
Centrality Determination in Heavy-
Ion Collisions Based on Monte-
Carlo Sampling of Spectator
Fragments

Ilya Segal

Special Issue
Selected Papers from "Physics Performance Studies at FAIR and NICA"

Edited by

Prof. Dr. Peter Senger, Prof. Dr. Arkadiy Taranenko and Prof. Dr. Ilya Selyuzhenkov

Article

https://doi.org/10.3390/particles6020032

https://www.mdpi.com/journal/particles
https://www.scopus.com/home.uri
https://www.mdpi.com/journal/particles/stats
https://www.mdpi.com/journal/particles/special_issues/physics_performance
https://www.mdpi.com
https://doi.org/10.3390/particles6020032


Citation: Segal, I. Centrality

Determination in Heavy-Ion

Collisions Based on Monte-Carlo

Sampling of Spectator Fragments.

Particles 2023, 6, 568–579. https://

doi.org/10.3390/particles6020032

Academic Editor: Valery E.

Lyubovitskij

Received: 15 March 2023

Revised: 3 May 2023

Accepted: 4 May 2023

Published: 10 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Centrality Determination in Heavy-Ion Collisions Based
on Monte-Carlo Sampling of Spectator Fragments

Ilya Segal

Moscow Engineering Physics Institute, National Research Nuclear University, Kashirskoe Highway 31,

115409 Moscow, Russia; ilya.segal.97@gmail.com

Abstract: The size and evolution of the matter created in a relativistic heavy-ion collision strongly

depend on collision geometry, defined by centrality. Experimentally the centrality of collisions

can be characterized by the measured multiplicities of the produced particles at midrapidity or by

the energy measured in the forward rapidity region, which is sensitive to the spectator fragments.

This serves as a proxy for the true collision centrality, as defined by the impact parameter in the

models of collisions. In this work, the procedure for centrality determination based on Monte-

Carlo sampling of spectator fragments has been proposed. The validity of the procedure has been

checked using the fully reconstructed DCM-QGSM-SMM model events and published data from the

NA61/SHINE experiment.
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1. Introduction

A deconfined state of quarks and gluons, also known as Quark–Gluon Plasma (QGP)
is produced in ultra-relativistic heavy-ion collisions at the Large Hadron Collider (LHC,
CERN) and Relativistic Heavy Ion Collider (RHIC, BNL) [1,2]. Collisions at lower energies
achievable at the SIS-18 (GSI) [3] or Nuclotron (JINR) [4] form matter with lower tem-
perature and higher baryochemical potential, eventually reaching conditions at which
the system is in the hadronic gas phase. The central goal of the existing Beam En-
ergy Scan (BES) programs of the STAR experiment at RHIC (

√
sNN = 3–200 GeV) [5],

NA61/SHINE experiment at SPS (
√

sNN = 5.1–17.3 GeV) [6], and BM@N experiment at Nu-
clotron (

√
sNN = 2.4–3.5 GeV) [4] is to understand the nature of the transition between QGP

and hadronic matter. In the future, the MPD experiment at NICA (
√

sNN = 4–11 GeV) [7]
and the CBM experiment at FAIR (

√
sNN = 2.7–4.9 GeV) [8] will further explore the phase

diagram at a high baryon density region with high statistics data. The size and evolution
of the matter created in a relativistic heavy-ion collision strongly depends on the collision
geometry, defined by the collision centrality [9,10]. In theory, the collision centrality Cb

is defined as a fraction (expressed as a percentage) of a total inelastic nucleus–nucleus
cross-section, σAA

inel :

Cb =
1

σAA
inel

∫ b

0

dσ

db′
db′. (1)

