,408
Primary vertex 362,252,960
Emiss cleaning 361,827,264
LAr noise 360,761,792
Z candidate 3,122,786
Three leptons 591
ERss gelection 367
M, requirement, 321
Trigger match 317
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Backgrounds to W Z production

The largest backgrounds to the WZ — (vl signal after selection requirements
are imposed are, in order of size: Z + jets, ZZ, tt, and Z + 7 events.

For Z+jets events to pass the full selection, a jet must produce a lepton through
the decay of a pion, kaon, b or ¢ quark, or by depositing energy in the calorimeter that
is reconstructed as an electron. We call leptons produced by jets fake leptons, even
though they may be real electrons or muons if the product of a heavy flavor decay.
There must also be reconstructed missing transverse energy in the event, which can
come from mismeasurement of jets or from event pileup. We estimate the Z+jets
background from data, and it is predicted to contribute 11% of selected events.

Z 7 events in which both Z bosons decay leptonically can pass the W Z selection if
there is a source of missing transverse energy in the event. Missing transverse energy
in ZZ events can arise from pileup from other collisions, mismeasurement of jets, or
if one of the four leptons is not reconstructed by the detector. The ZZ background

contributes 7% of the total expected events. The ZZ background shape and accep-
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tance are determined from simulation, after the simulation has been corrected to look
like the data (see Section [7.2)), and the normalization is taken from the theoretical
cross section.

Top quark pair production can produce background to WZ events in two ways.
If both top quarks decay leptonically, the event has 2 isolated, high pr leptons, 2
neutrinos, and 2 b quarks. If one of the b jets produces an isolated lepton with py > 15
GeV, the event has 3 leptons and missing transverse energy and can be reconstructed
as a WZ event. The background from tf events in which a b jet produces the third
lepton is estimated from data, and contributes 2% of all events after the full selection.
Alternatively, one of the top quarks can radiate a Z boson before decaying. tt + Z
events contain two W bosons and a Z boson. We treat this W2 production as
background and estimate it from simulation. It contributes 2% to the expected event
count.

Z + v events in which the photon converts to an electron/positron pair can be
reconstructed as an W2 — ppe or WZ — eee event if one of the converted electrons
passes the pr selection and if there is a source of missing transverse energy in the
event. Missing transverse energy can arise from pileup from other collisions in the
same event, mismeasurement of jets, or mismeasurement of the converted photon
energy. The background from Z + 7 events is determined from simulation. This
background contributes about 1% of all expected events.

Other background processes involve one or more fake leptons, including WW pro-
duction, W+jet events, single top and multijet production. The WW production

cross section is 3 orders of magnitude smaller than the Z production cross section,
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so while both processes can produce tri-lepton events with one fake lepton, the WW
background contribution is negligible compared to that from Z+jets. The probability
of a jet faking a lepton is on the order of 1 in 10*; processes with two fake leptons are
negligibly small. To confirm this estimate, the background from these processes is
estimated from simulation. WW, single-top, QCD, and W+ jets production each con-
tribute less than 0.1% of estimated events after all selections, and these backgrounds

are neglected.

9.1 Z + jets background

The Z + jets background contains two prompt leptons from the Z decay and a
third fake lepton from a mis-identified jet, heavy quark decay, or pion and kaon decay
in-flight. A lepton from semi-leptonic decay in jets is also considered a fake lepton.
The source of missing transverse energy in the event can be the mismeasurement of
one or more jets in the event, a contribution from other collisions in the same event,
or a neutrino from b or ¢ quark decay. The probability of reconstructing a lepton
from a jet is small and depends on the type and kinematics of the jet as well as
the selection requirements for the lepton. For our lepton selection, the probability
of reconstructing a third lepton in a Z+jets event is about 1 in 10,000. The Z+jets
cross section is 3 orders of magnitude larger than the W Z production cross section,
so the background due to Z+jets is significant.

We estimate the Z+jets background from data. First, we measure the ratio be-
tween isolated leptons and lepton-like jets, known as the fake factor. Second, we

count the number of Z+lepton-like jet events that pass all other selection require-
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ments. The product of these two numbers gives us an estimate of how many Z+jets
events are in our signal region.

We define a lepton-like jet or loose lepton as an object that passes a specific subset
of the lepton selections but fails at least one selection. The loose lepton requirements
differ for electrons and muons. A tight lepton is a lepton that passes all selection
requirements. The fake factor, f, is defined as a ratio between the number of tight

and loose leptons:

(9.1)

and f is defined and calculated separately for electron and muons.

To avoid signal contamination in the control regions, the selection requirements
separating loose and tight leptons should cleanly separate leptons from W decays
from leptons from jets. For muons, reversing the isolation requirement yields a loose
lepton control region dominated by Z+jets events. Loose electrons must fail either
the isolation selection or one of the shower shape, width, or track matching selections
described in the Tight++ electron quality requirements in Section [5.4. Therefore,

equation [9.1| can be rewritten:

Ntight++, isolated Nisolated
fmuon = % (92)

N, reconstructed electrons which fail tight++ or are non-iso N, non-isolated

f electron —

The rate of reconstructing an isolated lepton from a jet depends on the jet n, pr,
and the original parton from which the jet emerged. Jets with b and ¢ quarks produce
leptons through semi-leptonic W decay, whereas jets produced by light quarks or
gluons produce fake leptons through decay-in-flight of pions, kaons, or by depositing
energy in the calorimeters that mimics the energy deposition mimics of an electron.

Instead of parameterizing the fake factor as a function of several jet parameters, we
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choose to measure it in a sample as close as possible to our background. Specifically,
we measure the fake factor in a Z + jets control region obtained by reversing the

missing transverse energy requirement on our data sample.

A

c
9
©
o
2

B C
©
o

signal region
A D
25 GeV MET

Figure 9.1: Illustration of Z+jets data-driven background estimation technique. The
r-axis is the B in events with a reconstructed Z boson and a muon. The y-axis
is the isolation of the muon in these events. A and B are control regions in which the
fake factor is measured. The fake factor times the number of events in control region
C is an estimate of the number of Z+jets events in signal region D.

The three control regions used in the background estimate are shown in Figure|9.1
for events with fake muons. The fake factor f is the ratio of the number of isolated
to non-isolated muons for events with a reconstructed Z boson and Ef*** < 25 GeV.
In the diagram, this is the ratio of events in control region A to control region B.

Multiplying the fake factor by the number of events with a Z + non-isolated muon

with Epss > 25 GeV yields the final background estimate:
: : . : A
Z+jets estimate in signal region D = 3 X C (9.3)

We calculate the fake factor f using an inclusive sample of Z — uu + ¢ and Z —
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ee + ¢ events. The probability that the W candidate muon is isolated is independent
of the flavor of the Z leptons. The same logic applies for electrons. Therefore, we use
the same muon fake factor for the pup and eep channels. The electron fake factor is
the same for the eee and pue channels. To estimate the background in each of the

four channels, we count the events in control region C in each channel.
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Figure 9.2: EZ¥s% distribution for Z + muon events, shown for non-isolated muons
(left) and isolated muons (right). The Z+jets contribution shown is taken from
simulation and does not necessarily reproduce the data in the control regions very
well.

Figure shows the missing transverse energy distribution separately for isolated
(tight) and non-isolated (loose) muons. In Figure , the missing transverse energy
distribution for electrons which fail one of the selection criteria (loose electrons) is
shown alongside the distribution for electrons passing all selection requirements, in-
cluding isolation (tight electrons). The events in these distributions are used directly
in the calculation of the background estimate.

In Figures and [9.3] the Z+jets distribution shown is taken from simulation
and normalized by the NLO Z+jets cross section and the integrated luminosity.

The events are simulated with the ALPGEN [I17] generator with the CTEQ6L1 PDF
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Figure 9.3: E7¥s* distribution for Z 4 electron events, shown for electrons that fail the
isolation selection or fail one of the shower width, shape, or track matching require-
ments (left) and electrons that pass all selections (right). The Z+jets contribution
shown is taken from simulation and does not necessarily reproduce the data in the
control regions very well.

set. The generated events are interfaced with JiMMmy [75] to model multi-parton
interaction and HERWIG [74] to simulate hadronization, initial state radiation, and
final-state QCD radiation. The normalization of the Z+jets events with a third lepton
does not match the data well in the control regions. Simulating the rate of lepton
production and the isolation of the leptons in jets requires precise modeling of the
tails of jet fragmentation, hadronization, and the pr and kinematics of heavy quarks
in jets, as well as accurate simulation of the interaction between all particles in the
jet and the detector. It is difficult to accurately simulate the tails of jet distributions,
and it is not surprising that the simulation does not reproduce the data exactly. Since
we take the background estimate directly from data, this is not a problem for this
analysis.

When calculating the estimated background, contributions from other processes
are subtracted from the control regions using estimates from simulation. In the loose

lepton control regions B and C, this subtraction involves less than 1% of events. How-
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ever, in the tight lepton control region A, both the W Z and ZZ processes contribute
significant events and the subtraction is a significant source of systematic uncertainty,
as will be discussed shortly.

For the eep and ppe channels, there is no ambiguity between W and Z leptons.
However, for the pup and eee channels, it is possible that one of the leptons in the
reconstructed Z boson was not from the Z decay. This is possible for WZ events
as well, but simulation predicts an incorrect lepton assignment of less than 1%. The
simulation predicts a higher rate of incorrect assignment for Z+jets events which
pass all W Z selection requirements, including all lepton selections. Events in which
a fake lepton pairs with a real lepton to make a Z with an invariant mass closer to
the Z mass also contribute to the total background. There is a small probability of
the wrong pair having an invariant mass closer to the Z mass than the true pair, but
in those rare events, the Z lepton which is incorrectly excluded from the Z boson
often makes a good W candidate lepton because it is usually high pr and isolated.
Moreover, our W Z selection has tighter pr and selection requirements on the W
lepton than on the Z leptons. It is easier for a jet to fake a 15 GeV loose++ electron
or segment-tagged muon than a 20 GeV tight++ electron or combined muon. The
jet pr distribution falls steeply between 15 and 20 GeV, so there are also more jets
available to fake a 15 GeV lepton. Therefore, it is easier to fake a Z lepton than a
W lepton.

To measure the contribution to the Z+jets background from events in which one
of the Z leptons is from a jet, we define a separate control region in which one of

the Z leptons is a loose lepton, and the other Z lepton and the W lepton pass the
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tight lepton selections. In the eee channel, this control region is dominated by Z+jets
events. In the puup channel, this region is dominated by ¢t events, so we can not use
the data to measure this in the ppup channel.

In the eee events, we estimate the fake-factor for the Z electron requirements
in data, and estimate the background from events where the Z lepton is the fake,
not the W lepton. These events contribute an additional 8% to the Z+jets data-
driven estimate in the eee channel. The simulation predicts 10%. Since there is good
agreement between the simulation prediction and the data measurement in the eee
channel, and we can’t measure the contribution in the pup channel directly, we apply
a correction to the ppup data estimate based on the simulation prediction of the ratio
of background events with a fake W muon to background events with a fake Z muon.

There are several sources of uncertainty on the background prediction for Z+jets.

The three largest sources of uncertainty are:

e statistical uncertainty: Due to limited data in the control regions, in particular
in control region A, there is a significant statistical uncertainty on the cal-
culated fake-factor, which propagates to a significant uncertainty on the final
background estimate. The statistical uncertainty due to limited data is about
25% on the final background estimate in the eee and pue channels and 40% in

the ppup and eep channels.

o EMss scaling of fake-factor: We measure the ratio of loose to tight leptons in
Z+jets events with ER5 < 25 GeV, and apply it in Z+loose lepton events
with Efss > 25 GeV. If there is a correlation between the isolation of muons

in jets and the E7** in the event (similar for electrons), it is ignored by the
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background estimation technique. We treat a possible correlation as a system-
atic uncertainty, and estimate the size by looking in simulation. The systematic
uncertainty is taken as the deviation from unity in the ratio between the fake-
factor in the high E7* region to the low E7* region in Z+jets simulation, or
the statistical uncertainty on the ratio in MC, whichever is larger. For events
with a W muon, this uncertainty is 35%. For events with a W electron, it is

20%.

e Background subtraction: There is significant W7, ZZ, and tt contamination in
control region A. We subtract the estimated contributions from these processes
from the control region, but there is an uncertainty on how well we know the
subtracted background normalizations. To estimate the uncertainty that this
subtraction has on the final Z+jets estimate, the normalization of the W2 and
Z 7 samples are varied by the uncertainty of the measured cross-sections in the
most recent ATLAS results. This is 20% for WZ and 15% for ZZ. The tt contri-
bution is varied by 100%, since the tf contribution to the three lepton sample
requires a third lepton and is not necessarily well modeled by the simulation.
The uncertainty on the final Z+jets estimate is taken as half of the difference
between the data-driven estimate with the varied MC sample normalization and

the data-driven estimate with the nominal MC cross sections.

All statistical and systematic uncertainties are added in quadrature within each
channel. When combining channels or calculating the cross section, the fact that the
measured fake factor is the same for the pup and the eep channels, and separately

the same for the eee and pue channels, is taken into account as a full correlation in
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uncertainties resulting from the fake factor.
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Figure 9.4: Z+jets background estimation in control region. Events in the control
region have a Z boson and a W candidate lepton with 10 < pr < 20 GeV and are
dominated by Z+jets events. Shown here is the number of events in each of the four
lepton channels, as predicted by the Z+jets data-driven method, and the number of
events observed in data. The prediction for other processes are taken from simulation.
There is good agreement between the number of predicted and observed events.

In events with a Z boson and a W candidate lepton with 10 < pr < 20 GeV,
the Z+jets background dominates over WZ signal events (see Figure m) This
provides a good control region to test the Z+jets background estimation technique.
The data-driven background estimation method described above is performed, in each
of the four lepton channels, for the exclusive sample of events with a Z boson and a
W lepton with 10 < pr < 20 GeV. The estimated number of events agrees well with
the observed number of events in data, as shown in Figure [9.4]

The measurement of limits on anomalous triple gauge couplings is performed
using the Z boson transverse momentum distribution. For this measurement, it is
important to have an accurate estimation of the background as a function of pZ.

To provide this, we estimate the background independently in bins of pZ using the
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Table 9.1: Z-+jets background estimates, as estimated from data, per channel. The
first uncertainty is statistical in nature; the second is systematic.

