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Abstract We calculate the Higgs-boson mass spectrum and
the corresponding mixing of the Higgs states in the Mini-
mal Supersymmetric Standard Model (MSSM). We assume
a mass-hierarchy with heavy SUSY particles and light Higgs
bosons. To investigate this scenario, we employ an effective-
field-theory approach with a low-energy Two-Higgs-Doublet
Model (2HDM) where both Higgs doublets couple to right-
handed up- as well as right-handed down-type fermions. We
perform a one-loop matching of the MSSM to the 2HDM and
evolve the parameters to the low energy scale by exploiting
two-loop renormalization group equations, taking the com-
plex parameters into account. For the calculation of the pole
mass, we compare three different options: one suitable for
large charged Higgs mass, one for low charged Higgs mass,
and one approximation that interpolates between these sce-
narios. The phase dependence of the mass of the lightest
neutral Higgs boson can be sizeable, i.e. of the order of a
couple of GeV depending on the scenario. In addition, we
discuss the CP composition of the neutral Higgs bosons.

1 Introduction

Supersymmetric extensions of the Standard Model (SM) can
help overcome shortcomings of the SM, providing for exam-
ple dark matter candidates and additional sources of CP vio-
lation. While these models are theoretically attractive, none
of the predicted supersymmetric (SUSY) particles has been
found thus far. In order to guide experimentalists in their con-
tinued hunt for these yet-undiscovered states and to ascertain
the continued theoretical viability of these theories, precise
theoretical predictions of experimentally observable quanti-
ties are needed.

a e-mail: heidi.rzehak@itp.uni-tuebingen.de (corresponding author)

The discovery of the Higgs boson in 2012 [1,2] has pro-
vided theorists with a whole new set of results against which
these theories may be tested. The best measured property of
the Higgs boson is its mass mh with a value of [3]

mh = 125.09 ± 0.24 GeV. (1)

This mass is a free parameter in the SM, and must be deter-
mined from experiment. In supersymmetric extensions, how-
ever, the mass of the discovered Higgs boson can be pre-
dicted using the additional parameters of the theory. Demand-
ing that the theoretical prediction match the experimentally-
measured value for each point in the parameter space con-
strains the theory. Since the experimental result for the Higgs
mass is very precise, it is necessary to obtain a theoretical
prediction that is of similar accuracy in order to fully exploit
the information of the experiment and to yield stringent con-
straints. This entails incorporating quantum corrections in
the Higgs mass calculations.

The necessity of including quantum corrections of higher
order in the Higgs-mass prediction has been recognized for
a long time. In the context of the Minimal Supersymmetric
Standard Model (MSSM), radiative corrections have been
shown to be important to lift the mass of the lightest Higgs
boson above the tree-level upper limit, which is given by the
Z-boson mass [4–7]. An enormous effort has been devoted to
improve the theoretical prediction: At fixed order, one-loop
[8–13], two-loop [14–40] as well as three-loop corrections
[41–47] to the Higgs-boson masses have been calculated.
As it stands, the theoretical uncertainty of the lightest Higgs
boson has been estimated to be of the order 3 GeV [48], an
estimate which is still applied in phenomenological studies.
While the assessment of the theoretical uncertainty is still an
ongoing discussion (see Refs. [49–55]), the general consen-
sus is that it is challenging to reduce the uncertainty below
1 GeV.
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The method by which one includes these quantum correc-
tions is dependent on the mass of the SUSY particles. The
aforementioned fixed-order approach is particularly useful
for SUSY particles with masses up to the TeV scale where
the mass of the SUSY partners of the top quark is most
important. SUSY particles at this scale have been motivated
by naturalness and grand-unification arguments among oth-
ers, but as there are still no signs of low-energy SUSY at
the LHC, heavy SUSY particles have begun to attract more
interest. Within these scenarios, the fixed-order calculations
provide a less accurate result due to the emergence of large
logarithms of ratios of masses of SUSY particles and the
energy scale at which the calculation is performed. These
large logarithms spoil the fixed-order perturbation series. In
order to take these large logarithms into account, an effective-
field theory approach has been applied. In this approach, the
full MSSM governs the interaction behaviour at the high-
energy scale, and the effects of the heavy SUSY particles on
the low-energy physics are encoded into the couplings of a
viable low-energy theory such as the SM or the Two-Higgs-
Doublet Model (2HDM) via matching at the matching scale.
This matching entails calculating the couplings in both the
high and low energy theories up to fixed order such that the
physics described by the MSSM and the 2HDM at the match-
ing scale is the same. The resulting couplings are then evolved
down to the low-energy scale at which the observables are
investigated with the help of the corresponding renormal-
ization group equations (RGE). Solving the renormalization
group equations leads to a resummation of the large loga-
rithms. Assuming the SM as low-energy theory, leading log-
arithms (LL) have been resummed in Refs. [56,57] and next-
to leading logarithms (NLL) in Refs. [58–61] taking into
account top-Yukawa corrections. Allowing all Higgs bosons
to be light, LL corrections have been calculated in Refs. [62–
65]. Analytical expressions for the Higgs-boson mass have
been obtained taking LL contributions into account up to
two-loop order [66]. A hierarchical stop-mass spectrum with
one stop-quark mass much heavier than the other has been
considered in Ref. [67] and the resulting two-loop LL and
NLL corrections of the Higgs-boson mass have been cal-
culated. This approach has also been used to obtain one-
and two-loop LL corrections to the Higgs-boson mass spec-
trum in a CP-violating scenario [68,69]. In Ref. [70], this
approach has been performed taking into account an inter-
mediate step with light electroweak fermionic SUSY part-
ners and the SM as low-energy theory. The results have been
improved further allowing also for light Higgs bosons in
Refs. [71,72].1 The calculations of Refs. [70,71] have been
implemented into the tool MhEFT. A further tool was pre-
sented with SUSYHD [49], which includes threshold cor-

1 Matching conditions of the MSSM to the 2HDM are also discussed
in Ref. [73].

rections to a higher order. The threshold correction to the
quartic Higgs coupling, assuming the SM as low-energy the-
ory, has been calculated taking into account two-loop QCD
[74], third-generation Yukawa [75], both in the gaugeless
limit, and the full QCD corrections [76]. Effects of higher-
dimensional operators have been studied in Refs. [75,77]
where Ref. [77] exploits a different method to obtain the
one-loop threshold corrections. The prediction of the Higgs-
boson mass has been improved by resumming logarithms of
fourth logarithmic order (N3LL) [78] in the case that the SM
is the low-energy theory. Furthermore, a combination of both
approaches, the fixed-order and the RGE approach, has been
performed, in particular to improve the intermediate regime
with particles not very heavy but too heavy for the existing
fixed-order results [79–83]. These results are implemented
in FeynHiggs [13,17,48,79,80,84,85]. Similarly, Flexible-
SUSY [86,87] as well as a version of SARAH/SPheno [88–
93] have implemented such a combination [94,95]. Further-
more, in Ref. [96], N3L0-fixed-order and N3LL results have
been combined to give a precise prediction for the mass of
the lightest Higgs boson. A review about the different Higgs-
mass calculations can be found in Ref. [53].

The particular theory we wish to explore in this work is the
MSSM with complex parameters where the SUSY particles
are heavy and the additional Higgs bosons have masses at an
intermediate scale. In addition to studying the mass of the
lightest neutral Higgs boson in this scenario, we analyze the
size of this boson’s CP-odd component, which is induced by
quantum corrections in the presence of complex parameters
of the high-energy theory. We also look into the mixing and
masses of the heavy Higgs bosons. For this, we assume a
type-III complex 2HDM as the low-energy effective theory,
where both Higgs doublets can couple to right-handed up- as
well as right-handed down-type fermions and use different
approaches to connect to the Standard Model.

Other studies of a CP-violating MSSM have been done.
The scan of the phenomenological MSSM in Ref. [97] did
not find a measurable size of the CP-odd component of the
lightest Higgs boson, while the study presented in Ref. [98]
found some more promising results with some scenarios that
could be measurable at least at future runs of the LHC. In
Ref. [99] a scenario with heavy superpartners has been
explored using complex MSSM parameters to include CP-
violating effects, taking into account the finding of Ref. [71].

In this paper, we further improve the results for scenarios
of an MSSM with complex parameters and heavy superpart-
ners: For the first time, we exploit two-loop RGEs for the
2HDM type III allowing for complex parameters including
all Yukawa couplings of the third generation of quarks. Cor-
respondingly, we perform a one-loop matching of the MSSM
to the 2HDM type III including corrections proportional to
the top Yukawa, the bottom Yukawa and the strong coupling
assuming a common soft-SUSY breaking mass scale for the
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superpartner particles. In the final result, the corresponding
NLL are resummed.2

We will start out with setting our conventions for the
MSSM in Sect. 2 and continue to describe the considered low-
energy theory in Sect. 3. In Sect. 4 we discuss the exploited
matching procedure and in Sect. 5, we present the details of
the determination of the Higgs-boson masses as well as their
mixing. The numerical results are discussed in Sect. 6, and,
finally, we conclude in Sect. 7.

2 The Minimal Supersymmetric Standard Model

As mentioned in Sect. 1, we consider a scenario in which all
the superpartner particles are much heavier than the SM par-
ticles and the Higgs bosons. Hence, the full MSSM is active
at a high-energy scale and the effects of the superpartners
enter the low-energy theory via threshold effects. The aim of
this section is to set up the notation needed for the calculation
of the threshold corrections.

The superpotential of the MSSM is given as

WMSSM = −εi j

[
hMSSM
u Ȟ i

u Q̌
j Ǔ c − hMSSM

d Ȟ i
d Q̌

j Ďc

−hMSSM
e Ȟ i

d Ľ
j Ěc + μȞ i

d Ȟ
j
u

]
, (2)

where all fields denoted with aˇare left-chiral superfields. Q̌
and Ľ denote the quark and lepton superfield doublets, Ǔ ,
Ď and Ě denote the up-type quark, down-type quark, and
lepton charge-conjugate superfield singlets, the two Higgs-
doublet superfields are denoted by Ȟu and Ȟd , and ε12 = 1.
The corresponding Yukawa couplings are hMSSM

u , hMSSM
d ,

and hMSSM
e , which are complex 3 × 3 matrices in general.