Here, b is the impact parameter and dσ/db is the differential cross-section of a nucleus–
nucleus collision. The impact parameter b, defined as the transverse distance between
the centers of the two colliding nuclei, is a well-defined quantity and a key input to most
theoretical calculations of heavy-ion collisions. However, one cannot directly measure the
impact parameter in an experiment [11]. Experimentally, the heavy-ion collisions can be
characterized by the measured multiplicity Nch of the produced charged particles around
midrapidity or by the energy Esp measured in the forward rapidity region, which is sensitive
to the spectator fragments. The centrality procedure is based on the correlation between
measured Nch (Esp) and b, which can be inferred by the comparison of experimental data
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with simulations of the collisions. High multiplicity events have a low average b and
low multiplicity events have a large average b. The former are called central collisions
and the latter are called peripheral collisions. The average charged-particle multiplicity
Nch is assumed to decrease monotonically with increasing impact parameter b. Usually,
the correlation between the impact parameter and the multiplicity Nch is determined
using a Monte-Carlo version of the Glauber (MC-Glauber) model based on the eikonal
approximation [9,12]. Geometrical properties of the collision, such as the impact parameter
b, number of participating nucleons (Npart), number of spectator nucleons (Nspec) and
number of binary nucleon–nucleon collisions (Ncoll) can be calculated by simulating a large
sample of minimum bias collision events. Charged hadron multiplicity can be built based
on the MC-Glauber output and the simple phenomenological two-component model based
on a negative binomial distribution (NBD) [13–15]. The produced particle multiplicity
distribution can then be fitted to the experimentally measured one. Centrality classes are
defined by cuts on Nch and corresponding parameter values (b, Npart, Nspec, . . . ) for each
class are determined from the MC-Glauber model. The main disadvantages of this approach
are limitations of the Glauber model, assumptions about the particle production mechanism,
autocorrelations and large systematic uncertainties at low multiplicities [11,16]. Some of
the problems can be avoided by using the centrality estimators, which are independent
of particle production in the participant’s zone: sum of energy, charge, or multiplicity
of spectators. This approach might be beneficial for experimental studies that search
for a critical point in the QCD phase diagram. Such measurements usually focus on
baryon multiplicity fluctuations at midrapidity; hence, selecting events based on particles
detected at forward rapidity may reduce the nontrivial autocorrelations [16,17]. The
spectators are protons and neutrons as well as larger spectator fragments that continue to
propagate in the same direction as the colliding ions before the interaction. The detection
of all spectator nucleons and nuclear fragments in forward calorimeters would be the
most straightforward method of estimating b from the total volume of spectator matter.
Unfortunately, the number of event generators for nucleus–nucleus collisions that include
a reliable model to describe the formation of nuclear fragments is very limited.

In this work, the new data-driven approach for centrality determination based on
Monte- Carlo sampling of spectator fragments has been proposed. It is based on the output
from the Monte-Carlo version of the Glauber model and hybrid model DCM-QGSM-
SMM [18–20], which provides a reasonable treatment of spectator fragments. The validity
of the procedure has been checked using the fully reconstructed DCM-QGSM-SMM model
events and published data from the NA61/SHINE experiment (SPS, CERN) for Pb+Pb
collisions at beam momentum pbeam = 13 A GeV/c (

√
sNN = 5.12 GeV). The resulting values

of the mean impact parameter 〈b〉 have been compared to the results of the MC-Glauber
approach based on the multiplicity. The results would be useful for the upcoming Beam
Energy Scan experiments: BM@N at Nuclotron, CBM at FAIR and MPD at NICA Collider.

The paper is organized as follows. Section 2 briefly describes the used MC-Glauber
and DCM-QGSM-SMM models, while Section 3 discusses the centrality determination from
the multiplicity of charged particles based on the MC-Glauber approach. Section 4 discusses
the proposed approach for centrality determination based on Monte-Carlo sampling of
spectator fragments. The results of the check of the validity of the procedure are presented
and discussed in Section 5. Finally, the summary and future outlook are given in Section 6.

2. Short Description of the Models

In this section, we briefly discuss the main features of the selected versions of the
DCM-QGSM-SMM and MC-Glauber models, used in the present work.