Channel Expected Z+jets Events

eee 8.8 +214+19
eep 3.7+£17+£16
e 102 £24 4+ 2.2
o 9.1 +£ 39+ 39

same fake-factor method. All control regions are counted independently in each bin,
and the fake-factor is derived as a function of Z transverse momentum. Figures
and show the fake factor as a function of pZ for electrons and muons respectively.
As there are limited statistics for events with high Z transverse momentum, the fake
factor is calculated in the last three bins inclusively. Both simulation and data show

that the fake factors are not flat as a function of pZ.
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Figure 9.5: Muon fake factor as a function of pL. The fake factor is the ratio of isolated
to non-isolated muons, for muons in Z-jets events which pass all other muon selection
requirements.

The final Z+jets background estimates are shown in Table for each of the four

decay channels.
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Figure 9.6: Electron fake factor as a function of p%. The fake factor is the ratio of the
number of electrons which pass all selection requirements to the number of electrons
which fail at least one isolation, shower shape, width, or track matching selection
requirement, for electrons in Z+jets events.

9.2 77 background

The shape of the ZZ background is estimated from simulation by applying the
full W Z selection and applying the corrections, including re-weighting and smearing,
described in Section [7.2] The total number of expected events is determined by
scaling the ZZ sample according to the theoretical cross section and the measured
luminosity.

The ZZ background is simulated using PYTHIA [139]. PYTHIA simulates the hard
scatter as well as the hadronization. The simulation includes the full (Z~*)(Z~%)
structure; that is, either or both of the Z bosons is allowed to be off-shell, and Z — ~
interference is correctly treated. Full angular correlations are included in the leptonic
decays of the Z bosons. The leading-order cross section provided by PyTHIA is
normalized to next-to-leading order cross section calculated by MCFM [55].

Z 7 — LUl events can have reconstructed missing transverse energy from several
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Figure 9.7: Ef¢ of ZZ events in simulation. Event with all leptons reconstructed
have all four truth leptons from the Z bosons matched to a reconstructed lepton
within AR < 0.1. Events with a missing lepton are events in which one or more truth
leptons is not matched to a reconstructed lepton.

sources. If one of the leptons is not reconstructed by the detector, it carries away
momentum that shows up in the calculation of missing transverse energy. In Fig-
ure [9.7], the missing transverse energy distribution of ZZ events is shown for events
in simulation. If all four truth leptons are matched within AR < 0.1 to a recon-
structed lepton, the event is considered to have all leptons reconstructed. If one or
more of the truth leptons from a Z boson decay is not matched with a reconstructed
lepton, the event is called a missing lepton event. Events with a missing lepton have
on average 3 GeV more missing transverse energy than events in which all leptons are
reconstructed. Truth leptons which are not matched with a reconstructed lepton are
largely located in regions of the detector with reduced detector coverage. In Figure
[0.8] the n distribution of missing leptons is shown separately for missing electrons
and muons in ZZ simulated events which pass the full W Z selection requirements.

The distribution of missing electrons peaks around |n| = 1.4, which is the transition
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between the barrel and endcap electromagnetic calorimeters, where there are gaps in
calorimeter coverage. Missing muons are predominately around n = 0, where there is
a gap in muon spectrometer coverage to allow cables from the inner detector to pass

out of the detector, and above |n| = 2.7, where the muon spectrometer coverage ends.
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Figure 9.8: n distribution of leptons not reconstructed in ZZ events, for electrons
(left) and muons (right.) Missing leptons, which are truth leptons not matched with
a reconstructed lepton within AR < 0.1, peak in regions of the detector with limited
coverage and contribute to the EM* in ZZ events.

Missing transverse energy in Z/Z events can also be contributed from other col-
lisions in the same event. This can be seen in Figure [9.9, which shows the mean
missing transverse energy in a ZZ event as a function of the number of reconstructed
vertices. The average amount of missing transverse energy is 16 GeV for ZZ events
with 1 reconstructed vertex and 27 GeV for ZZ events with 15 reconstructed vertices.

The shape and normalization of simulated ZZ events is checked in data in events
with four reconstructed leptons before the missing transverse energy selection require-
ment. The four lepton sample is dominated by ZZ events, and the prediction matches
the data well within the statistics of the sample. Figure [9.10| shows the distribution

of missing transverse energy and the number of jets in the four lepton sample before
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Figure 9.9: Average EM* versus number of of reconstructed vertices in ZZ events,
for simulated ZZ events.

the missing transverse energy selection.
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Figure 9.10: Four lepton events in data before E7'*** selection. The EI*** distribution
(left) and the number of jets (right) in events with a reconstructed Z boson and two
additional leptons passing all lepton selections, before the EZ*** selection requirement.
This control region confirms that the ZZ simulation models the data.

Systematic uncertainties on the normalization of the ZZ background are discussed
in Section [10.4. The expected number of ZZ events in the final data sample is shown

in Table [0.2
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Table 9.2: ZZ and Z + v background estimates from Monte Carlo. Expected number
of events passing all selection cuts for background MC samples, normalized to an
integrated luminosity of £ = 4.64 pb~!. The first error is statistical while the second
is systematic.

Events
eee eep EHp FLp
Z+~v 1.440.740.1 - 2.3+0.940.1 -
Z7 3.240.140.2 4.940.1+£0.2 5.0+£0.1+0.1 7.940.1+0.2

Sample

9.3 tt background

Events with top quark pair production can pass the W Z event selection if both
W bosons decay leptonically and if a lepton is reconstructed from a b-quark jet. In a
study of simulated ¢t events, more than 99% of events passing the full W Z selection
had two leptons matched to W truth leptons and one lepton from a b jet (where
matched leptons must have AR < 0.05 from the truth object.) Fewer than 1% of
events had 2 leptons matched to b jets and one lepton from a W decay.

The next-to-leading order (NLO) in QCD generator MC@QNLO is used to model
the shape of tf events and single top events. However, the normalization of the
expected tt contribution is taken from data.

Events with top quarks are the only significant background to W Z events which
do not contain a true Z boson. If we select W Z events with the full selection require-
ments but require that the reconstructed Z boson has leptons of the same charge
rather than the opposite charge, we obtain a sample dominated by top quark events
with 3 reconstructed leptons. The kinematic distributions of the ¢t sample which pass
the nominal W Z selection are similar to the ¢f sample which pass the W Z selection

with the same-sign Z boson. This can be seen in Figure [9.11], which shows both the
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invariant mass of the reconstructed Z boson and the missing transverse energy distri-
bution separately for ¢t events with opposite-charge and same-charge reconstructed

Z candidates.
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Figure 9.11: tf events with same-sign Z candidate. The missing transverse energy
distribution (left) and invariant mass of the Z candidate (right) is shown for simulated
tt events. Distributions are shown for events which pass the nominal W Z selection
(opp-charge, in black) and for events in which the Z candidate has leptons with the
same charge (same-charge, in red). The two sets of events have similar kinematics.

Events with a same-sign Z candidate are used as a control region for the ¢t back-
ground. The missing transverse energy distribution for this control region is shown in
Figure for the eep and ppe channels in both data and simulation. The ratio of
the total number of data events to the number of top events predicted by simulation,
after subtracting the number of expected events from other processes as predicted
by simulation, is taken as a data-derived scale factor. This scale factor is used to
normalize the ¢t contribution predicted by simulation in the signal region, resulting
in a final ¢f background estimate.

The normalization scale factor has a value of 2.2 with a statistical uncertainty of
1.0. The statistical uncertainty on the scale factor results in a systematic uncertainty

on the total ¢t background. The ¢t simulation prediction in the signal region also con-
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Figure 9.12: t¢ control region in data for the eey (left) and puue (right) channels. The
control region is composed of events which pass the full W2 selection, except the
reconstructed Z boson must have leptons with the same charge. This region is used
to obtain a normalization scaling for the tf simulation.

tributes significant statistical uncertainty to the final background estimate, as there
are very few events that pass the full W Z selection in simulation. Other systematic
uncertainties are studied, including differences in kinematics between tf events with
a same sign Z and tt events with an opposite sign Z, but all other systematics are
small compared to the 50% uncertainty due to the limited statistics in the control
region in data, and are neglected. The final ¢ background estimates are shown in
Table 0.3

There is one additional way in which top quark pair production can contribute
to the W Z background. Before decay, an off-shell top quark can radiate a Z boson;
though the cross section for this process is only 90 fb, the events contain two W
bosons and a Z boson and have a high efficiency to pass the full WZ selection. A
similar process can occur in which a tf event is produced with an additional W boson.
This process does not contain a Z, but if the three W bosons all decay leptonically,

the event has three isolated, high pr leptons.
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Table 9.3: ¢t and ti+X background predictions per decay channel. tf numbers are
obtained from Monte Carlo estimates which are rescaled to data by a factor 2.2. The
first uncertainty is from the statistics of the MC estimation; the second uncertainty is
from the rescaling, and is due to limited data statistics in the region in which the scale
factor is calculated. tf + W* and tf + Z estimations come directly from simulation,
and are shown with statistical uncertainties.

Expected Events
tt tt+ W= tt+Z2
eee 0.44+0.3+0.2 0.1£0.02 0.6£0.1
eef 1.7+0.5£0.8 0.1+0.02 1.140.1
e 2.3£0.5+1.0 0.1£0.03 1.2%0.1
LU 24+0.5+1.1 0.1£0.03 1.5%0.1

Channel

The tt+ Z and tt+W background contributions are estimated from simulation. As
the events contain three leptons from vector boson decay, the efficiency and acceptance
for identifying three leptons in the event should be well modeled in Monte Carlo. We
generate these events with MADGRAPH [11], interfaced with PyTHIA to model the
hadronization and initial and final state QCD radiation.

In the calculation of the ¢t data-derived normalization in the same-sign Z control
region, expected contributions from ¢t + W/Z events are subtracted from the data.
In this way, the two top quark background estimates do not overlap. The predicted
background from tt + W/Z events is shown in Table Systematic uncertainties on

the normalization of the tf + W/Z background are discussed in Section [10.4]

9.4 7 + v background

Leptonic decays of Z bosons produced in association with a photon can mimic

the tri-lepton signature of W2 events when a photon undergoes conversion into an
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electron-positron pair upon interaction with the material of the detector. These events
differ from the Z~* events simulated in the ZZ background because the photon is a
real photon, not virtual.

This process is simulated using the matrix element calculation of the MADGRAPH
generator, interfaced with PYTHIA to simulate the event hadronization and Photos
and GEANT4 to simulate photon conversions in the detector.

Systematic uncertainties on the normalization of the Z + v background are dis-
cussed in Section[I0.4] The expected number of Z+-y events in the final data sample is
shown in Table 9.2l This background only contributes to channels with a W electron

candidate.

9.5 Specifics on Background MC Samples

Details on the simulated samples used are shown in this section. The Z+jets
background, detailed in Table [9.4] is used only for illustration purposes: the actual
background is estimated from data for both the cross-section and anomalous triple
gauge coupling limits.

The ZZ and Z + ~ backgrounds are estimated from simulation. Details on the
MC samples used to estimate these backgrounds are shown in Table 9.7]

The ¢t simulation is used to derive the shape of the background, including the
distribution as a function of pZ. The normalization for this background process is
taken from data. The expected background from tt + W/Z events is taken directly

from simulation. The details on the simulation of events with top quarks is shown in

Table [0.6l
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Also included are the simulation details for WW dijet, and W-+jet events in

Tables 9.6] and respectively. As noted earlier, the MC predicts that each of

these processes contributes less than 0.1% of all expected events, and these sources

are not included in background estimates.

218



Chapter 9: Backgrounds to W Z production

Table 9.4: MC samples/processes used to model Z+X, including Z+jets, Zbb+jets
and Drell-Yan samples. The corresponding cross-sections, generator names, generator
level filter efficiencies and total numbers of events are shown. The listed cross sections
do not include k-factors or filter efficiencies. NpX (X = 0...5) in the process name

refers to the number of additional partons in the final state.

MCID Process Generator  Events  k-factor e€ger 0 [ph]
107650 ZeeNpO ALPGEN 6618284 1.25 1.0  668.32
107651 ZeeNpl ALPGEN 1334897 1.25 1.0 134.36
107652 ZeeNp2 ALPGEN 2004195 1.25 1.0 40.54
107653 ZeeNp3 ALPGEN 549949 1.25 1.0 11.16
107654 ZeeNp4 ALPGEN 149948 1.25 1.0 2.88
107655 ZeeNpH ALPGEN 50000 1.25 1.0 0.83
107660 ZupNpO ALPGEN 6615230 1.25 1.0  668.68
107661 ZppuNpl ALPGEN 1334296 1.25 1.0 134.14
107662 ZppuNp2 ALPGEN 1999941 1.25 1.0 40.33
107663 ZppuNp3 ALPGEN 549896 1.25 1.0 11.19
107664 ZupuNpd ALPGEN 150000 1.25 1.0 2.75
107665 ZupuNpb ALPGEN 50000 1.25 1.0 0.77
107670 Z77Np0 ALPGEN 10613179 1.25 1.0  668.40
107671 Z7TNpl ALPGEN 3334137 1.25 1.0 134.81
107672 ZT7TNp2 ALPGEN 1004847 1.25 1.0 40.36
107673 ZT7TNp3 ALPGEN 509847 1.25 1.0 11.25
107674 Z7TNp4 ALPGEN 144999 1.25 1.0 2.79
107675 Z7TNpb ALPGEN 45000 1.25 1.0 0.77
109300 ZeebbNpO_nofilter ALPGEN 409999 1.25 1.0 6.57
109301 ZeebbNpl_nofilter ALPGEN 160000 1.25 1.0 2.48
109302 ZeebbNp2_nofilter ALPGEN 60000 1.25 1.0 0.89
109303 ZeebbNp3_nofilter ALPGEN 30000 1.25 1.0 0.39
109305 ZppbbNpO_nofilter ALPGEN 409949 1.25 1.0 6.56
109306 ZppbbNpl nofilter ALPGEN 155000 1.25 1.0 2.47
109307 ZppbbNp2 nofilter ALPGEN 60000 1.25 1.0 0.89
109308 ZupubbNp3_nofilter ALPGEN 29999 1.25 1.0 0.39
116250 ZeeNpO M10to40 pt20  ALPGEN 994949 1.22 1.0 3051.62
116251 ZeeNpl M10to40 pt20  ALPGEN 299998 1.22 1.0 87.87
116252 ZeeNp2 M10to40 pt20  ALPGEN 999946 1.22 1.0 41.10
116253 ZeeNp3 M10to40 pt20  ALPGEN 149998 1.22 1.0 8.38
116254 ZeeNp4 M10to40 pt20  ALPGEN 40000 1.22 1.0 1.85
116255 ZeeNpb M10to40 pt20  ALPGEN 10000 1.22 1.0 0.46
116260 ZppuNpO M10to40 pt20  ALPGEN 999849 1.22 1.0 3051.62
116261 ZppuNpl M10to40 pt20  ALPGEN 300000 1.22 1.0 87.87
116262  ZpupuNp2 M10to40 pt20  ALPGEN 999995 1.22 1.0 41.45
116263 ZuuNp3 M10to40 pt20  ALPGEN 150000 1.22 1.0 8.38
116264 ZpuNpd M10to40 pt20  ALPGEN 39999 1.22 1.0 1.85
116265 ZpuNpd M10to40 pt20  ALPGEN 10000 1.22 1.0 0.46

219



Chapter 9: Backgrounds to W Z production

Table 9.5: MC samples/processes used to model W+jets. The corresponding cross-
sections, generator names, generator level filter efficiencies and total numbers of events
are shown. The listed cross sections do not include k-factors or filter efficiencies. NpX
(X = 0...5) in the process name refers to the number of additional partons in the

final state.

