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ABSTRACT OF THE DISSERTATION

Conformal Junctions, Entanglement Entropy, and Holography

by

John David Miller

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Michael Gutperle, Chair

We explore interfaces and junctions joining multiple two-dimensional conformal field

theories, with the goal of calculating entanglement entropies in their presence and exploring

their holographic duals. In chapter 1 we start with an overview of the three subjects,

collecting various well-known results and reviewing some foundational works.

In chapter 2 we calculate the holographic entanglement entropy in the presence of a

conformal interface for a geometric configuration in which the entangling region A lies on

one side of the interface. For the supersymmetric Janus solution we find exact agreement

between the holographic and conformal field theory calculation of the entanglement entropy.

In chapter 3 we calculate the entanglement entropy for topological interfaces in rational

conformal field theories for the case where the interface lies at the boundary of the entangling

interval and for the case where it is located in the center of the entangling interval. We

compare the results to each other and also to the left/right entropy of a related boundary

conformal field theory. We also comment on the entanglement entropies for topological

interfaces in Liouville theory.

In chapter 4 we consider entanglement through permeable junctions of N free boson and

free fermion conformal field theories. We constrain the form of the general boundary state

and calculate the replicated partition functions with interface operators inserted, from which
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the entanglement entropy is calculated. We find the functional form of the universal and

constant terms to be similar to the N = 2 case, depending only of the total transmission of

the junction and the unit volume of the zero mode lattice. For N > 2 we see a subleading

divergent term which does not depend on the parameters of the junction. For N = 3 we

consider some specific geometries and discuss various limits.

In chapter 5 we investigate topological interfaces between three-dimensional Abelian

Chern-Simons theories in the context of the AdS3/CFT2 correspondence. We show that

it is possible to connect the topological interfaces in the bulk Chern-Simons theory to topo-

logical interfaces in the dual conformal field theory on the boundary. In addition to the

[U(1)]2N Chern-Simons theory on AdS3, we show that it is possible to find boundary counter

terms which lead to the N conserved currents in the dual two-dimensional conformal field

theory.
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Chapter 1

Introduction

In this work we study the joining together of systems that respect conformal symmetry, a

large spacetime symmetry group which only leaves angles invariant. At criticality, confor-

mal symmetry is an almost generic feature of a quantum field theory1, and thus the study of

general conformal field theories (CFTs) uncovers universal features of a large variety of phys-

ical systems. In particular, we almost exclusively consider two-dimensional systems. Unlike

higher dimensions, conformal symmetry in two dimensions is realized by two copies of the

Virasoro algebra and hence is infinite-dimensional, resulting in a high degree of integrability

in two-dimensional CFTs [6]. As such these systems are often exactly solvable, making it

possible to pursue interesting and highly nontrivial questions. In Euclidean settings there

are many two-dimensional condensed matter systems whose underlying critical CFTs have

been identified (e.g. the Ising model [6], the 3-state Potts model [7], and the O(N) model [8]

to name a few), and in Lorentzian settings the dynamic variables of the two-dimensional

worldsheets of string theory are described by CFTs.

More so than fully conformally invariant theories, we are interested in interfaces joining

two CFTs and junctions joining three or more CFTs together, which introduce nontrivial

extensions away from full conformal symmetry. In addition to describing defects in critical

quantum systems, such interfaces also describe domain wall scenarios that arise from sponta-

1For one of the few examples in which only the additional scaling symmetry is introduced, see [5]
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neously broken symmetry. Furthermore, CFT junctions describe physical interfaces between

critical quantum wires [9] and the joining together of open strings [10]. Interfaces can also

reveal interesting features of the homogeneous theory, e.g. certain classes of interfaces have

been shown to generate symmetries of the undeformed theory [11].

A natural quantity to consider in an interface or junction theory is the entanglement

entropy, a standard measure of the entanglement of quantum states in a given region with

quantum states outside that region. Entanglement entropy has become a key quantity of in-

terest in diverse areas of physics: from modern condensed matter treatments where quantum

phases of matter are characterized by their ground state entanglement (e.g. [12]), to quan-

tum gravity where the entanglement entropy whose associated region is the space outside a

black hole horizon represents the entropy seen by observers in that region [13,14]. With the

presence of a permeable division between two theories, the choice of entangling region gains

significance and the associated entropy contains more information than in the homogeneous

theory.

Calculations of entanglement entropy invite comparison with dual results via the holo-

graphic principle, which states that the information in certain bulk theories is contained

in dual theories living on the boundary of the bulk region. For CFTs we can make use of

the AdS/CFT correspondence, which relates quantities in gravitational theories in (asymp-

totically) Anti-de Sitter spacetimes of dimension d with those of (d− 1)-dimensional CFTs

located on the asymptotic boundaries of those spacetimes. In AdS holography there exists

a standard procedure by which the entanglement entropy of a boundary region can be com-

puted from the bulk metric [15], and the focus of much recent work has been to show that

information about the bulk geometry can likewise be extracted from the boundary entangle-

ment entropy [16–18]. Interface theories are particularly interesting within the holographic

context not only due to the significant deformation away from well-studied dual systems

they produce, but also due to the unclear bulk interpretation of such interfaces.

The structure of this introduction is as follows: in section 1.1 we review the construction
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of conformal interfaces, mostly following [19, 20]. In section 1.2 we outline methods to

compute the entanglement entropy within a CFT and summarize the entropy calculations

of [21,22] which we will reference and extend in later chapters. In section 1.3 we review two

gravitational theories known to be dual to interface conformal field theories – which we will

use in chapter 2 – as well as review holographic aspects of a well-known gauge field theory

in AdS3 that we explore further in chapter 5.

1.1 Conformal interfaces

Here we review the general properties and construction of conformally invariant interfaces

in two-dimensional CFTs, and give explicit constructions for interfaces in free boson and

free fermion theories. As inserting a line division in the plane is sure to break the full

Virasoro⊗Virasoro conformal algebra in most cases, by a conformally invariant interface we

mean one which preserves at least one Virasoro algebra. If one considers the interface to be

located at y = 0 in R2, then the condition

[T 1
zz(x)− T 1

z̄z̄(x)]y=0 = [T 2
zz(x)− T 2

z̄z̄(x)]y=0, x ∈ R (1.1.1)

will ensure this property, where in the above the left- and right-hand sides contain the

stress tensor components of the two theories CFT1 and CFT2 the interface lies between,

respectively. This is due to the fact that transformations which leave the line y = 0 invariant

are generated by this combination of stress tensor components.

Our starting point is then an operator I1,2 located at the interface that satisfies

(
L1
n − L̄1

−n
)
I1,2 = I1,2

(
L2
n − L̄2

−n
)

(1.1.2)

for n ≥ 0, where Lin and L̄in with i = 1, 2 are the Virasoro generators of CFT1 and CFT2.

Finding operators that satisfy (1.1.2) can be mapped to finding conformal boundary states
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Figure 1.1: Illustration of the parity transformation relating the interface between CFT1 and CFT2

to the tensor product CFT1 ⊗ CFT2 with boundary.

satisfying (
Ltotal
n − L̄total

−n
)
|B〉〉 = 0 (1.1.3)

by use of a parity transformation. This is the content of the folding trick [19], which is

illustrated in figure 1.1. The folded picture is useful for characterizing classes of interfaces

and some simple calculations; as a relevant example, in [23] it was shown that the reflection

and transmission coefficients for interfaces between CFTs with the same central charge c are

found from

R =
〈0|L1

2L̄
1
2 + L2

2L̄
2
2|B〉〉

c 〈0|B〉〉
and T =

〈0|L1
2L̄

2
2 + L2

2L̄
1
2|B〉〉

c 〈0|B〉〉
(1.1.4)

For calculations such as that of the entanglement entropy the boundary states need to be

unfolded once they are found.

For general CFTs, the boundary states satisfying (1.1.3) are often difficult to find. If

boundary states of the individual CFTs are known, we could take

|B〉〉 = |B1〉〉 ⊗ |B2〉〉 (1.1.5)
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where |B1〉〉 is a boundary state of CFT1 and |B2〉〉 is a boundary state of CFT2. For such

a boundary state the corresponding interface has both sides of (1.1.2) vanish, and thus the

two CFTs decouple. When ctotal < 1 the folded CFT is rational, and for a finite number

of primary fields all solutions to (1.1.3) have been found [24] and organized into modular

invariant boundary states via the Cardy construction [25]. However, since we are considering

a tensor product CFT in the folded picture, the resulting folded CFT almost always has

c > 1 and hence is not rational. If one imposes additional conditions such as preservation

of a current algebra or permutation symmetry, more general constructions of boundary

states and interfaces are possible [26–28]. Another possibility is given by strengthening the

conditions (1.1.3) to boundary states satisfying

(
L1
n − L̄2

−n
)
|B〉〉 = 0 and

(
L2
n − L̄1

−n
)
|B〉〉 = 0 (1.1.6)

separately; i.e.

[T 1
zz(x)− T 2

zz(x)]y=0 = 0, [T 1
z̄z̄(x)− T 2

z̄z̄(x)]y=0 = 0, x ∈ R (1.1.7)

This leads to so-called topological defects or interfaces [20, 29, 30]. The conditions (1.1.6)

allow for solutions to be constructed in wider classes of CFTs; in chapter 3 we will work with

such interfaces and explain their properties in more detail. When considering free fields, as

in the next section and chapter 4, the conditions can be written in terms of the creation and

annihilation operators and can be solved by a coherent state anzatz.

We will now show how this works for free bosonic interfaces (see appendix A for our

CFT conventions). Under the replacement ain → Sij ā
j
−n for a 2× 2 matrix S, the operator

combinations in the generators Lin are altered as

: ain−ma
i
m : −→ Sij Sik : ājm−nā

k
−m : (1.1.8)
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Considering summation over the index i in the above and the form of the generators (A.1.8),

it is seen that Ltotal
n → L̄total

−n if S is an orthogonal matrix. Thus, the conformal condition

(1.1.3) simplifies to (
ain − Sij ā

j
−n
)
|B〉〉 = 0 (1.1.9)

for S an element of O(2). This condition can also be constructed explicitly for free fields

by requiring continuity of the stress tensor at the location of the interface [19]. These new

conditions (1.1.9) can be solved by a coherent state anzatz

|S〉〉 = g
∞∏
n=1

exp

(
1

n
Sij a

i
−nā

j
−n

)
|Ω〉 (1.1.10)

The form of (1.1.9) describes a D-brane in the boundary state formalism (see [31, 32] for

review), and this correspondence is used to find and classify all the possible boundary states

for the two scalar model. The D-brane interpretation also gives us physical meaning for the

normalization, the so-called g-factor, and the ground state |Ω〉 in (1.1.10).

The one-dimensional special case of (1.1.9) emits the unit scalar choices S = ±1, which

correspond to the two possible D-brane states for a single compact scalar

|D0〉〉 =

√
R√
2α′

∞∏
n=1

exp

(
1

n
a−nā−n

) ∞∑
N=−∞

e−iNϕ0/R |N, 0〉 (1.1.11)

|D1〉〉 =

√
1

R

√
α′

2

∞∏
n=1

exp

(
− 1

n
a−nā−n

) ∞∑
M=−∞

eiMϕ̃0 |0,M〉 (1.1.12)

respectively, where the D0-brane enforces a Dirichlet condition at the boundary and the

D1-brane enforces a Neumann condition at the boundary. The constants ϕ0 and ϕ̃0 are

the position and dual Wilson line moduli of the D-brane. For an interface between two

c = 1 CFTs the D-brane states of the two scalar model are needed. These were constructed

in [20] using rotations and T-duality transformations on the tensor products of (1.1.11) and

6



Figure 1.2: On the right: A D1-brane wrapping the bosonic 2-torus continued into the compactifi-
cation lattice so as to show the lattice intercept at (k1R1, k2R2). On the left: A D1-brane wrapping
the bosonic 2-torus (corresponding to the parameters k1 = 2 and k2 = 3) shown in the unit cell of
the compactification lattice.

(1.1.12). The first class of states are the rotations of

|D1, 0〉〉 = |D1〉〉 ⊗ |D0〉〉 (1.1.13)

by an arbitrary angle in the compactification lattice parametrized by two integers k1 and k2

tan θ =
k2R2

k1R1

(1.1.14)

as shown in figure 1.2. The explicit boundary state is given by

|D1, θ(k1, k2)〉〉 =

√
k2

1R
2
1 + k2

2R
2
2

2R1R2

∞∏
n=1

exp

(
1

n
Sij(θ) a

i
−nā

j
−n

)
|Ω〉 (1.1.15)

where

S(θ) =

 cos θ sin θ

− sin θ cos θ


−1 0

0 1


cos θ − sin θ

sin θ cos θ

 =

− cos 2θ − sin 2θ

− sin 2θ cos 2θ

 (1.1.16)

and

|Ω〉 =
∞∑

N,M=−∞

eiNα−iMβ|k2N, k1M〉 ⊗ | − k1N, k2M〉 (1.1.17)

7



The other class of states, corresponding to bound states between k2 D2-branes and k1 D0-

branes, is obtained from (1.1.15) through a T-duality transformation (A.1.12) of ϕ1. Explic-

itly, the state is given by

|k2D2/k1D0〉〉 =

√
k2

1α
′2 + k2

2R
2
1R

2
2

2α′R1R2

∞∏
n=1

exp

(
1

n
S ′ij(θ

′) ai−nā
j
−n

)
|Ω′〉 (1.1.18)

where

S ′(θ′) = S(θ′)

−1 0

0 1

 =

cos 2θ′ − sin 2θ′

sin 2θ′ cos 2θ′

 (1.1.19)

with “angle”

tan θ′ =
k2R1R2

k1α′
(1.1.20)

obtained from the replacement R1 → α′/R1 in (1.1.14), and

|Ω′〉 =
∞∑

N,M=−∞

eiNα
′−iMβ′|k1M,k2N〉 ⊗ | − k1N, k2M〉 (1.1.21)

obtained from the replacement n1 ↔ w1 in (1.1.17). As it will be of interest later, we note

that from (1.1.4) the transmission coefficient for the interface corresponding to the D1-brane

boundary state is

T = sin2 2θ (1.1.22)

with θ → θ′ for the D2/D0-brane boundary state. The normalization factors appearing in

the boundary states are determined by Cardy’s condition, which we will explain for a general

bosonic D-brane state in chapter 4.

Owing to their much less complicated zero mode structure, the boundary states corre-

sponding to interfaces between free fermion CFTs have a simpler construction and can be

expressed entirely in terms of arbitrary O(2) elements. The fermionic analog to (1.1.9) is

(
ψin + iSijψ̄

j
−n
)
|B〉〉 = 0 (1.1.23)
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In contrast to (1.1.11) and (1.1.12) the single fermion has the four possible boundary states

|ε〉〉NS =
∏

n∈N−1
2

exp
(
iεψ−nψ̄−n

)
|0〉 (1.1.24)

|ε〉〉R = 2
1
4

∞∏
n=1

exp
(
iεψ−nψ̄−n

)
|ε〉 (1.1.25)

corresponding to ε = ±1 and the different modings in the Neveu-Schwarz (NS) and Ramond

sectors. Each of these boundary states are normalized via Cardy’s condition as in the bosonic

case. In [26] the various fermionic boundary states were found; for the Neveu-Schwarz sector

we have

|S〉〉NS =
∏

n∈N−1
2

exp
(
iSijψ

i
−nψ̄

j
−n
)
|0〉|0〉 (1.1.26)

and for the Ramond sector

|S〉〉R =
√

2
∞∏
n=1

exp
(
iSijψ

i
−nψ̄

j
−n
)(

cos
φ

2
|+〉|+〉+ sin

φ

2
|−〉|−〉

)
(1.1.27)

where φ is the angle of rotation for the pure rotation part of S; i.e. after writing S as a

rotation composed with an elementary reflection. If S is taken to be of the form (1.1.16) or

(1.1.19) then this angle is θ or θ′, respectively. As the construction generalizes straightfor-

wardly to larger tensor product fermion theories we will not review their explicit construction.

1.2 Entanglement entropy

The entanglement entropy of a region A is defined to be the von Neumann entropy

SA = TrA
[
ρA log ρA

]
(1.2.1)

associated with the reduced density matrix ρA of that region. This reduced density matrix

is a mixed state density matrix obtained by integrating out the degrees of freedom in the

9



complement Ac from the total system in a pure state

ρA = TrAc
[
|Ψ〉〈Ψ|

]
(1.2.2)

and thus encodes the entangling of the degrees of freedom outside A with those inside A.

In this work we will only consider the entanglement entropy of the vacuum state |Ψ〉 = |0〉.

It is generally difficult to calculate (1.2.1) directly; often it is easier to compute the Renyi

entropies

SKA ∝ TrA
[
ρKA
]

(1.2.3)

and evaluate the entanglement entropy as a specific limit

SA = − ∂

∂K
TrA

[
ρKA
]∣∣∣
K=1

(1.2.4)

A particularly attractive feature of the power form of (1.2.3) is that it can be interpreted as

a partition function Z(K) of a K-times copy of the original theory

S = (1− ∂K) logZ(K)
∣∣
K=1

(1.2.5)

This method is known as the replica trick, has been used to calculate entanglement entropy

in a wide variety of theories (see e.g. the seminal work of Calabrese and Cardy [33]).

In higher dimensions and with less symmetry, replica calculations can be quite compli-

cated; however, in two-dimensional CFTs the power of conformal transformations in the

plane allow for a geometric version of the replica trick, which was first formulated in [34].

The method involves mapping the theory on a K-sheeted Riemann surface to a torus, so

that (1.2.5) becomes

Z(K) = Tr
[
(e−δH)K

]
= q−

c
12 Tr

[
qL0+L̄0

]
(1.2.6)

where τ = iδK
2π

and 1
δ

= log L
ε
, with L the length of the entangling region and ε a geometric

10



cutoff at the edges of the entangling region to regulate the short-distance entanglement.

After a modular transformation τ → − 1
τ
, we now have that τ ∝ 1

K
which allows us to write

(1.2.5) directly in terms of the original partition function

SL =

(
1 + log q

∂

∂ log q

)
logZ(1) (1.2.7)

If the vacuum of the CFT is non-degenerate, then the trace in the partition function has the

expansion

Tr
[
qL0+L̄0

]
= 1 + · · · (1.2.8)

where the dots indicate higher (positive) powers of q. Keeping only the terms which are

non-vanishing as the cutoff is removed, we obtain

SL =
c

3
log

L

ε
(1.2.9)

The prefactor of logarithmically divergence is universal and only depends on the central

charge of the CFT. When the vacuum is degenerate the normalization in the expansion (1.2.8)

is changed by introducing factors which have K-dependence other than δK, introducing

additional subleading terms

SL =
c

3
log

L

ε
+ C (1.2.10)

where the prefactors in C are in general dependent on the UV cutoff and thus are not

physical.

For a CFT with a boundary or interface, however, the subleading term C becomes phys-

ically meaningful [33, 35]. To see why, consider the entropy for an entangling region which

is chosen to be an interval lying symmetrically across the interface. Since the removal of

the UV cutoff is equivalent to the limit of infinite interval length, the universal term should

be the same as (1.2.10) as the endpoints of the interval where entanglement is strongest are

symmetrically positioned far away from the location of the interface. Thus the entanglement
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entropy has the same form as (1.2.10)

Ssymm =
c

3
log

L

ε
+ C ′(I) (1.2.11)

where now the subleading term C ′ is a function of the parameters of the interface I. By

considering the relative entropy between a given CFT with an interface and without, one

can extract physical information about the ground state degeneracy of the interface theory.

This difference turns out to be a constant and is called the boundary entropy, which was first

introduced in [36]. Often this symmetric entanglement entropy is written to only include

physical terms, the precise form being

Ssymm =
c

3
log

L

ε
+ log gB (1.2.12)

where the so-called g-factor is the vacuum overlap with the boundary state describing the

interface in the folded picture [37,38]

gB = 〈0|B〉〉 (1.2.13)

There is another choice of entangling region that we can distinguish from the symmetric

interval. We can instead locate the interface at the boundary of the region A and enlarge

A to cover the whole of one of the two CFTs in the limit as L becomes very large, so that

the end-point of the interval is fixed to the location of the interface. As the short distance

entanglement occurs precisely at the location of the interface, the universal term should now

depend on the parameters of the interface

Sasymm =
c

3
f(I) log

L

ε
+ C̃(I) (1.2.14)

We call this the asymmetric entanglement entropy, though sometimes in the literature this

12



is simply referred to as the entanglement entropy at the interface. The function f(I) varies

depending on the CFT; however, in general f(I) must obey some limits. For an interface

that completely decouples the two CFTs it must be the case that f(I) = 0, while for an

interface that is completely transmissive (i.e. topological interfaces) it must be the case that

f(I) = 1/2. The reason that f(I) = 1/2 instead of 1 has to do with the fact that we are

now considering an semi-infinite entangling interval with only one end-point, and thus should

have half the entropy of the two end-point case in (1.2.10). The subleading term C̃(I) is in

general different from the one in (1.2.11).

As the asymmetric entanglement entropy depends strongly on the details of the interface,

it is generally more difficult to calculate than the symmetric entanglement entropy and

therefore is only known in a few cases. Much of this work is focused on calculations of this

type of entanglement entropy, and thus we’ll now devote some attention to the early work

in this area.

1.2.1 Asymmetric intervals in free field theories

Here we review the asymmetric entanglement entropy calculations of [21] and [22] for inter-

faces between free boson and free fermion CFTs. We choose to first highlight the bosonic

calculation as it will be the one most readily generalizable to the junction calculations of

chapter 4. In section 1.1 the starting point for characterizing an interface was to consider

the corresponding boundary state in the folded picture. Once the boundary state is obtained

the folded CFT must then be unfolded to produce the interface operator satisfying (1.1.2)

that is needed for the calculation.