DCM-QGSM-SMM is a hybrid heavy-ion event generator based on the Dubna Cas-
cade Model (DCM) [18], the Quark–Gluon String Model (QGSM) and the Statistical Mul-
tifragmentation Model (SMM) [19,20]. The Dubna Cascade Model, DCM, is based on
the Monte-Carlo solution of a set of the Boltzmann-Uehling-Uhlenbeck (BUU) relativistic
kinetic equations with collision terms, including cascade–cascade interactions. For particle
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energies below 1 GeV, it considers only nucleons, pions and deltas. The model includes
a proper description of pion and baryon dynamics for particle production and absorp-
tion processes. To make the DCM code applicable at higher energies (up to hundreds
GeV/nucleon), it was merged with the Quark–Gluon String Model (QGSM). QGSM is used
to describe elementary hadron collisions at energies higher than 5 GeV in the framework of
independent quark–gluon strings. The QGSM considers the two lowest SU(3) multiplets
in mesonic, baryonic and antibaryonic sectors, so interactions between almost 70 hadron
species are treated on the same footing. The production of nuclear fragments is subdivided
into three stages: (1) a dynamical stage leading to the formation of an equilibrated nuclear
system, which is described by DCM; (2) disassembly of the system into individual primary
fragments described by the Statistical Multifragmentation Model (SMM); (3) de-excitation
of hot primary fragments according to evaporation/fission processes [20].

The purpose of Monte-Carlo implementations of the Glauber model is to compose two
nuclei out of nucleons and simulate their collision process event by event. In the present
work, we use the 3.2 version of the PHOBOS MC-Glauber model as described in refs. [9,12].
In this approach, the following steps are implemented:

1. The nucleon position in each colliding nucleus is determined by the radial nuclear
density function ρ(r), modeled by the modified Woods–Saxon distribution:

ρ(r) = ρ0
1 + w

(

r
R

)2

1 + exp r−R
a

, (2)

where R is the radius of the nucleus (R = RPb = 6.62 ± 0.06 fm for 208Pb nucleus),
ρ0 is density in the center of the nucleus; a is the skin thickness of the nucleus,
which defines how quickly the nuclear density falls off near the edge of the nucleus
(a = 0.546 ± 0.010 fm) [13]. The additional parameter w is needed to describe nuclei
whose maximum density is reached at radii r > 0 (w = 0 for Pb). The parameters are
based on data from low-energy electron–nucleus scattering experiments. The radial
coordinate of a nucleon is randomly selected from the distribution 4πr2ρ(r) with the
condition, that no pair of nucleons inside the nucleus has a distance less than 0.4 fm.

2. The impact parameter b of a given collision is selected randomly from the geometrical
distribution dP/db ∼ b from b = 0 up to a maximum value bmax > 2RPb.

3. The nucleus–nucleus collision is treated as a sequence of independent binary nucleon–
nucleon collisions, where the nucleons travel on straight-line trajectories and the
inelastic nucleon–nucleon cross-section σinel

NN is assumed to be independent of the
number of collisions and depends only on the collision energy. Two nucleons from
different nuclei are assumed to collide if the relative transverse distance d between
centers is less than the distance corresponding to the inelastic nucleon–nucleon cross-

section: d <

√

σinel
NN /π. For Pb+Pb collisions at beam momentum pbeam = 13 A GeV/c

(
√

sNN = 5.12 GeV), we use σinel
NN = 29.9 ± 3 mb [21].