MCID  Process Generator Events k-factor e€gper o [pb]
107680 WevNp0 ALPGEN 6952874 1.2 1.0  6921.60
107681 WevNpl ALPGEN 4998487 1.2 1.0 1304.30
107682 WevNp2 ALPGEN 3768632 1.2 1.0 378.29
107683 WevNp3  ALPGEN 1008947 1.2 1.0 101.43
107684 WevNp4d ALPGEN 250000 1.2 1.0 25.87
107685 WevNp5  ALPGEN 69999 1.2 1.0 7.0
107690 WurvNpO ALPGEN 3462942 1.2 1.0  6919.60
107691 WuvNpl  ALPGEN 4998236 1.2 1.0 1304.20
107692 WurNp2 ALPGEN 3768737 1.2 1.0 377.83
107693 WurNp3  ALPGEN 1008446 1.2 1.0 101.88
107694 WurvNp4d ALPGEN 254950 1.2 1.0 25.75
107695 WurNp5  ALPGEN 70000 1.2 1.0 6.92
107700 WrvNpO ALPGEN 3418296 1.2 1.0 6918.60
107701 WrrvNpl  ALPGEN 2499194 1.2 1.0 1303.20
107702 WrvNp2 ALPGEN 3750986 1.2 1.0 378.18
107703 WrvNp3  ALPGEN 1009946 1.2 1.0 101.51
107704 W7rvNp4d ALPGEN 249998 1.2 1.0 25.64
107705 WrvNp5  ALPGEN 65000 1.2 1.0 7.04

Table 9.6: MC samples/processes used to model top (including ¢¢ and single top)
and dijet backgrounds. The corresponding cross-sections, generator names, generator
level filter efficiencies and total numbers of events are shown. The listed cross sections
do not include k-factors or filter efficiencies.

MCID Process Generator events  k-factor  €ger o [ph]
105200 tt MCQNLO 14983835 1.0 0.55551 166.8
119353 tt+ Wt MADGRAPH 100000 1.3 1.0 0.12444
119355 tt+ 7 MADGRAPH 99997 1.3 1.0 0.095581
108340 t-channel—e MCQ@NLO 299998 1.0 1.0 7.1522
108341 t-channel— u MCQ@NLO 299999 1.0 1.0 7.1767
108342 t-channel— 7 MCQ@NLO 299999 1.0 1.0 7.1277
108343 s-channel—e MCQNLO 299948 1.0 1.0 0.46856
108344 s-channel— p MC@NLO 299998 1.0 1.0 0.46837
108345 s-channel— 7 MC@NLO 299899 1.0 1.0 0.46978
108346 Wt MCQ@NLO 899694 1.0 1.0 13.102
105757 bbce mulOmulOX PyTHIAB 296599 1.0 1.0 2830.3
105758  bbce mulOel0X PyTHIAB 795695 1.0 1.0 4017.1
105759 bbce e10e10X PyTHIAB 290995 1.0 1.0 1693.0
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Table 9.7: MC samples/processes used to model diboson backgrounds, including
WW., ZZ, and Z~. The corresponding cross-sections, generator names, generator
level filter efficiencies and total numbers of events are shown. The listed cross sec-
tions do not include k-factors or filter efficiencies.

MCID Process Generator Events k-factor  egjer o [pb]
105985 WW HERWIG 2489244 1.52 0.38863 29.592
109292 77 PyTHIA 149999 1.40 0.6235 0.07494
108290 W~ (7) v PyTHIA,MADGRAPH 50000 1.83 1.0 16.8
126015  Zeevy_1jet Sherpa 199899 1.0 1.0 14.7
126016 Zupry_ljet Sherpa 199950 1.0 1.0 14.7

108325  Z(r7) v  PYTHIA,MADGRAPH 49949 1.41 0.15 9.41
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Measurement of the W/ Cross

Section

This chapter describes the measurement of the WZ cross section at /s = 7 TeV

through the process

pp — WEZ — (X0t~ (10.1)

where ¢ = e,u. W Z events are identified by selecting events with three leptons
and missing energy in the final state, as described in Chapter [§] The backgrounds
processes and estimation methods are discussed in Chapter [9]

The measured cross section is extracted using a maximum likelihood fit to the ob-
served number of events in each of the four decay channels in data. We measure two
cross sections: a fiducial cross section within the phase space in which we observe W2
events, and a total cross section which extrapolates from the observed events to the
total W Z production phase space. The total cross section is the more fundamental

theoretical quantity and more useful for comparisons with theoretical calculations;

222



Chapter 10: Measurement of the W Z Cross Section

however, the extrapolation is done assuming Standard Model production of signal
events. The fiducial cross section is what we actually measure; it has a lower theo-
retical uncertainty than the total cross section, largely due to smaller uncertainties
from PDFs, and suffers a smaller theoretical bias.

The selection acceptance and efficiency are modeled using Monte Carlo simula-
tions of the W Z signal. Corrections are applied to the MC to account for several
observed differences between simulation and data; these corrections are described in
Chapter |7} Uncertainties on the corrections lead to systematic uncertainties on the
signal acceptance and efficiency. This chapter covers these systematic uncertainties,

as well as additional systematic uncertainties on the measured cross section.

10.1 Theoretical Cross Section

The theoretical prediction of the W Z production cross section is calculated using
Monte Carlo For FeMtobarn processes (MCEM) [55]. MCFM calculates cross sections
at the parton-level to next-to-leading order (NLO) in ag for a range of processes at
hadron colliders. We use MCFM, rather than MC@QNLO, to calculate the theoretical
cross section because the former includes Z — v interference, while the latter does not.
We calculate both the total and fiducial cross section using MCFM; the definition of
the fiducial cross section is given in Section

For the nominal PDF, we use CT10 [109], a set of PDFs extracted in 2010 which
includes recent collider data from deep-inelastic scattering, vector boson production,
and single-inclusive jet production, with the exception of the the D@ Run-IT W lepton

asymmetry data, which is excluded due to disagreement with other data. The QCD
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renormalization and factorization scales are set in MCFM to %(mw +my) = 85.7863
GeV.
Due to the Z — ~ interference, there is not a clear separation between the W~ and

W Z processes. Indeed, MCFM computes the following process:
o(pp = W(Z or ) — ) (10.2)

The minimum of the process in equation [10.2] occurs around my; = 50 GeV. For our
total cross section measurement, we choose to define the Z boson, consistent with the

ATLAS single Z measurements and with earlier LEP measurements, as:
66 < my < 116 GeV (10.3)

This choice is arbitrary but significant. Figure shows the WZ production cross
section as a function of the minimum Z mass for both MCFM and MCQNLO and
for a selection of different PDF sets. Depending on the choice of PDF and minimum
Z mass, the WZ cross section can vary from around 17 to above 22 pb. Limiting
the upper Z mass has a non-negligible effect; with the lower bound set at 66 GeV,
restricting the upper bound of the Z boson to 116 GeV omits about 2.5% of the
otherwise total cross section.

The calculated cross sections for pp — W Z with 66 < m; < 116 GeV, calculated
with MCFM and MC@NLO, for a variety of input PDF sets, are shown in Table [10.1]

Uncertainties on the theoretical cross section calculation come from several sources.

The sources of systematic uncertainty which we consider are:

e PDFs: The uncertainty due to the choice of PDF is calculate by adding the

difference between the nominal PDF and the 52 eigenvectors of the CT10 PDF
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Figure 10.1: The theoretical W Z cross section as a function of the choice of minimum
Z boson mass as calculated by MCFM (circles) for several different PDF sets. There
is no upper bound on the Z mass for these calculations. The cross section is also
shown with no Z — 7 interference as calculated by MCFM (squares) and MCQNLO
(triangles).

Table 10.1: W Z theoretical cross section with different PDF sets. The Standard
Model cross sections (pb) for pp — WZ at /s = 7TeV computed with MCFM and
MCQ@NLO.

MCFM MC@NLO

PDF total fiducial total fiducial
CTEQG6.6 17.39+0.03 6.10£0.03 17.07  6.02
CT10 17.61£0.03 6.18+0.03 17.28  6.14
MSTW 2008 17.9840.03 6.39+0.04 17.69  6.31
NNPDF2.0 17.67+0.03 6.224+0.02 17.42 6.18
NNPDF2.1 18.114+0.03 5.3440.03 17.82 0.32
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set in quadrature. The uncertainties are calculated separately for positive and

negative errors using the equations:
52

0+ = ZmaX<O—%/VZ - U%%UIta 0)?

i=1

- (10.4)
o_ = Z min(cofy,, — ot 0)?

i=1

The resulting uncertainties are +3.1%, -3.9% for the total cross section and
+0.13, -0.40% for the fiducial cross section. The PDF uncertainty is significantly

larger for the total cross section than for the fiducial cross section.

Comparisons are made with other PDF sets, included NNPDF2.1 and CTEQ
6.6. However, the differences between CT10 and the other PDF sets tested are
smaller than the uncertainties calculated from the CT10 eigenvectors, so we do

not include them separately.

o QQCD renormalization and factorization scale: We vary the QCD renormaliza-
tion scale and the factorization scale in the MCFM calculation simultaneously
by x2 and x0.5. The resulting differences, which we take as a systematic un-
certainty, are +5.4%, -4.0% for the total cross section and +4.7%, -4.3% for the

fiducial cross section.

e ag: We vary the strong coupling constant a,g by +0.001, which is consistent with
its measured uncertainty at the Z mass. The change is taken as an uncertainty
of +0.2%, -0.5% for the total cross section and +0.6%, -0.8% for the fiducial

cross section.

All systematic uncertainties are combined in quadrature. In summary, the theo-

retical W Z cross section is calculated using MCFM and the CT10 PDF set in the Z
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mass window 66 < my; < 116 GeV, resulting in a total cross section of:
okl = 17671 pb (10.5)

The MCQ@QNLO samples are scaled to the total cross section when calculating the

expected number of signal events.

10.2 Selected Events

We observe 317 WZ candidates in data with 231.2 signal and 68.1 background
events expected. The breakdown of observed and expected events by channel and
process is shown in Table including statistical and systematic uncertainties. The
Z+jets background is estimated using data-driven methods; top quark production is
estimated with simulation and rescaled to match data control regions. All other
predictions are from simulation, and the systematic uncertainty on MC estimates are
discussed in Section All numbers are calculated with 3, but rounded up to 2
decimal places. The systematic uncertainties listed in Table are not used directly
in the cross section extraction; the fit procedure accounts for the full granularity and
correlation of systematic sources across different channels.

Kinematic distributions of the selected sample are shown in Figure [10.2] Distri-
butions of the selected Z and W boson are show in Figure [10.3] including the WZ
invariant mass. However, since we only measure the transverse component of the
neutrino’s momentum, there is ambiguity about the full W boson 4-vector. We solve
the equation E? = P? + M? using the x and y components of E and the full

4-vector of the electron or muon assigned to the W boson to estimate the p; of the
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neutrino, using the W mass as a constraint. There are two possible solutions for p.
If there are two real solutions, we choose the one with the smaller magnitude. If there
is no real solution, we select the real part of the solution with the smaller magnitude.
In a MC study, choosing the smaller of the two solutions was found to reproduce the

true WZ mass better than choosing the larger solution.
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Figure 10.2: Selected kinematic distributions for events in the selected W Z sample.
The Z+jets and ¢t backgrounds are MC normalized by data-driven estimates.
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Figure 10.3: Distributions of selected W and Z bosons. Distributions are shown after
all selections, except for the Z invariant mass distribution, which is shown with the
Z mass requirement lifted. The Z+jets and tf backgrounds are MC normalized by
data-driven estimates; all other processes are taken from MC.
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10.3 Acceptance and Efficiency

To convert the number of observed W Z events to a measured cross section, we
need to know the probability with which a collision containing a W Z final state was
counted in our selected events. We calculate the fiducial cross section by correcting
the number of observed events for the efficiency of reconstructing a W2 event, if
that event is within the detector volume. The efficiency correction, called the fiducial
efficiency, Cy z, corrects the number of observed events to the number of produced
events, for events within the fiducial volume (see next section.)

The total cross section is then calculated by extrapolating to the full phase space
of W Z events, which includes events with leptons which fall outside the detector and
selection volume. The correction from events produced within the fiducial volume to

the full W Z phase space is called the acceptance correction, Ay z.

10.3.1 Fiducial Volume

The fiducial volume is a phase space designed to be as close as possible to that
in which we select W Z events with the ATLAS detector and with our selection cuts.
Measuring a cross section within the fiducial volume minimizes theoretical extrapo-
lation.

We define the fiducial volume with the same requirements on truth level objects

in all four channels. It is defined as:

e p% > 15GeV for the two charged leptons from the Z decay

e p% > 20GeV for the charged lepton from the W decay
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In*| < 2.5 for the three charged leptons

p7 > 25GeV for the neutrino

|mee — mz| < 10 GeV for the Z candidate

miV > 20 GeV for the W candidate

dR(l,1) > 0.3 for all leptons

Since our W Z selection requirements on electrons and muons are slightly different,
there is some extrapolation needed to move from the observed events to the fiducial
volume. The extrapolation is minimal and having a common volume defined for all
combinations of leptons allows us to compute a cross section that is easily comparable
and combined across all the four channels.

The truth leptons used in calculating the fiducial volume and efficiency in simu-
lation are final state electrons and muons including all photons within AR < 0.1 of
the lepton. The photons are added so that the final state leptons are physically well
defined and to minimize the measured cross section’s dependence on the modeling of

soft and collinear photon radiation from the leptons.