The bosonic boundary states in (1.1.15) and (1.1.18) are unfolded into operators via what

is essentially a parity transformation on the quantities of one of the CFTs [20]

|n,w〉 −→ 〈−n,w| , a−n −→ −ān , ā−n −→ −an (1.2.15)
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Choosing to unfold ϕ2 for the state (1.1.15) produces the interface operator

I1,2 = G1,2

∞∏
n=1

exp

{
1

n

[
S11(θ) a1

−nā
1
−n − S12(θ) a1

−na
2
n − S21(θ) ā2

nā
1
−n + S22(θ) ā2

na
2
n

]}
(1.2.16)

where the ground state operator is given by

G1,2 =

√
k2

1R
2
1 + k2

2R
2
2

2R1R2

∞∑
N,M=−∞

eiNα−iMβ|k2N, k1M〉〈k1N, k2M | (1.2.17)

The expression for the interface operator in (1.2.16) is a formal one, as the negatively-moded

oscillators must be placed on the left side of the ground state operator after the full expansion

of the exponential. An explicit expression for the interface operator can be obtained by a

linearization of the exponential as in (4.1.4), one such choice being

I1,2 =
∞∏
n=1

∫
d2zn d

2z̄n
π2

e−zn·z̄ne−
1
n
zn1a1

−n−(S11z̄n1−S21z̄n2) ā1
−n

×G1,2

∞∏
n=1

e−
1
n
zn2ā2

n−(S22z̄n2−S12z̄n1) a2
n (1.2.18)

With expressions for the interface operator like the above the entanglement entropy can

be calculated through the geometric replica trick of [34], which is illustrated in figure 1.3.

The entanglement entropy is calculated as the usual limit of Renyi entropies of the reduced

density matrix

S = − ∂

∂K
Tr1[ρK1 ]

∣∣∣
K=1

(1.2.19)

The trace of the K-th power of the reduced density matrix is re-written as a partition

function on a K-sheeted Riemann surface RK whose branch cut runs along a time-slice of

CFT1. Cutting off the w-plane outside the annulus ε < |w| < L, the mapping z = logw maps

this K-sheeted region into a rectangular region in the z-plane with Im z = 0 and Im z = 2πK

identified. For ease of calculation we further identify Re z = log ε and Re z = logL so that

the replicated partition function becomes the torus partition function with 2K interfaces
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Figure 1.3: The logarithmic map z = logw maps the K-sheeted Riemann surface – a single branch
of which is shown on the left – to the geometry on the right. The circles on the left part of the
figure correspond to an UV cutoff located at |w| = ε and an IR cutoff located at |w| = L, with
their image under the mapping forming the negative and positive real boundaries of the geometry
on the right. This figure was adapted from [22].

inserted

Z(K) = Tr1

[(
I1,2 q

H2I†1,2 q
H1
)K]

(1.2.20)

for q = e−2πt with t = π/ log(L/ε) after a rescaling of the z-plane (see [21] for more details).

Combined with explicit interface operator expressions like (1.2.18), the operator expression

in (1.2.20) can be used to calculate the exact form of the replicated partition function.

Calculating the commutation of the various operators between the ground state operators

of successive interfaces, the partition function (1.2.20) is written as a 2K-(complex) dimen-

sional Gaussian integral. Thus the final evaluation of Z(K) is performed through calculation

of a determinant and re-expressed in terms of modular functions

Z(K) = g2KK| sin 2θ|K−1θ3

(
itKk2

2α
′

R2
1 sin2 θ

)
θ3

(
itKk2

1R
2
1

α′ cos2 θ

)
[η(2it)]K−3

K−1∏
k=1

θ−1
1 (νk|2it) (1.2.21)

where

sin πνk = | sin 2θ| sin πk
K

(1.2.22)
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The remaining product in the partition function is analytically continued in K, which is

reviewed in appendix 4.A.3, so that from (1.2.5) the entanglement entropy is

S =
1

2
σ
(
| sin 2θ|

)
log

L

ε
− log |k1k2| (1.2.23)

with the function σ(s) in (4.A.49). The function σ(s) increases monotonically from σ(0) = 0

to σ(1) = 1/3, matching the behavior of the universal term expected of the entanglement

entropy of a semi-infinite interval in a c = 1 CFT as discussed at the beginning of this

section.

The entanglement entropy of the fermionic interface follows the same general procedure as

the bosonic interface calculation, i.e. inserting the unfolded interface operators into (1.2.20)

in order to calculate (1.2.5). The fermionic boundary states of (1.1.26) and (1.1.27) are

unfolded into operators via the transformation [20]

|0〉 −→ 〈0| , |ε〉 −→ 〈ε| , ψn −→ −iψ̄−n , ψ̄n −→ iψ−n (1.2.24)

For the fermionic interfaces the explicit expansion of the quadratic operator exponential

is considerably simpler than in the bosonic interfaces due to the fact that for each fixed

mode n the Hilbert space Hn of the corresponding fermionic oscillator is 4-dimensional (as

opposed to the infinite-dimensional situation for the bosonic oscillators). As such, the matrix

representation on the ordered basis {ψ−n|0〉, ψ̄−n|0〉, ψ−nψ̄−n|0〉, |0〉} is

I1,2 =

{∏
n>0

In1,2

}
I0

1,2 (1.2.25)
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where

In1,2 =



S12 0 0 0

0 S21 0 0

0 0 − detS −iS11

0 0 −iS22 1


(1.2.26)

The partition function is then calculated in terms of the four eigenvalues λj,n of the block

matrix

In1,2P
n
2

(
In1,2
)†
P n

1 (1.2.27)

where matrix representations of the propagators are

P n
i =



qn 0 0 0

0 qn 0 0

0 0 q2n 0

0 0 0 1


(1.2.28)

Explicitly for the NS interface, the partition function in terms of the eigenvalues can be

re-expressed in terms of modular functions

Z(K) =
∏

n∈N−1
2

(
λK1,n + λK2,n + λK3,n + λK4,n

)
=

θ3(2it)

[η(2it)]K

K−1∏
k=1

θ3(νk|2it) (1.2.29)

by utilizing the algebraic identity2

K−1∏
k=1

[
x2 − 2xy cos

(
θ +

2πk

K

)
+ y2

]
= x2K − 2xKyK cos (Kθ) + y2K (1.2.30)

The analytic continuation in K is similar to the bosonic case, and the entanglement entropy

2From the form of (1.2.30) it appears that the final equality in (1.2.29) is only valid for odd values of K.
In [22] it was shown that this suffices for calculating the entanglement entropy. Interestingly enough, we will
later show in section 4.2.2 that the expression is valid for even K as well.
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for both the NS and Ramond interfaces is

S =
1

2

[
1

2

√
1− S2

11 − σ
(√

1− S2
11

)]
log

L

ε
(1.2.31)

with the universal term satisfying the same limiting behavior as (1.2.23) for a c = 1/2 CFT.

For reasons that will be discussed more generally in section 4.2.3, the entanglement

entropy of a supersymmetry-preserving conformal interface between two free field theories

can be calculated from the boundary state

|S〉〉super = |S〉〉bos ⊗ |S〉〉ferm (1.2.32)

where |S〉〉bos is one of the boundary states (1.1.15) or (1.1.18), and |S〉〉ferm is either of the

boundary states (1.1.26) or (1.1.27) with the same matrix S as |S〉〉bos. Using this boundary

state, the prefactor in the entanglement entropy becomes

Ssuper =
1

4
s log

L

ε
− log |k1k2| (1.2.33)

where s is either sin 2θ or sin 2θ′. Note the simplified form of the universal prefactor in the

above, which is a result of the high degree of cancellation between the bosonic and fermionic

oscillator contributions to the entropy. All three prefactors discussed in this section are

plotted in figure 1.4.

1.3 Holography

Here we discuss the AdS/CFT correspondence and review some well-known bulk theories

that will be of later interest. The foundational example of the AdS/CFT correspondence

is the duality between type IIB string theory on AdS5 × S5 and N = 4 SU(N) Super-

Yang-Mills theory in four dimensions [39–41]. The large N , large ’t Hooft coupling limit of

the field theory is dual to type IIB supergravity, the low energy limit of the string theory.
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Figure 1.4: Universal prefactors of the entanglement entropy at interfaces between two-dimensional
conformal free field theories. The blue curve is the prefactor for bosonic interfaces (1.2.23), the
yellow curve is the prefactor for fermionic interfaces (1.2.31), and the green curve is the prefactor
for supersymmetric interfaces (1.2.33). Each has been normalized according to (1.2.14) and plotted
as a function of the transmission of the interface (1.1.22).

More generally, the AdS/CFT correspondence involves an inversion of the coupling constants

between the boundary and bulk theories, with the strongest dualities in the large coupling

regimes of the CFT, resulting in the dual gravity description being weakly coupled with

small curvatures. In this work we will stay within this classical gravity limit.

We now set out to make a rough statement of the AdS/CFT correspondence (see e.g.

[42–44] for more detailed presentations). This is usually given as an equivalence between

partition functions

Zgrav[φ] = ZCFT[O] (1.3.1)

For simplicity we’ll consider for the moment a single field φ in the bulk and its dual operator

O on the boundary. The connection between φ and O is seen by examining the asymptotic

behavior of φ. If the action governing φ is quadratic and non-degenerate, then φ has two

independent solutions on the boundary determined by its equation of motion in AdS and

two boundary functions

φ(η, x) =
j(x)

η∆−
+ · · ·+ O(x)

η∆+
+ · · · (1.3.2)

where η is a radial coordinate such that η → ∞ approaches the spacetime boundary and
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x are the d − 1 coordinates of the boundary (we have set the AdS radius to 1). The dots

represent the subleading terms of each solution, whose x-dependence is governed by j(x)

and O(x), respectively. The values of the constants ∆− and ∆+ satisfy3 ∆− ≤ ∆+, with the

particular values depending on the mass/spin of φ as well as the spacetime dimension. Thus

in order for a well-defined variational principle we must either set j(x) = 0 or else consider

it fixed; i.e. we take as a boundary condition

lim
η→∞

η∆−φ(η, x) = j(x) (1.3.3)

for some fixed j(x), so that O(x) is the dynamic part of φ(η, x) which is sourced by j(x).

We can then re-write (1.3.1) in a more descriptive form

e iSgrav[φcl(η,x) ; j(x)] =
〈
e i
∫
∂AdS d

d−1x j(x)O(x)
〉

(1.3.4)

where Sgrav[φcl(η, x) ; j(x)] is the classical action for the classical field solution φcl(η, x) sub-

ject to the boundary condition (1.3.3). From the above we see that the one-point function of

the dual boundary operator can be determined as a variation of bulk boundary conditions

〈O(x)〉 =
1

i

δZCFT

δj

∣∣∣
j=0

=
δSgrav

δj

∣∣∣
j=0

(1.3.5)

which is a useful way to identify dual operators without needing to examine solutions to

bulk equations of motion.

Here we have only considered a single field governed by a second-order wave equation.

When we incorporate more fields it is possible for the boundary conditions of one field to

source the dynamic parts of other fields, a fact we will make explicit use of in chapter 5.

Additionally, one can consider fields governed by first-order equations, in which case we still

have the basic feature that half of all independent classical solutions must be fixed for a good

3If ∆− = ∆+ the j(x) solution picks up a log η dependence.
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variational principle to exist. We will defer more discussion of this to section 1.3.2.

Besides linking bulk fields to their dual boundary operators, there exist other entries in

the holographic dictionary mapping observable quantities in the boundary to those in the

bulk. In particular, we will make use of the Ryu-Takayanagi prescription [15], which states

that the entanglement entropy in a CFT can computed holographically via

SA =
A[Γ]

4GN

(1.3.6)

where A[Γ] is the area of the static co-dimension 2 minimal surface in the bulk whose

boundary coincides with the edge of the boundary entangling region, i.e. ∂Γ = ∂A. The

motivation behind this prescription comes from noting that when the information in a region

of the boundary becomes inaccessible there must be some horizon in the bulk hiding a part of

the spacetime from bulk observers. The entropy associated with integrating out the degrees

of freedom behind the horizon should then be proportional to the area of the horizon as

given by the Beckenstein-Hawking formula. Selecting the minimal surface as the horizon

then corresponds to assigning the lowest entropy possible for the lost information.

1.3.1 Janus solutions

Janus solutions [45–48] are holographic realizations of conformal interfaces4. In particular, we

are interested in solutions which are asymptotically AdS3×X7 – where X7 is a 7-dimensional

compact manifold – in order to connect with two-dimensional CFT interfaces. Here we review

the basic features of both a non-supersymmetric and a supersymmetric solution, and leave

calculations of entanglement entropy in these solutions to chapter 2.

The Janus solutions we’ll describe are both constructed as fibrations of AdS2×Y8−d over

a base manifold Σd (here Y8−d is compact and Σd contains a single non-compact dimension),

thus to better understand the nature of the solutions we’ll first review the AdS2-slicing

4See [49–51] for other approaches to describe interfaces in AdS.

21



coordinates of AdS3. As a starting point, consider the standard Poincaré AdS3 metric

ds2 =
1

η2

(
dη2 + dx2 − dt2

)
(1.3.7)

where the boundary is reached by η → 0. If we make the coordinate transformation

µ = tanh−1

(
x√

η2 + x2

)
, z =

√
η2 + x2 (1.3.8)

the metric (1.3.7) becomes

ds2 = dµ2 + cosh2 µ
dz2 − dt2

z2
(1.3.9)

from which we see that constant µ slices of the bulk are AdS2 geometries. In these coor-

dinates, the boundary of AdS3 consists of three components: two half-spaces reached by

taking µ → ±∞ and the common boundary of the AdS2 slices reached by taking z → 0.

While it may seem that the three conformal boundary components are disconnected this is

an artifact of the coordinate system which can be seen by examining the mapping (1.3.8)

(see figure 1.5), which shows that the boundary half-spaces µ → ±∞ are glued together at

the interface z = 0.

The non-supersymmetric Janus solution was constructed in [52]. Through dimensional

reduction we can take three-dimensional Einstein gravity with a negative cosmological con-

stant coupled to a massless scalar (e.g. the dilaton field) as a starting point

S[g, φ] =
1

16πGN

∫
d3x
√
g
(
R− ∂µφ ∂µφ+

2

`2

)
(1.3.10)

The Janus solution solves the equations of motion coming from this action and is given by

ds2 = `2
(
dµ2 + f(µ)

dz2 − dt2

z2

)
(1.3.11)
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Figure 1.5: AdS2 slicing in Poincaré coordinates. Curves of constant µ (blue) and z (red) illustrate
how the spatial boundary coordinate on one side of the boundary interface extends through the
bulk to the opposite side of the boundary interface.

where

f(µ) =
1

2

(
1 +

√
1− 2γ2 cosh(2µ)

)
(1.3.12)

and

φ(µ) = φ0 −
√

2 tanh−1

(
−1 +

√
1− 2γ2

√
2γ

tanhµ

)
(1.3.13)

The solution depends on one parameter γ, and from (1.3.12) and (1.3.9) we see that γ = 0

corresponds to pure AdS3. The holographic solution corresponds to an interface connecting

two half-spaces which are reached on the boundary of the spacetime by taking µ → ±∞.

The massless scalar φ takes two asymptotic values in this limit and as shown in [53] the

jump in φ can be identified with the jump in the radius of the free boson

R2

R1

=
limµ→+∞ e

−φ/2

limµ→−∞ e−φ/2
= exp

{
√

2 tanh−1

(
−1 +

√
1− 2γ2

√
2γ

)}
(1.3.14)
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or

γ =
1√
2

tanh

(√
2 log

R1

R2

)
(1.3.15)

where R2 is taken to be the smaller of the two radii.

The supersymmetric Janus solution of type IIB which is locally asymptotic to AdS3 ×

S3 ×M4, where M4 is either T4 or K3, was constructed in [54] (see [55, 56] for some earlier

work in this direction and [57, 58] for generalizations). The ten-dimensional Janus metric is

constructed as a fibration of AdS2 × S2 ×M4 over a two-dimensional Riemann surface Σ

ds2 = f 2
1ds

2
AdS2

+ f 2
2ds

2
S2 + f 2

3ds
2
M4

+ ρ2dwdw̄ (1.3.16)

All fields depend on the coordinates w, w̄ of the surface Σ. For the supersymmetric Janus

solution we choose Σ as an infinite strip as follows

w = x+ iy, x ∈ [−∞,+∞], y ∈ [0, π] (1.3.17)

The boundaries of the strip are located at y = 0, π. Asymptotically the real coordinate on

the strip joins the coordinates of the AdS2 factor to form an AdS3 factor (and hence is the

analog of the fibered coordinate µ in the non-supersymmetric solution), while the imaginary

coordinate on the strip asymptotically becomes the polar angle of an S3 factor containing

the S2 factor. The supersymmetric Janus solution depends on four parameters k, `, θ and

ψ. The dilaton and axion are given, respectively, by

e−2φ = k4 cosh2(x+ ψ) sech2ψ +
(

cosh2 θ − sech2ψ
)

sin2 y(
coshx− cos y tanh θ

)2 (1.3.18)

χ = −k
2

2

sinh 2θ sinhx− 2 tanhψ cos y

coshx cosh θ − cos y sinh θ
(1.3.19)
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The metric factors on Σ and M4 are

ρ4 = e−φ
`2

k2

cosh2 x cosh2 θ − cos2 y sinh2 θ

cosh2(x+ ψ)
cosh4 ψ

f 4
3 = e−φ

4

k2

coshx cosh θ − cos y sinh θ

coshx cosh θ + cos y sinh θ
(1.3.20)

The following expressions for the AdS2 and S2 metric factors will be useful

f 2
1

ρ2
=

cosh2(x+ ψ)

cosh2 θ cosh2 ψ

ρ2

f 2
2

=
1

sin2 y
+

cosh2 θ cosh2 ψ − 1

cosh2
(
x+ ψ

) (1.3.21)

While the form of the anti-symmetric tensor fields is not essential, we quote from [54] the

expressions for the D1 and D5 brane charges

QD5 = 4π2k`Vol(M4) coshψ cosh θ

QD1 =
16π2`

k
coshψ cosh θ (1.3.22)

The dual CFT is a N = (4, 4) SCFT which, at a particular point of its moduli space, is a

(M4)QD1QD5/SQD1QD5
orbifold. The central charge c of this CFT takes the following form

c =
6

4πκ2
10

QD1QD5 =
3× 32 π3 Vol(M4) `2

κ2
10

cosh2 ψ cosh2 θ (1.3.23)

1.3.2 Chern-Simons theories

Topological field theories have a wide use in condensed matter, high energy and mathematical

physics, with one of the best-studied examples being three-dimensional Chern-Simons (CS)

theory [59]. In the context of the AdS3/CFT2 correspondence, Abelian CS theory is entirely

responsible for the introduction of objects in the CFT which are charged under global U(1)

currents. Additionally, CS fields have a natural origin from compactifications of type II
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string theory or M-theory (see e.g. [60]). In the presence of Maxwell kinetic terms the gauge

fields decompose into massive gauge fields and a flat topological sector [61], and since our

interest with CS theory in this work is to answer topological questions we do not take the

Maxwell terms into account. For discussion of Maxwell-Chern-Simons theories in the context

of AdS/CFT see e.g. [62–64].

Consider a theory of N Abelian gauge fields AI , I = 1, 2, . . . , N on a 3-manifold M, all

with period 2π and with action given by

SCS =
KIJ

4π

∫
M
AI ∧ dAJ (1.3.24)

whereKIJ is a symmetric matrix called the level matrix. Following [65], we note that the level

matrix K has to be integer-valued and even for the theory to be well-defined on topologically

nontrivial surfaces under large gauge transformations. The CS theory is a topological field

theory as the action is independent of a metric on M. The equations of motion following

from (1.3.24) force the connections AI to be flat

KIJ dA
J = 0, I = 1, 2, . . . , N (1.3.25)

and hence there are no local propagating degrees of freedom. The only global gauge invariant

observables are Wilson lines; however, for three-dimensional manifolds with boundary there

can be nontrivial dynamical fields on the boundary relating three-dimensional CS theory to

two-dimensional CFTs [59].

There are several uses for three-dimensional CS theory in AdS3/CFT2. First, there is

the reformulation of three-dimensional gravity in AdS3 in terms of an SL(2,R) × SL(2,R)

CS theory [66,67] and the subsequent formulation of higher spin gravity as a CS theory (see

e.g. [68, 69]). Here we will consider a different setup, namely the addition of Abelian CS

matter to Einstein gravity.