Geometrical properties of the collision, such as the impact parameter b, number of
participating nucleons (Npart ), number of spectator nucleons (Nspec) and number of binary
nucleon–nucleon collisions (Ncoll), are calculated by simulating many nucleus–nucleus
collisions. The relation between Npart and the number of nucleons Nspec remaining in the
spectator fragments does not depend on the process of their formation:

Npart = 2A − Nspec = 2A − ∑
i

Ai
sp, (3)

where A is the mass number of a colliding ion and the sum runs over all spectator fragments
Ai

sp on both sides of the collision point.
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3. Centrality Determination from the Multiplicity of Charged Particles

Below, we briefly discuss the well-established procedure of centrality (impact pa-
rameter) determination based on the charged hadron multiplicity and the MC-Glauber
approach. In order to illustrate it, we used the DCM-QGSM-SMM model to simulate
around 100 k minimum bias Pb+Pb collision events at pbeam = 13A GeV/c. At the next step,
the sample of events was made as an input for the full chain of realistic simulations of the
NA61/SHINE detector subsystems based on the GEANT4 platform and realistic reconstruc-
tion algorithms [22]. The fully reconstructed events were used to generate the distribution
of the multiplicity Nch of the produced charged particles with −0.9 < η < 3.1, see the left
panel in Figure 1. In the MC-Glauber approach, the output from the 2M minimum-bias
MC-Glauber Pb+Pb events was used to build the multiplicity of the produced particles
NMC. The multiplicity NMC(Na, f , µ, k) is modeled as a sum of particles produced from
a set of Na independent emitting sources (“ancestors”) [13,14,23]. Each ancestor produces
particles according to a negative binomial distribution (NBD) Pµ,k with mean multiplicity
per ancestor µ and width parameter k:

MMC−Gl(Na, f , µ, k) =
Na( f )

∑
i=1

Pi
µ,k, Na( f ) = f Npart + (1 − f )Ncoll . (4)

The Na( f ) parameterization is inspired by the phenomenological two-component
model of Kharzeev and Nardi [15] for “soft” plus “hard” particle production processes.
In this approach, the soft interactions contribute to the multiplicity dependence as Npart,
while hard interactions as Ncoll . The multiplicity distribution NMC is simulated for an
ensemble of events and various values of the NBD parameters µ, k and the Na parameter
f [13,14,23]. A minimization procedure is applied to find the optimal set of parameters that
result in the smallest fitting criteria χ2. The MC-Glauber fit was performed for multiplicities
above 40. A value of the multiplicity at which the fit starts to deviate from the multiplicity
distribution defines the so-called “anchor point” below which the centrality determination
is not reliable. The resulting fit parameters are: χ2/nd f = 1.26, µ = 0.87, k = 22, f = 1.
The minimum of the χ2 corresponds to a small contribution of hard processes ( f = 1). The
resulting NMC multiplicity from the MC-Glauber fit is shown by blue solid triangles in the
left panel of Figure 1. With the final set of parameters ( f , µ, k), the mean value of impact
parameter 〈b〉 can be extracted for the centrality classes defined by the sharp cuts in the
multiplicity distribution, see the solid vertical lines in the left panel of Figure 1.

Figure 1. Left panel: charged particle multiplicity distribution from the DCM-QGSM-SMM model

(open squares) for Pb+Pb collisions at pbeam = 13A GeV/c (
√

sNN = 5.12 GeV) compared to the fitted

distribution using the MC-Glauber approach (blue solid triangles). The 5% centrality classes defined

with MC-Glauber normalization are indicated with black solid vertical lines and 10% centrality classes

are indicated with black dashed vertical lines. Right panel: centrality dependence of the mean value

of impact parameter 〈b〉. The resulting values of 〈b〉 extracted from the MC-Glauber approach (closed

symbols) are compared with the values used in the DCM-QGSM-SMM model (open symbols).
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The right panel of Figure 1 shows the centrality dependence of the mean value of
impact parameter 〈b〉 and its standard deviation extracted directly from the DCM-QGSM-
SMM model (open symbols) and from the MC-Glauber approach (closed symbols). Overall
good agreement is observed.

Centrality determination from the multiplicity of charged particles based on the MC-
Glauber approach is a very well-established procedure, which was checked by different
experiments and model calculations for heavy-ion (Au+Au and Pb+Pb) collisions from√

sNN = 2.2 GeV to 2.76 TeV [13,14,23]. Figure 2 shows a flowchart of different centrality
determination approaches. The right-hand side shows the procedure based on the MC-
Glauber model and NBD for sampling the multiplicity of produced particles, as described
in this section.