However, in our calculation, we will neglect the first two gen-
erations, and the matrices collapse to the the top-, bottom-,
and tau-Yukawa coupling hMSSM

t , hMSSM
b , and hMSSM

τ , which
can be chosen to be real [102]. The strength of the mixing of
the two Higgs doublets is described by the complex param-
eter μ.

We do not explicitly give the vector part of the Lagrangian
with the kinetic and interaction terms for the gauge bosons,
but refer the reader to e.g. Refs. [103,104].

2 While finalizing this paper, parts of the calculation originally derived
here were implemented in FeynHiggs as the EFT part of the hybrid
result discussed in Ref. [100] in the approximation of vanishing bottom
Yukawa couplings. That calculation includes additional electroweak
gauge-coupling one-loop contributions in the matching conditions as
well as two-loop threshold corrections to the quartic Higgs couplings
using results from Refs. [71,83] (see also Ref. [101] for two-loop cor-
rections).

Since supersymmetry cannot be exact, it is explicitly bro-
ken in the MSSM by soft-SUSY breaking terms:

Lsoft
MSSM = −m2

Hd
|Hd |2 − m2

Hu
|Hu |2

− M2
LQ

|Q̃|2 − M2
RU |ũ R |2 − M2

RD
|d̃R |2

− M2
LL

|L̃|2 − M2
RE

|ẽR |2
+ εi j (m

2
Hd Hu

Hi
d H

j
u + hMSSM

u AuH
i
u Q̃

j ũ∗
R

− hMSSM
d Ad H

i
d Q̃

j d̃∗
R

− hMSSM
e AeH

i
d L̃

j ẽ∗
R + h.c.)

− 1

2
(M1 B̃ B̃ + M2W̃i W̃i + M3G̃G̃ + h.c.). (3)

where Q̃, L̃ , Ũ , D̃, Ẽ , Hd and Hu denote the scalar com-
ponent of the corresponding superfields. The ˜ indicates a
superpartner field. The gaugino fields corresponding toU (1),
SU (2), and SU (3) are denoted by B̃, W̃ , and G̃, respectively.
We assume colour indices to be implicit. The gaugino soft-
SUSY breaking parameters M1, M2, and M3 as well as the
Higgs mixing parameter m2

Hd Hu
are complex numbers, while

the soft Higgs mass breaking parameters m2
Hd

, m2
Hu

are real.

In general, the sfermion mass parameters M2
LQ

, M2
RU

, M2
RD

,

M2
LL

, M2
RE

are 3×3 Hermitian matrices, but reduce to diago-
nal matrices with three independent real entries when gener-
ation mixing is ignored (The generation indices are implicit.)
Finally, the trilinear couplings Au , Ad , and Ae are general
3 × 3 complex matrices, but reduce to complex numbers if
they are assumed to be proportional to the SM Yukawa matri-
ces, as is done in this paper.

In this paper, we are concerned with the Higgs sector of
the MSSM. Equations 2 and 3 together with the D-terms of
the above mentioned vector part of the Lagrangian give rise
to a Higgs potential of the form

VH = 1

8
(g2 + g2

y)(|Hd |2 − |H2
u |)2

+1

2
g2|H†

d Hu |2 + |μ|2(|Hd |2 + |Hu |2)
+m2

Hd
|Hd |2 + m2

Hu
|H2

u |
−m2

Hd Hu
(εabH

a
d H

b
u + h.c.) (4)

for the two Higgs doublets Hu and Hd of hypercharge 1 and
− 1, respectively. The SU (2) and the U (1) gauge coupling
are denoted by g and gy , respectively. Finally, the squark
mass matrices are given by
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Mq̃ =
(
M2

LQ
+ m2

q + M2
Zc2β(T 3

q − Qq sin2 θW ) mq X∗
q

mq Xq M2
RF

+ m2
q + M2

Zc2βQq sin2 θW

)
(5)

with

Xq = Aq − μ∗κ , κ = {cot β, tan β} and

F = {U, D} for q = {t, b} . (6)

Here, we introduce the gauge-boson mass MZ , the elec-
troweak mixing angle θW , the quark masses mq , as well as
β, which is defined via the ratio of the Higgs vacuum expec-
tation values of the MSSM, tan β ≡ vu/vd . The charge and
the third component of the isospin of the squarks are denoted
by Qq and T 3

q , respectively.

3 The effective low-energy theory

The resulting low-energy theory is a Two-Higgs-Doublet
Model (2HDM) with the following Higgs potential V

V = m2
11�

†
1�1 + m2

22�
†
2�2 − [m2

12�
†
1�2 + h.c.]

+ 1

2
λ1(�

†
1�1)

2 + 1

2
λ2(�

†
2�2)

2

+ λ3(�
†
1�1)(�

†
2�2) + λ4(�

†
1�2)(�

†
2�1)

+
{1

2
λ5(�

†
1�2)

2 + [λ6(�
†
1�1)

+ λ7(�
†
2�2)]�†

1�2 + h.c.
}
. (7)

Here, the mass parameters m2
11 and m2

22 are real, m2
12 is com-

plex, the quartic couplings λ1...4 are real, and λ5, λ6, and λ7

are in general complex. The two Higgs doublets �1 and �2,
both having hypercharge Y = 1, can be decomposed into

�1 =
(

φ+
1

1√
2
(v1 + φ1 + ia1)

)
,

�2 =
(

φ+
2

1√
2
(v2 + φ2 + ia2)

)
(8)

where v1 and v2 are the vacuum expectation values, φ+
1 , φ+

2
two complex Higgs fields, and φ1, φ2, a1, a2 the neutral Higgs
fields.

In the matching conditions, we take into account loop-
induced couplings of the“wrong” Higgs doublet to the corre-
sponding quarks, which renders the 2HDM a type III instead
of the tree-level type II version, where one Higgs doublet cou-
ples to the right-handed up-type quarks and the other Higgs

doublet couples to the right-handed down-type quarks and
charged leptons. The Yukawa Lagrangian for the third gen-
eration is accordingly

LYukawa = h′
tεi j�

i
1tcQ

j + htεi j�
i
2tcQ

j − hbδi j�
∗i
1 bcQ

j

− h′
bδi j�

∗i
2 bcQ

j + h.c. . (9)

Here, we follow the SUSY conventions and write all fields
as left-handed fields. Q is the quark doublet, ε12 = 1, and
tc and bc are the left-handed top- and bottom-quark charge-
conjugate fields, respectively. The Yukawa couplings ht and
hb are the top- and bottom-Yukawa couplings also present in
the type II 2HDM case, while h′

t and h′
b denote the coupling

to the “wrong” Higgs doublet only existing in the type III
case. We neglect contributions from Yukawa couplings from
the first two generations and neglect the hτ and h′

τ Yukawa
couplings.

The tree-level mass matrices, parameterized in terms of
charged Higgs boson mass MH± , have the entries

M2
11 = v2

(
c2
βλ1 + 1

2
s2
β [λ4 + Re(λ5)]

+2cβsβ Re(λ6)

)
+ s2

βM
2
H± ,

M2
12 = v2

(
cβsβλ3 + 1

2
cβsβ [λ4 + Re(λ5)]

+c2
β Re(λ6) + s2

β Re(λ7)

)
− cβsβM

2
H± ,

M2
22 = v2

(
s2
βλ2 + 1

2
c2
β [λ4 + Re(λ5)]

+2cβsβ Re(λ7)

)
+ c2

βM
2
H± ,

M2
33 = 1

2
s2
β{v2 [λ4 − Re(λ5)] + 2M2

H±},

M2
34 = −1

2
cβsβ{v2 [λ4 − Re(λ5)] + 2M2

H±},

M2
44 = 1

2
c2
β{v2 [λ4 − Re(λ5)] + 2M2

H±},

M2
13 = 1

2
sβv2 [sβ Im(λ5) + 2cβ Im(λ6)

] = −tan βM2
14,

M2
23 = 1

2
sβv2 [cβ Im(λ5) + 2sβ Im(λ7)

] = −tan βM2
24,

(10)
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M2+11
= s2

βM
2
H± ,

M2+12
= −cβsβM

2
H± = M2+21

,

M2+22
= c2

βM
2
H± (11)

with v2 ≡
√

v2
1 + v2

2,

where M2 is the neutral Higgs mass matrix in the
(φ1, φ2, a1, a2) basis and M2+ is the charged Higgs mass
matrix in the (φ+

1 , φ+
2 ) basis.

4 Matching the MSSM to the 2HDM

The complex MSSM Higgs potential of Eq. (4) is matched
to the general type-III 2HDM given above at the one-loop
level at the scale Ms. The doublets Hu and Hd from Eq. (4)
are related to those of Eq. (7) by

�1 ≡ −iσ2H
∗
d , �2 ≡ Hu . (12)

At tree level, the matching conditions for the quartic Higgs
couplings are

λ1 = 1

4
(g2 + g2

y),

λ2 = 1

4
(g2 + g2

y),

λ3 = 1

4
(g2 − g2

y),

λ4 = −1

2
g2,

λ5 = λ6 = λ7 = 0. (13)

For the Yukawa couplings, one obtains

h2HDM
t = hMSSM

t ,

h2HDM
b = hMSSM

b ,

h′2HDM
t = h′2HDM

b = 0. (14)

Here we are assuming that we know all the parameters of
the MSSM and match the MSSM to the 2HDM. This means
all couplings given below are assumed to be MSSM cou-
plings (unless we explicitly state otherwise) and we drop the
superscript MSSM.