Consider an asymptotically AdS3 spacetime in Fefferman-Graham form, with the AdS3
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boundary located at η = +∞

ds2 = dη2 + e
2η
` g

(0)
αβ dx

αdxβ + g
(2)
αβ dx

αdxβ +O[e−
2η
` ] (1.3.26)

In the gauge AIη = 0 the asymptotic form of a gauge field for a general action, including

Maxwell or higher derivative terms, is given by

AIα = AI(0),α + e−
2η
` AI(2),α +O[e−

3η
` ] (1.3.27)

where AI(0) is flat and only determined through the CS part of the action. As the equation

of motion (1.3.25) is first-order, a good variational principle allows us to hold fixed only one

boundary component of AI(0),α. However, the CS action is then not stationary due to the

appearance of a boundary term in the variation. The standard resolution (see e.g. [60]) is to

add a counter term to the action (1.3.24)

SCT =
1

8π
KIJ

∫
d2z
√
−g(0) g(0),αβAI(0),αA

J
(0),β (1.3.28)

With the addition of this counter term and a flat boundary metric g
(0)
αβ = ηαβ, the variation

of the action becomes

δStotal = δ(SCS + SCT) =
1

2π
KIJ

∫
d2z AIzδA

J
z̄ (1.3.29)

Hence we can identify Az̄ with the source and the dual current is purely holomorphic

JI,z =
δStotal

δAIz̄
=

1

2π
KIJA

J
z (1.3.30)

The holomorphic stress tensor can be obtained from (1.3.28) and takes the following form

Tzz =
π

2
KIJJI,zJJ,z (1.3.31)
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where KIJ is the inverse of the matrix KIJ . If we instead wish to source anti-holomorphic

currents, we then subtract the counter term (1.3.28). In this case we can identify Az with

the source, so that the dual current is purely anti-holomorphic

JI,z̄ =
δStotal

δAIz
= − 1

2π
KIJA

J
z̄ (1.3.32)

and the anti-holomorphic stress tensor takes the form

Tz̄z̄ = −π
2
KIJJI,z̄JJ,z̄ (1.3.33)
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Chapter 2

Entanglement Entropy at Holographic

Interfaces

As the Janus solutions reviewed in section 1.3.1 are dual to conformal interfaces, it is natural

to use the Ryu-Takayanagi prescription (1.3.6) to calculate entanglement entropy for these

solutions and compare the results to CFT calculations. For the symmetric entangling surface

this was done in [35] using the non-supersymmetric Janus solution in three dimensions and

in [53] using the supersymmetric Janus solution in six dimensions. In both cases the minimal

surfaces were found to wrap all dimensions other than the spatial coordinate of the AdS2

factor; i.e. the surfaces were described by z = L/2 (red curves in figure 1.5), as they would

be in undeformed AdS3. After suitable regularization, the boundary entropy was calculated

from the minimal surface area to be

Sbndy =
c

6
log

1√
1− 2γ2

(2.0.1)

for the non-supersymmetric Janus solution, and

Sbndy =
c

3
log (coshψ cosh θ) (2.0.2)
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for the supersymmetric Janus solution, where in each we have written the result in terms of

the central charge of the dual CFT for the sake of comparison.

Our aim in this chapter is to calculate the asymmetric entanglement entropies in these

solutions and compare them with the symmetric results and CFT calculations. In section

2.1 we consider the non-supersymmetric Janus solution where we identify the asymmetric

minimal surface, compute the entanglement entropy, and compare the results with (1.2.23)

and (2.0.1). In section 2.2 we go through the same calculations with the supersymmetric

Janus solutions and compare the results with (1.2.33) and (2.0.2). In section 2.3 we provide

some discussion of the results and provide some concluding remarks.

2.1 Non-supersymmetric Janus solution

According to the Ryu-Takayanagi prescription the holographic entanglement entropy is de-

termined by finding the area of a minimal surface (at constant time) which at the boundary

of the bulk spacetime coincides with the boundary ∂A of the entangling region A. In this

note we calculate the entanglement entropy for the entangling region on one side of the inter-

face. We give a sketch of this geometry (b) in figure 2.1 and contrast it with the symmetric

case depicted in (a).

In three dimensions the minimal surface Γ at fixed t is a curve and we have to choose

an embedding. As we want the curve to be anchored on the boundary at the location of

the interface the appropriate choice for the embedding is µ = µ(z) so that we can directly

investigate solutions which are regular as z → 0. For this choice the induced line element

leads to the following action

A[Γ] =

∫
dz

√
f(µ)

z2
+

(
∂µ

∂z

)2

(2.1.1)
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Figure 2.1: Two different geometries for the entangling region A and interface I: (a) the entangling
region is placed symmetrically about the interface, (b) the entangling surface is on one side of the
interface. Γ is a sketch of the respective minimal surfaces in the bulk.

The minimal area is found by solving the Euler-Lagrange equation which follows from (2.1.1)

f ′(µ)

(
1

z2
+

(∂zµ)2

f(µ) + z2(∂zµ)2

)
− 2

z

f(µ) (∂zµ+ z∂2
zµ)

f(µ) + z2(∂zµ)2
= 0 (2.1.2)

Solutions to the Euler-Lagrange equation can explored through the Hamiltonian flow corre-

sponding to the area functional (2.1.1); i.e. for the canonical conjugate

πµ =
∂zµ√

f(µ)
z2 + (∂zµ)2

(2.1.3)

the corresponding Hamilton equations are

∂zπµ =
f ′(µ)

2z

√
1− π2

µ

f(µ)
(2.1.4)

∂zµ =
πµ
z

√
f(µ)

1− π2
µ

(2.1.5)

Due to the common explicit dependence on z in the above, we can directly plot the streams

of the vector field ∂µπµ in phase space; see figure 2.2. There is just one fixed point in the
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Figure 2.2: Extremal surface phase spaces for the non-supersymmetric Janus solution. The
top is purely AdS3 (γ = 0) and the bottom is near the maximum deformation (γ ∼ 1/

√
2).

phase plane, an unstable saddle at the origin with opening angle

cos−1

(
−1 + 3

√
1− 2γ2

1 + 5
√

1− 2γ2

)
(2.1.6)

which monotonically increases from cos−1(1/3) when γ = 0 to π as γ → 1/
√

2. Thus we see

that the only solution for which ∂zµ remains bounded for all z (a necessary condition for

solutions which reach arbitrarily far into the bulk) is µ(z) = 0. It is easy to see that this

solution is indeed an absolute minimum for the length, as µ = 0 minimizes the first term

and ∂zµ = 0 minimizes the second term under the square root in the functional (2.1.1).

The holographic entanglement entropy is then given by

Shol =
`

4GN

√
f(0)

∫
dz

z

=
c

6
√

2

√
1 +

√
1− 2γ2 log

L

ε
(2.1.7)

32



where we have regulated the divergent integral over z and used the Brown-Henneaux relation

c = 3`
2GN

. In order to compare the functional dependence it is useful to expand the result as

a power series in terms of small γ, for the holographic entanglement entropy one finds

Shol =
(

1− 1

4
γ2 − 5

32
γ4 +O[γ6]

) c

6
log

L

ε
(2.1.8)

We can compare this to the CFT result for the entanglement entropy (1.2.23). We set

k1 = k2 = 1 which makes the constant term vanish, and expanding (4.A.49) around s = 1

gives

1

2
σ(s) =

1

6
− 1

8
(1− s)− 1

4π2
(1− s)2 +O[(1− s)3]

=
1

6
− 1

16
γ2 −

(
11

192
+

1

16π2

)
γ4 +O[γ6] (2.1.9)

where we have used the expansion

s = 1− γ2

2
− 11

24
γ4 +O[γ6] (2.1.10)

which follows from (1.1.14) and (1.3.14). Using this expansion in the CFT entanglement

entropy (1.2.23) and restoring a general value for the central charge (i.e. by considering c

copies of the single boson) gives

SCFT =
(

1− 3

8
γ2 −

(
11

32
+

3

8π2

)
γ4 +O[γ6]

) c

6
log

L

ε
(2.1.11)

Comparing (2.1.9) and (2.1.11) shows that the two expressions only agree for γ = 0 which

corresponds to the case where no interface is present. This result is to be contrasted with

the result (2.0.1) of [35], where agreement to order γ2 was found between the holographic
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Figure 2.3: Comparison of non-supersymmetric entanglement entropy factors arising in holographic
calculations (blue curves) and CFT calculations (yellow curves). On the left the universal prefactors
of the asymmetric entanglement entropy are plotted and on the right the constant term of the
symmetric entanglement entropy are plotted, all against the Janus deformation parameter γ.

entanglement entropy

Shol =
c

6
log

1√
1− 2γ2

=
c

6

(
γ2 + γ4 +O[γ6]

)
(2.1.12)

and the (2c/3 times copied) CFT entanglement entropy

SCFT = − c
3

log s =
c

6

(
γ2 +

7

6
γ4 +O[γ6]

)
(2.1.13)

given by (1.2.11) and (1.1.15). The results of the holographic and CFT calculations are

plotted in figure 2.3 for both the symmetric and asymmetric entanglement entropies.

2.2 Supersymmetric Janus solution

In the supersymmetric solution the non-compact coordinate x of Σ is the along of the co-

ordinate µ of the non-supersymmetric solution, thus we will embed this coordinate. We

parametrize the minimal surface for the entanglement entropy by t = t0 and x = x(z, y), i.e.

the eight-dimensional surface is spanned by ξa = {z, y, φ1, φ2} and the four coordinates of
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M4. The induced metric is then given by

γab =
∂xµ

∂ξa
∂xν

∂ξb
gµν (2.2.1)

and the action for the minimal surface is

A[Γ] =

∫
d8ξ
√

det γ (2.2.2)

=

∫
M4

dV

∫
dφ1 dφ2 sinφ1

∫
dz dy

1

z
f 2

2 f
4
3ρ
√
f 2

1 (1 + (∂yx)2) + z2ρ2(∂zx)2 (2.2.3)

The Euler-Lagrange equation following from (2.2.2) is given by

0 =
1

z
∂x

(
f 2

2 f
4
3ρ
√
f 2

1 (1 + (∂yx)2) + z2ρ2(∂zx)2

)
− ∂z

(
zf 2

2 f
4
3ρ

3 ∂zx√
f 2

1 (1 + (∂yx)2) + z2ρ2(∂zx)2

)
− ∂y

(
f 2

1 f
2
2 f

4
3ρ ∂yx

z
√
f 2

1 (1 + (∂yx)2) + z2ρ2(∂zx)2

)
(2.2.4)

While it seems formidable to find a solution to (2.2.4), a simple solution can be found by

specializing to surfaces which wrap the y coordinate. Using the expression for the dual

central charge (1.3.23), we note that the action can be written as

A[Γ] =
cκ2

10

6π

∫
dz dy sin2 y

√
f(x)

z2

(
1 + (∂yx)2

)
+ (∂zx)2 (2.2.5)

with

f(x) =
cosh2(x+ ψ)

cosh2 ψ cosh2 θ
(2.2.6)

owing to (1.3.21) and

f1f
2
2 f

4
3ρ = 4`2 coshψ cosh θ cosh(x+ ψ) sin2 y (2.2.7)
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This is nearly the same form as (2.1.1), the major difference being the ∂yx term. Taking this

to be zero to minimize its term under the square root, the action becomes

A[Γ] =
cκ2

10

12

∫
dz

√
f(x)

z2
+ (∂zx)2 (2.2.8)

Interestingly, this is proportional to the action of a minimal surface in a time-slice of empty

AdS3, which can be seen from the coordinate transformation

µ→ x+ ψ and z → zsechψ sech θ (2.2.9)

applied to the metric (1.3.9). Thus, from the arguments of the previous section, the constant

solution x = −ψ is the appropriate minimal surface. Since the expression under the square

root in the action functional (2.2.5) is the sum of positive terms which are all minimized

by the solution, we have indeed an absolute minimum as demanded by the Ryu-Takayanagi

prescription.

For this solution the area is given by

A =
cκ2

10

12

√
f(−ψ)

∫
dz

z
=

cκ2
10

12 coshψ cosh θ
log

L

ε
(2.2.10)

and the holographic entanglement entropy can then be expressed as

Shol =
A

4G
(10)
N

=
1

cosh θ coshψ

c

6
log

L

ε
(2.2.11)

where we used the identification 1/16G
(10)
N = 1/2κ2

10. In order to compare the holographic

result (2.2.11) to the CFT (1.2.33) we have to set θ = 0, which on the CFT side corresponds to

an interface where only the radius of M4 jumps and there is no jump of the RR modulus [53].

The jump of the radius can be identified with the parameter ψ of the supergravity solution
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as follows [53]

R2

R1

= eψ (2.2.12)

and hence

2 coshψ =
R1

R2

+
R2

R1

(2.2.13)

The identification of s is then given by

s = sin 2θ =
2R1R2

R2
1 +R2

2

=
1

coshψ
(2.2.14)

Hence in this special case the holographic entanglement entropy (2.2.11) becomes

Shol =
c

6
s log

L

ε
(2.2.15)

which is in exact agreement with the CFT result (1.2.33) if we replace the value c = 3/2 for

a real boson and a real fermion with the general value of the central charge, again setting

k1 = k2 = 1. As far as this identification is concerned in our case the symmetric orbifold

CFT which is dual to supergravity on AdS3×S3×M4 can simply be viewed as 4N = 4Q5Q1

copies of the c = 3/2 system. This is precisely the same exact agreement found in [53],

which can be seen from the equality between (2.1.13) and (2.0.2) with θ = 0 and ψ given by

(2.2.14).

2.3 Discussion

In this chapter the holographic entanglement entropy was calculated for a surface A which

lies on one side of a conformal interface. It is interesting to contrast the result (2.1.7) with

the result for the entanglement entropy for a surface which is lying symmetrically across the
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interface

Ssymm
A =

c

6
log

L

ε
+
c

6
log

1√
1− 2γ2

(2.3.1)

Note that for the geometric setup discussed in this note the logarithmically divergent term

does not have a universal prefactor c/6 but depends on the parameters of the interface via

the function
√
f(0). This difference makes sense as the interface is located at the boundary

between A and its complement, where the entanglement between the two regions is strongest.

It is also interesting to compare the holographic calculations of the entanglement entropy

for the two cases. In [35] the non-supersymmetric Janus solution was used to calculate (2.3.1)

and in particular the holographic boundary entropy log gB was calculated. A comparison

with the CFT calculation led to an agreement of log gB to first nontrivial order in the

deformation parameter γ. In section 2.1 we found that in our case the result disagrees even

to the lowest nontrivial order in γ.

This state is to be contrasted with the supersymmetric Janus solution where both for

the symmetric entangling region [53] and the asymmetric case calculated in section 2.2 the

CFT and the holographic entanglement entropy agree. Note that the CFT and the gravity

calculations are performed at very different points in the moduli space of the dual CFT. It

is likely that the high degree of supersymmetry allows the extrapolation of the results from

one point to the other1.

The supersymmetric Janus solution depends on two parameters θ and ψ and we set θ = 0

for the comparison. The parameter θ corresponds to an RR modulus and consequently to a

twist field in the symmetric orbifold CFT. It would be interesting to see whether the CFT

calculation can be performed for a general interface operator I1,2 which includes a jump in

the twist field.

Recently the CFT at the symmetric orbifold point has been conjectured to be dual to a

1In a recent paper [70] the entanglement entropy in a (nonsupersymmetric) holographic model of the
Kondo model was calculated and agreement with field theory results was found.
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higher spin theory [71,72]. The region in moduli space where supergravity is valid is far re-

moved from this point. Supersymmetry seems to make the result of the entanglement entropy

independent of where on its moduli space the theory is. It would be interesting to investi-

gate whether it is possible to construct the relevant interface theories in the Chern-Simons

formulation following [73] and calculate the entanglement entropy following the proposals

relating the entanglement entropy and the Wilson loop in higher spin theory [74–76].
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Chapter 3

Entanglement Entropy at RCFT

Topological Interfaces

As discussed in section 1.1, the stronger topological interface condition (1.1.6) allows for

interface operators to be found in larger classes of theories. In particular, through the work

of Petkova and Zuber [77, 78] interface operators were found for topological interfaces in a

general (diagonally embedded) rational CFT (RCFT). RCFTs encompass a large number of

interesting theories, including the minimal models, the free compactified boson at certain

radii, and Liouville theory. While it is interesting to explore the entanglement entropy

for interfaces in larger classes of theories, topological interfaces have special properties not

present in a general conformal interface. One can define a fusion product of topological

interfaces by bringing two of them close together [20]. It has also been argued in [11, 79,

80] that topological interfaces can furnish spectrum generating symmetries. Topological

interfaces have been constructed for a single free boson in [19, 29] and for N free bosons

compactified on an N -dimensional torus in [26]. Topological interfaces in orbifold theories

have been studied in [30].

The focus of this chapter is to calculate the entanglement entropy for both symmetric

and asymmetric intervals around topological interfaces in RCFTs. The structure of the
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chapter is as follows: in section 3.1 we review the construction of topological interfaces in

rational CFTs which goes back to the work of Petkova and Zuber [77, 78]. In section 3.2

we adapt the calculation of [21, 22] (reviewed in section 1.2.1) to calculate the asymmetric

entanglement entropy1. In section 3.3 we again adapt the calculation of [21,22] to re-derive

the symmetric entanglement entropy (1.2.12) and also give an argument that the location

of the interface does not change the result as long as it is a finite distance away from the

boundaries of the entangling interval. In section 3.4 we compare the entanglement entropies

for various specific cases. We also include the recently computed left/right entropy [82, 83]

for reference. In section 3.5 we use the construction of topological interfaces in Liouville

theory given in [84,85] to attempt a calculation of the entanglement entropy for this system.

We close with a discussion of our results in section 3.6.

3.1 Topological interfaces in RCFT

In this section we consider the construction of topological interfaces in rational CFTs. A

rational CFT (RCFT) [86] contains a finite number of primary states and hence a finite

number of representations of the Virasoro algebra, labeled by i, with characters χi(q). The

partition function on the torus is given by

Z =
∑
i,j̄

Zij̄ χi(q)χj̄(q̄) (3.1.1)

where Zij̄ are positive integers which denote how many times a representation appears in

the spectrum of the theory. We mostly limit ourselves the the case where Zij̄ = δij̄ and the

theory has a diagonal spectrum.

The canonical examples for rational CFTs2 are the unitary minimal models which have

1While the paper [2] this chapter is based on was finalized a paper [81] appeared, which has significant
overlap with the material presented in section 3.2.

2We limit ourselves to minimal models with respect to the Virasoro algebra here, generalizing the discus-
sion to rational CFTs with respect to extended conformal algebras would be very interesting.
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central charge

c = 1− 6

m(m+ 1)
, m = 3, 4, · · · (3.1.2)

and the primaries are labeled by two integers r = 1, 2, . . . ,m− 1 and s = 1, 2, . . . r and have

conformal dimension

hr,s =

(
(m+ 1)r −ms

)2 − 1

4m(m+ 1)
(3.1.3)

The simplest minimal model is the Ising model which has m = 3 and hence we have c = 1
2

and there are three primaries with h = 0, h = 1
2

and h = 1
16

.

In [77, 78] twisted partition functions for rational CFTs were studied. They are charac-

terized by the insertion of an operator I into the partition function, where I satisfies

[Ln, I] = [L̄n, I] = 0 (3.1.4)

In [77] a classification of such operators was given analogous to the construction of Cardy

states [25]. For the diagonal theories one finds

Ia =
∑
i

Sai
S0i

P īi (3.1.5)

Here P īi is a projector on the space spanned by the i-th primary and its descendants

P īi =
∑
nn̄

|i, n〉 ⊗ |i, n̄〉〈i, n| ⊗ 〈i, n̄| (3.1.6)

This means that in the simple diagonal case there are as many topological interfaces as there

are primaries, where for simplicity we assume that each primary only appears once in the

theory; a degeneracy can be easily included in the construction.3 The matrix S is the modular

3See [87] for a discussion of more general projectors including non-diagonal theories.
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S matrix which denotes how the characters transform under modular transformation

χ
(
− 1

τ

)
=
∑
j

Sijχj(τ) (3.1.7)

where τ is defined by q = e2πiτ . The conjugate interface operator is given by

I†a =
∑
i

(
Sai
S0i

)∗
P īi (3.1.8)

In summary it is notable that the classification of [77,78] of twisted partition functions also

provides us with a classification of topological interfaces in RCFTs.

3.2 Entanglement entropy at a topological interface

The K-th partition function with a topological interface (3.1.5) labeled by a primary a

inserted is

Za(K) = Tr
[(
Iaq

L0− c
24 q̄L̄0− c

24 I†aq
L0− c

24 q̄L̄0− c
24

)K]
= Tr

[
(IaI

†
a)
Kq2K(L0− c

24
)q̄2K(L̄0− c

24
)
]

=
∑
i

∣∣∣∣SaiS0i

∣∣∣∣2K χi(q2K)χī(q̄
2K) (3.2.1)

where we have introduced q = q̄ = e−t. In the second line we have used (3.1.4) to commute

Ia through the Hamiltonian and in the third line we used the fact that the P ii in (3.1.5) are

projectors to the i-th representation so that the trace produces the associated character χi.

