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Abstract

The search for physics beyond the Standard Model is necessarily a multi-disciplinary field.

By including all data relevant to a particle physics model simultaneously in a ‘global fit’, it is

possible to make statistically meaningful statements about the viability of theories beyond the

Standard Model. The topics of this thesis are extending the global fitting software framework

GAMBIT, and performing global fits of effective dark matter models.

Firstly, I present GUM, the GAMBIT Universal Model Machine, a tool that interfaces sym-

bolic Lagrangian-level tools and GAMBIT to allow one to implement new physics models in

GAMBIT with minimal effort. I perform a fit of a simplified dark matter model using GUM and

GAMBIT.

Next, I present CosmoBit, the new GAMBIT module for cosmological observables and likeli-

hoods. I present an application of CosmoBit in which I perform a global analysis to place limits

on the lightest neutrino mass by consistently combining cosmological and terrestrial datasets.

I then consider global fits of effective dark matter models using GAMBIT. I consider models

in which the Standard Model is extended by either a fermionic or vector dark matter candidate

that interacts via the ‘Higgs portal’. I present comprehensive results in both frequentist and

Bayesian frameworks, combining constraints from direct detection, indirect detection from γ

rays and neutrinos, the invisible width of the Higgs, and the relic abundance of dark matter,

whilst ensuring that the effective model description does not break down.

Finally, I perform global fits of dark matter effective field theories defined at the partonic

level, in which a dark matter candidate interacts with quarks and gluons via effective contact

interactions. I consider cases in which the effective theory is generated by integrating out either

a scalar mediator, a vector mediator, or a heavy quark. In these fits, I combine constraints

from direct detection, indirect detection from γ rays, monojet searches for dark matter particles

from the LHC, and the relic abundance of dark matter.
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Preface

The contents of this thesis are based on work from five papers, with the common theme of

global fits of theories beyond the Standard Model [1–5]. Chapter 1 is a literature review and

introduction. I introduce the Standard Model (1.1), largely based on textbooks by Ryder [6]

and Peskin and Schroeder [7], and explain the need for physics beyond the Standard Model.

I continue by introducing dark matter (1.2) and experimental attempts to identify its particle

nature, followed by global fits of theories beyond the Standard Model (1.3), including an in-

troduction to the GAMBIT (Global and Modular Beyond the Standard Model Tool) software

framework.

The main body of this thesis is split into two parts. Part I covers extensions to the GAMBIT

global fitting framework in the form of GUM and CosmoBit. Chapter 2 concerns the computa-

tional tool GUM, which creates an interface between GAMBIT and symbolic Lagrangian-level

tools, and generates GAMBIT source code automatically, thus increasing the model database

and usability of GAMBIT significantly. Chapter 3 introduces CosmoBit, the GAMBIT module for

computing cosmological predictions and associated likelihoods for theories beyond the Standard

Model.

Part II presents results from global fits of effective dark matter models, where I assume par-

ticle properties for the dark matter, and some parametrised interactions with the SM particles,

but do not consider fully renormalisable theories. Chapter 4 looks at global fits of effective

theories where the dark matter interacts via the ‘Higgs portal’. Chapter 5 is concerned with

global fits of a dark matter effective field theory, in which dark matter couples to quarks and

gluons.
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Chapter 1

Introduction

1.1 The Standard Model: A Lightning Recap

The Standard Model (SM) of particle physics is one of the most incredible feats in physics.

Built upwards from observations of weak interactions, the SM incorporated and explained all

known particle content and their properties, whilst also being highly predictive. With the

discovery of the Higgs in 2012, all of the particles contained within and predicted by the SM

have been observed. The question now becomes: what – if anything – lies beyond the Standard

Model?

In this section I briefly recap the SM, with a particular focus on electroweak symmetry

breaking and the Higgs sector, and the success it has had. I then turn to some cases where the

SM does not predict the physics we observe, and motivate why looking beyond the Standard

Model is a reasonable thing to do, given how remarkably successful and powerful it has been.

The SM has had overwhelming success in both predicting and explaining the small-scale

physics observed in high-energy physics experiments. It is attractive because it simply and

successfully describes three of the four fundamental forces of nature, with only gravity excluded.

Furthermore, the SM is fully renormalisable: all infinities in loop diagrams can be kept under

control with a finite number of counter-terms. This makes the SM predictive up to high energy

scales.

All observed fundamental particles can be described by the SM. Their interactions are

invariant under the SM gauge group,

GSM = SU(3)C × SU(2)L × U(1)Y (1.1.1)

where subscripts C, L, and Y correspond to colour, weak isospin, and hypercharge. The

SU(3) colour gauge group is associated with the strong force, and the SU(2) × U(1) gauge

group is associated with electroweak unification. Under spontaneous symmetry breaking, the

electroweak group reduces to electromagnetism, as I will show in Sec. 1.1.1.

There are three generations of fermions in the SM, with each generation consisting of a
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Field SU(3)C SU(2)L U(1)Y

L =

(
νL

eL

)
1 2 -1

eR 1 1 -2

Q =

(
uL

dL

)
3 2 1

3

uR 3 1 4
3

dR 3 1 −2
3

H =

(
H+

H0

)
1 2 1

Table 1.1: The field content of the Standard Model and their quantum numbers under
GSM. Numbers in bold correspond to the representation under a given group: 3 is the
triplet representation, 2 the doublet, and 1 the singlet representation. The subscript
L corresponds to left-handedness, and R to right-handedness.

Field Coupling constant Gauge field Generator

SU(3)C gs GA
µ TA = 1

2
λA

SU(2)L gw W a
µ τa = 1

2
σa

U(1)Y g′ Bµ Y

Table 1.2: The charges, gauge fields and generators of GSM. σa are the Pauli spin
matrices, λA are Gell-Mann matrices. SU(N) indices run over the dimension of the
group, N2 − 1: a = 1, 2, 3, A = 1, 2, ..., 8.

charged lepton e and the corresponding neutrino, ν, and an up-type and a down-type quark, u

and d. There is also a single scalar Higgs doublet, H.

Due to the weak force interacting preferentially with left-handed fermions (and right-handed

antifermions) [8], the SM had to be built as a chiral theory [9, 10]. The left- and right-handed

fields therefore transform under different representations of GSM, as shown in Table 1.1.

The SM Lagrangian is composed of four distinct sectors: the (gauge-)kinetic terms for

the fermions, LK, the gauge field kinetic terms, LG, the Higgs sector, LH, and the Yukawa

interaction terms, LY.

Firstly, the kinetic terms for the fermions are the standard Dirac equation for a massless

fermion, but with the covariant derivative,

LK =
3∑

j=1

i(Qj /DQj + Lj /DLj + uRj /DuRj + dRj /DdRj + eRj /DeRj) (1.1.2)

where ψ ≡ ψ†γ0, /D ≡ Dµγµ, and the sum over j corresponds to the three fermionic generations
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included within the SM. Note that while the leptons and quarks both have right-handed SU(2)

singlet fields alongside the left-handed SU(2) doublet fields, there is no such term for neutrinos.

The covariant derivative of the SM is given by

Dµ = ∂µ − i

(
g′Bµ

Y

2
+ gwW

a
µ τ

a + gsG
A
µT

A

)
(1.1.3)

where terms correspond to U(1)Y , SU(2)L and SU(3)C respectively. All terms are defined in

Table 1.2. Note that any field transforming as a singlet under a given group is uncharged, i.e.

the generator corresponding to that particular group is in the trivial representation, causing

the corresponding interaction term to vanish.

The kinetic term for the gauge fields is given as:

LG = −1

4
BµνB

µν − 1

2
TrWµνW

µν − 1

2
TrGµνG

µν (1.1.4)

where traces are taken over the SU(2) and SU(3) indices for the W and G terms respectively,

and the field strength tensor terms are canonical terms for the gauge fields,

Bµν = ∂µBν − ∂νBµ (1.1.5)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gwǫ

a
bcW

b
µW

c
ν (1.1.6)

GA
µν = ∂µG

A
ν − ∂νG

A
µ + gsf

A
BCG

B
µG

C
ν , (1.1.7)

where ǫ and f are the structure constants of SU(2) and SU(3) respectively.

The Higgs sector consists of the kinetic term for the Higgs (which gives rise to kinetic and

mass terms for the massive gauge bosons, see Sec 1.1.1) and the Higgs potential,

LH = DµHD
µH − µ2H†H − λ(H†H)2 . (1.1.8)

Finally, the Yukawa sector details the coupling of fermions to the Higgs. Yukawa terms are

responsible for generating mass terms for the quarks and leptons, as all Dirac mass terms are

forbidden under the SM symmetries. To see this, it is useful to split ψ into chiral fields via left-

and right-handed projection operators,

PL =
1

2
(1− γ5), PR =

1

2
(1+ γ5) (1.1.9)

so that ψ = (PL + PR)ψ = ψL + ψR. Therefore, a would-be Dirac mass term looks like

−mψψ = −m(ψL + ψR)(ψL + ψR) = −m(ψLψR + ψRψL) , (1.1.10)

which is clearly not gauge invariant under SU(2)L×U(1)Y , as the left- and right-handed fermions

transform differently. Hence, before electroweak symmetry breaking (EWSB), Dirac mass terms

3



for all fermion fields are forbidden by the symmetries.

The Yukawa Lagrangian reads

LY = −Y u
ij ǫabQ

a
iH

†buRj − Y d
ijǫabQ

a
iH

bdRj − Y e
ijǫabL

a
iH

beRj + h.c. (1.1.11)

where h.c. stands for Hermitian conjugate. We see that the 3× 3 complex Yukawa matrices Y

describe interactions between the Higgs field and different generations of leptons and quarks.

The indices i, j = 1, 2, 3 correspond to generation, and a, b = 1, 2 is an SU(2)L index of the

doublets. Note that because there is no right-handed neutrino, there is no Yukawa term for the

neutrino, which keeps it massless in the SM.

1.1.1 Electroweak Symmetry Breaking & The Higgs Mechanism

As foreshadowed in the previous section, the Higgs mechanism [11–13] is the cornerstone of

the success of the SM. It is the mechanism that gives rise to the familiar gauge bosons of the

weak force and electromagnetism, and the masses of all fermions (bar the neutrino). Firstly,

we need to consider the potential of the Higgs Lagrangian. The Higgs potential is simply that

of a complex scalar field

V (H) = µ2H†H + λ(H†H)2 , (1.1.12)

where both µ2 and λ > 0 are real constants. This potential is invariant under a global U(1)

phase transformation H → eiαH. If µ2 > 0, this potential simply looks like a mass term and

a four-point interaction, with a minimum at 〈H〉 = 0. However, if µ2 < 0, H = (0, 0) is not a

stable minimum and perturbation theory is not valid around H = 0. The true vacuum lies at

the minimum of the potential,

∂V

∂(H†H)
= µ2 + 2λ(H†H) = 0 , (1.1.13)

giving degenerate minima

|H| =
√

−µ
2

2λ
≡ v√

2
, (1.1.14)

where the phase is not determined. The minima therefore lie on a circle of radius v/
√
2, and

choosing one value about which to perturb breaks this symmetry. Without loss of generality,

one can choose a specific basis for the components of the Higgs field, such that its vacuum

4



expectation value (VEV) is

〈H〉 = 1√
2


0

v


 . (1.1.15)

This is known as spontaneous symmetry breaking : the symmetry SU(2) × U(1) has been

spontaneously broken by selecting a direction in field space (with a degenerate set of min-

ima). The stability group of these vacua is a linear combination of the hypercharge and the

3rd component of weak isospin, Q = τ 3 + Y/2; as τ 3 rotates the vacuum by an angle θ to

(0, v/
√
2e−iθ/2)T , this can be undone by a simultaneous U(1) rotation of −θ/2. Thus the

vacuum is stable: Q 〈H〉 = 0 .

The linear combination of Y and τ 3 corresponds directly to the U(1) of electromagnetism:

SU(2)L × U(1)Y → U(1)EM, which will become explicitly clear when considering mass eigen-

states. The three broken generators of SU(2)L × U(1)Y are τ 1 and τ 2, as well as the linear

combination τ 3 − Y/2. Goldstone’s theorem tells us that we expect 3 Goldstone bosons from

these broken symmetries, which are ‘eaten’ by linear combinations of the gauge fields to gener-

ate their mass terms. The resultant gauge field along the direction of Q remains massless: the

photon.

This is easiest to see in unitary gauge, in which the residual gauge freedom is exploited to

select

H =
1√
2


 0

v + h


 (1.1.16)

where h is the physical Higgs boson. Mass terms for the gauge bosons arise from the expansion

of the kinetic term in the Higgs potential:

(DµH)†(DµH) =
1

2
∂µh∂

µh+
1

8
(v + h)2

(
g′Bµ − gwW

(3)
µ

)2
(1.1.17)

+
1

8
(v + h)2g2w

(
W (1)
µ − iW (2)

µ

) (
W (1)
µ + iW (2)

µ

)
.

The field combination W±
µ = 1√

2
(W

(1)
µ ∓ iW

(2)
µ ) has picked up a mass term that can be

simply read off, 1
4
v2g2w ≡ M2

W , which corresponds to the charged W+ and W− gauge bosons.

Similarly, the field combination g′Bµ−gwW (3)
µ has also gained a mass term, defining the neutral

Zµ gauge boson (when normalised):

Zµ =
1√

g′2 + g2w
(g′Bµ − gwW

(3)
µ ) , (1.1.18)

with mass M2
Z = v2

4
(g′2 + g2w).

The final degrees of freedom from breaking SU(2)L×U(1)Y are orthogonal to the Zµ term,

5



defining the photon field Aµ, which clearly has no mass term,

Aµ =
1√

g′2 + g2w
(gwBµ + g′W (3)

µ ) . (1.1.19)

Remarkably, the Higgs mechanism provides mass to the familiar W± and Z of the weak

force, whilst keeping the photon massless. Writing the covariant derivative of SU(2)L × U(1)Y

in terms of the mass eigenstates, we find that

Dµ = ∂µ −
igw√
2
(W+

µ τ
+ +W−

µ τ
−)− i√

g′2 + g2w
Zµ(g

2
wτ

3 + g′2
Y

2
)− ig′gw√

g′2 + g2w
AµQ (1.1.20)

where τ± ≡ (τ 1 ± iτ 2)/2, identifying Q as the generator for electromagnetism as anticipated,

and the fundamental charge as

e =
g′gw√
g′2 + g2w

. (1.1.21)

This can be parametrised further by considering the mixing of the W 3 and B to give the

Z and the A. This can be considered a rotation from the W − B plane to the Z − A plane,

parametrised via the weak mixing angle, θw:


A

Z


 =


 cos θw sin θw

− sin θw cos θw




 B

W 3


 , (1.1.22)

which then relates the SU(2)L and U(1)Y coupling constants, the masses of the W and Z, and

the fundamental electric charge,

cos θw =
gw√

g2w + g′2
, sin θw =

g′√
g2w + g′2

(1.1.23)

MW =MZ cos θw, e = gw sin θw = g′ cos θw .

Altogether, the tree-level interactions of the electroweak sector of the SM are fully charac-

terised by three parameters; these are often taken to be the weak mixing angle θw, the W mass

MW , and the fundamental charge, e.

Spontaneous symmetry breaking generates fermion masses via the Yukawa terms. As H

develops a VEV, the Yukawa Lagrangian becomes:

LY = −v + h√
2

(Y u
ijuLiuRj + Y d

ijdLidRj + Y e
ijeLieRj + h.c.) . (1.1.24)
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To rotate into the mass basis, each Yukawa matrix Y f is diagonalised by U(3) unitary

transformations, Y f
ij → U †

imY
f
mn Unj, which give diagonal mass terms in the Lagrangian

− v√
2
(Y u

i uLiuRi + Y d
i dLidRj + Y e

i eLieRi + h.c.) (1.1.25)

corresponding to masses of Y f
i v/

√
2 for each fermion f and generation i. The consequences of

this U(3) transformation are subtle: as the up- and down-type quarks have different Yukawa

matrices, their charged current interactions are not invariant under the transformation. Con-

sider the weak charged current interactions arising from the gauge-kinetic terms, after EWSB:

LCC =
igw√
2
(W+

µ (νLiγ
µeLi + uLiγ

µdLi) +W−
µ (eLiγ

µνLi + dLiγ
µuLi) . (1.1.26)

Under U(3), Li → U e
ijLj, so the interactions describing leptons, e.g. e− → νe +W−, are

invariant. However the quark terms contain both up and down-type quarks, so

W+
µ uLiγ

µdLi → W+
µ U †u

miUd
inuLmγ

µdLn (1.1.27)

is not invariant. This defines the CKM (Cabbibo-Kobayashi-Maskawa [14, 15]) matrix, Vij =

U †u
miUd

in, describing the strength of the flavour changing weak interaction,

LCC =
igw√
2

[
W+
µ (νLiγ

µeLi + VijuLiγ
µdLj) +W−

µ (eLiγ
µνLi + V †

ijdLiγ
µuLj)

]
. (1.1.28)

The CKM matrix can be expressed




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (1.1.29)

where the primed quarks are in the weak interaction basis, and the unprimed quarks are mass

eigenstates. The CKM matrix is a unitary 3×3 matrix. This means that it can be parametrised

by 9 parameters: 3 angles and 6 phases. Each quark field can independently be redefined as

|q〉 → eiα |q〉; the phases can be ‘rotated away’, up to a single global phase. The CKM matrix

can then be parametrised by 3 mixing angles θ12, θ13, θ23, and a CP-violating phase δ.

1.1.2 Effective Field Theories

In nature, we are used to seeing different physics dominate at different energy scales. Grav-

itation dominates the very largest structures we see, such as galaxies, but has no relevance in

the smallest scales, such as keeping a nucleus bound, or binding the electrons in an atom. We

shouldn’t expect the physics that is relevant at one scale to be relevant for all scales. To explain
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how galaxies are formed from the bottom up, we need to understand the atom - but to explain

the atom, we don’t need to be able to explain how galaxies work. This picture motivates a

hierarchy of scales, built as a bottom-up approach, with new layers added when the existing

physics is insufficient to explain the Universe we see.

Particle physics is no different, except we are now concerned with energy scales. These are

effective field theories (EFTs): models that include the relevant effects up to a given energy

scale, and nothing above those scales. When building from low energies to higher energies, an

EFT simply breaks down when the physics is no longer sufficient to explain the observations.

Generally speaking, this means that new degrees of freedom become active as we approach a

given energy scale, the EFT cut-off Λ. In this respect, the main ingredients of an EFT are the

scale at which the theory breaks down, Λ, the active degrees of freedom, and the interactions

describing them. The opposite is also true: we can move from a more complicated high-energy

theory to a low-energy theory and explain the physics well, but with additional complexity that

can be sufficiently captured by a simpler EFT. Concretely, the EFT will describe the physics

of the ‘full’ model well as long as the energy scales involved in the processes E ≪ Λ.

One consideration that has to be made when considering EFTs is that the theory remains

unitary as energy increases. Because the perturbative expansion will be in terms of (E/Λ)n

for a process with energy E, as E ≈ Λ, the perturbation expansion in E/Λ breaks down. This

is known as perturbative unitarity violation, and demonstrates that EFTs typically begin to

break down below the scale of new physics.

Much of the work in this thesis touches on effective dark matter theories. I introduce

effective dark matter EFTs in Section 1.2.5, including how we can map a toy model onto a

low-energy EFT by ‘integrating out’ heavy degrees of freedom that are not relevant at low

scales. In 1.1.3.1 and 1.1.3.2 I introduce shortcomings of the SM that are formulated in terms

of EFTs. In these contexts, the presence of a dimensionful coupling motivates the existence of

additional degrees of freedom to those included in the SM.

1.1.3 BSM Physics hints within the SM

The SM picture is built purely upon observations of nature, and describes the physics that

we see particularly well. It is not purely empirical however, as it has had great success in

predicting physics, such as the existence of the top quark and the Higgs boson, and the masses

of the W and However, in recent years, shortcomings of the SM have appeared that suggest

there may be additional particle content beyond the SM.

Although neither of the problems I discuss here – the origin of neutrino masses, and the

hierarchy problem – are the focus of any work in this thesis, I briefly introduce them and explain

how they generally imply that additional energy scales (or equivalently, new particle content)

must exist beyond that of the SM.
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Figure 1.1: The three seesaw mass mechanisms for neutrinos at tree level triggered
by electroweak symmetry breaking (EWSB). Dotted lines imply mass insertion terms
from vacuum expectation values (VEV). (Left) The Type-I seesaw mechanism, in
which at least 2 heavy right handed neutrinos νR with Majorana masses are added
to the SM. (Centre) The Type-II seesaw mechanism, where the SM is extended by a
scalar Y = 2 SU(2) triplet ∆, which gains a naturally small VEV during EWSB, via
a small coupling to the Higgs. (Right) The Type-III seesaw mechanism, where the
SM is extended by adding a fermion triplet ΣR.

1.1.3.1 Neutrino masses

Positive measurements from neutrino oscillation experiments, beginning with observations

at Super-Kamiokande in 1998 [16], imply that neutrinos are not massless particles, but have

have some tiny, non-zero mass. Neutrinos would only be able to oscillate if there is a mass

difference between neutrino mass eigenstates. The measurement of oscillations guarantees that

at least two of the SM neutrinos have mass.

There is no way to generate a renormalisable mass term for the neutrino with the field

content of the SM. Within the SM, neutrinos are included as part of the left-handed lepton

SU(2) doublet, L = (νL, eL), with no right handed counterpart νR. A right handed neutrino νR

transforms trivially under GSM: νR ∼ (1,1, 0).

The lack of νR in the SM keeps the neutrino massless, as it is impossible to write a Dirac

mass term like Lν = YνH̃LνR, where H̃ = iσ2H
∗. The lowest-dimensional representation of the

neutrino mass operator under the SM is the Weinberg operator [17],

Ld=5 ∼ cαβ
(LcαH̃

∗)(H̃†Lβ)

ΛNP

(1.1.30)

where ΛNP is some scale of new physics (NP), α, β = 1, 2, 3 is a flavour index, and c denotes a

generic mixing matrix.

The interpretation of the Weinberg operator is that the SM is an EFT, valid at scales

between the electroweak scale ΛEW and (approximately) the NP scale ΛNP. The theory de-

scribing the generation of the effective scale ΛNP reduces to the SM at low energy scales, and is

responsible for generating the neutrino mass. This is a powerful statement, as it implies addi-

tional degrees of freedom beyond the SM at a high scale are required to explain experimental

observations.

Under EWSB, the Weinberg operator generates a Majorana mass term for the left-handed

neutrino, L ⊃ (cαβv2/2ΛNP)νLνL. Clearly as the NP scale goes up, the neutrino mass goes

9
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Figure 1.2: (Left) Quadratic divergences to the Higgs mass due to the fermionic ψ loop,

present in the SM. (Right) Supersymmetric cancellation due to the bosonic ψ̃ loop,
which is equal to -1/2 of the left-hand diagram. Supersymmetric theories introduce
two bosons for each SM fermion, one each for left- and right-handed fermions.

down. This is generically known as a seesaw mechanism. If we interpret the NP scale as the

mass of a particle that has been integrated out to generate our low energy EFT (up to some

constant of proportionality), then we see that increasing the mass of this particle brings down

the mass of the neutrino.

Adding νR is not the only way to generate the Weinberg operator: at tree-level there are

3 unique ways to generate the neutrino mass, whose Feynman diagrams are shown in Fig. 1.1.

Discussing each of these models is beyond the scope of this thesis, see e.g. Ref. [18] for details

on the theories themselves, and on possible BSM signatures of each model.

A similar categorisation of seesaw mechanisms exists at loop level, see e.g. [19], where the

neutrino is kept massless at tree level, as in the SM. Models of this type are appealing, as the

natural suppression via loop diagrams means the hierarchy between ΛNP and ΛSM does not

need to be so extreme (or, equivalently, do not require extremely tiny Yukawa-type couplings).

This generally makes such models easier to probe at the LHC.

1.1.3.2 The Hierarchy Problem

There is also a suggestion from purely theoretical considerations that the SM may only be

a low-scale EFT, independent of the compelling argument from the neutrino sector. Within

the SM, loop corrections to the Higgs mass are not protected by any symmetries, and are

generated by SM fermions running in the loop, as seen in the left panel of Fig. 1.2. The

one-loop corrections to the Higgs mass go as the square of the EFT scale,

m2
H,phys

∼= m2
H − λ2

8π2
Λ2 (1.1.31)

where λ is the coupling constant between the Higgs and a fermion running in the loop. Λ is

the cut-off of the theory; i.e. where the SM breaks down. The next physical scale we know

of is the Planck scale, where quantum gravity comes into effect, and we definitely expect the

SM picture to break down. If this equation is valid all the way to the Planck scale, then to

obtain the physical Higgs mass of 125 GeV requires an incredible fine tuning between the bare

Higgs mass term and the loop corrections, both of order the Planck scale. This is known as the

10



hierarchy problem.

Of course, we can reduce the extremeness of this hierarchy by adding a new cut-off scale,

ΛNP, much below the Planck scale. At ΛNP, the SM picture breaks down and new physics

contributions take over. However this still does not remove the hierarchy problem, but only

softens the level of tuning required. In any case, the absense of additional particle content

detected at the LHC implies that ΛNP cannot be close to the EW scale.

An alternative to introducing new physics scales is to attempt to cancel the divergences

diagrammatically. Supersymmetry (SUSY) does the latter. SUSY is a spacetime symmetry,

extending the symmetries of the SM, such that each boson has a fermionic superpartner, and

each fermion a bosonic superpartner. In unbroken SUSY, each superpartner has identical mass

to the SM particle, and identical couplings to the Higgs.

The additional particle content generates new diagrams for the Higgs, as shown in Fig. 1.2.

The fermion contribution is cancelled exactly by two supersymmetric sfermion loops, as shown

in Fig. 1.2, as closed bosonic loops gain a factor of (−1/2) relative to fermionic loops. This

completely removes the dependency on the high energy scale Λ from the calculation of the

Higgs mass.

In unbroken SUSY, as the mass of the bosonic superpartner is identical to the SM particle,

these divergences cancel completely. However, as there has been no observation of superpart-

ners, it is clear that if SUSY exists, it must be a broken symmetry. If the Higgs is to be stabilised

around the scale of SUSY breaking, probably ∼ 1TeV so as not to introduce new fine tuning,

we therefore expect to see superpartners in similar mass ranges: around the TeV scale, which

is directly probed by the LHC. Additional positive features of SUSY include unification of the

SM gauge couplings at high scales, and providing a natural dark matter candidate.
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Figure 1.3: Galactic rotation curve for M33: the halo contribution is dot-dashed, the
stellar disk is short-dashed, and the gas is long-dashed. Figure from Ref. [20].

1.2 Dark Matter

While the previous subsections have focused on shortcomings within the SM, based on

observables and evidence from Earth-based experiments and from a more philosophical stand-

point, another potential shortcoming of the SM is its inability to provide a particle candidate

for dark matter (DM).

Assuming the laws of gravity do not need to be modified (although this is an active re-

search area), explaining the large-scale astrophysical and cosmological discrepancies we ob-

serve requires something massive (interacting gravitationally), stable (at least on cosmological

timescales), ‘dark’ (not interacting with electromagnetism), and sufficiently ‘cold’ to enable

structure formation to proceed. I briefly remind the reader of the overwhelming evidence in

favour of some non-baryonic DM content in the Universe, purely through its gravitational effect.

The first evidence for DM relates to velocity dispersions of large structures. Beginning with

Fritz Zwicky’s observations of the Coma cluster in 1933 [23], it was clear that the velocity

dispersions observed were inconsistent with the observed mass of luminous matter. Zwicky

explained this by proposing his measurements implied the presence of an additional source of

non-luminous mass.

In the 1970s, Rubin and collaborators [24, 25] produced rotation curves of spiral galaxies.

These observations also suggested some additional non-luminous material, in order to explain

the observed velocities of stars at large orbital radii. Fig. 1.3 shows the luminous matter and

DM for the M33 galaxy, where it is clear that an additional and dominant mass contribution

is required to explain the velocity of stars at large radii. This suggests the existance of a DM
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Figure 1.4: (Left) The doubly lensed image SDSSJ0946+1006 [21]. (Right) The
implied mass profile within the lens given by the Einstein radii (red points), and
the mass profile of the baryonic matter (solid blue), implying the presence of an
additional, extended DM distribution. A ‘maximum bulge’ solution cannot explain
both Einstein radii simultaneously (dotted blue). Images from Ref. [22].

halo, extending far beyond the luminous matter of the galaxy itself.

Another effect of gravitational potentials, predicted by Einstein’s theory of General Relativ-

ity, is that gravitational fields cause light to deflect. In practice, this is observed by a massive

foreground object (galaxy, galaxy cluster) obscuring a distant, bright source. The gravitational

field of the foreground object, the lensing potential, causes the light from the bright source to

deflect. The image can be magnified and appear brighter (or dimmer), and can have multiple

images, based on the geometry of the system. This is gravitational lensing. The deflection of

the source is determined by the lensing potential – i.e. the mass of the foreground cluster. This

too is at odds with the idea that the mass of a system is given by just the luminous mass,

implying additional dark mass content.

An extreme example of strong lensing is shown in Fig. 1.4: the object SDSSJ0946+1006.

Here, lensing has occurred twice, forming a double Einstein ring, due to the alignment of 3

galaxies. Due to the presence of two Einstein rings, it is possible to infer the DM fraction

within the lensing potential: ∼ 73% [21].1

Perhaps the most famous use of gravitational lensing is the Bullet Cluster, pictured in

Fig. 1.5. The Bullet Cluster is a galaxy merger with a collision speed of ∼ 4500 km s−1, as

seen from X-ray emission by the hot gas. Fig 1.5 shows an image in the X-ray from Chandra,

and the matter distribution inferred from gravitational lensing as green contours [27]. This

shows that the centres-of-mass of the galaxies are far ahead of the gas; the baryons of the

1Remarkably, this lens contains enough information that it is possible to constrain cosmology from it alone,
e.g. [26].
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Figure 1.5: An image of the Bullet Cluster in the X-ray from Chandra. Green contours
are overlaid from reconstructing the gravitational potential via lensing. The peaked
X-ray emission is clearly seen in the white, showing that the plasma does not trace
the gravitational potential. Image and lensing reconstruction from Ref. [27].

galaxies have collided, interacting strongly with each other, while the bulk of the mass in each

galaxy (the DM) has moved through the other galaxy virtually unimpeded. This highlights the

collisionless nature of DM: any interactions it has with other DM particles or with SM particles

are extremely weak.

Perhaps most compellingly, our current most favoured cosmological picture requires addi-

tional matter content to describe the observed large-scale structure seen in the Universe. This

model, known as ΛCDM, states the energy density of the Universe consists of dark energy (Λ),

cold DM, and ordinary SM matter and radiation.

Quantum fluctuations of the energy density in the early Universe lead to both overdense and

underdense regions. Overdense regions, containing both DM and the baryon-photon plasma,

are gravitational potential wells, and collapse gravitationally. The DM, being collisionless, sits

in the bottom of the potential well and interacts only gravitationally. For the baryon-photon

plasma, the inward force of gravity must fight against the photon pressure however; the back-

and-forth nature of these two forces balancing out sources acoustic waves. Fig. 1.6 shows the

power spectrum of temperature fluctuations in the cosmic microwave background (CMB) from

the final Planck study [28], where these acoustic oscillations are clearly visible.

Higher order peaks correspond to harmonics of the first peak, which is given by the charac-

teristic timescale over which acoustic waves can propagate until recombination, when photons

decouple from the baryons. Increasing the density of baryons in the gravitational potential well

means that the plasma further compresses under gravity, and thus takes longer to compress be-

fore the pressure is able to overcome it. This in turn creates an asymmetry in the compressions

and rarefactions of the acoustic peaks. This signature is imprinted only on the odd numbered

peaks in the acoustic spectrum, as nothing alters the behaviour of the acoustic wave at the top
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Figure 1.6: The CMB power spectrum of temperature fluctuations, from Ref. [28].

of the potential well (as these are underdense regions). Measuring the ratio of the heights of

odd to even peaks therefore reveals the ratio of densities of baryonic matter to DM, and the

overall height of the peaks measures the total mass density.

From fitting the peaks of the power spectrum, and combining with galactic surveys, the

Planck collaboration find a baryon density of Ωbh
2 = 0.0224 ± 0.0001, and a total energy

density in matter of Ωmh
2 = 0.1430± 0.0011. This again implies additional non-baryonic mass

content, giving a DM density of Ωχh
2 = 0.120± 0.001, with DM contributing approximately 5

times more to the mass-energy budget of the Universe than baryons.

That the energy density of DM is comparable to that of baryons is provocative in and of

itself. Why should it be? A logical inference might be that DM is a particle χ (or a family of

dark sector (DS) particles), with some non-gravitational interaction between itself and the SM,

as illustrated in Fig. 1.7.

Within the zoo of particle theories, there are many viable DM candidates. Some are well

motivated by issues in the SM; one such example is the QCD axion, which solves the strong-CP

problem (for a detailed review of axion phenomenology, see e.g. Ref. [29]). The class of particles

that I will focus on in this thesis are weakly interacting massive particles (WIMPs). The word

‘weakly’ stems from the so-called ‘WIMP miracle’: that a DM particle with a weak-scale mass

(O(100GeV)) and a weak scale annihilation cross-section (σ ∼ G2
Fm

2
χ) would reproduce the

observed relic abundance of DM. Modern usage of ‘weak’ has little connection to the weak

interaction of the SM, other than referring to similar mass ranges and interaction strengths.

Arguably, the mainstream nature of WIMP DM stems from SUSY. In order to conserve

baryon and lepton numbers in many SUSY theories (such as the minimal supersymmetric
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Figure 1.7: Effective Feynman diagram for interactions between dark matter and
Standard Model particles.

Standard Model (MSSM)), a Z2 symmetry known as R-parity is assumed, defined as

PR = (−1)3(B−L)+2S , (1.2.1)

where B, L and S are baryon number, lepton number, and spin respectively. All SM particles

have PR = 1, while SUSY particles have PR = −1. If R-parity is conserved, then the lightest

SUSY particle (LSP) will be stable. If SUSY breaking occurs at around the TeV scale, and

the LSP is a neutralino (a mixture of the superpartners of the Bµ, W µ
3 and H fields), it is

a natural WIMP candidate, with roughly the correct mass and annihilation cross-section to

fit the ‘WIMP miracle’. That SUSY naturally presents an elegant solution to many problems

typically solved by BSM physics may just be coincidence, but as a unified picture it is rather

compelling, very predictive, and testable.

Though they will not be the focus of this thesis, it is worth mentioning that alternatives

to a particle description of DM exist. The desired properties of DM (cold, dark, massive,

collisionless) can be provided by primordial black holes. These are however disfavoured (see

e.g. [30]), and unlikely to make up a significant portion of the DM.

In the following subsections I will introduce the different classes of experiment sensitive to

signals from WIMP DM, although some of these searches are transferable to other classes of

DM candidate as well.
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1.2.1 DM Production in the Early Universe: Thermal Freeze-Out

As suggested by the comparable cosmological energy densities of baryons and DM, by as-

suming some non-negligible interaction between a WIMP (χ) and the SM in the early Universe,

the WIMP would be held in thermal equilibrium with the bath of SM particles, χχ↔ SM+SM.

Eventually, these reactions (which maintain chemical equilibrium between the hot SM plasma

and the DM) would be overwhelmed by the expansion of the Universe, at which point the

number density of the WIMP would become fixed, or frozen out, as the annihilation process

ceases to occur. For a relic abundance Ωχh
2 ∼ 0.1 this occurs at T ∼ mχ/20 (see e.g. [31]).

After chemical decoupling, elastic processes keep WIMPs in local thermal equilibrium with

the SM bath, until this process also freezes out, known as kinetic decoupling. As this occurs

after chemical freeze-out, WIMPs are non-relativistic (cold), meaning structure formation can

proceed.

Initially, the WIMP is kept in chemical and thermal equilibrium with the SM. The number

density of χ then follows a typical Boltzmann distribution,

nχ,eq =

(
mχkBT

2π

)3/2

e−mχ/kBT . (1.2.2)

The time evolution of the DM number density nχ is well approximated by the Boltzmann

equation [31]

dnχ
dt

+ 3Hnχ = −〈σv〉
(
n2
χ − n2

χ,eq

)
, (1.2.3)

which can be solved numerically to give the present-day relic abundance of a thermally-produced

WIMP.2 The DM self-annihilation process has a reaction rate Γ ∼ 〈σv〉nχ, where 〈σv〉 is the
thermally-averaged cross-section.

Once Γ becomes smaller than the Hubble parameter H due to the expansion of the uni-

verse, the DM drops out of chemical equilibrium, and freezes out. For a WIMP, to a good

approximation, the required cross-section to obtain the observed relic abundance is

Ωχh
2 = 0.1

3× 10−26 cm3 s−1

〈σv〉 . (1.2.4)

Note that there are other mechanisms for generating the required relic abundance of alterna-

tive cold DM candidates, such as through phase transitions (e.g. axions), or through decays of

long-lived, heavy particles (such as DM freeze-in [32] for ‘feebly interacting massive particles’).

2In the case of non-self-conjugate DM, where the DM antiparticle is distinct, the right hand side of Eq. (1.2.3)
is divided by two, assuming nχ = nχ.
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1.2.2 Indirect detection

The thermal freeze-out mechanism requires DM annihilation to SM particles. Although the

DM has ‘frozen out’ cosmologically, in areas of enhanced DM density we would still expect DM

to annihilate, into SM particles.

Generically, production of high-energy SM particles produces hadronic and electromagnetic

cascades, meaning an excess of cosmic rays at a given mass could indicate DM annihilation.

The category of experiments aiming to find such signals are known as indirect detection, as

experiments search indirectly for the imprint of DM annihilation on various astrophysical and

cosmological probes.3

I briefly describe experiments searching for charged and neutral cosmic rays, and provide

up-to-date limits. Much of the discussion follows the TASI lectures given by Slatyer [33].

1.2.2.1 γ rays

DM annihilation into SM particles will almost certainly produce photons via cascade decays

(e.g. from pions), or from bremsstrahlung processes from final states. The photon flux due to

DM annihilation should be observable across the sky, in all areas of high DM concentration.

A useful property of γ rays is that they propagate through the universe virtually undisturbed,

so point directly back to their sources. This means that directly imaging regions of high DM

concentration is a robust method for identifying DM annihilation.

Any excess in the flux of γ rays above the astrophysical background could be attributed to

DM. In order to extract a DM annihilation flux, the background model must be well understood.

Thus the ideal environments to observe potential DM annihilation signals are those with low and

well-understood astrophysical backgrounds, and high DM densities, such as dwarf spheroidal

(dSph) galaxies.

Another location of high DM concentration is the Galactic centre, where there has been

some evidence of a signal that could be explained by DM; see e.g. [34–38]. However, inference

of the DM signal from the Galactic centre is riddled with uncertainties associated with the

diffuse astrophysical γ ray background along the line of sight. Furthermore, many have argued

that the signal could be explained by astrophysical sources not properly accounted for, such as

millisecond pulsars [39, 40], whose spectra are similar to that expected from DM annihilation.

More recently, a Bayesian analysis of 10 of the Fermi dSphs disfavours the interpretation of

the Galactic centre excess being from DM at approximately the 3σ level [41].

As a result, I limit my discussion to dSphs, which are very robust, given their low and well

understood background. For a given telescope with detector area A, observing an astrophysical

volume dV , the spectrum of photons received per unit volume per unit time is

3Note that I exclusively describe self-annihilating DM; however in various BSM theories, DM can decay, with
a long lifetime (such as sterile neutrino DM). Many indirect searches are still relevant, but require consideration
of the fact that there is only a single DM particle in the initial state; e.g. all factors of ρ2χ become ρχ, phase-space
factors change, etc.
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of annihilation to bb, showing approximately a 3σ tension with the DM interpretation
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dNγ

dE dt dV
=

(
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where (dNγ/ dE)0 is the spectrum of γ rays produced at the source, and (σv)0 is the zero-

velocity limit annihilation cross-section, (σv)v→0. Integrating over the line of sight (l.o.s.) and

solid angle, this gives the observed flux at the telescope,

1
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=
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This factorises into an ‘astrophysical part’,

J =

∫

l.o.s.

ρ2χ(r) dr

∫

∆Ω

dΩ , (1.2.7)

and a ‘particle physics part’,

Φ =
(σv)0
8πm2

χ

(
dNγ

dE

)

0

. (1.2.8)

Again, if DM is not self-conjugate, then Φ is divided by two to account for the distinct initial

state particles.

The current best limits from dSph observations are from the Pass 8 analysis of 15 dSphs,

from Fermi -LAT data. Fig. 1.8 shows a profiled analysis of the Pass 8 limit from a simplified

model postulating that DM annihilates purely to τ+τ− (based on 6 years of data) [42], and

a Bayesian limit for DM annihilating to bb (based on 11 years of data) [41]. Both limits

probe the canonical thermal relic cross-section (dotted grey lines) for values of the WIMP mass

mχ . 100GeV.
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1.2.2.2 Solar Neutrinos

If neutrinos are produced from DM annihilation, they are also potentially excellent candi-

dates for indirect detection. As with γ rays, neutrinos can be produced as primary particles,

e.g. χχ → νν directly, or as secondary particles via cascade decays, forming a continuum

spectrum.

Much like γ rays, neutrinos propagate through the Universe undisturbed, so point back to

their sources. However, due to the extreme weakness with which neutrinos interact, ‘neutrino

telescopes’ see very low rates. Neutrino detectors tend to be large bodies of water, ice, or liquid

scintillator, in which an incoming neutrino will interact with nuclei to produce charged particles

that emit Cherenkov light. Properties of the incoming neutrino, such as its flavour, direction,

and energy, can be inferred from this signal. f Again, as with γ rays, targeting areas of high DM

density is desirable. One such source could be the Sun. As the solar system moves through the

galactic halo, nuclei in the Sun can scatter with DM particles. The DM can theoretically lose

enough momentum via scattering to become gravitationally bound. Via repeated scattering,

DM particles would ‘sink’ to the core of the Sun, where DM would be highly concentrated and

thus more likely to annihilate. If DM annihilates to SM particles, the only ones capable of

escaping the Sun would be neutrinos.

The backgrounds for neutrinos from the Sun are low; neutrinos from Solar fission have

energies in the MeV range, whereas those from the annihilation of WIMPs will likely be in the

GeV range. A prominent background comes from collisions of cosmic rays with the atmosphere,

creating showers of muons and neutrinos. These can be rejected by only considering upward-

going events ; those whose trajectory is through the Earth, so to distinguish the muons from

neutrino events from those entering the detector from the atmosphere.

In reality, observations of neutrinos from the Sun place stronger constraints on the DM-

nucleon scattering than the DM self-annihilation rate. The resulting limits can be comparable

to direct detection experiments in specific areas of the parameter space. The limits placed by

IceCube, for example, on the spin-dependent cross section have been consistently competitive

with direct detection experiments [43,44], although the latest limits produced by the PICO-60

experiment now lead in much of the parameter space [45].

1.2.2.3 Charged cosmic rays

Another potential product of DM self-annihilation is charged cosmic rays : positrons, elec-

trons, protons, antiprotons, antideuterons, and other heavy nuclei. As with neutral cosmic

rays, their production could be primary, e.g. χχ → e+e−, or secondary, for instance from the

cascade decays of quarks or gauge bosons.

The astrophysical background for charged cosmic rays is less well understood than for γ rays.

Primary production is typically associated with high-energy astrophysical environments such

as supernova remnants, while secondary production can occur through (neutral and charged)
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Figure 1.9: Exclusion limits from AMS-02 data in various leptonic channels (left) from
positron data [46], and in hadronic and leptonic channels (right) [47], from antiproton
data. Bounds from Fermi -LAT are shown in dashed lines on the left panel. The
hatched region gives the estimated uncertainty on the bound based on varying the
local DM density and the energy loss rate.

cosmic ray collisions with diffuse gas.

Unlike γ rays and neutrinos, charged cosmic rays do not propagate through the interstellar

medium unimpeded, but interact with the magnetic fields present in the galaxy. This means

their paths are not straight lines, so given a potential detection of charged cosmic rays, it is

almost impossible to locate its source, certainly when compared to neutral cosmic rays. Plus, as

charged cosmic rays are massive, they lose energy rapidly through bremsstrahlung and inverse

Compton processes when interacting with magnetic fields; this energy-loss rate is a further

source of modelling uncertainty impacting their reliability as probes of DM.

While the models of cosmic ray propagation can be constrained by measurements of ratios

of fluxes of secondary to primary nuclei (such as B/C), there are still large uncertainties. When

coupled with uncertainties in the production (such as in the case of antiprotons), this makes

hunting for a DM signal in charged cosmic ray data difficult.

Nonetheless, there are many interesting potential DM signals in cosmic ray data. The AMS-

02 instrument has published data on multiple cosmic ray channels, including positrons [48]

(corroborating excesses in the positron fraction seen by PAMELA [49] and Fermi [50] above

∼ 10 GeV and up to ∼ 300 GeV) and antiprotons [51]. Positrons predominantly constrain

annihilation to leptonic final states, whereas antiprotons provide constraints on a variety of

channels.

The left panel of Fig. 1.9 shows a plot from Ref. [46] placing limits on DM annihilation into

leptonic final states from the positron data, while the right panel shows a plot from Ref. [47].

Both are shown to probe the canonical thermal relic cross-section to masses competitive with

(and better than, for leptons) the Fermi dSph limit; however the modelling of the background
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and propagation is still not well constrained. There have been suggestions that the positron

excess can be explained solely by poor modelling of astrophysics, whether associated with

secondary cosmic rays [52, 53], or primary sources, such as pulsars [54].

1.2.2.4 The CMB

If DM annihilates at some point between the epochs of recombination and reionisation, the

annihilation process injects energy into the primordial plasma, causing additional ionisation of

the neutral hydrogen. The electrons given off as a result of ionisation can scatter CMB photons,

which can in theory lead to anisotropic features in the CMB spectra.

Current limits set by Planck, measuring CMB anisotropies, probe the thermal cross-section

below ∼ 30 GeV for DM annihilating purely to e+e− and γ rays. For other channels, the

constraint is weaker, as cascade decays soften the resulting electron and γ ray spectra. Planck

excludes DM annihilating purely to any SM final state for masses below 9 GeV at the 95% CL,

if the DM is a thermally produced WIMP; see Fig. 8 of [28].

1.2.3 Direct detection

Taking time to flow vertically in Fig. 1.7, we have the scattering of DM with an SM particle.

The aim of direct detection experiments is to observe this scattering [55].

The general setup for a direct detection experiment is as follows. An incoming DM particle

from the halo scatters elastically off of a nuclear target inside a detector, which induces an

excitation in the detector material, which then in turn releases energy (scintillation, phonons,

ionisation or bubble nucleation) when returning to its ground state. Direct detection experi-

ments aim to measure the energy released and infer properties of the incoming DM particle.

For a given direct detection experiment, the predicted number of signal events Np is

Np =MTexp

∫ ∞

0

φ (E)
dR

dE
dE , (1.2.9)

where M is the detector mass, Texp is the exposure time and φ (E) is the detector efficiency

function, i.e., the fraction of recoil events with energy E that are observable after applying all

cuts from the corresponding analysis. The differential recoil rate dR/ dE for scattering with a

target isotope T is given by

dR

dE
=

2ρ0
mχ

∫
vf (v, t)

dσ

dq2
(
q2, v

)
d3v . (1.2.10)

Here ρ0 is the local DM density, f(v, t) is the DM velocity distribution in the rest frame of

the detector, and dσ/ dq2(q2, v) is the differential scattering cross-section with respect to the

momentum transfer q =
√
2mTE. 2−2 scattering cross-sections are generally best described by

the (Lorentz-invariant) Mandelstam variables: the center of mass energy s, the squared four-

momentum transfer t, and their conjugate variable u = Σim
2
i − s − t. All 2 − 2 processes can
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be described by two of these variables; typically s is used, and either t, or cos θ, the scattering

angle, where cos θ = f(t, s, u,mi).

As we have no control over either the distribution of DM or its particle nature, from

Eq. (1.2.9), the more obvious ways to increase the yield are to increase the target mass M

and Texp by building larger detectors and running experiments for longer.

While we have no control over any fundamental interaction cross-section σ, it is still pos-

sible to use information about the scattering event to target different DM candidates. In the

centre-of-mass frame, the kinematics of a scattering process are described by the momentum

transfer −→q , the incoming velocity −→v and the spin states of the incoming and outgoing particles

ζin/out [56]. We can define the three axes defining this system as q̂ = −→q /|q|, the transverse

velocity v̂⊥ = (−→v −−→v · q̂)/|−→v −−→v · q̂|, and η̂ = v̂⊥ × q̂.

The matrix element for an event then looks like

M ∼ f(−→q ,−→v ) 〈ζin|Γ|ζout〉 (1.2.11)

where Γ ∈ {1, Sq̂ q̂, Sv̂⊥ v̂⊥, Sη̂η̂}, Sêê is the projection of spin along the axis ê, and f(−→q ,−→v ) is a
general (suppression) function of both the incoming velocity and momentum exchange.

The scenario in Eq. (1.2.11) where Γ = 1 therefore defines spin-independent (SI) scattering;

Γ 6= 1 defines spin-dependent (SD) interactions. Fig. 1.10 shows a selection of the current

strongest limits on the spin-independent cross-section, from XENON1T [57], LUX [58], Pan-

daX [59], CRESST [60,61], PICO-60 [45] and CDMSlite [62].

From Eq. (1.2.11) we can see that the full treatment of the scattering matrix element can

introduce suppression (f(−→q ,−→v )), by either momentum exchange or the velocity. This can lead

to systematic suppression in the rates observed by direct detection experiments (and also to

DM annihilation and indirect searches, via similar reasoning). Operators and signals of this

form are explored in Chapters 4 and 5.