The one-loop threshold corrections are calculated under
three assumptions. Firstly, all soft-SUSY breaking mass
parameters are assumed to share the common mass scale Ms,
in particular Ms = MLQ = MRU = MRD = M3. Secondly,
all Yukawa couplings are assumed to vanish except the top
and bottom Yukawa couplings, and only contributions pro-
portional to powers of these Yukawa couplings or the strong
gauge coupling are included. This amounts to only including

third-generation squarks in loops when deriving the thresh-
olds and neglecting terms ofO(gagby) with a+b = 4. Lastly,
all loop functions are evaluated in the limit of zero external
momenta. The diagrams were evaluated using FeynArts
and FormCalc [105,106], and the loop functions are eval-
uated using ANT [107].

The results given here agree with the complex results given
in Ref. [99] up to gauge contributions to the couplings λ6 and
λ7, which, however, are found in the work of Refs. [65] and
[81] in the real case.

Box diagrams like those of Fig. 1a lead to the following
corrections to the quartics

�λ
(4)
1 = −κ

2

{
| Âb|4h4

b + h4
t |μ̂|4

}
, (15)

�λ
(4)
2 = −κ

2

{
| Ât |4h4

t + h4
b|μ̂|4

}
, (16)

�λ
(4)
3 = κ

2

{
− | Âb|2| Ât |2h2

bh
2
t

− | Âb|2h4
b|μ̂|2 − | Ât |2h4

t |μ̂|2 − h2
bh

2
t |μ̂|4

+ ( Âb Â
∗
t + Â∗

b Ât )h
2
bh

2
t |μ̂|2

}
, (17)

�λ
(4)
4 = κ

2

{
| Âb|2| Ât |2h2

bh
2
t − | Âb|2h4

b|μ̂|2

− | Ât |2h4
t |μ̂|2 + h2

bh
2
t |μ̂|4

− ( Âb Â
∗
t + Â∗

b Ât )h
2
bh

2
t |μ̂|2

}
, (18)

�λ
(4)
5 = − μ̂2

2
κ
{
Â2
bh

4
b + Â2

t h
4
t

}
, (19)

�λ
(4)
6 = μ̂

2
κ
{
| Âb|2 Âbh

4
b + Ât h

4
t |μ̂|2

}
, (20)

�λ
(4)
7 = μ̂

2
κ
{
| Ât |2 Ât h

4
t + Âbh

4
b|μ̂|2

}
, (21)

κ ≡ 1

16π2 . (22)

All hatted parameters above and following in the rest of the
paper are normalized to the scale Ms.

The triangle diagrams like those of Fig. 1b give

�λ
(3)
1 = 3

4
κ
{

− | Âb|2h2
b

(
g2 + g2

y − 8h2
b

)

+
(
g2 + g2

y

)
h2
t |μ̂|2

}
, (23)

�λ
(3)
2 = 3

4
κ
{

− | Ât |2h2
t

(
g2 + g2

y − 8h2
t

)

+
(
g2 + g2

y

)
h2
b|μ̂|2

}
, (24)

�λ
(3)
3 = −3

8
κ
{
h2
t | Ât |2(g2 − g2

y − 4h2
b)

+ h2
b | Âb|2

(
g2 − g2

y − 4h2
t

)

− h2
b|μ̂|2

[
g2 − g2

y + 4(h2
b − h2

t )
]
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Fig. 1 Two sample diagrams
contributing to the one-loop
threshold of the quartic Higgs
couplings

(a) (b)

− h2
t |μ̂|2

[
g2 − g2

y + 4(h2
t − h2

b)
]

− 4h2
bh

2
t ( Âb Â

∗
t + Â∗

b Ât )
}
, (25)

�λ
(3)
4 = 3

4
κ
{

+ h2
t | Ât |2

(
g2 − 2h2

b

)

+ h2
b| Âb|2

(
g2 − 2h2

t

)

− |μ̂|2(h2
t + h2

b)
[
g2 − 2(h2

b + h2
t )
]

− 2h2
bh

2
t ( Âb Â

∗
t + Â∗

b Ât )
}
, (26)

�λ
(3)
5 = 0, (27)

�λ
(3)
6 = 3μ̂

8
κ
{
Âbh

2
b

(
g2 + g2

y − 8h2
b

)

− Ât h
2
t

(
g2 + g2

y

)}
, (28)

�λ
(3)
7 = −3μ̂

8
κ
{
Âb

(
g2 + g2

y

)
h2
b

− Ât h
2
t

(
g2 + g2

y − 8h2
t

)}
. (29)

There are also contributions coming from the redefinition of
the Higgs doublets. Squark loops induce mixing between the
scalar fields, which must be accounted for in order to preserve
canonically normalized kinetic terms for the scalar fields in
the Lagrangian. This is done by redefining the Higgs doublet
fields in the following manner
(

�1

�2

)
→

(
�1

�2

)
− 1

2

(
�Z�1�1 �Z�1�2

�Z�2�1 �Z�2�2

)(
�1

�2

)
. (30)

The SU(2) invariance ensures that the corrections can be
applied to the complete Higgs doublets and not only the
component fields. The expressions for the wave-function-
correction factors �Z�i� j can be derived via the finite parts
of the derivatives of the self energies in the electroweak inter-
action basis �′

φiφ j
with φ{i, j} = {φ1, φ2, a1, a2}, correspond-

ing to a MS renormalized self energy,

�Z�1�1 = 1

2

(
�′

φ1φ1
+ �′

a1a1

)

= κ
h2
t |μ̂|2 + h2

b| Âb|2
2

, (31)

�Z�1�2 = 1

2

(
�′

φ1φ2
+ i�′

φ1a2
− i�′

φ2a1
+ �′

a1a2

)

= −κ
μ̂(h2

t Ât + h2
b Âb)

2
, (32)

�Z�2�1 = �Z∗
�1�2

, (33)

�Z�2�2 = 1

2

(
�′

φ2φ2
+ �′

a2a2

)

= κ
h2
t | Ât |2 + h2

b|μ̂|2
2

. (34)

In Ref. [81], it was shown for the CP-even Higgs boson
fields that this choice for the wave-function-correction fac-
tors together with an appropriate choice of correction of the
mixing angle leads to the physical fields being the same in the
MSSM and the 2HDM at the matching scale as required. The
field redefinitions lead to the following threshold corrections

�λ
(2)
1 = −g2 + g2

y

4
κ
(
h2
b| Âb|2 + h2

t |μ̂|2
)
, (35)

�λ
(2)
2 = −g2 + g2

y

4
κ
(
h2
t | Ât |2 + h2

b|μ̂|2
)
), (36)

�λ
(2)
3 = −g2 − g2

y

8
κ
(
h2
t

(
| Ât |2 + |μ̂|2

)

+ h2
b

(
| Âb|2 + |μ̂|2

) )
, (37)

�λ
(2)
4 = g2κ

4

(
h2
b(| Âb

2| + |μ̂|2) + h2
t (| Â2

t | + |μ̂|2)
)
, (38)

�λ
(2)
5 = �λ

(2)
6 = �λ

(2)
7 = 0. (39)

Finally, the Yukawa couplings receive the one-loop cor-
rections resulting in the following 2HDM Yukawa couplings
at the matching scale (including the tree-level contribution):

h2HDM
t = ht

{
1 − κ

[
4

3
g2
s

(
Ât M̂

∗
3 − 1

)

+ 1

4

(
h2
t | Ât |2 + h2

b|μ̂|2
)

−h2
b|μ̂|2F3(|μ̂|2) − 1

8
(h2

b + 3h2
t )F1(|μ̂|2)

]}
,

(40)

h2HDM
b = hb

{
1 − κ

[
4

3
g2
s

(
Âb M̂

∗
3 − 1

)

+ 1

4

(
h2
b| Âb|2 + h2

t |μ̂|2
)
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−h2
t |μ̂|2F3(|μ̂|2) − 1

8
(h2

t + 3h2
b)F1(|μ̂|2)

]}
,

(41)

h
′2HDM
t = κht

{
4

3
g2
s μ̂

∗M̂∗
3 + 1

4

(
h2
b Â

∗
bμ̂

∗ + h2
t Â

∗
t μ̂

∗)

−h2
b Â

∗
bμ̂

∗F3(|μ̂|2)
}

, (42)

h
′2HDM
b = κhb

{
4

3
g2
s μ̂

∗M̂∗
3 + 1

4

(
h2
b Â

∗
bμ̂

∗ + h2
t Â

∗
t μ̂

∗)

−h2
t Â

∗
t μ̂

∗F3(|μ̂|2)
}

(43)

with

F1(x) = −1 − 4x + x2 [3 − 2 ln(x)]

(1 − x)2 , F1(1) = 0,

(44)

F3(x) = −1 − x [1 − ln(x)]

(1 − x)2 , F3(1) = 1

2
.

(45)

It should be noted that, since the absolute value of the gluino
mass parameter is |M3| = Ms , M̂3 is just a phase factor M̂3 =
eiϕM3 where ϕM3 is the phase of the gluino mass parameter.

We do not calculate threshold corrections to parameters
such as tan β, since they do not enter in the MSSM threshold
corrections and, hence, are only needed as 2HDM parame-
ters.

5 Calculating the Higgs-mass spectrum and the mixing

The Higgs masses are determined completely once all the
parameters of the MSSM at the scale Ms are given. These
are the necessary boundary conditions for solving the RGEs
and obtaining the values for the relevant couplings at the
scale where the masses are calculated. However, not all the
relevant input parameters are given at the same scale. The
soft-SUSY breaking parameters of the MSSM are given as
user-defined input at the scale Ms , tan β is given at the scale
MH+ (hence treated as a 2HDM parameter) while all SM cou-
plings relevant to the calculation are fixed at the electroweak
scale.