Since we are interested in taking the UV cutoff ε→ 0 (and equivalently taking L→∞),

we have to evaluate (3.2.1) in the limit q → 1. With the identification of a new modular

parameter τ ′ by

q2K = e−2Kt = e2πiτ ′ (3.2.2)
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with t = 2π2/ log(L/ε), the limit can taken by performing a modular transformation on the

characters

lim
q→1

χi(q
2K)χī(q̄

2K) = lim
τ ′→0

χi(τ
′)χi(τ̄

′)

= lim
τ ′→0

∑
j,k

SijS
∗
ik χj(−1/τ ′)χk(−1/τ̄ ′)

=
∑
j,k

SijS
∗
ike

π2c
6Kt e−

2π2hj
Kt e−

2π2hk
Kt

(
1 +O[e−2π2/Kt]

)
(3.2.3)

In the limit t→ 0 the leading contribution in (3.2.3) will come from the vacuum characters

which have hj = hk = 0. In that case the partition function (3.2.1) becomes

Za(K) ≈ exp

(
c

12K
log

L

ε

)∑
i

|Sai|2K |S0i|2−2K + · · · (3.2.4)

where the dots indicate terms which vanish as the cutoff is taken to zero. Further calculating

(
1− ∂K

)
log

(∑
i

|Sai|2K |S0i|2−2K

)∣∣∣
K=1

= −2

∑
i |Sai|2K |S0i|2−2K (log |Sai| − log |S0i|)∑

j |Saj|2K |S0j|2−2K

∣∣∣
K=1

= −2
∑
i

|Sai|2 log

∣∣∣∣SaiS0i

∣∣∣∣ (3.2.5)

where we have repeatedly used the fact that S is symmetric, unitary, and in particular the

relation
∑

j |Saj|2 = 1. Putting everything together we arrive at the following expression for

the entanglement entropy at a topological interface

Sa =
c

6
log

L

ε
− 2

∑
i

|Sai|2 log

∣∣∣∣SaiS0i

∣∣∣∣ (3.2.6)

3.3 Symmetric and left/right entanglement entropy

For an interface which is located symmetrically on the entangling intervalA the entanglement

entropy is given by (1.2.12), with the subleading constant term related to the boundary g-
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factor which is determined by the overlap of the boundary state corresponding to the doubled

interface with the vacuum state. For the topological interface (3.1.5) the boundary state

becomes

|Ba〉〉 =
∑
i

Sai
S0i

∑
n,n̄

|i, n〉 ⊗ |i, n̄〉|i, n̄〉 ⊗ |i, n〉 (3.3.1)

Consequently the g-factor is given by

gB =
Sa0

S00

(3.3.2)

and the symmetric entanglement entropy becomes

Ssymm
a =

c

3
log

L

ε
+ log

Sa0

S00

(3.3.3)

Up to now we have considered the symmetric case where the interface is located at the

center of the entangling interval A. There is however a simple argument showing that for

topological interfaces the location of the interface does not change the result as long as it

is a finite distance away from the boundary of the entangling interval. We illustrate the

argument in figure 3.1. We start in the ζ plane with a finite interval A with boundary at

ζ = 0 and ζ = l, where the interface is located along ζ = y + iξ, ξ ∈ R. We map the ζ plane

into the w plane by the map

z =
ζ

l − ζ
(3.3.4)

This maps the finite interval to the positive real axis and the interface gets mapped to an

off-center circle. Finally we perform the replica map to the z coordinate via z = logw and

impose periodic boundary conditions as before at the cutoff z = log ε and z = logL. This

produces again a torus. Unlike the case of the interface at the boundary here the interface
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Figure 3.1: Mapping of a non-central interface to the replica torus.

is mapped into a vertical curve on the torus. For a topological interface it is clear that the

shape can be changed and changing the location along the real part of z corresponds to

changing the original location y of the interface. This shows that partition function on the

K-th sheeted Riemann surface is independent of y as long as the interface is a finite distance

away form the cutoffs. We can be more specific and evaluate the partition function

Za(K) = Tr[Iae
−tH ]

=
∑
i

Sai
S0i

χi(q)χi(q̄) (3.3.5)

where q = q̄ = e−
π2

Kt where again t = 2π2/ log(L/ε), hence in the limit of vanishing cutoff the

sum over representations in the partition function gets projected on the vacuum character
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and one has

Za(K) ∼ Sa0

S00

exp

(
c

12K
log

L

ε

)
+ · · · (3.3.6)

Applying the replica formula (1.2.5) one obtains

Ssymm
a =

c

6
log

L

ε
+ log

Sa0

S00

(3.3.7)

Comparing (3.3.7) with (3.3.3) one notices an extra factor of 1/2 in (3.3.7) in the log(L/ε)

term. This seeming discrepancy comes from the fact that the replica calculation leading to

(3.3.7) calculates the entanglement entropy for a semi-infinite entangling surface (as we take

L to be very large) with only one end point, whereas the result of Cardy and Calabrese

(3.3.3) is for an interval with two end points, which doubles the logarithmically divergent

contribution according to the area law for entanglement entropy. The same remark applies

when one compares (1.2.12) and (3.2.6).

Additionally it is clear that for a topological interface moving the interface along the real

axis in the z coordinates does not change (3.3.5) as the interface operator commutes with

the generator of these translations, which is the Hamiltonian. It is clear from Figure 3.1 that

the independence of the symmetric entanglement entropy from the location of the interface

breaks down if the interface approaches the UV cutoff ε, as part of the interface would be

removed by the cutoff. This explains why the entanglement entropies (3.2.6) and (3.3.3) can

be different.

A third type of entanglement entropy which takes a similar form is the so-called left/right

entanglement entropy [82, 83, 88]. This is defined for a boundary CFT, where the entangle-

ment entropy is calculated with a reduced density matrix obtained by tracing over left-moving

modes. Interestingly for a boundary CFT defined by a Cardy state [25] (for a single copy of
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the CFT, not the doubled one we are considering in the previous sections)

|BCardy
a 〉〉 =

∑
j

Sja√
Sj0

|j〉〉 (3.3.8)

where |j〉〉 are the Ishibashi states [24] enforcing conformal boundary conditions. We quote

the result of the calculation of the left/right entanglement entropy which is also labeled by

a primary a in a RCFT, obtained in [83]

S l/r
a =

πcl

24ε
−
∑
j

S2
aj log

S2
aj

S0j

(3.3.9)

The physical interpretation of the left/right entanglement entropy (as it is non-geometrical)

is not clear at this point as well as its relation to the other two entropies is not clear at the

moment. The similarities of the resulting entropies might still suggest that such a relation

exists. A better understanding of the relation of the cutoffs utilized may be necessary to

accomplish this.

3.4 Examples of entanglement entropies

For the m-th unitary minimal models the modular S matrix is given by (see e.g. [89])

Srs;ρσ = 2

√
2

m(m+ 1)
(−1)1+sρ+rσ sin

(
π
m+ 1

m
rρ

)
sin

(
π

m

m+ 1
sσ

)
(3.4.1)

Using this formula it is in principle straightforward to evaluate the three entanglement

entropies: Sa given in (3.2.6), Ssymm
a given in (3.3.3) and S l/r

a given in (3.3.9). Here we give

tables for the two simplest cases, namely the Ising model with m = 3 and the tri-critical

Ising model with m = 4.

The Ising model has 3 primaries which we can label by their conformal dimension h =
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0, 1
16
, 1

2
and has the modular S matrix

S =
1

2


1 1

√
2

1 1 −
√

2
√

2 −
√

2 0

 (3.4.2)

The entanglement entropies then take the following values

Sa Ssymm
a S l/r

a

h = 0 0 0 3
4

ln 2
h = 1

2
0 0 3

4
ln 2

h = 1
16
− ln 2 ln 2

2
0

Table 3.1: Entanglement entropies for the Ising model.

The next simplest minimal model is the tri-critical Ising model which has m = 4 and has

six primary states which are labelled by their conformal dimension

h = 0,
1

10
,

3

5
,

3

2
,

3

80
,

7

16
(3.4.3)

The modular S matrix is given by

S =



s2 s1 s1 s2

√
2s1

√
2s2

s1 −s2 −s2 s1

√
2s2 −

√
2s1

s1 −s2 −s2 s1 −
√

2s2

√
2s1

s2 s1 s1 s2 −
√

2s1 −
√

2s2

√
2s1

√
2s2 −

√
2s2 −

√
2s1 0 0

√
2s2 −

√
2s1

√
2s1 −

√
2s2 0 0


(3.4.4)
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where s1 and s2 are given by

s1 = sin

(
2π

5

)
, s2 = sin

(
4π

5

)
(3.4.5)

The entanglement entropies then take the following values

a Sa Ssymm
a S l/r

a

h = 0 0 0
−2
√

5 coth−1
√

5+ln 32768
3125

4

h = 1
10

−
√

5 coth−1
(

3√
5

)
1
2

ln 3+
√

5
2

15 ln 2−5 ln 5+
√

5 ln(9−4
√

5)
4

h = 3
5

−
√

5 coth−1
(

3√
5

)
1
2

ln 3+
√

5
2

15 ln 2−5 ln 5+
√

5 ln(9−4
√

5)
4

h = 3
2

0 0
−2
√

5 coth−1
√

5+ln 32768
3125

4

h = 3
80

(−5+
√

5) ln(3−
√

5)−(5+
√

5) ln(3+
√

5)
2

1
2

ln(3 +
√

5) −5 ln 5+
√

5 ln(9−4
√

5)
4

h = 7
16

−5 ln 2 ln 2
2

−2
√

5 coth−1
√

5−5 ln 5
4

Table 3.2: Entanglement entropies for the tri-critical Ising model.

3.5 Remarks on entanglement entropies for Liouville theory

In [84, 85, 90] topological interfaces for the Liouville CFT (see [91, 92] for reviews with ref-

erences to the original literature) were constructed following the procedure which was used

for RCFTs. There are two types of defects which are both of the form

I =

∫
Q/2+iP

dα D(P )Pα (3.5.1)

where we integrate P over the positive real line, i.e. P ∈ (0,∞), and one has Q = b + 1/b,

which determines the central charge as C = 1+6Q2. Here P is a projector on the continuum

of primary states labeled by P and their descendants

Pα =
∑
M,N

|α,M〉 ⊗ |α,N〉〈α,M | ⊗ 〈α,N | (3.5.2)
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As shown in [84] one can distinguish the two types of defects by associating them with the

discrete degenerate primary states labeled by two positive integers

Dm,n(P ) =
sinh(2πmP

b
) sinh(2πnbP )

sinh(2πP
b

) sinh(2πbP )
(3.5.3)

and a non-degenerate primary state labeled by a continuous real parameter s

Ds(P ) =
cos(4πPs)

2 sinh(2πbP ) sinh(2πP
b

)
(3.5.4)

We can now calculate the K-sheeted partition function (3.2.1) with the interface (3.5.1)

inserted. Using the fact that the projectors satisfy

PαPβ = δ(α− β)Pα (3.5.5)

and the fact that the interface operator I satisfies (3.1.4) we arrive at

Z(K) =

∫
Q/2+iP

dP
(
D(P )

)2K
χP (q2K)χP (q̄2K) (3.5.6)

where χP (q) is the character of the non-degenerate Liouville primary field labeled by P given

by

χP (τ) =
qP

2

q
1
24

∏∞
n=1(1− qn)

(3.5.7)

with q = e2πiτ . We can use the following formula for the modular transformation of the

character (3.5.7)

χP
(
− 1

τ

)
=
√

2

∫ ∞
−∞

dP ′χP ′(τ) e4πiPP ′ (3.5.8)
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With the identification (3.2.2) and t = 2π2/ log(L/ε) as before, the modular transformed

K-sheeted partition function becomes

Z(K) = 2

∫ ∞
0

dP
(
D(P )

)2K
∫ ∞
−∞

dP ′e4πiPP ′χP ′
(
i π
Kt

) ∫ ∞
−∞

dP̄ ′e4πiP P̄ ′χP̄ ′
(
i π
Kt

)
(3.5.9)

In the limit t → 0 we can replace the full character χP (q) by its leading term qP
2− 1

24 and

perform the gaussian integrals over P ′ and P̄ ′ which produce the same result. Hence we

arrive at

Z(K) =
Kt

4π
e
π2

6Kt

∫ ∞
0

dP
(
D(P )

)2K
e−4P 2Kt + · · · (3.5.10)

where the dots denote terms which vanish as t goes to zero. We would now like to use this

expression to calculate the entanglement entropy using the replica formula (1.2.5). Note that

for the case where D is labeled by a continuous parameter s and given by (3.5.4)
(
D(P )

)2K

in the integral (3.5.10) vanishes for large P . It is therefore legitimate to drop the exponent

e−4P 2Kt in the integral and the non vanishing terms in entanglement entropy for this case

are given by

Ss =
1

6
log

L

ε
+ (1− ∂K)

(
log

Kt

4π

∫ ∞
0

dP
(
Ds(P )

)2K
)∣∣∣

K=1
(3.5.11)

We notice two curious features of this result. First, the logarithmically divergent term is

multiplied by 1
6

which is what one would expect for a c = 1 CFT, whereas the central charge

of the Liouville theory is given by CL = 1 + 6Q2. A possible explanation for this behavior

lies in the fact that for the interface labelled by (3.5.4) only the continuous primaries with

conformal dimension ∆ = Q2/4+P 2 appear. Hence the vacuum with ∆ = 0 is excluded and

the factor of 1/3 in front of (3.5.11) is most likely associated with a shifted effective central

charge.

Second, apart from finite terms as t → 0 we also obtain an additonal divergent term of

52



the form log(log L
ε
) from the second term (3.5.11). The significance and interpretation of this

term is not clear at this point and a more careful treatment of the cutoff might be necessary.

For the interfaces labeled by discrete integers m,n defined in (3.5.3), Dmn diverges for large

P and the full integral has to be evaluated first in order to obtain the entanglement entropy.

3.6 Discussion

In this chapter we have discussed entanglement entropies in the presence of topological

defects in two geometric settings, namely when the interface is located at the boundary

of the entangling interval A and when it is in the center of the entangling interval. For

topological defects in RCFTs the logarithmic part of the entanglement entropy is always

universal (this is not the case for general conformal interfaces) and the constant term can be

expressed in a compact form in terms of the modular matrix S. Note that the entanglement

entropies have a similar form in terms of the modular matrix S as the left/right entanglement

entropy for a related BCFT, but the physical relation of the left/right entanglement entropy

to the others is not clear at the moment.

There are several directions in which our results can be generalized. We have limited

ourselves to RCFTs with diagonal partition functions. The construction of [77] also includes

non-diagonal theories and it would be interesting to understand the entanglement entropy

for this case. We also only considered CFTs which are rational with respect to the Virasoso

algebra, it would also be very interesting to repeat the analysis for RCFTs with respect to

extended chiral algebras.

Since the large m limit of minimal models is conjectured to approach a non-rational c = 1

CFT which is different from a free boson [93] it would be interesting to study the continuation

of the minimal model entanglement entropy. It would also be interesting to understand the

entanglement entropy for Liouville theory better. Apart from the calculations sketched in

section 3.5 one might also consider semiclassical limits where b→ 0 and analyze the role of

topological defects in classical Liouville theory following [85,94].
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Chapter 4

Entanglement Entropy at CFT

Junctions

A natural generalization of an interface I connecting two CFTs is a junction J connecting

N CFTs along a common line. If we consider an entangling region containing one of the

CFTs, say CFTi, then the entanglement entropy has the same generic form as (1.2.14); that

is,

Si =
c

3
fN,i(J ) log

L

ε
+ C̃N,i(J ) (4.0.1)

For junctions between non-relativistic theories, it was shown in [95] that the universal term

of (4.0.1) is related to the universal term of (1.2.14) via

fN,i(J ) = f
(√
Ti
)

(4.0.2)

where Ti is the total transmission coefficient from the i-th theory to the other theories in the

junction, however this has not been shown to hold in the conformal setting. In this chapter

we will show that this relationship holds for arbitrary junctions between CFTs which are

constructed from free conformal bosons and fermions.

This chapter is organized as follows: in section 4.1 we review the folding trick (see section
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1.1) which turns the problem of constructing conformal junctions into one of constructing

boundary states. We review the construction of bosonic as well as fermionic boundary

states, determine the normalization using the Cardy condition, and discuss reflection and

transmission coefficients for conformal junctions. In section 4.2 we calculate the entanglement

entropy of bosonic and fermionic N -junctions, generalizing the methods of [21,22] (see section

1.2.1). In section 4.3 we construct boundary states corresponding to specific 3-junctions and

discuss various features and limits. In section 4.4 we summarize the main results of the

chapter and discuss possible extensions. Details on the special functions we use in this

chapter, in addition to details involving Gaussian integrals and circular determinants we

calculate, are relegated to appendices at the end of the chapter.

4.1 CFT construction of junctions

For junctions connecting N > 2 free boson CFTs, we proceed with the same folding methods

shown in figure 1.1 applied repeatedly, as illustrated in figure 4.1. Specifically, the bosonic N -

junction is folded into theN -times tensor product CFT with boundary states |B〉〉 determined

by the boundary condition (
ain − Sij ā

j
−n
)
|B〉〉 = 0 (4.1.1)

where now S is an element of O(N)1. As before, (4.1.1) is solved by a coherent state of the

form

|S〉〉 = g

∞∏
n=1

exp

(
1

n
Sij a

i
−nā

j
−n

) ∑
(a0,ā0)∈Λ

eiδa0,ā0

N⊗
i=1

|ni, wi〉 (4.1.2)

where Λ is an N -dimensional sublattice of the full 2N -dimensional lattice of unconstrained

eigenvalues of the ai0 and āi0. Not every element of O(N) will be compatible with the zero

mode structure, i.e. satisfy the n = 0 case of (4.1.1) for the quantized eigenvalues (A.1.10),

and thus the bosonic boundary states for fixed radii correspond to a countable subset of

1This is seen either by the easily generalized replacement in (1.1.8) or by requiring continuity of the stress
tensor at the location of the junction [96].
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Figure 4.1: Illustrating the unfolded, folded, and partially folded pictures for a 3-junction. As
before, the folded picture is used to characterize the boundary states. However, for the entanglement
entropy calculations we will only unfold one CFT and work with interface operators in this partially
folded picture.

O(N). For N = 2 the restrictions (1.1.14) and (1.1.20) specify the allowed subset of O(2),

and in section 4.3 we find the allowed subset of O(3) for N = 3. Lastly, the phases δa0,ā0 are

related to the position and dual Wilson line moduli of the D-brane, but as they will vanish

from all our calculations we will not characterize them further.

We now fix the normalization through Cardy’s condition for this general bosonic D-brane.

Cardy’s condition enforces the consistency between the open and closed string channels; that

is, it requires the annulus amplitude to have a modular interpretation as a partition function

on the cylinder. We will use this condition to fix the value of the normalization factor in
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(4.1.2). Let q = e−2πt for some t > 0. The annulus amplitude is then

〈〈S|q
∑N
i=1(Li0+L̄i0−1/12)|S〉〉 (4.1.3)

The quadratic operator exponentials in the boundary state complicate attempts at direct

calculation; instead we linearize the exponential by means of Gaussian integrals of the form

eA·B =

∫
dNz dN z̄

πN
e−z·z̄−z·A−z̄·B (4.1.4)

where A and B are N -dimensional vectors whose entries are all mutually commuting opera-

tors. Linearizing each of the exponentials in (4.1.3) with (4.1.4) in a complementary fashion

we obtain the expression

〈〈S|q
∑N
i=1(Li0+L̄i0−1/12)|S〉〉 = g2 〈Ω|q

∑N
i=1(Li0+L̄i0)|Ω〉

× q−N/12

∞∏
n,m=1

∫
dNznd

N z̄nd
Nwmd

Nw̄m

π2N
e−zn·z̄n−wm·w̄m (4.1.5)

× 〈0|e−q
mwm·STam−

1
m
qmw̄m·āme−

1
n
zn·a−n−z̄n·Sā−n |0〉

where |Ω〉 is the lattice-summed zero mode in (4.1.2) and we have used the identities (A.1.13).

The form of (4.1.5) is such that the zero mode contribution, the first line of (4.1.5), is isolated

from the remaining oscillator contribution. The zero mode contribution is a lattice theta

function (see appendix 4.A.1)

g2 〈Ω|q
∑N
i=1(Li0+L̄i0)|Ω〉 = g2 ΘΛ(2it) (4.1.6)

where the dependence on the phases in |Ω〉 have vanished. For the oscillator integrals, we
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commute the two linear operator exponentials in the third line of (4.1.5) to obtain

q−N/12

∞∏
n=1

∫
dNznd

N z̄nd
Nwnd

Nw̄n

π2N
e−zn·z̄n−wn·w̄n+qnzn·Swn+qnz̄n·Sw̄n (4.1.7)

= q−N/12

∞∏
n=1

∫
dNwnd

Nw̄n

πN
e−(1−q2n)wn·w̄n =

[
q1/12

∞∏
n=1

(
1− q2n

) ]−N
(4.1.8)

where the dependence on S is removed after the zn, z̄n integration due to the fact that

STS = 1N as S is an element of O(N). Comparing this result to (4.A.21) we find that the

annulus amplitude can be written in closed form as

〈〈S|q
∑N
i=1(Li0+L̄i0−1/12)|S〉〉 = g2 ΘΛ(2it) [η(2it)]−N (4.1.9)

Performing S-transformations on the above we have the equivalent expression

〈〈S|q
∑N
i=1(Li0+L̄i0−1/12)|S〉〉 =

g2

vol(Λ)
ΘΛ∗(i/2t) [η(i/2t)]−N (4.1.10)

In order for (4.1.10) to correspond to a cylinder partition function with a properly normalized

vacuum we must have that the constant term as t → 0 in (4.1.10) is unity. Thus, Cardy’s

condition fixes

g =
√

vol(Λ) (4.1.11)

In section 1.1 the various fermionic boundary states for N = 2 were shown; here we give

their straightforward generalization to arbitrary N for the Neveu-Schwarz sector

|S〉〉NS =
∏

n∈N−1
2

exp
(
iSijψ

i
−nψ̄

j
−n
) N⊗
i=1

|0〉 (4.1.12)

– which will be the focus of the fermionic calculations in this chapter – and for the Ramond
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sector

|S〉〉R =

√
2

det (1−F)

∞∏
n=1

exp
(
iSijψ

i
−nψ̄

j
−n
)

exp

(
1

2
Fijγi−εiγ

j
−εj

) N⊗
i=1

|εi〉 (4.1.13)

where

γi± =
1√
2

(
ψi0 ± iψ̄i0

)
(4.1.14)

and F is an anti-symmetric matrix given by

S ′ = (1N + F)−1 (1N −F) ⇐⇒ F = (1N − S ′) (1N + S ′)
−1

(4.1.15)

The state in (4.1.13) is only well-defined as long as S ′ is in the connected component of

O(N). Thus we take the matrix S ′ to be the pure rotation part of S, i.e. we write S as

an elementary reflection composed with a continuous rotation S ′. The reflection content of

S is then represented in the ground state through the choice of signs in the εi. If S is a

pure rotation then εi = +1 for all i, whereas if S includes a reflection then εi = −1 for all

i excepting the two indices corresponding to the plane of reflection. These considerations

ensure that (4.1.13) satisfies the zero mode boundary condition

(
ψi0 + iSijψ̄

j
0

)
|S〉〉R = 0 ⇐⇒

(
γiεi + Fijγj−εj

)
|S〉〉R = 0 (4.1.16)

while maintaining a finite normalization.

4.1.1 Reflection and transmission for junctions

In [21] and [22] it was shown that the physical quantity determining the universal term in

the entanglement entropy for both the bosonic and fermionic interfaces is the transmission

coefficient of the interface. This continues to be the case for N > 2; however, the reflection

and transmission coefficients given in section 1.1 – as they were formulated by [23] – will
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not suffice to describe junctions even in the partially folded picture. Here we review their

generalization to conformal junctions, developed in [97].