10.3.2 Fiducial Efficiency

The fiducial efficiency Cyyz corrects from the truth objects in the fiducial volume
to the reconstructed level. This correction gives us the probability of reconstructing
an event, given that all objects in the event would have been in the detector and

passed our selection requirements at truth level in simulation.
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The fiducial efficiency is the product of the trigger efficiency, the efficiency of
event level selections like identifying a primary vertex and reconstructing the EZ
and the individual efficiencies of all three charged leptons to pass the lepton selection
requirements.

We calculate Cyyz by finding the ratio of the number of events which pass the
reconstruction level selections to the number of events which are inside the fiducial
volume at the generator level. Corrections are applied to the signal simulation to
reproduce the resolutions measured in the data, including smearing and scaling of the
lepton momentum and pileup reweighting (see Section . The fiducial efficiency is

defined as:

MC Pass All Cuts

C - NReconstructed WZ—lwl'l! X SF
WZ—=Wwl'l — NMC Fiducial Volume
Generated WZ—Ivl'l’

(10.6)

where the Scale Factor (SF) is an event level correction to account for the differences
in reconstruction and trigger efficiencies between simulation and data. Specifically,

the scale factor is calculated as:

Edata 6;lata Edata
_ “trig ep reco event reco
SEF = EMC EMC EMC (107)
trig lep reco event reco

where €4 is the event level trigger efficiency, €p reco is the efficiency of reconstruct-
ing all three leptons, and €.pent reco is the efficiency of the event passing event level
selections including the primary vertex identification and missing transverse energy

reconstruction.

10.3.3 Total Acceptance

The acceptance correction Ay 7 extrapolates from the truth level fiducial volume

to the full phase space in which W Z events are produced. The acceptance correction
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is calculated separately in each channel with events from the MC@QNLO W Z signal
simulation, and is defined as:

NMC Fiducial Volume
A _ Generated W Z—wl'l!
WZ—l'l = N6 ATl (10.8)

Generated WZ—Ivl'l’

To correct for the missing Z — v interference in the MCQNLO simulation, we apply a
correction factor of 1.018 taken from a comparison of the acceptance correction calcu-
lated by MC@QNLO before showering and MCFM. We can not compute Ay, directly
from MCFM because MCFM simulates event at the parton level, without showering
or photon final state radiation. However, comparing the parton-level acceptances be-
tween MCFM and MC@NLO allows us to correct the MCQNLO acceptance to the
MCFM total cross section, which includes Z — « interference.

The complete correction from reconstruction level to the total phase space is given
by the product Cywz_nir X Awz_nrry. The fiducial efficiency, acceptance correction,
and total correction Cy 7 X Ay are given in Table for each of the four lepton
channels. The efficiency of reconstructing the three muon channel is 78%, while the
efficiency of reconstructing the three electron channel is 38%. The single electron
reconstruction efficiency is lower than the single muon reconstruction efficiency, and

requiring three electrons costs us three times.

Table 10.3: Fiducial and total acceptance corrections per channel.

R
Awz(pre-showering)  0.352 0.352 0.352 0.352

Aw z(post-showering) 0.338 0.333 0.332 0.330
Cwz 0.780 0.548 0.525 0.380
Awz x Cyyz 0.263 0.182 0.174 0.125
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Table 10.4: Uncertainties on theoretical cross sections for MC samples used in the
analysis.

Sample Uncertainty (%)

WZ e
77 0
Z 4+ +5.0

tt 'y

10.4 Systematic Uncertainties

The systematic uncertainties covered in this section are uncertainties reflecting
how well we know the fiducial efficiency and acceptance correction used in calculating
the measured cross sections, as well as uncertainties on the normalization of back-
grounds estimated from simulation. The uncertainties are also used in extracting
limits on anomalous triple gauge couplings, although additional systematic uncer-
tainties, discussed in Section [11.5] are included for calculating the limits.

The uncertainties on the theoretical cross-sections used to normalize signal and
background MC are shown in Table [I0.4, The uncertainties on the ZZ, Z + ~, and
tt cross section are described in detail in References [25, [, 105, O8], and include
uncertainties on PDF modeling, the renormalization and factorization scales, and
experimental measurements. The uncertainty on the theoretical W Z cross section
does not affect the measured cross section; it is considered, however, when extracting
aTGC limits.

The uncertainty on the luminosity measurement is 1.8%, as discussed in Sec-
tion 341

Systematic uncertainties on the fiducial efficiency Cy 7 are due to uncertainties on
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muon, electron, and E* resolutions and efficiencies, on trigger efficiencies, and from
PDFs. To estimate the size of the uncertainty from a particular systematic source
on the signal efficiency, we vary the underlying systematic source in signal simulation
and compare the event yield to the nominal selection. The uncertainty is taken as the
fractional difference between the nominal predicted number of events and the number
of events predicted with the varied systematic. The fractional uncertainty calculated
from the signal simulation is also applied to the ZZ and Z 4 v backgrounds, as there
are not enough MC statistics to calculate the uncertainties directly in the background
simulation.

The systematic uncertainties on the acceptance Ay, arise from PDF uncertain-
ties, the choice of generator, and the renormalization and factorization scale used in

the simulation.

10.4.1 Muons

We consider three sources of systematic uncertainty on the reconstruction and
selection of muons in this analysis.
Details on the systematic uncertainties on muon acceptance and efficiency are

listed below:

e Reconstruction efficiency

The efficiency of reconstructing a muon in data and simulation differs slightly,
and this difference is taken into account by weighing simulated events by a scale
factor for each selected muon. The scale factor is calculated as a function of

muon 7 and pr, as described in Section [7.2.2] and scale factors are multiplica-
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tive for events with multiple muons. There are several sources of uncertainty on
the correction factor. There are statistical uncertainties from the tag-and-probe
measurements of muon efficiency in data. There are systematic uncertainties
due to background subtraction, on the order of 0.2%. Finally, there is an uncer-
tainty on the efficiency for reconstructing high momenta muons, which requires
extrapolating the scale factor and relies on the simulation of muon energy loss
at high energies. For high pry muons, the extrapolation uncertainty on the

correction factor is around 1%.

o Resolution

As discussed in Section [7.2.2] the muon momentum resolution is determined
from studies of data taken with the toroid off and from studies on the dimuon
mass resolution at the Z pole. The momentum of muons in simulation is smeared
to reproduce the resolution measured in data. Uncertainties on the smearing
function arise from statistical uncertainties on the measured resolution, un-
certainties on background subtraction, the knowledge of the ATLAS material
budget and muon spectrometer alignment, and uncertainties on py extrapola-
tion. The degree of smearing is varied within its 1o uncertainties on the Inner
Detector track and the Muon Spectrometer Track separately, and the full dif-
ference in fractional event yield, as compared to the nominal smearing, is taken

as the systematic uncertainty.

e [solation and impact parameter A pr and n based event weight, or scale factor,
is applied to simulated events with muons to correct for very small differences in

the measured efficiencies of the muon isolation, dy, and z, selection requirements
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Table 10.5: Detailed list of systematic uncertainties on the expected event yields for
muon objects in MC signal samples, tau channels included.

Uncertainty per channel (%) pee e UL
Rec. efficiency oz foE foE
pr smearing 1D 0.03 0.01 0.04
MS 0.02 0.05 0.04
combination 0.04 0.05 0.06

Isolation & Impact Parameter Efficiency 32 043 +001

Total 0.34 0.68 1.01

between data and MC (see Section|7.2.2]) Uncertainties in the correction factor
due to background modeling and statistical uncertainties in the data used to

measure the correction result in an overall uncertainty on the event yield.

For each systematic considered, the fractional difference in event yield is calcu-
lated for all three channels that contain at least one muon. The uncertainties scale
linearly with the number of muons in the final state. The correlations in systematic
uncertainties due to the same source in different channels are calculated and input
to the cross section fit. The size of each muon systematic uncertainty, per channel,
is shown in Table The total is shown for illustration only; each systematic

uncertainty is input independently to the cross section fit.

10.4.2 Electrons

We consider four sources of systematic uncertainty on the reconstruction and
selection of electrons in this analysis.
Details on the systematic uncertainties on electron acceptance and efficiency are

listed below:
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e Reconstruction and identification efficiency

The efficiency of reconstructing and selecting an electron in data and simulation
differs slightly, and this difference is taken into account by weighing simulated
events by a scale factor for each selected electron. The scale factor is calculated
as a function of electron n and E7, as described in Section[7.2.3] and scale factors
are multiplicative for events with multiple electrons. The dominant uncertainty
on the electron reconstruction scale factor arise from background subtraction
in the tag-and-probe measurements of electron efficiency in W, Z, and J/W¥
data samples. There are also statistical uncertainties in the data samples. The
uncertainties are calculated separately for the reconstruction efficiency — the
probability that an electron traversing the detector produces a calorimeter clus-
ter and a track — and the identification efficiency — the probability that, given

a cluster and a track, an electron is selected.

e FEnergy Scale The electron energy scale is calibrated in both data and simulation
using a sample of Z — ee events. Uncertainties on the modeling of material in
the detector and the calibration of the EM calorimeter pre-sampler energy scale
dominate the uncertainty on the energy scale correction applied to both MC
and data. The calibration of the electron energy scale is varied in simulated
signal events within its uncertainties; the fractional change in the event yield

compared to nominal calibrations is taken as the systematic uncertainty.

o Resolution

As for muons, and as discussed in Section [7.2.3] the electron energy resolution
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Table 10.6: Summary of electron systematic uncertainties on the expected event yields
in MC signal samples.(%).

Source eee eell el
Energy scale 0.5 03 0.3
Energy smearing 0.1 0.1 0.0
Reconstruction Efficiency 25 1.7 08
Identification Efficiency 3.5 23 1.2
Isolation & Impact Parameter Efficiency 1.5 1.1 04
Total 45 3.1 1.5

is corrected in simulation to match observed data by applying an Er and 7 de-
pendent smearing to simulated electron Er. The largest systematic uncertainty
on the energy smearing of the electrons results from the background estimation

and modeling in the Z — ee data sample used to measure resolution in data.

e [solation and impact parameter A pr and n based event weight, or scale factor,
is applied to simulated events with electrons, as for muons, to correct for very
small differences in the measured efficiencies of the electron isolation, dy, and z,
selection requirements between data and MC (see Section ) Uncertainties
in the correction factor due to background modeling and statistical uncertainties
in the data used to measure the correction result in an overall uncertainty on

the event yield.

For each systematic considered, the fractional difference in event yield is calculated
for all three channels that contain at least one electron. The uncertainties scale
linearly with the number of electrons in the final state. The correlations in systematic
uncertainties due to the same source in different channels are calculated and input to
the cross section fit. The size of each electron systematic uncertainty, per channel,

is shown in Table [I0.6] The total is shown for illustration only; each systematic
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uncertainty is input independently to the cross section fit.

10.4.3 Epvss

The E7** used in this analysis is built from reconstructed electrons, muons, taus,
jets, photons, soft jets, and from cells in the calorimeter not included in any physics
objects, as described in Section [5.5] The uncertainties on the efficiency of W Z events
passing our ET** and TV transverse mass requirements can be determined by prop-
agating the uncertainty on the constitute objects through the EZ*** calculation. For
example, the uncertainty on the EZ¥*** due to the jet energy scale calibration can be
calculated by varying the energy scale of the jets directly, since they are an input to
the EM“s$ calculation. Details on the calculation of E¥*$* systematics can be found
in Reference [24].

Since electrons and muons are inputs to the EX* calculation, the uncertainties
on the muon and electron momentum and resolutions affect the EX** uncertainty.
However, these uncertainties are already accounted for in calculating the muon and
electron systematics, since the variations applied to muons and electrons in calculating
those systematics are propagated through the EZ"** calculation, and because the
uncertainties are determined from final event yields.

Aside from the uncertainties on muon and electron momentum and resolution, the
main sources of uncertainty which affect the efficiency of the EX* and M;" selections

are:
e uncertainty on the cluster energy scale

e uncertainty on the jet energy scale
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e uncertainty on the jet energy resolution

e the description of pileup by the simulation

The uncertainty on the cluster energy scale affects the cells in the calorimeter
which are not associated to any physics object. The uncertainty on the topocluster
energy scale is studied in comparisons between data and simulation for the % response
for single tracks, and this uncertainty is propagated to an uncertainty on the EMs
in W — er samples by varying the energy scale of topoclusters in simulation as a
function of the cluster Er and n.

Differences in the material description between the simulation and the detector,
the choice of shower model, and the choice of model for the underlying event in the
simulation also affect the knowledge of the cluster energy scale. The uncertainties
due to these sources is studied in dedicated simulations in which these models are
changed. For example, five MC samples are generated to study the effect of the dead
material description on the E7** uncertainty, with the following changes: 1) 5%
increase in the inner detector material, 2) 0.1 X, additional in front of the EM barrel
calorimeter, 3) 0.05 X, added between he pre-sampler and the EM barrel calorimeter,
4) 0.1 X, added in the cryostat after the EM calorimeter, and 5) extra material in
the barrel-endcap transition of the EM calorimeter. Similarly, different choices of the
GEANT4 physics list for modeling calorimeter showers are used in a dedicated MC
study, and different tunes of Pythia parameters with increased final state radiation
and more soft particles are tested.

The contribution of the cell term to the total EM%* uncertainty is calculated in

W Z signal events by varying the cell term within the uncertainties derived in the
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dedicated studies discussed above and comparing the event yields to the nominal
E7s% values. The total uncertainty on the cell term is around 13%, but it is a small
contribution to the total EF** in events with three charged leptons.

The uncertainties on the jet energy scale and resolutions are found by studies on
dijet, Z+ jet, and v+ jet balance in data and simulation, and the jets contributing
to the EI'** calculation are varied within their uncertainties to find the effect on the
Emiss,

Each additional collision within a single event (in-time pileup) contributes to the
energy in the calorimeter, smearing the EZI'*® resolution. Additionally, since the
calorimeter integrates over several 25-ns samplings, collisions in the few events pre-
vious to the event of interest can leave energy depositions that get included in the
current event (out-of-time pileup.) If the pileup from additional collisions is not well
modeled by the simulation, differences in the selection efficiency of the E*** may
occur between data and simulation. The modeling of the in-time pileup is studied by
comparing E distributions in Z events in data and simulation as a function of the
number of reconstructed vertices in the event. In-time pileup contributes most to the
jet, cell, and tau terms in the EM* calculation, and these terms are varied up and
down by 3% to cover the uncertainty due to in-time pileup.

For out-of-time pileup, the simulation is not found to reproduce the contributions
to E7ss exactly for the first third of each bunch train; a 5 GeV smearing applied to
33% of the MC events covers the difference and an uncertainty corresponding to this
variation is applied.