There are different ways to approach this mixed-scale
boundary-value issue. The “bottom up” approach starts with
the low-energy scale values from the SM and evolves the
parameters up to the high-energy scale taking matching
effects into account on the way up to the high-energy scale
and guessing the values of the first parameters such as λi .
In an iterative procedure, evolving the parameters up and
down, the complete set of parameters at a single energy scale
is found. With the “top down” approach, which has been
exploited also in Refs. [80,81], one guesses initial values for

the high scale MSSM parameters and evolves all the cou-
plings down to Mt . Here, the couplings calculated from the
EFT procedure are compared to the experimentally fixed val-
ues, and the high scale parameters are adjusted to minimize
the differences using a numerical algorithm. This way, evolv-
ing parameters up to the high scale can be avoided. We adapt
the “top down” approach, employing an upwards evolution
of the parameters just for the initial guess. The process is
sketched in Fig. 2 and the single steps are described in the
following:

1. First, initial values for the high scale MSSM couplings as
a first guess have to be found. To obtain these,

(a) we start at the scale Mt (with Mt being the top pole
mass) where the SM couplings are fixed, guess a value
for the SM quartic Higgs coupling of λSM = 0.25,
and evolve the SM couplings up to the intermediate
scale MH+ using SM RGEs obtained from SARAH
[90,91].

(b) At the scale MH+ , it is assumed that all the 2HDM
quartic couplings λ1,…, λ7, “wrong” Yukawa cou-
plings h′

t and h′
b, and the phases of the Yukawa cou-

plings ϕht , ϕh′
t
, ϕhb , and ϕh′

b
are zero, and the 2HDM

Yukawa couplings ht and hb are calculated accord-
ingly via the tree-level matching of the Yukawa cou-
plings,

h2HDM
t = 1

sin β
ySM
t , (46)

h2HDM
b = 1

cos β
ySM
b . (47)

Then, the 2HDM couplings are evolved up to the scale
Ms using the full two-loop 2HDM RGEs including
complex phases. For the gauge, Yukawa, and quartic
couplings, we have calculated these implementing the
general prescription first developed by Refs. [108–
111] and expanded upon in Refs. [112,113] to account
for kinetic mixing of scalar fields in the presence of
multiple Higgs doublets. For the running vevs, we use
the formulae from Refs. [114,115]. We have checked
our results for the couplings with the findings of the
authors of Refs. [116,117] and find agreement.3

(c) As our first guess, the values of the 2HDM gauge and
Yukawa couplings emerging from the previous step
are taken to determine the initial values of the MSSM
gauge and Yukawa couplings,

cMSSM = c2HDM with c = gy, g, gs, ht , hb. (48)

3 Thanks to the work in Refs. [113] and [117], we became aware of a
typo in Ref. [109] in Eq. (3.3) that, at first, also entered into our RGEs.
This first version is in agreement with Ref. [116] while the current
version agrees with Ref. [117].
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It should be noted that in the MSSM, the “wrong”
Yukawa couplings are purely loop-induced and that
the Yukawa phases can be absorbed into the fields.
Hence, we only have the real parameters hMSSM

t and
hMSSM
b .

2. Now, the MSSM parameters are given by the gauge and
Yukawa couplings obtained in step 1 (or adapted in the
minimization procedure) and the soft-SUSY breaking
parameters At , Ab, ϕM3 as well as the parameter μ defined
as input at the scale Ms . They are used in the following
steps:

(a) With the MSSM parameters, the 2HDM couplings
are calculated using the matching conditions given in
Sect. 4. These MSSM threshold corrections give the
non-vanishing values for the 2HDM quartic couplings
λ1, . . . , λ7, the “wrong” Yukawa couplings h′2HDM

t ,
h′2HDM
b , and the Yukawa phases of the 2HDM ϕht ,

ϕh′
t
, ϕhb , and ϕh′

b
. The couplings are then run down

to the scale MH+ .
(b) Then, the 2HDM is matched to the SM. The tree-level

matching conditions for the SM Yukawa couplings yt
and yb to the 2HDM ones ht , hb, h′

t and h′
b are

√
|ht |2 sin2 β + 2|ht ||h′

t | cos β sin β cos(ϕht − ϕh′
t
) + |h′

t |2 cos2 β = yt
√

|hb|2 cos2 β + 2|hb||h′
b| cos β sin β cos(ϕhb − ϕh′

b
) + |h′

b|2 sin2 β = yb

(49)

where ϕχ is the phase of the coupling χ with χ =
ht , h′

t , hb, h
′
b. The vacuum expectation value v in the

SM, we obtain via the relation

v2 = v2
1 + v2

2 . (50)

The quartic Higgs coupling in the SM λSM can be
calculated at tree-level via

λSM = c4
βλ1 + 4c3

βsβ Re(λ6) + 2c2
βs

2
β

× [λ3 + λ4 + Re(λ5)]

+4cβs
3
β Re(λ7) + s4

βλ2. (51)

The one-loop threshold correction to λSM is obtained
by integrating out the heavy Higgs bosons. In the real
case where all phases are set to zero, the answer is
known in closed form [81].4 In the complex case, on
the other hand, the calculation is complicated by the
4 × 4 neutral mixing and mass matrices. We have
evaluated the full threshold corrections numerically
for the complex case, which leads to the problem that
the result includes contributions of order O(v/MH+)

4 During the finalization of this paper, also the one-loop threshold cor-
rection to the quartic Higgs coupling λSM became available for the
complex 2HDM, see Ref. [100].

that are ignored elsewhere in the calculation. Com-
paring the results for the Higgs masses using only
the tree-level matching, the one-loop threshold of
Ref. [81], and the full one-loop threshold including
O(v/MH+) terms leads to very small differences, so
we can neglect the one-loop threshold entirely. Simi-
larly, the one-loop 2HDM threshold corrections to the
SM Yukawa couplings are numerically negligible.

(c) In the next step, the SM couplings are evolved from
the scale MH+ down to Mt and checked against the
experimental values for5 gy , g, gs , yt , yb. We repeat
this procedure, adjusting the high scale MSSM cou-
plings each time to minimize the differences between
the SM couplings at the low-scale and the experimen-
tal values until good agreement is found.

3. Via the minimization procedure in step 2, we obtained
a final set of values for all MSSM high scale parame-
ters. These are evolved down one last time to MH+ . At
this stage, all the low-scale 2HDM parameters necessary
for computing the Higgs masses are determined, and one
could in principle calculate the eigenvalues of the loop-
corrected mass matrix at the scale MH+ and determine
the pole masses. However, this will lead to terms contain-
ing potentially large logarithms of ln(MH+/mt ) with mt

being the running top quark mass, which are additionally
enhanced by factors of the large top-Yukawa coupling.
These terms originate from the one-loop corrections in the
conversion of the MS mass to the pole mass of the SM-
like Higgs boson. Therefore, we considered three con-
ceptually different methods to calculate the Higgs-boson
masses: In the case that the charged Higgs boson is suf-
ficiently light, the 2HDM can be used as the low-energy
theory (options (a) and (b) below). If the charged Higgs
boson is heavy, then the SM is the appropriate low-energy
theory and a matching procedure for the 2HDM and the
SM is performed at the scale MH+ (option (c)). Finally, we
apply an approximation that interpolates between the two
results (option (d)). In the following, we list the options
and include some details about the calculation:

(a) The parameters are taken at the scale μren = MH+
and the on-shell Higgs masses are calculated via the
zeros of the determinant

det
[
p2 − M2(μren) + �̂(μren, p

2) − T̂
]

= 0 (52)

expanded up to one-loop order where �̂(μren, p2)

denotes the top and bottom Yukawa contributions
to the self energy matrix in the MS renormalization

5 Including a check of the value of the vev does not change the result
within our numerical accuracy.
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scheme at momentum p2. To ensure the proper mini-
mum of the effective potential, tadpole contributions
T̂ originating from top and bottom loops have to be
taken into account. The entries of the matrix T̂ are
given in the Appendix B in terms of tadpole con-
tributions in the interaction basis. The mass matrix
M2(μren) has the form of the tree-level mass matrix
given in Eqs. (10) with the parameters evaluated at the
scale μren = MH+ , where the charged Higgs mass is
given in the MS scheme.

(b) In this option, the low-energy theory is still the 2HDM,
however, the parameters are evolved down to the run-
ning top-quark mass mt calculated in terms of 2HDM
parameters, and Eq. (52) is evaluated at the scale
μren = mt where the MS mass of the charged Higgs
boson MH+ is interpreted as given at the scale6 mt .
Using this scale choice, the logarithms ln(μren/mt )

in the self energies vanish, since we evaluate the self-
energies using the running top and bottom masses.
This method is only valid as long as MH+ is not much
larger than mt since the 2HDM RGEs are not the cor-
rect RGEs for evolving the couplings below the scale
MH+ .

(c) In this method, the SM is decoupled completely from
the 2HDM and treated as the low-energy theory. This
method applies when MH+ � mt . In this case, the
heavy Higgs bosons of the 2HDM are decoupled by
matching the 2HDM to the SM in the same way as
step 2b, and the SM couplings are evolved down to
mt . In this case, however, mt is calculated in terms
of SM parameters only. The MS mass of the lightest
Higgs boson is taken to be v2(mt )λSM(mt ), which is
converted to the pole mass via

p2 − v2(mt )λSM(mt ) + �̂SM − T̂ SM = 0 (53)

where �̂SM and T̂ SM are the self-energy and tadpole
contributions of the SM-like Higgs boson of O(αt )

and O(αb) with α{t,b} = y2{t,b}/(4π) evaluated in the

MS scheme. In this option, since the heavy 2HDM
Higgs bosons are decoupled, all information about
the heavy Higgs bosons at the scale mt is encoded
in the size of the SM couplings that are obtained via
the tree-level matching of the 2HDM couplings to the
SM at the scale MH+ , where the former result from the
evolution of the 2HDM parameters from the scale Ms

6 Within the calculation, it is consistent to use MH+ (mt ) instead of
MH+ (MH+ ) as an input – MH+ (MH+ ) is chosen in step 3a as input.
However, when comparing the two approaches of step 3a and of step 3b,
one has to be careful with the interpretation of the results. We find that
the relative difference between MH+ (mt ) and MH+ (MH+ ) is at the
per-mille level in the parameter region where the 2HDM calculation is
applicable and we ignore this difference.

to scale MH+ . The masses of the heavy Higgs bosons
can be estimated to be of order MH+ . However, at
the scale MH+ , one can still obtain direct information
about the heavy Higgs bosons.