Due to the sensitive nature of direct detection apparatus and the rarity of such scattering

events, it is extremely important to have a handle on backgrounds, such as scattering events

caused by cosmic rays or radiation from internal contaminants. Typically experiments are

located deep underground to provide shielding from cosmic rays, and are often surrounded by

a water shield to reduce neutron backgrounds, which are often indistinguishable from a WIMP

signal. However, creating a fully radio-pure target source is extremely difficult, so neutrons

from e.g. fission of heavy internal contaminants present an important background to reject.

Thus it is important for experiments to have an efficient veto system to be able to reject this

background.

Scattering is more efficient if the two incoming particles are similar in mass. Additionally,

DM may couple to the spin of the target, or not at all. Both of these considerations suggest

using a variety of target materials to probe the scattering rate dσ/ dq2 effectively across the

entire parameter space. Different targets require different search techniques. Broadly speaking,
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Figure 1.10: Current strongest limits on the spin-independent cross-section as a func-
tion of DM mass, assuming equal coupling to protons and neutrons, at 90% confidence
level. References in text. Figure generated with DDCalc [4, 63].

the current categories of direct detection searches are:

Liquid noble gas experiments: Noble gases such as Ar and Xe are ideal targets for direct

detection searches, as they are both efficient scintillators and can be liquefied with relative

ease, providing large target masses. Background radiation typically comes from internal

contaminants such as Rn. They also give off secondary scintillation due to ionisation.

Using information from both the direct scintillation and the ionised electrons gives a full

3D position determination of the event, and the energy deposition of a particle (which

can be used to reject background events).

As the target material is liquid, noble gas experiments are fairly easy to scale. Examples

of liquid noble gas detectors include XENON1T [57], LUX [58], and PandaX [59, 64]

utilising Xe targets, and DEAP [65] and DarkSide-50 [66] utilising Ar targets. Upcoming

experiments include LZ [67], built with 10 tonnes of liquid Xe, and DarkSide-20k [68]

holding 20,000 tonnes of liquid Ar.

Cryogenic detectors: In cryogenic detectors, the target is a cryogenic absorber, which is

kept in contact with a temperature sensor. DM scattering on the absorber emits heat

into the crystal in the form of phonons. Once the calorimeter is cooled, the heat capacity

is dominated by phonons (∼ T 3), meaning even tiny energy deposits are detectable as a

change in temperature (resistance).
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Cryogenic detectors have the advantage that they do not require vast quantities of target

material, like liquid noble gas experiments, to be sensitive. Given the target material, they

tend to target smaller DM masses. Current leading exclusions come from the SuperCDMS

collaboration [62, 69], who use Ge crystals, and CRESST [60, 61], who use CaWO4 as a

target.

Crystals: The target material is a scintillating crystal target. Such experiments do not

have the advantage of two-phase rejection like liquid noble gas experiments, so must

rely on shielding and active background rejection alone. Scintillating crystal targets have

typically been used for annual modulation experiments; mostly in the context of validating

the alleged signal seen by DAMA/LIBRA [70–72].

Current crystal scintillator experiments include DAMA/LIBRA, COSINE [73] and ANAIS

[74], all using NaI(Tl) crystal targets, plus the upcoming SABRE experiment [75], with

sites in both the northern and southern hemisphere in an attempt to mitigate seasonal

effects.

Bubble chambers: The target material in bubble chamber experiments is superheated liquid,

kept just below boiling point, suspended in a gel matrix. A DM event causes a phase

transition in the target, which causes bubble nucleation.

Bubble chambers have the advantage that they are not very sensitive to backgrounds,

as energy deposits by electrons and γ rays do not have enough energy to cause bubble

nucleation, and vetoes on neutron and alpha decay backgrounds are very efficient due to

their clear, distinguishable experimental signatures. Current bubble chamber experiments

include PICO-60 [45, 76], which places the strongest limits on the spin-dependent cross-

section.

Whilst direct detection experiments are nominally constructed to probe DM scattering with

the quarks and gluons of heavy nuclei, it is also possible for DM to scatter elastically with the

electrons of the nucleus. This is an interesting reuse of data in liquid noble gas experiments,

e.g. reanalysing the XENON1T and LUX data in Ref. [77], and for DarkSide-50 in Ref. [78].

Another class of direct detection experiments is annual modulation experiments. As the

Solar System is moving through the DM halo, there should be an apparent ‘DM wind’ opposing

the direction of motion. As the Earth orbits the Sun, the direction of the ‘DM wind’ changes,

and thus the scattering rate will change depending on the time of year. A long-standing result

from the DAMA/LIBRA experiment claims to see this at the ∼ 10σ level [70–72], peaking at

around June 2nd, although measurements from other direct searches are seemingly inconsistent

with these findings.

In principle, the same effect would be observable on a daily cycle, with the rotation of the

Earth. However, given the tiny interaction strength between the DM and SM, the variation of

the signal would be far smaller and much more difficult to detect than the annual modulation.
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1.2.4 Production at colliders

Finally, taking time to flow from right to left in Fig. 1.7, the production of DM particles from

the collision of SM particles is possible, if the centre-of-mass energy
√
s is large enough. An

immediate prediction of the freeze-out mechanism is that the thermal cross section for WIMP

DM annihilation into SM particles 〈σv〉 ∼ 3 × 10−26 cm3s−1, assuming the WIMP candidate

constitutes all of the DM. In this scenario, it is therefore natural to assume that the inverse

process, SM+ SM → χχ must also have a sizeable cross-section, possibly reachable by collider

experiments.

As DM does not interact via electromagnetism, any DM produced within a collider will

leave the detector unseen. This means that DM production would be detected by missing

transverse energy, Emiss
T . The process pp → χχ would not result in any detected particles,

meaning processes of this form can only be seen by requiring additional initial or final state

radiation, so-called mono-X processes pp → χχX. Briefly, the mono-X searches used at the

LHC are [79]:

Monojet searches: The current leading LHC constraints come from monojet searches, X =

j, producing a hadronic jet. If the process pp → χχ can be produced, it can also be

produced with a jet radiated from an incoming parton. Given the centre-of-mass energy

of the incoming partons, such QCD events have high production cross-sections. However,

the trade-off is that QCD channels are not very clean, so events become difficult to

model, and experiments must rely on data-driven techniques to simulate backgrounds.

For example, pp→ (Z) → νν + j is inferred from events where the Z decays to a pair of

leptons. In reality, most ‘monojet’ searches now permit evens with one or more jets (and

no leptons).

Mono-vector searches: It is also possible to look for mono-V signals, where V = Aµ, Zµ,W
±
µ .

These present a much cleaner signal than monojet events, but typically have a smaller

production cross-section. However if V couples directly to the DM then this signal has

the potential to be the dominant search channel at the LHC.

Mono-Higgs searches: Finally, mono-h signals of radiated SM Higgs bosons can be targeted,

although they are currently statistics-limited due to their low production cross-sections.

Higgs decays into γγ present an optimal search channel, as the backgrounds are very

small and rejection is simple via reconstruction of the invariant mass of the photon pair.

For h→ bb the background rejection is much harder, but b-tagging techniques pioneered

for the initial discovery of the Higgs can be used.

The current leading mono-X constraints are the monojet searches from ATLAS [80] and

CMS [81], as shown in Fig. 1.11. The signals searched for at the LHC search are those predicted

by simplified models where an explicit mediator and coupling structure is assumed; for more
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Figure 1.11: Leading constraints from monojet searches at the LHC for given sim-
plified DM models with fixed couplings (see legend) presented at 95% CL. (Left)
ATLAS monojet constraint for Dirac DM with a vector mediator, from Ref. [80]. The
parameter space beneath the curve is excluded at 95% CL. All values to the right of
the red line overproduce DM. (Right) CMS monojet constraint for Dirac DM with
a pseudoscalar mediator, from Ref. []. The parameter space beneath the red line is
excluded at 95% CL. Parameter space within the shaded blue contours overproduce
DM.

details see Sec. 1.2.5. Fig. 1.11 shows the current limits from ATLAS and CMS for a Dirac DM

candidate coupled to quarks via a vector mediator and a pseudoscalar mediator, respectively.

Beyond mono-X searches, it may be possible for the SM Higgs to invisibly decay into DM

particles h → χχ, if the decay is kinematically accessible, i.e. mh > 2mχ. The total width

of the Higgs is a sum of the visible and invisible decay channels, Γtot
h = Γvis

h + Γinv
h . Γinv

h can

be inferred either directly, though triggering on events signalling an invisible Higgs boson, or

indirectly, by summing up the partial widths of observed Higgses and comparing to the SM

prediction.

Current measurements of the total width of the Higgs boson are still relatively uncon-

strained, such that the invisible contribution can be sizeable, Γinv
h ∼ 20% [82]. I explore the

possibility of a direct coupling between DM and the SM Higgs in Chapter 4, via the so-called

‘Higgs portal’.

1.2.5 Effective Field Theory of Dark Matter

Part II focuses on effective pictures of DM interactions. Here I briefly discuss what I mean

by this terminology.

The picture built up of WIMP DM interacting with the SM thus far, built simply around

interactions shown in Fig. 1.7, is an effective picture. In reality, there are very few physics cases
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where adding just a WIMP to the SM actually works. One such case is adding a real scalar

DM candidate S, interacting through the Higgs portal,

L = LSM +
1

2
(∂µS)

2 − 1

2
µ2
SS

2 − 1

2
λhSH

†HS2 − 1

4
λSS

4, (1.2.12)

stabilised by a Z2 symmetry. This is arguably the simplest WIMP model, and is beautiful in

its simplicity; it is fully renormalisable and requires no additional degrees of freedom besides

the DM particle, has rich phenomenology, and is certainly not ruled out [83, 84].

However, changing this model even slightly, by postulating that the DM candidate instead

be fermionic, requires additional degrees of freedom beyond the DM candidate, as the portal

term becomes dimension five, and must be suppressed by a mass dimension Λ. This is now

an EFT, as we require some new physics at scales close to Λ, that give rise to an effective

dimensionful coupling.

This effective picture is a bottom-up approach; any signal well described by an effective

theory may be described by multiple high-energy theories. In Chapter 4 we perform detailed

global analyses of such effective Higgs portal models, where the DM is not scalar, and the theory

is non-renormalisable. We consider a potential UV completion in order to place reasonable

bounds on the validity of the EFT.

For an effective theory to hold, the process in question needs to take place at energies

below the scale of NP. There are certain regimes in which an effective theory is the perfect

framework to consider DM-SM interactions, such as direct detection. The relevant energy scale

for direct detection is the momentum exchange q ∼ O(100 keV). For a WIMP with a mass of

O(GeV − TeV), and a new physics scale above the DM mass, this effective picture works well.

In the right panel of Fig. 1.12 we see that the effective interaction is described by two

parameters; the effective scale of new physics Λ, and the mass of the DM particle, mχ. Clearly

the selling point for the effective approach is that any sort of limit on an EFT operator is

agnostic to the UV completion.

However, this picture begins to break down once we consider processes with high momentum

exchange. A clear example of this sort of issue is collisions at the LHC, where
√
s ∼ O(TeV).

Here the EFT picture can break down; as the cross-section scales like s2/Λ4 and is unbounded,

as s increases, the probability for a scattering event will eventually exceed 1, and the theory is

therefore no longer unitary. This is known as perturbative unitarity violation.

The next step in the bottom-up approach at the LHC therefore requires the explicit reintro-

duction of an additional mediator particle, so-called simplified DM models. These are a safer

(albeit more model-dependent) treatment for LHC searches, as they capture the full kinematics

of the matrix element regardless of the energy scale. While the EFT picture is still reasonable

for scales much below Λ, it can only capture kinematics of hard processes [79]. If the true UV

theory is weakly coupled, then the simplified model approach will be the simplest bottom-up

way to capture the kinematics correctly. Mapping from a simplified model to an EFT is always

28



χ

λφχ

χ

λφq

q

q
φ

χ

χ

q

q
q2 ≪ m2

φ

Integrate out φ

L ⊃ λφχχχφ+ λφqqqφ L ⊃ λφχλφq
m2

φ

(χχ)(qq) ∼ 1
Λ2 (χχ)(qq)
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mediator particle (φ). (Right) The EFT interaction as a result of integrating out the
mediator, valid for energy scales s < Λ2.

possible, but not vice-versa. An example of a simple mapping from a DM simplified model to

an EFT is shown in Fig. 1.12.

By their very nature, simplified models introduce an additional mass and coupling to the

theory, meaning that simplified model searches are in four-dimensional spaces instead of 2. This

leads to much richer phenomenology, which is helpful from the perspective of complementarity,

but more difficult to search for at the LHC. Considering the phenomenology of simplified models

is beyond the scope of this thesis; however I perform a quick scan of a simplified DM model in

the worked example in Chapter 2.

In Chapter 5, I consider an abstract EFT which is entirely bottom-up: a fermionic WIMP

with interactions with the hadronic sector of the SM at dimensions six and seven. The

parametrisation used captures all phenomenology between the DM and SM hadrons in a com-

plete set of operators at the first two orders. I show results from selected subspaces of the

general EFT parameter space that correspond to integrating out spin-0 and spin-1 mediators,

as well as a heavy quark.
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1.3 Global Fits

In the previous Sections, I have highlighted some clear shortcomings of the SM, such as

having no neutrino mass generation mechanism and providing no particle candidate for DM.

Within the realm of particle physics, there are many questions left to be answered and many

experiments searching for similar signals, it is anyone’s guess as to where the next sign of

new physics will appear. However, the non-observation of BSM signals is a powerful tool, as

increased sensitivity will only serve to shrink the available parameter space of permitted BSM

theories.

To assess the impact of these exclusion limits, the natural question to ask particle theorists

is “which BSM theories are excluded by the data?”, or even “which BSM theories are preferred

by the data?”4 These questions are inherently statistical in their nature, and answering them

fully requires a statistical treatment of the parameter space of each theory. The aim of global

fits is to provide an answer to one or both of these questions, by performing statistically sound

fits to all available data relevant to a particular BSM theory.

The manner in which constraints from theory and experiment constrain the parameters of

a theory is not trivial. Typically, the way constraints on model parameters of a theory are

presented are exclusion limits on a plot, where the axes are parameters of a BSM theory, or

derived quantities (such as cross-sections, or yields).

For example, consider Fig. 1.10, which presents 90% exclusion limits in the mχ − σSI plane

for a selection of direct detection experiments. These limits are confidence limits produced from

an experimental likelihood function, the probability density for observing the data D, given the

model parameters Θ, written as L = P (D|Θ).

If we were to simply overlay the contours from these limits onto a 2D parameter space of

interest, only the leading constraints in the mχ−σSI plane would have any impact. However, if

we combine the likelihood functions from which these limits are constructed, we use all available

data and create a stronger and more correct limit. This is especially true for the higher mass

regions, where the XENON1T, LUX and PandaX limits are nearly identical; no experiment has

seen a signal, so statistically combining observed rates effectively increases the exposure time

and target mass.

Any constraint that places limits on the parameter space in such a fashion can in principle

be turned into a likelihood function. The manner in which global fits are performed is the

construction of a global likelihood function L, which is a product of all relevant experimental

and theoretical likelihood functions,

L = LHiggs · LDM · LCollider... , (1.3.1)

4In this context, ‘data’ does not just mean experimental data. Constraining a BSM theory can also rely
on theoretical considerations: for example, the relationship between masses and couplings of an effective field
theory required for the effective picture to remain valid, or perturbative unitarity requirements, etc.
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and exploring L across the whole parameter space. In practice, the quantity we work with is

actually the logarithm of the likelihood, lnL,

lnL = lnLHiggs + lnLDM + lnLCollider + ... , (1.3.2)

as derivatives of lnL are significantly easier to work with, as several likelihood functions have an

exponential factor. A knock-on effect of removing exponential factors is that computationally,

lnL has more numerical dynamic range: it is easier to express lnL as a double precision

floating-point variable than L.
A significant benefit of performing global fits over simple overplotting can already be seen:

by just overlaying exclusions, we gain no knowledge of the structure of the available parameter

space within the allowed region. By the measure of the likelihood function, some parameter

combinations in parameter space will be more favoured than others; overplotting regions simply

gives a picture of ‘yes vs. no’. Global fits provide a clear visual structure as to the geometry

of the likelihood of the experimental data across the parameter space that a less rigourous

treatment simply cannot.

Another major advantage of constructing the composite likelihood function L is the ability

to include nuisance parameters into the global combination. Phenomenologists have a rough

handle on many quantities in particle physics, but no accurate measurements. Consider the

example of the local DM density, which is known to be ρ0 ∼ 0.4 g cm−3, from either using

the kinematics of local stars, or by extrapolating the DM halo down to the solar system scale.

The former has large experimental errors, and the latter must make strong assumptions about

the shape of the halo; for a review, see e.g. Ref. [85]. Largely these results give values for ρ0

similar and consistent with each other, but its precise value is unknown. The uncertainty on

the value of ρ0 can then simply be quantified by its own likelihood function, with a peak at

ρ0 = 0.4 g cm−3.

As seen from Eq. (1.2.10), the scattering rate is proportional to the DM density, meaning

that the two-dimensional (mχ, σ) constraints released by experiments must assume a particular

local DM density in order to present their data in the form of an exclusion curve. Considering

ρ0 as an additional input parameter – not of the fundamental theory, but a nuisance parameter

– can effectively weaken or strengthen these limits. Such a treatment is easy to take into con-

sideration with a likelihood constraining the nuisance parameter, Lnuis., which can be included

in Eq. (1.3.1).

The construction of the composite likelihood function L is generic, and is open to statistical

interpretation. Statistical inference aims to achieve one of the following goals: parameter

estimation or model comparison. If we are interesting in estimating the parameters for a given

model based on the data, this is a question of parameter estimation. On the other hand, model

comparison is concerned with selecting the ‘best’ BSM theory from a set of candidates, based

on the data.

31



There are two statistical frameworks in which such questions can be asked: frequentist and

Bayesian statistics. The frequentist statistical framework assigns probability to repeatable ran-

dom events, such as colliding particles at the LHC. In the limit of infinite data, the probabilities

are simply the frequency of each event. Frequentists do not assign probabilities to underlying

parameters but fix them, whereas the Bayesian uses probabilities to treat unknown quantities,

and the data is fixed. Hence, the Bayesian cares about their degree of belief in the model.

Although the likelihood function is central to both frameworks, the quantity of interest is

different. For the frequentist, the quantity of interest is simply the likelihood function itself,

but for the Bayesian, the fundamental quantity is the posterior distribution; the degree of belief

in the model, given both the data and the a priori knowledge.

Fundamentally, in the context of BSM theories, the differences between the two frameworks

can be summarised simply:

• Frequentist: “Given a BSM theory (and a given value for its parameters), can we explain

the observed data?”

• Bayesian: “Given the data we see, how probable is the BSM theory?”

Simply put: the frequentist view is one of possibility, the Bayesian view is one of plausibility.

I briefly discuss parameter estimation and model comparison in both statistical frameworks.

1.3.1 Frequentist interpretation

The frequentist interpretation is concerned with finding the likelihood of observing the

data given a theory. Therefore, the quantity of interest is simply the likelihood function,

L(Θ) = P (D|Θ,M): the probability of observing the data D given the parameters Θ, belonging

to the model M . I will drop the M for simplicity in the following.

1.3.1.1 Parameter estimation

From the compound likelihood function, Eq. (1.3.1) for parameter estimation and to visualise

in planes of the parameters of interest α, the frequentist will maximise over the remaining

parameters β. The resultant quantity is the profile likelihood,

Lprof(α) = L(α, β̂(α)) , (1.3.3)

where β̂(α) is the maximum likelihood estimator (MLE), selecting the best-fitting values of β

that maximise L for a given value of α; β̂ = argmaxβ L(β).
In the frequentist picture, to construct a confidence interval for the parameters α, we require

a test statistic. We define the profiled likelihood ratio, Λprof(α) ≡ Lprof(α)/Lmax where Lmax

is the maximum value of the likelihood, so Λ ⊂ {0 : 1}. Wilks’ theorem [86] states that the

quantity −2 log(Λ(Θ)) is approximately χ2
n distributed, where n is the dimensionality of α.
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Confidence intervals can then simply be computed by the cumulative distribution function of

the χ2
n distribution.

1.3.1.2 Model comparison

In frequentist statistics, model comparison is difficult. Clearly, model selection criteria

should assess the viability of the model as a whole. In the frequentist context, doing some-

thing like integrating over the parameter space does not make sense, as there is no probability

distribution over the model parameters, unlike in the Bayesian picture.

To perform model comparison, the frequentist typically tests an ‘alternative’ hypothesis

against a ‘null’ hypothesis using a test statistic whose distribution is known. A commonly used

statistic is the profiled likelihood ratio, Λprof(Θ̂) = Lprof(Θ̂)/Lnull, where Lnull is the likelihood

value for the null hypothesis. In contrast with parameter estimation, we are now considering

the best-fit values for Θ, Θ̂, then computing a p-value with respect to the null hypothesis, not

Lmax.

Again, by Wilks’ theorem [86], the test statistic −2 log(Λ) is asymptotically χ2 distributed.

This allows us to compute the probability of the test statistic being more extreme than its

value under the null hypothesis. The resulting p-value can be used to exclude the alternative

hypothesis with respect to the null. It however cannot be used to exclude the null, nor to

explicitly confirm any hypothesis.

There is freedom in selecting the null hypothesis. One simple choice I use in this thesis

is selecting the null hypothesis to be the background-only case. In this case all p-values are

computed with respect to the SM, and not to one another.

Another reasonable choice of null hypothesis is when considering nested models, where the

parameter space of one model is a subset of another. In this case, the maximum likelihood of

the model with fewer degrees of freedom can be a good choice of null.

1.3.2 Bayesian interpretation

In the Bayesian picture, we update our degree of belief in the parameter values Θ based on

observed data. Mathematically, this is captured simply in Bayes’ theorem [87],

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
, (1.3.4)

where P (D|Θ) is the likelihood function, P (Θ) is the prior probability distribution on Θ,

capturing the a priori degree of belief we have the parameter values Θ, and P (Θ|D) is the

posterior probability distribution, our a posteriori degree of belief in Θ, as updated by the

likelihood function. Here, P (D) is the probability of collecting the data D under all possible

values of Θ for the model in question and acts as a normalisation factor. This is the so-called

model evidence.
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1.3.2.1 Parameter estimation

As suggested by Eq. (1.3.4), in the Bayesian interpretation of parameter estimation, the

quantity of importance is the posterior probability distribution, the probability of the param-

eters Θ being true, given the data D. To reduce the posterior distribution to parameters of

interest α, the Bayesian integrates over the remaining parameters β to obtain the marginal

posterior distribution,

P (α|D) =

∫
P (α, β|D) dβ (1.3.5)

∝
∫
P (D|α, β)P (α, β) dβ .

A credible region can be constructed in many ways, but will always be constructed to

contain 1− x of the integrated posterior density, or posterior ‘mass’, i.e. a 95% credible region

is constructed to contain 95% of the posterior mass.

In principle, any prescription that ensures the correct amount of posterior mass is valid.

Within this thesis, the treatment I use is to construct credible regions via highest posterior

density; all points within the credible region have higher posterior densities than those outside

of it. This treatment is uniquely defined, and useful when considering multi-modal distributions

(e.g. as seen in the left panel of Fig. 4.10), in contrast to many other methods of defining a

credible region, over a continuous interval.

Clearly from Eqs. (1.3.4) and (1.3.5), the (marginal) posterior is sensitive to both the

likelihood function P (D|Θ) and the prior distribution P (Θ). While the likelihood function is

well-defined in a global fit, there is freedom in defining the prior distribution. A poorly chosen

prior distribution can bias the results in a Bayesian analysis, so it should be selected carefully.

1.3.2.2 Model comparison

The Bayesian manner of comparing models requires the model posterior, P (M |D). This

quantity is readily expressed by Bayes’ theorem,

P (M |D) =
P (D|M)P (M)

P (D)
, (1.3.6)

where P (M) is the prior probability of the model, and P (D|M) is the model evidence, which

can be expressed in terms of conditional probability as

P (D|M) =

∫
P (D|Θ,M)P (Θ,M) dΘ ≡ Z(M) . (1.3.7)

In Eq. (1.3.6), the slightly unusual term P (D), the prior probability of the data, regardless of

the model, can be cancelled out by computing the odds ratio between two models [88–90]
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Odds ratio ≡ P (Mi|D)

P (Mj|D)
=
P (D|Mi)P (Mi)

P (D|Mj)P (Mj)
. (1.3.8)

Typically, we would take the prior probability of every model to be equal, such that the factor

P (Mi)

P (Mj)
= 1 (1.3.9)

for all pairs of models, i.e. assuming all models are equally plausible. Making this simplification,

the odds ratio reduces to the ratio of evidences (known as the Bayes factor)

Bij ≡
Z(Mi)

Z(Mj)
. (1.3.10)

The Bayesian evidence is nothing more than the integral of the likelihood of the observed

data L(D|Θ) over the possible parameter values Θ (describing the model M), weighted by the

prior on the parameters P (Θ). The volume integral involved in the Bayes factor automatically

implements the concept of naturalness via Occam’s razor, penalising models with more free

parameters if they do not fit the observed data any better than models with fewer parameters.

From Eq. (1.3.7), we can see that the evidence of a model is a prior-dependent quantity,

much like the posterior distribution. This prior on the model parameters (along with the priors

on the models themselves) makes the results of Bayesian model comparison inherently prior-

dependent. However, the influence of common parameters treated with identical priors in both

models approximately cancels when taking the ratio of evidences. An example of Bayesian

model comparison in such ‘nested models’ is performed in Sec. 4.5.

1.3.3 Global fitting software & GAMBIT

Global fits in particle physics have been performed for some time, for example the NuFit

collaboration in neutrino physics [91–93]. In the context of BSM physics, both the Super-

BayeS [94–100] and MasterCode [101–105] collaborations originally focused on global fits of

SUSY models, with the latter only recently extending into fits of non-SUSY models [106].

The SuperBayeS project is no longer active, and the MasterCode project remains closed source.

Several non-SUSY fits have been performed by the HEPFit collaboration [107–109].

With this in mind, if the phenomenologist is to perform global fits of any BSM theory –

not just SUSY – then they would require their own framework in which to do so. The idea of

openness, flexibility, and reusability of code was the inspiration behind the design of GAMBIT,

the Global and Modular BSM Inference Tool [110]. GAMBIT’s intention is to include the ability

to reuse code as much as possible, requiring a generic, abstract framework.5

The majority of observable quantities constrained by particle physics experiments do not

5The author also acknowledges the HEPFit collaboration, who have recently made their global fitting software
open source [111].
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 StandardModel_SLHA2_parameters
Type: ModelParameters

Function: primary_parameters
Module: StandardModel_SLHA2

 SMINPUTS
Type: SMInputs

Function: get_SMINPUTS
Module: SpecBit

 THDM_II_spectrum
Type: Spectrum

Function: get_THDM_II_spectrum_SPheno
Module: SpecBit

 decay_rates
Type: DecayTable

Function: all_THDM_II_decays_from_SPheno
Module: DecayBit

 pass_spectrum_to_vevacious
Type: SpecBit::SpectrumEntriesForVevacious

Function: prepare_pass_THDM_II_spectrum_to_vevacious
Module: SpecBit

 THDM_II_spectrum
Type: map_str_dbl

Function: get_THDM_II_spectrum_as_map
Module: SpecBit

 Higgs_Couplings
Type: HiggsCouplingsTable

Function: THDM_II_higgs_couplings_SPheno
Module: SpecBit

 HB_ModelParameters
Type: hb_ModelParameters

Function: MSSMLikeHiggs_ModelParameters
Module: ColliderBit

 all_BFs
Type: map_str_dbl

Function: get_decaytable_as_map
Module: DecayBit

 check_vacuum_stability_global
Type: SpecBit::VevaciousResultContainer

Function: check_vacuum_stability_vevacious_global
Module: SpecBit

 check_vacuum_stability_nearest
Type: SpecBit::VevaciousResultContainer

Function: check_vacuum_stability_vevacious_nearest
Module: SpecBit

 LHC_Higgs_LogLike
Type: double

Function: calc_HS_LHC_LogLike
Module: ColliderBit

 VS_likelihood_global
Type: double

Function: get_likelihood_VS_global
Module: SpecBit

 VS_likelihood_nearest
Type: double

Function: get_likelihood_VS_nearest
Module: SpecBit

 THDM_II_parameters
Type: ModelParameters

Function: primary_parameters
Module: THDM_II

 SARAHSPheno_THDM_II_4_0_3_init
Type: void

Function: SARAHSPheno_THDM_II_4_0_3_init
Module: BackendIniBit

 vevacious_file_location
Type: map_str_str

Function: vevacious_file_location_THDM_II
Module: SpecBit

 init_vevacious
Type: std::string

Function: initialize_vevacious
Module: SpecBit

 HiggsSignals_1_4_init
Type: void

Function: HiggsSignals_1_4_init
Module: BackendIniBit

 vevacious_1_0_init
Type: void

Function: vevacious_1_0_init
Module: BackendIniBit

 W_plus_decay_rates
Type: DecayTable::Entry
Function: W_plus_decays

Module: DecayBit

 W_minus_decay_rates
Type: DecayTable::Entry

Function: W_minus_decays
Module: DecayBit

 Z_decay_rates
Type: DecayTable::Entry

Function: Z_decays
Module: DecayBit

Figure 1.13: A dependency tree in GAMBIT for a simple scan of the Type-II Two
Higgs Doublet Model (THDM), going from the input model parameters at the top of
the graph (THDM_II_parameters and StandardModel_SLHA2_parameters) to the likelihoods
at the bottom (LHC_Higgs_LogLike, VS_likelihood_nearest and VS_likelihood_global).
The model implementation was performed by GUM [1], see Chapter 2 for details.

directly require the Lagrangian parameters of the theory, but depend on derived quantities.

Consider the flux of γ rays at a telescope aimed at a dSph galaxy, described by Eq. (1.2.6).

Beyond uncertainties in the DM density ρχ, the combination of parameters constrained are the

DM mass mχ and the zero-limit annihilation cross-section (σv)0. A positive signal does not

itself predict a DM model, but for a given DM model, both mχ and (σv)0 can be predicted

from the Lagrangian parameters.

This set of arguments applies across all areas of particle physics phenomenology: begin with

model parameters (either from the Lagrangian, or phenomenological parameters), compute

signals, then compute a likelihood function comparing to data. By making this generic, the

model dependence is usually captured in the first step, meaning the following steps are model-

agnostic.

For example, the γ ray yield depends on the cross-section and the DM mass. The cross-

section depends on the model parameters. By building up these dependencies, there is a clear

pathway from the input model parameters to the output likelihood evaluation. The final cal-

culation of the γ ray yield is agnostic to the model parameters in GAMBIT: as long as there are

cross-sections for each final state, the γ ray yield calculation doesn’t need to know anything

about the underlying model or model parameters. This simple argument for reusability is the

crux of the design of GAMBIT. Model-dependent module functions map from fundamental

parameters to physical quantities, which are fed into the GAMBIT pipeline.

Thus, every physics calculation within GAMBIT is able to have dependencies on other

quantities. Every function within a physics module, a module function, returns only one
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object; its capability. GAMBIT stitches together dependencies and capabilities at runtime

in its dependency resolution step. This requires a unique graph to be constructed, as

multiple functions within GAMBIT can return the same capability. The user must specify

rules to help GAMBIT uniquely construct the graph. An example of a dependency tree is

shown in Fig. 1.13.

A GAMBIT scan is performed by invoking a single YAML file as an input from the command

line. This input YAML file contains all information required by GAMBIT to perform a fit,

including which models need to be scanned, the likelihoods required to constrain the models,

and which scanning algorithm to use. The YAML file also contains the Rules by which to break

degeneracies in the dependency resolution step. For more information on the contents of input

YAML files, see Sec. 6 of the GAMBIT manual [110].

Physics calculations within GAMBIT are split up into multiple modules, with each covering

a different sector of BSM physics, all controlled by the GAMBIT Core. Briefly, I list the physics

modules and their function within GAMBIT:

ColliderBit. [112]: Likelihoods from physics searches at the LHC and other colliders. Collid-

erBit simulates events at the LHC via Monte Carlo, applies detector effects, then analyses

and compares predictions to event data from LHC experimental searches. The LHC

searches within ColliderBit are broad, including SUSY searches, monojet searches, and

photon searches. ColliderBit also has likelihoods for direct particle searches at LEP.

ColliderBit also provides likelihoods related to measurements of Higgs physics from LEP

and the LHC, based on masses and branching ratios of Higgs bosons. The object used is

the HiggsCouplingsTable, constructed from the Spectrum and DecayTable.

CosmoBit. [2]: Likelihoods and observables related to cosmology, including inflation, big

bang nucleosynthesis, measurements of the CMB, and late-time observables. Covered in

more detail in Chapter 3.

DarkBit. [63]: Likelihoods and observables related to DM physics. Includes (nuisance)

likelihoods for DM halo models.

For WIMP DM, DarkBit provides calculations of the relic abundance via thermal freeze-

out either natively, for simple models, or using backends (DarkSUSY and MicrOMEGAs),

if coannihilations are important. For indirect detection DarkBit provides routines for

computing γ ray spectra and neutrino spectra, along with associated likelihoods.

DarkBit also contains an interface to a host of constraints from direct detection experi-

ments, defined at either the nuclear scale or from a relativistic EFT.

Beyond WIMPs, DarkBit provides routines related to axion physics, such as computing the

relic abundance (via the realignment mechanism), likelihoods from light-shining-through-

wall, haloscope and helioscope experiments, and assorted astrophysics-related likelihoods.
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DecayBit. [113]: Controls particle decays. The decays can be a hard-coded reference decay,

such as for SM particles, or computed (either internally or via a backend) from the

masses and couplings from the GAMBIT Spectrum object supplied by SpecBit.

The primary structure in DecayBit is the DecayTable, which contains all information about

the particle decays, widths and branching ratios, including theoretical or observed uncer-

tainties.

FlavBit. [114]: Likelihoods and observables related to flavour physics, rare meson decays

and lepton universality.

NeutrinoBit. [115]: Likelihoods and observables concerning the neutrino sector, both for

the SM and for right-handed neutrino models. Includes likelihoods for neutrino mixing

angles, neutrinoless double beta decay, beam dump searches, and CKM unitarity.

PrecisionBit. [113]: Precision tests of the SM. Some likelihoods in PrecisionBit are for

measurements that can be affected or predicted by new particle content, such as the

masses of the W and the SM Higgs, the weak mixing angle sin(θW ), and the anomalous

magnetic moment of the muon, aµ.

PrecisionBit also supplies nuisance likelihoods for SM quantities, such as the strong cou-

pling αS at mZ , and the top pole mass mt.

SpecBit. [113]: Mass spectra, mixing matrices, and RGE running. Perhaps the most funda-

mental object within GAMBIT is the Spectrum object, containing information about the

masses and couplings of a BSM theory.

Precision mass spectra in GAMBIT can be computed at loop level via backends. SpecBit

is responsible for computing precision spectra and mixing matrices, at a given scale Q,

from the input parameters of the theory.

Alternatively, a model can be described by pole masses, or phenomenological parameters,

where higher order corrections are neglected, or RGEs cannot be computed (such as for

effective field theories). In this case, SpecBit organises the Spectrum object in the same

manner.

Given the predisposition to reusable code, the philosophy of GAMBIT is to not reinvent

the wheel: if a code has been developed for multiple years to perform a specific calculation, it

should be utilised. External codes linked to GAMBIT are known as backends.

In a similar vein to the dependency structure, a model within GAMBIT is defined simply as

a collection of parameters; GAMBIT knows nothing about the theory, such as its symmetries,

or particle content. Child models can inherit from a parent model, where every point

from a child model maps directly to a unique point in the parent model through a model

38



MDM WC

RightHandedNeutrinos RightHandedNeutrinos_diff

MSSM63atQ

MSSM63atMSUSY

MSSM30atQ

MSSM63atMGUT

MSSM63atQ_mA

MSSM63atMSUSY_mA

MSSM30atMSUSY

MSSM30atMSUSY_mA

MSSM25atQ

MSSM30atMGUT

MSSM30atQ_mA

MSSM25atMSUSY

MSSM25atMSUSY_mA

MSSM20atMSUSY_mA

MSSM20atQ

MSSM24atQ MSSM19atQ

MSSM20atQ_mA

MSSM20atMSUSY

MSSM20atMGUT

MSSM16atQ

MSSM63atMGUT_mA

NUHM2

MSSM30atMGUT_mA

MSSM25atMGUT

MSSM25atMGUT_mA

MSSM25atQ_mA MSSM24atQ_mA MSSM19atQ_mA MSSM16atQ_mA MSSM11atQ_mA

MSSM15atQ_mA

MSSM10atQ_mA

MSSM10batQ_mA

MSSM9atQ_mA

NUHM1

MSSM9batQ_mA

MSSM10catQ_mA MSSM7atQ_mA

MSSM11atQ

MSSM15atQ

MSSM10atQ

MSSM10batQ

MSSM9atQ MSSM7atQ

MSSM9batQ

MSSM10catQ

CMSSM

MSSM20atMGUT_mA

mSUGRA

GeneralALP

QCDAxion

ConstantMassALP

KSVZAxion

DFSZAxion_I

DFSZAxion_II

ScalarSingletDM_Z2_running ScalarSingletDM_Z2

VectorSingletDM_Z2

ScalarSingletDM_Z3_running ScalarSingletDM_Z3

MajoranaSingletDM_Z2 MajoranaSingletDM_Z2_sps

DiracSingletDM_Z2 DiracSingletDM_Z2_sps

StandardModel_SLHA2 StandardModel_mNudiff

StandardModel_Higgs_running StandardModel_Higgs

nuclear_params_fnq nuclear_params_sigma0_sigmal nuclear_params_sigmas_sigmal

Halo_gNFW

Halo_gNFW_rho0

Halo_gNFW_rhos

Halo_Einasto

Halo_Einasto_rho0

Halo_Einasto_rhos

G A M B I T

Figure 1.14: The model hierarchy in GAMBIT as of GAMBIT 1.4.2, from Ref. [116],
grouping the families of GAMBIT models. Inheritance reads left to right: a black
arrow signifies the translation from a child model to a parent model. A red arrow
signifies a friend translation, translating across branches in the family tree.

translation. Hence, if a module function is written for a parent model, it also works for all

child models. This builds up the model hierarchy within GAMBIT, illustrated in Fig. 1.14.

As previously mentioned in Secs. 1.3.1 and 1.3.2, the manner in which the likelihood surface

is explored is extremely important, specifically in high dimensions. The choice of target quantity

of interest (Lprof , Lmarg, or Z) informs a choice of sampling algorithm.

Profile likelihood: When considering the profile likelihood, the algorithm should be well

suited to locating maximal values quickly, as the quantity we aim to work with, Λprof(Θ),

depends directly on the maximum likelihood value.

Marginalised posterior: When considering the marginalised posterior, the algorithm should

sample the posterior efficiently. In practice, this is achieved by continually updating a

proposal distribution until it reflects the posterior (up to some level of convergence).

Bayesian evidence: For the Bayesian evidence Z, the algorithm must evaluate the parameter-

averaged product of the likelihood over the prior. This typically means that the posterior

is well sampled as a by-product.

GAMBIT has a module dedicated to exploring likelihood surfaces efficiently: ScannerBit [117].

It has a host of samplers for performing statistical inference in a multitude of ways, includ-

ing population-based maximisers, ensemble samplers for mapping posterior probabilities, and

samplers designed to compute the Bayesian evidence.

All of the work in this thesis relates to the GAMBIT software package. Chapter 2 discusses

extending GAMBIT to interface directly with a symbolically defined Lagrangian, via the new

tool GUM. GUM facilitates rapid expansion of the model hierarchy within GAMBIT. Chapter 3
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describes the new GAMBIT module CosmoBit, relating to cosmological observables and like-

lihoods, and their impacts on BSM theories. Chapter 4 covers global fits of effective Higgs

portal DM using the GAMBIT package, and Chapter 5 concerns global fits of a DM effective

field theory, performed using GAMBIT, and implemented using GUM.
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Part I

New extensions to GAMBIT
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In this section I introduce new extensions to GAMBIT. As the GAMBIT framework aims

to include all relevant constraints for every BSM theory, there is a constant need to introduce

new physical observables able to constrain BSM theories, new models to compare to the data,

and new physics routines capable of computing existing GAMBIT capabilities. In this section I

address two of these points: increasing the model base, and introducing new physics observables.

Chapter 2 introduces GUM, based on the work in Ref. [1]. GUM is a tool capable of adding

new models to the GAMBIT model database effortlessly, interfacing with existing backend codes

and increasing the usability of GAMBIT. GUM interfaces with Lagrangian-level tools, meaning

the user need only to express a Lagrangian symbolically (inMathematica) to add a new model to

GAMBIT; the only additional requirement is to provide a single, simple input script instructing

GUM. GUM interfaces to codes not previously accessible to GAMBIT, and also serves to increase

the bank of likelihoods available within GAMBIT.

Chapter 3 concerns CosmoBit, the GAMBIT expansion into cosmology, and is based on

Refs. [2,3]. Cosmological probes have the potential to be extremely sensitive to particle physics.

Via CosmoBit, GAMBIT provides the first ever software framework for consistent treatment of

particle physics and cosmology in BSM global fits.
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Chapter 2

GUM

2.1 Introduction

The GAMBIT software framework [110, 116] provides a flexible platform for performing

combined fits of BSM theories in many sectors of physics. The foundation of GAMBIT is

reusable, generic code where possible, with model dependence factorised out as much as possible.

When adding a new model, this not only reduces the scope for error, but also means that the

content that needs to be added to GAMBIT is minimal.

There are however a finite number of models included in the distribution of GAMBIT. The

first version of GAMBIT shipped with various parametrisations of the minimal supersymmetric

Standard Model (MSSM) at the weak [118] and grand unified (GUT) scales [119], a scalar singlet

DM extension of the SM [83] and an effective field theory of flavour interactions [114,120]. Since

then, studies of vacuum stability for scalar singlet DM [84], generic Higgs portal DM models [4],

axions and axion-like particles [29], additional MSSM models [121], both left- [3] and right-

handed neutrinos [115], and inflationary and other cosmological models [2] have expanded the

model database substantially.

Although adding a new model to GAMBIT is largely formulaic, it is still not a completely

trivial task, as the user still requires some level of understanding of the underlying software

design. To this end, we present the GAMBIT Universal Model Machine (GUM): a tool for

interfacing symbolic Lagrangian-level tools to GAMBIT, to further automate the procedure of

comparing theory to experiment.

Not only does automation increase efficiency and effectiveness in BSM physics, it also reduces

the scope for human error, which is inevitably introduced when coding complicated expressions

by hand. Development of Lagrangian-level tools has been a very important step in the devel-

opment of automation in BSM physics. The original motivation for creating Lagrangian-level

tools was to automatically write outputs that could be used for generating matrix element func-

tions, which could in turn be used by Monte Carlo event generators to simulate new physics

at particle colliders. The first tool to achieve this was LanHEP [122–125], originally created to
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Generated output FeynRules SARAH Usage in GAMBIT

CalcHEP ✓ ✓ Decays, cross-sections

MicrOMEGAs (via CalcHEP) ✓ ✓ DM observables

Pythia (via MadGraph) ✓ ✓ Collider physics

SPheno ✗ ✓ Particle mass spectra, decay widths

Vevacious ✗ ✓ Vacuum stability

Table 2.1: GAMBIT-compatible outputs available from GUM via FeynRules and
SARAH. Apart from the external packages listed, GUM also produces GAMBIT Core
and physics module code tailored to the model and observables of interest.

compute vertices for CompHEP [126–128] from a simple Lagrangian input. With the release of

FeynRules [129–132], this quickly expanded to generating output for other matrix element codes,

such as MadGraph/MadEvent [133–136], CalcHEP [137, 138], FeynArts [139–142], SHERPA [143]

and WHIZARD/O’Mega [144,145]. SARAH [146–150] was also developed at a similar time, ini-

tially with a particular focus on supersymmetry, but soon expanding to a much larger range of

models.

Such has been the success of FeynRules and SARAH in generating Feynman rules for use by

matrix element generators, that the ‘Universal FeynRules Output’ (UFO) filetype was created.

These files can be generated by both FeynRules and SARAH, and handled by a range of matrix

element generators such as MadGraph, GoSam [151,152] and Herwig++ [153].

As the search for new physics spans more than just collider physics, it has been necessary

for Lagrangian-level tools to generate output for tools in other areas of physics, outside of

collider phenomenology. The UFO-compatible package MadDM [154–156] has been built on top

of MadGraph, for computing DM relic densities and direct and indirect detection signals. From

SARAH, inputs can now also be generated for DM phenomenology with MicrOMEGAs [157–

163], spectrum generation with SPheno [164, 165] and FlexibleSUSY [166, 167], flavour physics

observables with SPheno and FlavorKit [168], and calculations of the stability of the scalar

potential with Vevacious [169].

Although FeynRules and SARAH were both created to solve essentially the same problem,

they serve different purposes. FeynRules is concerned with computing Feynman rules for any

given Lagrangian, including effective ones, and performing physics at tree level. SARAH on

the other hand places far more emphasis on renormalisable theories. As a result, any UV-

complete model can be implemented in both FeynRules and SARAH, and any output generated

by FeynRules for such models can also be created by SARAH. However, SARAH is also able to

compute renormalisation group equations (RGEs) at two-loop order and particle self-energies

at one-loop order, allowing its ‘downstream beneficiaries’ SPheno and FlexibleSUSY to generate

corrected mass spectra at the one-loop level.

However, although the outputs of SARAH are more sophisticated than those of Feyn-
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Rules, it also has limitations. Unlike in FeynRules, it is not generally possible to express

non-renormalisable theories or higher-dimensional effective theories in SARAH. We therefore

provide interfaces to both FeynRules and SARAH to allow the user to incorporate a vast range

of theories into GAMBIT, from effective field theories (EFTs) via FeynRules to complex UV-

complete theories in SARAH. We stress that if a model can be implemented in SARAH, then

the user should use SARAH over FeynRules – both to use GAMBIT to its full potential, and to

perform more detailed physics studies. The basic outputs available from GUM in each case are

summarised in Table 2.1.1

This Chapter is organised as follows: in Sec. 2.2, we describe the code structure and outputs

of GUM. In Sec. 2.3 we give usage details, including installation, the GUM file, and particulars

of FeynRules and SARAH model files. In Sec. 2.4 we provide a worked example, where we use

GUM to add a simplified DM model to GAMBIT, and perform a quick statistical fit to DM

observables. Finally, in Sec. 2.5, we discuss future extensions of GUM and summarise. We

include details of the new GAMBIT interfaces to CalcHEP, Vevacious and SARAH-SPheno (the

auto-generated version of SPheno created using SARAH) in the Appendix.

GUM is open source and will be part of the GAMBIT 2.0 release, available from gam-

bit.hepforge.org under the terms of the standard 3-clause BSD license.2

2.2 Code design

GAMBIT consists of a set of Core software components, a sampling module ScannerBit [117],

and a series of physics modules [2,63,112–115]. Each physics module is in charge of a domain-

specific subset of GAMBIT’s physical calculations. GUM generates various snippets of code to

be added to parts of the GAMBIT Core, as well as to some of the physics modules, enabling

GAMBIT to employ the capabilities of those modules with the new model.

Within the Core, GUM adds code for any new particles to the GAMBIT particle database, and

code for the new model to the GAMBIT models database, informing GAMBIT of the parameters

of the new model so that they can be varied in a fit. GUM also generates interfaces (“frontends”)

to the external codes (“backends”) that it is able to generate. The backends supported by GUM

in this manner are those listed as outputs in Table 2.1.

Within the physics modules, GUM writes new code for the SpecBit [113] module, responsible

for spectrum generation within GAMBIT, DecayBit [113], responsible for calculating the decays

of particles, DarkBit [63], responsible for DM observables, and ColliderBit [112], the module that

simulates hard-scattering, hadronisation and showering of particles at colliders, and implements

subsequent LHC analyses.

1Some readers will note the absence of FlexibleSUSY from this list; this is due to the complex C++ tem-
plates used in FlexibleSUSY and the fact that supporting it fully as a backend in GAMBIT requires significant
development of the classloading abilities of the backend-on-a-stick script (BOSS) [110]. Once this challenge has
been overcome, future versions of GUM will also generate code for FlexibleSUSY and its other flexi-bretheren.

2http://opensource.org/licenses/BSD-3-Clause.
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GUM is primarily written in Python, with the exception of the Mathematica interface, which

is written in C++ and accessed via Boost.Python. Initially, GUM parses a .gum input file,

using the contents to construct a singleton gum object. Details of the input format can be

found in Sec. 2.3.3. GUM then performs some simple sanity and consistency checks, such as

ensuring that if the user requests DM observables, they have also specified a DM candidate.

GUM then opens an interface to either FeynRules or SARAH via the Wolfram Symbolic Transfer

Protocol (WSTP)3, loads the FeynRules or SARAHmodel file that the user has requested into the

Mathematica kernel, and performs some additional sanity checks using the inbuilt diagnostics

of each package.

Once GUM is satisfied with the FeynRules or SARAH model file, it extracts all particles and

parameters of the model defined after electroweak symmetry breaking. The minimal informa-

tion required to define a new particle is its mass, spin, colour representation, PDG code, and

electric charge (if non-self conjugate). A parameter must have an associated LHA (Les Houches

Accord [170, 171]4) block in the FeynRules/SARAH model file, and an index within that block.

Additionally for FeynRules files, the interaction order used in UFO files must be set. For details

on the syntax required for all required particle and parameter definitions, see Sec. 2.3.4.3 for

FeynRules model files, and Sec. 2.3.5.3 for SARAH model files.