Following the procedure in [40], the uncertainties due to each of the sources
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Table 10.7: Summary of systematic uncertainties on the expected event yields (%)
for E#sin MC signal samples.

Source eee  eefl el L
Topo cluster energy scale 0.40 0.17 0.57 0.18
Jet energy scale 0.11 0.08 0.10 0.08
Jet energy resolution 0.28 0.30 0.39 0.25
Pileup 0.32 0.11 0.32 0.13

discussed above are propagated through the EI in WZ signal events to obtain
the uncertainties detailed in Table [10.7 As W Z events have three high py charged
leptons, the E7** measurement is dominated by the lepton’s momentum and the
uncertainty is relatively small — less than 1% on event yield, per source, across all

channels.

10.4.4 PDF, Scale and Generator

The uncertainty on the underlying PDF translates into an uncertainty on the
lepton kinematic distributions in WZ simulated events; in turn, this uncertainty
affects our acceptance calculation. The uncertainty on Ay from PDFs is evaluated
by varying the eigenvalues of the CT10 PDF set in MCQNLO and comparing the
acceptance in the varied sample to the nominal set, and by comparing the acceptance
calculated with the MSTW2008 NLO PDF set with that from the CT10 PDF set.

The uncertainty within the CT10 PDF set is evaluated by averaging the positive

and negative uncertainty for all 52 error eigenvectors i:

Z[max(Ai — Awz,0)) + Z[max(AWZ — A;,0))?
+ - i=1 =1
ot =0 = A ; (10.9)

where Ay 7 is the acceptance evaluated at the central value of CT10. The uncertainty
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from the 52 CT10 error eigenvectors is 0.8%, and there is a 0.3% statistical uncertainty
on the central Ay .

The acceptance is also calculated with the MSTW2008 NLO 68% CL PDF set
[T19] by reweighting, on an event-by-event level, the W Z MCQNLO signal sample.
The difference in acceptance between the nominal CT10 set and the MSTW2008 set
is 0.8%. The total PDF uncertainty on Ay z, which is the quadratic sum of the CT10
variations, the difference between the two PDF sets, and the statistical uncertainty,
is 1.2%.

The nominal renormalization and factorization scale in the W2 MCQNLO signal
samples is a dynamic average of the transverse mass squared of the W and Z boson.
To determine the uncertainty on Ay due to this choice of scale, privately produced
MCQ@NLO samples are made after parton showering but before ATLAS GEANT4
simulation and reconstruction in which the normalization and factorization scales are
varied by a factor of 2 and 0.5. The difference between the acceptance of the nominal
simulation and the varied samples is taken as an uncertainty and is 0.4% per channel.

Finally, the choice of MC@QNLO as generator is checked by calculating the ac-
ceptance with fully simulated POWHEG BOX [87, [121] W Z events. The difference
in Ay z between MC@QNLO and the POWHEG BOX is 0.4%, which is taken as a
generator systematic.

A summary of all systematic uncertainties affecting the expected number of signal

events is found in Table [10.8]
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Table 10.8: Summary of all systematic uncertainties (%) on expected W Z event yield,
used in the cross section calculation.

Source [L e eefl eee
1 reconstruction efficiency 0.8 0.53 0.27 -
i pr scale & resolution 0.06 0.05 0.04 -

1 isolation & impact parameter efficiency 0.62  0.43 0.2 -
e reconstruction efficiency - 0.8 1.7 2.5

e identification efficiency - 1.2 2.3 3.5
e isolation & impact parameter efficiency - 0.4 1.1 1.5
e energy scale - 0.3 0.3 0.5
e energy resolution - 0.0 0.1 0.1
E7ss cluster energy scale 0.18 057 017 040
EIss jet energy scale 0.08 0.10 0.08 0.11
Ess jet energy resolution 0.25 0.39 0.30 0.28
Ess pileup 0.13 032 0.11 0.32
Trigger - p 029 0.15 0.07 -
Trigger - e - <0.05 <0.05 <0.05
Generator 0.4 0.4 0.4 0.4
PDF 1.2 1.2 1.2 1.2
Scale 0.4 0.4 0.4 0.4
Luminosity 1.8 1.8 1.8 1.8
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10.5 Cross Section Calculation

We calculate the W Z cross section by building a likelihood function based on
the number of expected and observed events, and finding the cross section which
minimizes the negative log-likelihood of the likelihood function. The cross section is
measured in each of the four channels. To combine channels, a total likelihood is built
from the product of each the individual channel probabilities; one advantage of the
likelihood method is that it ensures that the calculated cross section is the best value
that is consistent across all channels. Another advantage is that the W2 — 7+ X
contribution can be easily included.

The number of expected events can be expressed as the sum of expected signal
events in channel i after all full selection, N!, and the number of predicted background
events, N{:

N!. = N!+ N} (10.10)

erp

Using the observed number of events, N/, . we construct a likelihood L based on
the Poisson probability that the expected number of signal and background events

produces the observed number in channel i:

—(NI4+N}) i P\NE

. . . (& b/ X N _|._ N obs

L(Nh N4+ Np) = (N(" ; ) (10.11)
obs/*

The introduction of systematic uncertainties on the acceptance and efficiency of
the signal and background selections results in a change in the number of expected
events. Rather than using the uncertainties on Ay -z and Cyz directly, we introduce
nuisance parameters that modify the number of expected events. Each systematic

uncertainty in channel 7, is assumed to follow a normal distribution with mean zero
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and a variance of one. The correlations between uncertainties across the four channels
are treated by using a single nuisance parameter for each systematic across all cor-
related channels. Uncertainties are treated either as fully correlated or uncorrelated.

We rewrite the number of expected events to include systematic uncertainties:

Ni({mi}) = N1+ > wSp)
=l (10.12)
Ni({mi}) = Nj(1+ ) o B})

k=1
where the parameters Si. and Bj are the standard deviation representing the the k"
fractional systematic uncertainty in channel i on the signal and background respec-
tively. The nuisance parameters x are the same across all channels, except they may
be zero if a particular systematic does not affect one or more channels.

The number of signal events can be expressed either as a function of the fiducial

t; fid
Cross section, 0 = Oy -

fid

fid Owzsuwir

Z
Ny (O g s {}) = ot A
OMC, Wz X AW Z—l'!

(NWZ—>lvl’l’ + NWZ—>T+X> x (1+ Z xS}

(10.13)

or as a function of the total cross section measurement o = oi?,

, otot n .
Ni(ow' s {xr}) = totL (N Z—sir + N%g—wrx) x (14 Z xS;)  (10.14)
oMmc, wz k=1

Using equation [10.11] and either equation [10.13| or [10.14] we rewrite the nega-

tive log-likelihood as a function of the calculated cross section ¢ and the nuisance
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parameters xy:

—In L(o,{zx}) =
4 _(Ni(c{z i(fp i 7 i n
> -l (a Nl DN () (Ni(o, {xy}) + Nb({wk}»No“) + ok

(Vi)

(10.15)

The final term in the likelihood equation is the product of the Gaussian constraints
on the nuisance parameters xy.

To find the most probable value of o, equation is minimized simultaneously

over ¢ and all nuisance parameters. The value of ¢ at the log-likelihood minimum is

used as the measurement of o. The minimization and error calculation is performed

with the Minuit package [106] in ROOT.

In equations|10.13|and [L0.14} the simulation is used to determine the total number

of expected events. This expectation is then scaled by the ratio of the measured
cross section to the theoretical cross section. Minimizing the negative log-likelihood
function in equation allows the data to find the rescaling of the expected signal
contribution that best matches the data, resulting in a measured cross section.

The errors on ¢ are estimated by taking the difference of the cross-section at the
minimum to the cross-section where the log-likelihood is 0.5 units above the minimum
along the direction of the parameter ¢. This calculation is performed both in the
positive and negative directions separately, and thus may yield different positive and
negative errors. As the nuisance parameters account for the systematic errors on our
measurement, the error is the combined statistical and systematic uncertainty on our
measurement.

The full likelihood function with nuisance parameters will automatically take into
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account all the systematic errors, and propagate them to the final uncertainty. To
understand the contribution from each systematic error separately, we can propagate
by hand each systematic uncertainties on our acceptance to the final cross-section.
We do this by adjusting the acceptance of our signal and background in the likeli-
hood function up and down by one sigma of that parameter, and re-minimizing the
likelihood function (without nuisance parameters) to find a new cross-section value.

The systematic uncertainties on the fiducial and total cross-section are summa-

rized in Tables [10.9] and [10.10, All systematic uncertainties are added in quadrature

to yield the total uncertainty, excluding the uncertainty in luminosity.
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Table 10.9: Relative systematic uncertainties (%) on the fiducial cross section for
each channel.

Source ppp eppn eep eee  Combined
pu - Rec. efficiency Tow Tose Tom Too o
ju -pr smearing Tu fom foo fooo  Toor
p - isolation & IP efficiency 055 0l 0% oo oo
¢ - Rec. Efficiency oo Toso Trse B2 i
¢ - 1d. Efficiency Tooo Tian L SW e
¢ - Energy Smearing BT L G
¢ - Energy Scale oo Tom om0k 0%
oo P ST I T
B - jes T
B jr T
By - custer SRR
B> - pileUp Tn Zom fom o fok
p - Trigger Toss Tozs Tom fooo  Tozo
Signal stat. (MC) % Ties Tow o Tom
Bkg stat. (MC) oo T o Tt o
Bkg stat. (Data Driven) m T S a5
Data Driven method - Z+jets 443 38 +246 +459 o
Data Driven method - top  *338 172 138 048 10
Total (no lumi) Toor Toer T3h &m e
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Table 10.10: Relative systematic uncertainties (%) on the total cross section for each
channel.

Source pppe  eppn eepn eee  Combined
ju - Rec. efficiency Toss o6 Tom oo o
ju -pr smearing o2 o Tome Tooo Toor
1 - isolation & IP efficiency fgjgg fgjig fgé% i8;88 i8138
e - Rec. Efficiency Tooo Tose Time T3m 0 T
e - 1d. Efficiency Tooo Tz R Ty TS
e - Energy Smearing Tom Tooo fom o1z oot
¢ - Energy Scale Too oz Tom Tose ok
e - iso IP Tooo Toz Tiir Tisi o6
B - jes o fon fon o1 fom
Es - jer o3 Tows Tom s Tom
B - cluster o3 Toer Toa foi o
Ejriss - pileUp o1z T3 fom Tos ok
ju - Trigger a1 T3 fom Too ok
Generator o Tow ol o oo
PDF T3 S Tl D i
Scale on Tow o Tob oo
Signal stat. (MC) Tos 105 Toe s Toso
Bkg stat. (MC) oz s o T fom
Bkg stat. (Data Driven) s e Bno BN Ba
Data Driven method - Z+jets fijﬁ t§;§§; f%jig fi;?‘% i§;8§
Data Driven method - top ﬂ;g‘;’ t}% ﬂég iS;EiS ﬂjgg
Total (no lumi) Torr Toms Tear Twse Tin
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10.6 Results

The final results for the fiducial and total cross-section measurement in each chan-
nel and for the combined measurement are shown in Tables [[0.11] and [10.120 The
systematic uncertainties include all sources except luminosity, which is listed sepa-

rately.

Table 10.11: Measured fiducial cross sections for each channel and combined.

Channel Cross-Section [fb]

i 23.0375 55 (stat) Ty:53(syst) F55 (lumi)
e 2146735 (stat) *133(syst) g5 (lumi)
cep 24.98"33 (stat) *157(syst) g 5(lumi)
eee 22.53152%(stat) T30t (syst) To4s (lumi)
Combined 92.3175%(stat) *43 (syst) T125 (lumi)

Table 10.12: Measured total cross sections for each channel and combined.

Channel Cross-Section [pb]

P 18.7475 7 (stat) *337(syst) o5 (lumi)
e 17.72455 (stat) 1 30(syst) 035 (lumi)
eep 20.697297 (stat) T113(syst) T03e(lumi)
eee 18.78 358 (stat) 159 (syst) 532 (lumi)
Combined  19.007735(stat) 595 (syst) 532 (lumi)
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Anomalous Triple GGauge Couplings

Standard Model electroweak theory predicts the existence of triple gauge cou-
plings, including vertices in which the W and Z bosons couple to each other. New
interactions or new particles could modify the couplings of these vertices. As discussed
in Section [2.5] we express the W Z triple gauge couplings with an effective Lagrangian
with three independent coupling parameters: g7, rz, and Az. In the Standard Model,
g? = kz =1, and A\z= 0. We look for physics beyond the standard by looking for
deviations in the couplings from their predicted value. Couplings that differ from
the Standard Model prediction are called anomalous triple gauge couplings (aTGCs).
We model W Z production with any value of each anomalous coupling by reweighting
Monte Carlo events after production with a technique described in Section [T1.1]

The existence of aTGCs would modify both the cross section and kinematics
of WZ production. Contributions to W Z production from diagrams with the g7

and Az couplings are proportional to s, where § is the square of the center-of-mass

energy of the W Z production vertex. Contributions from kz terms are proportional
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to v/5. Kinematic distributions that are sensitive to the § of the WZ system are
therefore sensitive to the presence of anomalous couplings. Section discusses the
dependence of several observables on anomalous couplings. We find that studying the
transverse momentum of the Z boson in W Z events gives us the greatest sensitivity
to the presence of aTGCs.

Using the differential pZ distribution of the selected W Z sample, we extract limits
on AgZ, Akz, and Az, where AgZ = g7 — 1 and Ak = k7 — 1 are deviations from
the Standard Model values. In the effective Lagrangian approach, a form-factor can
be introduced to ensure unitary at all energies. We set limits in two cases: 1) with
a form factor A = 2 TeV, and 2) with no form factor, A = co. The form factor is
discussed in Section 2.5

We model the background as a function of the Z transverse momentum and cal-
culate systematic uncertainties that reflect our knowledge of the shape of the pZ dis-

tribution as well as the overall W Z signal normalization, as discussed in Sections|11.4

and [11.5] respectively. Our limits are presented in Section [11.7.2

11.1 aTGC Simulation and Event Reweighting

We model WZ events with anomalous triple gauge couplings using MCQNLO
version 4.0 [88]. With this generator, it is possible to generate W*Z events with any
value of the anomalous TGC parameters Ag?, Akz, and Az. We simulate two sets
of events: the first set models Standard Model W Z production, and the second set
simulates W Z events with one particular set of anomalous couplings (see Section .

Each event stores a vector of 10 weights {wy . ..wy}, with which every event can be
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reweighed to any other aTGC phase space point.