(d) Finally, in this option, an approximation is exploited
that allows one to resum large logarithms in the sce-
nario of MH+ � mt while still retaining informa-
tion about the heavy Higgs bosons and the mixing
between them and the lightest Higgs boson. In order
to do so, firstly, we only consider top-Yukawa effects.
We do not attempt to resum logarithms proportional
to other couplings in the 2HDM. This approxima-
tion is good in the low-tan β regime where h2HDM

b
is small, which is also the most phenomenologically
relevant regime, especially for low values of the mass
of the charged Higgs boson. The second assumption
is that for the resummation of these logs, our 2HDM
can be considered a classic type-II CP-even 2HDM
where only one Higgs doublet couples to the right-
handed top quarks. This is because the logarithms we
wish to resum arise from one-loop corrections, and
CP-violating and “wrong-type” Yukawa couplings are
already loop-suppressed, so any effect these couplings
will be suppressed by an extra loop factor.
With this regime in mind, we wish to incorporate the
effect of running from MH+ to mt (with mt evaluated
with parameters of the 2HDM) into the full 2HDM
neutral mass matrix at the scale MH+ . To begin, we
evaluate λSM and v at MH+ and mt according to
steps 2b and 2c, but we take yb = 0 into account
when running the SM couplings down to mt . Then,
at the scale MH+ , we rotate into the so-called “Higgs
Basis” [118–120], defined by

H1 = cβ�1 + sβ�2,

H2 = cβ�2 − sβ�1,

H1 =
(

h+
1

1√
2
(v + h1 + ib1)

)
,

H2 =
(

h+
2

1√
2
(h2 + ib2)

)

sβ ≡ sin β, cβ ≡ cos β,

tan β ≡ v2

v1
, v2 ≡ v2

1 + v2
2, (54)

where h+
j , h j , and b j with j = 1, 2 are the charged,

the CP-even, the CP-odd Higgs fields in the Higgs
basis, respectively. In this basis, only Higgs doublet
H1 gets a vev v and can therefore be identified with
the SM Higgs doublet. The mass matrix in the Higgs
basis can be obtained via MHiggs = UM2U†, where
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M2 is given in Eq. (10) and

U =
(
U 0
0 U

)
with U =

(
cβ sβ

−sβ cβ

)
, (55)

and the (1,1) component of MHiggs can be identified
with v2

SMλSM with vSM = v leading to the threshold
condition given in Eq. (51). The submatrix of MHiggs

given by the second and third row and column describe
the heavy Higgs bosons.
Before continuing, we note two relevant facts. First,
in the decoupling limit [119]7 where MH+ � v, the
mixing angle α (which diagonalizes the CP-even neu-
tral mass matrix in the CP-conserving 2HDM) can be
approximated by β − π

2 , and the Higgs basis is up to
a minus sign the mass basis,
(
h
H

)
=
(−sα cα

cα sα

)(
φ1

φ2

)
MH+�v−−−−−→

(
cβ sβ
sβ −cβ

)

(
φ1

φ2

)
(56)

which according to Eq. (54) shows that

h = h1 H = −h2. (57)

Second, since at tree-level in the gauge-eigenstate
basis only the 2HDM doublet �2 couples to right-
handed top quarks according to our above assump-
tions, one can approximate the self-energy corrections
to the CP-even Higgs bosons by

�
tops
h1h1

= �
tops
hh = s2

β�
tops
φ2φ2

�
tops
h1h2

= −�
tops
hH = cβsβ�

tops
φ2φ2

= 1

tan β
�

tops
hh

�
tops
h2h2

= �
tops
HH = c2

β�
tops
φ2φ2

= 1

tan2 β
�

tops
hh . (58)

Now we consider v2(mt )λSM(mt ) to be the leading-
log resummation of the one-loop-leading-log contri-
bution coming from the �

tops
h1h1

self-energy correction.
Therefore, using Eq. (58), we incorporate this into the
Higgs basis matrix as follows

MHiggs
approx = MHiggs

+

⎛
⎜⎜⎜⎝

γ resum 1
tan β

γ resum 0 0
1

tan β
γ resum 1

tan2 β
γ resum 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ , (59)

whereγ resum≡v2(mt )λSM(mt )−v2(MH+)λSM(MH+).

7 Originally, the decoupling limit was formulated for MA � v where
MA is the mass of the CP-odd Higgs boson in the CP conserving 2HDM.

Then, the eigenvalues of the matrix

MHiggs
approx − �̂(p2, μ) + T̂ (60)

are calculated, where �̂ is the 4×4 matrix of one-loop
self-energies of the neutral Higgs bosons in the gauge
basis and T̂ is the matrix of one-loop neutral tadpole
corrections in gauge basis given in Appendix B, both
in the MS scheme and using the parameters at mt .
To calculate these eigenvalues, it is necessary to
choose the renormalization scale μ and the external
momentum p2. The renormalization scale is set tomt ,
and the external momenta are chosen to be the tree-
level masses. We choose to calculate the eigenvalues
one a time, with the mass matrix diagonalized once
for each tree-level mass. For example, the squared
mass of the lightest neutral Higgs boson corresponds
to the lightest eigenvalue of the loop-corrected mass
matrix evaluated with the external momentum set to
the tree-level neutral Higgs mass.
In order to proceed along the same lines as in the pure
2HDM case, see step 3a, the matrix MHiggs

approx can be
rotated back to the interaction eigenstates using the
transformation matrix (55). This results in M2 with
an additional contribution to the (2,2) element,

(M2
22)

resum = M2
22 + 1

sin2 β
γ resum. (61)

Using this new matrix (M2)resum and replacing M2

by (M2)resum in Eq. (52), one can calculate the Higgs
masses by finding the zeros of the resulting equation
up to one-loop order. We find that both approaches
lead to nearly the same result.

For options (b) to (d), an evaluation at the scale of the
running top-quark mass mt (mt ) is performed. In these
cases, the running top-quark mass is calculated iteratively.

6 Numerical results

6.1 Choice of input parameters

The list of relevant input parameters for the calculation is

{yt , yb, gy, g3, g2, v,︸ ︷︷ ︸
at Mt

tan β, MH+ ,︸ ︷︷ ︸
at MH+

At , Ab, ϕM3 , μ, Ms︸ ︷︷ ︸
at Ms

}. (62)

As mentioned in Sect. 5, these parameters are fixed at differ-
ent scales. The soft-SUSY breaking parameters of the MSSM
and the Higgs mixing parameter μ are defined at the scale
Ms , tan β at the scale MH+ , and the SM input parameters are
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Fig. 2 Pictorial description of
the mass calculation

fixed at the low-scale Mt by current experimental results. The
relevant SM observables needed to define the SM couplings,
taken from [71,121], are

αs(Mz) = 0.1184, Mt = 173.34 GeV,

MW = 80.384 GeV, MZ = 91.1876 GeV,

mb(mb) = 4.18 GeV,

v2
GF

≡ 1√
2GF

= 246.21971 GeV, (63)

with GF being the Fermi constant. The values for yb, yt ,
gy, g2, g3 are extracted from these observables in [71,121]
and given below as running parameters at the scale Mt

g3 = 1.1666, g2 = 0.64779, gy =
√

3

5
g1 = 0.35830

yt = 0.94018, yb = 0.0156 (64)

where in the conversion the value of the SM Higgs pole mass
MSM

h = 125.15 GeV was used according to Ref. [121]. One
must also determine the running vev vMS ≡ v from the
vev vGF , which is experimentally determined via the Fermi
constant, which is measured via the muon lifetime. We derive
the MS vev from the on-shell vev using

v2
MS

= v2
OS + δv2

OS-finite, (65)

defining the on-shell vev by

v2
OS ≡ 4M2

Ws2
W

e2 = v2
GF

(1 + �r) (66)

with the counterterm δv2
OS-finite given in Eq. (85) in the

appendix. Here, s2
W = 1 − M2

W
M2

Z
denotes the sine squared

of the weak mixing angle and �r parameterizes the one-
loop radiative corrections to the muon decay in the Fermi
Model [122], the process by which vGF is defined. The dif-
ferent formulas needed for the conversion are collected in the
Appendix C. The value for vMS at the scale of the top pole

mass Mt is then

vMS(Mt ) = 247.3897 GeV (67)

employing again the Higgs-boson mass MSM
h = 125.15 GeV.

In the numerical evaluation of the masses of the Higgs bosons
and mixings, we use the numbers given in Eqs. (64) and (67)
as input values for the SM parameters.8

For the remaining input parameters MH+ , tan β, At ,
Ab, Ms , μ, no measured values exist, but the experimental
searches and measurements constrain the viable parameter
space. The exclusion bounds from searches of further Higgs
bosons [123,124] constrain in particular the region of high
tan β and light “heavy” Higgs bosons. Taking these results
together with further studies of different parameter scenar-
ios [125,126], it is clear that scenarios with tan β > 10 and
MH+ , MA < 500 GeV are strongly disfavoured by LHC
data. Flavour observables support these constraints, as dis-
cussed in Ref. [127] for different types of the 2HDM. In our
numerical analysis, we therefore favour values for the mass of
the charged Higgs boson of MH+ ≥ 500 GeV and tan β = 5.
To show specific features of the results of our calculation, we
will however partly take into account scenarios that do not
fulfill these constraints.