The reflection and transmission coefficients for CFT N -junctions are related to the N×N

matrix

Rij =
〈0|Li2L̄

j
2|B〉〉

〈0|B〉〉
(4.1.17)

where |B〉〉 is the boundary state corresponding to the junction. The average reflection and

transmission coefficients of [23] (i.e. (1.1.4)) are written in terms of this matrix as

Ravg =
2

c1 + c2

(R11 +R22) and T avg =
2

c1 + c2

(R12 +R21) (4.1.18)

which are enough to characterize transport processes for N = 2 since in this case R is a

symmetric matrix. For N ≥ 2 these coefficients are generalized to

Ri =
2

ci
Rii and Tij =

2

ci
Rij (4.1.19)

where Ri is the reflection coefficient for CFTi and Tij is the transmission coefficient for

transport from CFTi to CFTj. It should be noted for N = 2 that (4.1.19) is related to

(4.1.18) by

T12 =
c2

c1

T21 =
c1 + c2

2c1

T avg (4.1.20)

so that for c1 = c2 = c the three different transmissions all agree. For N > 2 we’ll also want

to consider the total transmission from CFTi, given by the sum

Ti =
∑
j 6=i

Tij (4.1.21)

In both the free boson and free fermion cases (4.1.2) and (4.1.12), the reflection and trans-
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mission coefficients of these boundary states are given by

Ri = S2
ii and Tij = S2

ij =⇒ Ti = 1− S2
ii (4.1.22)

and thus the coefficients can be lifted from the matrix S.

It is interesting to note that a completely transmissive junction, which necessarily has

Ri = 0 for all i = 1, . . . , N , has its transmission coefficients constrained to be

Tij = δjki (4.1.23)

where ki+1 = ki + 1, the index N + 1 is identified with 1, and ki 6= i. These correspond to

twisted permutation junctions whose boundary states satisfy

ain|S〉〉 = ±āki−n|S〉〉 (4.1.24)

for (4.1.2) and

ψin|S〉〉 = ±iψ̄ki−n|S〉〉 (4.1.25)

for (4.1.12) with independent sign choices for each i, of which there are 2N(N − 1) distinct

matrices S.

4.2 Entanglement entropy at N-junctions

The starting point for the junction entanglement calculations is the same as in the interface

case: with the corresponding boundary state |B〉〉 in the folded picture (see figures 1.1

and 4.1). For interfaces the tensor product CFT is then unfolded to obtain the interface

operator I1,2 to be used in calculating the replicated partition function (1.2.20). This same

basic strategy can be applied to the junction case as well by noting that it is equivalent to

replacing in CFT1 with
⊗

j 6=i CFTj and CFT2 with CFTi in figure 1.1. This is the partially
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folded picture (shown in figure 4.1 for N = 3) where, for the purposes of calculating the

entanglement entropy of CFTi, we only need an interface operator I1...N,i taking states from

CFTi to the rest of the CFTs in the junction as a tensor product. Thus, the replicated

partition function has essentially the same from as (1.2.20); that is

Z(K) = Tr1...N

[(
I1...N,i q

Hi(I1...N,i)
†qH1...N

)K]
(4.2.1)

where H1...N is the Hamiltonian of
⊗

j 6=i CFTj.

4.2.1 Bosonic junction

We’ll begin our calculations with the bosonic boundary state (4.1.2). Unfolding the i-th

boson according to (1.2.15), we linearize via (4.1.4) in order to obtain explicit expressions

for the interface and anti-interface operators

I1...N,i =
∞∏
n=1

∫
dNzn d

N z̄n
πN

e−zn·z̄n−
1
n

∑
j 6=i znja

j
−n−

∑
j 6=i

∑
l Slj z̄nlā

j
−n

×G1...N,i

∞∏
n=1

e
1
n
zniā

i
n+
∑
l Sliz̄nla

i
n (4.2.2)

(I1...N,i)
† =

∞∏
n=1

∫
dNwn d

Nw̄n

πN
e−wn·w̄n+

∑
l Silwnlā

i
−n+ 1

n
w̄nia

i
−n

× (G1...N,i)
†
∞∏
n=1

e−
∑
j 6=i

∑
l Sjlwnla

j
n− 1

n

∑
j 6=i w̄nj ā

j
n (4.2.3)

with the ground state operator given by

G1...N,i =
√

vol(Λ)
∑

(a0,ā0)∈Λ

eiδa0,ā0

(⊗
j 6=i

|nj, wj〉
)
⊗ 〈−ni, wi| (4.2.4)

which are needed to compute the partition function (4.2.1). From (4.2.2) and (4.2.3) we

then calculate the commutation between the various exponentials of the oscillators of the
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i-th boson in the relevant partition function block

J = q−N/12I1...N,i q
Li0+L̄i0 (I1...N,i)

† q
∑
j 6=i(L

j
0+L̄j0) (4.2.5)

=
∞∏
n=1

∫
dNzn d

N z̄n d
Nwn d

Nw̄n

π2N
e−zn·z̄n−wn·w̄n+qn

∑
l(Silzniwnl+Sliz̄nlw̄ni)OLG′OR (4.2.6)

where the remaining oscillators are contained in

OL =
∞∏
n=1

exp
[
− 1

n

∑
j 6=i

znja
j
−n −

∑
j 6=i

∑
l

Slj z̄nlā
j
−n

]
(4.2.7)

OR =
∞∏
n=1

exp
[
− qn

(∑
j 6=i

∑
l

Sjlwnla
j
n +

1

n

∑
j 6=i

w̄nj ā
j
n

)]
(4.2.8)

and the zero mode information is encoded in the operator

G′ = vol(Λ) q−N/12
∑

(a0,ā0)∈Λ

q|a0|2+|ā0|2
(⊗

j 6=i

|nj, wj〉
)
⊗
(⊗

j 6=i

〈nj, wj|
)

(4.2.9)

Notice that in the above that the phases δa0,ā0 originally present in (4.2.4) have vanished

from the calculation. Also, the additional factors of qn in (4.2.8) and the weighting of the

lattice sum in (4.2.9) result from the identity (A.1.13) and the application of the propagators

on the vacuum states in (4.2.4).

Using the expression (4.2.6) for the block (4.2.5), we can now write the K-sheeted par-

tition function (4.2.1) in terms of this block

Z(K) = Tr1...N

(
JK
)

(4.2.10)

=
∞∏
n=1

∫ K∏
k=1

dNz
(k)
n dN z̄

(k)
n dNw

(k)
n dNw̄

(k)
n

π2N
e
−z(k)

n ·z̄
(k)
n −w

(k)
n ·w̄

(k)
n +qn

∑
l

(
Silz

(k)
ni w

(k)
nl +Sliz̄

(k)
nl w̄

(k)
ni

)

× Tr1...N

(
G′O(1)

R O
(2)
L G′O(2)

R · · · O
(K)
L G′O(K)

R O
(1)
L

)
(4.2.11)

= vol(Λ)Kq−NK/12 ΘΛ(2iKt)
∞∏
n=1

Pn (4.2.12)
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where, denoting (K + 1) ≡ (1), the Gaussian integrals remaining after the commutations of

all the oscillators in the products O(k)
R O

(k+1)
L between ground state operators in (4.2.11) are

given by

Pn =
K∏
k=1

∫
dNz

(k)
n dN z̄

(k)
n dNw

(k)
n dNw̄

(k)
n

π2N
e
−z(k)

n ·z̄
(k)
n −w

(k)
n ·w̄

(k)
n +qn

∑
l

(
Silz

(k)
ni w

(k)
nl +Sliz̄

(k)
nl w̄

(k)
ni

)

× e q
n
∑
j 6=i

∑
l

(
Sjlz

(k+1)
nj w

(k)
nl +Slj z̄

(k+1)
nl w̄

(k)
nj

)
(4.2.13)

The lattice theta function and the other factors multiplying the Gaussian integrals in (4.2.12)

result from the product of the K operators G′ inside the trace in (4.2.11). At this point we

could perform the Gaussian integrals in (4.2.13) altogether by way of a determinant, but

for the sake of simplifying the calculation we first perform each of the K one-dimensional

complex Gaussian integrals in the variables zni, z̄ni and wni, w̄ni. After performing these

integrals (see appendix 4.B.1) we have a reduced expression for the Gaussian integrals

Pn = DK
n

K∏
k=1

∫
dN−1z

(k)
n dN−1z̄

(k)
n dN−1w

(k)
n dN−1w̄

(k)
n

π2N−2
e−z

(k)
n ·z̄

(k)
n −w

(k)
n ·w̄

(k)
n +

∑
j,l 6=i A

(k)
jl (4.2.14)

where

A
(k)
jl = qn

(
Sjl + q2nDnSiiSjiSil

) (
z

(k+1)
nj w

(k)
nl + z̄

(k+1)
nj w̄

(k)
nl

)
+ q2nDn

(
SjiSliz

(k+1)
nj z̄

(k)
nl + SijSilw

(k+1)
nj w̄

(k)
nl

)
(4.2.15)

and Dn = (1− q2nS2
ii)
−1

. Now we switch to the evaluation of the Gaussian integrals through

a determinant, which we do by writing (4.2.14) as a 4(N − 1)K-dimensional real Gaussian

integral

Pn = DK
n

∫
d4(N−1)Kv

π2(N−1)K
e−v·MKv (4.2.16)
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Ordering the real variables according to

v =
(

Re z
(1)
n1 , Im z

(1)
n1 , . . . , Re z

(1)
nN , Im z

(1)
nN , Rew

(1)
n1 , Imw

(1)
n1 , . . . , Re z

(2)
n1 , Im z

(2)
n1 , . . .

)

we find the matrix exponent has the block circulant form

MK =



14N−4 CT 0 · · · 0 C

C 14N−4 CT · · · 0 0

0 C 14N−4 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 14N−4 CT

CT 0 0 · · · C 14N−4


(4.2.17)

with off-diagonal blocks themselves in 2× 2 block form

C =
1

2

X ⊗ (12 + σ2) 2Y ⊗ σ3

0 Z ⊗ (12 + σ2)

 (4.2.18)

and the constituent (N − 1)× (N − 1) matrices defined in terms of q and S as

Xjl = −q2nDnSjiSli , Yjl = −qn
(
Sjl + q2nDnSiiSjiSil

)
, Zjl = −q2nDnSijSil (4.2.19)

The Gaussian integral (4.2.16) is then evaluated to give

Pn = DK
n (det MK)−1/2

=
K∏
k=1

(
1− q2n

)N−2 [
1− 2

(
S2
ii +

(
1− S2

ii

)
cos(2πk/K)

)
q2n + q4n

]
(4.2.20)

where the determinant is calculated in appendix 4.C. Comparing the above to (4.A.19) and
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employing the identity
K−1∏
k=1

sin
πk

K
=

K

2K−1
(4.2.21)

we can immediately write down the K-sheeted partition function in terms of modular func-

tions

Z(K) = vol(Λ)KK T (K−1)/2
i ΘΛ(2iKt) [η (2it)]−K(N−3)−3

K−1∏
k=1

θ−1
1 (νk|2it) (4.2.22)

with

sinπνk =
√
Ti sin

πk

K
(4.2.23)

This partition function matches the N = 2 case (1.2.21), and the oscillator part remains the

same for all N . Performing an S-transformation on (4.2.22) yields

Z(K) = K−(N−2)/2
(
Ti vol(Λ)2

)(K−1)/2
(2t)(K−1)(N−2)/2 eπ[K(N−3)+3]/24teϕ(K)/t + · · · (4.2.24)

where

ϕ(K) =
π

2

K−1∑
k=1

(
νk −

1

2

)2

(4.2.25)

and the dots indicate terms that go to zero as t → 0, corresponding to the removal of the

cutoffs. Performing the analytic continuation (reviewed in appendix 4.A.3) and calculating

the derivatives in (1.2.5), the entanglement entropy is

Si =
1

2
σ
(√
Ti
)

log
L

ε
+

1

2
(N − 2) [1− log(2t)]− 1

2
log
(
Ti vol(Λ)2

)
(4.2.26)

The universal term in the above has the same functional form regardless of the value of N ,

following exactly the behavior described in (4.0.2). Also independent of N , the constant term

retains the same dependence on the physical quantities of the junction. The only explicit

dependence on the number of theories in the junction comes in the form of a new term that

vanishes when N = 2, which contains a subleading log(log(L/ε)) term, the appearance of
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such a term in related contexts has been remarked previously in the literature [34,98,99]. Its

presence precisely corresponds to the cases where the central charge differs between the inside

and outside of the entangling region in the partially folded picture, and thus not covered

in the scope of (1.2.10). However, as this term does not depend on any of the parameters

of the junction it will vanish from all differences in entanglement entropy between different

junctions, and thus can be considered unphysical.

4.2.2 Fermionic NS junction

If we try to extend to the general N -junction the direct methods used to obtain the fermionic

interface entanglement entropy outlined in section 1.2.1, we’ll need to expand the exponential

in the boundary state (4.1.12), unfold the i-th fermion, and organize the non-vanishing terms

into a 4(N − 1) × 4 matrix representation of (I1···N,i)n. If we then consider the reciprocal

entanglement entropy for simplicity, we’ll need to calculate the 4× 4 matrix representation

of the partition function block and find its eigenvalues. It is not clear how these matrix

computations can be done for arbitrary N . Therefore we will employ the fermionic version

of the linearization methods utilized in the bosonic calculation.

We begin with the fermionic analog of (4.1.4), the complex Grassmann Gaussian integral

eA·B =

∫
dNη dN η̄ eη·η̄+A·η+η̄·B (4.2.27)

where A and B are now N -dimensional vectors of anti-commuting operators, which are taken

to be Grassmann-valued, and the measure is defined to be

dNη dN η̄ = dηN · · · dη1 dη̄N · · · dη̄1 = (−1)Ndη1 dη̄1 · · · dηN dη̄N (4.2.28)

Note that the ordering of the pairs dηj dη̄j in the above can be changed without the in-

troduction of additional minus signs. Using (4.2.27) we can linearize the Neveu-Schwarz

boundary state (4.1.12) and unfold the i-th fermion via (1.2.24) to obtain explicit interface
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and anti-interface operators

I1...N,i =
∏

n∈N−1
2

∫
dNηn d

N η̄n e
ηn·η̄n+

∑
j 6=i ψ

j
−nηnj+i

∑
j 6=i

∑
l Slj η̄nlψ̄

j
−n

(⊗
j 6=i

|0〉
)

⊗ 〈0|
∏

n∈N−1
2

e−iψ̄
i
nηni−

∑
l Sliη̄nlψ

i
n (4.2.29)

(I1...N,i)
† =

∏
n∈N−1

2

∫
dNχn d

N χ̄n e
χn·χ̄n+

∑
l Silψ̄

i
−nχnl+iχ̄niψ

i
−n|0〉

⊗
(⊗

j 6=i

〈0|
) ∏
n∈N−1

2

e i
∑
j 6=i

∑
l Sjlψ

j
nχnl+

∑
j 6=i χ̄nj ψ̄

j
n (4.2.30)

With these expressions we can calculate the commutations between the various products of

Grassmann variables and Grassmann-valued operators appearing in (4.2.1) in terms of the

operator anti-commutators, e.g. for {α, β} = {β, θ} = {α, φ} = 0 it follows that

[αθ, βφ] = −αβ{θ, φ} (4.2.31)

The NS partition function block is then

J = q−N/24I1...N,i q
Li0+L̄i0 (I1...N,i)

† q
∑
j 6=i(L

j
0+L̄j0) (4.2.32)

which we can calculate using relations like (4.2.31) and the identities (A.2.12). Performing

the commutator calculations between the exponentials of the oscillators of the i-th fermion,

in a similar manner to those behind (4.2.6), we obtain

J =
∏

n∈N−1
2

∫
dNηn d

N η̄n d
Nχn d

N χ̄n e
ηn·η̄n+χn·χ̄n e iq

n
∑
j(Sijηniχnj+Sjiη̄nj χ̄ni)OLG′OR (4.2.33)
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where the remaining oscillators are contained in

OL =
∏

n∈N−1
2

exp
[∑
j 6=i

ψj−nηnj + i
∑
l

∑
j 6=i

Slj η̄nlψ̄
j
−n

]
(4.2.34)

OR =
∏

n∈N−1
2

exp
[
qn
(∑

j 6=i

χ̄njψ̄
j
n + i

∑
l

∑
j 6=i

Sjlψ
j
nχnl

)]
(4.2.35)

with ground state operator

G′ = q−N/24
(⊗

j 6=i

|0〉
)
⊗
(⊗

j 6=i

〈0|
)

(4.2.36)

We can now write the K-sheeted partition function (4.2.1) in terms of the block (4.2.33) as

Z(K) = Tr1...N

(
JK
)

(4.2.37)

=
∏

n∈N−1
2

∫ K∏
k=1

dNη(k)
n dN η̄(k)

n dNχ(k)
n dN χ̄(k)

n e
η

(k)
n ·η̄

(k)
n +χ

(k)
n ·χ̄

(k)
n +iqn

∑
j

(
Sijη

(k)
ni χ

(k)
nj +Sjiη̄

(k)
nj χ̄

(k)
ni

)

× Tr1...N

(
G′O(1)

R O
(2)
L G′O(2)

R · · · O
(K)
L G′O(K)

R O
(1)
L

)
(4.2.38)

= q−NK/24
∏

n∈N−1
2

Pn (4.2.39)

where, denoting (K + 1) ≡ (1), the Gaussian integrals remaining after the commutations of

all the oscillators in the products O(k)
R O

(k+1)
L between vacuum states in (4.2.38) are given by

Pn =
K∏
k=1

∫
dNη(k)

n dN η̄(k)
n dNχ(k)

n dN χ̄(k)
n e

η
(k)
n ·η̄

(k)
n +χ

(k)
n ·χ̄

(k)
n +iqn

∑
j

(
Sijη

(k)
ni χ

(k)
nj +Sjiη̄

(k)
nj χ̄

(k)
ni

)

× e iq
n
∑
l

∑
j 6=i

(
Sjlη

(k+1)
nj χ

(k)
nl +Slj η̄

(k+1)
nl χ̄

(k)
nj

)
(4.2.40)

At this point we could perform the integrals in (4.2.40) altogether by way of a determinant,

but for the sake of simplifying the calculation we first perform each of the K one-dimensional

complex Grassmann Gaussian integrals in the variables ηni, η̄ni and χni, χ̄ni. After performing
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these integrals (see appendix 4.B.2) we have a reduced expression for the Gaussian integrals

Pn = D−Kn

K∏
k=1

∫
dN−1η(k)

n dN−1η̄(k)
n dN−1χ(k)

n dN−1χ̄(k)
n eη

(k)
n ·η̄

(k)
n +χ

(k)
n ·χ̄

(k)
n +

∑
j,l 6=i A

(k)
jl (4.2.41)

where

A
(k)
jl = iqn

(
Sjl − q2nDnSiiSjiSil

) (
η

(k+1)
nj χ

(k)
nl + η̄

(k+1)
nj χ̄

(k)
nl

)
+ q2nDn

(
SjiSliη

(k+1)
nj η̄

(k)
nl + SijSilχ

(k+1)
nj χ̄

(k)
nl

)
(4.2.42)

and Dn = (1 + q2nS2
ii)
−1. Now we switch to the evaluation of the Gaussian integrals through

a determinant, which we do by writing (4.2.41) as a 4(N −1)K-dimensional real Grassmann

Gaussian integral

Pn = D−Kn (−1)(N−1)K

∫
d 4(N−1)Kθ e

1
2
θ·MKθ (4.2.43)

Ordering the real Grassmann variables according to

θ =
(

Re η
(1)
n1 , Im η

(1)
n1 , . . . , Re η

(1)
nN , Im η

(1)
nN , Reχ

(1)
n1 , Imχ

(1)
n1 , . . . , Re η

(2)
n1 , Im η

(2)
n1 , . . .

)

we find the matrix exponent has the block circulant form

MK =



12N−2 ⊗ σ2 −CT 0 · · · 0 C

C 12N−2 ⊗ σ2 −CT · · · 0 0

0 C 12N−2 ⊗ σ2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 12N−2 ⊗ σ2 −CT

−CT 0 0 · · · C 12N−2 ⊗ σ2


(4.2.44)
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with off-diagonal blocks themselves in 2× 2 block form

C =
1

2

X ⊗ (12 + σ2) 2Y ⊗ σ3

0 Z ⊗ (12 + σ2)

 (4.2.45)

where the matrices X, Y , and Z are the same as the bosonic case (4.2.19) only with the

replacement qn → −iqn. The Gaussian integral (4.2.43) is then evaluated to give

Pn = D−Kn (−1)(N−1)K (det MK)1/2

=
K∏
k=1

(
1 + q2n

)N−2 [
1 + 2

(
S2
ii +

(
1− S2

ii

)
cos(2πk/K)

)
q2n + q4n

]
(4.2.46)

where the determinant is calculated in appendix 4.C. With this final expression for the

integrals, we are able to write the replicated NS partition function in terms of modular

functions and make an S-transformation

Z(K) = [η (2it)]−NK/2 [θ3(2it)]K(N−2)/2+1
K−1∏
k=1

θ3(νk|2it) (4.2.47)

= eπNK/48te−ϑ(K)/t + · · · (4.2.48)

where νk is given by (4.2.23), the exponent ϑ(K) is

ϑ(K) =
π

2

K−1∑
k=1

ν2
k (4.2.49)

and the dots indicate terms which vanish as t→ 0. The entanglement entropy is then

Si =
1

2

[
1

2

√
Ti − σ

(√
Ti
)]

log
L

ε
(4.2.50)

after analytically continuing (4.2.49) – see the review in appendix 4.A.3 for details – and

taking the derivatives in (1.2.5). As in the bosonic case, the entanglement entropy (4.2.50)

71



shows the same N -independent behavior described in (4.0.2).