The weight at a new point is given by

w(Agy, Akz, A7) =wy + (Agy)*wi + (Akz)*ws + (A7) w3
+ 2Aglzw4 + 2AKzws + 2\ Zwg

+ 2Agleme7—i—2Aglz>\zwg+2AmZ>\Zw9. (111)

The reweighting procedure relies on the fact that we can factorize each event
amplitude into parts that are dependent on the event kinematics and parts that are
dependent on the values of the anomalous couplings. Specifically, we can write the
event amplitude for a general W Z event, A, as a linear function of the Standard Model
amplitude Ay and the amplitudes AA91Z7 Anx,, and A,, containing the anomalous

vertices associated with the couplings:
A=Ay + Ang X AA91Z + AKkg X AAHZ + Az X A)\Z (112)

Here, the anomalous coupling parameters have been factored out, and the amplitudes
A AgZs Aax,, and Ay, do not depend on the values of the couplings. Event weights are
in general determined by the cross section of the process, which is in turn calculated
using the square amplitudes. The square amplitude includes 9 terms that multiply
the aTGC parameters and one overall event weight. The 9 event weights {w; ... wq}
are these aTGC square amplitudes for the simulated event, and the wy weight is the
Standard Model weight, a function of the final state kinematics. The reweighting
procedure described by equation takes these weights and multiplies them by the
value of any set of aTGC parameters to give an event-by-event weight for any possible

set of anomalous couplings. Since all kinematic information is also stored for each
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event, any kinematic distribution can be calculated with any set of aTGC parameters.

As a result of the reweighting capability, we can produce one W Z sample and use
it to scan the full range of aT'GC space when setting limits. The other W Z sample
is used to validate the reweighting procedure.

The W Z aTGC Monte Carlo events are produced with a form factor of 100 TeV.
It is also possible to reweigh each event to any other form factor. Let App be the
original form factor and A/pr be the new value of the cut-off scale. For each aTGC
parameters multiplying a weight, the weight must be multiplied by (1 + §/A%.)? to
remove the old form factor and divided by (1 + §/A/%;)? to add in the new form

factor. This is equivalent to adjusting the event weights {wy ... wy} as

(

er forZ. — O
. (145/A2%, )2 -
w; — wlm for T = 4, 5, 6 (113)
/A% )4 .
S i =1,2,3,7,8,9

To remove the form factor, A is set to infinity.

11.2 Sensitivity of Kinematic Distributions to aT-
GCs

If new physics produces anomalous triple gauge couplings, both the cross section
of inclusive W Z production as well as the kinematics of the final state W and Z
bosons would differ from the Standard Model predictions. Distributions that are
sensitive to the center-of-mass energy of the interaction are particularly sensitive to

the presence of aTGCs, including the leading lepton pr spectrum, the mass of the
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W Z system, and the Z boson transverse momentum distribution. The dependence of
these distributions, as well as the dependence of the inclusive W*Z cross section, on

the values of aTGC parameters are shown in Figure at truth level in simulation.
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Figure 11.1: The effect of aT'GCs on W Z production in simulation, at the truth level.
A form factor with A = 2 TeV is used in these distributions. The cross section (upper
left) is shown as a function of each anomalous coupling, while the other couplings are
set to zero. The differential distributions are shown for two specific values of each
anomalous parameter; the values of the aTGCs correspond to the limits found in
the previous analysis. The kinematic distributions have been normalized to the same
area; only shape comparisons are shown here.

As can be seen in Figure the W*Z cross section is a quadratic func-

tion of the anomalous TGCs. For most values of anomalous couplings, the cross
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section increases. However, interference terms between the three different couplings
can produce smaller cross sections than the Standard Model for particular values of
the couplings. The WZ cross section has a stronger dependence on the values of
Ag? and Az than on Aky because the terms in the Lagrangian with g7 and )\, are
proportional to § while the k term is proportional to v/5. As a result, the limits we

can set on Akyz are weaker than the limits we can set on Aglz and \y.

In Figures [11.1(b)| [11.1(c), and [11.1(d)} the leading lepton pr distribution, the

mass of the W Z system, and the Z boson py spectrum all show large deviations from
the Standard Model distributions at high mass or momentum. These distributions
have been normalized to show only shape comparisons. If we include the number of
expected W Z events as well as their differential distribution, the distribution of these
observables can be considerably more sensitive to the presence of aT'GCs than the
cross section alone. In particular, with 1 fb~! of data, we found that, on average,
the limits on AgZ, Akyz, and Az improve by 42%, 23%, and 41% when moving from
using the cross section to using the Z boson pr distribution to set limits on the aTGC
parameters.

We perform a study in Monte Carlo to compare the expected sensitivity from
studying different differential distributions. We calculate the range of 95% confidence
intervals we would expect to set on each aTGC parameter, assuming that there are
no anomalous couplings, for several differential distributions. To extract the limits
in this study, we use a simplified version of the limit setting extraction detailed in
Section [11.6f The actual limit extraction uses a frequentist approach to determine

the 95% confidence interval based on a likelihood function describing how likely the
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data is given a particular value of an aTGC parameter. While this limit extraction
gives exact coverage, it is computationally slow. To approximate the limit extraction
for analysis optimization, the 95% confidence interval is calculated using the best fit
value plus and minus the errors computed by setting the delta log-likelihood to 1.92.
Compared to the frequentist limit-setting approach, the delta log-likelihood method
undercovers the frequentist 95% confidence interval. However, it still can be used to
compare the limits found by studying different variables and binnings.

The differential distributions we examine are the reconstructed W27 invariant
mass, the leading lepton pr, the invariant mass of the three leptons in the event,
and the Z boson transverse momentum. The W Z mass is reconstructed using a
constraint on the W mass as described in Section [10.2] The expected limits are very
sensitive to the binning of the differential distribution. We divide each of the four
distributions into four bins. Since aTGC dependence is largest at high momentum
or high mass, the sensitivity to the presence of aT'GCs depends strongly on the ratio
of Standard Model WZ events to aT'GC W Z events in the last bin, which in turn
depends on the number of expected Standard Model events in the highest pZ bin. To
exclude a potential bias due to different binnings, the binning for each distribution is
selected to ensure a uniform number of expected Standard Model W Z events across
all observables (ie: bin 1 does not have to have the same number of events as bin 2,
but bin 1 for all observables has the same number of expected W Z events.)

For each aTGC parameter and for each observable, the width of the 95% confi-
dence interval is calculated in 5000 toy experiments using the delta log-likelihood =

1.92 method described above. The width of the confidence interval is the distance be-
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tween the lower and upper bound. In each toy experiment, the number of “observed”
data events in each bin is randomly sampled from a Poisson distribution with mean
equal to the number of data + background events in each bin. The signal /background
ratio is assumed to be the same for each kinematic distribution, and the limits are
calculated only considering statistical uncertainty. The cut-off scale is set to 3 TeV

for this comparison.
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Figure 11.2: Expected aTGC limits from different observables. The 95% confidence
interval widths corresponding to limits extracted by setting delta log-likelihood =
1.92 in 5000 toy experiments for each aTGC parameter. The distribution of widths
extracted from different observables are compared.
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The comparisons of the widths of expected aTGC limits in the absence of any
aTGC signal is shown in Figure|[11.2] Different kinematic distributions have different
sensitivities to the presence of aT'GCs. The smaller the width of the expected limits,
the better the limits are. In particular, the best sensitivity is obtained from studying
the transverse momentum of the Z boson.

The fact that the measured p% distribution is most sensitive to aTGCs makes
qualitative sense as well. The Z boson momentum is a proxy for the WZ mass,
which is directly sensitive to v/5. However, the reconstructed WZ mass suffers from
our inability to directly reconstruct the W boson momentum. In this analysis, the W
momentum is reconstructed by solving for the z component of the momentum, given
the lepton momentum, the E7"** and assuming the mass of the W boson. In the case
of two real solutions, the lower value is selected. In case of an imaginary solution, the
imaginary piece is set to zero. In this way, information is lost in reconstructing the
W Z mass. The pZ distribution, however, is built directly from the measurement of
leptons.

As observed in Figure , the pZ distribution also has advantages in the case
that there are non-zero aTGC parameters. Qualitatively, the pZ distribution shows
the largest shape different for positive and negative values of the aTGC parameters.
Thus, if we do measure aTGCs, the transverse momentum of the Z boson could be
sensitive to the sign of the parameter.

Due to the narrowness of the expected limits in the absence of aTGC signal, the
possibility to distinguish the sign of aTGC parameters if they exist, and the good

experimental resolution, the transverse momentum of the Z boson is chosen as the
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distribution in which to search for the presence of aTGCs.

11.3 Binning Optimization

The effect of anomalous couplings is most pronounced for events with Z bosons
with large transverse momentum, as visible in Figure Moreover, the ratio of
the number of expected Standard Model to anomalous coupling events varies as the
binning of the pZ distribution changes. In this way, the expected sensitivity to the
presence of anomalous couplings is dependent on the binning we chose.

In order to choose a binning for the extraction of aT'GC limits, several studies are
performed. The first study optimizes the bin boundaries while restricting the number
of bins to four. This study is performed using only statistical uncertainties. Once the
optimized four bin distribution is found, the systematic uncertainties and data-driven
backgrounds are evaluated for those four bins. The backgrounds and uncertainties
are then used to re-optimize the binning, again restricting the number of bins to four.
The systematic uncertainties and data-driven backgrounds are smoothly varied as the
binning changes for the bin optimization study. Finally, the last optimization allows
the number of bins to change.

The initial four bin optimization is performed using simulation and only considers
statistical uncertainties. The sensitivity to different pZ binnings is tested using the
delta log-likelihood = 1.92 method, as described in Section [11.2] For each aTGC
parameter and for each observable, the width of the 95% confidence interval is cal-
culated in 5000 toy experiments. In each toy experiment, the number of “observed”

data events in each bin is randomly sampled from a Poisson distribution with mean
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equal to the number of data + background events in each bin.

Several constraints are placed on the last bin in the first four bin optimization.
Specifically, the last bin is required to have greater than or equal to 10% of the
total number of expected events, which keeps the statistical uncertainty on the last
bin below 25%. There is no estimate of systematic uncertainty in the last bin at
this point; we choose to keep the statistical uncertainty under control by keeping the
number of expected SM events above 10%. Additionally, the last bin is conservatively
restricted to an upper boundary of 500 GeV, as the ability to estimate systematic
uncertainties for higher Z transverse momentum values is not yet tested.

The initial optimization finds a maximum in expected sensitivity for a binning of
(0,30,60,120,500) GeV. This is called the “nominal” binning.

Once a nominal binning is chosen, all systematic uncertainties are calculated using
this binning, as described in Section [I1.5] Additionally, the data-driven background
estimates are calculated for this nominal binning. There are sufficient events in W2
simulation above 500 GeV to calculate systematic uncertainties, so the upper bound-
ary of the differential distribution is allowed to go to 2 TeV, above which there are
no more W7 simulated events.

For the second round of optimization, the expected background and the system-
atic uncertainties are used as inputs. The expected sensitivity to aT'GC couplings is
tested by comparing the distribution of expected limits for different binnings. The
systematic uncertainties are kept at the same relative size in each bin, even as the bin
boundaries are changed. For the data-driven backgrounds, the size of the background

in the new binning is smoothly varied from the nominal binning by assuming that the
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Figure 11.3: Expected aTGC limits from different bin boundaries. The 95% confi-
dence interval widths corresponding to limits extracted by setting delta log-likelihood
= 1.92 in 5000 toy experiments for each aTGC parameter. The distribution of widths
extracted from the nominal (black) and optimized pZ binnings are compared. For the
optimized binning, the expected limits predicted in the simplified study (purple) are
shown along with the limits expected after the full systematics and new data-driven
background estimates are computed for the new binning (red). The cut-off scale is
100 TeV for this comparison.
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Figure 11.4: Expected aT'GC limits from 7 versus 4 bins. The 95% confidence interval
widths corresponding to limits extracted by setting delta log-likelihood = 1.92 in 5000
toy experiments for each aTGC parameter. The distribution of widths extracted from
the optimized 4 bin (black) and optimized 7 bin (blue) pZ binnings are compared.
The cut-off scale is 2 TeV for this comparison.
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backgrounds follow the same shape as the signal. The actual data driven backgrounds
are based on control regions with limited statistics in data, and there could be sig-
nificant statistical fluctuations in the estimates as the binning is varied. Smoothly
varying the data driven estimates from their nominal values, rather than recalculating
them, prevents optimizing based on false minimums from real data fluctuations. The
expected number of signal events is calculated for each new binning from simulation,
for both Standard Model W Z production and production with anomalous couplings.

The sensitivity to the presence of aTGC is found to increase for all three couplings
as the upper bin boundary is moved from 500 GeV to 2 TeV. No new Standard Model
W Z events fall into the bin, but anomalous TGC points continue to contribute events
up until 2 TeV. After 2 TeV, there are no additional aTGC events, so the sensitivity
does not increase any further. We choose to limit the upper bin to 2 TeV, rather
than infinity, so we can test the acceptance and efficiency of simulated events in the
full last bin. The limits do not change if the upper bin boundary is moved above 2
TeV, as there are no additional simulated events.

Moving the boundaries at 30 and 60 GeV has no effect on the expected sensitiv-
ity. Moving the lower boundary of the last bin to 180 improves the expected limits
significantly and still keeps > 5 Standard Model W Z events expected in all bins. The
fewer events expected in the last bin, the more the observed limits can differ from the
average expected limits. Moreover, the systematic uncertainties on both the signal
acceptance and on the data driven background estimates grow as the number of events
in the last bin drops. The second round of optimization finds an optimal four bin

binning of (0,30,60,120,180,2000 GeV). The systematic uncertainties and data driven
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backgrounds are re-estimated for this binning.

The comparisons of the widths of expected aTGC limits in the absence of aTGC
signal is shown in Figure for the nominal binning and the optimized binning
with four bins. The optimized binning is shown with both the “simulated”, smoothly-
varied systematics and data-driven background estimates, along with the actual sys-
tematics and background estimates which were recalculated once the binning was
chosen.

Initially, the analysis was optimized using 4 bins, as described above. However,
adding additional bins increases the expected sensitivity to aT'GCs. The upper limit
on the number of bins is set by two considerations: 1) the ability to calculate estimated
backgrounds in data in all bins with reasonable uncertainty, and 2) the amount of
computational time taken to perform a fit. Since the 2D limits and the expected
limits require large number of pseudo experiments, increasing the number of bins
significantly drastically slows down the turn around time of the analysis. We find
that seven bins is an optimum between the expected sensitivity, visual presentation,
ability to do data-driven background estimates, and time required to perform the fits.
Moving from four to seven bins improves the expected limits by 5%-15%, depending
on the anomalous parameter.