After extracting particle and parameter information, GUM cross-checks that all particles

in the new model exist in the GAMBIT particle database, and adds entries if they do not.

GUM uses this same particle and parameter information to also write new entries in both the

GAMBIT model database and the SpecBit module. All other calculations rely on a combination

of new code within GAMBIT and backends. In the following sections we provide details of

the new code generated by GUM in the GAMBIT model database (Sec 2.2.1), within GAMBIT

physics modules (Sec 2.2.2), and in the form of new backends and their corresponding frontend

interfaces in GAMBIT (Sec 2.2.3).

Many of the GAMBIT code outputs are only generated if the user elects to generate relevant

new backend codes with GUM. Details of which backends must be generated with GUM for it

to generate different GAMBIT source files can be found in Table 2.2.

2.2.1 The GAMBIT model database

For every new model requested, GUM adds a new entry to GAMBIT’s hierarchical model

database, regardless of which backends are requested. GUM operates under the condition that

no model of the same name exists already in the hierarchy, and will throw an error if it does. If

the requested model is a new model, GUM creates a new model file new model.hpp (see Table 2.2),

3The WSTP is the high-level symbolic interface used to interface between Wolfram packages and external
programs. For more information, see https://www.wolfram.com/wstp/.

4The Les Houches Accords standardise the interfaces between programs that generate partonic processes
(at the matrix element level) and event generators, thus permitting programs to interface seamlessly with one
another.
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GAMBIT
component

Entries/Amendments Required .gum en-
try or backend(s)

Models src/SpectrumContents/new model.cpp

include/gambit/Models/models/new model.hpp

include/gambit/Models/SimpleSpectra/

new model_SimpleSpec.hpp

SpecBit src/SpecBit_new model.cpp

include/gambit/SpecBit/SpecBitnew model_rollcall.hpp

src/SpecBit_VS.cpp Vevacious, SPheno

include/gambit/SpecBit/SpecBit_VS_rollcall.hpp Vevacious, SPheno

DarkBit src/new model.cpp: Dark Matter ID wimp_candidate

src/new model.cpp: Process Catalogue wimp_candidate,
CalcHEP

include/gambit/DarkBit/

DarkBit_rollcall.hpp: Direct detection
wimp_candidate,
MicrOMEGAs

DarkBit src/DecayBit.cpp CalcHEP or SPheno

include/gambit/DecayBit/DecayBit_rollcall.cpp CalcHEP or SPheno

ColliderBit src/models/new model.cpp Pythia

include/gambit/ColliderBit/models/new model.hpp Pythia

src/ColliderBit_Higgs.cpp SPheno

include/gambit/ColliderBit/

ColliderBit_Higgs_rollcall.hpp

SPheno

Backends src/frontends/CalcHEP_3_6_27.cpp CalcHEP

src/frontends/MicrOmegas_new model_3_6_9_2.cpp MicrOMEGAs

src/frontends/SARAHSPheno_new model_4_0_3.cpp SPheno

Table 2.2: Details of the new files that GUM writes or modifies in each part of GAMBIT.
Backend names in the rightmost column indicate that the output is only generated
if the named backend is also generated by GUM. In these cases, the .gum file must
include the corresponding option backend name:true, e.g. spheno:true, pythia:true, etc.
The entry “wimp_candidate” indicates that the output is only generated if the option
of the same name is set in the .gum file. Where no such entries exist in the rightmost
column, the addition or modification of the GAMBIT source is always performed,
regardless of the contents of the .gum file. All filenames containing new model are
newly created by GUM; all others are existing files that GUM amends.

47



with the parameters extracted from FeynRules or SARAH.

In addition to the model file, GUM creates a list of expected contents for the model’s particle

spectrum object in SpectrumContents/new model.cpp. This includes not just pole masses of BSM

particles, but also the parameters of the model itself, mixing matrices and various SM param-

eters. GUM also writes a corresponding simple container for the spectrum new model_SimpleSpec

that defines functions for accessing the spectrum contents and exposes them to the GAM-

BIT Spectrum class.

2.2.2 Modules

2.2.2.1 SpecBit

Following the structure of the simple spectrum container, GUM writes module functions

in SpecBit that allow the construction of an object of the Spectrum class. The capability

new model_spectrum and its module functions are declared in the header file SpecBit_new model_rol-

lcall.hpp and defined in SpecBit_new model.cpp. The spectrum is either defined directly in terms

of phenomenological model parameters, or generated from the Lagrangian parameters using

SPheno.

By default, in the absence of a spectrum generator, GUM writes a simple module function

in SpecBit, get_new model_spectrum, that fills a Spectrum object with SM values and the input

parameters of the model. If using SARAH to generate GAMBIT code, the pole masses of BSM

particles are computed using the tree-level relations provided by SARAH. When producing

GAMBIT output from FeynRules, however, there are no such relations available, and thus the

particle masses are model parameters and the Spectrum object is filled with those.

If the SPheno output is requested from SARAH for a model, GUM writes a module function,

get_new model_spectrum_SPheno, with the backend requirements necessary to generate the full

spectrum, with all particle masses, mixing matrices, etc. Hence, for improved precision spectra,

it is recommended that the user implement their model using SARAH, and request the spectrum

to be provided by SPheno.

If Vevacious output is requested, for each new BSM model GUM writes new model-specific

code in the SpecBit vacuum stability file, SpecBit/src/SpecBit_VS.cpp, and adds appropriate

entries to the corresponding rollcall header. GUM provides two new module functions to in-

teract with Vevacious. Firstly, prepare_pass_new model_spectrum_to_vevacious with capability

pass_spectrum_to_vevacious, which interfaces the Spectrum object to the Vevacious object. Sec-

ondly, vevacious_file_location_new model, which directs GAMBIT to the location of the input

Vevacious files generated by SARAH.
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2.2.2.2 DecayBit

Whenever decay information is requested for a new model, GUM amends the DecayBit header

(DecayBit_rollcall.hpp) and source (DecayBit.cpp) files to add the decays of the particles in the

model. The information for the decays can be provided separately by two backends in the GUM

pipeline: CalcHEP and SPheno.

CalcHEP generates tree-level decays for each new BSM particle, plus new contributions to

any existing particles in DecayBit such as the SM Higgs and the top quark. GUM adds these to

DecayBit by adding the new decay channels wherever possible to any existing DecayTable::Entry

provided by a module function with capability particle name_decay_rates. If no such function

exists, it instead creates a new module function CH_new model_particle name_decays with this

capability-type signature. GUM then modifies the module function all_decays to add the de-

cays of any particles for which it has written new module functions. Note that GUM does not

currently write any BSM contribution for W and Z boson decay via the CalcHEP interface, but

this is planned for future releases.

SPheno computes one-loop decays for Higgses and tree-level decays for other BSM and SM

particles. As SPheno provides decay widths for all particles in the spectrum, GUM creates a

new module function all_new model_decays_from_SPheno, which returns a DecayTable filled with

all decay information computed by SPheno. The default behaviour of GUM is to ensure that it

always generates decay code of some sort when needed. This ensures that a complete DecayTable

for the new model can be provided within GAMBIT for dependency resolution, by providing the

capability all_decays in DecayBit. A viable GAMBIT DecayTable is required for the functioning

of many external codes such as Pythia and MicrOMEGAs: if any new particle is a mediator in

a process of interest, then its width is needed. To this end, GUM activates CalcHEP output

automatically if decays are needed by other outputs that have been activated in the .gum file,

but neither CalcHEP nor SPheno output has been explicitly requested.

2.2.2.3 DarkBit

If the user specifies a WIMP DM candidate for a model, GUM writes the relevant code in

DarkBit. Each individual model tree in DarkBit has its own source file, so GUM generates a

new source file src/new model.cpp, and amends the DarkBit rollcall header accordingly. At a

minimum, GUM includes a new module function DarkMatter_ID_new model in this file. It then

adds the remainder of the source code according to which backends the user selects to output

code for in their .gum file; viable options are CalcHEP and MicrOMEGAs.

If the user requests CalcHEP output, then a new module TH_ProcessCatalog_new model pro-

viding the process catalogue is written. The process catalogue houses all information about

annihilation of DM, and decays of all particles in the spectrum. All computations of indirect

detection and relic density likelihoods in DarkBit begin with the process catalogue. For details,

see Sec. 6.3 of [63]. All processes that GUM adds to the process catalogue are computed at tree
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level by CalcHEP.

The process catalogue is used to compute the relic abundance of DM via the DarkBit interface

to the Boltzmann solver in DarkSUSY. If co-annihilations are expected to be important in a

new physics model, the user should use MicrOMEGAs to compute the relic abundance, as the

process catalogue interface does not currently fully support co-annihilations. Such functionality

is planned for future releases of DarkBit.

When writing MicrOMEGAs output, GUM adds new entries to the ALLOW_MODELS macro for

existing MicrOMEGAs functions in DarkBit. To use MicrOMEGAs’ relic density calculator, GUM

adds an entry to the module function RD_oh2_Xf_MicrOmegas. For more information, see Sec. 4.2

of Ref. [63]. GUM also provides an interface to the module function DD_couplings_MicrOmegas,

which returns a DM_nucleon_couplings object containing the basic effective spin-independent

and spin-dependent couplings to neutrons and protons Gp
SI, G

n
SI, G

n
SD, and G

n
SD. This object is

readily fed to DDCalc for computing likelihoods from direct detection experiments. For more

information, see Sec. 5 of Ref. [63].

For more complicated models where the standard spin-independent and spin-dependent

cross-sections are not sufficient, MicrOMEGAs is not able to compute relevant couplings. In

this case, the user should perform a more rigorous calculation of WIMP-nucleon (or WIMP-

nucleus) couplings by alternative means. This is required when, for example, scattering cross-

sections rely on the momentum exchange between incoming DM and SM particles, or their

relative velocity. The full set of 18 non-relativistic EFT (NREFT) DM-nucleon operators are

defined in both DarkBit and DDCalc 2, and described in full in the Appendix of Ref. [4]. These

operators fully take into account velocity and momentum transfer up to second order, and

should typically be used in cases where the entirety of the physics is not captured by just

σSI and σSD. Whilst a forthcoming version of GAMBIT [5] allows for automated translation

of high-scale relativistic effective DM-parton couplings to low-scale NREFT couplings via an

interface to DirectDM [172, 173], there is no established automated matching procedure for

connecting other high-scale models (as defined in FeynRules or SARAH model files) to the

Wilson coefficients of the relativistic EFT. GUM therefore does not automatically write any

module functions connecting the GAMBIT Spectrum object to the NREFT interface of DDCalc;

once such a procedure exists, GUM will be extended accordingly.

2.2.2.4 ColliderBit

In ColliderBit, simulations of hard-scattering collisions of particles are performed using the

Monte Carlo event generator Pythia [174]. These events are passed through detector simulation

and then fed into the GAMBIT analysis pipeline, which predicts the signal yields for the new

model. These can then be compared to the results of experimental searches for new particles.

For a new BSM model, the matrix elements for new processes unique to the model must be

inserted into Pythia in order for it to be able to draw Monte Carlo events from the differential
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cross-section of the model. To achieve this, GUM communicates with MadGraph to generate

matrix element code for Pythia, and writes the appropriate patch to insert it into Pythia.

Alongside the matrix elements, this Pythia patch also inserts any newly defined LHA blocks.

When Pythia output is requested, GUM writes a series of new ColliderBit module functions

in the source file ColliderBit/src/models/new model.cpp, and a corresponding rollcall header file.

The new functions give ColliderBit the ability to

i) collect the relevant Spectrum and DecayTable objects from other modules and provide them

to the newly-generated Pythia (with capability SpectrumAndDecaysForPythia and function

getSpectrumAndDecaysForPythia_new model),

ii) initialise the new Pythia for Monte Carlo events (capability HardScatteringSim, function

getPythia_new model),

iii) call the new Pythia in order to generate a Monte Carlo event (capability HardScatteringEvent,

function generateEventPythia_new model), and

iv) pass events from the new Pythia through the ColliderBit fast detector simulation BuckFast

(various capabilities and functions).5

In addition to the likelihood from LHC new particle searches, ColliderBit also provides

likelihoods associated with Higgs physics. This is done via interfaces to HiggsBounds [175,

176] and HiggsSignals [177], which use information on Higgs signal rates and masses from

the Tevatron, LEP and the LHC. When a new model is added to GAMBIT with GUM and

SPheno output is requested from SARAH, GUM constructs a new HiggsCouplingsTable used

as input to the Higgs likelihoods, and amends the appropriate module function entries in

ColliderBit_Higgs_rollcall.hpp and ColliderBit_Higgs.cpp.

2.2.3 Backends

In the GAMBIT framework, backends are external tools that GAMBIT links to dynamically

at runtime, in order to compute various physical observables and likelihoods. Out of the full

list of backends that can be interfaced with GAMBIT, a small selection of them can work for

generic BSM models. In particular, GUM is able to produce output for SPheno [164, 165],

Vevacious [169], CalcHEP [138], MicrOMEGAs [163], Pythia [174], HiggsBounds [175, 176] and

HiggsSignals [177]. Thus, we briefly describe here the specific outputs generated by GUM for

each of these backends, along with and any corresponding GUM and GAMBIT YAML file entries

needed to use them.

Unless otherwise stated, GUM has been developed to work with specific versions of the

backends used within GAMBIT. In many cases, this does not effect likelihood functions, such as

5The need for these functions will be removed in a forthcoming release of ColliderBit.
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for MicrOMEGAs or Pythia, as all relevant likelihoods are contained within GAMBIT. Notably,

however, the versions of HiggsBounds and HiggsSignals are not the most current versions, and

thus many of the Higgs constraints are not up to date, and may have significant impact on

models where Higgs physics is important. Upgrading the supported versions of such backend

codes within GAMBIT (and therefore GUM) is a high priority for future work. We also note

that recent versions of MicrOMEGAs [178] compute several likelihood functions similar to those

contained within GAMBIT, that we do not interface to directly.

2.2.3.1 (SARAH-)SPheno 4.0.3

Requires: spheno:true.

SPheno is a spectrum generator capable of computing one-loop masses and decay branching

fractions in a variety of BSM models. The model-specific code is generated by SARAH and com-

bined with the out-of-the-box SPheno code into a single backend for GAMBIT. For each model

GUM thus provides an interface between GAMBIT and the SPheno version via a new frontend,

SARAHSPheno_new model_4_0_3.cpp. Details about this interface, which differs significantly from

the SPheno interface described in [113], can be found in Appendix A.1.2.

In order to generate SPheno output from SARAH, the user must provide a SPheno.m file in

the same directory as the SARAH model files. For details of the contents of these files, we refer

the reader to the SARAH manual [150].

Once the appropriate GAMBIT code is generated by GUM, a new capability is added to

SpecBit to compute the spectrum using SPheno, new model_spectrum. The new SPheno-generated

Spectrum object can be obtained for a specific model in a GAMBIT run via the YAML entry

ObsLikes:

- purpose: Observable

capability: new model_spectrum

and, as usual, if more than one module function can provide the same capability, as can happen,

for example, if FlexibleSUSY is also present, the SPheno-specific one can be selected by the YAML

rule

Rules:

- capability: new model_spectrum

function: get_new model_spectrum_SPheno

In addition to their masses and mixings, SPheno can compute the decay branching fractions

for all particles in the spectrum, including some selected one-loop decays of Higgs bosons. The

GUM-generated code in DecayBit includes the new module function all_new model_decays_from_

SPheno, which returns a GAMBIT DecayTable as computed by SPheno. As a result, the SPheno

route to DecayBit subverts the usual all_decays function, so one may need to specify a rule for

the decay_rates capability with the appropriate YAML entry
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Rules:

- capability: decay_rates

function: all_new model_decays_from_SPheno

To build a newly-added SARAH-generated SPheno (“SARAH-SPheno”) within GAMBIT, the

appropriate build command is

make sarah-spheno_new model

where the backend name sarah-spheno is used to differentiate the corresponding code from the

out-of-the-box version of SPheno.

2.2.3.2 Vevacious 1.0

Requires: vevacious:true, spheno:true.

Vevacious computes the stability of the scalar potential for generic extended scalar sec-

tors [169], and has recently been interfaced to GAMBIT as a backend [179]. The interface to

Vevacious, which is new to GAMBIT, is explained in more detail in Appendix A.1.3.

To compute the stability of the potential, Vevacious computes the tunnelling probability

to the nearest minimum and the global minimum. The user can select whether to compute

the tunnelling probability to either, or both, via the sub_capabilities node for the capability

VS_Likelihood as

ObsLikes:

- purpose: LogLike

capability: VS_likelihood

sub_capabilities:

- global

- nearest

If both minima are selected, Vevacious only computes the tunnelling to both if they are different

minima in field space. The capability compare_panic_vacua in GAMBIT checks if the global and

nearest minima are independent, and if not, ensures that only the transition to the nearest

minimum is computed, which reduces the computation time significantly.

For each minimum, Vevacious computes the zero-temperature (quantum) tunnelling proba-

bility, as well as the finite-temperature (thermal) probability by default. To force Vevacious

to only compute one of these probabilities, the corresponding option can be passed to the

sub_capabilities node as

ObsLikes:

- purpose: LogLike

capability: VS_likelihood

sub_capabilities:

global: [quantum]
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Note that if tunnelling to both the global and the nearest minimum is requested, the same

tunnelling strategy must be selected for both.

Note that if the user wishes to request Vevacious output, they must also request SPheno

output. This is due to the GUM interface utilising Mathematica symbols provided by SARAH’s

SPheno routines.

Once a new model has been generated by GUM, Vevacious can be built with the command

make vevacious

which will either download and build Vevacious if it is not installed, or simply move the new

model files from the GAMBIT patch directory to the Vevacious directory if it is already built.

Note that building Vevacious for the first time will also download and install MINUIT [180],

PHC [181], and HOM4PS2 [182].

2.2.3.3 CalcHEP 3.6.27

Requires: calchep:true, Optional: wimp_candidate:pdg

GUM uses the backend convenience function CH_Decay_Width provided by the new CalcHEP

frontend (described in Appendix A.1.1), to compute tree-level decay widths.

For each new BSM decay, GUM generates a model-specific DecayTable::Entry. For each

newly-added decaying particle, GUM writes a module function CH_new model_particle name_decays,

which requires the ability to call the backend convenience function CH_Decay_Width. All new

decays are then gathered up by the existing DecayBit function all_decays, which GUM modifies

by adding an if(ModelInUse(new model)) switch for newly-added decaying particles in the new

model.

The appropriate YAML rule for a CalcHEP-generated DecayTable is simply

Rules:

# Use DecayBit (and CalcHEP) for decay rates; not an SLHA file or SPheno

- capability: decay_rates

function: all_decays

If the user specifies the PDG code of a WIMP candidate via wimp_candidate:pdg, then GUM

creates a DarkBit entry for the new model. GUM utilises the backend convenience function

CH_Sigma_V provided by the CalcHEP frontend, to build the process catalogue. It does this by

computing 2 → 2 scattering rates as a function of the relative velocity vrel, which are in turn

fed to the appropriate module functions.

The information contained within the process catalogue can be used by the GAMBIT native

relic density solver (using the function RD_oh2_general via DarkSUSY), and for all indirect de-

tection rates, which utilise the quantity σvrel. This is usually evaluated at vrel = 0 (such as in

the case of γ rays), but for solar neutrinos, vrel is set to the solar temperature TSun.
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In the imminent first release of GUM, there will be no support for four-fermion interactions

in CalcHEP, as neither FeynRules nor SARAH is able to produce output for these6. The version

of GAMBIT and GUM associated with Chapter 5 (Ref. [5]) will feature a four-fermion EFT

plugin connecting FeynRules and CalcHEP (see Appendix C).

From the GAMBIT build directory, the command

make calchep

will build CalcHEP if it is not installed; otherwise it will move the new CalcHEP model files

from the GAMBIT patch directory to the CalcHEP model directory.

2.2.3.4 MicrOMEGAs 3.6.9.2

Requires: micromegas:true, wimp_candidate:pdg.

MicrOMEGAs is a code capable of computing various DM observables for BSM models

with WIMP candidates, such as the relic abundance, direct detection cross-sections, and indi-

rect detection observables. Each MicrOMEGAs installation in GAMBIT is a separate backend,

as the source is compiled directly with the model files. Therefore for each newly-added Mi-

crOMEGAs model, GUM creates a new single backend for MicrOMEGAs, via the new frontend

MicrOmegas_new model_3_6_9_2.cpp.

MicrOMEGAs uses CalcHEP files as input so is subject to the same caveats as CalcHEP,

covered above. MicrOMEGAs assumes that there is an additional symmetry under which the

SM is even and any dark matter candidate is odd. MicrOMEGAs distinguishes an odd particle

by having its name begin with a tilde, such as ∼chi. If no particle name in a theory begins

with a tilde, the MicrOMEGAs routines will fail.7 The particle name is set by the ParameterName

option in FeynRules, and the OutputName option in SARAH. If the indicated DM candidate does

not have a particle name beginning with a tilde, GUM throws an error.

GUM provides a simple interface to the relic density calculation in MicrOMEGAs. The YAML

entry for computing the relic density with MicrOMEGAs is:

Rules:

- capability: RD_oh2

function: RD_oh2_MicrOmegas

GUM also provides a simple interface to the direct detection routines in MicrOMEGAs, which

simply provide calculations of the spin-independent and spin-dependent cross-sections. This

is fed to DDCalc [4, 63] which computes expected rates for a wide range of direct detection

experiments.

6At the time of writing, LanHEP is the only package that supports automatic generation of four-fermion
contact interactions for CalcHEP files.

7If the DM particle is not self-conjugate, its antiparticle should also begin with a tilde.
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As each installation of MicrOMEGAs is a separate backend, each requires a specific build

command:

make micromegas_new model

Future versions of GAMBIT and GUM will interface to MicrOMEGAs 5 [178], which contains

routines for computing the relic abundance of DM via freeze-in, and allows for two-component

DM.

2.2.3.5 Pythia 8.212

Requires: pythia:true, collider_processes:[...].

If the user requests Pythia output for a given model, either FeynRules or SARAH generates a

collection of UFO files. GUM calls MadGraph directly using the UFO model files, and generates

new output for Pythia in the form of matrix elements. GUM then writes the appropriate entries

in the backend patch system and connects the new matrix elements with those existing in Pythia,

and adds the corresponding entry to the file default_bossed_versions.hpp. Because Pythia is a

C++ code, and the Pythia class it defines is used directly in ColliderBit, new versions of the

backend must be processed for automated classloading from the corresponding shared library

by BOSS (the backend-on-a-stick script; [110]). This process generates new header files that

must be #included in GAMBIT itself, and therefore picked up by CMake. Therefore, a new

version of Pythia is correctly built by running the commands

cmake ..

make pythia_new model

cmake ..

make -jn gambit

in the GAMBIT build directory. In the current version of ColliderBit, functions from nulike

[183,184] are also required in order to perform inline marginalisation over systematic errors in

the likelihood calculation; this can be built with

make nulike

also in the GAMBIT build directory.

The user must provide a list of all processes to include in the new version of Pythia in the

.gum file under the heading collider_processes; see Sec. 2.3.3 for details. Once a new Pythia

has been created, it has access to all implemented LHC searches within ColliderBit. The relevant

YAML file entry to include Pythia simulations is

ObsLikes:

# LHC likelihood from Pythia

- purpose: LogLike

capability: LHC_Combined_LogLike
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along with rules specifying how to resolve the corresponding dependencies and backend require-

ments, e.g.

Rules:

# Choose LHC likelihood form (assume normal or log-normal distribution for systematics)

- capability: LHC_LogLikes

backends:

- {capability: lnlike_marg_poisson_gaussian_error}

# Choose to get cross-sections by Monte Carlo

- capability: CrossSection

function: getMCxsec

# Select where to import model-specific decays from - CalcHEP in this instance.

# (Alternatively: all_new model_decays_from_SPheno)

- capability: decay_rates

function: all_decays

To perform jet matching for models generated with GUM, we make use of the MLMmatching

machinery already present in Pythia. Traditional MLM matching applies a phase space kT cut

on partons (xqcut) at the matrix element level. These are showered and a jet finding algorithm

(Pythia’s SlowJet class in our case) is used on the final state particles to identify jets with a

minimum kT (qCut). This parton shower cut, qCut, should in principle be set equal to xqcut,

but in practice must be varied somewhat for different models in order to ensure that the

distributions of jet rates are smooth. GUM’s strategy is to alter the ColliderBit initialisation

of Pythia to allow the relevant jet matching inputs to be passed through Pythia settings in the

GAMBIT YAML file:

Rules:

- capability: HardScatteringSim

type: ColliderPythia_new model_defaultversion

function: getPythia_new model

options:

LHC_13TeV:

xsec_veto: 0.028

pythia_settings:

# Specify MLM matching method

- JetMatching:merge = on

- JetMatching:scheme = 1

- JetMatching:setMad = off

- JetMatching:jetAlgorithm = 2

- JetMatching:slowJetPower = 1

# Jet finding properties

- JetMatching:coneRadius = 1.0

- JetMatching:etaJetMax = 5.0
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# Only light flavours in matching

- JetMatching:nQmatch = 4

# Maximum number of jets as defined in the matrix elements

- JetMatching:nJetMax = 1

# Minimal kT for a Pythia jet

- JetMatching:qCut = 50.0

# Phase space cut to approximate matrix element cuts

- PhaseSpace:pTHatMin = 50

We have opted in this approach to approximate the matrix element cuts (xqcut) by applying

a pT cut on events in Pythia (pTHatMin), rather than generating events in both MadGraph and

Pythia. While this pT cut and xqcut are not equivalent, the difference is minimal for single

jet events. An important distinction between these is that pTHatMin applies to all final state

particles, and so it must be set well below any /ET cuts in the analysis. Due to the limitations

of this approach, the accuracy of jet matching for multi-jet signals cannot be guaranteed, and

should be confirmed on a per-model, per-analysis basis.

We refer the reader to the ColliderBitmanual [112] for additional details on the Pythia options

used within the GAMBIT YAML file.

The particle numbering scheme used by both GAMBIT and Pythia is that of the PDG. For

dark matter particles to be correctly recognised as invisible by both libraries, their PDG codes

must be within the range 51− 60. Other particles that Pythia and GAMBIT tag as invisible are

the SM neutrinos, neutralinos, sneutrinos, and the gravitino. Where possible, all particles in

SARAH and FeynRules files passed to GUM by the user should adhere to the PDG numbering

scheme. For more details, see Sec. 43 of the PDG review [185].

GUM checks that any newly-added particle in the GAMBIT particle database is consistent

with the definition in Pythia. If there is an inconsistency between the two, GUM will throw an

error. For example, the PDG code 51 is not filled in the GAMBIT particle database by default,

but is reserved for scalar DM in Pythia. GUM will throw an error if the user attempts to add a

new particle with PDG code 51 but with spin 1/2.

2.2.3.6 HiggsBounds 4.3.1 & HiggsSignals 1.4.0

Requires: spheno:true.

Another bonus of using SPheno to compute decays is that all relevant couplings for Higgs-

Bounds and HiggsSignals are automatically computed. Whenever SPheno output is generated,

GUM also generates an interface to the GAMBIT implementations of HiggsBounds and HiggsSig-

nals via the GAMBIT type HiggsCouplingsTable.
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GUM achieves this by generating a function that produces an instance of the GAMBIT native

type HiggsCouplingsTable from the decay output of SPheno. The HiggsCouplingsTable provides

all decays of neutral and charged Higgses, SM-normalised effective couplings to SM final states,

branching ratios to invisible final states, and top decays into light Higgses. For more details,

we refer the reader to the SpecBit manual [113].

GAMBIT categorises models into two types: ‘SM-like’ refers to models with only the SM

Higgs plus other particles, and ‘MSSM-like’ refers to models with extended Higgs sectors. The

appropriate type is automatically selected for each model by the GAMBIT dependency resolver,

by activating the relevant one of the module functions in ColliderBit that can provide capability

HB_ModelParameters.

For ‘SM-like’ models, GUM edits the ColliderBitmodule function SMLikeHiggs_ModelParameters

to simply pass details of the single Higgs boson from the Spectrum object of the new model. For

‘MSSM-like’ models, GUM edits the ColliderBit function MSSMLikeHiggs_ModelParameters, which

communicates the properties of all neutral and charged Higgses to HiggsBounds/HiggsSignals in

order to deal with extended Higgs sectors.

To ensure the interface to the HiggsCouplingsTable works as expected, the user should make

sure that the PDG codes of their Higgs sector mimics those of both GAMBIT and the SLHA:

# CP-even neutral Higgses

h0: [25, 35, 45]

# CP-odd neutral Higgses

A0: [36, 46]

# Charged Higgs

H+: 37

The MSSMLikeHiggs_ModelParameters function automatically supports all MSSM and NMSSM

models within GAMBIT, as well as any model with a similar Higgs sector (e.g. a Two-Higgs

Doublet Model or any subset of the NMSSM Higgs sector). If the user has extended Higgs

sectors beyond this, i.e. with more Higgses than the NMSSM, then they will need to extend

both GUM and GAMBIT manually.

On the GAMBIT side, if the Higgs sector has multiple charged Higgses, more than three

CP-even or more than two CP-odd neutral Higgses, the user must write a new function in

ColliderBit/src/ColliderBit_Higgs.cpp to construct the HiggsCouplingsTable correctly. If there

are new CP-even Higgses, this will also require a new entry in Elements/src/smlike_higgs.cpp to

determine the ‘most SM-like’ Higgs.

In GUM, the user must add the PDG codes of additional mass eigenstates to the function

get_higgses in gum/src/particledb.py under the appropriate entries neutral_higgses_by_pdg and

charged_higgses_by_pdg, and also make appropriate changes to the functions write_spectrum_header

in gum/src/spectrum.py to reflect any changes to the construction of the HiggsCouplingsTable.

The appropriate YAML entries for using HiggsBounds and HiggsSignals likelihoods are simply

ObsLikes:
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# HiggsBounds LEP likelihood

- purpose: LogLike

capability: LEP_Higgs_LogLike

# HiggsSignals LHC likelihood

- purpose: LogLike

capability: LHC_Higgs_LogLike

where the choice of function fulfilling the capability HB_ModelParameters is automatically taken

care of by the dependency resolver.

HiggsBounds and HiggsSignals can both be built with

make higgsbounds higgssignals

but neither actually needs to be rebuilt once a new model is added by GUM.

2.3 Usage

2.3.1 Installation

GUM will be distributed with GAMBIT 2.0.0 and later. The program can be found within

the gum folder in the GAMBIT root directory, and makes use of CMake. In addition to the

minimum requirements of GAMBIT itself, GUM also requires at least:

• Mathematica 7.0

• Python 2.7 (including Python3+)

• Version 1.41 of the compiled Boost libraries Boost.Python and Boost.Filesystem

• libuuid

• libX11 development libraries

GUM expects the Mathematica executable math to be executable from the command line.

This should be added to the user’s $PATH to ensure GUM works correctly. Note that all CMake

flags used in GUM are entirely independent from those used within GAMBIT. From the GAMBIT

root directory, the following commands will build GUM:

cd gum

mkdir build

cd build

cmake ..

make -jn

where n specifies the number of processes to use when building.
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2.3.2 Running GUM

The input for GUM is a .gum file, written in the YAML format. This file contains all of

the information required for GUM to write the relevant module functions for GAMBIT, in a

similar vein to the input YAML file used in GAMBIT. GUM is executed with an initialisation

file new model .gum with the -f flag, as in

gum -f new model.gum

The full set of command-line flags are:

-d/--dryrun

to perform a dry run

-h/--help

to display help

-f/--file file.gum

to use the instructions from file.gum to run GUM

-r/--reset file.mug

to use the instructions from file.mug to run GUM in reset mode

There are three operational modes of gum: dry run, regular and reset. During a dry run, no code

is actually written to GAMBIT. GUM checks that the Mathematica model file (either FeynRules

or SARAH) is suitable for use, and writes a number of proposed source files for GAMBIT, but

does not actually copy them to the GAMBIT source directories. This mode can be used for safe

testing of new .gum and model files, without modifying any of GAMBIT.

A regular run of GUM will perform all necessary checks, add the new model to GAMBIT and

generate all relevant GAMBIT code requested in the .gum file. After a regular GUM execution,

GUM prints a set of commands to standard output for the user to run. It is recommended

that the user copies these commands and runs them as instructed, as the order of performing

build and CMake steps can be important, due to new templated C++ types being provided by

backends (currently just Pythia).

In addition to the above, GUM outputs a reset (.mug) file after a successful run. This file is

used in the reset mode, and enables the user to remove a GUM-generated model from GAMBIT.

Hence, after adding a new model, the user can run the command

gum -r new model.mug

which will remove all source code generated by GUM associated with the model new model. Note

that if the user alters any of the auto-generated code, the resetting functionality may not work

as expected.
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2.3.3 Input file and node details

GUM files are YAML files in all but name. The only mandatory nodes for a GUM file are

the math node, specifying details of the Mathematica package used, and the output node, which

selects the GAMBIT backends that GUM should generate code for.

The full set of recognised nodes in a .gum file is:

math: describes the Mathematica package used, and subsequently, the model name, plus any

other information relating specifically to the package

wimp_candidate: gives details of the DM candidate in the model

output: selects which backends GUM should write output for

output_options: specific options to use for each backend installation

The math syntax is

math:

# Select the Mathematica package of interest,

# either ‘feynrules’ or ’sarah’

package: feynrules

# Choose the name of the model

model: new model

For specific information on FeynRules files, see Sec. 2.3.4, and for SARAH files, see Sec. 2.3.5.

Information about the DM candidate of interest is given in the wimp_candidate node. Al-

though this node is optional, if it is missing then no output will be written for DarkBit (including

the process catalogue and direct detection interfaces). The syntax is

# Select the PDG code of the DM candidate

wimp_candidate: 9900001

Note that only one DM candidate can be specified at present. Future versions of GAM-

BIT will allow for multiple DM candidates, and for the lightest stable particle (LSP) to be

determined by the Spectrum object.

The output option specifies for which backends GUM should generate code.

# Specify outputs: calchep, pythia, spheno, vevacious, micromegas

output:

calchep: true

spheno: true

vevacious: false

The default for each possible backend output is false. If the output node is empty, or if all

backend output is set to false, GUM will terminate with an error message.
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The output_options node allows the user to pass specific settings relevant for each backend

to GUM. We briefly go through these in turn. The syntax for this is

output:

backend_a: true

backend_b: true

output_options:

backend_a:

# Option given by a single key

option_a: value_a

backend_b:

# Option given by a list

option_b:

- entry_1

- entry_2

...

To tell MadGraph which processes to generate Pythia matrix elements for, the user must

provide a list of all BSM processes in MadGraph syntax. This is passed via the sub-node

output_options::pythia::collider_processes. The user clearly needs to know the names of each

particle within MadGraph in order to fill in this information.

While Pythia is able to perform its own showering for initial jets, these will be very soft. If

the user specifically requires hard initial sate radiation (ISR) jets, such as for a monojet signal

associated with DM pair production, these matrix elements should be explicitly requested. In

doing so, the user must be careful and aware that collider events are not double counted, i.e.

jet matching is performed. We explain our treatment of jet matching in Pythia in Sec. 2.2.3.5.

For example, to generate matrix elements for monojet and mono-photon production in

association with pair production of a DM candidate X, one would include

output:

pythia: true

output_options:

pythia:

collider_processes:

- p p > ∼X ∼X

- p p > ∼X ∼X j

- p p > ∼X ∼X a

The collider_processes sub-node is currently always required if pythia:true is set in the .gum

file.

When importing a new model, new model, a boolean YAML sub-option named new model:all,

for all additional BSM processes, will always be available within the pythia_settings option of

the function getPythia_new model.
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Other sub-nodes offer the ability to use the native multiparticle description withinMadGraph

(multiparticles), and to select events with the relevant particles in the initial and final state

(pythia_groups). An example including all available output_options for Pythia is shown below.

math:

package: feynrules

model: newSUSY

output:

# Generate output for Pythia

pythia: true

output_options:

pythia:

# Define some multiparticles for ease

multiparticles:

- chi0: [chi0_1, chi0_2, chi0_3, chi0_4]

- chi0bar: [chi0_1, chi0_2, chi0_3, chi0_4]

- chi+: [chi+_0, chi+_1]

- chi-: [chi-_0, chi-_1]

# All processes we want to export to Pythia

collider_processes:

- p p > chi0 chi0bar j

- p p > chi+ chi-

- p p > chi- H+

...

# Define some groups so we can import processes with these particles in the

# initial or final states when performing a scan

pythia_groups:

- Neutralino: [chi0_1, chi0_2, chi0_3, chi0_4]

In this example, including the example pythia_groups node will generate an additional group

of events known as newSUSYNeutralino:all, which can also be set in the pythia_settings option

of the new ColliderBit module function getPythia_newSUSY. Setting this flag to on picks out all

processes in which any of the particles in the pythia_group is an initial or a final state. This

is useful for when one wishes to simulate events only for a specific subset of the processes for

which matrix elements have been generated for the new model.

For SPheno, the user can request to turn loop decays off via the flag IncludeLoopDecays,

math:

package: sarah

model: newHDM

output:

# Generate output for SPheno

spheno: true
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output_options:

spheno:

IncludeLoopDecays: false # default: true

2.3.4 FeynRules pathway

Here we describe the process by which GUM can parse a model defined in FeynRules. For

details on how to correctly implement a model in FeynRules, we refer the reader to the FeynRules

manual [132]. There are many examples of models available on the FeynRules website.8

2.3.4.1 Outputs

FeynRules is designed to study particle physics phenomenology at tree level, and does not

directly interface to any spectrum generators. FeynRules is therefore well suited to EFTs and

simplified models, as gauge invariance and renormalisability are not typically required in these

cases. Because of this, when working from the outputs of FeynRules, GUM is only able to

provide minimal interfaces to the SpecBit module and the GAMBIT model database.

FeynRules is able to output two usable file formats for GUM: CalcHEP (.mdl files) and UFO

files. GUM uses .mdl files with CalcHEP to compute tree-level decay rates and DM annihilation

cross-sections, and with MicrOMEGAs to compute DM relic densities and direct detection rates.

The UFO files are currently only used by the MadGraph-Pythia 8 chain, for collider physics. See

Sec. 2.2 for details.

2.3.4.2 Porting a FeynRules model to GAMBIT

To add a model to GAMBIT based upon a FeynRules file, GUM tries to find the new model.fr

model file, and any restriction (.rst) files that the user may wish to include, first in

GUM dir/contrib/FeynRules/Models/new model/

where GUM dir is the base directory of GUM itself. If the files are not found there, GUM instead

looks in

GUM dir/Models/new model/

To emulate the FeynRules command LoadModel["new model.fr"] the .gum file simply needs

the entry

math:

package: feynrules

model: new model

8http://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage
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Many models hosted on the FeynRules website and elsewhere often utilise ‘base’ files and

extensions, where one model builds upon another. For instance, a model called SingletDM that

builds on the Standard Model could be loaded in a Mathematica session using the FeynRules

command LoadModel["SM.fr","SingletDM.fr"]. This behaviour is also possible with GUM via the

additional option base_model. In this case, GUM expects SM.fr to be located in Models/SM/ and

SingletDM.fr to be in Models/SingletDM/ (where both paths can be independently relative to

GUM dir or to GUM dir/contrib/FeynRules/). A user would indicate this in their input file like

so:

math:

package: feynrules

model: SingletDM

base_model: SM

Additional FeynRules-only options for the math node include the ability to load restriction

(.rst) files,

math:

...

# Select any restrictions

restriction: DiagonalCKM

and specify the name of the Lagrangian that FeynRules should compute the Feynman rules for.

The definition of the Lagrangian can either be a single definition from the FeynRules file:

math:

package: feynrules

model: SingletDM

base_model: SM

# Total Lagrangian in SingletDM.fr

lagrangian: LTotal

or can be given as a string of Lagrangians:

math:

package: feynrules

model: SingletDM

base_model: SM

# All symbols defined in SM.fr or SingletDM.fr

lagrangian: LSM + LDMinteraction + LDMKinetic

After loading the model, GUM performs some diagnostics on the model to ensure its validity,

checking that the Lagrangian is hermitian, and that all kinetic and mass terms are correctly

diagonalised according to the FeynRules conventions. For more details, we refer the reader to

the FeynRules manual [132].
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2.3.4.3 Requirements for FeynRules files

GUM interacts with loaded FeynRules files via the EParamList and PartList commands. To

successfully parse the parameter list, every parameter must have a BlockName and OrderBlock

associated with it.

A model implemented in FeynRules will be defined in GAMBIT by the full set of parameters

denoted as external, by ParameterType -> External in the input .fr file. Additionally, all masses

for non-SM particles are added as input parameters, as they are not computed by spectra.

For example, the SM extended by a scalar singlet S via a Higgs portal with the interaction

Lagrangian L ⊃ λhsH
†HS2 would be defined as a model in GAMBIT by the coupling λhs, as

well as the mass of the new field mS. The properties of the particle S are stored in GAMBIT’s

particle database, such as its spin, colour representation, electric charge, and PDG code.

The user should also not use non-alphanumeric characters (apart from underscores) when

defining parameter names (including the ExternalParameter field), as this will typically result in

errors when producing output. The exception to this is a tilde, which is often used to signify

a conjugate field, or in the case of MicrOMEGAs a DM candidate.

For the MadGraph-Pythia pathway to work correctly, each new external parameter must

have its InteractionOrder set. See Sec. 6.1.7 of the FeynRules manual for details [132]. A fully

compliant FeynRules entry for a parameter looks as follows:

M$Parameters = {

...

gchi == {

ParameterType -> External,

ComplexParameter -> False,

InteractionOrder -> {NP, 1},

BlockName -> DMINT,

OrderBlock -> 1,

Value -> 1.,

TeX -> Subscript[g,\\[Chi]],

Description -> "DM-mediator coupling"

},

...

where we that see the BlockName, OrderBlock and InteractionOrder are all defined. We also

set ComplexParameter to False, as FeynRules is not able to generate CalcHEP files for complex

parameters. All parameters that are complex should be redefined as their real and imaginary

parts, with all factors of i explicitly placed in the Lagrangian.

For a matrix, the OrderBlock does not need to be specified,

M$Parameters = {

...

yL == {

ParameterType -> External,
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ComplexParameter -> False,

InteractionOrder -> {BSM, 1},

Indices -> {Index[Generation],

Index[Generation]},

BlockName -> yL,

Value -> {yL[1,1]->1, yL[1,2]->0,

yL[2,1]->0, yL[2,2]->1},

TeX -> Subscript[y,L],

InteractionOrder -> {NP, 1},

Description -> "Left-handed matrix"

},

...

In this case, GUM will add 4 model parameters to the model for each matrix index, labelled

by matrixname_[i]x[j], i.e. yL_1x1, yL_1x2, yL_2x1, yL_2x2 for the above entry. Note that the

values for each entry can be set to anything; these will all be set by GAMBIT during a scan.

An example of a particle implementation, for the Majorana DM candidate used in Sec. 2.4,

is

M$ClassesDescription = {

...

F[5] == {

ClassName -> chi,

SelfConjugate -> True,

Mass -> {mchi, 1000.},

Width -> 0.,

PDG -> 52,

ParticleName -> "∼chi",

},

...

Here we see that the ParticleName begins with a tilde, so thatMicrOMEGAs can correctly identify

it as a WIMP DM candidate, the PDG code is assigned to 52 (generic spin-1/2 DM, as per the

PDG), and the particle mass mchi will be added as an external parameter. Note that because

this particle has SelfConjugate -> True, GUM does not require the electric charge to be set. If

the particle were Dirac, i.e. SelfConjugate -> False, GUM would require the additional entry

QuantumNumbers -> {Q -> 0}.

For a particle η that should decay, an appropriate entry for the particle width would look

like Width -> {weta, 1.}, enabling the contents of the DecayTable to be passed to CalcHEP. Note

that in this case, weta will not be set as a free parameter of the model in GAMBIT, but derived

from the model parameters and accessible channels.
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2.3.5 SARAH pathway

2.3.5.1 Outputs

As shown in Table 2.1, SARAH is able to generate output for CalcHEP, MicrOMEGAs, Pythia,

SPheno and Vevacious. As SARAH is able to generate CalcHEP, MadGraph/Pythia and Mi-

crOMEGAs output, it can mirror the capabilities of FeynRules in the context of GUM.

SARAH has been labelled a ‘spectrum generator generator’, as it can also automatically

write Fortran source code for SPheno for a given model. GUM is able to automatically patch the

SPheno source code generated by SARAH, and write a frontend interface to that SARAH-SPheno

version.

2.3.5.2 Porting a SARAH model to GAMBIT

To add a model to GAMBIT based upon a SARAH file, the model file new model.m must be

located in

GUM dir/contrib/SARAH/Models/new model/

or

GUM dir/Models/new model/

The usual SARAH files parameters.m and particles.m should also be present in one of these

locations. To generate spectra via SPheno, a SPheno.m file must also be provided in the same

directory.

GUM loads a new model in SARAH by invoking the command Start["new model"], which is

selected by the .gum entries

math:

package: sarah

model: new model

In order to validate the model GUM uses the SARAH command CheckModel[]. SARAH

provides the results of the CheckModel[] function only to stdout and via error messages. GUM

therefore captures the output and message streams from Mathematica in order to gather this

information, and decides whether the errors should be considered fatal or not. Non-fatal errors,

including gauge anomalies, possible allowed terms in the Lagrangian or missing Dirac spinor

definitions, are directed to GUM’s own standard output as warnings. Fatal errors, such as non-

conservation of symmetries or those associated with particle and parameter definitions, cause

GUM to abort, as subsequent steps are guaranteed to fail in these cases.

2.3.5.3 Requirements for SARAH files

As with FeynRules, GUM extracts information from SARAH about the parameters and parti-

cles in the model. These are collected by SARAH in the ParameterDefinitions and ParticleDefini-
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tions lists, respectively.

Definitions for new model parameters are located in the parameters.m file within the SARAH

model folder. A well-defined entry for a new SARAH parameter looks as follows:

ParameterDefinitions = {

...

{gchi,

{

Description -> "DM-mediator coupling",

LesHouches -> {DMINT, 1},

OutputName -> "gchi",

LaTeX -> "g_\\chi"

}

},

...

}

where the LesHouches block and respective index are required fields.

For a matrix, the index does not need to be specified:

ParameterDefinitions = {

...

{YN,

{

Description -> "Yukawa for N field",

LesHouches -> YN,

LaTeX -> "Y_{\\rm N}",

OutputName -> yn

},

},

...

}

This instructs GUM to add a LesHouches block YN to the SimpleSpec definition, which will be

filled by a spectrum generator.

GUM is concerned with the properties of a particle after electroweak symmetry breaking.

An example particle implementation from the particles.m file is:

ParticleDefinitions[EWSB] = {

...

{ss,

{

Description -> "Scalar singlet",

Mass -> LesHouches,

PDG -> {51},

ElectricCharge -> 0,

OutputName -> "∼Ss",

LaTeX -> "S"
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}

},

...

}

Here the important entries are

• the Mass entry, where Mass -> LesHouches signifies that the particle mass will be provided

by the GAMBIT Spectrum object (whether that is filled using SPheno or a tree-level calcu-

lation),

• the PDG entry, which specifies a list over all generations for the mass eigenstates (in this

example there is just one), and

• the ElectricCharge field.

Note that SARAH has default definitions for many particles and parameters in SARAH dir/Mo-

dels/particles.m and SARAH dir/Models/parameters.m. Their properties can be inherited, or

overwritten, via the Description field.

Information about mixing matrices is stored by SARAH in the variable DEFINITION[EWSB][Mat-

terSector]. From this variable GUM learns the names of the mixing matrices associated with

each particle. For Weyl fermions, GUM requests the name of the associated Dirac fermion,

stored in the variable DEFINITION[EWSB][MatterSector]. As an example, the mixing matrices for

the electroweakino sector of the MSSM are extracted as

DEFINITION[EWSB][MatterSector][[;;,2]] = {

...

{L0, ZN},

{{Lm, UM}, {Lp, UP}}

...

}

which associates the matrix ZN with the Weyl fermion L0 (neutralinos) and the matrixes UM and

UP with Lm (negative charginos) and Lp (positive charginos). As these are Weyl fermions, the

Dirac eigenstates are

DEFINITION[EWSB][DiracSpinors] = {

...

Chi -> {L0, conj[L0]},

Cha -> {Lm, conj[Lp]}

...

}

GUM thus knows to assign the mixing matrix ZN to Dirac-eigenstate neutralinos Chi, as well as

the matrices UM and UP to Dirac-eigenstate charginos Cha.

71



As opposed to FeynRules, where all parameters and particle masses become GAMBIT model

parameters, the SARAH pathway attempts to optimise this list through various means. In

the absence of a spectrum generator (e.g. SPheno, see below), almost all the parameters in

ParameterDefinitions become model parameters. Only those with explicit dependencies on

other parameters are removed, i.e. those with the Dependence or DependenceSpheno fields. In

addition, SARAH provides tree-level relations for all masses, via TreeMass[particle name,EWSB], so

even in the absence of a spectrum generator, none of the particle masses become explicit model

parameters.

If the user elects in their .gum file to generate any outputs from SARAH for specific back-

ends, GUM requests that SARAH generate the respective code using the relevant SARAH com-

mands. These are MakeCHep[] for CalcHEP and MicrOMEGAs, MakeUFO[] for MadGraph/Pythia,

MakeSPheno[] for SPheno and MakeVevacious[] for Vevacious.

When SPheno output is requested, GUM interacts further with SARAH in order to obtain

all necessary information for spectrum generation:

1. Rename parameters and masses with those in SPheno. The parameter names are ob-

tained using the SPhenoForm function operating on the lists listAllParametersAndVEVs and

NewMassParameters. The mass names are obtained just by using the SPhenoMass[particle name]

command.