4.2.3 BPS junction

Until this point we have been considering interfaces and junctions that preserve conformal

symmetry, i.e. satisfy (1.1.2) in the unfolded or partially folded picture. Since we have been

working with free conformal bosons and fermions we could further consider interfaces and

junctions that also preserve supersymmetry.

Whereas the conformal condition (1.1.2) enforces continuity of the stress tensor across

the interface, if we further require continuity of the supercurrent the interface operator must

satisfy (
G1
n − iη1Ḡ1

−n
)
I1,2 = I1,2

(
G2
n − iη2Ḡ2

−n
)

(4.2.51)

with supercurrent modes

Gi
n =

∞∑
m=−∞

ai−mψ
i
n+m , Ḡi

n =
∞∑

m=−∞

āi−mψ̄
i
n+m (4.2.52)

The constants η1 = ±1 and η2 = ±1 determine the type of supersymmetry in CFT1 and

CFT2, respectively, and do not need to be equal. The generalization to a partially folded

N -junction is ∑
j 6=i

(
Gj
n − iηjḠ

j
−n
)
I1···N,i = I1···N,i

(
Gi
n − iηiḠi

−n
)

(4.2.53)

If ηj = 1 for all j = 1, . . . , N then the operator produced by unfolding the supersymmetric

boundary state

|S〉〉super = |S〉〉bos ⊗ |S〉〉NS (4.2.54)

will satisfy (4.2.53). Furthermore, if we redefine ψ̄j → ηjψ̄j then the ηj are absorbed into

the interface operator through Sij → S ′ij = ηjSij. Introducing these factors does not change

the entropy calculations, as S ′ is still an element of O(N) and S ′ii
2 = S2

ii regardless of the

values of the ηj. Thus for the purposes of calculating the entanglement entropy we proceed
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as though the supersymmetric boundary state (4.2.54) unfolds simply into a supersymmetry-

preserving interface operator no matter the types of supersymmetry present in the individual

CFTs. The replicated partition function is then the product

Zsuper(K) = Zbos(K)ZNS(K) (4.2.55)

and through the logarithm the entanglement entropy is the sum

Ssuper = Sbos + SNS =
1

4

√
Ti log

L

ε
+

1

2
(N − 2) [1− log(2t)]− 1

2
log
(
Ti vol(Λ)2

)
(4.2.56)

This simplification of the oscillator contribution to the universal term of the entanglement

entropy is precisely the same as in [22] for N = 2.

4.3 Specific 3-junction geometries

We now focus on constructing the explicit boundary states describing bosonic 3-junctions

using similar methods to those used to construct (1.1.15) and (1.1.18). We will also relate

the quantities relevant to the entanglement entropy – the total transmission Ti and unit cell

volume vol(Λ) – to the geometry of the corresponding D-branes describing the junctions in

the folded picture.

4.3.1 Boundary state construction

Following the procedure outlined in [20], we begin with the boundary state

|k2D2/k1D0, 0, 0〉〉 = |k2D2/k1D0〉〉 ⊗ |D0〉〉 (4.3.1)

corresponding to k2 D2-branes in the ϕ1ϕ2-plane bound to k1 D0-branes, which we rotate to

an arbitrary orientation in the compactification lattice. Through translation we can specify
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Figure 4.2: A D2-brane wrapping the bosonic 3-torus continued into the compactification lattice
so as to show the axis intercepts qiRi ϕ̂i; see figure 4.3 for the unit cell wrapping for a specific case.
The polar and azimuthal angles that specify the rotation that takes the D2-brane in the ϕ1ϕ2-plane
into this pictured D2-brane are also shown.

an arbitrary orientation by the axis intercepts q1R1 ϕ̂1, q2R2 ϕ̂2, and q3R3 ϕ̂3. Such a plane

will have an area vector equal to

A = q2q3R2R3 ϕ̂1 + q1q3R1R3 ϕ̂2 + q1q2R1R2 ϕ̂3 (4.3.2)

and thus the rotation transformation needed will be R(θ, φ) = R3(φ)R2(θ) where

tan θ =
q1q2R1R2√

(q2q3R2R3)2 + (q1q3R1R3)2
, tanφ =

q1R1

q2R2

(4.3.3)

in order to obtain the rotated D-brane state |k2D2/k1D0, θ(q1, q2, q3), φ(q1, q2)〉〉, see figure

4.2. To do this we will transform the boundary conditions

[
gij
(
ajn + āj−n

)
+ bij

(
ajn − ā

j
−n
)

+ δi3δ3j

(
ajn − ā

j
−n
)]
|k2D2/k1D0, 0, 0〉〉 = 0 (4.3.4)
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Figure 4.3: A D2-brane wrapping the bosonic 3-torus shown in the unit cell of the compactification
lattice. The above corresponds to the parameters q1 = 3, q2 = 2, and q3 = 6.

where n ≥ 0 and

g =


1 0 0

0 1 0

0 0 0

 , b =
k1α

′

k2R1R2


0 −1 0

1 0 0

0 0 0

 (4.3.5)

The metric g and (E33)ij ≡ δi3δ3j will simply transform by similarity; however, the magnetic

field will undergo an angle-dependent scaling in addition to the rotation in order for the

boundary state to correspond to a bound state between k2 D2-branes and k1 D0-branes at

all angles. Explicitly, the transformation of the magnetic field is determined through two

conditions: (1) the magnetic field is oriented along the −Â direction; that is, perpendicular

to the D2-branes

bij(θ, φ) = β(θ, φ) εijkRk3(θ, φ) (4.3.6)

and (2) the Dirac quantization condition is met at all angles

k2

∫
D2

F = −k1α
′ with F =

1

2
bij dϕ

i ∧ dϕj (4.3.7)
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Enforcing these conditions gives

bij(θ, φ) =
−k1α

′εijkRk3(θ, φ)

k2(q1q2R1R2 cos θ + q3R3 sin θ (q1R1 sinφ+ q2R2 cosφ))
(4.3.8)

The exponent of the rotated state is then found from the boundary conditions

(
Mija

j
n + M̄ij ā

j
−n
)
|S〉〉 = 0 =⇒ S = M−1M̄ (4.3.9)

so that after transforming (4.3.4) we have from (4.3.9) that

S(θ, φ) = (13 + b(θ, φ))−1 [b(θ, φ) +R(θ, φ) (E33 − g)RT(θ, φ)
]

(4.3.10)

where b is given by (4.3.8). It is important to note that S in (4.3.10) is a (special) orthogonal

matrix.

The next step in our construction will be to find all zero modes that are consistent with

(4.3.10). These admissible zero modes

3⊗
i=1

|ni, wi〉 (4.3.11)

are determined by the n = 0 rotated version of (4.3.4), which upon acting on (4.3.11) reduce

to

q1R1

k2A2

(
q3R

2
3

(
k1w3 + k2q3 (q1n1 − q2n2)

)
− q2R

2
2

(
k1w2 + k2q2 (q3n3 − q1n1)

))
+
q2q3V

2

R1A2α′
(q2q3w1 + q1q3w2 + q1q2w3) = 0 (4.3.12)

and the other two cyclic permutations of the indices, where V is the volume of the 3-torus.

The first line of (4.3.12) is the contribution to the boundary conditions of the D2-branes with

magnetic flux, and the second line is the contribution due to zero winding in the direction
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perpendicular to the D2-branes. Isolating the dependence on the radii we arrive at the

winding constraint

q2q3w1 + q1q3w2 + q1q2w3 = 0 (4.3.13)

and three additional constraint equations given by

k1w1 + k2q1 (q2n2 − q3n3) = 0 (4.3.14)

and the other two cyclic permutations of the indices. As long as k1 6= 0 and k2 6= 0, (4.3.13)

is satisfied by any set of winding numbers that satisfy (4.3.14). The most general solution

to (4.3.14) is given by

n1(m, γ) = k1m1 + q2q3γ , w1(m) = k2q1 (q3m3 − q2m2) (4.3.15)

and the other two cyclic permutations of the indices. Since there are four undetermined

integers (m1, m2, m3, and γ) appearing in (4.3.15), this general solution does not specify a

basis for Λ but rather a generating set. Noticing that

wi(m1,m2,m3) = wi(m1 + q2q3δ,m2 + q1q3δ,m3 + q1q2δ) (4.3.16)

ni(m1,m2,m3, γ) = ni(m1 + q2q3δ,m2 + q1q3δ,m3 + q1q2δ, γ − k1δ) (4.3.17)

for some integer δ, we see that choices of γ modulo k1 correspond to distinct translations of

the sublattice generated by summation over m ∈ Z3. Thus, the lattice-sum zero mode in

(4.1.2) is parametrized as

k1−1∑
γ=0

∑
m∈Z3

eiδm,γ
3⊗
i=1

|ni(m, γ), wi(m)〉 (4.3.18)

with ni(m, γ) and wi(m) given by the corresponding permutation of (4.3.15). Applying the
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result (4.A.15), we find

vol(Λ) =
k2

2A
2 + k2

1α
′2

α′2V
√

(2/α′)3
(4.3.19)

It is known [38] that the g-factor, gB = 〈0|S〉〉, for a pure Dp-brane in the bosonic N -torus

is of the form

g2
Dp =

V 2
p

α′ pVTN
√

(2/α′)N
(4.3.20)

which gives the suggestive form

vol(Λ) = k2
2g

2
D2 + k2

1g
2
D0 (4.3.21)

If any of q1, q2, q3, k1, or k2 are zero then the constraints of (4.3.14) are relaxed and

(4.3.13) needs to be considered as well, so that (4.3.15) no longer represents all admissible

zero modes. However, vol(Λ) remains of the same form as (4.3.19) in each case. For example,

if q1 = 0 (q2 = q3 = 1) then

3⊗
i=1

|ni, wi〉 = |m1, 0〉 ⊗ |k1m2,−k2m3〉 ⊗ |k1m3, k2m2〉 (4.3.22)

which corresponds precisely to the factorizable state |D0〉〉 ⊗ |k2D2/k1D0〉〉 describing k2

D2-branes bound to k1 D0-branes in the ϕ2ϕ3-plane. The special case k1 = 0 and k2 = 1

corresponds to a rotated pure D2-brane, with the associated boundary conditions solved by

3⊗
i=1

|ni, wi〉 = |q2q3m1,−q1m2〉 ⊗ |q1q3m1,−q2m3〉 ⊗ |q1q2m1, q3(m2 +m3)〉 (4.3.23)

Lastly, the case k2 = 0 and k1 = 1 corresponds to a pure D0-brane where the boundary state

is |D0〉〉 ⊗ |D0〉〉 ⊗ |D0〉〉.

The other class of boundary states, the D1/D3 system, are T-dual to those of the D2/D0

system. Performing a T-duality transformation on all of the three bosons maps the boundary

state of k2 D2-branes with area vector A given in (4.3.2) bound to k1 D0-branes onto the
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boundary state of k2 D1-branes with length vector

` = q2q3R1 ϕ̂1 + q1q3R2 ϕ̂2 + q1q2R3 ϕ̂3 (4.3.24)

bound to k1 D3-branes. Applying the T-duality transformation rules (A.1.12), the matrix

exponent of this second class of boundary states is found from (4.3.10) to be

S ′(θ′, φ′) = − (13 + b′(θ′, φ′))
−1 [

b(θ′, φ′) +R(θ′, φ′) (E33 − g)RT(θ′, φ′)
]

(4.3.25)

with a magnetic field

b′ij(θ
′, φ′) =

−k1V εijkRk3(θ′, φ′)

k2α′(q1q2R3 cos θ′ + q3 sin θ′ (q1R2 sinφ′ + q2R1 cosφ′))
(4.3.26)

and angles

tan θ′ =
q1q2R3√

(q2q3R1)2 + (q1q3R2)2
, tanφ′ =

q1R2

q2R1

(4.3.27)

The admissible zero modes for all cases considered before for the D2/D0 system are given

by (4.3.15), (4.3.22), and (4.3.23) with momenta and windings exchanged for each of the

bosons. Taking Ri → α′/Ri for all i = 1, 2, 3 in (4.3.19), the volume of the unit cell of Λ′ is

vol(Λ′) =
k2

1V
2 + k2

2`
2α′2

α′3V
√

(2/α′)3
= k2

1g
2
D3 + k2

2g
2
D1 (4.3.28)

Lastly, there are some boundary states of the D2/D0 system that are not covered by

the construction above; namely those where the D2-branes coincide with exactly one of the

ϕi-axes. For these we rotate the boundary state corresponding to k2 D2-branes in the ϕ1ϕ2-

plane bound to k1 D0-branes about the ϕ1-axis, and all other D2/D0 bound states can be

found by suitable permutations of the boson indices. For a rotation angle

tan ξ =
p3R3

p2R2

(4.3.29)
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the D2-branes will have a corresponding area vector

A = −p3R1R3 ϕ̂2 + p2R1R2 ϕ̂3 (4.3.30)

with a matrix exponent

S(ξ) = (13 + b(ξ))−1 [b(ξ) +R1(ξ) (E33 − g)RT
1 (ξ)

]
(4.3.31)

where the magnetic field is given by

bij(ξ) =
−k1α

′εijkRk3
1 (ξ)

k2R1(p2R2 cos ξ + p3R3 sin ξ)
(4.3.32)

The admissible zero modes for this boundary state are

3⊗
i=1

|ni, wi〉 = |k1m1, k2(p2m2 + p3m3)〉 ⊗ | − k1m2, k2p2m1〉 ⊗ | − k1m3, k2p3m1〉 (4.3.33)

producing a normalization factor of the same form as (4.3.19) for the area vector (4.3.30).

Following again the transformation rules in (A.1.12), the dual D1/D3 bound state has a

length vector

` = −p3R2 ϕ̂2 + p2R3 ϕ̂3 (4.3.34)

for the D1-branes, which is a rotation about the ϕ1-axis of the bound state with D1-branes

along the ϕ3-axis by an angle

tan ξ′ =
p3R2

p2R3

(4.3.35)

The matrix exponent is then determined from (4.3.31) to be

S ′(ξ′) = − (13 + b′(ξ′))
−1 [

b′(ξ′) +R1(ξ′) (E33 − g)RT
1 (ξ′)

]
(4.3.36)
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where the magnetic field is given by

b′ij(ξ
′) =

−k1V εijkRk3
1 (ξ′)

k2α′(p2R3 cos ξ′ + p3R2 sin ξ′)
(4.3.37)

The admissible zero modes are (4.3.33) with the momenta and windings exchanged for each

of the bosons, producing a normalization factor of the same form as (4.3.28) for the length

vector (4.3.34).

4.3.2 Transmission and entanglement entropy

With the normalization factors (4.3.19) and (4.3.28) the only other physical quantity re-

maining in the entanglement entropy (4.2.26) is the total transmission Ti of the i-th boson.

From the matrix exponents (4.3.10) and (4.3.36), the transmission coefficients of the D2/D0

system are expressed in terms of the area vector of the D2-branes as

Ti =
4k2

2(A2 − A2
i )(k

2
2A

2
i + k2

1α
′2)

(k2
2A

2 + k2
1α
′2)2

(4.3.38)

where Ai = A · ϕ̂i is the area of each of the D2-branes projected onto the plane with normal

ϕ̂i. For the D1/D3 system the transmission coefficients obtained from (4.3.38) by T-duality

are expressed in terms of the length vector of the D1-branes as

Ti =
4k2

2α
′2 (`2 − `2

i )
(
k2

1V
2 + k2

2`
2
iα
′2)(

k2
1V

2 + k2
2`

2α′2
)2 (4.3.39)

where `i = ` · ϕ̂i is the projected length of each of the D1-branes along ϕ̂i. At this point we

have found all boundary states describing bosonic 3-junctions and their physical quantities

relevant to the entanglement entropy.

From the form of (4.3.38) and (4.3.39) the i-th boson is seen to decouple either in the case

of a pure D0-brane or D3-brane, or when the area or length vector aligns with the ϕi-axis.

Furthermore, we see that perfectly transmissive junctions (with respect to CFTi) are those
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where

A2
i

A2
=

1

2
− 1

2

(
k1α

′

k2A

)2

or
`2
i

`2
=

1

2
− 1

2

(
k1V

k2`α′

)2

(4.3.40)

These conditions cannot be met for general real radii Ri and coupling α′; solutions are only

possible when ratios of these real numbers are rational. The conditions simplify in the purely

geometric cases (k1 = 0), which are met by D1-branes and D2-branes whose length and area

vectors lie on any of the right angle cones about each of the ϕi-axes. From the form of

(4.3.40) we see that a completely transmissive junction (Ti = 1 for i = 1, 2, 3) can only occur

when k1 6= 0, k2 6= 0, and the quantities

k1α
′

k2RiRj

or
k1RiRj

k2α′
(4.3.41)

are all integers. The volume of the unit cell reduces to

vol(Λ) =
k2

1

V

√
2α′3 or vol(Λ′) = k2

1V

√
2

α′3
(4.3.42)

in these cases. This result is interesting, as the only the number of D-branes present in the

bound state enter into the entanglement entropy of the completely transmissive junctions.

Finally when any of the boundary states align entirely with a single plane, the entangle-

ment entropy reduces to the N = 2 results with an additional constant term corresponding

to the perpendicular factor of the decoupled boson. For example, for (4.3.34) with k1 = 0

and k2 = 1 we have

T3 = sin2 2ξ′ and T3 vol(Λ′)2 = p2
2p

2
3

α′

2R2
1

(4.3.43)

which differs from (1.2.23) only in the additional constant boundary entropy of the Dirichlet

boundary condition along the ϕ̂1 direction.
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4.4 Discussion

The main new results are the generalization of the N = 2 interface entanglement entropy

of [21] and [22] to the case of N ≥ 2 junctions, both for free boson (4.2.26) and fermion

(4.2.50) CFTs. An interesting property of the result is that the both the logarithmically

divergent term as well as the constant term only depend on the total transmission coefficient

Ti from the i-th CFT (over which we trace in the entanglement entropy) and the zero

mode lattice constant vol(Λ), and thus constitutes the simplest possible generalization of

the N = 2 results. There is an additional term which is regulator dependent, independent

of the parameters of the junction, and absent in the N = 2 case.

The most natural extension of these results would be the calculation of the entanglement

entropy of CFTs A ⊂ {1, . . . , N} due to CFTs B = Ā. We would expect the entanglement

entropy result to change only by

Ti −→ TA =
∑
i∈A

∑
j∈B

Tij (4.4.1)

Most of the calculations of section 4.2 would generalize straightforwardly up to (4.2.13)

and (4.2.40), however we would not be able to perform the intermediate Gaussian integrals.

Instead, we would need to immediately pass the calculation to the determinant of a block

circulant matrix whose larger blocks would have more complicated structure.

It would also be interesting to verify that the Ramond junctions produce the same en-

tanglement entropy as the Neveu-Schwarz junctions, as [22] showed explicitly for N = 2. In

addition to the modification of the moding, the form of (4.2.39) would include an additional

factor containing Grassmann Gaussian integrals relating to the linearization of the addi-

tional quadratic exponent in (4.1.13). Owing to the somewhat different anti-commutation

relations between the operators in this additional exponent, these Gaussian integrals have a

more complicated structure than those handled in this chapter. Due to modular invariance,
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the K-sheeted partition function is expected to be

Z(K) ∼ [η(2it)]−NK/2[θ2(2it)]K(N−2)/2+1

K−1∏
k=1

θ2(νk|2it) (4.4.2)

which would indeed produce the same entanglement entropy as (4.2.50). One could also con-

sider interfaces carrying Ramond charge after performing fermion parity projections under

the total Z2
N symmetry, as was done in [22] for N = 2, although it is not clear how easily

this could be done for arbitrary N .

It may be possible to define a fusion product of junctions, e.g. an N -junction and an

N ′-junction fusing in M common CFTs into (N + N ′ − 2M)-junctions connecting the re-

maining CFTs. It might also be interesting to consider if the left/right entanglement entropy

calculations of [82, 83, 100] can be extended to D-brane boundary states corresponding to

N -junctions.

In section 4.1 we have characterized the completely transmissive N -junctions as those

enforcing twisted permutation gluing conditions. In rational CFTs we could generalize the

twisted partition functions of [77] to study “topological” junction operators and their entan-

glement entropy as in chapter 3.

One could also proceed with the type IIB supergravity solutions in [96] and calculate

the asymmetric 3-junction entanglement entropy holographically as in chapter 2. It would

be interesting to see if the remarkable holographic agreement in the BPS case between the

supergravity calculation and the toy model CFT (i.e. interfaces and junctions of single

c = 3/2 CFTs without reference to the symmetric orbifold) continues to hold for N = 3.

Exploring the case N = 4 would be more difficult, as there exist D-brane states there

that cannot be constructed using successive rotations and T-duality transformations of the

elevated N = 3 D-brane states. Also, the explicit supergravity solutions for N ≥ 4 have not

been found.
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4.A Special functions

4.A.1 Theta functions and S-transformations

The fundamental theta function we use, sometimes called a lattice theta function, is

ΘΛ(τ) =
∑
λ∈Λ

eπiτ |λ|
2

(4.A.1)

Poisson resummation yields the S-transformation

ΘΛ∗(−1/τ) = (−iτ)d/2 vol(Λ) ΘΛ(τ) (4.A.2)

where Λ∗ is the lattice dual to Λ, vol(Λ) is the volume of the unit cell, and d is the dimension

of the lattice. When a basis of Λ is known; that is, when we have a set of d linearly

independent vectors {ε1, . . . , εd}, εi ∈ RN , such that

Λ =

{
d∑
i=1

miεi

∣∣∣∣∣m ∈ Zd

}
(4.A.3)

then vol(Λ) and the basis of Λ∗ can be computed directly. Let B be the N ×d matrix whose

columns are the basis vectors εi. In terms of this matrix, the volume of the unit cell is

vol(Λ) =
√

det (BTB) (4.A.4)

and the dual basis is taken from the columns of

B∗ = B
(
BTB

)−1
(4.A.5)
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As in section 4.3, sometimes only a set of generators of Λ is known; that is, when we have a

set of D > d real vectors {ε1, · · · , εd, δ1, · · · , δD−d} such that

Λ =

{
d∑
i=1

miεi +
D−d∑
j=1

γjδj

∣∣∣∣∣m ∈ Zd, γ ∈ Γ

}
(4.A.6)

where the εi are linearly independent and Γ is a finite subset of ZD−d (containing the origin).