Figure 2. Flowcharts of different centrality determination approaches. The left-hand side corre-

sponds to the proposed procedure based on Monte-Carlo sampling of spectator fragments (see

Section 4), center: simplified procedure with Gaussian approximation for the energy of spectators

(see Section 4.1), right-hand side: standard procedure based on MC-Glauber model and NBD for

sampling the multiplicity of produced particles (see Section 3).

4. Centrality Determination with Monte-Carlo Sampling of Spectator Fragments

The goal of the developed procedure is to build the path from geometry parameters
from the output of the Monte-Glauber Model to the observable related to the spectator
matter. In order to do this, several steps are needed to model the fragmentation pro-
cess of nuclear remnants, to determine the parameters of spectator fragments and to
model the detector’s effects. The main steps of the developed procedure based on the
Monte-Carlo sampling of spectator fragments are described below. The flowchart of this
procedure is shown with the red boxes on the left-hand side of Figure 2. The main steps are
the following:

0. To provide a simple description of the fragmentation process, prepare a set of two-
dimensional maps (distributions) using a model with the formation of spectator
fragments (e.g., hybrid DCM-QGSM-SMM model with statistical multifragmentation
SMM [18–20] or dynamical multifragmentation implemented within the PHQMD
model [24]):

• The total mass number of all fragments (Atot) and impact parameter (Atot : b);
• The mass number of fragments A f rag and (1) rapidity of fragments (A f rag : y f rag),

(2) energy of fragments (A f rag : E f rag) and (3) total number of fragments with
a given mass (A f rag : NA f rag

).
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To provide a simple description of the detector effects, prepare a map (distribution) of
spectator detector response (S f rag) as a function of rapidity (y f rag : S f rag) and energy
(E f rag : S f rag) of the spectator fragments (can be achieved, e.g., using a large sample
of events from the full chain of realistic simulations of spectator detector based on the
GEANT4 platform and realistic reconstruction algorithms).

1. To model the initial geometry of the collisions, generate a large sample of MC-Glauber
minimum bias events in order to obtain the information about the geometrical proper-
ties of collisions: impact parameter b and number of spectators Nspec.

2. To sample a total mass number of nuclei remnants Atot, use the map Atot : b.
3. To model the process of spectator fragment formation based on the output of any gen-

erator with realistic fragmentation implication (step 0), generate an array of fragments
(NA f rag

[A f rag]) using the following iterations:

(a) Initialize all array elements with zeros: NA f rag
[i] = 0, i = 0 . . . Abeam (index

i = 0 is chosen to represent neutrons);
(b) Use the map A f rag : NA f rag

to generate a pair (A f rag, NA f rag
);

(c) Verify if:

• NA f rag
[A f rag] > 0, then redo the step (b);

• NA f rag
[0] + ∑

Abeam
i=1 i ∗ NA f rag

[i] > Atot, then go to the step (a);

(d) Write a pair (A f rag, NA f rag
), if checks above were passed;

(e) If NA f rag
[0] + ∑

Abeam
i=1 i ∗ NA f rag

[i] < Atot, then go to step (b).

As a result of steps (a)–(e), a sample of N f rag = ∑
Abeam
i=0 NA f rag

[i] fragments with mass

numbers A1 . . . AN f rag
will be generated, preserving the condition NA f rag

[0] +∑
Abeam
i=1 i ∗

NA f rag
[i] = Atot.

4. To generate values of energy and rapidity for each fragment in the event A1 . . . AN f rag
,

use the maps A f rag : E f rag and A f rag : y f rag.

5. To simulate a detector response S f rag (deposited energy of fragments for the hadronic
calorimeter or charge for the scintillator detector, etc.), use the map from step 0.