It should be noted that, in the MSSM, some of the non-
vanishing parameter phases can be eliminated by symme-
try transformations. Hence, only certain combinations of
phases are physical, i.e. can change the value of a physical
observable. Important constraints of these phase combina-
tions come from electric-dipole moment (EDM) measure-

8 The conversion from the SM input values given in Eq. (63) to the
parameters in Eqs. (64) and (67) involves the Higgs-boson mass so that,
since we calculate the mass of the Higgs boson, a more sophisticated
approach would be an iteration where the conversion is recalculated
depending on the obtained result for the Higgs-boson mass. Since in
a physical viable scenario, the SM-like Higgs-boson mass should be
about 125 GeV, we consider the “one time” conversion as sufficient.
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ments (see e.g. Refs. [128–130] for more recent studies of
the constraints of the MSSM phases due to EDM). Since in
our calculation the phases of the U (1) and SU (2) gaugino-
mass parameters M1 and M2 do not enter, we can assume
that they are chosen such that the effect on the EDM is min-
imized. Furthermore, larger masses of the SUSY particles
tend to relax the constraints coming from the EDM.

It should be noted that, in this paper, we refrain from
explicit checks whether a certain parameter point is viable,
since we focus on specific features of the results. In particu-
lar, using our results at the low scale to study the constraints
from the EDMs for the MSSM phases at the high scale will
be interesting but is left for future work.

Our default scenario is

At = Ab ≡ A; |A| = |μ| = 3Ms; MH+ = 500 GeV;
tan β = 5;
ϕAt = ϕAb = 2.1 ≈ 2π/3 = 120◦; ϕμ = 0; ϕM3 = 0.

(68)

where Ms is varied. The choice |A| = |μ| = 3Ms leads to
large threshold corrections to the 2HDM couplings and max-
imizes the amount of CP-violation introduced into the theory.
This way we can give an estimate of the largest effects that
can occur. Similarly, we observe that ϕAt = ϕAb = 2.1 ≈
2π/3 = 120◦ maximizes roughly the size of the CP-odd
component of the lightest neutral Higgs boson, see Sect. 6.5.
We will however deviate from this default scenario in order
to study the different characteristics and state that explicitly.

6.2 Influence of the running of complex parameters

In this work, we exploit the two-loop RGEs for the 2HDM
with each Higgs doublet coupling to right-handed up- as well
as right-handed down-type fermions including all phases, see
Sect. 5 for the details of our calculation of the RGEs. The first
numerical results exemplify the effect of including this phase
dependence versus the “real RGE” approximation where the
phase dependence is taken into account only via the threshold
effects and the phases are assumed to be unaffected by the
running.

In Fig. 3, we show the effect of including these phases on
the running of the 2HDM quartic couplings. The values of
the couplings are plotted against the scale Ms , demonstrat-
ing how this dependence changes when the running of both
the real and the imaginary part of the couplings is taken into
account. The coupling values shown are the ones that either
enter the final evolution at the scale Ms or are calculated via
the final evolution to the scale of the charged Higgs mass
in step 3. The red lines represent the values obtained with
RGEs taking phases into account while the blue ones repre-
sent values obtained using only real parameters, determining

the sign via the argument of the corresponding parameter at
the scale Ms . The dashed lines are the parameters at the scale
Ms , while the solid lines are those at MH+ . One can clearly
see a dependence on whether the running of the phases is
taken into account or not. It changes the resulting absolute
value of the couplings λ5, λ6 and λ7 as well as the phases
themselves. The dependence of the running on the phases is
relatively small; only the phase of λ7 shows a change of up
to a couple of degrees. Hence, the overall dependence of the
phases determined using the RGEs for the complex case on
the value of Ms is also relatively small. Comparing the phases
at Ms (dashed lines) with the ones obtained with using the real
RGEs (blue), one can double-check that indeed the phases
do not change when exploiting the real RGEs. The absolute
values of λ5 and λ6 change more when the complex RGEs
are applied compared to a result with only real RGEs. The
opposite is true for the absolute value for λ7, which changes
less if the complex RGEs are applied.

Since the phase values at the low scale enter the prediction
of the EDM, they can be relevant for checking the exclusion
of high-scale CP-violating MSSM scenarios due to the mea-
surements of the EDM.

6.3 Comparison of methods for computing masses

In Sect. 5, the calculation procedure was explained, and in
step 3 of this procedure we discussed several possibilities for
calculating the mass of the Higgs bosonmh at the low-energy
scale: a) exploiting the 2HDM at the scale MH+ , b) employ-
ing the 2HDM at the scale mt , c) matching the 2HDM to the
SM and using the SM at the scale mt , or d) approximating
the effects of the matching to the SM and running down to
scale mt . Using the first two approaches, one keeps infor-
mation about all the Higgs masses and their mixings with
one another. This is very important, as we are also interested
in the size of the CP-odd component of the lightest Higgs
boson. However, if the scale MH+ � v ∼ mt , we again
encounter large logarithms. The masses of the heavy Higgs
bosons will not pose a problem, since the logarithms are not
equally enhanced by large prefactors as the ones appearing
in the calculation of light Higgs mass and since the relative
shifts due to the large tree-level masses are smaller, so we
can trust the perturbative results for these masses without
an additional resummation of logarithms. These large loga-
rithms are more important for the lightest Higgs, on the other
hand.

Figure 4 shows the result of calculating the lightest Higgs-
boson mass using the different approaches for real parame-
ters. The calculation of the mass of the lightest Higgs boson
using the 2HDM at the scale MH+ and mt is denoted with
“mh(MH+) 2HDM (a)” and “mh(mt ) 2HDM (b)”, respec-
tively. The result where the SM is the low-energy theory
is called “mh SM pole (c)”. A variant of this result is
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(a) (b) (c)

(f)(e)(d)

(i)

(j)

(h)
(g)

Fig. 3 The quartic couplings’ dependence on Ms for the default sce-
nario: tan β = 5, ϕA = 2.1 ≈ 120◦, ϕμ = ϕM3 = 0, |μ| = |A| = 3Ms ,
MH+ = 500 GeV. The red curves are the result of employing complex

RGEs, and the blue real RGEs. Dashed lines are the couplings at the
high scale Ms , and solid lines are couplings at the scale MH+
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Fig. 4 The mass of the light
Higgs boson is shown in
dependence on the scale MH+
for the scenario
|A| = |μ| = 3Ms , Ms = 3 TeV,
ϕA = ϕμ = ϕM3 = 0,
tan β = 5, 10, 20 employing
different approximations. The
curves labeled “resummed”
present the result where the
logarithms of the form
ln(MH+/mt ) have been
resummed by matching to SM,
but the Higgs mass is still
calculated using the mass matrix
of the 2HDM. Those labeled
with “SM” are calculated by
decoupling completely from the
2HDM, and calculating a purely
SM mass. Those labeled with
“2HDM” refer to those
calculated treating the 2HDM as
the low-energy theory. For the
“tree-level” curves, one-loop
corrections have not been
included in the calculation of the
pole mass

(a) (b)

(c)

“mh SM pole tree level” where the self-energy contribu-
tion �̂SM as well as the one-loop tadpole contribution T̂ SM

in Eq. (53) are neglected. Finally, the results labeled “mh

resummed (d)” correspond to the approximation where parts
of the logarithms ln (MH+/mt ) are resummed. The result
“mh resummed tree level” neglects the self-energy and the
tadpole contributions in Eq. (60).

The “mh SM pole” (c) is expected to be the most “correct”
answer for large MH+ , while the result obtained by using the
2HDM as the EFT should be the best result when MH+ ∼
v ∼ mt . The two 2HDM results agree for low MH+ but
start to deviate quickly with rising MH+ . In the self-energy
contribution in Eq. (52), logarithms of ln (MH+/mt ) arise
if the self energy is evaluated at the scale MH+ . Enhanced
via large top Yukawa couplings, this result differs quickly
from the other 2HDM result where these logarithms vanish
in the self energy due to the scale choice and is taken into
account via the running of the parameters. Therefore, it is
preferable to calculate the Higgs mass mh at the scale mt . If
MH+ however is large, MH+ � mt , the heavy Higgs-bosons

have to be decoupled from the running of the parameters
and the SM is the correct low-energy theory. For MH+ =
1000 GeV, the deviation of the “mh SM pole (c)” result from
the “mh(mt ) 2HDM (b)” result is roughly 500 MeV for all
values of tan β. That means that, for MH+ < 1000 GeV, the
2HDM can still be used as a reasonable low-energy theory but
with increasing theoretical uncertainty for increasing values
of MH+ . The difference between both results “mh SM pole
(c)” and “mh(mt ) 2HDM (b)” first decreases and then starts
growing. For tan β = 10 and tan β = 20, the increase sets
already in for lower values of MH+ .

For small MH+ , the mixing of the Higgs bosons becomes
relevant, which leads to a decrease of the Higgs-boson mass
in the 2HDM results. The “mh SM pole (c)” result does not
take the mixing of the Higgs bosons into account due to the
decoupling of the heavy Higgs bosons. The “mh resummed
(d)” result follows nicely the 2HDM result for low values and
the SM result for large values of MH+ . Hence, it interpolates
well between the two options. Therefore, we have chosen
this as default option.
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Fig. 5 The upper row presents
the mass of the lightest Higgs
boson depending on the phase
ϕA while the lower row shows
the dependence on the absolute
value of A for a scenario with
MH+ = 500 GeV, Ms = 5 TeV,
ϕM3 = 0, and
tan β = 5, 10, 15, 20

(a) (b)

(c) (d)

In addition, the effect of the one-loop self energies in the
calculation of the pole masses can be read off when compar-
ing the “mh resummed (d)” and “mh resummed tree level”
result (or similar the corresponding SM pole mass results).
The top and bottom quark contributions that we take into
account lead to approximately a 0.6 GeV rise of the result.

6.4 The mass of the light Higgs boson

In this section, we discuss the dependence of the mass of
the lightest Higgs boson on the MSSM input parameters μ,
At = Ab = A, tan β, and ϕM3 .

The first row of Fig. 5 shows the dependence on the com-
mon phase ϕA. Firstly, the plots demonstrate that the sensi-
tivity of the mass of the lightest Higgs boson to the phase is
highly dependent on tan β, as the mass fluctuates more with
ϕA for low values of tan β. For tan β = 5, the variation of ϕA

leads to a change of the Higgs-boson mass of up to almost
20 GeV in the quite extreme case of |A|/Ms = 3, while for
tan β = 20 it is only about 5 GeV for otherwise the same

parameters. Secondly, it can be seen that the quantitative fea-
tures are strongly dependent on the ratio rinputs ≡ Ab,At ,μ

Ms
.