2. Extract the names and default values of the parameters in the MINPAR and EXTPAR blocks, as

defined in the model file SPheno.m. For each of these, store the boundary conditions, also

from SPheno.m, that match the MINPAR and EXTPAR parameters to those in the parameter

list. Note that as of GUM 1.0, only the boundary conditions in BoundaryLowScaleInput are

parsed.

3. Remove from the parameter list those parameters that will be use to solve the tad-

pole equations. These are collected from the list ParametersToSolveTadpoles as defined in

SPheno.m.

4. Get the names of the blocks, entries and parameter names for all SLHA input blocks end-

ing in IN, e.g. HMIXIN, DSQIN, etc. SARAH provides this information in the CombindedBlocks

list.

5. Register the values of various flags needed to properly set up the interface to SPheno.

These are "SupersymmetricModel", "OnlyLowEnergySPheno", "UseHiggs2LoopMSSM" and

"SA‘AddOneLoopDecay".

2.4 A worked example

To demonstrate the process of adding a new model to GAMBIT with GUM, in this section

we provide a simple worked example. Here we use GUM to add a model to GAMBIT, perform
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a parameter scan, and plot the results with pippi [186]. This example is designed with ease of

use in mind, and can be performed on a personal computer in a reasonable amount of time.

For this reason we select a simplified DM model, implemented in FeynRules.

In this example, we consider constraints from the relic density of dark matter, gamma-ray

indirect detection and traditional high-mass direct detection searches. It should be noted that

this is an example, not a full global scan, so we do not use all of the information available to

us – a real global fit of this model would consider nuisance parameters relevant to DM, as well

as a full set of complementary likelihoods such as from other indirect DM searches, low-mass

direct detection searches, and cosmology.

The FeynRules model file, .gum file, YAML file and pip file used in this example can be

found within the Tutorial folder in GUM.

2.4.1 The model

The model is a simplified DM model, where the Standard Model is extended by a Majorana

particle χ acting as DM, and a scalar mediator Y with a Yukawa-type coupling to all SM

fermions, in order to adhere to minimal flavour violation. The DM particle is kept stable by a

Z2 symmetry under which it is odd, χ → −χ, and all other particles are even. Both χ and Y

are singlets under the SM gauge group.

Here, for illustrative purposes and to keep the model simple, we assume that any mixing

between Y and the SM Higgs is small and can be neglected. This model has been previously

considered in e.g. [187, 188] and is also one of the benchmark simplified models used in LHC

searches [189–191]. The model Lagrangian is

L = LSM +
1

2
χ
(
i/∂ −mχ

)
χ+

1

2
∂µY ∂

µY − 1

2
m2
Y Y

2 − gχ
2
χχY − cY

2

∑

f

yfffY . (2.4.1)

Note that this theory is not SU(2)L invariant. One possibility for a ‘realistic’ model involves

Y -Higgs mixing, as previously mentioned, which justifies choosing the Y ff couplings to be

proportional to the SM Yukawas yf .

The free parameters of the model are simply the dark sector masses and couplings, {mχ,

mY , cY , gχ}. In this example we follow the FeynRules pathway, working at tree level.

2.4.2 The .gum file

Firstly, we need to add the FeynRules model file to the GUM directory. The model is named

‘MDMSM’ (Majorana DM, scalar mediator). Starting in the GUM root directory, we first create

the directory that the model will live in, and move the example file from the Tutorial folder to

the GUM directory:

mkdir Models/MDMSM
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cp Tutorial/MDMSM.fr Models/MDMSM/MDMSM.fr

As we are working with FeynRules, the only backends that we are able to create output for

are CalcHEP, MicrOMEGAs and MadGraph/Pythia. For the sake of speed, in this tutorial we will

not include any constraints from collider physics. This is also a reasonable approximation, as

for the mass range that we consider here, the constraints from e.g. monojet, dijet and dilepton

searches are subleading (see e.g. Ref. [187]). We therefore set pythia:false. The contents of the

supplied .gum file are simple:

math:

# Choose FeynRules

package: feynrules

# Name of the model

model: MDMSM

# Model builds on the Standard Model FeynRules file

base_model: SM

# The Lagrangian is defined by the DM sector (LDM), defined in MDMSM.fr

# plus the SM Lagrangian (LSM) imported from the ‘base model’, SM.fr

Lagrangian: LDM + LSM

# Make CKM matrix = identity to simplify output

restriction: DiagonalCKM

# PDG code of the DM candidate in FeynRules file

wimp_candidate: 52

# Select outputs for DM physics.

# Collider physics is not as important in this model.

output:

pythia: false

calchep: true

micromegas: true

Note the selection of the PDG code of the DM particle as 52, so that if we were to use Pythia,

χ would be correctly identified as invisible.

We can run this from the current location, or move it to the gum_files folder. Assuming

that we moved it to the gum_files folder, we can execute

gum -f gum files/MDMSM.gum

and GUM will automatically create all code needed to perform a fit using GAMBIT. On an

i5-based laptop, GUM takes about a minute to run. All that remains now is to (re)compile

the relevant backends and GAMBIT, and the new model will be fully implemented, and ready

to scan. GUM prints a set of suggested build commands to standard output to build the new

backends and GAMBIT itself. Starting from the GAMBIT root directory, these are

cd build

cmake ..
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make micromegas_MDMSM

make calchep

make -jn gambit

where n specifies the number of processes to use when building.

Note that GUM does not adjust any CMake flags used in previous GAMBIT compilations,

including building any samplers required for a scan. To build the Diver scanning algorithm

required for the example scan in this section, the user would instead run

cd build

cmake -D WITH_MPI=ON ..

make diver

cmake ..

make micromegas_MDMSM

make calchep

make -jn gambit

We explicitly add the optional (but recommended) flag -D WITH_MPI=ON to the above example

here, which enables parallelisation with many MPI processes. Before running the configura-

tion file, we recommend passing any desired CMake flags to GAMBIT from the GAMBIT build

directory (e.g. enabling MPI, or selecting optimisation settings). For more thorough CMake

instructions, see the README in the GUM dir/Tutorial, and CMAKE_FLAGS.md in the GAMBIT root

directory.

2.4.3 Phenomenology & Constraints

The constraints that we will consider for this model are entirely in the DM sector via DarkBit,

as those from colliders are less constraining [187]. These are:

• Relic abundance: computed by MicrOMEGAs, and employed as an upper bound, in the

spirit of effective DM models.

• Direct detection: rates computed by MicrOMEGAs, likelihoods from XENON1T 2018 [57]

and LUX 2016 [192], as computed with DDCalc [4, 63, 84].

• Indirect detection: Fermi -LAT constraints from gamma-ray observations of dwarf spheroidal

galaxies (dSphs). Tree-level cross-sections are computed by CalcHEP, γ-ray yields are

consequently computed via DarkSUSY [193,194], and the constraints are applied by gam-

like [63].

As the relic density constraint is imposed only as an upper bound, we rescale all DM

observables by the fraction of DM, f = Ωχ/ΩDM.

The YAML file provided in the gum/Tutorial/ directory is fairly standard, so we will cover

only the important sections here. For an overview of YAML files in GAMBIT, see Sec. 1.3.3 and

Sec. 6 of the GAMBIT manual [110].
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Firstly the parameters section indicates all models required for this scan: not just the

MDMSM parameters, but also SM parameters, nuclear matrix elements and DM halo param-

eters. The parameter range of interest for the MDMSM model will be masses ranging from

45GeV to 10TeV, and dimensionless couplings ranging from 10−4 to 4π. We will scan each of

these four parameters logarithmically.

Parameters:

# Import some default GAMBIT SM values

StandardModel_SLHA2: !import include/StandardModel SLHA2 defaults.yaml

# Higgs sector is defined separately in GAMBIT

StandardModel_Higgs:

mH: 125.09

# Our dark matter model, custom-delivered by GUM

MDMSM:

mchi:

range: [45, 10000]

prior_type: log

mY:

range: [45, 10000]

prior_type: log

gchi:

range: [1e-4, 12.566]

prior_type: log

cY:

range: [1e-4, 12.566]

prior_type: log

# Default halo parameters for the example

Halo_gNFW_rho0:

rho0: 0.3

v0: 240

vesc: 533

vrot: 240

rs: 20.0

r_sun: 8.5

alpha: 1

beta: 3

gamma: 1

# Nuclear matrix parameters, also default

nuclear_params_sigmas_sigmal:

sigmas: 43

sigmal: 58
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deltau: 0.842

deltad: -0.427

deltas: -0.085

The ObsLikes section includes likelihoods concerning the relic density, indirect detection

from dSphs, and direct detection experiments.

ObsLikes:

# Relic density

- capability: lnL_oh2

purpose: LogLike

# Indirect detection

- capability: lnL_FermiLATdwarfs

purpose: LogLike

# Direct detection: LUX experiment

- capability: LUX_2016_LogLikelihood

purpose: LogLike

# Direct detection: XENON1T experiment

- capability: XENON1T_2018_LogLikelihood

purpose: LogLike

The Rules section uniquely specifies the functions to use for the dependency resolver:

Rules:

# Use MicrOmegas to compute the relic density

- capability: RD_oh2

function: RD_oh2_MicrOmegas

# Choose to implement the relic density likelihood as an upper bound, not a detection

- capability: lnL_oh2

function: lnL_oh2_upperlimit

# Choose to use detailed Fermi Pass 8 dwarf likelihoood from gamlike

- capability: lnL_FermiLATdwarfs

function: lnL_FermiLATdwarfs_gamLike

# Choose to get decays from DecayBit proper, not from an SLHA file.

- capability: decay_rates

function: all_decays

# Choose to rescale signals in direct and indirect detection by the relic density fraction

- capability: RD_fraction

function: RD_fraction_leq_one

The scanner section selects the differential evolution sampler Diver with a fairly loose con-
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vergence threshold of 10−3 and a working population of 10,000 points. For details on Diver, see

Ref. [117].

Scanner:

# Select differential evolution (DE) scanner

use_scanner: de

scanners:

# Select settings for DE with Diver

de:

plugin: diver

like: LogLike

NP: 10000 # Population size

convthresh: 1e-3 # Convergence threshold

verbosity: 1

To perform the scan we copy the YAML file to the yaml_files folder within the GAMBIT root

directory. This is a necessary step, as we need to !import the appropriate Standard Model

YAML file from the relative path include (i.e. the folder yaml_files/include in the GAMBIT root

directory). From the GAMBIT root directory, we

cp gum/Tutorial/MDMSM_Tute.yaml yaml_files/

and run GAMBIT with n processes,

mpirun -n n gambit -f yaml_files/MDMSM_Tute.yaml

The above scan should converge in a reasonable time on a modern personal computer; this

took 11 hr to run across 4 cores on a laptop with an i5-6200U CPU @ 2.30GHz, sampling 292k

points in total. The results of this scan are shown below.

Note that whilst the scan has converged statistically, the convergence criterion that we set

in the YAML file above is not particularly stringent, so many of the contours presented in this

section are not sampled well enough to be clearly defined. A serious production scan would

typically be run for longer, and more effort made to map the likelihood contours more finely.

Nonetheless, the samples generated are more than sufficient to extract meaningful physics.

Once the scan has finished, we can plot with pippi [186]. As Diver aims to finds the maximum

likelihood point, we will perform a profile likelihood analysis with pippi. Assuming that pippi

is in $PATH, do

cd GUM dir/Tutorial

pippi MDMSM.pip

which will produce plots of the four model parameters against one another, as well against as

a raft of observables such as the relic abundance and spin-independent cross-section (rescaled

by f).
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Figure 2.1: Profile likelihood in the mχ–mY plane with the relic density as an upper
bound (left panel) and as an observation (right panel). Above the red dashed line at
mχ = mY , DM can annihilate into Y bosons. The purple dashed line at 2mχ = mY

indicates the region where DM can annihilate on resonance. Contour lines show the 1
and 2σ confidence regions. The white star shows the best-fit point. The grey contours
in the right-hand panel are the 1 and 2σ contours from the left-hand panel.

2.4.4 Results

The left-hand panel of Fig. 2.1 shows the DM mass mχ against the mediator mass mY .

The relic density requirement maps out the structure in the mχ–mY plane. There are two sets

of solutions: firstly when the DM is heavier than the mediator, mχ > mY (shown by the red

dashed line in Fig. 2.1), and secondly where DM annihilates on resonance, 2mχ ≈ mY (shown

by the purple dashed line in Fig. 2.1).

When mχ < mY and the Y Y annihilation channel is not kinematically accessible, annihi-

lation predominantly occurs via an s-channel Y to bb or tt, depending on the DM mass. In

this case, the only way to efficiently deplete DM in the early Universe is when annihilation is

on resonance, mχ ≈ mY /2. Away from the resonance when the Y Y channel is closed, even

couplings of 4π are not large enough to produce a sufficiently high annihilation cross-section to

depelete the thermal population of χ to below the observed value.

When kinematically allowed, χχ→ Y → tt is the dominant process responsible for depleting

the DM abundance in the early Universe. When mχ < mt and mχ < mY , the only way to

produce the correct relic abundance is when exactly on resonance, 2mχ = mY , annihilating

mostly to bb. The effect of the t threshold can clearly be seen in Fig. 2.1: as the χχ → tt

channel opens up, the contours do not trace the resonance 2mχ = mY quite as tightly. This

is because the cross-section to tt is significantly larger, as the mediator coupling to the SM

leptons are proportional to their Yukawas. This means that the resonance region is far easier

to sample in the early Universe and leads to the spread about the purple line for mχ > mt in

Fig. 2.1.
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When the DM candidate is heavier than the mediator, the process χχ→ Y Y is kinematically

accessible, and proceeds via t-channel χ exchange. When this channel is open, the correct relic

abundance can be acquired independently of cY by adjusting mχ and gχ. This can be seen in

the left-hand panel of Fig. 2.2.

In this regime, the relic abundance constrains the DM coupling gχ, as seen in the right-hand

panel of Fig. 2.2, with annihilation cross-section 〈σv〉 ∝ g2χc
2
Y /m

2
χ. We plot mχ against gχ in

Fig. 2.3; the lower bound is set by the resonance region, and is (unsurprisingly) poorly sampled

for low values of mχ.
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To show the impact of allowing DM to be underabundant, we perform a separate scan

where we instead employ a Gaussian likelihood for the relic abundance. This can be achieved

by instead using the following entry in the Rules section of the YAML file:

# Choose to implement the relic density likelihood as a detection, not an upper bound

- capability: lnL_oh2

function: lnL_oh2_Simple

We show the mχ–mY plane for this scan in the right-hand panel of Fig. 2.1. For a given

point in the mχ–mY plane, the couplings gχ and cY must be correctly tuned to fit the relic

density requirement: clearly, the scanner struggles to find such points compared to when DM

can be underabundant. Notably, the sampler struggles to find the very fine-tuned points on

resonance when tt is not kinematically accessible.

In the right-hand panel of Fig. 2.3 we show the mχ–gχ plane when requiring that χ fits

the observed relic abundance, coloured by mY . There is a well-defined red line with mY

mχ
< 1,

corresponding to efficient annihilation to Y Y , i.e. for 〈σv〉 ∝ g4χ/m
2
χ. This is reflected in the

right-hand panel of Fig. 2.1: almost all of the valid samples for mχ < mt are in the regime

where mχ > mY , i.e. above the red dashed line. Here we see that the slope of the red line in the

right-hand panel of Fig. 2.3 is exactly half that of the lower bound on gχ, due to the fact that

the latter is instead set by resonant annihilation to fermions, which involves one less power of

gχ in the corresponding matrix element, i.e. 〈σv〉 ∝ g2χc
2
Y /m

2
χ.

Direct detection processes proceed via t-channel Y exchange. The functional form of the

spin-independent cross-section is [189]:

σNSI =
µ2
χNm

2
N

π

(
gχcY
vm2

Y

)2

f 2
N , (2.4.2)

where µχN is the DM-nucleon reduced mass, N = n, p, and the form factor

fN =
∑

q=u,d,s

f qN +
2

27
fGN . (2.4.3)

Here the light-quark form factors are

fup = 0.0233, fdp = 0.0343, f sp = 0.0458 (2.4.4)

fun = 0.0160, fdn = 0.0499, f sn = 0.0458, (2.4.5)

and the gluon factors fGN = 1−
∑

q=u,d,s f
q
N are

fGp = 0.8966, fGn = 0.8883. (2.4.6)

These follow directly from the values σs = 43MeV, σl = 58MeV chosen in the YAML file

presented in Sec. 2.4.3. Details of the conversion between the two parameterisations, and a
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Figure 2.4: Profile likelihood in the σpSI–mχ plane. The solid red line shows the
exclusion from XENON1T [57] and the dotted orange line shows the projection from
LZ [67]. The spin-independent scattering cross-section of dark matter with protons
σpSI is rescaled by the fraction of predicted relic abundance f ≡ Ωχ/ΩDM. Contour
lines show the 1 and 2σ confidence regions. The white star shows the best-fit point.

discussion of possible values for σs and σl, can be found in Refs. [63, 195].

Thus for a given DM mass mχ, direct detection constrains the parameter combination

gχcY /m
2
Y , rescaled by the DM fraction f ≡ Ωχ/ΩDM.

Fig. 2.4 shows the spin-independent cross-section on protons as a function of the DM mass.

As it is possible for χ to be underabundant for all masses, it is easy to evade direct detection

limits by simply tuning the couplings. We also plot the projection from LZ [67], which shows

the significant effect that future direct detection experiments can have on the parameter space

of this model, including the ability to probe the current best-fit point.

The best-fit region in Fig. 2.4 lies just below the XENON1T limit: this is due to a small

excess (less than 2σ) in the data, which can be explained by this model. This excess is discussed

in more detail in a GAMBIT study of scalar singlet DM [84].

Note that for all annihilation channels, the annihilation cross-section is proportional to the

square of the relative velocity of DM particles in the direction perpendicular to the momentum

transfer, i.e. 〈σv〉 ∝ v2⊥. This means that annihilation is velocity suppressed, especially in the

late Universe where v⊥ ∼ 0, an effect fully taken into account by MicrOMEGAs in computing

the relic density. As annihilation processes are also suppressed by the square of the DM fraction

f , indirect detection signals do not contribute significantly to the likelihood function. We show

the thermally-averaged value at freezeout in Fig. 2.5, which, as expected, overlaps the canonical

thermal value 〈σv〉 = 3×10−26cm3s−1. For comparison, in grey contours we also plot f 2(σv)v→0,

the effective cross-section for indirect detection. In this case, all parameter combinations give

cross-sections several orders of magnitude below the canonical thermal value, heavily supressing

all possible indirect detection signals.

If we wish to remove the model from GAMBIT, we simply run the command
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Figure 2.5: Profile likelihoods for the effective annihilation cross-section as a function
of dark matter mass, at different epochs in the evolution of the Universe. The dashed
orange line signifies the canonical thermal cross-section 〈σv〉 = 3×10−26cm3s−1. White
contours with coloured shading correspond to the thermal average cross-section at
dark matter freezeout. The contours show the 1 and 2σ confidence regions, and the
white star the best-fit point. For comparison, in grey contours we show the 1 and
2σ confidence regions for the annihilation cross-section in the v → 0 limit, rescaled
by the square of the fraction of the predicted relic abundance, f ≡ Ωχ/ΩDM. This is
the effective annihilation cross-section that enters indirect detection rates in the late
Universe.

gum -r mug files/MDMSM.mug

and the GAMBIT source reverts to its state prior to the addition of the model.

2.5 Summary

The standard chain for a theorist to test a BSM theory against data has been greatly

optimised, and largely automated in recently years, with the development of Lagrangian-level

tools such as FeynRules and SARAH. On the phenomenological side, GAMBIT has been designed

as a modular global fitting suite for extensive studies of BSM physics. GUM adds the final major

missing piece to the automation procedure. By providing an interface between GAMBIT, SARAH

and FeynRules, it makes global fits directly from Lagrangians possible for the first time. This

will make the process of performing statistically rigourous and comprehensive phenomenological

physics studies far easier than in the past.

We have shown that GUM produces sensible results for a simplified model, in good agreement

with previous results found in the literature. This is based on a scan that can be performed on

a personal computer in a reasonable time frame.

The modular nature of GUM means extension is straightforward. Future planned extensions
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include computations of modifications of SM precision observables and decays, a four-fermion

EFT plugin connecting FeynRules and CalcHEP, multi-component and co-annihilating dark

matter models, and interfacing to the GAMBIT flavour physics module FlavBit via FlavorKit,

to the spectrum generator FlexibleSUSY, to MicrOMEGAs 5 and to the dark matter package

MadDM.
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Chapter 3

CosmoBit

3.1 Introduction

The concordant cosmological model, ΛCDM, has had great success in explaining the struc-

ture we observe in the Universe. Within ΛCDM, the energy budget in the Universe is shared

between the matter content, radiation content, and dark energy, with spatial curvature close

to zero, i.e. a flat Universe.

When describing a flat Universe, ΛCDM is nominally described by six independent param-

eters. These are H0, the Hubble expansion rate today, ωb and ωcdm, the density of baryons and

cold dark matter, As and ns, the amplitude and spectral index of scalar perturbations, and

τreio, the optical depth to reionisation.

While ΛCDM is incredibly efficient in describing the Universe, many of its model parameters

are phenomenological. They describe the Universe statistically, as we observe it, but with

no underlying physical origin for the observed values, such as the observed DM density or a

mechanism sourcing scalar perturbations. The appeal of ΛCDM is that it is simple, yet fits all

of the observations, and via Occam’s razor is, in some sense, the ‘best’ model that we have. A

unified picture of particle cosmology goes beyond the ΛCDM picture and should capture all of

the same physics.

Building a framework to consistently test theories beyond ΛCDM is crucial in the current

climate, as next-generation cosmological experiments such as CMB-S4, the Simons Observa-

tory [196], LISA [197], the SKA [198] and Euclid [199, 200] will test the regime of ΛCDM to

orders of magnitude more than ever before. Such precision tests have the capacity to distinguish

between different models describing the effective picture of ΛCDM.

For instance, the neutrino mass mechanism guarantees additional degrees of freedom to the

SM: these new particles may play a significant role in the Hubble evolution, or contribute to the

number of relativistic degrees of freedom. Another example is a physical particle candidate for

DM and its interactions: a DM-SM interaction has possible detectable imprints on cosmological

observables such as CMB anisotropy spectra. Similarly, dark energy (Λ) can be explained by
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introducing additional particle content, such as in modified gravity theories. Finally, inflation

is widely accepted as sourcing the scalar perturbations to explain anisotropies in the Universe,

but the potential of the inflaton field is unknown, as well as its interactions with the SM (and

possibly DM).

To this end we present CosmoBit, the GAMBITmodule used to compute cosmological observ-

ables and likelihoods. The release of CosmoBit means that GAMBIT is the first tool capable of

consistently combining likelihoods from cosmology with those from particle physics for global

studies. I describe the observables and likelihoods contained within CosmoBit, the backend

codes we interface to, and their relevance for global fits in combination with particle physics.

The contents of this chapter are as follows: firstly, I briefly introduce Big Bang cosmology

and ΛCDM. Then, I consider various epochs of the cosmological history in more detail, how

deviations from ΛCDM can affect observations, and the relevant likelihoods and observables

contained within the first release of CosmoBit [2]. Finally, I present results from a global study

of the SM neutrino sector to obtain an improved limit on the mass of the lightest neutrino [3].

3.2 Standard Big Bang cosmology and ΛCDM

The cosmological principle states that our position in the Universe is not special: statisti-

cally, the Universe is identical at every position, and in all directions. This statement uniquely

restricts the geometry of the Universe to that of the Friedmann–Lemâıtre–Robertson–Walker

(FLRW) metric,

ds2 = dt2 − a(t)hij(x) dx
i dxj , (3.2.1)

where a(t) is the scale factor, related to the expansion rate of the Universe, and hij is the spatial

metric,

hij dx
i dxj =

dr2

1− kr2
+ r2dΩ2 (3.2.2)

where dΩ2 = dθ2 + sin2 θdφ2 is the 2-sphere element and k is the curvature parameter. Obser-

vationally, the Universe is extremely close to flat, k = 0.

All non-interacting components have individually conserved stress-energy, ∇µTµν = 0. For

a perfect fluid, the components are Ttt = ρ(t) and Tij = a2(t)P (t)hij(x) due to homogeneity

and isotropy, where ρ is the energy density, and P is the pressure. Considering the conservation

of the time component of the stress-energy tensor gives the evolution of the density,

0 = ∇µTµt = ∂tTtt − ΓµµαT
α
t − ΓµtαT

α
µ

= ρ̇+ 3
ȧ

a
(ρ+ P ) , (3.2.3)
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where Γijk is the Christoffel connection. Defining the equation of state for component i as

wi = Pi/ρi, the energy density of a given species in the Universe thus dilutes as ρi ∝ a−3(wi+1).

The picture of standard Big Bang cosmology is one of a hot Big Bang: beginning with a

dense, hot plasma, the Universe expands and cools. The rate of expansion of the Universe is

governed by its contents via the Friedmann equation,

ȧ2

a2
≡ H2(t) =

8πGN

3
ρtot −

k

a2
, (3.2.4)

where GN is the gravitational constant, k = 0 in a flat Universe, H is the Hubble rate, and

ȧ > 0 characterises an expanding Universe. Within the framework of ΛCDM, the cosmological

history begins with an epoch of radiation domination (wr = 1/3), followed by a period of matter

domination (wm = 0), and finally dark energy domination (wΛ = −1).

Neutrinos begin to decouple from the thermal plasma as the weak interactions become

comparable with the Hubble expansion, at Tγ ∼ 2 MeV. At this epoch in the cosmological

history, the Universe is radiation dominated. Both photons and neutrinos contribute to the

radiation density, as the neutrinos are highly relativistic.

Assuming the entropy of the Universe was conserved by electron-positron annihilation sets

the neutrino temperature. Denoting the effective number of degrees of freedom as

geff(T ) =
∑

bosons

gB +
7

8

∑

fermions

gF , (3.2.5)

conservation of the entropy s ∝ geffT
3 gives

Tν
Tγ

=
gγ
gν

1
3

(3.2.6)

where Tγ (Tν) is the photon (neutrino) temperature and gγ(ν) = geff(Tγ(ν). When T = Tγ only

the photon is an active relativistic degree of freedom, thus gγ = 2. When T = Tν , the electrons

and positrons are also relativistic, thus gν = 11/2. Hence, the neutrino-to-photon temperature

ratio is given by

Tν = Tγ

(
4

11

) 1
3

, (3.2.7)

The total radiation density is often parametrised in terms of the photon temperature and

the contribution from additional radiation as

ρr =

[
1 +

7

8

(
Tν
Tγ

)4

Neff

]
π2

15
T 4
γ , (3.2.8)

where Neff is the number of effective relativistic fermionic degrees of freedom. In ΛCDM, Neff

simply describes the number of SM neutrinos; the value typically used is not 3 but 3.045 ±
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0.002 [201], to account for the non-instantaneous decoupling of neutrinos, oscillation effects,

and finite temperature corrections.

Any new particle content that is relativistic (i.e. dark radiation) can be imprinted on ρr and

inferred from a non-standard value of Neff . Note that the parametrisation of Eq. (3.2.8) means

that any new relativistic species will only add partially to Neff .

Inference of Neff from Planck is currently consistent with the SM prediction, Neff = 2.99+0.34
−0.33

at 95% CL [28]. However, this quantity is poorly constrained, and does not prevent the possi-

bility of additional light species contributing to the radiation density. Further, when combining

CMB measurements with local measurements of H0, Planck find a value of Neff = 3.27± 0.15

at 68% CL. This is because adding additional BSM content is a good way to solve the ‘Hubble

tension’ between CMB and local measurements (see Sec. 3.3.4.2).

Additionally, the neutrino and photon temperatures can be altered from the SM expectation.

While the photon temperature today is well constrained by CMB measurements, impacts on

the neutrino temperature are not well constrained, as Tν has not been directly measured.

In standard cosmology, the neutrino temperature after decoupling is given by Eq. (3.2.7).

However any particle capable of injecting energy into the thermal bath can alter the neutrino

temperature. A well-motivated example is the annihilation of a DM particle χ annihilating to

e+e−, which would inject energy into the electron-photon plasma, causing an increase in the

photon temperature, which changes the time of decoupling. The effect this has is to cause

the neutrino temperature to fall. Conversely, an injection into the neutrino sector (such as

late-time decay of a Goldstone boson into neutrinos) would increase Tν .

After neutrino decoupling, but still during the period of radiation domination, the formation

of light elements proceeded at a temperature of Tγ ∼ 1 MeV. At a redshift of z ∼ 3400, the

epoch of matter domination began. During the epoch of matter domination, structure formation

proceeded hierarchically as DM collapsed under the influence of gravity. Photons decoupled

at z ∼ 1100 at recombination, when electrons and protons formed neutral hydrogen. From

the formation of neutral hydrogen until reionisation, z ∼ 20, the only emitted photons came

from the 21cm hydrogen spin-flip line; this is therefore known as the ‘dark ages’. Somewhere

between z ∼ 20 and z ∼ 6, star formation began. Finally, at a redshift of ∼ 0.4, dark energy

came to dominate, and continues to dominate our present-day expansion.

The evolution of perturbations

Although ΛCDM cosmology describes a Universe that is homogeneous and isotropic on

large scales, we observe anisotropies in the CMB spectra and the present-day distribution of

matter. These anisotropies are sourced by small primordial density fluctuations in the early

Universe, which grew under the effects of gravity as the Universe evolved. Within ΛCDM, the

data is extremely well described solely by scalar perturbations, whose power spectrum is simply

described by a power law,
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Ps(k) = As

(
k

k⋆

)ns−1

, (3.2.9)

where k⋆ is the ‘pivot scale’ defining where the amplitude As is measured, Ps(k
⋆) = As. The

tilt ns is given by

ns =
d lnPs(k)

d ln k
+ 1 , (3.2.10)

so that ns = 1 corresponds to a scale-free power spectrum. Although not captured directly by

ΛCDM, the most widely accepted cosmological theory sourcing scalar perturbations is an epoch

of accelerated expansion, known as inflation. This is discussed in more detail in Sec. 3.3.1.

The primordial power spectrum is not a quantity that is observed directly, but must be

derived from its imprint on observables. The primordial inhomogeneities evolved under gravi-

tational instabilities as the Universe expanded, and eventually collapsed into the structure we

observe today.

We are concerned with the time evolution of a perturbation over the history of the Universe.

When the Universe is hot, dense and tightly coupled, the evolution of perturbations is well

modelled by a fluid. The evolution of a cosmological fluid with velocity ~u, density ρ, pressure

P and gravitational potential Φ is governed by the continuity equation,

∂ρ

∂t
+∇ · (ρ~u) = 0 , (3.2.11)

the Euler equation,

∂~u

∂t
+ (~u · ∇)~u = −∇P

ρ
−∇Φ , (3.2.12)

and the Poisson equation

∇2Φ = 4πGNρ . (3.2.13)

By considering small perturbations about the background in comoving coordinates,

ρ = ρ̄+ δρ ≡ ρ̄(1 + δ), ~u = ~u0 + δ~u, P = P0 + δP , and Φ = Φ0 + δΦ , (3.2.14)

the continuity, Euler, and Poisson equations linearise to give a single equation for the time

evolution of a density perturbation δ,

δ̈ + 2
ȧ

a
δ̇ = 4πGN ρ̄δ +

c2s
a2

∇2δ , (3.2.15)

where cs =
√
δP/δρ is the sound speed in the medium. This is a damped, driven acoustic wave

equation for δ. By considering plane wave solutions for the overdensity δ, Eq. (3.2.15) becomes

¨̂
δ + 2

ȧ

a
˙̂
δ +

(
c2sk

2

a2
− 4πGN ρ̄

)
δ̂ = 0 , (3.2.16)
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where δ̂ = δ̂(t,~k) is the Fourier transform of δ(t, ~x). With the ansatz δ̂(t,~k) = δk(~k)e
iωt, the

dispersion relation is

ω2 − 2iωH +

(
4πGN ρ̄−

c2sk
2

a2

)
= 0 . (3.2.17)

We can define the Jeans wavenumber kJ as

kJ =

√
4πGN ρ̄

cs
, (3.2.18)

such that (for a static solution H = 0) when k > kJ , ω
2 > 0 is an oscillatory solution, k < kJ ,

ω2 < 0 is an exponential solution. The acoustic oscillations are sourced by the pressure in

the fluid, and the exponential solutions represent gravitational instabilities (leading to the

growth of perturbations). Considering the matter dominated epoch, where the density is well-

approximated by ρ̄(t) = ρcrit(t) = 3H2/8πGN , and the exponential case k ≪ kJ , Eq. (3.2.16)

becomes

¨̂
δ +

4

3t
˙̂
δ − 2

3t2
δ̂ = 0 , (3.2.19)

where I have used H = 2/(3t) during matter domination. The simple ansatz δ̂ = tn gives two

solutions, n = −1 and n = 2/3. The n = −1 solution is a decaying solution, and is therefore

not interesting. The interesting solution is the growing mode n = 2/3, where δ̂ ∝ t2/3 ∝ a(t),

so a perturbation grows linearly during matter domination.

We can generalise Eq. (3.2.16) to contain multiple components. For a given component i,

¨̂
δi + 2

ȧ

a
˙̂
δi +

c2s,ik
2

a2
δ̂i − 4πGN

∑

j

ρ̄j δ̂j = 0 , (3.2.20)

where the sum j is over all species, and δ̂j = δ̂ρj/ρ̄j. Considering matter perturbations in a

radiation-dominated Universe, cs,m = 0 as there is no pressure,
∑

j ρ̄j δ̂j = ρmδ̂m + ρrδ̂r ≈ 0 as

ρm ≪ ρr and δ̂r ≃ 0 as the Jeans length is on the order of the Hubble radius (so solutions are

oscillatory). Thus, Eq. (3.2.20) reduces to

¨̂
δm + 2

ȧ

a
˙̂
δm = 0 , (3.2.21)

which has solutions δ̂ ∝ const and δ̂ ∝ ln a, so matter perturbations grow slowly. Thus the

picture of structure formation in ΛCDM is hierarchical; perturbations and overdensities become

unstable under gravity and grow. Applying Eq. (3.2.20) to a dark energy dominated Universe

gives δ̂ ∝ const and δ̂ ∝ a−2, therefore dark energy suppresses the growth of structure.

Cosmological observables can often be expressed by another power spectrum, which can

be related to the initial conditions given in Eq. (3.2.9), with some (non-trivial) evolution.

This behaviour is typically characterised by a transfer function T , describing the cosmological
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evolution of a given mode k from time t1 to t2,

P ′(k, t2) = T (k, t1, t2)Ps(k, t1) , (3.2.22)

where P ′ is the cosmological observable of interest. The transfer function goes beyond linear

perturbation theory and captures non-trivial effects in the cosmological evolution, such as power

on small scales being dissipated by neutrinos.

3.3 Observables and Likelihoods within CosmoBit

In the context of global fits of particle cosmology, the observationally interesting epochs of

Big Bang cosmology can be categorised as follows:

Inflation: accelerated expansion of the Universe: quantum fluctuations (sourcing primordial

perturbations) are amplified to classical scales;

Big Bang nucleosynthesis: the formation of light elements, setting the primordial abun-

dances;

CMB: observables related to the emission of photons at recombination;

Late-time cosmology: present-day and low-z observables, such as the distribution of galaxy

clusters and supernova cosmology.

I expand on the signatures from these epochs in more detail in the following section, and

explain how we perform calculations of observables and likelihoods in CosmoBit. I detail the

effects modifications to ΛCDM have on the cosmological history and our observations. The

section is structured chronologically: inflation, Big Bang nucleosynthesis (BBN), the CMB,

and late-time observables.

3.3.1 Inflation

Currently the most widely accepted scenario for sourcing the scalar perturbations described

in Eq. (3.2.9) is a period of accelerated expansion: inflation. This must persist for a finite, but

significantly long period of time, before the radiation dominated epoch begins. The simplest

way to achieve this is by introducing a scalar field φ, the inflaton, coupled minimally to gravity,

Sφ =

∫
d4x

√
g

[
1

2
(∂µφ)

2 − V (φ)

]
, (3.3.1)

where V (φ) dominates over the kinetic term. In terms of the Klein-Gordon and Friedmann

equations, the evolution of φ is described as
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φ̈+ 3Hφ̇+
∂V

∂φ
= 0 and H2 =

8πGN

3

(
1

2
φ̇2 + V (φ)

)
. (3.3.2)

The density and pressure of the scalar field are simply

ρφ =
1

2
φ̇2 + V (φ) and Pφ =

1

2
φ̇2 − V (φ) , (3.3.3)

therefore wφ ≈ −1 if φ̇ ≈ 0, i.e. exponential expansion, a ∼ eHt. Inflation occurs if the time

evolution of φ remains slow compared to the expansion of the Universe. This is known as the

‘slow-roll’ scenario. The slow-roll parameters ǫ and η are defined in terms of the potential,

ǫ ≡ 1

16πGN

(
∂V/∂φ

V

)2

, η =
1

8πGN

∂2V/∂φ2

V
, (3.3.4)

where, for slow-roll to occur, the slow-roll conditions ǫ≪ 1 and η ≪ ǫ2 must be satisfied.

Slow-roll inflation sources scalar perturbations like those required in ΛCDM. The descrip-

tion so far has been of a classical field φ. If we decompose φ into a classical part, plus a small

inhomogeneous fluctuation, φ = φcl(t) + δφ(t, x), to leading order (a good approximation as

CMB fluctuations are δT/T ∼ 10−5), the equation of motion is

δφ̈+ 3Hδφ̇− 1

a2
δij∂i∂jδφ+

∂2V

∂φ2
δφ = 0 . (3.3.5)

Each comoving wave mode k can be considered independently, δφ(t, x) = δkφ(t)e
−ik·x. Dur-

ing slow-roll, a ∼ eHt, H ∼ const, and ∂2V/∂φ2 ∼ 0, so that the equation of motion for a given

mode k is simply

δkφ̈+ 3Hδkφ̇+
k2

a2
δkφ = 0 , (3.3.6)

which has an exact solution,

δkφ(t) =
ck
a(t)

eik/aH
(
1 +

iaH

k

)
(3.3.7)

for some constant ck. For a mode well within the Hubble horizon k ≫ aH (i.e. at early times),

the solution is

δkφ(t) ≃
ck
a(t)

eik/aH . (3.3.8)

As a is increasing with t, and H ∼ const, a mode that is inside of the horizon will only remain

inside for some finite length of time. A mode outside the horizon k ≪ aH has solution

δkφ(t) ≃
ickH

k
, (3.3.9)

which is frozen, as there is no time-dependence. Thus, once a perturbation has left the horizon,
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its evolution stops. Using these modes, we can canonically quantise δφ in the usual way (see

e.g. [202]),

δφ̂(t, x) =

∫
d3k

(
δkφ(t)e

−ik·xâk + δkφ
∗(t)e+ik·xâ†k

)
, (3.3.10)

where â
(†)
k is the creation (annihilation) operator for mode k. Imposing the equal-time com-

mutation relations solves for ck = (2k(2π)3)−1/2. Then, the (real space) two-point correlation

function of the quantum fluctuations is simply given by the Fourier transform of the wave

modes,

〈0|δφ(t, x)δφ(t, y)|0〉 =
∫

d3k|δkφ|2e−ik·|x−y| . (3.3.11)

At early times, when modes are sub-horizon, the two-point correlation function in real space

is

〈0|δφ(t, x)δφ(t, y)|0〉 ≃ 1

a2|x− y|2 , (3.3.12)

however at late times, when modes are super-horizon,

|δkφ|2 =
1

2(2π)3
H2

k3
, (3.3.13)

so that the real-space behaviour

〈0|δφ(t, x)δφ(t, y)|0〉 ∼ H2 log |x− y| . (3.3.14)

Hence towards the end of inflation, super-horizon modes have fluctuations 〈δφ〉 ∼ H2. These

fluctuations mean that the initial field value randomly varies between different spatial patches.

This in turn causes fluctuations in the time that inflation finishes between spatial locations, and

therefore the start of the radiation era. This generates the inhomogeneity required to source

the large scale structure we observe today. As H can be related purely to the potential of

φ, so can the fluctuations in the scalar field. Thus we can simply connect the anisotropies in

the primordial power spectrum to the inflation potential V (φ), and inflation can be tested by

transferring the primordial power spectrum forward and comparing with observations, such as

the CMB and the matter power spectrum.

In terms of the slow-roll parameters, the primordial power spectrum can be described

by [203]

ns = 1 + 2η − 6ǫ , As =
8G2

N

3

V ⋆

ǫ⋆
(3.3.15)

where ⋆ signifies that a parameter is evaluated at the pivot scale, the scale at which As is

measured (Eq. 3.2.9). Unlike vanilla ΛCDM, the spectral index of scalar perturbations is not
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a constant, but is a function of wavenumber k,

ns = n⋆s +
1

2

dns
dln k

ln

(
k

k⋆

)
+ ... . (3.3.16)

This ‘running’ of the spectral index can in principle be used to distinguish between different

inflationary potentials.

Because the scalar field is coupled to the metric tensor, it generically also sources tensor

perturbations. The detection of primordial tensor perturbations in the CMB would be a smok-

ing gun signature of inflation. However, Planck and BICEP/KECK have not detected these

modes, instead providing an upper bound on the scalar-to-tensor ratio r . 0.065 [204], strongly

constraining the potentials of inflationary models. The power spectrum of tensor perturbations

is similar to those of scalar perturbations,

Pt(k) = At

(
k

k⋆

)nt

, (3.3.17)

except with a scale-free spectrum conventionally defined at nt = 0. The tensor-to-scalar ratio

is defined as

r ≡ Ps(k
⋆)

Pt(k⋆)
= 16ǫ , (3.3.18)

and the number of e-folds of inflationary expansion is

N =

∫ φ

φend

dφ√
2ǫ
. (3.3.19)

Once the inflaton ceases to roll slowly down the potential, the slow-roll conditions are

violated, and accelerated expansion stops occurring. The equation of motion for φ (Eq. 3.3.2)

has a friction term, 3Hφ̇. This “Hubble drag” causes the inflaton to eventually reach the

minimum of the potential. In order to connect with the picture of a hot Big Bang, the energy

content in the Universe needs to transfer from the inflaton to the SM sector, at an energy above

that of baryogenesis. The process of the inflaton decaying to SM particles is called reheating,

marking the start of the radiation-dominated era of cosmological history.

3.3.1.1 MultiModeCode

A given inflationary potential predicts a primordial power spectrum. From the power spec-

trum, we solve the Boltzmann equation in order to predict CMB spectra, which are compared

with data to constrain the potential. Within CosmoBit, we interface to MultiModeCode [205], a

tool used for computing power spectra for (multi-field) inflationary potentials. MultiModeCode

solves equations of motion of the background and first-order perturbations for inflation models

with canonical kinetic terms and minimal coupling to gravity.

Within CosmoBit, our definition of ΛCDM does not contain As and ns as input parameters;
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the user must choose to either scan an inflationary scenario alongside ΛCDM, or scan the

phenomenological PowerLaw ps model, which contains ln10A_s and n_s as model parameters,

as well as the scalar-to-tensor ratio r.

When scanning an inflationary model, the user can choose to pass the full power spectra

to a Boltzmann solver, or instead a parametrisation of the power spectrum in terms of the

parameters of the model PowerLaw ps described above.

The primordial power spectrum, in either full or parametrised form, is fed to a Boltzmann

solver to compute CMB anisotropy spectra and the matter power spectra at a given redshift. In

the first release of CosmoBit, the Boltzmann solver we interface to is CLASSY (see Sec. 3.3.3.1

for details).

If selecting the full primordial spectrum as output from MultiModeCode, the relevant YAML

entry needed to pass the spectrum to CLASSY is

Rules:

# Pass arrays (k, P(k)) to CLASSY

- capability: classy_primordial_input

function: set_classy_parameters_primordial_ps

Alternatively, for the parametrised version of the power spectrum, the appropriate YAML

entry is:

Rules:

# Pass A_s, n_s and r to CLASSY

- capability: classy_primordial_input

function: set_classy_parameters_parametrised_ps

plus, in order to save values parametrising the primordial spectrum to the output of a GAMBIT

run,

ObsLikes:

# Save A_s, n_s, r and N_pivot to the printer

- purpose: Observable

capability: PowerLaw_ps_parameters

type: ModelParameters

3.3.2 Big Bang nucleosynthesis

Big Bang nucleosynthesis (BBN) describes the formation of light elements in the early

Universe. The formation of light elements is governed by well-understood nuclear physics. The

reaction chain begins with the formation of deuterium (D), followed by helium-3 (3He) and
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stable helium (4He) through the reactions

n+ p→ D + γ , (3.3.20)

D +D → n+ 3He , (3.3.21)

D + 3He → 4He + p . (3.3.22)

As the Universe cools, eventually deuterium formation is able to occur without rapid pho-

todissociation by high-energy photons, at Tγ ∼ 100 keV. Consequent formation of light elements

freezes out at Tγ . 30 keV, and the light nuclear abundances are set. One notable quantity is

the primordial helium abundance, Yp ≡ ρ4He/ρb, which is a crucial input for other cosmological

calculations, namely for recombination. Beyond the formation of stable helium, the reaction

network continues to form other light elements, such as 7Li and 7Be.

Primordial abundances cannot be directly observed, and must be inferred. Objects in which

little to no stellar nucleosynthesis has occurred can be used as accurate probes of BBN, such

as metal-poor star forming galaxies (for 4He) and absorption features in the spectra of low

metallicity distant quasars (for D).

As the abundances of primordial elements are sensitive to the physics of the early Universe,

they act as an excellent test of the SM. Generally, observations are in good agreement with SM

predictions, meaning that any new physics scenarios are strongly constrained by the data.

BBN probes are very sensitive to the initial conditions, such as the baryon-to-photon ratio

(η). Other new physics scenarios capable of affecting light element abundances must occur

before the abundances are frozen out. The relevant quantities governing freeze-out (much like

for DM freeze-out, see Sec. 1.2.1) are the reaction rate Γ and the Hubble rate H, so any

modifications to H or Γ can affect BBN.

The Friedmann equation (Eq. 3.2.4) gives the Hubble rate at a given temperature T ,

H2 =
8πGN

3

π2

30
geff(T )T

4 , (3.3.23)

and Neff is defined for T = Tγ. Thus BBN is very sensitive to any additional relativistic species.

Other modifications to the expansion rate can occur from e.g. primordial dark energy. Similarly,

the reaction rate Γ ∼ 〈σv〉n can be altered via the number density of neutrons and protons via

exotic interactions, or changes in the baryon-to-photon ratio.

Although BBN mainly agrees well with the SM, the primordial abundance of 7Li is in tension

with standard cosmological predictions, but suffers from large theoretical and observational

uncertainties (see e.g. Ref. [206]). Inference of the 7Li abundance from low-metallicity stars

gives (7Li/H) = (1.6 ± 0.3) × 10−10, compared with a value of (4.72 ± 0.72) × 10−10 from

combined CMB and BBN constraints [207]. This discrepancy suggests that our understanding

and modelling of the atmospheres of low-metallicity stars may be inconsistent, or could suggest

that BBN must be modified in some way by new physics.
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3.3.2.1 AlterBBN

Within CosmoBit, we interface to the public tool AlterBBN [208, 209] for computations of

light element abundances, and their comparison to measurement. AlterBBN allows the user

to study the effect of non-standard cosmology on light element abundances, e.g. extra ultra-

relativistic species, non-standard neutrino temperatures, modifications to the expansion rate,

and other sources of entropy injection.

AlterBBN also computes theoretical uncertainties on light element abundances and their

correlations, which we include in the likelihood computation as

lnL = −1

2

[
(~t− ~d)C−1

tot (~t− ~d)T + (2π)n detCtot

]
, (3.3.24)

for a vector ~t of theoretically computed abundances, ~d observed abundances, and the total

covariance matrix Ctot constructed from both theoretical and measurement uncertainties, Ctot =

Cobs + Ctheo.

The user is able to request the likelihood from AlterBBN and select the elements used in the

correlation matrix with the following YAML entries

ObsLikes:

# Likelihood from BBN (data specified in Rules section)

- purpose: LogLike

capability: BBN_LogLike

sub_capabilities: [He4, D] # Only use He4 and Deuterium for lnL_BBN

Rules:

# Set path to file containing values for light element abundances.

# Relative to root directory: gambit/CosmoBit/data/BBN/

- capability: BBN_LogLike

options:

DataFile: default.dat

where the DataFile contains 3 columns: the isotope name, the central value of the observed

abundance (normalised to the H abundance), and the 1σ error.

3.3.3 The CMB

During the epoch of recombination, at a redshift of z ∼ 1100, electrons fall out of equilibrium

with photons, as their average temperature drops below the ionisation energy of hydrogen. The

electrons ‘re’-combine with protons in the plasma to form neutral hydrogen, releasing photons.

The photons decouple from the plasma and travel unimpeded to form the cosmic microwave

background (CMB), a near isotropic black-body spectrum. The surface at which photons
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decouple from the plasma is called the last scattering surface. There are small temperature

fluctuations in the CMB; on the level of around 10−5. These fluctuations in the temperature

reflect initial fluctuations in the primordial matter density. These initial conditions are well

described by quantum perturbations around a classical background in the early Universe, i.e.

inflation (see Sec. 3.3.1).