Additionally we require that Γ is chosen such that each point in Λ has a unique representation

in terms of linear combinations of the above form. This amounts to describing the lattice

in terms of a superposition of a finite number of distinct translations of a d-dimensional

sublattice with a known basis.

In either case the lattice theta function can be expressed in terms of more conventional

theta functions. The multi-dimensional theta functions with characteristics (see [101] for a

wide range of properties) are given by

Θd

α
β

(z|Ω) =
∑
n∈Zd

e
2πi
[

1
2

(n+α)·Ω(n+α)+(n+α)·(z+β)
]

(4.A.7)

where Ω is a d × d matrix. Using Poisson resummation, the action of an S-transformation

is given by

Θd

−β
α

(Ω−1z| − Ω−1) =
√

det (−iΩ) e−2πiα·β+πiz·Ω−1z Θd

α
β

(z|Ω) (4.A.8)

For zero characteristics

Θd(z|Ω) ≡ Θd

0

0

(z|Ω)

the S-transformation is reduced to

Θd(Ω
−1z| − Ω−1) =

√
det(−iΩ) eπiz·Ω

−1z Θd(z|Ω) (4.A.9)
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The zero characteristic theta functions are related to those with nonzero characteristics

through

Θd

α
β

(z|Ω) = eπi(α·Ωα+2α·(z+β)) Θd(z + Ωα+ β|Ω) (4.A.10)

When a basis is known, the lattice theta function can be simply written as

ΘΛ(τ) = Θd(τB
TB) (4.A.11)

where by standard convention we omit the first argument when z = 0. For the case of a

given generating set we instead have

ΘΛ(τ) =
∑
γ∈Γ

Θd

eπi/3 (BT
0 B0

)−1
BT

0 Bδγ

0

(τe−πi/3BT
0 Bδγ |τBT

0 B0) (4.A.12)

where B0 is the basis matrix for the lattice Λ0 generated by the set {εi} alone and Bδ is the

matrix whose columns are the excess generating vectors δj. Setting τ = iε for ε � 1 we

perform S-transformations to obtain

ΘΛ(iε) =
ε−d/2

vol(Λ0)

∑
γ∈Γ

eεπγ·B
T
δ Bδγ (4.A.13)

×Θd

 0

eπi/3
(
BT

0 B0

)−1
BT

0 Bδγ

(e−πi/3 (BT
0 B0

)−1
BT

0 Bδγ

∣∣∣∣ iε (BT
0 B0

)−1
)

=
|Γ|

vol(Λ0)
ε−d/2

(
1 +O[ε]

)(
1 +O[e−µ/ε]

)
(4.A.14)

where µ is a positive number independent of ε. Comparing this to the leading order behavior

of (4.A.2) for τ = iε we obtain

vol(Λ) =
vol(Λ0)

|Γ|
(4.A.15)

From this relationship we can determine the volume of the unit cell of Λ from a set of
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generators.

Lastly, some special consideration is warranted for one-dimensional theta functions. For

the case d = 1 we use a lowercase theta, replace the matrix argument Ω with a complex

variable τ , and define q = e2πiτ for notational simplicity

θ[α, β](z |τ) ≡ Θ1

α
β

(z |τ) (4.A.16)

The one-dimensional theta functions can be written in the form of an infinite product

θ[α, β](z |τ) = e2πiα(z+β)qα
2/2

∞∏
n=1

(1− qn)

(
1 + qn+α−1

2 e2πi(z+β)

)(
1 + qn−α−

1
2 e−2πi(z+β)

)
(4.A.17)

such that the usual Jacobi theta functions

θ1(z |τ) = −θ[1
2
, 1

2
](z |τ) , θ2(z |τ) = θ[1

2
, 0](z |τ) ,

θ3(z |τ) = θ[0, 0](z |τ) , θ4(z |τ) = θ[0, 1
2
](z |τ) (4.A.18)

have sum and product forms

θ1(z |τ) = −i
∑

n∈Z+
1
2

(−1)n−
1
2 qn

2/2e2πinz = 2 sin(πz) q1/8

∞∏
n=1

(1− qn)
(
1− 2qn cos(2πz) + q2n

)

θ2(z |τ) =
∑

n∈Z+
1
2

qn
2/2e2πinz = 2 cos(πz) q1/8

∞∏
n=1

(1− qn)
(
1 + 2qn cos(2πz) + q2n

)

θ3(z |τ) =
∞∑

n=−∞

qn
2/2e2πinz =

∞∏
n=1

(1− qn)
∏

n∈N−1
2

(
1 + 2qn cos(2πz) + q2n

)
(4.A.19)

θ4(z |τ) =
∞∑

n=−∞

(−1)nqn
2/2e2πinz =

∞∏
n=1

(1− qn)
∏

n∈N−1
2

(
1− 2qn cos(2πz) + q2n

)
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and S-transformations given by

θ1( z
τ
| − 1

τ
) = i

√
−iτ eπiz2/τ θ1(z |τ)

θ2( z
τ
| − 1

τ
) =
√
−iτ eπiz2/τ θ4(z |τ)

θ3( z
τ
| − 1

τ
) =
√
−iτ eπiz2/τ θ3(z |τ) (4.A.20)

θ4( z
τ
| − 1

τ
) =
√
−iτ eπiz2/τ θ2(z |τ)

4.A.2 Dedekind eta and related functions

The Dedekind eta function is

η(τ) = q
1
24

∞∏
n=1

(1− qn) =
∞∑

n=−∞

(−1)nq(6n−1)2/24 (4.A.21)

and has the modular transformations

η(τ + 1) = e
iπ
12 η(τ) (4.A.22)

η(− 1
τ
) =
√
−iτ η(τ) (4.A.23)

Two related functions

∞∏
n=1

(1 + qn) and
∏

n∈N−1
2

(1 + qn) (4.A.24)

can be written in terms of the Dedekind eta and other Jacobi theta functions as

∞∏
n=1

(1 + qn) = q−
1
24

√
θ2(τ)

η(τ)
(4.A.25)

∏
n∈N−1

2

(1 + qn) = q
1
48

√
θ3(τ)

η(τ)
(4.A.26)
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4.A.3 Bernoulli polynomials and dilogarithms

The Bernoulli polynomials are explicitly given by

bm(x) =
m∑
n=0

1

n+ 1

n∑
k=0

(−1)k

n
k

 (x+ k)m (4.A.27)

These polynomials are generated by the function

text

et − 1
=

∞∑
m=0

bm(x)
tm

m!
for |t| < 2π (4.A.28)

and satisfy the derivative property

b′m(x) = mbm−1(x) (4.A.29)

for m ≥ 1, and thus the Bernoulli polynomials form an Appell sequence. The values of these

polynomials at zero are called the Bernoulli numbers bn = bn(0). The first two Bernoulli

numbers are

b0 = b0(1) = 1 (4.A.30)

b1 = −b1(1) = −1
2

(4.A.31)

For n > 1 we have the following relations

b2n = b2n(1) = 4n (−1)n
∫ ∞

0

t2n−1 dt

1− e2πt
(4.A.32)

b2n+1 = b2n+1(1) = 0 (4.A.33)
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Combined with these expressions for the Bernoulli polynomials and numbers, the sum iden-

tity
K−1∑
k=1

km =
bm+1(K)− bm+1

m+ 1
(4.A.34)

can be used to analytically continue functions of the form

F (K) =
K−1∑
k=1

f

(
k

K

)
(4.A.35)

where f(x) is analytic at x = 0 and whose series expansion converges everywhere on the

interval [0, 1]. If f(x) has these properties we can write

F (K) =
∞∑
m=0

f (m)(0)

m!Km

K−1∑
k=1

km

=
∞∑
m=0

f (m)(0)

(m+ 1)!Km
[bm+1(K)− bm+1] (4.A.36)

so that in the last line of the above F (K) is now explicitly an analytic function of K (except

at K = 0 if f(x) is a nonlinear function). More so than F (K) we are interested in

F ′(K) = −
∞∑
m=1

mf (m)(0)

(m+ 1)!Km+1
[bm+1(K)− bm+1] +

∞∑
m=0

f (m)(0)

m!Km
bm(K) (4.A.37)

and

F (1)− F ′(1) = f(0)−
∞∑
m=0

f (m)(0)

m!
bm(1)

= −1

2
f ′(0)− 2

∞∑
m=1

f (2m)(0)

(2m− 1)!
(−1)m

∫ ∞
0

t2m−1 dt

1− e2πt

= −1

2
f ′(0)− i

∫ ∞
0

f ′(it)− f ′(−it)
1− e2πt

dt (4.A.38)
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In [21] and [22] (4.A.38) was calculated for

fbos(x) =
1

2π
arccos2(s sin πx) and fferm(x) =

1

2π
arcsin2(s sin πx) (4.A.39)

Explicitly, if we define ∆(s) ≡ F (1) − F ′(1) for the s-dependent f(x) in (4.A.39), then we

arrive at the integrals

∆bos(s) =
π

4
s− s

∫ ∞
0

dt
sinh−1(s sinhπt) coshπt(cothπt− 1)√

1 + s2 sinh2 πt

=
π

4
s− 1

π

∫ ∞
0

dz

√
s2 + z2 − z
z
√

1 + z2
sinh−1 z (4.A.40)

and

∆ferm(s) = 2s

∫ ∞
0

dt
sinh−1(s sinhπt) coshπt√

1 + s2 sinh2 πt

=
2

π

∫ ∞
0

dz

√
s2 + z2

z
√

1 + z2
sinh−1 z (4.A.41)

where the substitution z = s sinhπt has been applied. Upon differentiating twice with respect

to s both expressions for ∆′′(s) simplify to a common integral which can be evaluated in

terms of elementary functions; i.e.

∆′′bos(s) = − 1

π

∫ ∞
0

dz
z sinh−1 z√

(1 + z2)(s2 + z2)3
=

1

π

log s

1− s2
(4.A.42)

and ∆′′ferm(s) = −∆′′bos(s). Twice integrating the above we can write

∆bos(s) =
1

2π
[(s+ 1) log(s+ 1) log s+ (s− 1) Li2(1− s) + (s+ 1) Li2(−s)]

+
(

∆′bos(0)− π

12

)
s+ ∆bos(0) +

π

12
(4.A.43)
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where the dilogarithms appearing in the above are defined by the series

Li2(z) ≡
∞∑
k=1

zk

k2
(4.A.44)

The presence of dilogarithms in (4.A.43) is due to the matching of the integral representation

Li2(z) = −
∫ z

0

dw
log(1− w)

w
(4.A.45)

with the first integral of the right-hand side of (4.A.42); the second integral is then evaluated

with the help of the identity

∫
dz Li2(z) = z Li2(z)− z − (1− z) log(1− z) (4.A.46)

In (4.A.43) the integration constants have been written to be matched to the behavior

of ∆bos(s) at s = 0 (the series definition (4.A.44) gives Li2(0) = 0, Li2(1) = π2/6, and

Li2(−1) = −π2/12), with a similar expression for ∆ferm(s). Expanding (4.A.40) and (4.A.41)

to first order in s, we see that

∆bos(0) = 0 , ∆′bos(0) =
π

4
and ∆ferm(0) = 0 , ∆′ferm(0) = 0 (4.A.47)

In the notation of section 4.2, the results are

ϕ(1)− ϕ′(1) =
π

2
σ(s)− π

4
and ϑ(1)− ϑ′(1) =

π

2
σ(s)− π

4
s (4.A.48)

where σ(s) is given by

σ(s) =
1

6
+
s

3
+

1

π2
[(s+ 1) log(s+ 1) log s+ (s− 1) Li2(1− s) + (s+ 1) Li2(−s)] (4.A.49)
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The behavior of σ(s) near s = 0 and s = 1 can be calculated straightforwardly utilizing

(4.A.45), giving

σ(s) =
s

2
+

1

2π2
(2 log s− 3) s2+O[s4] =

1

3
−1

4
(1− s)− 1

2π2
(1− s)2− 1

6π2
(1− s)3+O[(1−s)4]

(4.A.50)

4.B Intermediate Gaussian integrals

4.B.1 Bosonic integrals

In the following we repeatedly use the one-dimensional complex Gaussian integral

∫ ∞
−∞

dz dz̄ e azz̄+bz+cz̄ = −1

a
e−bc/a (4.B.1)

in order to integrate out all of the dependence on the i-th integration variables in (4.2.13).

This will involve isolating linear factors of these variables in the exponents of (4.2.13) in

order to combine them via (4.B.1). We show some of the details of this process below.

Focusing on the z
(k)
ni , z̄

(k)
ni integral for an arbitrary fixed k, the linear terms in the exponents

of (4.2.13) are rewritten as

qn
∑
l

(
Silz

(k)
ni w

(k)
nl + Sliz̄

(k)
nl w̄

(k)
ni

)
=

(
qn
∑
j

Sijw
(k)
nj

)
z

(k)
ni +

(
qnSiiw̄

(k)
ni

)
z̄

(k)
ni + qn

∑
j 6=i

Sjiz̄
(k)
nj w̄

(k)
ni

(4.B.2)

qn
∑
j 6=i

∑
l

(
Sjlz

(k)
nj w

(k−1)
nl + Slj z̄

(k)
nl w̄

(k−1)
nj

)
= qn

∑
j 6=i

∑
l

Sjlz
(k)
nj w

(k−1)
nl +

(
qn
∑
j 6=i

Sijw̄
(k−1)
nj

)
z̄

(k)
ni

+ qn
∑
j,l 6=i

Slj z̄
(k)
nl w̄

(k−1)
nj (4.B.3)
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in order to isolate the z
(k)
ni and z̄

(k)
ni factors. Applying (4.B.1) to all the z

(k)
ni , z̄

(k)
ni integrals

then yields the new exponential terms

(
qn
∑
j

Sijw
(k)
nj

)(
qnSiiw̄

(k)
ni + qn

∑
j 6=i

Sijw̄
(k−1)
nj

)

= q2nS2
iiw

(k)
ni w̄

(k)
ni +

(
q2nSii

∑
j 6=i

Sijw
(k)
nj

)
w̄

(k)
ni

+

(
q2nSii

∑
j 6=i

Sijw̄
(k−1)
nj

)
w

(k)
ni + q2n

∑
j,l 6=i

SijSjlw
(k)
nj w̄

(k−1)
nl (4.B.4)

where we have isolated the w
(k)
ni and w̄

(k)
ni factors for the next round of integration.

Focusing now on the w
(k)
ni , w̄

(k)
ni integral for an arbitrary fixed k, the quadratic term of

the exponent is now −w(k)
ni w̄

(k)
ni /Dn after the zni, z̄ni integration, where Dn = (1− q2nS2

ii)
−1.

The remaining linear terms in the exponent are the above linear terms above in addition to

those that spectated the zni, z̄ni integration

(
qn
∑
j 6=i

Sjiz̄
(k)
nj

)
w̄

(k)
ni +

(
qn
∑
j 6=i

Sjiz
(k+1)
nj

)
w

(k)
ni + qn

∑
j,l 6=i

Sjl

(
z

(k+1)
nj w

(k)
nl + z̄

(k+1)
nj w̄

(k)
nl

)
(4.B.5)

so that applying (4.B.1) to all the w
(k)
ni , w̄

(k)
ni integrals then yields the new terms

Dn

(
qn
∑
j 6=i

Sjiz
(k+1)
nj + q2nSii

∑
j 6=i

Sijw̄
(k−1)
nj

)(
qn
∑
j 6=i

Sjiz̄
(k)
nj + q2nSii

∑
j 6=i

Sijw
(k)
nj

)
(4.B.6)

At this point there are no linear terms remaining that mix variables with the same value of

k. Once the above terms are simplified and all indices shifted so that k and k + 1 are the

only indices that appear, we recover (4.2.14) and (4.2.15).
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4.B.2 Fermionic integrals

In the following we repeatedly use the one-dimensional complex Grassmann Gaussian integral

−
∫
dη dη̄ e aηη̄+βη+η̄γ = a eβγ/a (4.B.7)

for constant a and Grassmann-valued β and γ, in order to integrate out all of the dependence

on the i-th integration variables in (4.2.40). This will involve isolating linear factors of these

variables in the exponents of (4.2.40) in order to combine them via (4.B.7). We show some

of the details of this process below.

Focusing on the η
(k)
ni , η̄

(k)
ni integral for an arbitrary fixed k, the linear terms in the exponents

of (4.2.40) are rewritten as

iqn
∑
j

(
Sijη

(k)
ni χ

(k)
nj + Sjiη̄

(k)
nj χ̄

(k)
ni

)
=

(
−iqn

∑
j

Sijχ
(k)
nj

)
η

(k)
ni + η̄

(k)
ni

(
iqnSiiχ̄

(k)
ni

)
+ iqn

∑
j 6=i

Sjiη̄
(k)
nj χ̄

(k)
ni (4.B.8)

and

iqn
∑
l

∑
j 6=i

(
Sjlη

(k)
nj χ

(k−1)
nl + Slj η̄

(k)
nl χ̄

(k−1)
nj

)
= iqn

∑
l

∑
j 6=i

Sjlη
(k)
nj χ

(k−1)
nl + η̄

(k)
ni

(
iqn
∑
j 6=i

Sijχ̄
(k−1)
nj

)

+ iqn
∑
l 6=i

∑
j 6=i

Slj η̄
(k)
nl χ̄

(k−1)
nj (4.B.9)

in order to isolate the η
(k)
ni and η̄

(k)
ni factors. Applying (4.B.7) to all the η

(k)
ni , η̄

(k)
ni integrals
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then yields the new terms

(
−iqn

∑
j

Sijχ
(k)
nj

)(
iqnSiiχ̄

(k)
ni + iqn

∑
j 6=i

Sijχ̄
(k−1)
nj

)

= q2nS2
iiχ

(k)
ni χ̄

(k)
ni + χ̄

(k)
ni

(
−q2nSii

∑
j 6=i

Sijχ
(k)
nj

)
+

(
−q2nSii

∑
j 6=i

Sijχ̄
(k−1)
nj

)
χ

(k)
ni

+ q2n
∑
l 6=i

∑
j 6=i

SijSilχ
(k)
nj χ̄

(k−1)
nl (4.B.10)

where we have isolated the χ
(k)
ni and χ̄

(k)
ni factors for the next round of integration.

Focusing now on the χ
(k)
ni , χ̄

(k)
ni integral for a arbitrary fixed k, the quadratic term of the

exponent is now χ
(k)
ni χ̄

(k)
ni /Dn after the ηni, η̄ni integration, where Dn = (1 + q2nS2

ii)
−1. The

remaining linear terms in the exponent are the linear terms above in addition to those that

spectated the ηni, η̄ni integration

χ̄
(k)
ni

(
−iqn

∑
j 6=i

Sjiη̄
(k)
nj

)
+

(
iqn
∑
j 6=i

Sjiη
(k+1)
nj

)
χ

(k)
ni + iqn

∑
l 6=i

∑
j 6=i

Sjl

(
η

(k+1)
nj χ

(k)
nl + η̄

(k+1)
nj χ̄

(k)
nl

)
(4.B.11)

so that applying (4.B.7) to all the χ
(k)
ni , χ̄

(k)
ni integrals then yields the new terms

Dn

(
iqn
∑
j 6=i

Sjiη
(k+1)
nj − q2nSii

∑
j 6=i

Sijχ̄
(k−1)
nj

)(
−iqn

∑
j 6=i

Sjiη̄
(k)
nj − q2nSii

∑
j 6=i

Sijχ
(k)
nj

)
(4.B.12)

At this point there are no linear terms remaining that mix variables with the same value of

k. Once the above terms are simplified and all indices shifted so that k and k + 1 are the

only indices that appear, we recover (4.2.41) and (4.2.42).
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4.C Calculation of determinants

In the determinant calculations there are two special forms of (equal-sized and square) block

matrices that we encounter, those of the block circulant form

Mn =



M0 Mn−1 Mn−2 · · · M2 M1

M1 M0 Mn−1 · · · M3 M2

M2 M1 M0 · · · M4 M3

...
...

...
. . .

...
...

Mn−2 Mn−3 Mn−4 · · · M0 Mn−1

Mn−1 Mn−2 Mn−3 · · · M1 M0


(4.C.1)

and 2× 2 block matrices. The determinant of the block circulant matrix was shown in [102]

to be

det Mn =
n∏
k=1

det

(
n−1∑
j=0

e2jkπi/nMj

)
(4.C.2)

This result is remarkable as (4.C.2) is of the same form regardless of the size of the matrices

Mj, including when they reduce to scalars. In general, determinants of block matrices only

exhibit similar behavior either when all block entries commute [103], or when certain blocks

are invertible and commute. Consider the 2× 2 block matrixA B

C D

 (4.C.3)

with A, B, C, and D all square matrices of the same dimensions. If A is invertible, then the

decomposition A B

C D

 =

A 0

C 1


1 A−1B

0 D − CA−1B

 (4.C.4)

98



leads to the determinant equation

det

A B

C D

 = det A det
(
D − CA−1B

)
(4.C.5)

If we also have that [A,C] = 0 then the determinant reduces to

det

A B

C D

 = det (AD − CB) (4.C.6)

while if [A,B] = 0 the determinant becomes

det

A B

C D

 = det (DA− CB) (4.C.7)

Similar results holds if D is invertible and [C,D] = 0 or [B,D] = 0.