The qualitative dependence on the phase is in fact opposite
for the two cases rinputs = 2 and rinputs = 3, where the mass
has either a minimum for rinputs = 3 or near maximum value
for ϕA = 180◦ for rinputs = 2. The different dependence on
the phase ϕA with respect to the ratio |A|/Ms can also be
read off the second row of Fig. 5 where the lightest Higgs
mass is plotted against the magnitude of the common trilin-
ear |A| with μ fixed to μ = Ms . Here, it is seen that the mass
peaks for |A| ≈ 12.5 TeV = 2.5Ms for ϕA = 0 (left plot),
and increasing tan β shifts the peak slightly to lower values
of |A|/Ms . For ϕA = 2.1 ≈ 120◦, the peak is shifted to a
lower value |A|/Ms ≈ 2.2 while increasing tan β leads to
a shift to slightly higher values in this case. Comparing the
left and right plot of the lower row of Fig. 5, one can read
off for which |A|/Ms , the values of the Higgs-boson mass
are smaller for ϕA = 0 than for ϕA = 180◦ and vice versa
resulting in the changed maxima in the upper row of Fig. 5.
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Fig. 6 Dependence of the mass of the lightest Higgs boson on the
phase ϕM3 for a scenario with MH+ = 500 GeV, ϕA = 0, Ms = 5 TeV,
and |A| = |μ| = 3Ms

The effect of changing |μ| can be seen by comparing the
upper rows from Fig. 5 with the lower rows. The value of μ

changes from μ = 2Ms (μ = 3Ms) to μ = Ms from the
top left (right) figure to the bottom row. Comparing values
for mh for ϕA = 0◦ in the upper left (right) plot with the
ones for |A| = 10 TeV (|A| = 15 TeV) in the lower left plot
leads to a rise of the Higgs-boson mass by roughly 1 GeV.
For ϕA = 2.1 ≈ 120◦, the same change leads to a shift of
up to 6 GeV in the example scenarios, which is reached for
tan β = 5.

Figure 6 shows the dependence onϕM3 . The overall depen-
dence on ϕM3 is not very large and varying ϕM3 leads to
changes of the order of 1 GeV. The largest shift of 1.3 GeV
in the considered scenarios can be found for tan β = 5 and
similar for tan β = 20. For tan β = 10, 15, the changes are
slightly smaller. It should be noted that in our approximation
the phase ϕM3 only enters via the one-loop threshold contri-
butions to the Yukawa couplings. The Yukawa couplings,
however, appear only at the one-loop level in the Higgs-
mass calculation. Further contributions come from two-loop
threshold contributions to the quartic couplings and enter the
Higgs-mass calculation already at the tree level. We, how-
ever, do not include these, since in a full next-to-next-to lead-
ing log (NNLL) resummation, not only the two-loop thresh-
old contributions but also three-loop RGE for the 2HDM
would be required, which would change the dependence of
the SM-like Higgs mass on the phase ϕM3 .

6.5 A CP-odd admixture to the light Higgs boson

The detection of a CP-odd component in the SM-like Higgs
boson would be a sign of new physics, and it is therefore

interesting to explore the size of such a component generated
by the CP-violating phases in the complex MSSM. While we
leave a detailed analysis of the current experimental sensitiv-
ity to this CP-odd component for future work, in this section
we aim to give a qualitative picture of the size of this com-
ponent and its dependence on the relevant parameters.

We calculate the CP-odd component using the tree-level
mixing matrix M2 of (10), inserting the parameter values at
MH+ obtained after the final iteration. First, we separate out
the Goldstone field by rotating by DM2DT, where

D =
⎛
⎝
I2 0

0
− sin β cos β

cos β sin β

⎞
⎠ (69)

with I2 being the two-dimensional identity matrix. This
rotates the mass matrix into the basis of the fieldsφ1, φ2, a,G,
where φ1, φ2 are pure CP-even fields, a ≡ −a1 sin β +
a2 cos β is pure CP-odd, and G is the the Goldstone boson.

In this basis, the mass matrix is block-diagonal, with a
3 × 3 block for the fields φ1, φ2, a, and a 1 × 1 block for
the Goldstone boson that does not mix with any of the other
fields. The rotation matrix P that diagonalizes the 3×3 matrix
relates the physical fields, h, H2, H3 to the interaction fields
after electroweak symmetry breaking, φ1, φ2, a, by

⎛
⎝

h
H2

H3

⎞
⎠ = P

⎛
⎝

φ1

φ2

a

⎞
⎠ . (70)

The third column of P gives the size of the CP-odd com-
ponent of each of the physical fields. We choose to plot the
CP-odd percentage, which is just P2

i3 ∗ 100 for i = 1 . . . 3,
rather than the mixing-matrix component itself.

In Fig. 7, we show how the CP-odd component depends
on ϕA and MH+ . The solid lines in Fig. 7a, b are the same and
depict the result of the procedure just described. It is seen that
this component is maximized for values of the phases from
110◦ to 120◦, justifying our claim from Sect. 6.1. In addition,
the results confirm that the CP-odd component very quickly
drops to vanishingly small values as MH+ increases. This
agrees with previous findings, see e.g. Ref. [98]. Since data
disfavours a charged Higgs boson with small mass, it also
disfavours a sizeable CP-odd component of lightest Higgs
boson in the MSSM.

Figure 7a also shows the difference between the one-loop
corrected mixing matrix evaluated at zero external momen-
tum (p2 = 0) using the mass matrix given in Eq. (60) and
the tree-level case, both with parameters at the scale MH+ ,
which is evidently numerically small. The largest effect can
be seen for MH+ = 200 GeV in the peak region where the
inclusion of one-loop corrections leads to an increase of the
squared CP-odd component of about 0.2 percentage points.
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Fig. 7 The other parameters of
the scenario are tan β = 5,
Ms = 30 TeV, ϕμ = ϕM3 = 0,
and |A| = |μ| = 3Ms

(a) (b)

Fig. 8 The dependence of the size of the CP-odd component on MH+
and tan β is shown for a scenario Ms = 30 TeV, ϕM3 = 0, ϕA = 2.1 ≈
120◦, and |A| = |μ| = 3Ms . The color coding gives the percentage of
the lightest Higgs boson that is CP-odd

If not otherwise stated, we use the tree-level mixing in the
following.

In Fig. 7b, we compare the approach described above
(solid line) with the approach where the mass matrix
(M2)resum from Eq. (61) is used to calculated the CP-odd
admixture (dashed line). The maximal difference is again
about 0.2 percentage points and decreases with larger values
of MH+ . Not shown are one-loop effects in the resummed
approach as well as results when parameters are evaluated at

the scale mt . The corresponding results would lie approxi-
mately between the dashed lines in Fig. 7a, b.

Figure 8 shows the percentage of the lightest Higgs boson
that is CP-odd (shaded contours) and the mass of light-
est Higgs boson (dashed line contours) in the (MH+ , tan β)

plane. As before, the CP-odd component is calculated accord-
ing to the approach described above using M2 and param-
eters evaluated at the scale MH+ without including loop
effects. Again, the CP-odd component drops rapidly with
increasing MH+ , and one sees that it is only weakly depen-
dent on tan β. In light of the discussion in Sect. 6.1 and the
mass of the observed Higgs boson being ∼ 125 GeV, the
results of this section suggest that a large CP-odd compo-
nent of the lightest Higgs boson is strongly disfavoured by
experimental data. Already for MH+ = 260 GeV in this
scenario the CP-odd component drops below 0.5%.

According to Ref. [131], an angle ϕτ of about 4◦ can
be reached with the high-luminosity run of the LHC. The
angle ϕτ is defined via the effective Lagrangian given in four-
component Dirac notation

Lτ−Yukawa
eff = −mτ

v
κτ (cos ϕτ τ̄ τ + sin ϕτ τ̄ iγ5τ) h (71)

where κτ denotes the change of the absolute strength of
Yukawa coupling with respect to the SM while ϕτ governs
the amount of CP-violation. To connect to the notation of (9),
we write this in two-component notation as

Lτ−Yukawa
eff = −mτ

v
κτ (cos ϕτ ττc − i sin ϕτ ττc) h + h.c.

(72)
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Fig. 9 The dependence of the mass of the second lightest and the heav-
iest Higgs boson on the phase ϕA is shown for the parameter scenario
Ms = 30 TeV, MH+ = 500 GeV, |A| = |μ| = 3Ms , ϕM3 = ϕμ = 0.
The solid lines correspond to the mass of the second lightest Higgs
boson, mH2 , and the dashed lines to the mass of the heaviest Higgs
boson, mH3

In the case of the 2HDM discussed here, assuming that the
coupling of the second Higgs doublet to the tau leptons is
negligible, tan ϕτ = −sβ P13/P11 ≈ −P13/P11 for scenarios
with tβ � 5. A CP-odd component of P2

13 � 100 = 0.5% as
discussed above will lead to ϕτ � 4◦, since P11 ≤ 1. Going
back to the scenarios discussed in Fig. 7, the maximal value
of ϕτ is larger than 20◦ for MH+ = 200 GeV and larger than
3◦ but below 4◦ for MH+ = 500 GeV. Hence, these values
suggest that if the MSSM is the final answer, then while it will
certainly be difficult, it might be possible to determine a CP-
odd component experimentally with further improvements of
the measurements. However, we neither checked whether the
Higgs signal rates are in the experimentally allowed regime –
this is particularly relevant if ϕτ is enhanced by a smaller P11

as is actually the case for the scenario in Fig. 7 for MH+ =
500 GeV – nor took into account any constraints from the
electric dipole moments. Thus, to find out whether there is
still a viable region of parameter space with a measurable
CP-odd admixture of the SM-like Higgs boson in the MSSM
with heavy superpartners, further investigations are required.