6. Calculate the total measured energy (or charge) of spectators, Stot.

As a result of steps (1)–(6) the centrality estimator based on the MC sampling of spec-
tator fragments will be constructed. In order to optimize the description of the experimen-
tally measured distribution, the maps Atot : b, A f rag : y f rag, A f rag : NA f rag

, A f rag : NA f rag
,

y f rag : S f rag, E f rag : S f rag can be parameterized with a set of parameters, which can be later
used to fit the experimental data. Then, iterating over all values of parameters, the optimal
fit parameters can be found based on a minimum of χ2 between the simulated and mea-
sured distributions of the total energy of spectator fragments or the total charge. Centrality
classes are then determined using the distribution for the best-fit parameters. This provides
a mapping between geometry parameters and centrality estimator.

4.1. Simplified Procedure with Gaussian Approximation for the Energy of Spectators

The procedure described in the previous section can be simplified based on the as-
sumption that the distribution of the energy of spectators is Gaussian. This follows from the
Monte-Carlo simulations based on the DCM-QGSM-SMM model, which realistically model
the process of fragmentation of spectator fragments (see [18–20]). According to Figure 3,
the energy distribution of a single spectator nucleon could be approximated with a Gaus-
sian function. Distributions of heavier fragments are also close to Gaussian with mean
values that are close to the product of the beam energy Ebeam and mass number of fragments
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A f rag. Hence, the energy of spectator fragments can be treated as a combination of energies
of single spectator nucleons distributed according to the common Gaussian function:

P(Etot; µtot, ktot) ≈
N f rag

∏
i=1

P(Ei
f rag; µi

f rag, ki
f rag) ≈

Nspec

∏
j=1

P(E
j
spec; µspec, kspec). (5)

Here, P(E; µ, k) is the Gaussian function of energy E with mean µ and width k.
Similar considerations can be applied for the detectors with Gaussian response to

the energy of the fragments, e.g., hadronic calorimeters. According to experimental data
obtained with hadronic calorimeters [25–27], measured detector signal S of the detected
particle can be parameterized using the Gaussian distribution, which is proportional to the
energy of the detected particle E and width σS given by the following equation:

σS

E
=

a√
E
+ b +

c
4
√

E
. (6)

Here, a = 0.56 GeV1/2—stochastic term, b = 0.02—constant term, c = 0.16 GeV1/4

—leakage term.
The energy of spectator fragments (or single spectators) is distributed according to the

convolution of two Gaussian distributions (which should also be a Gaussian distribution):
the first one to sample the real energy of fragment E f rag (or single spectators Espec) and the
second one to sample the detector’s response.

Figure 3. Distributions of energy for projectile spectator fragments shifted for each mass number A

by the energy of the beam times (A − 1). Gaussian fits of each distribution are shown with lines. All

distributions are scaled to the same height on the Y-axis (labeled as “a.u.”).

Based on the considerations above, the following procedure, shown by the green box in
Figure 2, is investigated. The energy of spectators Sspec is sampled according to the Gaussian
distribution G(µ, k) with free parameters µ and k. The measured detector signal, which is

proportional to the energy of all detected spectators is calculated as Stot = f + ∑
Nspec

i=1 Si
spec.

The parameter f describes the offset at low energies due to the contribution of produced
particles (participants) in the forward/backward rapidity region. The main limitation of
this procedure is that the correlations due to the fragmentation of nuclei remnants are not
taken into account. Parameters f , µ and k are fixed by searching for a minimum of χ2 value
between the simulated MC-Glauber energy distribution and the experimental one.
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5. Results and Discussion