The CMB is completely described by its temperature anisotropy, Θ(n̂) and polarisation

P (n̂). The temperature anisotropy Θ(n̂) is defined as

Θ(n̂) ≡ T (n̂)− 〈T 〉
〈T 〉 , (3.3.25)

where T (n̂) is the temperature field for a given position on the sky n̂ = (θ, φ), and 〈T 〉 is

the mean CMB temperature. This quantity is typically decomposed in terms of spherical

harmonics,

Θ(n̂) =
∞∑

ℓ=0

ℓ∑

m=−ℓ
aℓmYℓm(n̂) , (3.3.26)

where Yℓm(n̂) is the Laplacian spherical harmonic for a given integer multipole ℓ ≥ 0, and

m = −ℓ, ...,+ℓ. In practice, the sum usually begins at ℓ = 2. The monopole (ℓ = 0) term is the

average temperature over the sky (Θ(n̂)|ℓ=0 = 〈Θ(n̂)〉 = 0) and the dipole (ℓ = 1) term receives

a contribution from our motion relative to the CMB via Doppler shift, so both are removed

from the power spectrum before any analysis is performed.

If the temperature fluctuations in the early Universe are seeded by random quantum fluctu-

ations, they will be close to Gaussian. For perfectly Gaussian fluctuations, the cosmologically

interesting information is contained within the two-point correlations of the multipole moments

aℓm, as they encode the amplitude of fluctuations as a function of k. The two-point correla-

tion function defines the angular power spectrum of perturbations Cℓ. The angular power

spectrum is rotationally invariant, and therefore only depends on ℓ, not m. The temperature

auto-correlation defines the temperature power spectrum CTT
ℓ ,

CTT
ℓ =

1

2ℓ+ 1

∑

m

〈aℓma∗ℓm〉 . (3.3.27)

For a given value of ℓ, there are 2ℓ+1 independent measurements corresponding to different

values of m that can used to constrain a given Cℓ. Therefore, for lower values of ℓ, there are

fewer realisations of the underlying distribution and the values of Cℓ are harder to constrain,

with a variance of ∆Cℓ =
√
2/(2ℓ+ 1). This is known as cosmic variance. When plotting

power spectra as a function of multipole ℓ (as in Fig. 1.6), it is customary to plot against the

quantity Dℓ = ℓ(ℓ+ 1)Cℓ/2π, as this would be constant for a scale-invariant power spectrum.1

1Clearly Fig. 1.6 itself is not a scale-invariant spectrum: there is a transfer function encoding the evolution
of each wavemode k between inflation and recombination.
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Recombination does not occur instantaneously. This means that the surface of last scatter-

ing has some finite thickness. During this epoch, photons scatter around the plasma, interacting

with the free electrons, which has two important consequences. Firstly, free electrons intro-

duce polarisation via Thomson scattering. If the background radiation were isotropic, then

the net result of the scatterings would introduce zero polarisation. On the other hand, any

anisotropies in the spectrum of incoming CMB photons leads to an overall anisotropy in the

CMB polarisation spectrum.

The polarisation anisotropy spectra can be measured in a similar manner to the temperature

spectrum. The polarisation field P (n̂) can be described by two Stokes parameters Q and U

(given a choice of coordinate description on the sky), P = Q+ iU . P can also be decomposed

in terms of spherical harmonics,

P (n̂) = Q(n̂) + iU(n̂) (3.3.28)

=
∞∑

ℓ=0

ℓ∑

m=−ℓ
(Eℓm + iBℓm)Y

(2)
ℓm (n̂) , (3.3.29)

where the additional index (2) indicates that P is a spin-2 field, and E and B modes correspond

to ‘electric’ (gradient) and ‘magnetic’ (curl) components of the polarisation field. Similarly to

the temperature anisotropy, we can form power spectra of the E and B modes,

CEE
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ
〈|Eℓm|2〉 (3.3.30)

CBB
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ
〈|Bℓm|2〉 . (3.3.31)

The second important consequence of non-instantaneous recombination is the damping of

power on small scales. During the epoch of recombination, CMB photons will scatter multiple

times with free electrons in a random walk process. The average distance a photon travels is

the mean free path λd,

λd ≃
1√

neσTH
, (3.3.32)

where σT = 8πα2/3m2
e is the Thomson scattering cross-section, ne is the number density of

electrons, given by

ne =

(
1− Yp

2

)
xenb , (3.3.33)

where xe is the ionisation fraction, nb is the density of baryons (which are tightly coupled to

the electrons via Coulomb interactions), and Yp is the helium fraction.

For small scales λ < λd, anisotropies are averaged out through the random walk process.
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Therefore, acoustic oscillations are damped on small scales λ < λd (large ℓ), the damping tail.

The damping tail can be clearly seen at large ℓ in the TT power spectrum, Fig. 1.6.

There are two important things to note about the functional form of ne, Eq. (3.3.33): firstly,

increasing ωb makes the photon-baryon plasma more tightly coupled and increases λd. Secondly,

an increased helium fraction increases the number of free electrons (as helium recombines

before hydrogen). Therefore, probes of the epoch of recombination (i.e. the damping tail and

polarisation anisotropy spectra) provide excellent complementary checks of BBN and ωb.

Cross-correlations between the polarisation fields and temperature serve as additional cross

checks of both foregrounds and instrumental noise, such as for temperature and E-mode po-

larisation,

CTE
ℓ =

1

2ℓ+ 1

ℓ∑

m=−ℓ
〈TℓmE∗

ℓm〉 . (3.3.34)

Each additional power spectrum provides new, complementary information on the cosmo-

logical parameters; the results from Planck in TT , EE and TE agree excellently [28]. No

evidence of primordial B-modes have been detected in the BB spectrum.

CMB photons propagating from the last scattering surface are susceptible to gravitational

potentials along the line of sight. One effect of such potentials is the deflection of light by mass:

weak gravitational lensing.

Weak lensing has important consequences for the CMB spectra, such as introducing non-

Gaussianity by inducing correlations between spherical harmonics, and mixing E andB modes [210].

Lensing provides insight into the distribution of matter along the line of sight, and the growth of

large scale structure along the line of sight can be used to constrain the background evolution.

The observed lensed CMB anisotropy spectra take the form

Θ̃(n̂) = Θ (n̂+α(n̂)) , (3.3.35)

where α(n̂) ≈ ∇φ is the angular deflection, approximately the gradient of the lensing potential

φ. Similar expressions hold for Q and U .

With no knowledge of the distribution of matter along the line of sight, the modelling of

weak lensing is purely statistical. As all deflections are small (near linear) and there are many

deflections along the line of sight, the weak lensing potential is nearly Gaussian; however the

covariance varies with position on the sky. This information can be used to reconstruct the

lensing power spectrum Cφφ
ℓ , the power spectrum of the matter distribution along the line of

sight, and compare with other reconstructions of the matter power spectrum.

Another effect of gravity on CMB photons is that the time evolution of gravitational po-

tentials can inflict an overall gravitational redshift. As a photon gains momentum when it

enters a potential well and loses momentum when it leaves, it can gain (lose) momentum if

the potential well shrinks (grows) while the photon is inside. When a photon decouples from
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the plasma at the last scattering surface, it is inside a gravitational potential well, as it is

surrounded by matter. Thus an inherent redshift is gained based on the depth of the potential

well the (now free-streaming) photon has to climb out of. This is known as the Sachs-Wolfe

(SW) effect [211], and although it occurs on all scales, it dominates for scales above the horizon

scale at last scattering, ℓ . 100, as the anisotropies have not evolved significantly beyond the

initial conditions. This can be seen in the power spectrum, Fig. 1.6, which is flat for small

values of ℓ.

The expansion of the Universe causes gravitational potentials to evolve. If gravitational

potentials are time-dependent on large scales, we would expect the overall spectrum of photons

to be modulated. The overall integrated net effect of such potentials is known as the integrated

Sachs-Wolfe (ISW) effect, and is another source of anisotropy in CMB photons. Larger potential

wells give a larger ISW signal, and the ‘ISW rise’ can be seen for the smallest values of ℓ.

During matter domination, the evolution of gravitational potentials are time-independent

on large scales, therefore there is no ISW effect. However, during radiation and Λ domination,

where potentials have time-dependent evolution, the ISW effect can be observed.

Immediately after last scattering, there is a non-negligible energy contribution from radi-

ation, which causes potentials to decay. This is the ‘early-time’ ISW effect, and is sensitive

to the ratio of matter to radiation density. The early ISW effect is therefore sensitive to new

ultra-relativistic species.

At late times, during the dark energy dominated epoch, dark energy causes potential wells

to stretch and become shallow, giving photons more momentum. Similarly, the potential wells

in voids become more shallow, and photons lose momentum as they traverse the voids. A useful

probe of the late-time ISW effect is the cross-correlation of galaxy clusters and the temperature

of the CMB. Its detection is considered positive evidence for dark energy in a flat universe

(see e.g. [212–215]). In principle, the late ISW effect could be used in the future to constrain

properties of dark energy such as its equation of state wΛ [216], although low-ℓ measurements

are limited by cosmic variance.

There are multiple degeneracies in the CMB. Using additional cosmological probes to break

CMB degeneracies has been the standard for a long time, especially when working with the

ΛCDM model. In the case of extensions to ΛCDM, we expect the CMB to be sensitive to

non-standard cosmologies. This however can potentially introduce additional parameter de-

generacies between the new model parameters and those describing ΛCDM. Therefore, com-

plementarity with particle physics probes can be extremely powerful in breaking cosmological

degeneracies.

One such example is the effect that the total mass of neutrinos
∑
mν has on the CMB.

Increasing the neutrino mass causes the matter density ρm to increase, which in turn increases

the expansion rate during matter domination via the Friedmann equation, Eq. (3.2.4). To

restore H(z), the dark energy density ΩΛ (which is a derived parameter in a flat Universe) must

be reduced, via H0.
∑
mν can (in theory) be constrained in terrestrial neutrino experiments,

101



which in turn can constrain H0 and other cosmological parameters. Conversely, cosmology can

constrain a particle physics model: we investigate exactly the above scenario and the effect of

cosmology on the neutrino sector in Sec. 3.4.3, and produce a new upper bound on the mass

of the lightest SM neutrino, mν0 .

3.3.3.1 CLASS

The role of the Boltzmann solver within CosmoBit is crucial: it simulates the evolution of

linear perturbations and the formation of the CMB. Amongst other quantities, the Boltzmann

solver computes the anisotropy spectra for the CMB and the matter power spectrum at a given

redshift. The backend fulfilling this function in CosmoBit is CLASSY, the Python wrapper to

CLASS (Cosmic Linear Anisotropy Solving System) [217–220]. The choice of the Python wrapper

(as opposed to the C interface for CLASS) allows us to use CLASSY as a Python module, for

seamless interfacing to the likelihoods contained within MontePython (see Sec. 3.3.4.3), as we

are able to pass Python objects directly instead of constructing them internally.

Within CosmoBit, CLASSY is used to compute spectra to be passed to likelihood functions

for the CMB and late-time cosmology. CLASSY must be aware of any extra particle species

or modifications to the cosmological history that might impact the evolution of perturbations,

such as the mass and temperature of any non-CDM species, the number of ultra-relativistic

species, and the helium abundance (from AlterBBN).

The input for CLASSY is simply a Python dictionary of inputs. Via GAMBIT’s dependency

resolver, CosmoBit automatically takes care of ensuring that the output is consistent based on

the requested likelihood functions.

CLASSY can take the full primordial power spectra (scalar and tensor) from an inflationary

theory as input, or recreate them internally from parametrisations of the power spectrum. If the

user specifies an inflationary scenario, CosmoBit can pass scalar and tensor spectra directly to

CLASSY for internal calculations. If passing parameters of the PowerLaw ps model, CLASSY

will recreate the power spectra internally. The entries needed to pass spectra to CLASSY are

covered in the MultiModeCode section, Sec. 3.3.1.1.

From these inputs, CLASSY evolves the linear perturbations to compute the CMB anisotropy

spectra for temperature and polarisation: TT , TE EE, BB, and EB, either lensed or unlensed.

CLASSY can also return the autocorrelation for the lensing potential (φφ). In terms of late-time

cosmology, CLASSY computes the matter power spectrum today, or at a given list of redshifts.

Beyond selecting the form of the primordial power spectra to pass to CLASSY, the only

other relevant YAML entries concern whether MontePython likelihoods are in use or not, via

the capability classy_MPLike_input. This capability ensures that the correct output is selected

for CLASSY when MontePython is in use, such as ensuring that the matter power spectrum is

computed as an output if late-time observables are requested within MontePython.

If MontePython likelihoods are in use, the relevant YAML entry is
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Rules:

# Initialisation of input arguments for classy with MontePython likelihoods in use

- capability: classy_MPLike_input

function: set_classy_input_with_MPLike

Alternatively, if no MontePython likelihoods are in use, the relevant YAML entry is

Rules:

# Initialisation of input arguments for classy when no MontePython likelihoods are in use

- capability: classy_MPLike_input

function: set_classy_input

As all input passed to CLASSY is contained in a single Python dictionary, any other addi-

tional settings can be passed to CLASSY as an option of the capability classy_input_params, as

a key: value pair of classy_dict e.g.

Rules:

...

# Pass runOptions to classy

- capability: classy_input_params

functions: set_classy_input_params

options:

classy_dict:

key: value

where all key: value pairs are those that are located in the input module of CLASS.

3.3.3.2 ExoCLASS and DarkAges

ExoCLASS [221] is another backend interfaced to CosmoBit, and is an extension of CLASS set

up specifically to deal with exotic energy injections. Exotic annihilations and decays between

recombination and reionisation can inject energy into the primordial plasma and thus affect

the thermal history of the Universe, which can leave detectable imprints in the CMB. DarkAges

[221], which is usually called internally within ExoCLASS, computes the efficiency of such exotic

energy injections. Within CosmoBit, we provide DarkAges and ExoCLASS as separate backends,

in the interest of modularity.

DarkAges computes the functions defining the efficiency of energy injection into a given

channel c at redshift z, fc(z), based on the spectrum of injected energy dN/dE. DarkAges

computes this by convolving the injected particle spectra of electromagnetic particles with the

transfer functions of Ref. [222]. Once the efficiency functions have been computed, they are fed

to the thermodynamics module of ExoCLASS, which is used to compute e.g. CMB anisotropy

spectra in the usual way.

103



Capability Function

Planck_lowl_loglike function_Planck_lowl_TTEE_2018_loglike

function_Planck_lowl_TT_2018_loglike

function_Planck_lowl_EE_2018_loglike

function_Planck_lowl_TT_2015_loglike

function_Planck_lowl_TEB_2015_loglike

Planck_highl_loglike function_Planck_highl_TTTEEE_2018_loglike

function_Planck_highl_TTTEEE_lite_2018_loglike

function_Planck_highl_TT_2018_loglike

function_Planck_highl_TT_lite_2018_loglike

function_Planck_highl_TTTEEE_2015_loglike

function_Planck_highl_TTTEEE_lite_2015_loglike

function_Planck_highl_TT_2015_loglike

function_Planck_highl_TT_lite_2015_loglike

Planck_lensing_loglike function_Planck_lensing_2018_loglike

function_Planck_lensing_marged_2018_loglike

function_Planck_lensing_2015_loglike

Table 3.1: The available module functions capable of fulfilling the capabilities used for
Planck likelihoods in CosmoBit. The 2018 likelihoods (above the dashed lines) require
version 3.0 of the plc_data, whereas the 2015 likelihoods (below) require version version
2.0.

The interface to DarkAges and ExoCLASS requires no additional YAML input for a correctly

implemented model. The dependency resolver automatically selects DarkAges and ExoCLASS

to compute CMB and matter power spectra (instead of CLASS) if the following two conditions

are met:

1. A model is related to either of the ‘flagship’ energy injection models in GAMBIT: Decay-

ingDM general or AnnihilatingDM general,

2. The corresponding model is able to fulfil the capability energy_injection_spectrum.

For all intents and purposes, the interface to ExoCLASS is no different to that of CLASS:

we use the Python wrapper as before, i.e. all runOptions relevant for CLASSY can be used for

ExoCLASS.

3.3.3.3 PLC

The Planck Likelihood Code (PLC) [223,224] provides the calculations of CMB likelihoods

from Planck. We provide interfaces to the full likelihood and the ‘lite’ versions from both the

2015 and 2018 Planck releases.
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PLC contains separate low-ℓ (covering multipoles 2 ≤ ℓ ≤ 29) and high-ℓ (30 ≤ ℓ ≤
2508) likelihoods for the temperature and polarisation anisotropy spectra, plus the likelihood

constraining the CMB lensing potential. For details on the module functions provided to fill

the three Planck capabilities, see Table 3.1.

When using the high-ℓ Planck likelihoods, the user must scan over one of the nuisance

models associated with a given likelihood. Briefly, the nuisance models are:

cosmo nuisance Planck TTTEEE: 34 nuisance parameters associated with instrument cali-

bration and signal contamination for the TT, TE and EE spectra

cosmo nuisance Planck TT: 16 nuisance parameters associated with instrument calibration

and signal contamination for just the TT spectrum

cosmo nuisance Planck lite: for the ‘lite’ likelihoods, containing 1 nuisance parameter, the

absolute calibration APlanck.

For full information on the nuisance parameters, refer to Ref. [224].

An example YAML entry to request the 2018 ‘lite’ temperature and polarisation likelihoods

plus lensing, and the associated nuisance model is:

Parameters:

...

# Nuisance parameters in "lite" Planck likelihood

# Using a Gaussian prior around A_planck = 1, sigma = 0.0025

cosmo_nuisance_Planck_lite:

A_planck:

prior_type: gaussian

mean: [1.0]

sigs: [0.0025]

ObsLikes:

...

# Low multipole (2 <= l <= 29)

- purpose: LogLike

capability: Planck_lowl_loglike

function: function_Planck_lowl_TTEE_2018_loglike

# High multipole (30 <= l <= 2508)

- purpose: LogLike

capability: Planck_highl_loglike

function: function_Planck_highl_TTTEEE_lite_2018_loglike

# CMB lensing

- purpose: LogLike

capability: Planck_lensing_loglike

function: function_Planck_lensing_2018_loglike
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3.3.4 Late-time observables

Late-time probes are primarily sensitive to the evolution of the Universe from the CMB

to the present day. They are extremely useful, as they provide independent, complementary

determinations of the cosmological parameters. Complementarity within cosmology is crucial,

as there are multiple degeneracies in the constraints provided by the CMB anisotropy spectra

that require additional measurements to break. Furthermore, the parametrisation of ΛCDM is

in terms of late-time parameters, such as H0 and the energy densities ωi, so comparing infer-

ence from local measurements to those from the early Universe sheds light on the intervening

cosmological history.

I briefly explain using baryon acoustic oscillations and type Ia supernovae as late-time

probes to reduce the degeneracy in cosmology.

3.3.4.1 Baryonic acoustic oscillations

Acoustic oscillations in the baryon-photon plasma (see Sec. 1.2) not only left an imprint on

the photon spectra, but also on the baryons. Once the photons decoupled from the baryons

and free streamed, the baryons no longer felt the photon pressure and were distributed along

the harmonics of the sound wave, leaving shells of baryons. The radius of the furthest shell

is set by the sound horizon. The baryons are therefore frozen in at this characteristic sound

horizon scale, until they eventually collapse under gravity, alongside DM.

Baryon acoustic oscillation (BAO) measurements infer the sound horizon from the distribu-

tion of galaxies. There is a peak in the galaxy-galaxy correlation function at the sound horizon

at the time of CMB formation, ∼ 150 Mpc. The sound horizon depends directly on the Hubble

rate,

s =

∫ trec

0

dt cs(1 + z) =

∫ ∞

zrec

dz
cs

H(z)
, (3.3.36)

and therefore provides an independent measure of the background evolution from recombina-

tion, and can be compared to the sound horizon determination from the acoustic peaks in the

CMB.

Additional particle content can quantitatively alter the spectrum of perturbations. The

simplest example is in the case of neutrinos: above a given scale, neutrinos free stream out of

potential wells, carrying matter away from structures. This suppresses power on small scales,

and is in theory observable in the matter power spectrum. The matter power spectrum can be

inferred from multiple (complementary) observables, such as from the full-shape galaxy power

spectrum and weak lensing.
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3.3.4.2 Type Ia supernovae

Type Ia supernovae (SN Ia) gave crucial evidence in support of the expansion of the Universe

[225], and continue to be a useful marker in mapping out the present-day expansion rate. SN Ia

are uniform in their appearance, so they are standardisable. Due to the Phillips relation [226]

between luminosity and the shape of the light curve, (plus other corrections accounting for their

colour and host galaxy), the distance to SN Ia can be precisely estimated from observation of

their luminosity. Measurement of the recession velocities of these supernovae therefore simply

probes the background evolution via the Hubble relation.

Specifically, SN Ia mostly constrain the Hubble rate today, H0, and the contribution from

dark energy, ΩΛ. ΩΛ is a derived quantity from the total density of the Universe: in a flat

Universe ΩΛ = 1− Ωm − Ωr. SN Ia observations therefore help break the degenerate effects of

dark energy and matter on the CMB.

New degrees of freedom affect the background cosmological evolution in different ways.

Any additional degrees of freedom will contribute to the Hubble rate H(z) via the Friedmann

equation. New light particle content can be added to alleviate the so-called ‘Hubble tension’

in ΛCDM between local measurements and inference from CMB anisotropies. The Hubble

parameter as extracted from local measurements is seen to be significantly larger than from

the CMB and BAO data. The latest measurement from the SH0ES collaboration finds H0 =

74.03±1.42 km s−1 Mpc−1 [227], in 4.4σ tension with the value derived by Planck, H0 = 67.36±
0.54 km s−1 Mpc−1 [28]. Although this discrepancy may be attributable to systematic errors

in either calibration used for local measurements (e.g. Ref. [228]) or the Planck data (see e.g.

Ref. [229]), it can also be explained by adding new particles that alter the evolution ofH between

recombination and the present day (recent papers on the subject include e.g. Refs. [230–234]).

3.3.4.3 MontePython

MontePython [235, 236] is a detailed suite for studies of cosmology, containing interfaces to

scanning algorithms, backend codes, and many likelihood functions. As part of CosmoBit and

GAMBIT, however, we only provide an interface to the extensive library of likelihoods contained

within MontePython.

The majority of the MontePython likelihoods that we provide an interface to fall under the

umbrella of ‘late-time’ cosmology, but others do not strictly belong to this categorisation. The

likelihoods from MontePython that CosmoBit provides an interface to fall under the following

broad categories:

BAO scale: inference of the BAO scale from the two-point correlation function of galaxy

clusters.

Likelihoods from: the WiggleZ dark energy survey reconstruction [237], and the Baryon

Oscillation Spectroscopic Survey (BOSS), including galaxy clustering [238, 239], cross-
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correlations with Lyman-α [240], correlated distance measurements using BAO from the

combined SDSS BOSS-DR12 sample [239], and eBOSS-DR14 LRGs [241] and QSOs [242]

(as described in [3]), 6dF [243], SDSS-MGS [244], and DES-Y1 [245].

Local distance measurements: recession velocities and distances to type Ia supernovae,

and local determinations of the Hubble rate.

Likelihoods from: the Pantheon sample of SN Ia [246], the joint light-curve analysis

(JLA) [247] from the SDSS-II and SNLS supernovae, local determination of the Hubble

rate from the Hubble space telescope (HST) [248].

Weak lensing: surveys mapping the linear matter power spectrum via inference of weak

gravitational lensing.

Likelihoods from: KiDS tomographic weak lensing survey [249], and CFTHLenS [250].

Galaxy cluster counts: surveys analysing the number counts of galaxy clusters as a function

of mass and redshift.

Likelihoods from: the Sloan Digital Sky Survey (SDSS) data releases 4 [251] and 7 [252],

the WiggleZ dark energy power spectrum analysis [253].

CMB: constraints on tensor modes in the CMB anisotropy spectra, and tomographic analysis

of the ISW effect.

Likelihoods from: the BICEP/KECK array (2014) [254], CMB B-modes from POLAR-

BEAR [255], tomographic analysis of the ISW effect via cross-correlation of the CMB and

galaxy surveys [256].

Although MontePython provides its own interface to the Planck likelihoods, CosmoBit

only allows the user to select these directly via the interface to PLC (see Sec. 3.3.3.3).

Additionally, CosmoBit interfaces to the MontePython likelihood functions for experimental

forecasts from Euclid [257] and the SKA [258].

The input to MontePython comes from CLASS. CLASS provides the matter power spectrum

used to compute late-time observables, and the CMB anisotropy spectra in the case of the CMB

measurements. CosmoBit simply needs to pass an instance of the atomic Class structure from

CLASSY to MontePython. From here, CosmoBit iterates over the list of requested likelihoods

from MontePython and queries the value of the log likelihood.

The output from MontePython is stored as a single double. To print the individual likelihood

contributions from each experiment, an additional Observable with capability MP_LogLikes must

be added to the YAML file. This creates a std::map<std::string,double> with key: value pairs

of experiment name: lnL, and adds it to the printer.

An example YAML entry to request MontePython output using only the Pantheon and

WiggleZ datasets is:
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Parameters:

# Import nuisance parameters relevant for Pantheon likelihood

cosmo_nuisance_Pantheon:

# Absolute magnitude of SN Ia in Pantheon dataset

M:

prior_type: flat

range: [-20, -18]

# WiggleZ has no associated nuisance parameters

ObsLikes:

# Use MontePython likelihoods

- purpose: LogLike

capability: MP_combined_LogLike

# Choice of "default" picks MontePython default likelihood values

sub_capabilities:

Pantheon: default

# Choose a non-default option (relative to the GAMBIT directory)

WiggleZ: "path/to/WiggleZ.data"

# Save output to the printer for each individual likelihood component

- purpose: Observable

capability: MP_LogLikes

type: map_str_dbl

3.4 Application: constraints on the neutrino sector

As introduced in Sec. 1.1.3.1, measurements of flavour oscillations in the neutrino sector

present compelling evidence for BSM physics. Oscillation experiments probe the mass differ-

ences between the mass eigenstates of the neutrino sector. From oscillation data, the measured

quantities are the squared mass splittings between the lightest neutrino and the other two.

Mass eigenstate labelling is in terms of flavour order: mass eigenstates 1, 2, 3 correspond

to the mass eigenstates with the largest components of νe, νµ and ντ respectively. From solar

neutrino experiments, the splitting between m1 and m2, ∆m
2
21 ≡ m2

2 −m2
1, is well determined.

Atmospheric neutrino experiments have measured the magnitude of the splitting from ν3 to the

lightest neutrino (ℓ), |∆m2
3ℓ| ≡ |m2

3 −m2
ℓ |, but not the sign. |∆m2

3ℓ| is ∼ 2 orders of magnitude

larger than ∆m2
21, meaning that ν3 is either much heavier than both ν1 and ν2, or much lighter.

These are known as the normal hierarchy (NH) in which m1 < m2 ≪ m3, and the inverted

hierarchy (IH), m3 ≪ m1 < m2, and both are allowed by the data.

In terms of the mass differences and the mass of the lightest neutrino mν0 , the mass hierar-
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chies can be written

NH : (m2
1,m

2
2,m

2
3) = m2

ν0
+ (0,∆m2

21,∆m
2
3ℓ) (3.4.1)

IH : (m2
1,m

2
2,m

2
3) = m2

ν0
+ (0, |∆m2

3ℓ| −∆m2
21, |∆m2

3ℓ|) . (3.4.2)

Neutrinos have an important impact on cosmology. The impact they have on structure for-

mation and the imprint they leave on the CMB enter predominantly via the sum of neutrino

masses,
∑
mν . Cosmology therefore primarily constrains

∑
mν , which is complementary to

the quantities constrained by terrestrial experiments, namely the mass splittings and mixing

angles. Note that at the time of writing, no experiment has been able to measure the value

of an individual neutrino mass. However, consistently combining constraints from terrestrial

experiments and cosmological probes allows us to perform detailed inference on the neutrino

sector.

Below, we perform a global fit of the masses of the three SM neutrinos in order to obtain

robust new bounds on the mass of the lightest neutrino, and the sum of neutrino masses. We

perform scans of both the NH and IH, and consider the impact of allowing additional radiation

or modifications to the neutrino temperature. We compare our results to the often studied –

but unphysical – degenerate neutrino scenario.

A similar analysis to this work was performed in Ref. [259], in which the authors combined

constraints from the CMB, SN Ia, BBN, and BAO data. This study makes improvements on

many of the measurements used in Ref. [259], such as using the 2018 Planck dataset instead of

the 2015 dataset, and using the results from NuFit 4.1 instead of NuFit 2.0. Additionally, we

fully propagate Yp and include the uncertainty on τn. Finally, our choice of BAO likelihoods

employs only the scale, whereas Ref. [259] use the full shape of the clustering, as described

in Ref. [260]. While this is a more thorough approach to take, it introduces 28 new nuisance

parameters (such as galaxy bias and a host of redshift errors), and currently does not add as

much constraining power on the neutrino sector as simply using BAO scale measurements, due

to uncertainties in the modelling on non-linear scales [240,261]. We therefore elect to only use

include BAO scale measurements in our fits.

3.4.1 Scan details

We perform separate scans of both the normal and inverted hierarchies. Details of the prior

ranges used in these scans are given in Table 3.2. Within the neutrino sector, we vary the

mass of the lightest neutrino mν0 , and the two mass differences ∆m2
21 and ∆m2

3ℓ. In addition,

we scan the six traditional free parameters of ΛCDM, using linear priors, as they are well

constrained. We choose a conservative linear prior on mν0 between 0 and 1.1 eV. We fix the

CMB temperature to the COBE/FIRAS monopole measurement TCMB = 2.72548 K.

We also vary the departure from the expected number of relativistic degrees of freedom in
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Parameter Brief description Prior range

Neutrino masses

mν0 Lightest neutrino mass [0, 1.1] eV

∆m2
21 Solar mass splitting [6, 9] ×10−5 eV

∆m2
3ℓ Atmospheric mass splitting

NH: [2.2, 2.8] ×10−3 eV

IH: [-2.8, -2.2] ×10−3 eV

Neff

rν Effective neutrino temperature [0.75, 1.15]

ΛCDM

H0 Hubble rate today [50, 80] km s−1 Mpc−1

ωb Baryon density [0.020, 0.024]

ωcdm Cold DM density [0.10, 0.15]

ln (1010As) Amplitude of scalar perturbations [2.5, 3.5]

ns Spectral tilt [0.90, 1.10]

τreio Reionisation optical depth [0.004, 0.200]

Nuisance parameters

τn Neutron lifetime [873, 883] s

M SN Ia absolute magnitude [-20, -18]

Various Planck likelihoods 21 parameters varied

Table 3.2: Parameter ranges used in the analysis. All priors used in the scans pre-
sented use linear priors. Ranges for ∆m2

3ℓ are given assuming a normal mass hierarchy
(NH) and an inverted hierarchy (IH).

the SM, ∆Neff , which we define as

∆Neff ≡ Neff −NSM = Neff − 3.045 . (3.4.3)

which we achieve by varying the parameter rν , the effective neutrino temperature ratio,

rν ≡
Tν
Tν,SM

=

(
∆Neff

NSM

+ 1

) 1
4

. (3.4.4)

This choice of parametrisation allows us to map to scenarios where additional radiation content

adds to Neff (∆Neff > 0) and scenarios where the neutrino temperature is modified with respect

to the standard cosmological history (both ∆Neff > 0 and ∆Neff < 0). We later assess the

impact of restricting ourselves to the pure SM case (∆Neff = 0). We assume that Neff has the

same value at recombination and at the end of BBN - in principle these can differ, if there is

an energy injection into the neutrino bath between the two epochs.

We vary a total of 23 nuisance parameters, describing the SN Ia absolute magnitude in the
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Pantheon analysis, M , the neutron lifetime τn, and 21 parameters describing uncertainties in

the Planck likelihoods. M and τn are constrained by the MontePython nuisance likelihood for

the Pantheon dataset, and the combination of all ‘bottle’ measurements, τbottlen = 879.4 ± 0.6

s [185] respectively, which is included in PrecisionBit [113].

As ∆m2
21, ∆m

2
3ℓ, the ΛCDM parameters, and all nuisance parameters are all well constrained

by measurements, we do not consider the sensitivity of our results to the choice of these priors.

In Ref. [3], we considered the impact of instead using a hybrid prior on mν0 , which is linear

below 0.0003 eV and logarithmic above it. The choice of a logarithmic prior is perhaps more

well-motivated from a physical point of view, as there is no positive evidence preferring a mass

scale for the lightest neutrino (or even a non-zero mass). A logarithmic prior applies equal prior

weight to all mass scales employed in the scan range. It is however a less conservative choice

of prior, and significantly strengthens the bound on mν0 , as it applies greater prior weight to

smaller mass scales. I therefore do not present the limits here.

We use the nested sampler PolyChord 1.17.1 [262] in fast-slow mode to perform all scans.

We use a stopping tolerance of 0.01, 500 live points, an initial sample of 5000 points from the

prior, a fast-slow sampling split of 1:3, and default values for all other settings.

3.4.2 Likelihoods

The likelihoods employed in these fits are:

CMB: Planck 2018 baseline likelihoods for low- and high-ℓ temperature and polarisation data,

plus CMB lensing [224]

Neutrino oscillations: two-dimensional ∆χ2 tables for ∆m2
21 and ∆m2

3ℓ from the NuFit

4.1 [93] global study, for both the NH and IH. The NuFit collaboration infer their results

using data from the following experiments:

Solar neutrinos: Homestake chlorine [263], Gallex/GNO [264], SAGE [265], SNO [266],

four phases of Super-Kamiokande [267–270], and two phases of Borexino [271–273]

Atmospheric neutrinos: IceCube/DeepCore [274] and Super-Kamiokande [275]

Reactor neutrinos: KamLAND [276], DoubleChooz [277], Daya Bay [278, 279], and

Reno [280]

Accelerator experiments: MINOS [281,282], T2K [283,284], and NOνA [285,286]

The mixing angles θij and δCP do not enter any of our calculations, and are therefore not

relevant to this study.

BAO scale: measurements from the combined 6dF and MGS galaxy surveys [243,244,287] of

the volume-averaged distance DV , transverse comoving distance DM from DES-Y1 [245],
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DM and H(z) from BOSS DR12 [239], and the eBOSS DR14 LRG and QSO samples

[241,242]. We fully take into account correlations between the overlap in samples between

BOSS and eBOSS.

BBN: abundance measurements of deuterium and helium. We use a value of 0.245±0.003 for

the helium abundance [288], and (2.527±0.030)×10−5 for the deuterium abundance [289],

using AlterBBN

Type Ia supernovae: the Pantheon compilation [246], containing 1048 SN Ia, via Mon-

tePython

We use CLASS 2.9.3 to solve the background cosmology and Boltzmann equations, AlterBBN

for BBN calculations and likelihoods, MontePython 3.3.0 for the BAO and SN Ia likelihoods,

and PLC 3.0.0 for the Planck likelihoods.

3.4.3 Results and discussion

In Fig. 3.1, we show 1D marginal posteriors for the lightest neutrino mass, mν0 , and the sum

of neutrino masses,
∑
mν in the normal hierarchy, for the three cases of Neff outlined above

(∆Neff = 0, ∆Neff > 0, and both positive and negative ∆Neff). Fig. 3.2 is equivalent, but for

inverted ordering. In Fig. 3.3, we show joint posteriors of
∑
mν , mν0 , H0 and ∆Neff in the

NH, for the cases in which ∆Neff is allowed to vary fully, and where it is restricted to be dark

radiation-like, ∆Neff > 0. Fig. 3.4 shows the same but for the IH.

With full freedom in ∆Neff , we obtain the strongest result for the NH, mν0 < 0.038 eV. For

the IH, we find a small increase to mν0 < 0.044 eV. Considering different treatment of ∆Neff

has little effect on the posteriors: they shift only slightly, by approximately 0.002 eV (giving

a weaker bound for the NH, and a stronger one for the IH). This implies that this result is

particularly robust to assumptions about the number of effective relativistic degrees of freedom

at recombination: permitting freedom in ∆Neff has only a minimal effect on the inference of

the properties of SM neutrinos.2

The corresponding limits we obtain on the sum of the neutrino mass are 0.057eV <
∑
mν <

0.142eV for the NH, and 0.098eV <
∑
mν < 0.177eV for the IH, assuming full freedom in ∆Neff .

We also perform a scan of a degenerate neutrino scenario, in which all three SM neutri-

nos have the same mass. This model is plainly incorrect from a physical standpoint, but is

commonly used in the literature, such as in recent studies by Planck [28] and eBOSS [291].

Inference on this scan leads to an erroneous result of
∑
mν < 0.122 eV at 95% confidence,

when ∆Neff is allowed to vary freely.

2Note that the limits on mν0 and
∑
mν I present here are slightly different to those given in Ref. [3], due

to the different choice of plotting tool. Ref. [3] utilises GetDist [290] which uses kernel density estimation to
smooth the samples. I have used pippi [186] to create plots, using bilinear interpolation to construct credible
regions from fixed-width histograms.
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Figure 3.1: Marginalised 1D posteriors for the mass of the lightest neutrino and the
sum of neutrino masses for the normal hierarchy. Blue signifies the pure SM case,
∆Neff = 0, grey with dark radiation, ∆Neff > 0, and red modifies the neutrino tem-
perature, where ∆Neff can be positive or negative. Dashed and dotted lines represent
1 and 2σ credible regions respectively. Note that all histograms are normalised to
their own maximum probability Pmax.
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Figure 3.2: As Fig. 3.1, but for the inverted hierarchy.

In each of the scenarios we performed scans of, the region of highest probability density

is concentrated around the lightest neutrino mass permitted by the relevant NuFit likelihoods.

In the case of the degenerate mass model, the NuFit likelihood is not applicable, therefore the

region of highest probability density is around
∑
mν = 0, namely three massless neutrinos,

which has been ruled out experimentally. These widely used limits are simply not compatible

with a physical neutrino mass model; using a physical neutrino mass model gives a more correct

and robust limit from cosmology, albeit a weaker bound.
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Figure 3.3: 1D and joint 2D posteriors for the lightest neutrino mass, the sum of
neutrino masses, the Hubble parameter today, and the effective number of additional
relativistic species at recombination, for the normal hierarchy. Contour lines show the
1 and 2σ credible regions. Shading and white contours show the scenario in which
∆Neff is allowed full freedom, whereas grey contours signify ∆Neff > 0.

Comparing to the analysis performed in Ref. [259], we find an improvement of approximately

a factor of 2 on mν0 : Ref. [259] finds a 95% credible interal of mν0 < 0.086eV . This difference

can be attributed to the factors introduced previously: using improved CMB and neutrino

data, the inclusion of Yp and the uncertainty on τn, and our choice of only using the BAO scale

instead of the full shape of the clustering.
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Figure 3.4: As Fig. 3.3, but for the inverted hierarchy.

3.5 Summary

The intimate connection between particle physics and cosmology cannot be understated.

The picture of complementarity between cosmological and particle physics probes is becoming

rapidly more important as upcoming experiments look to push beyond the ΛCDM paradigm.

Next-generation CMB experiments such as CMB-S4 [292] and the Simons Observatory [196]

will test the paradigm of inflation, the nature of the neutrino sector, and other light relics. The

SKA [198] will use the epoch of reionisation to test models of dark energy and gravity, and

Euclid [199, 200] will employ galaxy clustering and the galaxy power spectrum to probe the

sum of neutrino masses and models of dark energy. Gravitational wave observatories such as

LISA [197] will probe early Universe phase transitions and constrain modified gravity theories,

inflation, and other sources of primordial gravitational waves. Gravitational wave cosmology
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presents a novel manner to shed light on the Hubble parameter [293, 294], which may provide

evidence of additional particle species affecting the background evolution.

To provide a framework for joint analysis of particle physics and cosmology, we have de-

veloped CosmoBit, the GAMBIT module for cosmology. CosmoBit is the first public package

able to consistently combine observables and likelihoods from cosmology with those from par-

ticle physics. CosmoBit ships with a wide range of models to describe particle cosmology, such

as models of inflation, exotic energy injection from dark matter, and non-standard radiation

content. Additionally, there are two parametrisations of ΛCDM and various nuisance models

associated with cosmological surveys and experiments.

CosmoBit computes a wide range of cosmological quantities, such as the primordial power

spectrum from inflation, BBN abundances for non-standard cosmologies, exotic energy injec-

tions from new interactions, CMB anisotropy spectra, and the matter power spectrum. The

likelihoods contained include up-to-date measurements of BBN abundances, the latest CMB

spectra from Planck, and likelihoods from late-time surveys such as measurements of the BAO

scale and SN Ia.

CosmoBit interfaces with widely used public tools including AlterBBN, CLASS,MontePython,

MultiModeCode, DarkAges and PLC. Planned additional interfaces include the Boltzmann solver

CAMB [295] and likelihoods contained within CosmoMC [296, 297]. The design of the CLASS

interface makes it easy to interface modified versions of CLASS, e.g. for modified theories of

gravity via hi CLASS [298, 299]. The MontePython interface also means that we can rapidly

incorporate new cosmological measurements within GAMBIT, such as likelihoods from gravita-

tional wave observations.

Finally, I have presented results from a global analysis of the neutrino sector of the SM,

using likelihoods from cosmology and terrestrial neutrino experiments. We used likelihoods from

BBN, the CMB, SN Ia and BAO alongside results from a large range of neutrino oscillation

experiments for both the normal and inverted hierarchy. Assuming standard cosmology plus

∆Neff 6= 0, we provide a new robust upper limit on the mass of the lightest neutrino of 0.038

eV for the NH, and 0.044 eV for the IH, a factor of two improvement on existing limits. We

find the sum of the neutrino masses to be 0.057eV <
∑
mν < 0.142eV for the NH, and

0.098eV <
∑
mν < 0.177eV for the IH when ∆Neff 6= 0.
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Part II

Global fits of effective DM theories
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In this section, I look at global fits of effective DM models. In the first study, (Chapter 4,

based on Ref. [4]) I consider the case in which the SM Lagrangian is extended by a stable

gauge singlet and coupled to the dimension-two SM Higgs invariant H†H, the ‘Higgs portal’.

I consider spin-1 and spin-1/2 DM candidates. Both candidates describe effective models;

the fermionic Lagrangian has a dimension five term and is non-renormalisable, and the vector

Lagrangian introduces a massive vector particle without any mass mechanism, and is therefore

also non-renormalisable.

The second study, Chapter 5, is based on Ref. [5]. In this study, I consider an EFT in

which a gauge singlet Dirac DM candidate couples to the quark and gluon sectors of the SM

via non-renormalisable dimension six and seven interactions.

In both studies, I consider constraints from direct DM searches, the relic abundance of DM,

indirect detection via γ rays, and the validity of the effective theories. In the Higgs portal

study, I also consider invisible decays of the Higgs and indirect detection via solar neutrinos,

and in the DM EFT study, I consider the impact of collider searches.
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Chapter 4

Effective Higgs Portal Dark Matter

The simplest extension of the SM incorporating a DM candidate couples the DM to the

lowest dimension gauge invariant operator in the SM, H†H. It is therefore natural to assume

that the standard Higgs boson (or another scalar that mixes with the Higgs) couples to massive

DM particles via such a ‘Higgs portal’ [300–320]. The discovery of the Higgs boson in 2012 by

ATLAS [321] and CMS [322] therefore opens an exciting potential window for probing DM.

Despite being simple extensions of the SM in terms of particle content and interactions,

Higgs portal models have a rich phenomenology, and can serve as effective descriptions of more

complicated theories [323–347]. They can produce distinct signals at present and future col-

liders, DM direct detection experiments or in cosmic ray experiments. In the recent literature,

experimental limits on Higgs portal models were considered from Large Hadron Collider (LHC),

Circular Electron Positron Collider and Linear Collider searches, LUX and PandaX, supernovae,

charged cosmic and γ rays, Big Bang Nucleosynthesis, and cosmology [221,348–377]. The lack

of such signals to date places stringent constraints on Higgs portal models.

The first global study of the scalar Higgs portal DM model was performed in Ref. [378].

The most recent global fits [83,84] included relic density constraints from Planck, leading direct

detection constraints from LUX, XENON1T, PandaX and SuperCDMS, upper limits on the γ-

ray flux from DM annihilation in dwarf spheroidal galaxies with the Fermi -LAT, limits on solar

DM annihilation from IceCube, and constraints on decays of SM-like Higgs bosons to scalar

singlet particles. The most recent [84] also considered the Z3 symmetric version of the model,

and the impact of requiring vacuum stability and perturbativity up to high energy scales.

In this Chapter, we perform the first global fits of the effective vector, Majorana fermion

and Dirac fermion Higgs portal DM models using the GAMBIT package [110]. The work in

this Chapter builds on the work presented in Ref. [344]. While Ref. [344] performed a global

analysis, they only mark exclusion limits and do not explore the parameter space to the same

depth as in this Chapter.

We employ the latest data from DM abundance, indirect and direct DM search limits and

the invisible Higgs width to systematically explore the model parameter space and present both
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frequentist and Bayesian results. This clearly serves as an improvement to Ref. [344], which

simply presented exclusion limits on the parameter space, and did not explore the fermion

DM models in full, but only considered subsets with fixed values for the mixing angle. Ad-

ditionally, we include the most important SM, nuclear physics, and DM halo model nuisance

parameters. For the fermion DM models, we present a Bayesian model comparison between the

CP-conserving and CP-violating versions of the theory. We also carry out a model comparison

between scalar, vector and fermion DM models. For these reasons, this work clearly extends

the scope of Ref. [344].

In Sec. 4.1, we introduce the effective vector and fermion Higgs portal DM models. We

describe the constraints that we use in our global fits in Sec. 4.2, and the details of our parameter

scans in Sec. 4.3. We present likelihood and Bayesian model comparison results respectively in

Secs. 4.4 and 4.5, and conclude in Sec. 4.6.

4.1 Models

We separately consider vector (Vµ), Majorana fermion (χ) and Dirac fermion (ψ) DM parti-

cles that are singlets under the SM gauge group. By imposing an unbroken global Z2 symmetry,

under which all SM fields transform trivially but (Vµ, χ, ψ) → −(Vµ, χ, ψ), we ensure that our

DM candidates are absolutely stable.

Before electroweak symmetry breaking (EWSB), the Lagrangians for the three different

scenarios are [344]

LV = LSM − 1

4
WµνW

µν +
1

2
µ2
V VµV

µ − 1

4!
λV (VµV

µ)2 +
1

2
λhV VµV

µH†H, (4.1.1)

Lχ = LSM +
1

2
χ(i/∂ − µχ)χ− 1

2

λhχ
Λχ

(
cos θ χχ+ sin θ χiγ5χ

)
H†H, (4.1.2)

Lψ = LSM + ψ(i/∂ − µψ)ψ − λhψ
Λψ

(
cos θ ψψ + sin θ ψiγ5ψ

)
H†H, (4.1.3)

where LSM is the SM Lagrangian, Wµν ≡ ∂µVν − ∂νVµ is the vector field strength tensor, λhV

is the dimensionless vector Higgs portal coupling, λhχ,hψ/Λχ,ψ are the dimensionful fermionic

Higgs portal couplings, and H is the SM Higgs doublet. The fermionic Lagrangians include

both CP-odd and CP-even Higgs portal operators, with θ controlling their relative size. The

choice cos θ = 1 corresponds to a pure scalar, CP-conserving interaction between the fermionic

DM and the SM Higgs field, whereas cos θ = 0 corresponds to a pure pseudoscalar, maximally

CP-violating interaction. We discuss a possible ultraviolet (UV) completion of such a model in

Sec. 4.2.7 (see also Refs. [305,316]).

Although all operators in the vector DM model have mass dimension four, the model itself

is fundamentally non-renormalisable, as we do not impose a gauge symmetry to forbid e.g. the

mass term for the vector field. Processes with large energies compared to the vector DM
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mass will violate perturbative unitarity: for large momentum, longitudinal modes of the vector

propagator become constant and cross-sections become divergent. In this study we remain

agnostic as to the origin of the vector mass term and the quartic vector self-interaction, however

we do consider perturbative unitarity in Sec. 4.2.7.

After EWSB, the Higgs field acquires a non-zero VEV, and the H†H terms in Eqs. (4.1.1–

4.1.3) generate mass and interaction terms for the DM fields. The tree-level physical mass of

the vector DM candidate is

m2
V = µ2

V +
1

2
λhV v

2
0 . (4.1.4)

For the fermion DM models, the pseudoscalar term (proportional to sin θ) generates a non-

mass-type term that is purely quadratic in the DM fields (e.g. ψγ5ψ). Therefore after EWSB,

to eliminate this term, we perform a chiral rotation of the fermion DM fields through

χ→ eiγ5α/2χ, ψ → eiγ5α/2ψ , (4.1.5)

where α is a real, space-time independent parameter.1 Using the details outlined in the appendix

of Ref. [344], we arrive at the following post-EWSB fermion DM Lagrangians

Lχ = LSM +
1

2
χ(i/∂ −mχ)χ− 1

2

λhχ
Λχ

[
cos ξ χχ+ sin ξ χiγ5χ

](
v0h+

1

2
h2
)
, (4.1.6)

Lψ = LSM + ψ(i/∂ −mψ)ψ − λhψ
Λψ

[
cos ξ ψψ + sin ξ ψiγ5ψ

](
v0h+

1

2
h2
)
, (4.1.7)

where ξ ≡ θ + α,

cos ξ =
µχ,ψ
mχ,ψ

(
cos θ +

1

2

λhχ,hψ
Λχ,ψ

v20
µχ,ψ

)
, (4.1.8)

and

mχ,ψ =

[(
µχ,ψ +

1

2

λhχ,hψ
Λχ,ψ

v20 cos θ

)2

+

(
1

2

λhχ,hψ
Λχ,ψ

v20 sin θ

)2
]1/2

. (4.1.9)

In particular, we note that a theory that is CP-conserving before EWSB (cos θ = 1) is still CP-

conserving after EWSB (cos ξ = 1). Because the simplest UV completion leads to cos θ = 1,

this means the particular choice of cos ξ = 1 is also natural from the UV perspective.2 In light

of this, we compare the viability of a CP-conserving scenario to the most general case with

arbitrary ξ in Sec. 4.5.