After optimizing the expected sensitivity of the bin boundaries with seven bins, a
final binning of (0,30,60,90,120,150,180,2000) GeV is chosen. This binning minimizes
the width of the expected limits (assuming the Standard Model) and keeps enough
events in all bins to estimate the background from data and to keep systematic un-

certainties under control. Figure [11.4] compares the width of expected aTGC limits
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for the optimized binning with 4 bins and the optimized binning with 7 bins.

11.4 Differential Background Estimates, Signal Ex-

pectation, and Observed Events

The expected background is calculated as a function of the Z boson transverse
momentum. For backgrounds estimated from simulation, the procedure is straight-
forward. For backgrounds estimated from data, the control regions are studied in
each bin and independent estimations are performed bin-by-bin.

Details of the data background estimation technique for events with top quarks
can be found in Section and the data estimation for Z+jets events is described
in Section 0.1} For the Z+jets estimate, the fake-factor estimate uses the ratio of
two control regions, times the product of a third control region in data. When these
control regions are evaluated bin-by-bin, the total estimate will not necessarily agree
exactly with the total estimate evaluated channel by channel. The two total estimates
should agree within the statistical uncertainty, which they do.

The number of expected background events, expected signal events, and observed
events in data in each bin of the differential Z transverse momentum distribution is

shown in Table 1111
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11.5 Differential Systematic Uncertainties

We calculate the systematic uncertainties which reflect the accuracy of our esti-
mates of the number of expected background and signal events per bin of pZ. The
fractional systematic uncertainties are calculated from the raw shifts in the number
of expected signal or background events, per bin, as each systematic source is varied
by one sigma. The systematic uncertainties are calculated for all four flavor channels
inclusively and are calculated from Standard Model W Z events. The correlation be-
tween bins is calculated from the shifts in the number of events. A systematic which
is fully correlated across all bins produces the same relative shift in the number of
expected events in each bin. The systematic uncertainties which affect both signal
and background predictions are listed below, along with a qualitative comment about

the level of correlation between bins of pZ:

e Trigger (almost fully correlated)

e Electron identification, reconstruction, smearing, and isolation (almost fully cor-

related)
e Muon efficiency, smearing, scale, and isolation (almost fully correlated)
e EMss resolution and scale (large correlation)
e PDF systematics (large correlation)
e Generator systematics (some correlation)

e Renormalization / factorization scale (some correlation)
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e Data driven background estimates (some correlation)

e Luminosity (full correlation)

Section describes in detail the calculation of the systematics which affect the
efficiency of selecting W Z events, and the data driven background estimate system-
atic uncertainties are described in Section[@.1land 0.3l The calculation of differential
systematic uncertainties follows the same procedures used in calculating the inclu-
sive systematic uncertainties, for those uncertainties which affect the efficiency of
selecting W Z events. As discussed above, the shift in the number of expected events
is calculated for each bin for each systematic uncertainty source, and the fractional
uncertainty and correlation between bins is used in the calculation of aTGC limits.

We calculate limits on the anomalous couplings using the number of expected
signal events in each pZ bin. Therefore, we rely on the signal simulation to model
the efficiency Cyyz of accepting W Z events, given that they are within the fiducial
acceptance of the detector and selection cuts (see Section [10.3.2]) We model the
number of expected events as a function of the anomalous couplings, and the number
of expected events takes into account changes in the efficiency. It is important that
the efficiency for selecting W Z events is not significantly different in events with
anomalous couplings than in Standard Model W Z events, however, to ensure that
the systematic uncertainties we calculate for Standard Model events also apply in the
case of non-zero anomalous couplings.

The fiducial efficiency Cy 7 is shown as a function of the Z boson transverse
momentum in Figure for Standard Model W Z events as well as for events with

three values of non-zero aT'GCs. The values of the anomalous couplings shown are
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the limits found by the 1 fb~! WZ analysis and they represent the largest values of
anomalous couplings that we can hope to observe. The efficiency Cy 7 is not flat as a
function of pZ, which is the reason we need to calculate systematics on the efficiency
as a function of pZ. However, over the full range of Z transverse momentum, the
efficiency of accepting W Z events is the same for Standard Model events and events
with non-zero aTGCs, within the statistical uncertainty of the simulated sample. This
confirms that we can use the systematic uncertainties on signal efficiency calculated
with Standard Model events for events with anomalous couplings as well. As a result,

the systematic uncertainties are not a function of the anomalous couplings.
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Figure 11.5: Efficiency as a function of p%. The efficiency Cyy of reconstructing W Z
events, given that they are within the fiducial acceptance volume, as a function of
the true pZ in simulation. The efficiency is shown for Standard Model W Z events
(black) as well as for events with three different anomalous couplings (colors.)

In addition to systematic uncertainties on the efficiency of accepting signal events,

it is important to consider uncertainties on the overall shape and normalization of the
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expected WZ signal. These systematics do not affect the cross section calculation,
because in calculating the cross section, we are measuring the signal normalization
directly. However, in calculating limits on anomalous couplings, we take the number
of expected Standard Model events as an input, and deviations from the expected
number give us sensitivity to the couplings.

The systematic uncertainties on the normalization of the expected W Z signal
come from our uncertainty on the theoretical W Z cross section and are discussed
in Section [10.1 The major contributions to the uncertainty on the theoretical cross
section are from PDFs and from the QCD renormalization and factorization scale
used in simulating the events. We re-calculate these systematic uncertainties in bins
of pZ. The uncertainty on the normalization due to PDFs is between 4% and 5%
across the full Z boson transverse momentum distribution. The uncertainty on the
number of expected W Z events due to the QCD renormalization and factorization
scale varies from 2.6% in the lowest pZ bin to 8% for events with high pZ.

The uncertainty on the shape of the simulated W Z signal distribution is evaluated
by comparing events simulated with MCQNLO with events simulated with POWHEG
BOX [121]. The generator uncertainty is taken as the relative difference in the number
of signal events simulated by each generator, in each bin. The distributions are
normalized before calculating the uncertainty to only test for shape differences, as
normalization uncertainties are already covered by the systematic uncertainties due
to PDF and scale.

The full list of differential systematic uncertainties is shown in Table [I1.2 The

systematic uncertainties on the shape and normalization of the expected W Z Stan-
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dard Model signal are shown in Figure[l1.6|as a function of Z transverse momentum.
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Figure 11.6: Shape and normalization systematic uncertainties on W2 signal. Full
details are available in Table .
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11.6 Limit Setting Procedure

We wish to quantify what values of anomalous couplings are compatible with the
observed data sample. We do so by using a frequentist limit approach [78, 86 129
to determine the 95% confidence interval (C.I.) for each aTGC parameter. In the
frequentist approach, the 95% confidence interval is the interval which, if we redo the
experiment many times and recalculate the C.I. for each experiment, will contain the
true values of the anomalous coupling parameters in 95% of the experiments [77].

We calculate the 95% C.I. by constructing a likelihood function which expresses
the likelihood of observing a given number of events given the signal and background
expectation. The number of expected signal events is parametrized as a function of the
values of the anomalous couplings. We generate a large number of pseudo experiments
for each hypothetical value of the anomalous coupling. In each pseudo experiment,
the “observed” number of events is drawn randomly from a Poisson distribution whose
mean is equal to the number of signal4+background events for that value of anomalous
coupling. Each pseudo experiment is ranked, where the rank function is the ratio of
the likelihood of the “observed” number of events given the value of the anomalous
coupling under consideration to the maximum likelihood for the “observed” number
of events, maximized across all possible values of the anomalous coupling. After
pseudo experiments have been ranked, the rank is calculated for the actual number
of observed data events for each value of anomalous coupling. At a given value of the
anomalous coupling, if greater than 95% of the pseudo experiments have a larger rank
than observed in the actual experiment, that value of anomalous coupling is rejected

at the 95% level.
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While the frequentist approach requires generating a large number of pseudo ex-
periments and is computationally slow, the approach is robust and the brute-force
calculation of the 95% confidence interval guarantees statistical coverage.

As for the calculation of the cross section, systematic uncertainties are treated as
nuisance parameters with Gaussian constraints.

The likelihood is built on the number of expected signal events, which is expressed
as a function of the anomalous couplings. The number of expected signal events is
calculated for each anomalous coupling point using the reweighting procedure de-
scribed in Section In addition to the weights from the aTGC value, a few other

multiplicative weights are applied to the MC sample:

MC generator weights (4+1 or —1) from MC@QNLO

Pile-up weights

e Trigger scale factors

Reconstruction scale factors

These weights are the same as used in the cross section calculation and are described
in Section After applying these factors, we accumulate the event weights for the
MC signal events that pass our selection. The end result is the expected number of

signal events in bin 4, N!, which takes the form:

NUAgY Akz Az) = W5 + (Agl )W + (Akz)* W3 + (Az)*Wj
+ 2A8g7Wi 4 28k WE + 2\, W
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for each bin of pZ. Tt is these coefficients {VV]’} that are used in the limit setting
procedure.

The detailed procedure for determining the 95% C.I. is as follows [10§].

1. The likelihood function described in Section [10.5| is modified by replacing the
cross section o with one of the aTGC parameters a = Ag?, Akyz, or Az. Ad-
ditionally, the sum over flavor bins i = 1...4 is replaced by a sum over pZ bins
1 = 1...7. The likelihood of observing a given number of events given a particular

value of anomalous coupling « is therefore:

—In L(Nops|a, {Br}) =

v : e~ N (BTN ¢ (Ni(r, {Bi}) + Ni({B}))Nots N " B2
— (Nops)! — 2

i k

(11.5)

The number of signal events N! in pZ bin i is expressed as a quadratic function
of o using the reweighting method. The symbol N, stands for the observed
numbers of data events, and [ are the nuisance parameters which represent the

n Gaussian constrained systematics.

2. A test statistic ¢(«) is built by taking the ratio of the profile maximum likelihood
at a test al'GC parameter value « to the full maximum likelihood. The test
statistic takes the form:

(11.6)

~

where £ is the maximum likelihood estimator of [ that maximizes the numerator
for the fixed test value of «, and & and B are the values of a and [ which

maximize the denominator.
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3. The observed value of the test statistic, gops(c), is found using the observed
data ngps for each value of the test aTGC parameter. This is done by scanning

a range of values of a and determining the value of the test statistic for each a.

4. To determine how often an outcome at least as unlikely as the actual observa-
tion is expected, we generate a large number of pseudo experiments for each
test value of o, compute the test statistic gp.(cr), and compare them with the
observed gops(). To generate each pseudo experiment, the nuisance parame-
ters 0 are Gaussian fluctuated around the mean value of é (). The numbers
of “observed” events N}, is drawn randomly from a Poisson distribution whose

mean is computed from the value of v and f5.

5. The p-value at each value of «v is calculated as the fraction of pseudo experiments

whose test statistic gye(cr) is smaller than the observed value gons(c).

6. By scanning a, all values of the aT'GC parameter for which p(a) > 5% can be

determined and these define the 95% C.I. of o for the observed data.

The number of pseudo experiments, 10,000, in step 4 is chosen to ensure that a
p-value of 5% can be determined to a reasonable statistical precision of £0.2%.

Because the expected number of signal events N{ is a quadratic function of «,
N!(«) has a minimum near « = 0, and increases in both positive and negative direc-
tions of a. As a result, there may be either one or two optimum values of a that best
describe the observed data, depending on whether Ng,s is smaller or larger than the
minimum expected value. This results in two possibilities for the 95% C.I. of a: it

may be a single continuous region or two disjoint regions.
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The limits are obtained in two separate scenarios. In the first scenario, limits are
set on each parameter by setting the value of the other two aTGC parameters to zero.
These limits are called “1D” limits.

In the second scenario, one aTGC parameter is set to zero, and the 95% confidence
contour for the other two parameters are fit simultaneously, allowing for a confidence
interval in a “2D” phase space. In the 2D case, the best-fit value can have non-zero
couplings in two parameters.

The 2D limits are extracted following the same method as for the 1D limits. First,
the best-fit value in the 2D aTGC parameter space is found. From that point, 1D
limits are extracted along radial lines moving out from the best-fit value. The 95%
confidence contour is the contour connecting the set of points which correspond to

the 95% limits on the many radial spokes.

11.7 Results

11.7.1 Expected Limits from W Z production

To evaluate the expected sensitivity of our measurement, we generate a large
number (5,000) of toy Monte Carlo data sets assuming all anomalous couplings are
zero. We evaluate the 95% confidence interval for each toy data set, and record the
upper limit, the lower limit, and the width of the interval. The expected limits are
taken as the interval spanning the average upper limit and the average lower limit
across all toy data sets. Figure [11.7 shows the distributions of the 95% C.I. obtained

from the toy experiments, as well as the actual C.I. from the data. Figure|l11.8 shows
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Figure 11.7: Expected upper and lower limits of the 95% aTGC confidence intervals.
Upper (red) and lower (blue) limits of the 95% C.I. of Ag? (top-left), Ak (top-right),
and Az (bottom), obtained from toy MC samples. The shaded area indicate the cases
in which two split C.I. were found. The blue and red arrows show the actual limits
obtained from data. These limits are for a cut-off scale of 2 TeV.

the widths of the 95% C.I. If a toy experiment gives two separate C.I., the sum of the

two widths is plotted. Table shows the 95% C.I. of the expected aTGC limits.

11.7.2 Observed Limits from W Z production

Figure[l1.9/shows the Z boson transverse momentum distribution for the Standard
Model alongside the distribution expected for values of the three anomalous couplings

that correspond to the upper limit of the 99% expected confidence interval (assuming
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Figure 11.8: Expected widths of the 95% C.I. on anomalous couplings. Total widths
of the 95% C.I. of AgZ (top-left), Arz (top-right), and A\ (bottom), obtained from
toy MC samples. The shaded areas indicate the cases in which two split confidence
intervals were found. The blue arrows show the width of the actual limits obtained
from data. These limits are for a cut-off scale of 2 TeV.
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no anomalous signal). The 99% expected limits are shown to emphasis the effect of
anomalous couplings. The sensitivity in the last bin of pZ4 to anomalous couplings
is evident. It is also apparent that if there were anomalous couplings, each coupling
would have a slightly different differential pZ distribution. Depending on the size of
the anomalous coupling, we might have the sensitivity to tell apart the contribution

of different couplings.

c 160 ]
o) - |
o 1401 ATLAS <+ Data -
c - [ Ldt=46fb" \Ns=7TeV CJSM wz .
o 120 []Bkg ]
N a1 i dl 3 Dcstat+syst .
100 -
- A4 =0.05
80~ .4.-, -- AK? =0.57
....... Ag1z =0.10 ]
60__ .................. —_
40 —
20 -

0 0-30 30-60 60-90 90-120 120-150150-180 180-2000

p7 [GeV]

Figure 11.9: p% of W Z events used to obtain aT'GC limits. Data is shown alongside
expected background and signal events, assuming the Standard Model. Expected
events in the case of anomalous TGC parameters are also shown, for values for each
of the three couplings that correspond to the upper limit of the expected 99% con-
fidence intervals. The sensitivity to the presence of aTGCs is clear in the last bin.
Additionally, the three anomalous couplings have different shapes in pZ4. The last bin
is shortened for display purposes; it includes events up to 2 TeV. The aTGC values
shown are calculated with a cut-off scale of 2 TeV.