The validity of the procedure of centrality (impact parameter) determination based
on the Monte-Carlo sampling of spectator fragments has been checked using the fully
reconstructed DCM-QGSM-SMM model events and published data from the fixed tar-
get NA61/SHINE experiment (SPS, CERN) for Pb–Pb collisions at beam momentum
pbeam = 13 A GeV/c [22]. The NA61/SHINE fixed-target experiment uses a large accep-
tance hadron spectrometer located in the North Area H2 beamline of the CERN Super
Proton Synchrotron accelerator [28]. A schematic view of the NA61/SHINE experiment is
shown in the left part of Figure 4. The main detectors are five time projection chambers
(TPC): two vertex TPCs mounted in the magnets, a gap TPC covering the beam area and
two main TPCs (left and right) measuring tracks of charged particles. The Projectile Spec-
tator Detector (PSD) is a segmented forward hadron calorimeter with the transverse and
longitudinal segmentations assembled of sampling lead/scintillators modules [26]. The
transverse layout of the PSD detector is shown in the right part of Figure 4. The central
part of the PSD consists of 16 modules with 10 cm × 10 cm transverse size and the outer
region has modules with 20 cm × 20 cm size. PSD is installed 18 m downstream of the
target and covers the polar angle of the projectile nuclei fragments emission θ < 3.8◦. The
acceptance of the PSD allows us to detect projectile spectators and produced particles
emitted in forward rapidity region [26,27].

Figure 4. Left: schematic view of the NA61/SHINE experimental setup. TPC tracking detectors are

shown with blue squares. Right: the layout of the PSD detector.

In order to test the developed procedure of centrality determination, a sample of 150 k
minimum bias events was generated with the DCM-QGSM-SMM model and reconstructed
with the GEANT4 transport package. The energy distribution of spectators was sampled
from 2M minimum bias collisions simulated with the MC-Glauber model.

Figure 5 shows the distribution of the total energy of spectator fragments EPSD in the
PSD calorimeter (open boxes) for the fully reconstructed DCM-QGSM-SMM model events
(left part) and NA61/SHINE experimental data (right part). The data from NA61/SHINE
experiment are taken from [22]. The results of the approximation of PSD energy distribution
using a Monte-Carlo sampling of spectator fragments with Gaussian approximation for
the energy of spectators (see Section 4.1) are shown by closed triangles. With the final set
of parameters the mean value of impact parameter 〈b〉 can be extracted for the centrality
classes defined by the sharp cuts in the EPSD distribution, see the solid vertical lines in
Figure 5. The events with a small value of EPSD have a small average 〈b〉 (central collisions)
and events with a high value of EPSD have a large average 〈b〉 (peripheral collisions). In
the case of fully reconstructed DCM-QGSM-SMM model events, the MC-Glauber fit for
energy describes the EPSD distribution quite well, excluding very central collisions. This
needs to be addressed by future studies. The situation is the opposite in the case of the real
data. Here, the MC-Glauber fit for energy does not describe well the EPSD distribution for
very peripheral collisions, see the right part of Figure 5. This difference is expected to be
reduced in the future by accounting for effects due to spectator fragmentation in the full
procedure described in Section 4.
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Figure 5. The distribution of the total energy of spectator fragments EPSD in the PSD calorimeter

(open boxes) for Pb+Pb collisions at pbeam = 13A GeV/c (
√

sNN = 5.12 GeV). The left part shows

the results from the fully reconstructed DCM-QGSM-SMM model events and the right part of

the experimental data. Closed triangles represent the results of the approximation of PSD energy

distribution using a Monte-Carlo sampling of spectator fragments with Gaussian approximation

for the energy of spectators (see Section 4.1). The 5% centrality classes defined with Monte-Carlo

sampling normalization are indicated with black solid vertical lines and 10% centrality classes are

indicated with black dashed vertical lines.

Figure 6 shows the correlation between impact parameter b and the total energy in
the PSD calorimeter EPSD for fully reconstructed DCM-QGSM-SMM model events and
detector response obtained with the GEANT4 package (left part) and the results of the
Monte-Carlo procedure based on Gaussian approximation for the spectator’s energy (right
part). Red lines show the regions used to map impact parameter b and energy EPSD in
a certain centrality class.

Figure 6. Correlation between impact parameter b and the total energy in the PSD calorimeter EPSD.