1Note that for the Majorana case, the four-component spinor can be written in terms of one two-component
Weyl spinor. This transformation simply corresponds to a phase transformation of this two-component spinor.

2This is not the case for the maximally CP-violating choice (cos θ = 0) as EWSB induces a scalar interaction
term with cos ξ ∝ v20 [379].
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Likelihoods GAMBIT modules/backends Ref.

Relic density (Planck) DarkBit [381]

Higgs invisible width DecayBit [113]

Fermi -LAT dSphs gamlike 1.0.0 [42]

LUX 2016 (Run II) DDCalc 2.0.0 [58]

PandaX 2016 DDCalc 2.0.0 [64]

PandaX 2017 DDCalc 2.0.0 [59]

XENON1T 2018 DDCalc 2.0.0 [57]

CDMSlite DDCalc 2.0.0 [69]

CRESST-II DDCalc 2.0.0 [60]

PICO-60 2017 DDCalc 2.0.0 [76]

DarkSide-50 2018 DDCalc 2.0.0 [66]

IceCube 79-string nulike 1.0.6 [382]

Table 4.1: Likelihoods and corresponding GAMBIT modules/backends employed in
our global fit.

4.2 Constraints

The free parameters of the Lagrangians are subject to various observational and theoretical

constraints. For the case of vector DM, the relevant parameters after EWSB are the vector DM

mass mV and the dimensionless coupling λhV .
3 The post-EWSB fermion Lagrangians contain

three free parameters: the fermion DM mass mχ,ψ, the dimensionful coupling λhχ,hψ/Λχ,ψ

between DM and the Higgs, and the scalar-pseudoscalar mixing parameter ξ.

In Table 4.1, we summarise the various likelihoods used to constrain the model parameters

in our global fit. In the following subsections, we will discuss both the physics as well as the

implementation of each of these constraints.

4.2.1 Thermal relic density

The time evolution of the DM number density nX is governed by the Boltzmann equation,

Eq. (1.2.3). We compute the thermally averaged cross-section 〈σv〉 by [31]

〈σvrel〉 =
∫ ∞

4m2
X

ds
s
√
s− 4m2

XK1 (
√
s/T )

16Tm4
XK

2
2 (mX/T )

σvrel , (4.2.1)

3The quartic self-coupling λV does not play any role in the DM phenomenology that we consider, and can
be ignored. However, it is vital if constraints from electroweak vacuum stability and model perturbativity are
imposed [380]. For a global fit including vacuum stability of scalar DM, see e.g., Ref. [84].
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where vrel is the relative velocity of the DM particles in the centre-of-mass frame, and K1,2

are modified Bessel functions. In the case of non-self-conjugate DM, the right hand side of

Eq. (1.2.3) is divided by two.

In the scenarios discussed above, the annihilation process of DM receives contributions

from all kinematically accessible final states involving massive SM fields, including neutrinos.

Annihilations into SM gauge bosons and fermions are mediated by a Higgs boson in the s-

channel; consequently, near the resonance region, wheremX ≃ mh/2, it is crucial to perform the

actual thermal average as defined in Eq. (4.2.1) instead of expanding σvrel into partial waves.4

Moreover, we take into account the important contributions arising from the production of off-

shell pairs of gauge bosons WW ∗ and ZZ∗ [384]. To this end, for 45 GeV ≤ √
s ≤ 300 GeV, we

compute the annihilation cross-section into SM gauge bosons and fermions in the narrow-width

approximation via

σvrel = P (X)
2λ2hXv

2
0√

s

Γh (m
∗
h =

√
s)

(s−m2
h)

2
+m2

hΓ
2
h (mh)

, (4.2.2)

where we employ the tabulated Higgs branching ratios Γ(m∗
h) as implemented in DecayBit [113].

For fermionic DM, the dimensionful coupling is implied, λhX ∈ {λhV , λhψ/Λψ, λhχ/Λχ}. The

pre-factor P (X) is given by

P (X) =





1

9

(
3− s

m2
V

+
s2

4m4
V

)
, X = Vµ,

s

2

(
1− 4m2

X cos2 ξ

s

)
, X = ψ, χ .

(4.2.3)

In particular, we notice that for CP-conserving interactions of a fermionic DM particle, the

annihilation cross-section is p-wave suppressed.

As shown in Ref. [384], for
√
s & 300GeV the Higgs 1-loop self-interaction begins to over-

estimate the tabulated Higgs boson width in Ref. [385]. Thus, for
√
s > 300GeV (where the

off-shell production of gauge boson pairs is irrelevant anyway), we revert to the tree-level ex-

pressions for the annihilation processes given in Appendix B. Moreover, for mX ≥ mh, DM

can annihilate into a pair of Higgs bosons, a process which is not included in Eq. (4.2.2). We

supplement the cross-sections computed from the tabulated DecayBit values with this process

for mX ≥ mh.

Finally, we obtain the relic density ofX by numerically solving Eq. (1.2.3) at each parameter

point, using the routines implemented in DarkSUSY [193,194] via DarkBit.

In the spirit of the EFT framework employed in this work, we do not demand that the

4We assume DM to be in a local thermal equilibrium (LTE) during freeze-out. As pointed out in Ref. [383],
this assumption can break down very close to the resonance, thereby requiring a full numerical solution of the
Boltzmann equation in phase space. As this part of the parameter space is in any case very difficult to test
experimentally (see Sec. 4.4), we stick to the standard approximation of LTE.
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particle X constitutes all of the observed DM, i.e., we allow for the possibility of other DM

species to contribute to the observed relic density. Concretely, we implement the relic density

constraint using a likelihood that is flat for predicted values below the observed one, and based

on a Gaussian likelihood following the Planck measured value ΩDMh
2 = 0.1188 ± 0.0010 [381]

for predictions that exceed the observed central value. We include a 5% theoretical error on the

computed values of the relic density, which we combine in quadrature with the observed error

on the Planck measured value. More details on this prescription can be found in Refs. [63,110].

In regions of the model parameter space where the relic abundance of X is less than the

observed value, we rescale all predicted direct and indirect detection signals by frel ≡ ΩX/ΩDM

and f 2
rel, respectively. In doing so, we conservatively assume that the remaining DM population

does not contribute to signals in these experiments.

4.2.2 Higgs invisible decays

For mX < mh/2, the SM Higgs boson can decay into a pair of DM particles, with rates

given by [344]

Γinv(h→ V V ) =
λ2hV v

2
0m

3
h

128πm4
V

(
1− 4m2

V

m2
h

+
12m4

V

m4
h

)√
1− 4m2

V

m2
h

, (4.2.4)

Γinv(h→ χχ) =
mhv

2
0

16π

(
λhχ
Λχ

)2(
1−

4m2
χ cos

2 ξ

m2
h

)√

1−
4m2

χ

m2
h

, (4.2.5)

Γinv(h→ ψψ) =
mhv

2
0

8π

(
λhψ
Λψ

)2(
1−

4m2
ψ cos

2 ξ

m2
h

)√

1−
4m2

ψ

m2
h

, (4.2.6)

for the vector, Majorana and Dirac DM scenarios, respectively. These processes contribute to

the Higgs invisible width Γinv, which is constrained to be less than 19% of the total width at

2σ C.L. [82], for SM-like Higgs couplings. We take this constraint into account by using the

DecayBit implementation of the Higgs invisible width likelihood, which in turn is based on an

interpolation of Fig. 8 in Ref. [82]. Beyond the Higgs invisible width, the LHC provides only a

mild constraint on Higgs portal models [386].

4.2.3 Indirect detection using γ rays

Arguably, the most immediate prediction of the thermal freeze-out scenario is that DM

particles can annihilate today, most notably in regions of enhanced DM density. In particular,

γ-ray observations of dwarf spheroidal galaxies (dSphs) of the Milky Way are strong and robust

probes of any model of thermal DM with unsuppressed annihilation into SM particles.5

5We do not include constraints from cosmic-ray antiprotons; although they are potentially competitive with
or even stronger than those from γ-ray observations of dSphs, there is still no consensus on the systematic
uncertainty of the upper bound on a DM-induced component in the antiproton spectrum [365,387–389].
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In our analysis, we include the Pass 8 combined analysis of 15 dwarf galaxies using 6 years of

Fermi -LAT data [42], which currently provides the strongest bounds on the annihilation cross-

section of DM into final states containing γ rays. We use the binned likelihoods implemented

in DarkBit [63], which make use of the gamlike package. Besides the likelihood associated with

the γ-ray observations, given by

lnLexp =

NdSphs∑

k=1

NeBins∑

i=1

lnLki (Φi · Jk) , (4.2.7)

we also include a term lnLJ that parametrises the uncertainties on the J-factors [42, 63]. We

obtain the overall likelihood by profiling over the J-factors of all 15 dwarf galaxies, as

lnLprof.
dwarfs = max

J1...Jk
(lnLexp + lnLJ) . (4.2.8)

Let us remark again that for the case of Dirac or Majorana fermion DM with CP-conserving

interactions (i.e., ξ = 0), the annihilation cross-section vanishes in the zero-velocity limit.

Scenarios with ξ 6= 0 therefore pay the price of an additional penalty from γ-ray observations,

compared to the CP-conserving case.

4.2.4 Direct detection

For the vector DM model, the DM-nucleon scattering process is induced by the standard SI

interaction, with a cross-section given by [344]

σVSI =
µ2
N

π

λ2hV f
2
Nm

2
N

4m2
Vm

4
h

, (4.2.9)

where µN = mVmN/(mV +mN) is the DM-nucleon reduced mass and fN is the effective Higgs-

nucleon coupling. The latter is related to the quark content of a proton and neutron, and is

subject to (mild) uncertainties. In our analysis we treat the relevant nuclear matrix elements

as nuisance parameters; this will be discussed in more detail in Sec. 4.2.6.

In the case of fermionic DM X ∈ {χ, ψ}, the pseudoscalar current Xiγ5X induces a non-

standard dependence of the differential scattering cross-section on the momentum transfer q

(see e.g., Ref. [390]):

dσXSI
dq2

=
1

v2

(
λhX
ΛX

)2
A2F 2(E)f 2

Nm
2
N

4πm4
h

×
(
cos2 ξ +

q2

4m2
X

sin2 ξ

)
, (4.2.10)

where A is the mass number of the target isotope of interest, and F 2(E) is the standard

form factor for spin-independent scattering [391]. As the typical momentum transfer in a

scattering process is |q| ≃ (1− 100) MeV ≪ mX , we note that direct detection constraints will

be significantly suppressed for scenarios that are dominated by the pseudoscalar interaction,
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i.e., for ξ ≃ π/2. For both the vector and fermion models, the SD cross-section is absent

at leading order. Loop corrections are found not to give a relevant contribution to direct

detection in the EFT approach, although they may lead to important effects in specific UV-

completions [392–394].

The predicted number of events Np is given by Eq. (1.2.9). To evaluate Np, we assume a

Maxwell-Boltzmann velocity distribution in the Galactic rest frame, with a peak velocity vpeak

and truncated at the local escape velocity vesc. We refer to Ref. [63] for the conversion to the

velocity distribution f (v, t) in the detector rest frame. We discuss the likelihoods associated

with the uncertainties in the DM velocity distribution in Sec. 4.2.6.

We use the DarkBit interface to DDCalc 2.0.06 to calculate the number of observed events o

in the signal regions for each experiment and to evaluate the standard Poisson likelihood

L (s|o) = (b+ s)o e−(b+s)

o!
, (4.2.11)

where s and b are the respective numbers of expected signal and background events. We model

the detector efficiencies and acceptance rates by interpolating between the pre-computed tables

in DDCalc. We include likelihoods from XENON1T 2018 analysis [57], LUX 2016 [58], PandaX

2016 [64] and 2017 [59] analyses, CDMSlite [69], CRESST-II [60], PICO-60 [76], and DarkSide-

50 [66].

4.2.5 Capture and annihilation of DM in the Sun

Similar to the process underlying direct detection, DM particles from the local halo can

also elastically scatter off nuclei in the Sun and become gravitationally bound. The resulting

population of DM particles near the core of the Sun can then induce annihilations into high-

energy SM particles that subsequently interact with the matter in the solar core. Of the

resulting particles, only neutrinos are able to escape the dense Solar environment. Eventually,

these can be detected in neutrino detectors on the Earth [395–397].

The capture rate of DM in the Sun is obtained by integrating the differential scattering

cross-section dσ/dq2 over the range of recoil energies resulting in a gravitational capture, as

well as over the Sun’s volume and the DM velocity distribution. To this end, we employ the

newly-developed public code Capt’n General7, which computes capture rates in the Sun for SI

and SD interactions with general momentum- and velocity-dependence, using the B16 Standard

Solar Model [398] composition and density distribution. We refer to Refs. [399,400] for details

on the capture rate calculation. Notice that similar to direct detection, the capture rate is

also subject to uncertainties related to the local density and velocity distribution of DM in

the Milky Way. As mentioned earlier, these uncertainties are taken into account by separate

6http://ddcalc.hepforge.org/, http://github.com/patscott/ddcalc/
7https://github.com/aaronvincent/captngen
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Parameter Value (±Range)

Local DM density ρ0 0.2–0.8GeV cm−3

Most probable speed vpeak 240 (24) km s−1

Galactic escape speed vesc 533 (96) km s−1

Nuclear matrix element σs 43 (24)MeV

Nuclear matrix element σl 50 (45)MeV

Higgs pole mass mh 124.1–127.3GeV

Strong coupling αMS
s (mZ) 0.1181 (33)

Table 4.2: Nuisance parameters that are varied simultaneously with the DM model
parameters in our scans. All parameters have flat priors. For more details about the
nuisance likelihoods, see Sec. 4.2.6.

nuisance likelihoods to be discussed in Sec. 4.2.6.

Neglecting evaporation (which is well-justified for the DMmasses of interest in this study [401–

403]), the total population of DM in the Sun NX(t) follows from

dNX(t)

dt
= C(t)− A(t) , (4.2.12)

where C(t) is the capture rate of DM in the Sun, and A(t) ∝ 〈σvrel〉NX(t)
2 is the annihilation

rate of DM inside the Sun; this is calculated by DarkBit. We approximate the thermally

averaged DM annihilation cross-section, which enters in the expression for the annihilation

rate, by evaluating σv at v =
√

2T⊙/mX , where T⊙ = 1.35 keV is the core temperature of the

Sun.

At sufficiently large t, the solution for NX(t) reaches a steady state and depends only on the

capture rate. However, the corresponding time scale τ for reaching equilibrium depends also on

σv, and thus changes from point to point in the parameter space. Hence, we use the full solution

of Eq. (4.2.12) to determine NX at present times, which in turn determines the normalization of

the neutrino flux potentially detectable at Earth. We obtain the flavour and energy distribution

of the latter using results from WimpSim [404] included in DarkSUSY [193,194].

Finally, we employ the likelihoods derived from the 79-string IceCube search for high-energy

neutrinos from DM annihilation in the Sun [382] using nulike [43] via DarkBit; this contains a full

unbinned likelihood based on the event-level energy and angular information of the candidate

events.
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4.2.6 Nuisance likelihoods

The constraints discussed in the previous sections often depend on nuisance parameters,

i.e. parameters not of direct interest but required as input for other calculations. Examples are

nuclear matrix elements related to the DM direct detection process, the distribution of DM in

the Milky Way, or SM parameters known only to finite accuracy. It is one of the great virtues of

a global fit that such uncertainties can be taken into account in a fully consistent way, namely

by introducing new free parameters into the fit and constraining them by new likelihood terms

that characterise their uncertainty. We list the nuisance parameters included in our analysis in

Table 4.2, and discuss each of them in more detail in the rest of this section.

Following the default treatment in DarkBit, we include a nuisance likelihood for the local

DM density ρ0 given by a log-normal distribution with central value ρ0 = 0.40GeV cm−3 and an

error σρ0 = 0.15GeV cm−3. To reflect the log-normal distribution, we scan over an asymmetric

range for ρ0. For more details, see Ref. [63].

For the parameters determining the Maxwell-Boltzmann distribution of the DM velocity in

the Milky Way, namely vpeak and vesc, we employ simple Gaussian likelihoods. Since vpeak is

equal to the circular rotation speed vrot at the position of the Sun for an isothermal DM halo,

we use the determination of vrot from Ref. [405] to obtain vpeak = 240± 8 km s−1.8 The escape

velocity takes a central value of vesc = 533±31.9 km s−1, where we convert the 90% C.L. interval

obtained by the RAVE collaboration [408], assuming that the error is Gaussian.

As noted already in Sec. 4.2.4, the scattering cross-section of DM with nuclei (which enters

both the direct detection and solar capture calculations) depends on the effective DM-nucleon

coupling fN , which is given by [63]

fN =
2

9
+

7

9

∑

q=u,d,s

f
(N)
Tq . (4.2.13)

Here f
(N)
Tq are the nuclear matrix elements associated with the quark q content of a nucleon

N . As described in more detail in Ref. [195], these are obtained from the following observable

combinations

σl ≡ ml〈N |uu+ dd|N〉, σs ≡ ms〈N |ss|N〉 , (4.2.14)

where ml ≡ (mu +md)/2. We take into account the uncertainty on these matrix elements via

Gaussian likelihoods given by σs = 43 ± 8MeV [409] and σl = 50 ± 15MeV [410]. The latter

deviates from the default choice implemented in DarkBit as it reflects recent lattice results,

which point towards smaller values of σl (see Ref. [410] for more details). Furthermore, we

have confirmed that the uncertainties on the light quark masses have a negligible impact on

fN . Thus, for simplicity, we do not include them in our fit.

8Ref. [406] argues that the peculiar velocity of the Sun is somewhat larger than the canonical value v⊙,pec =
(11, 12, 7) km s−1 [407], leading to vrot = 218± 6 km s−1. In the present study we do not consider uncertainties
in v⊙,pec and therefore adopt the measurement of vrot from Ref. [405].
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We also use a Gaussian likelihood for the Higgs mass, based on the PDG value of mh =

125.09± 0.24GeV [411]. In line with the previous GAMBIT study of scalar singlet DM [83], we

allow the Higgs mass to vary by more than 4σ as the phenomenology of our models depends

strongly on mh, most notably near the Higgs resonance region. Finally, we take into account

the uncertainty on the strong coupling constant αs, which enters the expression for the DM

annihilation cross-section into SM quarks, taking a central value αMS
s (mZ) = 0.1181 ± 0.0011

[411].

4.2.7 Perturbative unitarity and EFT validity

The parameter spaces in which we are interested are limited by the requirement of pertur-

bative unitarity. First of all, this requirement imposes a bound on any dimensionless coupling

in the theory. Furthermore, as neither the vector or fermion Higgs portal models are renormal-

isable, we must ensure that the effective description is valid for the parameter regions to be

studied.

The dimensionless coupling λhV in the vector DM model is constrained by the requirement

that annihilation processes such as V V → hh do not violate perturbative unitarity. Determining

the precise bound to be imposed on λhV is somewhat involved, so we adopt the rather generous

requirement λhV < 10 with the implicit understanding that perturbativity may become an issue

already for somewhat smaller couplings.

For small DM masses, an additional complication arises from the fact that theories with

massive vector bosons are not generally renormalisable. In that case cross-sections do not

generally remain finite in themV → 0 limit and a significant portion of parameter space violates

perturbative unitarity [412]. However, by restricting ourselves to the case of µ2
V , λhV ≥ 0 we

can safely tackle both issues due to the fact that mV → 0 implies λhV → 0. Using Eq. (4.1.4),

this condition translates to

0 ≤ λhV ≤ 2m2
V

v20
. (4.2.15)

A more careful analysis might lead to a slightly larger valid parameter space, but as we will see

in Sec. 4.4.1.1, those regions would be excluded by the Higgs invisible width anyway.

The EFT validity of the fermion DM models depends on the specific UV completion. To

estimate the range of validity, we consider a UV completion in which a heavy scalar mediator

field Φ couples to the fermion DM X and the Higgs doublet as [305]

L ⊃ −µgHΦH†H − gXΦX (cos θ + i sin θγ5)X , (4.2.16)

where X ∈ {χ, ψ} and µ has mass dimension 1.9 For this specific UV completion, we assume

9Note that the γ5 term can be generated by a complex mass term m̃X in the original fermion Lagrangian
and performing a chiral rotation. Thus, full CP conservation (cos θ = 1) is equivalent to having a real mass
term.
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Parameter Minimum Maximum Prior type

λhV 10−4 10 log

mV (low mass) 45GeV 70GeV flat

mV (high mass) 45GeV 10TeV log

Table 4.3: Parameter ranges and priors for the vector DM model.

that the mixing between Φ and the Higgs field is negligible and can be ignored. The heavy

scalar field can be integrated out to give a dimensionful coupling in the EFT approximation as

L ⊃ −µgXgH
m2

Φ

H†HX (cos θ + i sin θγ5)X . (4.2.17)

Thus, by comparing Eq. (4.2.17) with the fermion DM Lagrangians in Eqs. (4.1.2) and (4.1.3),

we can identify µgXgH/m
2
Φ with λhX/ΛX . As µ should be set by the new physics scale, we take

it to be roughly mΦ, implying gXgH/mΦ ∼ λhX/ΛX . In addition, we require the couplings to

be perturbative, i.e., gXgH ≤ 4π.

We need to consider the viable scales for which this approximation is valid. We require that

the mediator mass mΦ is far greater than the momentum exchange q of the interaction, i.e.,

mΦ ≫ q such that Φ can be integrated out. For DM annihilations, the momentum exchange

is q ≈ 2mX . Thus, the EFT approximation breaks down when mΦ < 2mX and our EFT

assumption is violated when
λhX
ΛX

≥ 4π

2mX

. (4.2.18)

As the typical momentum transfer in a direct detection experiment is roughly on the order of

a few MeVs, the EFT validity limit requires mΦ ≫ O (MeV), which is always satisfied by the

previous demand mΦ > 2mX for the mass ranges of interest. In this case, we assume that the

couplings saturate the bound from perturbativity, i.e., gXgH = 4π; the constraint would be

stronger if the couplings were weaker.

For parameter points close to the EFT validity bound, the scale of new physics is expected

to be close to or even below 2mχ. In this case, the annihilation cross-section σvrel, used in

predictions of both the relic density and indirect detection signals, may receive substantial

corrections from interactions with Φ, which are not captured in the EFT approach. The

likelihoods computed for these points should hence be interpreted with care.

Note that this prescription is only the simplest and most conservative approach; additional

constraints can be obtained by unitarising the theory (e.g. [413]).
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Parameter Minimum Maximum Prior type

λhχ,hψ/Λχ,ψ 10−6 GeV−1 1 GeV−1 log

ξ 0 π flat

mχ,ψ (low mass) 45GeV 70GeV flat

mχ,ψ (high mass) 45GeV 10TeV log

Table 4.4: Parameter ranges and priors for the fermion DM models. Our choice for
the range of ξ between 0 and π reflects the fact that only odd powers of cos ξ appear in
the observables that we consider, but never odd powers of sin ξ, which cancel exactly
due to the complex conjugation. Thus, the underlying physics is symmetric under
ξ → −ξ.

4.3 Scan details

We investigate the Higgs portal models using both Bayesian and frequentist statistics. The

parameter ranges and priors that we employ in our scans of the vector and fermion DM models

are summarised in Tables 4.3 and 4.4, respectively. Whilst the likelihoods described in the

previous sections are a common ingredient in both our frequentist and Bayesian analyses, the

priors only directly impact our Bayesian analyses. We discuss our choice of priors in Sec.

4.4.2. For a review of our statistical approaches to parameter inference, see e.g., Ref. [110].

There are two main objectives for the Bayesian scans: firstly, producing marginal posteriors

for the parameters of interest, where we integrate over all unplotted parameters, and secondly,

computing the marginal likelihood (or Bayesian evidence). We discuss the marginal likelihood

in Sec. 4.5. We use TWalk, an ensemble Markov Chain Monte Carlo (MCMC) algorithm,

for sampling from the posterior, and MultiNest [414–416], a nested sampling algorithm, for

calculating the marginal likelihood. We use TWalk for obtaining the marginal posterior due to

the ellipsoidal bias commonly seen in posteriors computed with MultiNest [117].

For the frequentist analysis, we are interested in mapping out the highest likelihood regions

of our parameter space. For this analysis we largely use Diver, a differential evolution sampler,

efficient for finding and exploring the maxima of a multi-dimensional function. Details of TWalk

and Diver can be found in Ref. [117].

Due to the resonant enhancement of the DM annihilation rate by s-channel Higgs exchange

at mX ≈ mh/2, there is a large range of allowed DM-Higgs couplings that do not overproduce

the observed DM abundance. When scanning over the full mass range, it is difficult to sample

this resonance region well, especially with a large number of nuisance parameters. For this

reason, we perform separate, specific scans in the low-mass region around the resonance, using

both TWalk and Diver. When plotting the profile likelihoods, we combine the samples from the

low- and high-mass scans.

In addition, as part of the Bayesian analysis, we perform targeted TWalk and MultiNest
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scans of the fermion DM parameter space where the interaction is wholly scalar (ξ = 0), using

the same priors for the fermion DM mass and its dimensionful coupling as in Table 4.4. This

allows us to perform model comparison between the cases where ξ is fixed at zero, and where

it is left as a free parameter.

Scanner Parameter Value

TWalk chain_number 1370 (1)

sqrtR − 1 < 0.01

timeout_mins 1380

MultiNest nlive 20,000

tol 10−2

Diver NP 50,000

convthresh 10−5

Table 4.5: Conversion criteria used for various scanning algorithms in both the full
and low-mass regimes. The chain_number chosen for TWalk varies from scan to scan;
we use the default TWalk behaviour of chain_number = NMPI + Nparams + 1 on 1360
MPI processes. For more details on the scan parameters, see Ref. [117].

The convergence criteria that we employ for the different samplers are outlined in Table 4.5.

We carried out all Diver scans on 340 Intel Xeon Phi 7250 (Knights Landing) cores. As in our

recent study of scalar singlet DM [84], we ran TWalk scans on 1360 cores for 23 hours, providing

us with reliable sampling. The MultiNest scans are based on runs using 240 Intel Broadwell

cores, with a relatively high tolerance value, which is nevertheless sufficient to compute the

marginal likelihood to the accuracy required for model comparison. We use the importance

sampling log-evidence from MultiNest to compute Bayes factors.

For profile likelihood plots, we combine the samples from all Diver and TWalk scans, for

each model. The plots are based on 1.46 × 107, 1.70 × 107 and 1.73 × 107 samples for the

vector, Majorana and Dirac models, respectively. We perform all marginalisation, profiling and

plotting with pippi [417].

4.4 Results

4.4.1 Profile likelihoods

4.4.1.1 Vector model

Fig. 4.1 shows that the resonance region is tightly constrained by the Higgs invisible width

from the upper-left when mV < mh/2, by the relic density constraint from below, and by

direct and indirect detection from the right. Nevertheless, the resonant enhancement of the
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Figure 4.1: Profile likelihood in the (mV , λhV ) plane for vector DM. Contour lines
show the 1 and 2σ confidence regions. The left panel gives an enhanced view of
the resonance region around mV ∼ mh/2. The right panel shows the full parameter
space explored in our fits. The greyed out region shows points that do not satisfy
Eq. (4.2.15), the white star shows the best-fit point, and the edges of the preferred
parameter space along which the model reproduces the entire observed relic density
are indicated with orange annotations.

DM annihilation at around mh/2, combined with the fact that we allow for scenarios where Vµ

is only a fraction of the observed DM, permits a wide range of portal couplings. Interestingly,

the perturbative unitarity constraint (shown as dark grey) in Eq. (4.2.15) significantly shortens

the degenerate ‘neck’ region that appears exactly at mh/2. Most notably, this is in contrast

with the scalar Higgs portal model [83, 84] where no such constraint exists.

The high-mass region contains a set of solutions at mV ≃ 10TeV and λhV & 1, which are

constrained by the relic density from below and direct detection from the left. This second island

is prominent in both previous GAMBIT studies of the scalar Higgs portal model [83,84] as well as

other studies of the vector Higgs portal [344]. The precise extent of this region depends on the

upper bound imposed on λhV to reflect the breakdown of perturbativity. While the constraint

that we apply ensures that perturbative unitarity is not violated [412], higher-order corrections

may nevertheless become important in this region. The perturbative unitarity constraint from

Eq. (4.2.15) excludes solutions that would otherwise exist in a separate triangular region at

mχ ≃ mh, λhV ≃ 1.

In Table 4.6, we show a breakdown of the contributions to the likelihood at the best-fit point,

which lies on the lower end of the resonance region at λhV = 4.9×10−4 and mV = 62.46GeV. If

we demand that vector singlet DM constitutes all of the observed DM, by requiring ΩV h
2 to be

within 1σ of the observed Planck relic abundance, the best-fit point remains almost unchanged,

at λhV = 4.5 × 10−4 and mV = 62.46GeV. We give details of these best-fit points, along with

the equivalent for fermion models, in Table 4.7.

In Fig. 4.2, we show the relic density of the vector model (top), as well as the cross-sections
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∆ lnL
Log-likelihood contribution Ideal Vµ Vµ + RD χ χ + RD ψ ψ + RD

Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.242

Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000

γ rays (Fermi -LAT dwarfs) −33.244 0.105 0.105 0.102 0.120 0.129 0.134

LUX 2016 (Run II) −1.467 0.003 0.003 0.020 0.000 0.028 0.028

PandaX 2016 −1.886 0.002 0.002 0.013 0.000 0.018 0.017

PandaX 2017 −1.550 0.004 0.004 0.028 0.000 0.039 0.039

XENON1T 2018 −3.440 0.208 0.208 0.143 0.211 0.087 0.087

CDMSlite −16.678 0.000 0.000 0.000 0.000 0.000 0.000

CRESST-II −27.224 0.000 0.000 0.000 0.000 0.000 0.000

PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DarkSide-50 2018 −0.090 0.000 0.000 0.002 0.000 0.005 0.005

IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001

Hadronic elements σs, σl −6.625 0.000 0.000 0.000 0.000 0.000 0.000

Local DM density ρ0 1.142 0.000 0.000 0.000 0.000 0.000 0.000

Most probable DM speed vpeak −2.998 0.000 0.000 0.000 0.000 0.000 0.000

Galactic escape speed vesc −4.382 0.000 0.000 0.000 0.000 0.000 0.000

αs 5.894 0.000 0.000 0.000 0.000 0.000 0.000

Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000

Total 86.051 0.322 0.428 0.308 0.439 0.307 0.553

Table 4.6: Contributions to the delta log-likelihood (∆ lnL) at the best-fit point
for the vector, Majorana and Dirac DM, compared to an ‘ideal’ case, both with
and without the requirement of saturating the observed relic density (RD). Here
‘ideal’ is defined as the central observed value for detections, and the background-
only likelihood for exclusions. Note that many likelihoods are dimensionful, so their
absolute values are less meaningful than any offset with respect to another point (for
more details, see Sec. 8.3 of Ref. [110]).

relevant for direct (centre) and indirect detection (bottom), all plotted as a function of mass.

Only models along the lower-λhV edge of the two likelihood modes have relic densities equal to

the observed value. Larger values of λhV result in progressively larger annihilation cross-sections

and therefore more suppression of the relic density, cancelling the corresponding increase in

σSI
p and resulting in an essentially constant rescaled cross-section f · σSI

p ∼ 10−45 cm−2 in the

remaining allowed high-mass region. Future direct detection experiments such as LZ [67] will

be able to probe the high-mass region in its entirety. However, the best-fit point – near the

bottom of the resonance region – will remain out of reach. Future indirect searches, such as

the Cherenkov Telescope Array (CTA)10 [418] will also be able to probe large amounts of the

10The CTA projections plotted in Fig. 4.2 assume an Einasto density profile, and are based on 500 hours of
observations of the Galactic centre [418], with no systematic uncertainties. They should therefore be considered
optimistic [419,420].
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Figure 4.2: Profile likelihoods for vector DM in planes of observable quantities. Top
left: relic density. Top right: spin-independent WIMP-proton cross-section, where
solid lines show exclusions from PandaX 2017 [59] and XENON1T 2018 [57], and
the dashed line shows the expected sensitivity of LZ [67]. Bottom: present-day DM
annihilation cross-section, where solid lines show published exclusions from Fermi -
LAT [42], and dashed lines show projections from CTA [418] (see footnote 10 for more
details). Contour lines in each panel show the 1 and 2σ confidence regions, while the
white star shows the best-fit point. Cross-sections are rescaled by the fraction of
predicted relic abundance f ≡ ΩV /ΩDM.

high-mass region; however it does not have the exclusion power that direct detection does for

Higgs portal models. Again, the best-fit point remains out of reach.

4.4.1.2 Majorana fermion model

We show profile likelihoods in the (mχ, λhχ/Λχ) plane in Fig. 4.3, with the low-mass region

in the left panel and the full mass region in the right panel. Here, there are no longer two

distinct solutions: the resonance and high-mass regions are connected. From the left panel

in Fig. 4.4, where we plot the profile likelihood in the (mχ, ξ) plane, we can see that these

136



★

➤

➤

GAMBIT v1.2.0

G
AMB I T

Ω
χ h 2

=
0.119

−5

−4

−3

−2

−1
lo
g
1
0

( λ
h
χ
/Λ

χ
/G

eV
−
1
)

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

50 55 60 65
mχ (GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

★

➤

➤

➤

➤

GAMBIT v1.2.0

G
AMB I T

Ωχh
2 = 0.119

−5

−4

−3

−2

−1

lo
g
1
0

( λ
h
χ
/Λ

χ
/G

eV
−
1
)

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

2.0 2.5 3.0 3.5
log10 (mχ/GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

Figure 4.3: Profile likelihood in the (mχ, λhχ/Λχ) plane for Majorana fermion DM.
Contour lines show the 1 and 2σ confidence regions. The left panel gives an en-
hanced view of the resonance region around mχ ∼ mh/2. The right panel shows
the full parameter space explored in our fits. The greyed out region shows where
our approximate bound on the validity of the EFT is violated, white stars show the
best-fit point for each mass region, and the edges of the preferred parameter space
along which the model reproduces the entire observed relic density are indicated with
orange annotations.
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Figure 4.4: Profile likelihood in the (mχ, ξ) and (ξ, λhχ/Λχ) planes of the Majorana
fermion model. Contour lines show the 1 and 2σ confidence regions. The white star
shows the best-fit point.

regions are connected by the case where the portal interaction is purely pseudoscalar, ξ = π/2,

leading to an almost complete suppression of constraints from the direct detection experiments,

as given in Eq. (4.2.10).

The high-mass region prefers ξ ∼ π/2, with a wider deviation from π/2 permitted as mχ is

increased, due to direct detection constraints, which become less constraining at higher WIMP

masses. There is an enhancement in the permitted range of mixing angles at mχ & mh, due
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to the contact term (∝ χχhh), where DM annihilation to on-shell Higgses reduces the relic

density, providing another mechanism for suppressing direct detection signals, thus lifting the

need to tune ξ.

The results are roughly symmetric about ξ = π/2, however due to odd powers of cos ξ in

the annihilation cross-section (see Appendix B), there is a slight asymmetry for masses above

mh. This is most clearly seen in the triangular ‘wings’ at mχ & mh in Fig. 4.4 where there are

more solutions for ξ > π/2 than for ξ < π/2.
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Figure 4.5: Same as Fig. 4.2 but for Majorana fermion DM. Again, f ≡ Ωχ/ΩDM.
For illustration, as there is a q2-suppression in the spin-independent cross-section (see
Eq. 4.2.10), we show σSI computed at a reference momentum exchange of q = 50MeV.

In the resonance region, we see the same triangular region as in the vector DM case: bounded

from below by the relic density, and from the upper-left by the Higgs invisible width. However,

in contrast to the vector DM case where direct detection limits squeeze the allowed region

from the upper right, the addition of the mixing angle ξ as a free parameter allows for the

fermionic DM models to escape these constraints. As the pseudoscalar coupling is increased

and the scalar coupling is correspondingly decreased, the SI cross-section becomes steadily
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Figure 4.6: Profile likelihood in the (mψ, λhψ/Λψ) plane for Dirac fermion DM. Con-
tour lines show the 1 and 2σ confidence regions. The left panel gives an enhanced view
of the resonance region around mψ ∼ mh/2. The right panel shows the full parameter
space explored in our fits. The greyed out region shows where our approximate bound
on the validity of the EFT is violated, the white stars show the best-fit point for each
mass region, and the edges of the preferred parameter space along which the model
reproduces the entire observed relic density are indicated with orange annotations.

more q2-suppressed, as seen in Eq. (4.2.10). Noting that, the neck region at mχ = mh/2 is

less well-defined than in the vector and scalar DM cases above the triangle region. Notably

however, as the SI cross-section becomes steadily more q2-suppressed, the annihilation cross-

section becomes less p-wave suppressed (Eq. 4.2.3), and indirect detection comes to dominate

the constraint at the edge of the allowed parameter space just above the resonance.

In the low-mass resonance region, virtually all values of the mixing angle are permitted,

seen clearly in the left panel of Fig. 4.4, as even purely scalar couplings are not sufficient for

direct detection to probe the remaining parameter space. The right panel also shows this in

the lower ‘bulb’: couplings between 10−3 GeV−1 and 10−5 GeV−1 are only permitted in the

resonance region, without any constraint on the mixing angle.

In the high-mass region, we see that unlike the vector DM case, a wide range of WIMP

masses between 100GeV and 10TeV are acceptable, with degenerate maximum likelihood.

This is again due to the q2-suppression of the direct detection constraints when considering all

possible values of ξ. The large triangular high-mass region is constrained by the EFT validity

constraint from above (highlighted in dark grey) and the relic density constraint from below.

In Fig. 4.5, we show the relic density (top) and scaled cross-sections for direct (centre) and

indirect detection (bottom). For plotting purposes, we compute σSI at a reference momen-

tum exchange of q = 50MeV, typical of direct detection experiments. Substantial fractions

of allowed parameter space lie close to current limits, but unsurprisingly, large portions of the

parameter space will not be probed by future direct detection experiments, due to the mo-

mentum suppression. This is also true for indirect detection, where cross-sections are velocity-
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Model RD condition λhX mX (GeV) ξ (rad) ΩXh
2 ∆ lnL

Vector ΩV h
2 . ΩDMh

2 4.9× 10−4 62.46 — 9.343× 10−2 0.322

ΩV h
2 ∼ ΩDMh2 4.5× 10−4 62.46 — 1.128× 10−1 0.428

Majorana Ωχh
2 . ΩDMh2 4.5× 10−2GeV−1 138.4 1.96 6.588× 10−8 0.308

Ωχh
2 ∼ ΩDMh2 6.3× 10−6GeV−1 61.03 1.41 1.128× 10−1 0.439

Dirac Ωψh
2 . ΩDMh2 6.3× 10−4GeV−1 9.950× 103 2.06 3.813× 10−2 0.307

Ωψh
2 ∼ ΩDMh2 3.6× 10−4GeV−1 9.895× 103 2.07 1.155× 10−1 0.553

Table 4.7: Details of the best-fit parameter points for vector, Majorana and Dirac
DM Higgs portal models, both with and without the requirement that the predicted
relic density (RD) is within 1σ of the Planck observed value. Here, X ∈ {V, χ, ψ}
and the dimensionful nature of the coupling is implied for the fermion cases. We do
not include the values of nuisance parameters, as they do not differ significantly from
the central values of their likelihoods.

suppressed. However, given that the two suppressions have opposite dependences on the mixing

parameter, the two probes will be able to compensate for each others’ weaknesses to a certain

extent.

Table 4.6 shows a breakdown of the contributions to the likelihood at the best-fit point,

which lies in the high-mass region at mχ = 138.4GeV, λhχ/Λχ = 4.5 × 10−2GeV−1 and ξ =

1.96 rad (Table 4.7). When we demand that χ saturates the observed DM relic abundance, the

best-fit point shifts to the lower end of the resonance region at mχ = 61.03GeV, λhχ/Λχ =

6.3× 10−6GeV−1 and ξ = 1.41 rad.

4.4.1.3 Dirac fermion model

The results from our low- and high-mass scans of the Dirac fermion model are very similar

to those for the Majorana model. We therefore only show results in the (mψ, λhψ/Λψ) plane in

Fig. 4.6.

In Table 4.6, we show a breakdown of the contributions to the likelihood at the best-

fit point. This point lies towards the upper end of the high-mass region, where λhψ/Λψ =

6.3 × 10−4GeV−1, mψ = 9.95TeV and ξ = 2.06 rad. If ψ makes up all of the DM, the best-fit

point shifts slightly to the bottom of the high-mass triangle at λhψ/Λψ = 3.6 × 10−4GeV−1,

mψ = 9.9TeV and ξ = 2.07 rad. We compare the locations of these best-fit points to those

from the vector and Majorana models in Table 4.7.

4.4.1.4 Goodness of fit

In Table 4.6, we show the contribution to the log-likelihood for the best-fit points of the

vector, Majorana and Dirac DM models. By equating ∆ lnL to half the “likelihood χ2” of Baker

& Cousins [421], we can compute an approximate p-value for each best-fit point against a null
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Figure 4.7: Marginalised posterior distributions in the (mV , λhV ) plane for vector DM.
Contour lines show the 1 and 2σ credible regions. The left panel gives the result of
a scan restricted to the resonance region around mV ∼ mh/2. The right panel shows
a full-range parameter scan. The low-mass mode is sufficiently disfavoured in the
full-range scan that it does not appear in the righthand panel. The greyed out region
shows points that do not satisfy Eq. (4.2.15). The posterior mean is shown by a white
circle, while the maximum likelihood point is shown as a white star. The edges of the
preferred parameter space along which the model reproduces the entire observed relic
density are indicated with orange annotations.

hypothesis. We take this null to be the ‘ideal’ case, which we define as the background-only

contribution in the case of exclusions, and the observed value in the case of detections.

For the vector DM model, using either one or two effective degrees of freedom, we find a

p-value between roughly 0.4 and 0.7. Requiring the relic density of Vµ to be within 1σ of the

Planck value, the p-value becomes p ≈ 0.35–0.65. For both the Majorana and Dirac fermion

models, we also find p ≈ 0.4–0.7, falling to 0.35–0.65 with the relic density requirement. All of

these are completely acceptable p-values.

4.4.2 Marginal posteriors

The marginal posterior automatically penalises fine-tuning, as upon integration of the pos-

terior, regions with a limited ‘volume of support’ over the parameters that were integrated over

are suppressed.11 As usual, the marginal posteriors depend upon the choice of priors for the

free model parameters, which are summarised in Tables 4.3 and 4.4. We choose flat priors

where parameters are strongly restricted to a particular scale, such as the mixing parameter

and the DM mass in scans restricted to the low-mass region. For other parameters, in order

to avoid favouring a particular scale we employ logarithmic priors. Note that in this treatment

for the fermionic DM models we have not chosen priors that favour the CP-conserving case.

11By ‘volume of support’, we mean the regions of the parameter space that have a non-negligible likelihood
times prior density.
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Figure 4.8: Marginalised posterior distributions in the (mχ, λhχ/Λχ) plane for Majo-
rana fermion DM. Contour lines show the 1 and 2σ credible regions. The left panel
gives the result of a scan restricted to the resonance region around mχ ∼ mh/2. The
right panel shows a full-range parameter scan. The greyed out region shows where
our approximate bound on the validity of the EFT is violated. The posterior mean
is shown by a white circle, while the maximum likelihood point is shown as a white
star. The edges of the preferred parameter space along which the model reproduces
the entire observed relic density are indicated with orange annotations.

We instead present posteriors for this well motivated case separately, and later in section 4.5

we perform a Bayesian model comparison between a CP-conserving fermionic DM model and

the full model considered here.

4.4.2.1 Vector model

To obtain the marginal posterior distributions, we perform separate TWalk scans for the

low- and high-mass regimes, shown in Fig. 4.7. Within each region we plot the relative posterior

probability across the parameter ranges of interest.

In the left panel of Fig. 4.7, the scan of the resonance region shows that the neck region is

disfavoured after marginalising over the nuisance parameters, particularly mh, which sets the

width of the neck. This dilutes the allowed region due to volume effects.

In the full-mass-range scan, the fine-tuned nature of the resonance region is clearly evident.

Although the best-fit point in the profile likelihood lies in the resonance region, the posterior

mass is so small in the entire resonance region that it drops out of the global 2σ credible interval.

4.4.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case of Majorana fermion DM, the presence

of the mixing parameter ξ leads to a substantial increase in the preferred parameter region (see

Fig. 4.8). In the resonance region (left panel), there is now a thin neck-like region atmχ ≈ mh/2.

This neck region is the same one seen in both the scalar and vector profile likelihoods, but falls
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Figure 4.9: Marginalised posterior distributions in the (mχ, ξ) plane for Majorana
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Figure 4.10: Marginalised posterior distributions in the (λhχ/Λχ, ξ) plane for Majo-
rana fermion DM.

within the 2σ credible region of the Majorana posterior, as the admittance of ξ reduces direct

detection constraints (Eq. 4.2.10), softening the penalisation from integrating over nuisance

parameters. When we compute the posterior over the full mass range, we once again find the

resonance region to be somewhat disfavoured, but now there are large parameter regions with

high posterior probabilities for mχ > mh.

Nevertheless, direct detection does have a significant impact on the high-mass region, in

spite of the mixing parameter ξ. While the 2σ contour is roughly triangular, the points with

highest posterior probability (i.e. within the 1σ contours) are split into two smaller triangles.

The approximately rectangular region that separates these two triangular regions is disfavoured

by the combination of volume effects and direct detection, which requires ξ to be tuned relatively
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close to π/2.

To better understand the role of tuning in ξ in the process of marginalisation, we show the

marginalised posterior in the (mχ, ξ) and (ξ, λhχ/Λχ) planes in Figs. 4.9 and 4.10, respectively.

Fig. 4.9 provides a clear understanding of the differences between the marginalised posteriors

in Fig. 4.8 and the profile likelihood in Fig. 4.3. In the resonance region (left panel), the neck

region is less prominent in the marginalised posterior because direct detection limits become

very constraining as soon as mχ > mh/2 and the mixing parameter is forced to be very close

to π/2. In the full-range scan (right panel) we see the annihilation channel χχ→ hh open up,

thus allowing a greater range of values for ξ, leading to an enhancement in the marginalised

posterior probability. This clearly corresponds to the 1σ triangular region in the mass-coupling

plane at mχ ≈ mh, in the right hand panel of Fig. 4.8.

In the left panel of Fig. 4.10, which focuses on the resonance region, we see two separate

solutions for the mixing angle and coupling: the larger island at lower coupling corresponds to

the triangular region atmχ < mh/2, permitting all values of ξ, and the thinner solution at larger

couplings reflects the solution at mχ > mh/2, where the scalar coupling between the Higgs and

the Majorana DM needs to be sufficiently small (i.e. ξ ∼ π/2) to evade direct detection limits.

The two regions appear disconnected because the intermediate parameter points require so much

tuning that they fall outside of the 2σ credible regions upon marginalisation. Considering the

full mass range (see the right panel in Fig. 4.10), we find that the lower ‘bulb’ seen in the profile

likelihood in Fig. 4.4 is hardly visible in the marginalised posterior when integrating over the

nuisance parameters, due to a lower posterior volume in the resonance region.

We can condense the information from Figs. 4.9 and 4.10 further by marginalising over

all parameters except for ξ, thus obtaining a 1D posterior probability. The result is shown

in Fig. 4.11, where the preference for ξ ≈ π/2 becomes clear. In other words, for the case
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Figure 4.12: Marginalised posterior distributions for Majorana fermion DM with fixed
ξ = 0. Contour lines show the 1 and 2σ credible regions. The left panel gives the
result of a scan restricted to the resonance region around mχ ∼ mh/2. The right
panel shows a full-range parameter scan. The posterior mean is shown by a white
circle, while the maximum likelihood point is shown as a white star. The edges of the
preferred parameter space along which the model reproduces the entire observed relic
density are indicated with orange annotations.

of Majorana fermion DM, there is a strong preference for permitting an increased admixture

of pseudoscalar-type couplings to suppress the constraints from direct detection and the relic

density, due to a momentum- and velocity-suppressed cross-section respectively.

For comparison, we consider the CP-conserving case with fixed ξ = 0 in Fig. 4.12. As

expected from the discussion above, we find that the permitted parameter space shrinks vastly

with respect to the case where the mixing parameter is allowed to vary (see Fig. 4.8). In

the resonance region (left panel), we see that direct detection, the invisible Higgs width and

relic density impose strong constraints from the left, upper-left and below, respectively. No

neck region exists because the direct detection constraints are too strong, overlapping with

constraints on the invisible width of the Higgs boson. In the full-range scan (right panel), we

find that the only surviving parameter space is split into the resonance region, and two small

islands, at mχ ∼ mh and mχ ∼ 5TeV. These islands are constrained by direct detection and

the EFT validity requirement. Both will be ruled out by the next generation of direct detection

experiments, if no DM signal is observed.

Our analysis of the Dirac fermion model parameter space is identical to the Majorana

fermion one, whether ξ is fixed or left as a free parameter, so to avoid repetition we omit those

results.

It should be clear from the comparison between Figs. 4.8 and 4.12 that the CP-conserving

case (ξ = 0) is strongly disfavoured relative to the case where ξ is allowed to vary. We will

make this qualitative observation more precise in the following section.
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4.5 Bayesian model comparison

As introduced in Sec. 1.3.2.2, we perform Bayesian model comparison between different

Higgs portal models, to comment on their relative plaustibility. We compute the marginal

likelihood, Eq. (1.3.7), using MultiNest [414, 415], which is designed to calculate the Bayesian

evidence.

In our analysis, we take the prior probability of every model to be equal such that the factor

P (M1)/P (M2) = 1 (4.5.1)

for all pairs of models. Note that even when computing the evidence for or against CP violation

in the fermionic model below, we do not apply any further prior in favour of CP conservation.