6.6 Masses and mixings of the heavy Higgs bosons

In this section, we explore the masses and mixings of the
heavy Higgs bosons H2 and H3. The masses are calcu-
lated according to Sect. 5 where, in step 3 of the calcu-
lation procedure, option (d) is exploited where large log-
arithms ln(MH+/mt ) are resummed. In Fig. 9, the depen-
dence of the masses of the two heavy neutral Higgs bosons
mH2 and mH3 on ϕA is shown with solid and dashed lines,

respectively. Similar to the mass of the light Higgs boson,
the phase dependence is larger for low tan β, with a change
of the mass of the second-to lightest neutral Higgs boson of
roughly 3.5 GeV and of the heaviest neutral Higgs boson of
1.5 GeV for tan β = 5. This phase dependence is gradually
washed out for increasing tan β.

In Fig. 10, the CP-odd percentage is shown with P2
23 and

P2
33 defined in Eq. (70) and evaluated at tree level with the

2HDM parameters at the scale MH+ . Figure 10 demonstrates
that the mixing of the two heavy neutral Higgs bosons is very
nearly independent of MH+ . Only for MH+ = 200 GeV
can slight deviations from the other results be observed. For
MH+ = 200 GeV, the CP-oddness is also shared with the
lightest neutral Higgs boson, while for larger MH+ the CP-
odd component is mostly shared between the second lightest
and heavy Higgs boson. One can also read off of Fig. 10 that
for real values of |A| i.e. for ϕA = 0, 180, 360◦, the heavy
Higgs boson H3 is CP-odd and H2 is CP-even. However,
for ϕA ≈ 90, 270◦, the next-to lightest neutral Higgs boson
is mostly CP-odd. That means both Higgs bosons oscillate
between ∼ 100% CP-odd and CP-even with the phase ϕA.

In addition, it is shown in Fig. 10 that the loop effects are
negligible for the mixing of the heavy Higgs bosons, since the
dashed lines, which include loop effects, mostly overlap with
the solid lines, which depict the tree-level result. Not shown
are differences between the different methods of evaluating
the CP-mixing, i.e. whether the parameters are evaluated at
MH+ or at mt , or whether M2 or (M2)resum is used. The
differences are on the same order as the difference shown
between the tree-level and the one-loop results, in other words
negligible.

7 Conclusion

In this paper, we have explored the Higgs sector of the CP-
violating MSSM in a mass scenario with heavy SUSY parti-
cles and light Higgs bosons using effective field theory tech-
niques. We matched the complex MSSM to a type-III 2HDM
(where both Higgs doublets couple to the right-handed top
and the right-handed bottom quarks), and calculated the com-
plex threshold corrections to the 2HDM at one-loop level
including contributions proportional to the top Yukawa, the
bottom Yukawa and the strong coupling for a common soft-
SUSY breaking mass scale for the superpartner particles
and the corresponding RGEs for the 2HDM with complex
parameters at two-loop level. Using these matching condi-
tions and evolving the parameters down to a low scale with
these RGEs, we resum the respective contributions at NLL
order. We explored the effect of including the complex phases
of the quartic couplings in the RGEs and found that in par-
ticular the absolute values of λ5 to λ7 change substantially
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Fig. 10 The dependence of the
CP-odd component in percent
for the next-to lightest Higgs
boson, P2

23 � 100, in the left plot
and of the heaviest Higgs boson,
P2

33 � 100, in the right plot on
the phase ϕA for the scenario
tan β = 5, Ms = 30 TeV,
ϕμ = ϕM3 = 0, and
|A| = |μ| = 3Ms . The solid
curves are calculated using the
tree-level mixing matrix, and the
dashed curves are calculated
using the one-loop mixing
matrix at zero-external
momentum (p2 = 0)

compared to a scenario where only the absolute values (and
signs) but not the phases are included in the RGEs.

In order to calculate the pole masses of the Higgs bosons,
we exploited different methods:

(a) Calculation of the pole mass with the 2HDM with param-
eters at the scale of the mass of the charged Higgs boson
MH+ .

(b) Calculation of the pole mass with the 2HDM with param-
eters at the scale of the running top quark mass.

(c) Matching to the SM at the scale MH+ and calculation
of the pole mass of the Higgs boson at the scale of the
running top quark mass within the SM.

(d) Exploiting an approximation which resums the most
important logarithms of the form ln(

MH+
mt

) but still uses
the full 2HDM for the calculation of the pole masses.

The approximation (d) agrees well with the pure 2HDM
result for small values of MH+ and approaches the result
where the SM is used as the low-scale effective theory for
larger MH+ . Therefore, it can be used as an interpolation
between the two regimes.

We investigated several different scenarios to discuss the
phase dependence of both the masses of the Higgs bosons and
the CP-violating components of the Higgs bosons. All the
masses of the Higgs bosons show a sizeable dependence on
the common phase ϕA of At and Ab, which can be of the order
of several GeV for low tan β, in particular for the mass of the
lightest Higgs boson. The heaviest Higgs boson shows the
least sensitivity to ϕA. The dependence of the Higgs masses
on the gluino phase is much weaker and of the order of one
GeV.

Additionally, we found that the size of the CP-odd com-
ponent of the two heavy Higgs bosons shows a negligible
dependence on the mass of the charged Higgs bosons, and
that the heavy Higgs bosons interchange their CP-oddness
when varying ϕA. For the light Higgs boson, the size of the

CP-odd component decreases quickly with larger values of
MH+ as has been discussed before in e.g. Ref. [98]. Even
though we find that the CP-odd admixture in the considered
scenario for MH+ = 500 GeV is just below the expected
experimental reach according to the discussion in Ref. [131],
it is likely that this particular scenario is excluded by the
experimental results for the Higgs signal rates as well as of
the measurement of electric dipole moments. In order to find
out whether there is a viable scenario with heavy SUSY part-
ners that leads to an observable size of a CP-odd component,
further work is needed.
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A Yukawa phases in the type-III 2HDM

In a type-III 2HDM, complex phases in the Yukawa couplings
cannot be rotated away completely by absorbing the phases in
the right-handed quark fields. To see why this is true, consider
the mass term for the top quark coming from Eq. (9) after
electroweak symmetry breaking

Ltop Yuk.
mass = v√

2

(
ht sβ + h′

t cβ

)
t tc + h.c.. (73)

In order to make the top-quark mass real, the phase of
the combination

(
ht sβ + h′

t cβ

)
must be absorbed into the

charge-conjugate quark field. However, this phase will pop
up again in the Yukawa couplings and will not be cancelled
by the phase of ht or h′

t . This means that, for example, the
top Yukawa term proportional to ht after the rotation now
takes the form

Ltop Yuk. = e−iφhtεi j�
i
2tcQ

j + h.c., (74)

where φ ≡ arg(ht sβ + h′
t cβ). These phases must be taken

into account when calculating the self-energy and tadpole
corrections to the Higgs mass matrix. However, we find that
the effect is numerically negligible, as the phase φ is small.

B Tadpole contributions

In the following, we list the combinations of the tadpole con-
tributions of the Higgs boson fields in the gauge basis Tφ1 ,
Tφ2 and Ta1 as they appear in the renormalized tadpole matrix
T̂ in Eqs. (52) and (60) and in the corresponding unrenor-
malized tadpole matrix T ,

T11 =
cβ

[ (
c2
β + 2s2

β

)
Tφ1 − cβsβTφ2

]

v
, (75)

T12 = c3
βTφ2 + s3

βTφ1

v
= T21, (76)

T13 = 0 = T31, (77)

T14 = − Ta1

sβv
= T41, (78)

T22 =
sβ
[ (

2c2
β + s2

β

)
Tφ2 − cβsβTφ1

]

v
, (79)

T23 = Ta1

sβv
= T32, (80)

T24 = 0 = T42, (81)

T33 = T11, (82)

T34 = T12 = T43, (83)

T44 = T22. (84)

C Conversion of the vacuum expectation value

In Sect. 6, the conversion of the vacuum expectation value is
explained briefly. In this appendix, for completeness, we list
the explicit conversion formulas.

The finite part of the counterterm to the on-shell vev
δv2

OS−finite is given as

δv2
OS−finite = v2

OS

[(
1 − c2

W

s2
W

)
δM2

W

M2
W

+ c2
W

s2
W

δM2
Z

M2
Z

− δe2

e2

]

finite
(85)

where c2
W = 1 − s2

W . The W and the Z mass counterterm are
chosen on-shell via the one-loop pole mass definition while
the counterterm for the electric charge is fixed via the electron
positron photon vertex in the Thomson limit and are thus

δM2
V = Re�T

VV (M2
V ) with V = W, Z , (86)

δe2 = 2e2

[
1

2

∂Re�γγ (k2)

∂k2

∣∣∣∣∣
k2=0

− sW
cW

�T
γ Z (0)

M2
Z

]
(87)

where �T
VV is the transversal part of the W or the Z boson self

energy at one-loop order, respectively. The one-loop photon
self energy is denoted by �γγ and the transversal part of the
one-loop photon Z boson mixing as �T

γ Z . We evaluated all the

self-energies entering the evaluation of δv2
OS−finite including

contributions from all particles except for leptons and the
first two generations of quarks.

For �r [122], we employed the one-loop result

�r = δe2

e2 −
(

1 − c2
W

s2
W

)
δM2

W

M2
W

− c2
W

s2
W

δM2
Z

M2
Z

+ 2�T
γ Z (0)

cW sW M2
Z

+ �T
WW (0)

M2
W

+ e2

32π2s4
W

[
12s2

W + (7 − 4s2
W ) ln

(
M2

W

M2
Z

)]
(88)

so that the complete one-loop conversion can be written as

v2
MS

= v2
GF

{
1 + 2�T

γ Z (0)

cW sW M2
Z

+ �T
WW (0)

M2
W

+ e2

32π2s4
W

×
[

12s2
W + (7 − 4s2

W ) ln

(
M2

W

M2
Z

)]}
. (89)
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