Left part: the results from the fully reconstructed DCM-QGSM-SMM model events and detector

response obtained with the GEANT4 package. Right: the results of the Monte-Carlo procedure based

on Gaussian approximation for the spectator’s energy. Red lines show the regions used to map impact

parameter b and energy EPSD in a certain centrality class.

The shapes of the two distributions are very similar, except for very peripheral colli-
sions, where it is broader for the detailed simulation with Geant4 and the DCM-QGSM-
SMM model. This is due to a missing simulation of the fragmentation process in the
simplified procedure.

Figure 7 presents the resulting centrality dependence of the mean value of the impact
parameter 〈b〉 for the MC-Glauber approach based on the multiplicity of the produced
charged particles (left part) and MC-Glauber approach with Gaussian approximation
for the energy of spectators (right part). The resulting values of 〈b〉 extracted from the
Monte-Carlo approaches (closed symbols) are compared with the values used in the fully
reconstructed DCM-QGSM-SMM model events and detector response obtained with the
GEANT4 package (open symbols). The 〈b〉 values extracted from the MC-Glauber approach
based on the multiplicity are in much better agreement with DCM-QGSM-SMM model
results. For the case of impact parameter distributions obtained based on centrality classes
determined by the energy distribution of spectators, there is a discrepancy, especially in the
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most central classes. This is again due to the bad quality of the fit in the region of the most
central events and this needs to be addressed by future studies. At the same time, the width
of the centrality classes determined using the PSD energy is slightly larger than in the case of
track multiplicity. This is due to the fact that the width of the two-dimensional distribution
of the impact parameter b vs energy EPSD is larger than the width of the distribution of the
impact parameter b and multiplicity Nch. As can be seen in the comparison of open squares
from the left and right plots of Figure 7, the centrality classes determined separately using
the multiplicity of produced particles and spectators are slightly different. This is again
because of the different shapes of two-dimensional distributions of impact parameters and
corresponding centrality estimators. In order to understand the impact of this effect, an
event-by-event comparison of centrality determined based on different centrality estimators
should be performed during future investigations. As part of further work, it is planned
to consider options for improving the fit of energy. For this, the applicability of Landau,
Gamma and other distributions will be tested. Further, the developed methods can be
applied to other heavy-ion experiments, such as MPD at NICA and BM@N at Nuclotron.
These experiments are going to use the same type of forward hadronic calorimeters, similar
to the PSD from the NA61/SHINE experiment.

Figure 7. Centrality dependence of the mean value of impact parameter 〈b〉 for MC-Glauber approach

based on the multiplicity of the produced charged particles (left part) and MC-Glauber approach

with Gaussian approximation for the energy of spectators (right part). The resulting values of 〈b〉
extracted from the MC-Glauber approach (closed symbols) are compared with the values used in the

fully reconstructed DCM-QGSM-SMM model events (open symbols).

6. Conclusions

In summary, a new procedure for centrality determination in heavy-ion collisions
based on the Monte-Carlo sampling of spectator fragments is proposed. The connec-
tion between the averaged impact parameter and centrality classes is extracted using
the energy of spectator fragments measured in the forward rapidity region by hadronic
calorimeter. A simplified procedure based on Gaussian approximation for the energy of
spectators has been implemented. The validity of the procedure has been checked using
the distribution of energy of spectator fragments in the PSD forward calorimeter of the
NA61/SHINE experiment for Pb+Pb collisions at beam momentum pbeam = 13 A GeV/c
(
√

sNN = 5.12 GeV) as well as for reconstructed DCM-QGSM-SMM model events. The
comparison with the results of the standard centrality determination procedure based
on produced particle multiplicity and the MC-Glauber approach is also provided. In the
future, we plan to improve the procedure by taking into account the details of the spectator
fragmentation and extending its application for the forward hadronic calorimeters of MPD
at NICA and BM@N at Nuclotron heavy-ion experiments [4,7].
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