We note that the overall prior dependence of the Bayes factor can be minimised by min-

imising the number of non-shared parameters between the models being compared, seen from

Eq. (1.3.8). The best case is where one model is nested inside the other, and corresponds

simply to a specific choice for one of the degrees of freedom in the larger model. In this case,

the leading prior dependence is the one coming from the chosen prior on the non-shared degree

of freedom. Thus, we first investigate the question of CP violation in the Higgs portal, which

we can address in this manner, before going on to the more prior-dependent comparison of the

broader models.

4.5.1 CP violation in the Higgs portal

We perform Bayesian model comparison for the fermionic Higgs portal DM, and nested

variants of it, by comparing the CP-conserving case (ξ = 0) to the model where the CP phase

of the portal coupling is allowed to vary freely. Due to the similarity of the likelihood for the

Dirac and Majorana fermion models, we do this for the Majorana fermion model only. We

carry out this exercise for two different parametrisations of the model, corresponding to two

different priors on the larger parameter space in which the CP-conserving scenario is nested:

1. Assuming the parametrisation that we have discussed thus far for the Majorana model,

taking a uniform prior for ξ and a logarithmic prior for λhχ/Λχ. This corresponds to the

assumption that some single mechanism uniquely determines the magnitude and phase

of both couplings.

2. Assuming that the scalar and pseudoscalar couplings originate from distinct physical

mechanisms at unrelated scales, such that they can be described by independent loga-

rithmic priors. The post-EWSB Lagrangian in this parametrisation contains the terms

Lχ ⊃ −1

2

(
gs
Λs

χχ+
gp
Λp

χiγ5χ

)(
v0h+

1

2
h2
)
. (4.5.2)
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In this case, the parameters ξ and λhχ/Λχ from the first parametrisation are replaced by

gs/Λs and gp/Λp. In this parametrisation, the Bayes factor may be sensitive to the range

of the prior for the couplings, as the normalisation factor does not cancel when computing

the Bayes factor for the CP-conserving scenario. We choose −6 ≤ log10(g/Λ) ≤ 0 for the

couplings when computing the Bayes factors in this parametrisation, in line with the prior

that we adopt for λhχ/Λχ in parametrisation 1.

The CP-conserving model is nested within both of these models, as ξ = 0 in the first, and as

gp/Λp = 0 in the second (although the exact limit of ξ = 0 is not contained within our chosen

prior for the second parameterisation, seeing as we choose a logarithmic prior on gp). As stated

in Eq. (4.5.1), the ratio of the prior probabilities for these models is taken to be 1 here, and is

not related to priors of parameters discussed above. We are comparing two separate models:

one with a pure CP-even coupling between the DM fermion and the Higgs and another model

where there is also a pseudoscalar coupling, which a priori is very unlikely to be zero.

In Table 4.8, we give the odds ratios against the CP-conserving case in each of these

parametrisations. The value given in the final column of this table is the ratio of the ev-

idence for the CP-violating model to the CP-conserving case. Depending on the choice of

parametrisation, we see that there is between 140:1 and 70:1 odds against the CP-conserving

version of the Majorana Higgs portal model. The similarity in order of magnitude12 between

these two results is expected, as it reflects the relatively mild prior-dependence of the Bayes

factor when performing an analysis of nested models that differ by only a single parameter.

Given the similarity of the likelihood functions in the Majorana and Dirac fermion models, the

odds against the pure CP-conserving version of the Dirac fermion Higgs portal model can also

be expected to be very similar.

The odds ratio tells us the relative plausibility of one model relative to the other. According

to the standard scale frequently used for interpreting Bayesian odds ratios (the Jeffreys scale;

[88, 89]), this constitutes strong evidence against pure CP-even coupling in fermionic Higgs

portal models. The preference for a CP-violating coupling can also be seen in Fig. 4.11, where

there is a clear preference for ξ = π/2, whereas the CP-even coupling falls outside of the 2σ

credible region.

4.5.2 Scalar, Vector, Majorana or Dirac?

We also carry out model comparison between the different Higgs portal models: scalar,

vector, Majorana and Dirac. As these models are not nested, they each have unique parameters.

This means that there is no a priori relationship between their respective parameters that would

allow the definition of equivalent priors on, e.g., masses or couplings in two different models. The

prior dependence of the Bayes factor is therefore unsuppressed by any approximate cancellations

when taking the ratio of evidences in Eq. (1.3.8). We caution that the resulting conclusions are

12Odds ratios are best conceived of in a logarithmic sense, so a factor of 2 difference is of negligible importance.
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Model Comparison model and priors Odds

ξ = 0 mχ: log λhχ/Λχ: log ξ: flat 70:1

gp/Λp = 0 mχ: log gs/Λs: log gp/Λp: log 140:1

Table 4.8: Odds ratios for CP violation for the singlet Majorana fermion Higgs portal
model. Here the odds ratios are those against a pure CP-even Higgs portal coupling,
as compared to two different parametrisations (and thus priors) of the model in which
the CP nature of the Higgs portal can vary freely.

Model Parameters and priors Odds

S mS: log λhS: log 1:1

Vµ mV : log λhV : log 6:1

χ mχ: log λhχ/Λχ: log ξ: flat 1:1

ψ mψ: log λhψ/Λψ: log ξ: flat 1:1

Table 4.9: Odds ratios against each singlet Higgs portal DM model with Z2 symmetry,
relative to the scalar model.

consequently less robust than for the nested Majorana models. For this exercise, we update

the fit to the scalar model from Ref. [83] to incorporate the likelihood functions and nuisances

that we use in the current paper.

We find that the scalar Higgs portal model has the largest evidence value in our scans, but is

comparable to the fermion DM models. In Table 4.9, we give the odds ratios against each of the

Higgs portal models, relative to the scalar model. The data have no preference between scalar

and either form of fermionic Higgs portal model, with odds ratios of 1:1. The vector DM model

is disfavoured with a ratio of 6:1 compared to the scalar and fermion models; this constitutes

‘positive’ evidence against the vector DM model according to the Jeffreys scale, though the

preference is only rather mild. Overall, there is no strong preference for Higgs portal DM to

transform as a scalar, vector or fermion under the Lorentz group.

As we find no strong preference between the different Higgs portal DM models using loga-

rithmic priors, we omit a dedicated prior sensitivity analysis. If different assumptions on priors

were to yield a stronger preference for any of the models under consideration, the only conclu-

sion would be that such a preference is not robust to changes in the prior. The situation is

hence different from the one in Sec. 4.5.1, where we did find a strong preference against the

CP-conserving model, which we showed to be largely independent of the assumed prior.
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4.6 Conclusions

In this study we have considered and compared simple extensions of the SM with fermionic

and vector DM particles stabilised by a Z2 symmetry. These models are non-renormalisable,

and the effective Higgs portal coupling is the lowest-dimension operator connecting DM to

SM particles. Scenarios of this type are constrained by the DM relic density predicted by the

thermal freeze-out mechanism, invisible Higgs decays, and direct and indirect DM searches.

Perturbative unitarity and validity of the corresponding EFT must also be considered.

We find that the vector, Majorana and Dirac models are all phenomenologically acceptable,

regardless of whether or not the DM candidate saturates the observed DM abundance. In

particular, the resonance region (where the DM particle mass is approximately half the SM

Higgs mass) is consistent with all experimental constraints and challenging to probe even with

projected future experiments. On the other hand, larger DM masses are typically tightly

constrained by a combination of direct detection constraints, the relic density requirement and

theoretical considerations such as perturbative unitarity. Our results show that with the next

generation of direct detection experiments (e.g., LZ [67]), it will be possible to fully probe the

high-mass region for both the vector and CP-conserving fermion DM model. Future indirect

experiments such as CTA [418] will be sensitive to parts of viable parameter space at large DM

masses, but will have difficulty in probing the resonance region.

An interesting alternative is fermionic DM with a CP-violating Higgs portal coupling, for

which the scattering rates in direct detection experiments are momentum-suppressed. By per-

forming a Bayesian model comparison, we find that data strongly prefers the model with CP

violation over the CP-conserving one, with odds of order 100:1 (over two priors). This illus-

trates how increasingly tight experimental constraints on weakly-interacting DM models are

forcing us to abandon the simplest and most theoretically appealing models, in favour of more

complex models.

We have also used Bayesian model comparison to determine the viability of the scalar Higgs

portal model relative to the fermionic and vector DM models. We find a mild preference for

scalar DM over vector DM, but no particular preference between the scalar and the fermionic

model. This conclusion may however quickly change with more data. Stronger constraints on

the Higgs invisible width will further constrain the resonance region and the combination of

these constraints with future direct detection experiments may soon rule out the vector model.

Our study clearly demonstrates that, in the absence of positive signals, models of weakly-

interacting DM particles will only remain viable if direct detection constraints can be systemat-

ically suppressed. This makes it increasingly interesting to study DM models with momentum-

dependent scattering cross-sections. A systematic study of such theories will be left for future

work. Conversely, Higgs portal models provide a natural framework for interpreting signals in

the next generation of direct and indirect detection experiments.
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Chapter 5

Dark Matter Effective Field Theory at

the Parton Level

5.1 Introduction

As introduced in Sec. 1.2.5, the picture described by EFTs is a bottom-up one: any result

described by an EFT can in general be explained by many high-energy theories. In this way, the

EFT description is a model-independent one, as it does not depend on the UV completion that

describes an effective operator. This is however a double-edged sword: because an effective

operator does not encode any information about the UV completion, it has no constraining

power in distinguishing between the range of UV theories that can map to it.

As we currently have no direct evidence of the properties of DM, a bottom-up approach is a

reasonable one to take. Although simplified models are the theories of choice for LHC searches

(see Sec. 1.2.5), EFT approaches are commonplace in low-energy environments such as direct

detection [422–429] and indirect detection [430–436]. Despite the EFT breaking down at high

energy scales, there is still an extensive literature on EFTs at colliders [437–447] including

studies by CMS [448] and ATLAS [449].

Many studies have been performed in which the constraints on individual operators are

considered [450–456]. This however neglects potentially important interference effects that

can arise in scattering events. A full analysis of the matrix elements in DM scattering and

annihilation was performed in Ref. [56], including the interaction structures that can interfere

in these processes. As the EFT makes no claim about the UV physics, considering operators

in isolation severely limits the scope of the analysis.

The first global study taking interference effects into account was performed in Ref. [457],

for scalar, fermionic and vector DM. However Ref. [457] did not use collider constraints, nor

did they include couplings to gluons. More recently, Ref. [458] performed a global analysis of

scalar DM including a prior sensitivity analysis. Ref. [458] used data from Fermi -LAT for both

dSphs and the Galactic centre, the relic density from Planck, direct detection constraints from
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LUX, and CMB constraints from Planck. Global studies considering subspaces of a general

DM EFT include [459–461].

Our results serve as an improvement on the existing literature for many reasons. Firstly,

by combining data from multiple direct detection experiments we probe the entire range of

DM masses of interest as effectively as possible. Additionally, combining likelihoods from

multiple targets allows us to effectively constrain different operators, such as those that induce

spin-dependent scattering. Secondly, we include LHC likelihoods in our study, where previous

works considering full sets of operators have not done so. Finally, in the spirit of the effective

picture, we allow the DM candidate to be underabundant and rescale all likelihoods accordingly,

which increases the size of the likelihood surface considerably.

We employ likelihoods from the LHC, direct detection searches, indirect detection with γ

rays, and the relic abundance of DM. The results presented in this Chapter are preliminary

results that will be featured in a forthcoming paper, Ref. [5]. The analyses carried out in this

Chapter are concerned with subspaces of the overall EFT corresponding to integrating out a

mediator with a given spin.

This Chapter is organised as follows. We introduce the DM EFT in Section 5.2. In Sec-

tion 5.3, we discuss the constraints used in this study and our methods for computing likelihoods

and observables. We present our approach to statistical inference in Section 5.4 and present

results in Section 5.5. Finally, we summarise in Section 5.6.

5.2 Partonic Dark Matter Effective Field Theory

In this study we focus on the interactions between a Dirac fermion χ, which is a singlet

under the SM gauge group, and the quarks and gluons of the SM. We assume that the mediators

that generate these interactions are heavier than the scales probed by the experiments under

consideration. Following the notation of [172, 173], the interaction Lagrangian for the theory

can be written as

Lint =
∑

a,d

C(d)
a

Λd−4
Q(d)
a , (5.2.1)

where Q(d)
a is the DM-SM operator, d is the mass dimension of the operator, C(d)

a is the dimen-

sionless Wilson coefficient associated with Q(d)
a , and Λ is the scale of new physics (which can

be identified with the mediator mass). For sufficiently large Λ, the phenomenology at small

energies is dominated by the operators of lowest dimension, and we therefore limit ourselves to

d ≤ 7. The full Lagrangian for the theory is then

L = LSM + Lint + χ
(
i/∂ −mχ

)
χ , (5.2.2)

such that the free parameters of the theory are the DM mass mχ, the scale of new physics Λ,

and the set of dimensionless Wilson coefficients {C(d)
a }.
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All relevant operators can be constructed from the DM field χ, SM quark fields q, the QCD

field strength tensor Ga
µν and its dual G̃µν = 1

2
ǫµνρσG

ρσ. At d = 6 we only consider operators

that can be constructed from quark bilinears that do not break the electroweak gauge symmetry:

Q(6)
1,q = (χγµχ)(qγ

µq) , (5.2.3)

Q(6)
2,q = (χγµγ5χ)(qγ

µq) , (5.2.4)

Q(6)
3,q = (χγµχ)(qγ

µγ5q) , (5.2.5)

Q(6)
4,q = (χγµγ5χ)(qγ

µγ5q) . (5.2.6)

At d = 7 we include interactions with the gluon field as well as the quark bilinears that break

electroweak symmetry,

Q(7)
1 =

αs
12π

(χχ)GaµνGa
µν , (5.2.7)

Q(7)
2 =

αs
12π

(χiγ5χ)G
aµνGa

µν , (5.2.8)

Q(7)
3 =

αs
8π

(χχ)GaµνG̃a
µν , (5.2.9)

Q(7)
4 =

αs
8π

(χiγ5χ)G
aµνG̃a

µν , (5.2.10)

Q(7)
5,q = mq(χχ)(qq) , (5.2.11)

Q(7)
6,q = mq(χiγ5χ)(qq) , (5.2.12)

Q(7)
7,q = mq(χχ)(qiγ5q) , (5.2.13)

Q(7)
8,q = mq(χiγ5χ)(qiγ5q) , (5.2.14)

Q(7)
9,q = mq(χσ

µνχ)(qσµνq) , (5.2.15)

Q(7)
10,q = mq(χiσ

µνγ5χ)(qσµνq) . (5.2.16)

The definitions of the operators describing interactions with the gluons, Q(7)
1 , . . . ,Q(7)

4 , include a

loop factor ∝ αs/4π, since in most models with a DM candidate, these operators are generated

at the one-loop level.1

The couplings to scalar and tensor quark bilinears, Q(7)
5,q, . . . ,Q

(7)
10,q, similarly include the

conventional mq prefactors, as they have the same flavour structure as the quark mass terms

(coupling left-handed and right-handed quark fields). The mq suppression of these operators

is thus naturally encountered in BSM theories that satisfy low-energy flavour constraints, such

as minimal flavour violation (MFV) and its extensions.

In principle, there are analogous operators for leptons and photons instead of quarks and

gluons, but they play a much smaller role in the phenomenology and will not be considered

1The discrepancy in normalisation for operators involving the dual field strength tensor G̃aµν and those
without it arise from considerations of the particles involved in the loop. See e.g. Ref. [462] and Appendix B of
Ref. [456].
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here. A notable exception is the d = 5 dipole operators

Q(5)
1 =

e

8π2
(χσµνχ)Fµν , (5.2.17)

Q(5)
2 =

e

8π2
(χσµνγ5χ)Fµν , (5.2.18)

where Fµν is the electromagnetic field strength tensor and e is the electromagnetic charge.

These operators can give an important contribution to direct detection experiments and will

be discussed in more detail below.

The Wilson coefficients of the operators defined above depend implicitly on the energy

scale µ of the process under consideration. In the following, unless explicitly stated otherwise,

all Wilson coefficients are specified at the scale of new physics Λ. If Λ > mt, all six quarks

are active degrees of freedom and hence the Wilson coefficients need to be specified for q =

u, d, s, c, b, t. For Λ < mt, top quarks no longer contribute, i.e. only the Wilson coefficients

for q = u, d, s, c, b need to be specified.2 Although in principle the Wilson coefficients for each

quark flavour are independent, we will restrict ourselves to the assumption of MFV (which

implies C(d)
i,d = C(d)

i,s = C(d)
i,b and C(d)

i,u = C(d)
i,c = C(d)

i,t ) and the assumption of isospin conservation

(which implies C(d)
i,d = C(d)

i,u ).
3 Hence, each operator Q(d)

i comes with only one free parameter

C(d)
i , in addition to the global parameters Λ and mχ. We therefore drop the subscript q for each

C(d)
i , but maintain them for all operators involving quark fields.

5.2.1 Running and mixing

For many applications, the running of the Wilson coefficients (i.e. their dependence on the

energy scale µ) can be neglected. In fact, the operators Q(6)
1,f , Q

(6)
2,f , Q

(7)
5,q and Q(7)

6,q have vanishing

anomalous dimension, while Q(6)
3,f , Q

(6)
4,f , Q

(7)
7,q, Q

(7)
8,q as well as Q(7)

1–4 exhibit no running at one-

loop order in QCD [464]. Nevertheless, there are two cases when the effects of running are

important:

1. Mixing: Different operators can mix with each other under renormalisation group (RG)

evolution, such that operators assumed negligible at one scale may give a relevant con-

tribution at a different scale. This is particularly important in the context of direct de-

tection, because for certain operators the DM-nucleon scattering cross-section is strongly

suppressed in the non-relativistic limit. In such a case, the dominant contribution to

direct detection may arise from operators induced only at the loop level [465].

2. Threshold corrections: Whenever the scale µ drops below the mass of one of the

quarks, the number of active degrees of freedom is reduced and a finite correction to

2Note that in this regard our notation differs from the one in Ref. [172,173], where the operators are defined
at the Z-boson mass mZ = 91.2GeV and only the five light quarks are included as active degrees of freedom.

3Note that these constraints also ensure that the dimension-6 operators do not explicitly break electroweak

symmetry, which requires C(6)
1,u − C(6)

3,u = C(6)
1,d − C(6)

3,d [463].
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various operators arises. The most important example is the mixing of the operators

Q(7)
5–8,q into the operators Q(7)

1–4, which is given by

∆C(7)
i = −C(7)

i+4,q (i = 1, 2) ,

∆C(7)
i = C(7)

i+4,q (i = 3, 4) . (5.2.19)

In the present work we include these effects as follows: to calculate the Wilson coefficients

at the hadronic scale µ = 2GeV (relevant for direct detection) we make use of the public code

DirectDM [172, 173], which consistently calculates the RG evolution of the operators defined

above, including threshold corrections and mixing effects. DirectDM performs a matching of the

resulting operators at µ = 2GeV onto the basis of non-relativistic effective operators relevant

for DM direct detection (see Sec. 5.3.1).

As input, DirectDM requires the Wilson coefficients in the five-flavour scheme at µ = mZ =

91.2GeV. For Λ < mt we neglect the effect of RG evolution between µ = Λ and µ = mZ and

directly pass the Wilson coefficients defined above to DirectDM. For details on the implemen-

tation of DirectDM in GAMBIT, see Appendix D. For Λ > mt, there are two additional effects

that need to be considered. First, as pointed out in Ref. [465], the operators Q(7)
9,10,t give a

contribution to the dipole operators Q(5)
1,2 at the one-loop level, which is given by

C(5)
1,2 =

3eQt

4π2

m2
t

Λ2
log

Λ2

m2
t

C(7)
9,10 . (5.2.20)

Second, in order to match the EFT with six active quark flavours onto the five-flavour scheme,

we need to integrate out the top quark and apply the top quark threshold corrections given

in Eq. (5.2.19). Again, in this regime we neglect any other effects of RG evolution between

µ = Λ and µ = mZ , i.e. all Wilson coefficients other than C(5)
1,2 and C(7)

1–4 are directly passed to

DirectDM.

For the purpose of calculating LHC constraints, we neglect the effect of running and do

not consider loop-induced mixing between different operators, which is a good approximation

for the operators Q(6)
1–4,q and Q(7)

1–4. For the operators Q(7)
5–10,q, mixing effects are known to be

important in principle [466], but these operators are currently unconstrained by the LHC in

the parameter region where the EFT is valid. Likewise we also calculate DM annihilation

cross-sections at tree level. In particular, we neglect a small loop-level contribution from the

operators Q(7)
5–8,q to the operators Q(7)

1–4.

5.2.2 EFT validity

A central concern when employing an EFT to capture the effects of new physics is that the

scale of new physics is sufficiently large compared to the energy scales of interest for the EFT

description to be valid. Unfortunately, the point at which the EFT breaks down is difficult

154



to determine from the low-energy theory alone. Considerations of unitarity violation make it

possible to determine the scale where the EFT becomes unphysical, but in many cases the

EFT description fails at energies lower than this, in particular if the UV completion is weakly

coupled.

To address this issue in the present study, we simultaneously vary the overall scale Λ,

which corresponds to the energy where new degrees of freedom become relevant and the EFT

description breaks down, and the Wilson coefficients C(d)
a for each operator. Doing so introduces

a degeneracy, because cross-sections are invariant under the rescaling Λ → αΛ and C(d)
a →

αd−4C(d)
a . However, the advantage of this approach is that the parameter Λ can be used to

determine which constraints can be trusted in the EFT limit.

For the purpose of direct detection constraints, the only requirement on Λ is that it is larger

than the hadronic scale, so that the effective operators can be written in terms of free quarks

and gluons. This is the case for Λ & 2GeV, which will always be satisfied in the present study.

However, in order to evaluate direct detection constraints, it is necessary to determine the relic

abundance of DM particles, which depends on the cross-sections for the processes χχ → qq or

χχ → gg. For this calculation to be meaningful in the EFT framework, we require Λ > 2mχ:

we invalidate parameter points that do not satisfy this relationship.

In the context of LHC searches for DM, EFT validity requires that the invariant mass of the

DM pair produced in a collision satisfies mχχ < Λ. To obtain robust constraints, only events

with smaller energy transfer should be included in the calculation of likelihoods. The problem

with this prescription is that mχχ does not directly correspond to any observable quantity (such

as the missing energy Emiss
T of the event) and hence the impact of varying Λ on predicted LHC

spectra is difficult to assess. One possible way to address this issue would be to generate new

LHC events for each parameter point and include only those events with small enough mχχ in

the likelihood calculation, but this is not computationally feasible in the context of a global

scan.

In the present work we therefore adopt the following simpler approach: rather than com-

paring Λ to the invariant mass of the DM pair, we compare it to the typical overall energy

scale of the event, which can be estimated by the amount of missing energy produced. In other

words, we would exclude all events with Emiss
T > Λ. This approach is less conservative than the

one advocated e.g. in Refs. [467, 468], where the energy scale of the event is taken to be the

partonic centre-of-mass energy
√
ŝ, but it has the crucial advantage that it can be applied after

event generation, since the differential cross-section with respect to missing energy dσ/dEmiss
T

is exactly the quantity that is directly compared to data.

However, the treatment of the EFT validity at the LHC requires careful consideration

of the spectra of SM particles co-produced in DM pair production. By not including any

bins for which pT > Λ in the analysis, this effectively truncates the spectrum of the jet in

the production process pp → χχj at Λ. While it is expected that the jet pT spectrum will

monotonically decrease, simply truncating it does not necessarily capture the possible effects
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that new physical states will have on the pT spectrum when the EFT description breaks down.

In order to capture the desired behaviour of the pT spectrum decreasing but not simply

stopping, we multiply the pT spectrum by a factor f(pT), which we define as

f(pT) =





(pT
Λ

)−a
pT > Λ

1 otherwise
, (5.2.21)

where a is an additional parameter that characterises the drop-off in the pT spectrum from

introducing new states. We use the same value of a for both the ATLAS and CMS analyses.

Note that the ATLAS analysis is performed in terms of Emiss
T , so Eq. (5.2.21) becomes f(Emiss

T ).

In our analysis, we profile over the value of a directly in ColliderBit in order to find the best-fit

pT spectrum for a given parameter point. We retain control over the possible allowed range for

a, such that our choice of multiplicative factor corresponds to a physically well-motivated pT

spectrum.

Without an upper bound on the Wilson coefficients, any requirement on EFT validity could

be satisfied by making both Λ and the Wilson coefficients arbitrarily large. We therefore require

C(d)
a < 4π, which is necessary for a perturbative UV completion and ensures that there is no

unitarity violation in the validity range of the EFT [469].

5.3 Constraints

In this section we briefly describe the constraints relevant for our model, and list the likeli-

hoods that we include in our scans.

5.3.1 Direct detection

Direct detection is very well suited to an EFT treatment, as the momentum transfer is

typically significantly smaller than the mass of the mediator in question. The greatest chal-

lenge in the present context is the calculation of the differential scattering cross-section dσ/ dE

(see Eq. 1.2.10). For this purpose, one needs to map the effective interactions between rela-

tivistic DM particles and quarks or gluons defined above onto effective interactions between

non-relativistic DM particles and nuclei. The EFT of non-relativistic interactions can be written

as

LNR =
∑

i,N

cNi (q
2)ON

i , (5.3.1)

where the operators ON
i depend only on the DM spin ~Sχ, the nucleon spin ~SN , the momentum

transfer ~q and the velocity in the direction perpendicular to ~q, ~v [422,470,471].

The coefficients cNi (q
2) can be directly calculated from the Wilson coefficients of the relativis-

tic operators at µ = 2GeV. The explicit dependence on the momentum transfer q =
√
2mTE
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is a result of two effects. First, under RG evolution, some of the effective DM-quark operators

mix into the DM dipole operators Q(5)
1,2 (see Eq. 5.2.20). These operators then induce long-range

interactions, i.e. contributions to the cNi (q
2) that scale as q−2. Since the momentum transfer can

be very small in direct detection experiments, these contributions can be important in spite

of their loop suppression. Second, the coefficients include nuclear form factors, obtained by

evaluating expectation values of quark currents such as 〈N ′|qγµq|N〉. These form factors can

be calculated in chiral perturbation theory and typically exhibit a pion pole, i.e. a divergence

for q → mπ [410,472].

All of these effects are fully taken into account in DirectDM, which calculates the coeffi-

cients cNi (q
2) for given Wilson coefficients C(d)

a at a higher scale. These coefficients are then

passed to DDCalc 2 [4, 63], which calculates the differential cross-section for each operator ON
i

(including interference) for each target element of interest. DDCalc also performs the velocity

integrals needed for the calculation of the differential event rate and the convolution with energy

resolution and detector acceptance needed to predict signals in specific experiments (Eq. 1.2.9).

By combining DirectDM and DDCalc we can include likelihoods for a wide range of direct

detection experiments. In the present analysis we include constraints from the most recent

XENON1T analysis [57], LUX 2016 [58], PandaX 2016 [64] and 2017 [59], CDMSlite [69],

CRESST-II [60] and CRESST-III [61], PICO-60 2017 [76] and 2019 [45], and DarkSide-50 [66].

5.3.2 Relic abundance of DM

The time evolution of the number density of the χ particles, nχ, is governed by the Boltz-

mann equation, Eq. (1.2.3). As in Sec. 4.2.1, we compute the thermally-averaged cross-section

via Eq. (4.2.1). We assume there is no initial asymmetry between χ and its antiparticle, i.e.

nχ = nχ̄. The DM relic density is therefore given by nχ + nχ̄ = 2nχ.

We compute tree-level annihilation cross-sections using CalcHEP [137,138], where the imple-

mentation of the four-fermion interactions are generated by GUM [1] from UFO files via the tool

ufo to mdl (described in Appendix C). To ensure that the EFT picture is valid, we invalidate

points where 2mχ ≥ Λ. We obtain the relic density of χ by numerically solving Eq. (1.2.3) at

each parameter point, using the routines implemented in DarkSUSY [193,194] via DarkBit.

The very nature of the EFT construction implies additional degrees of freedom above the

energy scale Λ. Given the potential for a rich dark sector containing χ, plus the possibility

of additional DM candidates not captured by the EFT, we will by default not demand that

the particle χ constitutes all of the observed DM, i.e. we allow for the possibility of other DM

species contributing to the observed relic density.

As in Chapter 4, we implement the relic density constraint using a likelihood that is flat

for predicted values below the observed one, including a 5% theoretical error on the computed

values of the relic density. We use an updated value for the relic density: ΩDMh
2 = 0.11933±

0.00091, the Planck 2018 TT,TE,EE+lowE+lensing+BAO [28] value. In regions of the model
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parameter space where the relic abundance of χ is less than the observed value, we rescale all

predicted direct and indirect detection signals by frel ≡ Ωχ+χ̄/ΩDM and f 2
rel, respectively.

5.3.3 Indirect detection with γ rays

If DM is held in thermal equilibrium in the early universe via collisions with SM particles,

then it can still annihilate today, especially in regions of high DM density. As with the relic

abundance calculation, in order for the effective picture to hold for DM annihilation, we must

impose 2mχ < Λ.

As in Chapter 4, we consider γ-ray likelihoods from dSphs. In our analysis we use the

Pass 8 combined analysis of 15 dSphs after 6 years of Fermi -LAT data [42]. We use the

gamlike interface within DarkBit [63] to compute the likelihood of the γ-ray observations, lnLexp,

constructed from the product Φi ·Jk and summed over all targets and energy bins, as described

in Eqs. (4.2.7) and (4.2.8).

The observed γ-ray flux (Eq. 1.2.6) contains the particle physics factor Φ. In general,

only operators that lead to unsuppressed s-wave annihilation (Q(6)
1,3,4,q,Q

(7)
2,4,6,8,9,10,q) give rise to

observable signals from dSphs. For the operators Q(6)
2,q and Q(7)

1,3,5,7,q, the leading contribution

to the annihilation cross-section is p-wave suppressed, i.e. proportional to v2rel. Because DM in

dSphs is extremely cold, this factor is very small, and the resulting limits are exceedingly weak.

We therefore neglect p-wave contributions to all annihilation processes here.

Φ is therefore given by Eq. (1.2.8), with an additional factor of 1/2 to account for the fact

that χ is not its own antiparticle. As with the relic density calculation, we use CalcHEP via the

process catalogue to compute tree-level annihilation cross-sections, with the CalcHEP model

files generated by ufo to mdl via GUM (see Appendix C). The photon yields dNγ,j/dE used in

DarkBit are based on tabulated Pythia runs, as provided by DarkSUSY.

5.3.4 Collider physics

The effective operators defined in Section 5.2 allow for the pair production of WIMPs in

the proton-proton collisions of the LHC. If one of the incoming partons radiates a jet through

initial state radiation, one can observe the process pp → χχj as a single jet associated with

missing transverse energy (Emiss
T ). In this study, we include the ATLAS and CMS monojet

analyses based on 36 fb−1 of data from Run II [80, 81].

The expected number of events in a given bin of the Emiss
T distribution is

N = L× σ × (ǫA) , (5.3.2)

where L = 36 fb−1 is the total integrated luminosity, σ the total production cross-section and

the factor ǫA is the efficiency times acceptance for passing the kinematic selection requirements

for the analysis.
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The typical pipeline used in ColliderBit and GAMBIT as described in Chapter 2 – and

now automated by GUM – relies on generating events for each parameter point using Pythia.

Unfortunately, that pipeline is insufficient for this particular study, as Pythia cannot model

ISR accurately. This means that to correctly simulate such monojet signatures at the LHC,

we must explicitly add an additional jet at the level of the matrix element. Then we have to

perform jet matching to ensure we do not double count events, thus allowing us to correctly

model σ and (ǫA).

Our solution is to generate events with MadGraph aMC@NLO [136] interfaced with Pythia

8.1 [473] for parton showering and hadronisation. However, the MadGraph to Pythia pipeline

is far too computationally expensive to be utilised in a global fit. We have therefore produced

separate interpolations of σ and ǫA by generating Monte Carlo events, starting from UFO files

generated in FeynRules 2.0 [132]. We perform the matching between MadGraph and Pythia

according to the CKKW prescription (see Ref. [474]) and simulate the detector response using

Delphes 3 [475]. To validate the event generation for the EFT, we compared the cross-sections

and pT to simplified DM models with explicit heavy mediators, and found excellent agreement.

We only include the dimension six and seven EFT operators that are relevant for collider

searches (C(6)
i , C(7)

i=1,...,4). Other operators give a negligible contribution due to either being

suppressed by the parton distribution functions (in the case of heavy quarks), or by a factor of

the fermion mass (small in the case of light quarks).

To reduce the computation time for our analysis, we generate events in discrete grids of the

Wilson coefficients and DM mass. We define separate grids for each set of operators that do

not interfere, such that the total number of events will simply be the sum of the contributions

calculated from each grid. At dimension six, there is interference between operators Q(6)
1,q and

Q(6)
4,q and between Q(6)

2,q and Q(6)
3,q. For these Wilson coefficients we parametrise the tabulated

grids in terms of a mixing angle θ, such that C(6)
1 = sin θ and C(6)

4 = cos θ (and similarly for C(6)
3

and C(6)
4 ). This means that we simply generate events in two-dimensional grids parametrised

by θ and Λ, as cross-sections can simply be rescaled by the value of the Wilson coefficient and

the correct power of Λ.

The CMS analysis is published with full covariance information; this allows us to use infor-

mation from each of the Nbins = 21 signal regions when performing our analysis. In our analysis

we construct the composite likelihood by profiling over all background uncertainties. On the

other hand, the ATLAS analysis has not been published with covariance information. For the

ATLAS analysis we therefore select the single signal region that is expected to have the highest

expected signal significance for each parameter point. This is the practice that has been taken

in several previous GAMBIT studies [112, 118,119].

It is worth noting that both the ATLAS and the CMS analyses see moderate excesses. In

the ATLAS data, the largest excess is in the eighth signal region, which observed 512 events

compared to an expected 463 ± 19. In the CMS data, there are small excesses in multiple

bins. Notably, two adjacent bins see relatively large upward fluctuations: 926 and 557 events
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Parameter Range

mχ [5, 500] GeV

Λ [20, 2000] GeV

C(6)
1 [−1, 1]

C(6)
2 [−4π, 4π]

C(6)
3 [−4π, 4π]

C(6)
4 [−4π, 4π]

Parameter Range

C(7)
1 [−4π, 4π]

C(7)
2 [−4π, 4π]

C(7)
3 [−4π, 4π]

C(7)
4 [−4π, 4π]

C(7)
5 [−4π, 4π]

C(7)
6 [−4π, 4π]

C(7)
7 [−4π, 4π]

C(7)
8 [−4π, 4π]

Table 5.1: The parameter ranges used in the scans. All parameters use flat priors
except for Λ, which we scan logarithmically.

compared to an expected 844± 18 and 526± 14 respectively. For this reason, we also consider

analyses where we employ a ‘capped’ LHC likelihood, in which each parameter point is forced

to have a likelihood that is equal to or worse than the background-only prediction. We choose

to present these results as well as the full uncapped likelihood, as the small excesses seen in

the LHC analyses combine to give a moderate overall significance; using the capped likelihood

prevents such excesses from biasing the scanning algorithm and the overall likelihood. Therefore

in the case of a capped LHC likelihood, the LHC likelihood is a measure of how much worse a

given EFT model point fits the data than the SM does.

5.4 Scan details

We perform initial scans of three subsets of the EFT operators. These are as follows:

Operators that describe integrating out a spin-0 mediator, namely C(7)
5 , C(7)

6 , C(7)
7 and C(7)

8 .

Recall that the LHC likelihoods do not constrain these operators, as there are leading fac-

tors of mq, which give rise to negligible signals at the LHC due to either PDF suppression

or multiplication by a light quark mass.

Operators that describe integrating out a spin-1 mediator, namely C(6)
1 , C(6)

2 , C(6)
3 and C(6)

4 .

The LHC constraints are relevant for these operators, and therefore so is the treatment

of the nuisance parameter a. We include three prescriptions for a:

1. Allowing a to vary between 0 and 4. This allows the pT spectrum to range from un-

suppressed to one that falls off modestly. Note that an s-channel resonance predicts

a = 2 [444].

2. Fixing a to 1000. This value of a effectively truncates the spectrum, recovering the

approximation of not including any pT/E
miss
T bins above the value of Λ.
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3. Fixing a to 1000 and use a capped likelihood for the LHC.

Operators that describe interactions with only gluons, namely C(7)
1 , C(7)

2 , C(7)
3 and C(7)

4 .

LHC constraints apply to the gluon operators, therefore we perform the same three scans

as for the case above.

Alongside the four Wilson coefficients in each scan, we vary the DM mass mχ and the scale

of new physics Λ. In order to be able to neglect QCD resonances in the process χχ̄ → qq̄, we

restrict ourselves to mχ > 5GeV. Beyond mχ = 500 GeV, the likelihoods that we consider lose

much of their constraining power. We therefore do not consider mχ beyond this value.

In order to have a sufficiently large separation of scales between the new physics scale Λ

and the hadronic scale, we require Λ > 20GeV. We employ an upper bound on Λ of 2 TeV,

as beyond this value Wilson coefficients larger than 4π are required in order to generate any

significant observable signal.

As mentioned in Sec. 5.2.2, the maximum value that we allow for any Wilson coefficient

is 4π so as to retain perturbative unitarity. Furthermore, we make the assumption that both

positive and negative values for each Wilson coefficient are permitted. This is subject to a

full analysis of the positivity bounds of the DM EFT, however such a study is outside of the

scope of this project. Some examples on recent works on positivity bounds for EFTs include

Refs. [476–478] for general theories and [479] for the SM EFT.

When considering a single Wilson coefficient, considering both positive and negative values

is not a worthwhile exercise, as all of the physics is symmetric about C(d)
i → −C(d)

i . However,

due to the interference effects between pairs of operators, this symmetry no longer holds: by

including an additional operator C(d)
j that positively (negatively) interferes with C(d)

i in a scan,

the constraints on C(d)
i strengthen (weaken).

Given the range of values that we select for mχ and Λ, the operator Q(6)
1,q = (χγµχ)(qγ

µq) is

highly constrained by direct detection likelihoods, as it induces an unsuppressed spin-independent

scattering cross-section. The value of C(6)
1 is therefore constrained to be very close to 0. We

therefore use a restricted scan range of |C(6)
1 | ≤ 1 to ensure that the scanning algorithm correctly

finds this fine-tuned region of parameter space. For all other operators, we use a scan range of

−4π to 4π.

We perform a profile likelihood analysis with Diver, using a population of 5 × 104 and a

convergence threshold of 10−5. For details on Diver, see Ref. [117]. We employ linear priors on

all parameters except for the scale of new physics Λ, which we choose to scan logarithmically.

As we are using Diver, which efficiently finds the best-fit point, we perform a profile likelihood

analysis. Our analysis therefore does not depend on the choice of prior in the same manner

as a Bayesian analysis does. In this sense our choice of priors serves only to efficiently map

the likelihood surface, and does not reflect any prior belief in the parameters of the EFT. A

summary of the scanned parameters, priors and ranges can be found in Table 5.1.
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Figure 5.1: Profile likelihood in themχ–Λ, mχ–Ωχh
2, and Λ–Ωχh

2 planes for the scalar

operators C(7)
5–8. Contour lines show the 1 and 2σ confidence regions. The white star

shows the best-fit point.

5.5 Results

5.5.1 Scalar interactions

We plot the mχ–Λ plane in the left-hand panel of Fig. 5.1. The well-defined lower bound

is from the EFT validity condition Λ > 2mχ. The upper bound is set by a combination of the

relic abundance and direct detection.

As Q(7)
5–8,q all have a leading factor of mq, DM annihilation occurs predominantly to the

heaviest kinematically accessible quark. The effect of the tt channel opening can be seen

clearly in all panels of Fig. 5.1: as mχ > mt (Λ > 2mt), DM is able to efficiently annihilate in

the early Universe to tt to dilute the DM abundance.

When mχ < mt, the relic abundance is obtained primarily through annihilation to bb. This

means that large values of the Wilson coefficients are required to deplete the population of DM

in the early Universe. C(7)
5 is unable to be large as it induces an unsuppressed spin-independent
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Figure 5.2: Profile likelihood in the mχ–C(7)
5–8 planes. Contour lines show the 1 and 2σ

confidence regions. The white star shows the best-fit point.

scattering cross-section and is thus highly constrained by direct detection constraints – even

when DM is underabundant. Therefore for mχ < mt, C(7)
5 must take values close to zero, as

shown in the top-left panel of Fig. 5.2. Only C(7)
6–8 contribute significantly to DM annihilation

in the early Universe.

Although direct detection has a large impact on C(7)
5 when mχ < mt, it does not have much

impact on the other scalar operators. At leading order, Q(7)
6,q gives rise to a q2-suppressed spin-

independent scattering cross-section. Q(7)
6,q gives rise to a SD cross-section that is suppressed

by q4v2⊥ [56], so has no impact on the phenomenology. Q(7)
7,q and Q(7)

8,q both only yield a spin-

dependent cross-section; the former is suppressed by q2, and the latter by q4.

When Λ > mt, there is an additional threshold effect from integrating out the top quark in

passing input to DirectDM (see Eq. 5.2.19). This means that the direct detection constraints

from C(7)
5 are even stronger in this region, as C(7)

1 also gives rise to an unsuppressed spin-

independent cross-section. All other C(7)
1–3 give suppressed direct detection cross-sections (see

Sec. 5.5.3), so crossing this threshold does not have much impact for C(7)
6–8.
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Figure 5.3: Profile likelihood in the Λ–C(7)
5–8 planes. Contour lines show the 1 and 2σ

confidence regions. The white star shows the best-fit point.

For mχ < mt, all values for C(7)
6–8 are permitted, and lie within the 1σ region. There is

however a well-defined best-fit region for very small masses, mχ ≈ 5 GeV. This is due to a

small upward fluctuation in the Fermi -LAT Pass 8 analysis (see Fig. 1.8). As only C(7)
6 and

C(7)
8 give rise to s-wave annihilation, they can be tuned (along with Λ) to correctly predict

the combination f 2 · (σv)v→0 required to fit this small excess. Furthermore as C(7)
7 is p-wave

suppressed and therefore not constrained by Fermi -LAT, it can also be tuned to alter Ωχh
2

freely. The result is a highly-degenerate best-fit region which can be seen in Fig. 5.2.

The effect of tuning Λ and the relic density to fit the Fermi -LAT fluctuation for a given

combination of C(7)
6–8 can be seen in the lower panel of Fig. 5.1, where the yellow best-fit region is

broad in Λ and Ωχh
2. Additionally, this effect can be seen in Fig. 5.3, where we plot Λ against

each Wilson coefficient; for a given value of Λ, there is a lot of freedom in selecting C(7)
6–8 to fit

the signal.

The effect of the tt channel opening means that Λ does not have to take such small values

to obtain the correct relic abundance. When crossing the tt threshold, the upper bound for
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Λ shifts from approximately 500 GeV to 1.2 TeV. As the scaling for all scattering events is

C/Λ3 for dimension-seven operators, this shift in Λ means that C(7)
5 can be rescaled by approx-

imately (1.2/0.5)3 = 13.8. Thus C(7)
5 , which was previously confined to |C(7)

5 | . 1 before the tt

threshold opens up, is able to take any value up to 4π and avoid direct detection constraints

by appropriately tuning Λ.

The remaining Wilson coefficients must still be tuned to obtain the correct relic abundance.

This is far easier when mχ > mt as the annihilation cross-section is significantly larger. It is

therefore very easy for DM to be underabundant. Thus for mχ > mt, it is possible to evade all

constraints for any given value of mχ and C(7)
5–8 by tuning the other Wilson coefficients and Λ

appropriately. Hence the parameter space is degenerate and flat in all Wilson coefficients when

mχ > mt. For the parameter range that we consider, Λ is only constrained from below by the

EFT validity bound for mχ & 240 GeV.

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T

1.5

2.0

2.5

3.0

lo
g
1
0
(Λ
/G

eV
)

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

100 200 300 400
mχ/GeV

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T−8

−6

−4

−2

lo
g
1
0
Ω
h
2

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

Figure 5.4: Profile likelihood in the mχ–Λ and Λ–Ωχh
2 planes for the vector operators

C(6)
1–4, with a capped LHC likelihood and the parameter a fixed to 1000. Contour lines

show the 1 and 2σ confidence regions. The white star shows the best-fit point.

UV completion

It is worthwhile to try to connect this scalar-only EFT to UV physics. It is straightforward

to generate this EFT from a simplified model. Consider the following Lagrangian describing

interactions between DM and quarks [480]:

Lspin−0
int ⊃ χ (gχs + igχpγ5)χΦ +

∑

q

yq√
2
q (gqs + igqpγ5) qΦ , (5.5.1)

where Φ is a scalar mediator, and each g is an independent dimensionless coupling. Note the

similarity between this Lagrangian and those defined in Eqs. (2.4.1) and (4.2.16). If we integrate

out Φ, this generates an effective Lagrangian containing just the operators Q(7)
5–8. The choice of
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parametrisation in the above Lagrangian is suggestive of Φ being a heavy Higgs, which restores

gauge invariance.

5.5.2 Vector interactions

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T

−0.5

0.0

0.5

C
(6

)
1

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

100 200 300 400
mχ/GeV

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T

−10

−5

0

5

10

C
(6

)
2

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

100 200 300 400
mχ/GeV

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T

−10

−5

0

5

10

C
(6

)
3

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

100 200 300 400
mχ/GeV

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000, capped LogLike

G
AMB I T

−10

−5

0

5

10

C
(6

)
4

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

100 200 300 400
mχ/GeV

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Profile likelihood in themχ–C(6)
1–4 planes, with a capped LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

5.5.2.1 Capped LHC likelihood

For simplicity, we begin with the case in which the LHC likelihood is capped and the jet

pT spectrum is truncated for values of pT > Λ by fixing a to 1000. We plot the mχ–Λ plane in

the left panel of Fig. 5.4. The lower bound on Λ is again given by the EFT validity bound on

annihilation processes, Λ > 2mχ.

The two distinct regions in themχ–Λ plane correspond to whether or not the LHC constraint

is active or not. The LHC likelihood becomes active when Λ > 250 GeV, i.e. the upper-right
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region of Fig. 5.4. When the LHC likelihood is not active, the leading constraints come from

direct detection and the relic abundance requirement.

As Q(6)
1,q gives rise to an unsuppressed spin-independent cross-section, it is forced to be very

close to zero. In fact, it is so highly constrained over the entire parameter space, that it is

forced to take near-zero values for all parameter combinations, as shown in the upper-left panel

of Fig. 5.5. It therefore plays no significant role in the phenomenology of this vector-only EFT.

At leading order, Q(6)
2,q gives a v2⊥-suppressed spin-independent cross-section, and a q2-

suppressed spin-dependent cross-section. The characteristic direct detection exclusion curve

can be seen in the top-right panel of Fig. 5.5, where constraints cut into the C(6)
2 parameter

space between approximately 10–100 GeV. A similar exclusion can be seen for C(6)
4 , which

corresponds to an unsuppressed spin-dependent cross-section. Q(6)
3,q is unconstrained by direct

detection experiments, as at leading order it generates a spin-dependent cross-section at the

level of O(q2) +O(v2⊥).
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Figure 5.6: Profile likelihood in the Λ–C(6)
1–4 planes, with a capped LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.
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The best-fit region is again given by fitting the small Fermi -LAT excess; the relevant s-wave

operators are Q(6)
3,q and Q(6)

4,q (as C(6)
1 ≈ 0). As with the scalar operators, this region is fairly

degenerate, as Λ and C(6)
2–4 can all be simultaneously tuned to fit the product f 2 · (σv)v→0. As

C(6)
3 is not constrained by direct detection and annihilation is s-wave, it is crucial in obtaining

the correct relic abundance for small DM masses.

When Λ > 250 GeV and the LHC likelihood is switched on, the profile likelihood selects

lnLLHC = 0. This can occur in three cases. Firstly, the signal is so weak that there is no

contribution from DM pair production (i.e. an SM-like parameter point, C(6)
1–4 ≈ 0). Secondly,

the combination of all individual searches adds up to zero, by cancelling upward and downward

fluctuations. Finally, a given parameter point returns a positive likelihood by fitting excesses,

in which case ColliderBit will return 0 instead, due to the likelihood cap.

In this regime, the couplings (along with Λ) still have to be large enough to deplete the DM

population in the early Universe, i.e. the SM-like scenario at the LHC is incompatible with the

relic density requirement. The right-hand panel of Fig. 5.4 shows that the DM relic density is

never several orders of magnitude underabundant when the LHC constraints are active; this

is because the capped likelihood prefers Wilson coefficients close to zero, otherwise the LHC

likelihood will be penalised by the large signal.

As soon as Λ crosses the 250 GeV threshold, the scanner has difficulty finding values of the

Wilson coefficients and mχ that satisfy both the relic density constraint and do not produce

too large a signal at the LHC. This is because neither the ATLAS or CMS searches see any

significant excesses in the first few bins.

Indeed, the LHC constraints and the relic density requirement only become compatible as

Λ increases and more bins are included in the LHC likelihoods with upward fluctuations. This

can be seen in Fig. 5.6, where non-zero values are preferred for C(6)
2–4 as Λ increases above 250

GeV, in order to obtain the correct relic density.

5.5.2.2 Full LHC likelihood with truncated pT spectra

We now consider the case in which the LHC likelihood is no longer capped, but the pT

spectrum is again truncated at Λ by setting a = 1000.