Table summarizes the observed 95% confidence interval (C.I.) on the anoma-

lous couplings Ag?, Akz, and Az at two different values of the cut-off scale A: A = 2
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Table 11.3: Expected and observed 95% confidence intervals on the anomalous cou-
plings AgZ, Akyz, and \z. Limits are 1D; each coupling is fit independently while
the other couplings are fixed to zero.

Observed 95% C.I.  Expected 95% C.I.  Observed 95% C.I. Expected 95% C.I.

A =2TeV A =2TeV A= A=
Ag? [—0.074,0.133] [—0.059,0.110] [—0.057,0.093] [—0.046, 0.080]
Aky [—0.42,0.69] [—0.37,0.57] [—0.37,0.57] [—0.33,0.47]
Az [—0.064, 0.066] [—0.056, 0.055] [—0.046, 0.047] [—0.041, 0.040]

TeV, and no form-factor (equivalent to setting A — 00). These limits are 1D limits
obtained by setting the other aTGC parameters to zero.

The 95% confidence interval for the 2D fitting scenario are shown as contours in
Figure [I1.10] The limits for the scenario with a 2 TeV cut-off scale and with no form

factor are both shown.

N e N . N .
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Figure 11.10: Observed 2D 95% Confidence Contours. The cut-off scale is 2 TeV for
the limits shown with a fine line and no cut-off for the limits shown with a thick line.
The horizontal and vertical lines inside each contour correspond to the limits found
in the 1D fit procedure.

Figure [11.11] compares the observed limit with the Tevatron results. While the
ATLAS limits are the most stringent direct limits on all three W Z couplings, the

limits are only a slight improvement over the limits from the DO experiment. There
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are two reasons why the ATLAS limits are not a significant improvement. First,
W Z production at the Tevatron is dominated by leading order terms, including the
term with the WW Z triple gauge coupling vertex. At the LHC, the next-to-leading
order terms contribute nearly as much as the leading order terms, as discussed in
Section [2.4] This has the effect of obscuring events from the vertex with the triple
gauge couplings by producing significant number of energetic W Z events from QCD
production. Second, the D0 experiment observed significantly fewer events at high pZ
than expected; as a result, the observed limits are better than their expected limits.
This explains why the D0 limits are more stringent than the CDF limits, even though
the luminosity is lower. In the ATLAS data, we observe a slight excess of events at

high pZ, resulting in slightly worse observed limits than expected limits.

11.7.3 Observed Limits from WW, ZZ, and W/Z + ~ produc-
tion

Final states with other pairs of vector bosons are also sensitive to anomalous
triple gauge couplings. As described in Section [2.5] after requiring that C' and P
are conserved by each term in the Lagrangian, there are 5 couplings in the effective
Lagrangian description of the WWZ and WW~ vertex: kz, Az, g7, A, and k,. WZ
production is sensitive to the first 3 couplings, but the WV final state is sensitive to
all 5.

The ATLAS WW analysis with 4.6 fb~! at /s = 7 TeV is detailed in Refer-
ence [64]. Limits are set by studying the reconstructed leading lepton pr distribution,

shown in Figure([11.12| Limits on anomalous parameters are set using a likelihood test
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Figure 11.11: Comparison of aTGC limits from W Z production, shown for ATLAS
and Tevatron experiments. Luminosities, centre of mass energy and cut-off A for each
experiment are shown and the limits are for 95% confidence interval.
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Figure 11.12: WW leading lepton pr distribution. Data is shown along side expected
background and signal events, assuming the Standard Model. Expected events in the
case of anomalous TGC parameters are also shown, for values for each of the three

couplings. The last bin is shortened for display purposes; it includes all events above
180 GeV.
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Table 11.4: Limits on aTGC parameters from WW production, assuming no rela-
tionship amongst the five couplings. The 95% C.L. expected and observed limits on
anomalous TGCs are shown for A = co. Except for the coupling under study, all

other anomalous couplings are set to zero [64].

Expected Observed

Parameter (A = 00) (A = o)
Aky [—0.077, 0.086] [—0.078, 0.092]
Az [—0.071, 0.069] [—0.074, 0.073]
A, [~0.144, 0.135]  [—0.152, 0.146]
Ag? [—0.449, 0.546] [—0.373, 0.562]
AV [—0.128, 0.176] [—0.135, 0.190]

incorporating the observed number of candidate events, the expected signal as a func-
tion of aTGCs, and the estimated background in each pr bin. The 95% confidence
interval includes all values of aTGC parameters for which the negative log-likelihood
increases by no more than 1.92 units above the minimum.

The WW final state can not distinguish between the WW Z and the WW~ ver-
tex. If no relation is assumed between the five couplings, the sensitivity to Az and
g% is significantly worse in WW production than in WZ production — the observed
limits on Ag? are an order of magnitude worse in W production than found in W Z
production, and the limits on Ay are a factor 2 worse in WW production. The WW
production contribution from Aky scales as s, while the W Z cross section contribu-
tion from Ak scales as \/g), so WW production sets better limits on Axz even when
no assumption about the relationship between couplings is made. The limits set on
the five anomalous couplings from WW production, assuming no relations amongst
them, is shown in Table

If assumptions are made about the relationship between the anomalous parame-

ters, the limits from WW production improve significantly. The WW analysis stud-
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Table 11.5: Limits on aTGC parameters from WW production, with assumptions
on the relationship between the five couplings. The 95% C.L. expected and observed
limits on anomalous TGCs in the LEP, HISZ and Equal Couplings scenarios are
shown for two scales A = 6 TeV and A = co. Except for the coupling under study,
all other anomalous couplings are set to zero [64].

Observed Observed

Scenario Parameter (A =6 TeV) (A = o0)
Aty [~0.045, 0.044]  [—0.043, 0.043]
LEP Az =\, [-0.062, 0.065]  [0.062, 0.059]
Ag? [-0.036, 0.066]  [0.039, 0.052]
Aty [-0.039, 0.057]  [~0.036, 0.057]
HISZ Az =\, [—0.066, 0.065]  [—0.063, 0.063]
Aty [—0.061, 0.093]  [~0.061, 0.083]
Equal Couplings —  _ [—0.062, 0.065]  [—0.062, 0.059]

ies three sets of relationships (called “scenarios”). In the “Equal Couplings sce-
nario”, Aky = Ak, Az = A\, and g¢ = 1. The “LEP scenario” is motivated by
SU(2) x U(1) gauge invariance and assumes Ax., = (cos? Oy / sin? Oy ) (Ag? — Akyz),
and A\z = \,. The final scenario, called the “HISZ scenario”, assumes Ag? =
Akz/(cos? Oy — sin® Oy ), Ak, = 2Akz cos? Oy /(cos® Oy — sin® Oyy), and Az = \,.
The observed limits for the 5 anomalous parameters are shown for these three sce-
narios in Table [[1.5

The limits from WW production obtained on ATLAS are compared to the limits
from CMS, the Tevatron, and LEP in the LEP scenario in Figure [I1.13] While the
limits from ATLAS are more stringent than the limits from the Tevatron, the LEP
limits remain the strongest constraint on anomalous couplings in WW production.

The ZZ final state is sensitive to neutral triple gauge couplings involving the ZZ 7
and ZZ~ vertices with two on-shell Z bosons and one off-shell Z or 7. Anomalous

neutral couplings describing these vertices can be parametrized by two CP-violating
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Figure 11.13: Comparison of aTGC limits from WW production at different ex-
periments. Limits are shown from ATLAS [64], Tevatron and LEP experiments.
Luminosities, centre of mass energy and cut-off A for each experiment are shown and

the limits are for 95% confidence interval.
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terms, fZ and f], and two CP-conserving complex parameters, fZ and fJ. All neutral
triple gauge couplings are zero in the Standard Model.

The ATLAS ZZ analysis with 4.6 fb~! at /s = 7 TeV is detailed in Reference [65].
Limits are set by studying the differential distribution of the transverse momentum of
the leading Z boson in both ZZ — (000 and ZZ — (lvv final states. The leading Z
is defined as the Z boson with the higher transverse momentum for ZZ events with
four leptons, and as the Z boson decaying to a charged lepton pair in 22 — (lvv

events. The leading Z pp distribution is shown for four lepton events in Figure [11.14]
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Figure 11.14: ZZ pZ distribution. Data is shown along side expected background and
signal events, assuming the Standard Model. Expected events in the case of anoma-
lous TGC parameters are also shown, for values for each of the three couplings [65].

Limits on the values of anomalous neutral couplings are calculated using the same

Frequentist approach that is used for the W7 analysis. The observed limits from AT-
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LAS are shown in Figure [I1.15] along with the limits obtained in other experiments.
The ATLAS and CMS limits, which are comparable with each other, are an order of

magnitude better than the limits from the Tevatron and from LEP.
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Figure 11.15: Comparison of aTGC limits from ZZ production at different experi-
ments. Limits are shown from ATLAS [65], Tevatron and LEP experiments. Lumi-
nosities, centre of mass energy and cut-off A for each experiment are shown and the
limits are for 95% confidence interval.

Finally, final states involving an on-shell photon and either a W or Z boson are
also sensitive to anomalous couplings vertices with photon couplings. The W+ final
state is sensitive to the W W+ vertex, involving the s, and A, couplings. The Zv
final state is sensitive t to neutral triple gauge couplings involving the ZZ~ and Z~~
vertices with one on-shell Z boson, one on-shell photon, and one off-shell Z or photon.

Anomalous neutral couplings describing these vertices can be parametrized by the hZ,
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h}, hZ, and h] parameters. All neutral triple gauge couplings are zero in the Standard
Model.

The ATLAS W/Z~ analysis with 4.6 fb~! at /s = 7 TeV is detailed in Refer-
ence [66]. Limits are set with the sample of W+~ and Z~v events in which the photon
has missing transverse energy greater than 100 GeV and there are no reconstructed
jets with Ep > 30 GeV. Limits on the values of anomalous neutral couplings are cal-
culated using the same frequentist approach that is used for the W Z analysis. The

observed limits from ATLAS, along with the limits obtained in other experiments, are

shown in Figures|[11.16|and [11.17 for the couplings studied in W~ and Z~ production.

The ATLAS limits are the most stringent for the neutral couplings in Zv produc-
tion. LEP obtained tighter limits for Ak, and \,, but these limits were obtained by
studying the WW final state, as the LEP accelerator could not produce the charged

W~ final state.
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Figure 11.16: Comparison of aTGC limits from W+~ production at different exper-
iments. Limits are shown from ATLAS [66], Tevatron and LEP [7] experiments.
Luminosities, centre of mass energy and cut-off A for each experiment are shown and
the limits are for 95% confidence interval.
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the limits are for 95% confidence interval.
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Chapter 12

Conclusion and Outlook

We observe 317 WZ — (vll candidate events, with an expected background of
68 4+ 10 events, in 4.6 fb~! of proton-proton collisions collected with the ATLAS
detector. We determine the W Z production cross section to be 19.0713 (stat) 0.9
(syst) £0.4 (lumi) pb, which is consistent with the next-to-leading Standard Model
prediction of 17.6713 pb. By studying the transverse momentum distribution of the
Z boson in selected W Z events, we extract the following 95% confidence intervals for

anomalous triple gauge boson couplings which could contribute to W Z production:

Ag? : [-0.057,0.093]
Aky : [—0.37,0.57] (12.1)
Az : [—0.046,0.047]
Our limits on these couplings are the tightest to date for couplings measured in W2
production, and the most stringent model-independent limits on AgZ and \y.
The study of W Z production at the LHC will continue to be interesting. The

data collected by the ATLAS detector in 2012 has a center-of-mass energy of /s = 8
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TeV and has an integrated luminosity of 23 fb~!. With this dataset, the measurement
of the W Z production cross section at 8 TeV will continue to test the high energy
behavior of electroweak physics. Moreover, with 23 fb=!, the measurement of the
cross section will no longer be limited by statistics. We expect the measurement of
the WZ cross section at /s = 8 TeV with the full 2012 dataset will have around
a 3% statistical uncertainty. In the analysis presented here, the largest systematic
uncertainty, which was due to the expected Z+jets background contribution, was
around 5%. However, with more data, the number of events in data control regions
grows, and we expect the systematic uncertainty on the Z-+jets background to drop to
3% without changing the method for estimating the background. To further improve
the precision of the measurement, it will be necessary to find a way to estimate the
expected Z+jets contribution with higher precision. However, even if the analysis
were to be repeated with no changes except the new dataset, the total expected
uncertainty on the measurement will be equivalent to or slightly smaller than the
uncertainty on the theoretical prediction, which is 6%.

We also expect that the limits on anomalous triple gauge couplings will improve
with the 2012 data. The precision of the limits improves roughly with L'/*; we expect
roughly a 30% improvement in our limits from increasing our data sample to 23 fb~1.
The increase in the center-of-mass energy from 7 TeV to 8 TeV also improves our
expected limits by 30%. In addition to the expected improvements in the limits on
Ag?, Akz, and Az obtained from studying W Z production with the 2012 data, the
ATLAS collaboration has plans to extract tighter limits on the couplings by combining

information from both the W2 and WW final states.
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The LHC expects to begin colliding protons again in early 2015 at /s = 14
TeV. With this energy and the hundreds of fb~! of integrated luminosity we hope
to collect within a few years of data taking, we expect to improve the limits on
anomalous triple gauge couplings by an order of magnitude [61]. At that level, the
limits will be sensitive to most of the predictions of anomalous couplings by current
theoretical models [83]. Additionally, we will be able to measure WZ and WW
scattering precisely enough to test whether or not the Higgs boson behaves as expected

in regularizing diboson scattering.
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