Fig. 5.7 shows the mχ–Λ plane. The LHC likelihood has a large visible impact: almost all

of the lower-left region where Λ < 250 GeV falls outside of the 2σ region, even though the

physics in this region is unchanged. This is due to the sizeable effect from fitting the excesses

in the ATLAS and CMS analyses. The only surviving part of the Λ < 250 GeV region from

the scan with the capped likelihood is the previous best-fit region at mχ = 5 GeV, fitting the

small Fermi -LAT fluctuation. This is driven entirely by C(6)
3 , as can be seen in the lower-left

panels of Figs. 5.8 and 5.9.

There are two bands of high likelihood in the mχ–Λ plane. The lower band is driven by

CMS but supported by ATLAS: there are large excesses in the 640 − 690 GeV and 690 − 740
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Figure 5.7: Profile likelihood in the mχ–Λ and Λ–Ωχh
2 planes for the vector operators

C(6)
1–4, with the full LHC likelihood and the parameter a fixed to 1000. Contour lines

show the 1 and 2σ confidence regions. The white star shows the best-fit point.

GeV pT bins in the CMS data, and a small excess in the 600− 700 GeV Emiss
T bin in ATLAS.

The upper band is purely from ATLAS, where the largest excess is in the 800 − 900 GeV

Emiss
T bin. As the CMS fluctuations are larger and we are able to combine them due to having

covariance information, the best-fit region is in the lower band. Even for values of Λ > 1 TeV

it is possible to find points that are favoured by the LHC likelihood, as the final two bins in

the CMS analysis see tiny fluctuations above the background, as does the ATLAS analysis.

Because the LHC likelihood is not capped, the couplings are able to be non-zero in order

to fit the excesses in the data. However, because there are no excesses in the first few bins of

both analyses, the LHC likelihood and the relic abundance constraint are still incompatible as

Λ crosses the 250 GeV threshold.

The large pull from the LHC likelihoods selects the best-fit region of Λ to be around 700

GeV. The LHC is largely agnostic to the Dirac structures of the matrix element when producing

DM pairs, meaning that the structure mapped out by the LHC likelihood in the C(6)
2–4–Λ planes

are very similar for each Wilson coefficient, seen in Fig. 5.9 for Λ & 500 GeV.

5.5.2.3 Full LHC likelihood with physical pT spectra

Finally, we consider the case in which the pT spectrum falls off closer to what would be

expected in a physical model, by allowing a to vary between 0 and 4. We plot the mχ–Λ

plane in Fig. 5.10. The left-hand panel shows the profile likelihood, and the right-hand panel

shows the 2σ region coloured by the value of a that maximises the likelihood for each point.

It should be noted that above Λ = 1250 GeV, the parameter a is meaningless, as there are no

remaining bins left to alter the pT spectrum for. In this instance, ColliderBit simply returns

a value reflecting the first guess for a used as input to ColliderBit’s internal profiling routine,
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Figure 5.8: Profile likelihood in the mχ–C(6)
1–4 planes, with the full LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

a = 1.328.

A clear effect of this treatment of a is the broadening of the lower band in the mχ–Λ plane,

previously driven by CMS. The 1σ region now extends down to values of Λ = 500 GeV from

640 GeV with a truncated spectrum. This is because there is an excess in the 500− 600 GeV

bin in the ATLAS analysis coincident with the 550 − 590 GeV bin in the CMS analysis that

sees a large excess. Because the jet pT spectrum can now continue beyond the bin that Λ falls

in, it is able to fit both of these excesses simultaneously, even for Λ < 550 GeV.

The same effect also pulls the best-fit point down from Λ = 700 GeV to 640 GeV, which

can predominantly fit the large excess in the 640−690 GeV bin of the CMS analysis, then turn

the spectrum down enough in order to fit the much smaller excess in the 690 − 740 GeV bin.

The previous best-fit point suffers from this treatment of the pT spectrum, as the 740 − 790

GeV bin in CMS sees a modest downward fluctuation. When the spectrum is truncated, this

bin does not contribute to the overall likelihood. However, when the spectrum is only slightly

170



★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000

G
AMB I T

−0.5

0.0

0.5

C
(6

)
1

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000

G
AMB I T

−4

−2

0

2

4

C
(6

)
2

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000

G
AMB I T

−10

−5

0

5

10

C
(6

)
3

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(6)
1−4, a : 1000

G
AMB I T

−4

−2

0

2

4

C
(6

)
4

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Profile likelihood in the Λ–C(6)
1–4 planes, with the full LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

suppressed, a < 4, then it penalises the LHC likelihood. These two effects shift the best-fit

region down.

The ATLAS-driven band of Λ is also penalised slightly by this treatment, as the adjacent

bin in the corresponding CMS analysis sees a downward fluctuation. While this band still lies

in the 1σ region, the profile likelihood ratio has fallen slightly.

Below Λ = 1250 GeV, there is a general preference for a ≈ 4. The exception to this is for

Λ ≈ 500 GeV, as this requires a ≈ 2 so that the pT spectrum probes the 550 − 590 GeV bin

correctly, but not the 590− 640 GeV bin. Otherwise, the preference for a = 4 implies that the

LHC likelihood is generally driven by excesses in coincident bins, and in the case of the CMS,

a single neighbouring bin. There are many small fluctuations in the ATLAS data that coincide

with those in the CMS data; with correlation information, it is possible that the best-fit region

would broaden.
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Figure 5.10: Profile likelihood in the mχ–Λ plane, and the same plane coloured by the

value of the nuisance parameter a, for the vector operators C(6)
1–4, with the full LHC

likelihood and the parameter a allowed to vary between 0 and 4. Contour lines show
the 1 and 2σ confidence regions. The white star shows the best-fit point. Note the
restricted range of Λ compared to Figs. 5.4 and 5.7.

UV completion

Similar to the scalar case, it is useful to consider the UV physics that could generate

this vector-only EFT. Starting from a simplified model Lagrangian describing DM and quarks

interacting via a vector particle,

Lspin−1
int ⊃ χ (gχV γµ + igχAγ5γµ)χV

µ +
∑

q

yq√
2
q (gqV γµ + igqAγ5γµ) qV

µ , (5.5.2)

integrating out the vector mediator V µ gives an EFT described by the operators Q(6)
1–4. An

additional concern is the mass generation mechanism for V µ. Much like the vector model

considered in Chapter 4, processes with large energies compared to mV will violate perturbative

unitarity, as longitudinal modes of V µ become constant, and cross-sections diverge. One way

to unitarise the theory is to suppose that V µ is the gauge boson of an additional broken U(1)

symmetry, and its mass is generated dynamically via a Higgs mechanism [481].

The generic requirement that mV is generated dynamically introduces a scalar particle (a

“dark Higgs”) that may have interesting phenomenological consequences [482]. Firstly, as V µ

couples to quark fields, gauge invariance of the SM Yukawa terms implies that the SM Higgs

is charged under the new U(1) group. Secondly, if the dark Higgs gives rise to the mass

generation mechanism for the DM field, then after the U(1) is broken, a term proportional to

χχs is generated, where s is the Goldstone mode of the dark Higgs field. Finally, in principle

there is nothing forbidding a term mixing the SM and dark Higgses at tree level. Such a term

leads to a Higgs portal opening between the SM and DM, that generates a Lagrangian similar
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to Eq. (5.5.1) after diagonalising the scalar sector. This simple consideration of UV completing

a simplified model clearly shows the value in considering all EFT operators simultaneously

instead of individually.
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Figure 5.11: Profile likelihood in the mχ–Λ and mχ–Ωχh
2 planes for the gluon opera-

tors C(7)
1–4, with a capped LHC likelihood and the parameter a fixed to 1000. Contour

lines show the 1 and 2σ confidence regions. The white star shows the best-fit point.

5.5.3 Gluon interactions

5.5.3.1 Capped LHC likelihood

As with the vector models, for simplicity we begin with the scenario in which the LHC

likelihood is capped and a is fixed to 1000 to truncate the pT spectrum. The left-hand panel

of Fig. 5.11 shows the profile likelihood in the mχ–Λ plane. The lower bound is again given by

the EFT validity constraint Λ > 2mχ. The upper bound is set by the relic density constraint.

In comparison to the vector scenario, the relic density constraint is much stronger. This is

because the loop factors in the definitions of the gluon operators Q(7)
1–4 suppress the annihilation

cross-section by a factor of (αs/12π)
2 for those involving Gµν and (αs/8π)

2 for those involving

G̃a
µν . This means that for a given choice of mχ and Λ, the Wilson coefficients need to be

significantly larger in order to obtain the correct relic abundance.

From the right-hand panel of Fig. 5.11, we can see that extending the mass range beyond

mχ = 500 GeV would not have an effect on the parameter space: the 2σ region closes off, as

the correct relic abundance cannot be obtained given the range of Wilson coefficients.

In contrast to the vector case, there are now three sets of solutions instead of two. Firstly,

as before, there is a region in which Λ < 250 GeV and the LHC constraints are not turned on.

Secondly, there is a small island at mχ ≈ 200 GeV, Λ ≈ 400 GeV. Finally, there is a solution

when mχ & 270 GeV and Λ & 550 GeV.
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Figure 5.12: Profile likelihood in the mχ–C(7)
1–4 planes, with a capped LHC likelihood

and the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence
regions. The white star shows the best-fit point.

The Λ < 250 GeV region shows similar behaviour to the vector case, albeit with a much

tighter relic density limit. The best-fit point lies in this region, and once again is for mχ = 5

GeV, fitting the Fermi -LAT excess. The operators that contribute to s-wave annihilation are

Q(7)
2 and Q(7)

4 .

From the upper-left panels of Figs. 5.12 and 5.13, it is clear that C(7)
1 is forced to be very small

in the Λ < 250 GeV regime. This is because the operator Q(7)
1 induces an unsuppressed spin-

independent cross-section, which forces C(7)
1 ≈ 0, much like for C(6)

1 and C(7)
5 . However, because

the scattering cross-section is suppressed by the loop factor, the direct detection constraints

are not as stringent as for C(6)
1 or C(7)

5 . This means that as mχ approaches 100 GeV, there is

some freedom in C(7)
1 to be able to take non-zero values.

Q(7)
2 gives rise to a q2-suppressed spin-independent cross-section. Therefore there is only a

small portion of parameter space in which direct detection has significant impact, for values of

mχ ≈ 20 GeV, Λ ≈ 40 GeV. This can be seen in the top-right panel of Figs. 5.12 and 5.13. The
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Figure 5.13: Profile likelihood in the Λ–C(7)
1–4 planes, with a capped LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

lower-left panels show that C(7)
3 is unconstrained in this region. Q(7)

3 is not constrained by direct

detection, as at leading order, Q(7)
3 gives rise to a q2-suppressed spin-dependent cross-section.

Q(7)
4 also does not give a large direct detection signal, as it yields a q4-suppressed spin-

dependent cross-section at leading order. A ‘hole’ in parameter space can be seen in the

lower-right panel of Fig. 5.13 for Λ . 60 GeV and |C(7)
4 | < 3. This is because for small values

of Λ (and therefore small values of mχ), C(7)
4 must be non-zero in order to obtain the correct

relic abundance. That is because annihilation through Q(7)
3 is p-wave suppressed, and even

with C(7)
3 = 4π, it is not strong enough to deplete the DM population individually. For this

particular choice of mχ and Λ, direct detection constraints mean that C(7)
1 and C(7)

2 cannot

take large values. Further to this, even if the correct relic density is obtained, C(7)
4 has to be

tuned further, as the constraint from Fermi -LAT is below the canonical thermal cross-section

for small masses. Therefore, we require |C(7)
4 | & 3 in order to make the DM underabundant

enough to be compatible with the indirect detection constraint.
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Figure 5.14: Profile likelihood in the mχ–Λ and mχ–Ωχh
2 planes for the gluon oper-

ators C(7)
1–4, with the full LHC likelihood and the parameter a fixed to 1000. Contour

lines show the 1 and 2σ confidence regions. The white star shows the best-fit point.

The second solution,mχ ≈ 200 GeV, Λ ≈ 400 GeV, is a small, fine-tuned region of parameter

space that fits the small upwards fluctuation seen by XENON1T. The right-hand panel of

Fig. 5.11 show that the relic density is almost exactly obtained. The signal seen by XENON

has to be spin-independent, i.e. from a combination of C(7)
1 and C(7)

2 . As Q(7)
2 is q2-suppressed,

it is not as tightly constrained as C(7)
1 , so can additionally contribute to DM annihilation.

The correct relic abundance is therefore obtained by tuning C(7)
3 and C(7)

4 appropriately for a

given choice of C(7)
1 and C(7)

2 that fits the XENON excess. Simultaneously, there is an upward

fluctuation in the 300 − 400 GeV bin in the ATLAS analysis, while the 370 − 400 GeV CMS

analysis is consistent with a small signal. The 1σ range in Λ is therefore for 370 GeV < Λ < 400

GeV. These excesses in the LHC analyses allow the Wilson coefficients to be non-zero without

being penalised by the LHC likelihood, as it caps the likelihood in this region. This allows the

model to fit both the observed relic abundance and the small XENON1T signal.

The final solution is for mχ & 270 GeV and Λ & 550 GeV. As seen before, this is due to the

string of upwards fluctuations from 550 GeV onwards in both LHC analyses. This permits a

small signal at the LHC, which allows the Wilson coefficients to be raised sufficiently to lower

the relic abundance. A noticeable effect in crossing the boundary between LHC bins can be

seen in the lower-left panel of Fig. 5.12: the small dip in allowed parameter space for |C(7)
3 | > 10

at mχ ≈ 345 GeV. The CMS bin for 640−690 GeV has a much larger excess than the 690−740

GeV bin, so the constraint on the couplings instantaneously becomes tighter.

Note from the lower-right panel of Fig. 5.12 there is a strong preference for non-zero C(7)
4 in

this high-mass region. That is because it is needed to obtain the correct relic density: without

Q(7)
4 switched on, the annihilation cross-section is not large enough. The same effect can be

seen for Q(7)
2 in the top-right panel, for large masses. Note that because of the normalisation

used in the loop factors to define the EFT, cross-sections involving C(7)
3–4 are ∼ 9/4 times larger
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Figure 5.15: Profile likelihood in the mχ–C(7)
1–4 planes, with the full LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

than for C(7)
1–2. C

(7)
1 is still constrained by direct detection in this region of parameter space, but

as the mass increases and direct detection limits weaken, the permitted range of C(7)
1 increases,

visible in the top-left panel of Fig. 5.12. This is largely due to the scattering cross-section being

suppressed by the loop factor in the operator definition, which weakens direct detection limits.

5.5.3.2 Full LHC likelihood with truncated pT spectra

We now consider the scenario in which the LHC likelihood is not capped, and the pT

spectrum is truncated at the EFT scale Λ. As with the vector operators, the Λ < 250 GeV

region of parameter space immediately becomes disfavoured; see Fig. 5.14. This is because the

positive contribution from the LHC likelihood means that the low-mass region drops in ∆ lnL
relative to the best-fit point. Therefore, the scanning algorithm chooses not to explore the

low-mass region in favour of the high-mass region. This is reflected in the poor sampling in

the low-mass region visible in Fig. 5.15. Because C(7)
1 has to be close to zero in order to avoid

177



★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(7)
1−4, a : 1000

G
AMB I T

−10

−5

0

5

10

C
(7

)
1

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(7)
1−4, a : 1000

G
AMB I T

−10

−5

0

5

10

C
(7

)
2

P
ro
fi
le

likelih
o
o
d
ra
tio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(7)
1−4, a : 1000

G
AMB I T

−10

−5

0

5

10

C
(7

)
3

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

★

pippi v2.1, GAMBIT 2.1.0, Diver 1.0.4, C
(7)
1−4, a : 1000

G
AMB I T

−10

−5

0

5

10

C
(7

)
4

P
rofi

le
likelih

o
o
d
ratio

Λ
=

L
/L

m
a
x

1.5 2.0 2.5 3.0
log10 (Λ/GeV)

0.2

0.4

0.6

0.8

1.0

Figure 5.16: Profile likelihood in the Λ–C(7)
1–4 planes, with the full LHC likelihood and

the parameter a fixed to 1000. Contour lines show the 1 and 2σ confidence regions.
The white star shows the best-fit point.

constraints from direct detection, this region of parameter space is far more fine-tuned than

the region contributing to the positive LHC likelihood. Moreover the low-mass region is a poor

fit to the data, as it cannot explain the LHC excesses. The region fitting the LHC excesses

is visibly far less tuned in terms of the Wilson coefficients for given values of mχ and Λ; see

Figs. 5.15 and 5.16, where there is a clear degeneracy between the Wilson coefficients.

The LHC-driven region is again split into two bands: the upper band driven entirely by

ATLAS, and the lower band being driven mostly by CMS with support from ATLAS. As with

the capped likelihood, we see that C(7)
4 is required to be large in order to reproduce the correct

relic abundance. The remaining Wilson coefficients C(7)
1–3 are reasonably degenerate for a given

choice of mχ, Λ and C(7)
4 . C(7)

1–3 simply need to make up the remainder of the required LHC

signal (as the LHC is not particularly sensitive to the spin structure of the matrix element),

while also contributing sufficiently to the annihilation cross-section.
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Figure 5.17: Profile likelihood in the mχ–Λ plane, and the same plane coloured by

the value of the nuisance parameter a, for the gluon operators C(7)
1–4, with the full LHC

likelihood and the parameter a allowed to vary between 0 and 4. Contour lines show
the 1 and 2σ confidence regions. The white star shows the best-fit point.

5.5.3.3 Full LHC likelihood with physical pT spectra

Finally, we turn to the scenario in which the LHC signal is suppressed for pT > Λ by a,

which takes a value in the range 0 to 4. As with the vector EFT, the 1σ lower bound in the

band driven predominantly by CMS gets pulled downwards, from Λ ∼ 630 GeV to ∼ 500 GeV,

as seen in the left-hand panel of Fig. 5.17. This again is because the jet pT spectrum is able

to extend to bins beyond the value of Λ. This leaves two regions as before: signals fitting the

640− 690 GeV and 690− 740 GeV CMS bins, coincident with the 500− 600 GeV ATLAS bin,

and signals fitting the 800 − 900 GeV ATLAS bin. The right-hand panel of Fig. 5.17 shows

the nuisance parameter a in the 2σ region, with a clear preference for a = 4 once again. The

value of Λ at the best-fit point falls slightly compared to the case in which the pT spectrum

is truncated, much like in the vector case, as the 740 − 790 GeV bin in CMS sees a modest

downward fluctuation.

UV completion

Our choice of parametrisation for the EFT assumes that the gluon operators are generated

at the one-loop level. Specifically, the choice of αs/12π (αs/8π) as a loop factor is motivated

by integrating out a heavy quark coupled to a scalar (pseudoscalar) mediator.

Consider the following interaction Lagrangian:

LGluon
int ⊃ Q(gsq + igpqγ5)Qφ+ χ(gsχ + igpχγ5)χφ , (5.5.3)

where Q is an additional heavy vector-like quark, φ is a scalar mediator, and all factors of g

are dimensionless couplings. As Q is a quark, it is charged under colour, and therefore couples
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to gluons via the covariant derivative. At the one-loop level, the process χχ → gg occurs via

the triangle diagram shown in Fig. 5.18. Integrating out both Q and φ generates an interaction

Lagrangian containing Q(7)
1–4.

χ

χ

g

g

Q
φ

Figure 5.18: Generation of dark matter-gluon interactions at the one-loop level.

5.6 Summary

In this Chapter, I have presented global studies of DM EFT operators corresponding to

integrating out spin-0 mediators, spin-1 mediators, and heavy quarks. I fully include the effects

of interference between operators and RGE running to the nucleon scale. I have used up-to-

date constraints from several direct detection experiments, γ rays from the Fermi -LAT Pass

8 combined dwarf analysis, the relic abundance from Planck, and LHC constraints from the

CMS and ATLAS 36fb−1 monojet analyses. I have also considered the validity of our EFT.

Of particular interest are the LHC constraints. Small fluctuations in both the CMS and

ATLAS analyses can be explained by a fermionic DM particle interacting with quarks via vector-

like operators, or by gluonic operators generated at the one-loop level. As the LHC constraints

dominate the best-fit region, I have performed multiple scans with varying treatment of the

LHC likelihood.

First, I performed scans with a ‘capped’ LHC likelihood, in which the likelihood cannot be

better than that predicted by the background-only model. In this scenario, I generally find

that the LHC likelihood prefers small Wilson coefficients in order to be consistent with the

background-only scenario.

Secondly, I performed scans where I do not cap the LHC likelihood. In this scenario I find two

sets of solutions, fitting upward fluctuations in both the ATLAS and CMS analyses. Because

the LHC is not particularly sensitive to the Dirac structure of the production cross-section, this

signal can be generated by operators that have suppressed direct detection cross-sections. As

a result, all models that I consider provide a good fit to the data.

By considering simple UV completions, I have shown that in many cases taking simplified

models in isolation may still fail to capture a realistic UV-complete physics model. For exam-

ple, to restore unitarity in the fully general vector-mediated simplified model requires a Higgs

mechanism. This necessarily introduces additional degrees of freedom into the theory that can

naturally have sizeable couplings to DM. This therefore motivates using an EFT picture to
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capture all possible interactions between DM and the SM without attempting to describe the

UV physics.

The forthcoming paper including the results presented in this Chapter (Ref. [5]) will addi-

tionally include scans over all of the EFT operators simultaneously. These scans will include a

full treatment of nuisance parameters relevant to the study, and constraints from solar neutrinos

and the CMB.
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Chapter 6

Summary and conclusion

Although the Standard Model has had a great deal of success in describing much of the

small-scale physics observed in high-energy experiments, it still has many shortcomings. The

experimental effort to find signatures that may provide hints at what is beyond the Standard

Model continues to grow, but has so far come up short. With a seemingly endless list of

possible theories beyond the Standard Model, it has never been more important to perform

global analyses. By consistently combining all possible constraints applicable to a theory, and

performing a thorough statistical analysis, we can make rigourous statements about the viability

of a particle physics theory. This is extremely valuable information, as it can potentially

influence the direction for new experimental searches.

The work I have presented in this thesis has highlighted the importance of complementarity

between theoretical and experimental constraints on theories beyond the Standard Model. In

Part I, I introduced extensions to the open-source global fitting framework GAMBIT.

In Chapter 2, I presented GUM, the GAMBIT Universal Model Machine. GUM is the interface

between symbolic Lagrangian-level tools and GAMBIT, designed to rapidly expand the model

database within GAMBIT with minimal effort from the user. GUM generates source code to

be added to several physics modules, allowing GAMBIT to use the pre-existing capabilities of

those modules with the new model.

GUM 1.0.0 is able to write code snippets for several GAMBIT physics modules. GUM can

write new entries in SpecBit for mass spectra corrected at the one-loop level, and to check the

stability of the scalar potential. Additionally, GUM writes code for DecayBit for tree-level and

loop-level decays, dark matter observables in DarkBit, and collider physics in ColliderBit.

The input that GUM requires is a short input file in YAML format, and model files for

the specified Lagrangian-level tool. The symbolic tools that GUM interfaces to, SARAH and

FeynRules, both have extensive and well-tested model databases. This means that implementing

a new model in GAMBIT is often as straightforward as just providing a simple input file to GUM.

In Sec. 2.4, I presented a worked example of adding a simplified dark matter model to GAMBIT

using GUM. I performed a statistical fit using several dark matter likelihoods that is able to
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converge in a reasonable time on a modern personal computer.

In Chapter 3, I described CosmoBit, the new GAMBIT module for computing cosmological

observables and likelihoods. CosmoBit is the first public package able to consistently combine

observables and likelihoods from cosmology with those from particle physics. I have highlighted

the importance that additional particle content can have on cosmology, and therefore why

cosmology is a powerful tool in constraining theories beyond the Standard Model.

As an application of CosmoBit, I have presented results from a global analysis of the masses

of the three Standard Model neutrinos in both the normal and inverted hierarchies. By com-

bining constraints from Big Bang nucleosynthesis, the cosmic microwave background, type Ia

supernovae, baryon acoustic oscillations, and a wide range of neutrino oscillation experiments,

I found a new robust upper limit on the mass of the lightest neutrino. For the normal hierarchy,

I found an upper bound on the lightest neutrino mass of 0.038 eV at the 95% confidence level,

and 0.044 eV for the inverted hierarchy. This is roughly a factor of two improvement on existing

limits from combined analyses.

In Part II, I performed global analyses of effective dark matter models using GAMBIT.

One particular shortcoming of the Standard Model is its lack of a particle candidate for dark

matter. There are countless dark matter candidates, and constraining each one in turn is

a daunting task. However, at low energy scales, many high-energy theories map to similar

effective models. Studying these effective models is therefore potentially an efficient way to

tackle the wide range of dark matter theories from the bottom up. This approach allows us to

constrain the properties of dark matter interacting with the Standard Model whilst remaining

agnostic to the UV physics.

The focus of Chapter 4 was performing global fits of effective Higgs portal dark matter

theories. I considered models in which the Standard Model was augmented by either a fermionic

or a vector dark matter particle, stabilised by a Z2 symmetry.

I used likelihoods from direct detection experiments, indirect detection via γ rays and solar

neutrinos, the relic density of dark matter, and the invisible width of the Higgs. I considered

the validity of the effective theories by invalidating points that violate perturbative unitarity or

where the effective field theory picture breaks down. I also varied several nuisance parameters

related to uncertainties in the dark matter halo, nuclear matrix elements, and Standard Model

measurements.

In the frequentist analysis, I found that all of the Higgs portal models considered could

provide a good fit to the data, regardless of whether or not the dark matter candidate saturates

the observed relic density, or is underabundant. Particularly, the resonance region in which the

dark matter mass is approximately half of the Higgs mass is consistent with all experimental

data, and will prove challenging to probe in its entirety with future experiments.

The fermionic models have both scalar and pseudoscalar couplings whose relative strength

is governed by a mixing parameter ξ. As the pseudoscalar current induces a scattering cross-

section that is suppressed by the momentum exchange, the Bayesian fits found that there was
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a clear preference for ξ ∼ π/2 in order to evade direct detection constraints. A priori, ξ could

take any given value; however I argued that ξ = 0 is a natural choice as it conserves CP after

electroweak symmetry breaking. As the ξ = 0 model is nested in the general model, I performed

a Bayesian model comparison between the two models. I found that the data strongly prefers

the model in which CP can be violated, with odds of the order 1:100 (depending on the choice

of prior).

Although they are not nested models, I performed an additional Bayesian model comparison

to quantify the relative plausibility of the Higgs portal models. I found that there is a mild

preference for a scalar or fermionic dark matter candidate relative to the vector case, but no

real preference between the scalar and fermionic cases.

The fermionic Higgs portal model is perhaps the simplest scenario that induces a non-

standard scattering cross-section for direct detection experiments (in this case a momentum-

suppressed spin-independent cross-section). In light of there being no positive signals from

direct detection experiments, it is becoming increasingly important to consider such models

with non-standard cross-sections.

DDCalc v2, released alongside the Higgs portal models in GAMBIT 1.2.0, is able to compute

such scattering rates from non-relativistic effective operators. However, computing the coeffi-

cients for these operators is typically challenging. To this end, I introduced the new GAMBIT

backend DirectDM in Appendix D. DirectDM maps from a relativistic dark matter theory down

to the nuclear scale, computing all renormalisation group evolution, mixing, and matching. The

output of DirectDM is precisely the input required by DDCalc to compute direct detection rates

for non-standard cross-sections. This is a critical computational pipeline to correctly explore

dark matter theories whose interactions with the Standard Model are not simply captured by

the standard unsuppressed spin-independent and spin-dependent cross-sections.

In Chapter 5, I performed global fits of a dark matter effective field theory defined at the

parton level. I extended the Standard Model with a Dirac dark matter candidate that interacts

with the Standard Model quarks and gluons via a set of contact interactions. The operators

that I considered are a basis set of the complete set of possible operators at dimension six and

seven (modulo derivative terms).

I performed scans using constraints from the relic abundance of dark matter, direct detec-

tion (using the new DirectDM-to-DDCalc pipeline), indirect detection via γ rays, and monojet

searches from the LHC. I presented results from subspace scans in which the effective theory

is generated by integrating out either a scalar mediator particle, a vector mediator particle, or

a heavy quark.

Each subspace scan that I considered varied four Wilson coefficients, the dark matter mass,

and the scale of new physics. I found that the parameter space was often highly degenerate in

these six parameters, meaning that all of the models I scanned are able to provide a good fit to

the data. This is because in each scan there were operators with non-standard direct detection

cross-sections. These Wilson coefficients are then free to be large in order to obtain the correct
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relic abundance, while evading direct detection constraints.

Additionally, I found that both the vector and gluonic operators are able to provide good

fits to upwards fluctuations seen at the LHC. I therefore also performed scans in which the LHC

likelihood is capped, i.e. it cannot be better than that predicted by the background-only model.

In this scenario, the scans typically prefer small values of the Wilson coefficients for values of

the scale of new physics above 250 GeV, in order to be consistent with the background-only

scenario.

The search for hints of physics beyond the Standard Model is ongoing. In the absence of any

signals indicating new physics, it is crucial that we extract the most information possible from

the data that we have, by performing global analyses. By performing global analyses of effective

dark matter models, I have underlined the importance of considering non-standard interactions

between dark matter and the Standard Model, especially given the lack of experimental evidence

of specific properties of particle dark matter.

The work that I have presented in this thesis aims to increase the efficiency and effectiveness

of the standard phenomenology toolchain. By interfacing existing symbolic Lagrangian-level

tools to the extensive global fitting suite GAMBIT, performing global fits of new theories has

never been simpler. Additionally, the ability to now include cosmological observables in this

toolchain only increases the utility of GAMBIT.
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Appendix A

New backend interfaces in GUM

Here, I briefly describe the new backend interfaces introduced with GUM v1 and GAMBIT

v2.

A.1 New backend interfaces

A.1.1 CalcHEP

CalcHEP provides squared matrix elements for a given process at tree level. The GAMBIT

interface to CalcHEP contains two simple convenience functions, CH_Decay_Width and CH_Sigma_V,

which apply the correct kinematics to convert a matrix element into a 1 → 2 decay width, or

a 2 → 2 DM annihilation cross-section. Concretely, they wrap the CalcHEP internal function

getMEcode, which provides a direct call to the matrix element in CalcHEP.

The function CH_Decay_Width is used by DecayBit to add a new Entry to its DecayTable. To

obtain the decay width, one simply passes the name of the model and the decaying particle

as they are known internally in CalcHEP, along with a std::vector<std::string> containing

the names of the decay products (also as known to CalcHEP). Note that at present only two-

body final states are allowed by CalcHEP, but the interface generalises nearly automatically to

higher-multiplicity final states.

The function CH_Sigma_V returns the product σvlab for DM annihilation χ + χ → A + B.

It does not support co-annihilations. This function is used by the DarkBit Process Catalogue.

The arguments for CH_Sigma_V are identical to CH_Decay_Width, except that the in states must be

a std::vector<std::string> containing the DM candidate and its conjugate. The function also

requires the relative velocity in the centre-of-mass frame double v_rel (in units of c), and the

DecayTable, to pass updated mediator widths to CalcHEP.

For matrix elements with numerical instabilities for zero relative velocity, we compute the

cross-section at a reference velocity of vlab = 1× 10−6.
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A.1.2 SARAH-SPheno

SPheno is a spectrum generator capable of providing one-loop mass spectra as well as decays

at tree and loop level. GAMBIT has included a frontend interface to the release version of SPheno

3.3.8 since GAMBIT 1.0, and to 4.0.3 since GAMBIT 1.5. Details about the interface can be

found in Appendix B of [113]. There are important differences between the frontend interfaces

to the release version of SPheno and to the SARAH-generated version (which we refer to as

SARAH-SPheno). We give details of these differences below.

SARAH generates the Fortran SPheno files to compute the spectrum and decays for a given

model. These naturally differ from the out-of-the-box SPheno, which only works with various

versions of the MSSM. After generating these files with SARAH, GUM moves them to the main

GAMBIT directory, to be combined with the downloaded version when SARAH-SPheno is built.

In order to improve the usability of SARAH-SPheno in GAMBIT, we have patched two

variables into the Fortran code. The first, ErrorHandler_cptr, is a pointer to a void function that

returns control to GAMBIT after a call to the SPheno subroutine TerminateProgram. This prevents

GAMBIT being terminated when SPheno fails. Instead, it raises an invalid_point exception, and

carries on. The second new variable is SilenceOutput, which provides a YAML option that allows

the user to silence all output of SARAH-SPheno to stdout. This option defaults to false.

Rules:

- capability: unimproved_new model_spectrum

function: get_new model_spectrum_SPheno

options:

SilenceOutput: true #default: false

The interface to the spectrum computation from SARAH-SPheno remains fairly similar to

that described for the release version of SPheno in Ref. [113]. Some variables and functions

have changed names and library symbols. The computations have been re-ordered slightly, but

otherwise remain unperturbed.

The major change to the spectrum is the addition of mass uncertainties. These are provided

to GAMBIT upon request using the YAML option GetMassUncertainty. This option defaults to

false.

Rules:

- capability: unimproved_new model_spectrum

function: get_new model_spectrum_SPheno

options:

GetMassUncertainty: true #default: false

Setting GetMassUncertainty:true causes the mass uncertainties to be added to the spectrum in

the SLHA block DMASS.

The most significant difference between the frontend interface to SARAH-SPheno compared

to the release version of SPheno is that the former includes computation of decays. The backend
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convenience function run_SPheno_decays provides a new capability SARAHSPheno_new model_decays,

which maps the decay widths computed by SPheno into a GAMBIT DecayTable. Internally,

this backend function fills the SARAH-SPheno internal variables with the spectrum details and

computes all the branching fractions using the SARAH-SPheno function CalculateBR. Note that

the branching fractions for charged processes are rescaled within the frontend interface, as they

are double-counted in SPheno so must be rescaled by a factor of 1/2. Various YAML options

are added for the computation of the decays, the most notable of which are

• OneLoopDecays, which switches on the computation of loop decays,

• MinWidth, which specifies the minimum width value in GeV for a decay to be added to the

table, and

• Enable3BDecaysF and Enable3BDecaysS, which switch on three-body decays for fermions and

scalars respectively.

These can be selected as options of the decay_rates capability as

- capability: decay_rates

function: all_new model_decays_from_SPheno

options:

OneLoopDecays: true #default: true

MinWidth: 1e-10 #default: 1e-30

Enable3BDecaysF: false #default: true

Enable3BDecaysS: false #default: true

Lastly, the new SARAH-SPheno interface provides information about Higgs couplings via the

backend convenience function get_HiggsCouplingsTable, which provides the capability SARAHSPheno_new model_HiggsCouplingsTable

This function simply fills a GAMBIT HiggsCouplingsTable object from various internal variables

in SARAH-SPheno.

A.1.3 Vevacious

Vevacious computes the stability of the scalar potential for BSM theories. It does so by

computing the likelihood for the electroweak vacuum to have not decayed in our past light

cone, based on the tunnelling probability to another deeper minimum. The GAMBIT interface

for Vevacious is described in detail in [179], so we will only summarise it briefly here.

Out of the box, Vevacious simply requires an SLHA2 file as input. To avoid file operators,

from GAMBIT the Spectrum object is passed to the central Vevacious object by the capability

pass_spectrum_to_vevacious within SpecBit. This is precisely the capability for which GUM

writes a new module function for each model.

The model dependence is captures in the capability pass_spectrum_to_vevacious. The re-

maining information that needs to be passed to Vevacious is initialisation information, used
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Option Utility & Default Value

phc_random_seed Set the seed for the routines in PHC. Default: generated by GAM-
BIT.

minuit_strategy Select the strategy for MINUIT when minimising the one-loop po-
tential and finding the optimal tunnelling path. Higher values
mean more function calls and more accuracy. Possible values: 0

(economises function calls, low precision, fastest), 1, 2 (does not
economise functional calls, high precision, slowest). Default: 0.

potential_type Selects the potential class within Vevacious. Current
available options are (default) FixedScaleOneLoopPotential,
PotentialFromPolynomialWithMasses.

homotopy_backend Selects choice of software to perform the homotopy continuation,
choice of hom4ps and phc. Default: hom4ps.

path_finding_timeout Maximum time spent trying to find the optimal tunnelling path, in
seconds. Default: 3600.

survival_probability_

_threshold

The threshold probability for which Vevacious stops trying to find
a lower bounce action, as a fraction of age of the Universe. Default:
0.01.

radial_resolution_

undershoot_overshoot

Sets the choice of length scale resolution for the numerical integra-
tion of bounce solutions. Default: 0.1.

PathResolution Number of equally-spaced nodes along candidate paths in field
space that are moved for finding the optimal tunnelling path. De-
fault: 1000.

Table A.1: Table of the runOptions available to the module function
initialize_vevacious, which is used to pass runtime options to Vevacious.

prior to running the main routines. These are set by the module function initialize_vevacious

in SpecBit and are described in Table A.1.

The main Vevacious computations are performed using by calling the method RunPoint

from the native Vevacious class vevaciousPlusPlus. GAMBIT has access to this class dynam-

ically via the class structure generated by BOSS and calls this method in the capability

check_vacuum_stability_vevacious.
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Appendix B

Annihilation cross-sections for Higgs

portal DM

Here I present the annihilation cross-sections used for the Higgs portal DM project, Chap-

ter 4.

In this study, the final states from the DM annihilation include W+W−, ZZ, τ+τ−, tt̄, bb̄,

cc̄ and hh. For all final states except hh, the DM annihilation proceeds solely via an s-channel

Higgs exchange. For massive gauge bosons, the annihilation cross-section is

σvcms
rel = P (X)

s

8π
δiviλ

2
hX |Dh(s)|2

(
1− 4xi + 12x2i

)
, (B.1)

where P (X) is defined in Eq. (4.2.3), i = {W, Z}, λhX ∈ {λhV , λhχ/Λχ, λhψ/Λψ}, δW = 1,

δZ = 1/2, xi ≡ m2
i /s, vi =

√
1− 4xi, and |Dh(s)|2 is the full squared Higgs propagator given

by

|Dh(s)|2 =
1

(s−m2
h)

2
+mhΓh(

√
s)
. (B.2)

For fermion final states, the annihilation cross-section is given by

σvcms
rel = P (X)

m2
f

4π
Cfv

3
fλ

2
hX |Dh(s)|2 , (B.3)

where Cf is a colour factor. For leptons, Cf = 1, whereas for quarks, it includes an important

1-loop vertex correction given by [483]

Cf = 3

{
1 +

[
3

2
log

(
m2
f

s

)
+

9

4

]
4αs
3π

}
. (B.4)

For the hh final state, additional contributions appear from the 4-point contact interaction as
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well as DM exchange in t- and u-channels. The annihilation cross-section for V V → hh is

σvcms
rel (V V → hh) =

λ2hV vh
2304πsx4V

|Dh(s)|2
[
8βv20λhV
1− 2x2h

coth−1 β×
{
2s (2xh − 1) xV

(
(xh − 1) (2xh + 1)− x2Γ

) (
x2h + 24x3V + 2 (xh − 1)2 − 4 (2xh + 1) x2V

)

− v20λhV

[(
3x4h − 8x3hxV − xh(xh − 4xV )(8x

2
V + 1)− 2xV (24x

3
V − 2xV + 1))(xh − 1)2 + x2Γ)

)]}

+ 4s2x2V (4xV (3xV − 1) + 1)
(
(2xh + 1)2 + x2Γ

)

− 4sxV λhV v
2
0 (2xh (2xV + 1) + 1− 6xV )

(
xh (2xh − 1)− 1− x2Γ

)
+
λ2hV v

4
0

(
(xh − 1)2 + x2Γ

)

x2h − 4xV xh + xV
×

(
6x4h + 4x3h (1− 8xV ) + x2h (12xV (4xV − 1) + 1)− 64x3V xh + 96x4V + xV

)]
, (B.5)

where the dimensionless quantities β = (1− 2xh)/(vhvV ) and xΓ = Γhmh/s, and vh and vV are

the lab-frame velocities of the Higgs and vector DM, respectively.

Similarly, the annihilation cross-section for χχ→ hh (and equivalently for χ↔ ψ) is given

by

σvcms
rel (χχ→ hh) =
(
λhχ
Λχ

)2
vh

32πs

[(
s− 4 cos2 ξsxχ − 8 cos ξv20

λhχ
Λχ

mχ

)
+

4βs2|Dh(s)|2v20 coth−1 β

(1− 2xh)
2

λhχ
Λχ

×
{
2mχ cos ξ (2xh − 1)

(
xh (2xh − 1)− x2Γ − 1

) (
8 cos2 ξxχ − 2xh − 1

)

+ v20
λhχ
Λχ

(
1− 4xh + 6x2h − 16xχ cos

2 ξ (xh − 1)− 32 cos4 ξx2χ
) (

(xh − 1)2 + x2Γ
)}

+ 3s2|Dh(s)|2xh
(
8 cos ξv20 (xh − 1)

λhχ
Λχ

mχ − s (xh + 2)
(
4 cos2 ξxχ − 1

))

−
(
λhχ
Λχ

)2
2v40 (2xχ (8 cos

4 ξxχ + 1)− 8 (1 + cos2 ξ) xhxχ + 3x2h)

x2h + xχ − 4xhxχ

]
,

where β = (1− 2xh)/(vhvχ), with vχ the lab-frame χ velocity.
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Appendix C

UFO to CalcHEP documentation

The program ufo to mdl is a simple Python tool to be distributed with GAMBIT 2.1 and

above, integrated with the GUM framework. It is located at $GAMBIT/gum/src/ufo_to_mdl.py. It

supports by both Python 2 and Python 3 and can also be run in standalone mode. I briefly

describe the motivation for the tool and how to use it.

The purpose of ufo to mdl is to generate CalcHEP input (.mdl files) from UFO files. The

motivation for its creation is that FeynRules is unable to generate four-fermion CalcHEP output,

but it can create such output for MadGraph. In fact, at the time of writing, LanHEP [125] is

the only package that supports automatic generation of four-fermion contact interactions for

CalcHEP files.

With ufo to mdl the user can study four-fermion interactions using CalcHEP (and corre-

spondingly, MicrOMEGAs), effectively creating a pathway from FeynRules to CalcHEP for effec-

tive theories of this kind.

In the context of GAMBIT and the GUM pipeline, ufo to mdl allows the user to study effective

field theories of Dark Matter using the routines provided by MicrOMEGAs and CalcHEP inside

of the GAMBIT framework, such as relic density calculations, direct detection rates, and indirect

detection via the process catalogue (see the DarkBit manual [63] for details).

Usage of ufo to mdl is straightforward. There are two modes that ufo to mdl can be operated

in: comparison mode and conversion mode.

The mode integrated into the GUM pipeline is the comparison mode: comparing between

directories containing UFO and .mdl files generated by FeynRules:

python ufo_to_mdl.py <UFODir> <MDLDir>

This ensures that all vertices present in the MadGraph files are present in the CalcHEP files.

Ufo to mdl does not explicitly check that the vertex functions and Lorentz indices are in agree-

ment; it solely checks that the particle content of a MadGraph vertex is present in CalcHEP.

If there are vertices missing from the CalcHEP files (which should only be four-fermion ver-

tices, if the user is generating MadGraph and CalcHEP output from a fully functional FeynRules

model implementation with trivial colour structures), ufo to mdl generates the missing vertices
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and adds them to the CalcHEP files, creating a new directory <MDLDir>_ufo2mdl containing the

corrected files.

In the case of four-fermion operators, ufo to mdl adds an additional auxiliary field to the

particle content, and creates two three-field interactions involving this new auxiliary mediator

particle, following the prescription described in Chapter 8 of the CalcHEP manual [138]. An

auxiliary field has no momentum dependence and serves only to split the vertex into a form

that CalcHEP can use.

The order of fields generated by ufo to mdl will be identical to those in the MadGraph files,

i.e. a vertex

i (χΓχχ)
(
ψΓψψ

)
(C.1)

would be broken up into two vertices,

i (χΓχχ)φ and i
(
ψΓψψ

)
φ , (C.2)

where ΓX is a generic Dirac structure contracted with the field χ, and φ is the auxiliary field,

with Lorentz indices corresponding to Γ (either scalar, vector, or tensor). As a result, operators

in FeynRules files should be written pairwise.

Running ufo to mdl in comparison mode compares the particle content and parameter lists

before comparing the vertices. Again we reiterate that by comparing vertices, ufo to mdl

does not explicitly check for agreement between Lorentz structures and vertex coefficients.

Ufo to mdl simply checks whether each interaction in the MadGraph files (i.e. each set of fields)

exists in the .mdl files.

Ufo to mdl is also designed to work standalone, not only as part of the GUM pipeline, in

the conversion mode. Running ufo to mdl in conversion mode, solely on a directory containing

MadGraph files, will generate .mdl files from scratch:

python ufo_to_mdl.py <UFODir>

creating a new directory with name <UFODir>_ufo2mdl containing the .mdl files. Ufo to mdl does

not support non-trivial colour structures, and will throw an error if it is asked to generate a

vertex with implicit colour structure.
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Appendix D

DirectDM interface

I briefly describe the GAMBIT interface to the new backend DirectDM, to be released with

GAMBIT 2.1, its interface to DDCalc, and how to interface a new model to DirectDM.

DirectDM matches Wilson coefficients of a relativistic EFT onto a non-relativistic EFT valid

at the nuclear scale. The GAMBIT implementation interfaces with the Python version of this

package.

Relativistic Wilson coefficients can be defined above the electroweak scale via capability

DD_rel_WCs_EW, or at the 3-, 4- or 5-quark scale, with capability DD_rel_WCs_flavscheme. For

a given model, a new module function providing one of these capabilities should be written,

returning the type map_str_dbl (std::map<std::string,double>>).

Once either of these capabilities has been fulfilled, GAMBIT uses the module functions

DD_nonrel_WCs_EW or DD_nonrel_WCs_flavscheme to call the DirectDM backend via the convenience

function get_NR_WCs_EW or get_NR_WCs_flav. These have capability DD_nonrel_WCs, which can be

connected to the DDCalc frontend.

Both of these module functions providing capability DD_nonrel_WCs rely on a GAMBIT type

called WIMPprops. WIMPprops contains the particle information about the WIMP candidate, such

as its spin, mass, and whether or not it is self-conjugate. WIMPprops can be defined within the

model definition itself, if the DM mass is a model parameter.

As an example, consider a simplified model where a vector mediator governs the interac-

tion between d-type quarks and a fermionic DM candidate χ, with the following interaction

Lagrangian,

Lint ⊃ gχχγµχV
µ + gb

∑

q=d,s,b

qγµqV
µ , (D.1)

The model implementation within GAMBIT will contain 4 free parameters: the couplings and

the masses of DM and the mediator. As the DM mass is a model parameter, the WIMPprops

object can be constructed in the model file. This can be simply automatically generated by

GUM [1], or written by hand. The model definition for the above simplified model looks like:

#define MODEL new model

START_MODEL
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// Standard model definition in Gambit

DEFINEPARS(mchi, mV, gchi, gb)

#define CAPABILITY WIMP_properties

START_CAPABILITY

#define FUNCTION new model_WIMP_properties

START_FUNCTION(WIMPprops)

ALLOW_MODELS(new model)

#undef FUNCTION

#undef CAPABILITY

// Define the module functions (WIMPprops)

namespace Gambit {

namespace Models {

namespace MODEL {

void new model_WIMP_properties(WIMPprops& result)

{

using namespace Pipes::new model_WIMP_properties;

// The particle mass, from the

// input parameters

result.mass = *Param["mchi"];

// Twice the spin

result.spinx2 = 1;

// Is it self-conjugate?

result.sc = false;

// The name in the GAMBIT particle DB

result.name = "chi";

}

}

}

}

#undef MODEL

If we integrate the mediator out in Eq. (D.1), the interaction term becomes

Leff
int ⊃

gχgb
m2
V

χγµχ
∑

q=d,s,b

qγµq . (D.2)

The operator in DirectDM corresponding to this interaction is Q(6)
1,q = (χγµχ)(qγ

µq). We

identify the relevant coefficient to pass to DirectDM as gχgb/m
2
V . This is simply implemented

in DarkBit; firstly, an entry in DarkBit_rollcall.hpp,

// Relativistic Wilson coefficients defined

// in the 5 (or 4 or 3) flavscheme

#define CAPABILITY DD_rel_WCs_flavscheme

START_CAPABILITY
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#define FUNCTION DD_rel_WCs_flavscheme_new model

START_FUNCTION(map_str_dbl)

DEPENDENCY(new model_spectrum, Spectrum)

ALLOW_MODEL(new model)

#undef FUNCTION

#undef CAPABILITY

and the following entry in DarkBit/src/new model.cpp

/// Relativistic Wilson Coefficients for direct

/// detection. Map from the model parameters

/// to relativistic EFT for DirectDM

void DD_rel_WCs_flavscheme_new model(map_str_dbl& result)

{

using namespace Pipes::DD_rel_WCs_flavscheme_new model;

// The spectrum object associated with the new model.

const Spectrum& spec = *Dep::new model_spectrum;

// Get some parameters from the Spectrum object

double mphi = spec.get(Par::Pole_Mass, "phi");

double gchi = spec.get(Par::dimensionless, "gchi");

double gq = spec.get(Par::dimensionless, "gq");

double prefactor = gchi * gq / pow(mphi, 2.);

// Wilson coefficients in DirectDM are *dimensionful*.

// Note that there is a different operator for each quark.

result["C61d"] = prefactor;

result["C61s"] = prefactor;

result["C61b"] = prefactor;

}

For a full definition of the operator basis used in DirectDM we refer the reader to Refs. [172,

173].

When DirectDM is used, the user must also scan over the model nuclear_params_ChPT, which

contains (nuisance) parameters used in the matching and running routines in DirectDM. These

are defined in Table 1 of [172]. We provide a YAML file with the default values used in DirectDM:

yaml_files/include/nuclear_params_ChPT.yaml.
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