4.C.1 Bosonic determinant

Beginning with the matrix defined in (4.2.17), (4.2.18), and (4.2.19) we apply (4.C.2) to

obtain

det MK =
K∏
k=1

det
(
14N−4 + e2πik/KC + e−2πik/KCT

)

=
K∏
k=1

det

12N−2 +X ⊗ Uk e2πik/KY ⊗ σ3

e−2πik/KY T ⊗ σ3 12N−2 + Z ⊗ Uk

 (4.C.8)

where

Uk = cos(2πk/K) 12 + i sin(2πk/K)σ2 = exp
(
2πikσ2/K

)
(4.C.9)
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In order to analyze the structure of the 2 × 2 block matrices above, we calculate a few

properties of the blocks (4.2.19)

Tr [X] = Tr [Z] = −q2nDn

(
1− S2

ii

)
(4.C.10)

X2 = −q2nDn

(
1− S2

ii

)
X , Z2 = −q2nDn

(
1− S2

ii

)
Z (4.C.11)

(XY )jl = (Y Z)jl = −q3nD2
nSii

(
1− q2n

)
SjiSil (4.C.12)

Y Y T = q2n1N−1 +Dn

(
1− q4nS2

ii

)
X (4.C.13)

Y TY = q2n1N−1 +Dn

(
1− q4nS2

ii

)
Z (4.C.14)

From (4.C.11) we see that det X = det Z = 0, and hence X and Z are not invertible.

However, employing the matrix logarithm, the Mercator series, and the geometric series we

find

det (12N−2 +X ⊗ Uk) = exp

(
−
∞∑
m=1

(−1)m

m
Tr[Xm] Tr[Um

k ]

)

= exp

(
−
∞∑
m=1

1

m

(
q2nDn(1− S2

ii)
)m (

e2πimk/K + e−2πimk/K
))

= 1− 2q2nDn(1− S2
ii) cos(2πk/K) + q4nD2

n(1− S2
ii)

2 (4.C.15)

= det (12N−2 + Z ⊗ Uk)

Thus 12N−2 + X ⊗ Uk and 12N−2 + Z ⊗ Uk are both invertible. A very similar determinant

calculation using (4.C.13) and (4.C.14) shows that det Y 6= 0 and hence Y is invertible. At
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this point we make the decomposition

12N−2 +X ⊗ Uk e2πik/KY ⊗ σ3

e−2πik/KY T ⊗ σ3 12N−2 + Z ⊗ Uk

 =

e2πik/KBk e2πik/KY ⊗ σ3

12N−2 12N−2 + Z ⊗ Uk


 e2πik/KY ⊗ σ3A−1

k 0

1N−1 ⊗
(
12 − q2nA−1

k

)
12N−2


−1

(4.C.16)

with matrices

Ak = q2n12 −Dn

(
1− q4nS2

ii

)
U−1
k (4.C.17)

and

Bk = Y ⊗ σ3
(
12 + (1− q2n)A−1

k

)
+XY ⊗ Ukσ3A−1

k (4.C.18)

Now using (4.C.16) and (4.C.7), the determinant can be reduced to

det MK =
K∏
k=1

det
[
Bk

(
Y −1 ⊗ Akσ3

)
+Bk (Z ⊗ Uk)

(
Y −1 ⊗ Akσ3

)
− 1N−1 ⊗ σ3Akσ

3
]

=
K∏
k=1

(
1− q2n

)2N−2
det

(
12N−2 +

2 cos(2πk/K)− q2n − 1

1− q2n
X ⊗ 12

)

= D2K
n

K∏
k=1

(
1− q2n

)2N−4 [
1− 2

(
S2
ii +

(
1− S2

ii

)
cos(2πk/K)

)
q2n + q4n

]2
(4.C.19)
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4.C.2 Fermionic determinant

In this case the block entries (4.2.19) and their properties in (4.C.10) through (4.C.14) are

modified by qn → −iqn. We proceed in a similar manner to the previous section, where now

det MK =
K∏
k=1

det
(
12N−2 ⊗ σ2 + e2πik/KC − e−2πik/KCT

)

=
K∏
k=1

det

1N−1 ⊗ σ2 +X ⊗ Ukσ2 e2πik/KY ⊗ σ3

−e−2πik/KY T ⊗ σ3 1N−1 ⊗ σ2 + Z ⊗ Ukσ2


= (−1)2(N−1)K

K∏
k=1

det

 12N−2 +X ⊗ Uk −ie2πik/KY ⊗ σ1

ie−2πik/KY T ⊗ σ1 12N−2 + Z ⊗ Uk

 (4.C.20)

with Uk as in (4.C.9). Making the decomposition

 12N−2 +X ⊗ Uk −ie2πik/KY ⊗ σ1

ie−2πik/KY T ⊗ σ1 12N−2 + Z ⊗ Uk

 =

−ie2πik/KBk −ie2πik/KY ⊗ σ1

12N−2 12N−2 + Z ⊗ Uk


 −ie2πik/KY ⊗ σ1A−1

k 0

1N−1 ⊗
(
12 + q2nA−1

k

)
12N−2


−1

(4.C.21)

with matrices

Ak = −q2n12 −Dn

(
1− q4nS2

ii

)
U−1
k (4.C.22)

and

Bk = Y ⊗ σ1
(
12 + (1 + q2n)A−1

k

)
+XY ⊗ Ukσ1A−1

k (4.C.23)
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we use (4.C.21) and (4.C.7) to reduce the determinants to

det MK = (−1)2(N−1)K
K∏
k=1

(
1 + q2n

)2N−2
det

(
12N−2 +

2 cos(2πk/K) + q2n − 1

1 + q2n
X ⊗ 12

)

= D2K
n (−1)2(N−1)K

K∏
k=1

(
1 + q2n

)2N−4 [
1 + 2

(
S2
ii +

(
1− S2

ii

)
cos(2πk/K)

)
q2n + q4n

]2
(4.C.24)
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Chapter 5

Holographic Topological Interfaces

In chapter 2 when we considered holographic duals to conformal interfaces in the form of

deformed geometries it is notable that for no moduli were these geometries dual to topological

interfaces (both solutions select k1 = k2 = 1, leading to no nontrivial values of the parameters

in which the topological conditions in the boundary CFT are satisfied). This is unsurprising,

as deformations of the bulk require energy and thus one would not expect to be able to freely

deform between them; a key property we expect to be a feature of the bulk theory dual to

a topological interface. Thus we seek to explore holographic duals to topological interfaces

along a different direction, i.e. in terms of bulk interfaces of topological CS matter theories.

When one considers co-dimension one interfaces between two theories or boundaries of

a single theory, the variation of the action can pick up terms localized on the interface or

boundary. In order to obtain a good variational principle it may then be necessary to add

counter terms to the action which are localized on the interface or boundary. For topological

field theories this can lead to the introduction of non-topological degrees of freedom, and this

procedure is indeed what causes the relation of CS theory on a 3-manifold with boundary

and chiral WZW theories on the boundary [59, 104]. On the other hand, as shown in [65],

for Abelian CS theories it is possible to impose topological boundary conditions, where

no counter terms are necessary. Since any interface between two theories can be mapped
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into a boundary by the folding trick [19] this statement implies the existence of topological

interfaces in CS theories [105]. The aim of this chapter is to study some implications of such

CS topological interface theories in the context of the AdS/CFT correspondence and relate

them to topological interfaces in the dual two-dimensional CFT.

The structure of this chapter is as follows: in section 5.1 we review the construction

of topological interfaces in CS theories on general manifolds (see section 1.3.2 for a review

of well-known aspects of pure CS theory and its holography). In section 5.2 we relate

a topological interface in the bulk of AdS3 to the boundary by utilizing an AdS2 slicing of

AdS3. In order to identify conserved currents in the CFT the dual currents need to have both

holomorphic and anti-holomorphic parts. To accomplish this we generalize a construction

first given in [106] to show that in general it is possible to obtain a topological interface in

the boundary CFT from a topological interface in the AdS3 bulk. In section 5.3 we briefly

discuss higher-dimensional generalizations of this construction. We close with a discussion

of open questions in section 5.4.

5.1 Background

In this section we will review the recent construction of topological interface conditions for

CS theory given in [65]1. We will be mainly following the treatment given in [105]. We

divide the total 3-manifold M into two parts M = ML ∪Σ MR with joining interface Σ.

The U(1)N CS action is now divided into two parts

SCS =
1

4π
K

(L)
IJ

∫
ML

A(L)I ∧ dA(L)J +
1

4π
K

(R)
IJ

∫
MR

A(R)I ∧ dA(R)J (5.1.1)

with in general different level matrices K(L) and K(R). If the manifoldM has a boundary we

have to add an appropriate boundary term. In this section we will focus on the topological

interface matching conditions which relate the A(L) and A(R) gauge fields and postpone the

1For related work in the condensed matter literature see, e.g. [107–111].
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discussion of the boundary terms to section 5.2.3.

A topological interface is defined such that the canonical symplectic one-form

Θ = δSCS| on shell = − 1

4π

∫
Σ

(
K

(L)
IJ A

(L)I ∧ δA(L)J −K(R)
IJ A

(R)I ∧ δA(R)J
)

(5.1.2)

vanishes on shell on a half-dimensional subspace of the phase space without the introduction

of additional contributions coming from counter terms localized on Σ. These bulk boundary

conditions are determined by twoN×N matrices v(L) and v(R) which implement the matching

condition

v(L)T
K(L)A(L)

∣∣
Σ

= −v(R)T
K(R)A(R)

∣∣
Σ

(5.1.3)

and must respect the gluing condition

v(L)T
K(L)v(L) = v(R)T

K(R)v(R) (5.1.4)

Since the above gluing condition does not have unique solutions, we additionally demand

that the v(L) and v(R) satisfy a primitivity condition. This translates to the condition that

the N ×N minors of the 2N ×N matrix

P =

 v(L)

−v(R)

 (5.1.5)

all have a greatest common divisor of 1. The theories we’ll consider will be those with

nonsingular level matrices, and taking the determinant of (5.1.4) shows that in such theories

the matrices v(L) and v(R) are then either both singular or both nonsingular; we’ll only

consider interfaces where the latter is true.

As an example of matching conditions between theories with unequal level matrices,
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consider the case

K(L) = kn2
L

1 0

0 −1

 and K(R) = kn2
R

1 0

0 −1

 (5.1.6)

where k, nL, nR ∈ Z and we assume that nL and nR are relatively prime. There are two

types of primitive matching condition matrices satisfying (5.1.4), either

v
(L)
1 = nR

ηL 0

0 η′L

 and v
(R)
1 = nL

ηR 0

0 η′R

 (5.1.7)

or

v
(L)
2 = nR

 0 η′′L

η′′L 0

 and v
(R)
2 = nL

 0 η′′R

η′′R 0

 (5.1.8)

where ηL, η
′
L, η

′′
L, ηR, η

′
R, η

′′
R = ±1. In terms of the matching condition

A(L)
∣∣
Σ

= −v(L)[v(R)]−1A(R)
∣∣
Σ

(5.1.9)

following from (5.1.3) and (5.1.4), we have that

− v(L)
1 [v

(R)
1 ]−1 = −nR

nL

ηLηR 0

0 η′Lη
′
R

 and − v(L)
2 [v

(R)
2 ]−1 = −nR

nL

η′′Lη′′R 0

0 η′′Lη
′′
R


(5.1.10)

While the diagonal level matrices of (5.1.6) do not allow for matching conditions that mix

the gauge fields of different levels, in general diagonal level matrices do. For example [105],

the continuous level matrix

K(L) = K(R) = k

1 0

0 m2 − n2

 (5.1.11)
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with n,m relatively prime, allows for the primitive matching condition matrices

v(L) =

m n

0 1

 and v(R) =

−n −m

1 0

 =⇒ −v(L)[v(R)]−1 =
1

m

n n2 −m2

1 n


(5.1.12)

5.2 Topological interfaces in the AdS bulk

In this section we discuss how a topological interface in the bulk CS theory can be related

to topological interfaces in two-dimensional CFTs via the AdS/CFT correspondence. We

will first briefly discuss an important gauge choice for our investigations in section 5.2.1,

then show the holographic incompatibility of the standard choice of CS counter terms with

general bulk topological interfaces in section 5.2.2. In section 5.2.3 we develop a non-standard

CS counter term, and in section 5.2.4 we show that this counter term is holographically

compatible with general bulk topological interfaces.

5.2.1 AdS2 slicing

A useful coordinate system to work with is that of an AdS2 slicing of AdS3, which we reviewed

in section 1.3.1. In the coordinate system (1.3.9) we locate the CS topological interface at

µ = 0 and ML/R are given by the half-spaces µ < 0 and µ > 0 respectively (see figure 1.5).

In this coordinate system we can impose the gauge AIµ = 0. It then follows from the flatness

of the connection that the non-vanishing components Az,t are independent of µ and hence

the connection at the CS interface can be trivially related to the connection at the boundary

component of AdS3. Note that due to the fact that the CS action is topological there is no

backreaction on the metric, which remains unchanged from (1.3.7). This is to be contrasted

to the case of Janus solutions involving massless scalars [45, 48], where the metric will be

deformed.
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5.2.2 Simple holomorphic example

In the following we consider the boundary counter terms discussed in section 1.3.2, which

lead to purely holomorphic U(1) currents (1.3.30) and stress tensor (1.3.31). We utilize the

AdS2 slicing coordinates given in (1.3.9) and locate the topological interface Σ in the bulk at

µ = 0 with the left and right CS theories in (5.1.1) occupying µ < 0 and µ > 0 respectively.

As discussed above, the gauge Aµ = 0 allows for Aa, a = z, t, to be trivially continued to

the AdS3 boundary at µ = ±∞ and compared at the location of the CFT interface at ∂Σ.

Using this, the matching condition (5.1.3) at the bulk topological interface translates into

the following condition for the currents

(
v(L)

)T
J (L)
z

∣∣
∂Σ

= −
(
v(R)

)T
J (R)
z

∣∣
∂Σ

(5.2.1)

We can use this matching condition to relate the holomorphic stress tensor for the left and

right CFTs at the location of the interface

(
J (L)

)T
K−1

(L)J
(L) =

(
J (R)
z

)T
v(R)

(
v(L)

)−1
K−1

(L)

(
(v(L))T

)−1 (
v(R)

)T
J (R)
z

=
(
J (R)
z

)T
v(R)

(
(v(L))TK(L)v

(L)
)−1 (

v(R)
)T
J (R)
z

=
(
J (R)
z

)T
v(R)

(
(v(R))TK(R)v

(R)
)−1 (

v(R)
)T
J (R)
z

=
(
J (R)
z

)T
K−1

(R)J
(R)
z (5.2.2)

where in the last line we used the gluing condition (5.1.4) for the K matrices. It follows from

the definition (1.3.31) that the holomorphic components of the stress tensor are continuous

T (L)
zz

∣∣
∂Σ

= T (R)
zz

∣∣
∂Σ

(5.2.3)

which is the first condition in (1.1.7) a topological CFT interface must satisfy. However,

in the purely holomorphic formulation discussed so far it is not possible to construct the
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anti-holomorphic stress tensor and hence verify the second condition in (1.1.7).2 Even

when the level matrices decompose according to K(L,R) = k(L,R) ⊕ (−k̃(L,R)), where we

can choose to source holomorphic currents from the gauge fields mixed by k(L,R) and source

anti-holomorphic currents from the gauge fields mixed by −k̃(L,R), there are problems with

the continuity of the stress tensor components. To see this, let us write

A(L,R)
∣∣
∂ML,R

=

a(L,R)

ã(L,R)

 (5.2.4)

so that we have

J (L,R)
z =

1

2π
k(L,R)a(L,R)

z and J̃
(L,R)
z̄ =

1

2π
k̃(L,R)ã

(L,R)
z̄ (5.2.5)

and the stress tensor components are given by

T (L,R)
zz =

π

2
J (L,R)
z (k(L,R))−1J (L,R)

z +
1

8π
ã(L,R)
z k̃(L,R)ã(L,R)

z (5.2.6)

T
(L,R)
z̄z̄ =

1

8π
a

(L,R)
z̄ k(L,R)a

(L,R)
z̄ +

π

2
J̃

(L,R)
z̄ (k̃(L,R))−1J̃

(L,R)
z̄ (5.2.7)

One can check that (5.2.6) and (5.2.7) are separately continuous for the matching conditions

(5.1.10), but not for those of (5.1.12). Generally, the stress tensor components produced by

these counter terms will only be separately continuous if the matching conditions decompose

according to

− v(L)v(R)−1
=

V 0

0 Ṽ

 (5.2.8)

2If the interface condition is conformal and satisfies (1.1.1) the holomorphic condition (5.2.3) implies the
anti-holomorphic one.
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which from the matching conditions on a(L,R) on ∂Σ

v(L)T

 2πJ
(L)
z

−k̃(L)ã
(L)
z

∣∣∣
∂Σ

= −v(R)T

 2πJ
(R)
z

−k̃(R)ã
(R)
z

∣∣∣
∂Σ

(5.2.9)

v(L)T

 k(L)a
(L)
z̄

−2πJ̃
(L)
z̄

∣∣∣
∂Σ

= −v(R)T

k(R)a
(R)
z̄

−2πJ̃
(R)
z̄

∣∣∣
∂Σ

(5.2.10)

we see is related to the possible mixing between holomorphic and anti-holomorphic boundary

currents and the remaining components of the bulk fields. With counter term choices like

(1.3.28) we will always have this problem owing to the fact that the holomorphic and anti-

holomorphic currents are independent from each other. This is the reason why we generalize

the counter terms in the next section in order to obtain a conserved current with both

holomorphic and anti-holomorphic parts.

5.2.3 Pure CS counter terms and conserved currents

In [106], an interesting counter term was chosen in order for the bulk CS theory to source a

boundary current whose components had a common dependence on the boundary values of

the gauge fields. This boundary current was constructed such that there is no chiral anomaly

as a result of the flatness of the gauge fields which source it. Specifically, the action of the

theory is given by

S =
k

4π

∫
M

(
A ∧ dA− Ā ∧ dĀ

)
+

k

8π

∫
∂M

d2z
(
AzAz̄ + ĀzĀz̄ − 2Az̄Āz

)
(5.2.11)

where the first two terms in the counter term allow Az̄ and Āz to be fixed on the boundary

and the final term is chosen to produce a conserved current; i.e. the boundary currents

Jz =
δS

δAz̄
=

k

2π

(
Az − Āz

) ∣∣∣
∂M

and Jz̄ =
δS

δĀz
= − k

2π

(
Az̄ − Āz̄

) ∣∣∣
∂M

(5.2.12)
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can be regarded as components of a single current satisfying

∂µJµ =
k

2π

[
(∂z̄Az − ∂zAz̄)−

(
∂z̄Āz − ∂zĀz̄

)] ∣∣∣
∂M

= 0 (5.2.13)

by the flatness of A and Ā. If we want A and Ā to source left- and right-moving currents,

respectively, then (5.2.11) is the unique counter term for which such a conserved current can

be constructed; however, if we make no assumptions about which gauge fields source the

left-moving and right-moving currents then larger classes of counter terms are possible.

Consider the pure CS action (1.3.24) of 2N gauge fields in AdS3, with the addition of a

generic quadratic counter term. Making use of the Hodge star on ∂M, we can write such a

counter term in the coordinate invariant form

SCT =
1

8π

∫
∂M

(
XIJ ∗ AI ∧ AJ + YIJ A

I ∧ AJ
)

(5.2.14)

where here X and Y are symmetric and anti-symmetric 2N×2N matrices, respectively. The

variation of the total action is then given by

δStotal =
1

4π

∫
∂M
∗
[
XIJA

I + (KIJ + YIJ) ∗ AI
]
∧ δAJ (5.2.15)

Decomposing the term in the brackets above in terms of its self-dual and anti-self-dual parts,

we see that in order to allow for a well-defined variational principle consistent with N left-

moving and N right-moving boundary currents it must be the case that the matrices

P± = X ± Y ±K (5.2.16)

each be half-rank. Furthermore, the nullspaces of these matrices and their transposes de-

termine the boundary currents and the gauge fields which source them. Specifically, the

left- and right-moving boundary currents will correspond to combinations of the gauge fields
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valued in the orthogonal complements to the nullspaces of PT
± , Null(PT

± )⊥; and the com-

binations of the gauge fields sourcing them will be valued in the orthogonal complements

to the nullspaces of P±, Null(P±)⊥. Thus, for a well-defined variational principle we must

specifically have that Null(P+) ∪ Null(P−) = R2N , and for it to be possible to construct N

conserved currents we must have Null(PT
+ ) = Null(PT

− ). Such matrices can be constructed

from a spanning set of vectors {v+
i , v

−
i } and another set of linearly independent vectors {wi}

and setting

P T
± =

N∑
i=1

v±i w
T
i (5.2.17)

where the {v±i } form bases for Null(P±)⊥ and the {wi} form a basis for Null(PT
± )⊥. Further-

more, consistency with (5.2.16) constrains the possible vectors in (5.2.17). First, if

X =
1

2

(
PT

+ + PT
−
)

(5.2.18)

is to be a symmetric matrix then we must set wi = v+
i + v−i . Then, writing K in spectral

form as

K =
N∑
i=1

(
k+
i u

+
i u

+
i

T − k−i u−i u−i
T
)

(5.2.19)

where u±i are the unit eigenvectors corresponding to the positive and negative eigenvalues

±k±i of K, we see that

K =
1

2

[
1

2

(
PT

+ − PT
−
)

+
1

2
(P+ − P−)

]
=

1

2

N∑
i=1

(
v+
i v

+
i

T − v−i v−i
T
)

(5.2.20)

determines the possible {v±i } to be given by

v+
i

T

v−i
T

 = M

√2k+
i u

+
i

T√
2k−i u

−
i

T

 (5.2.21)

where M is an arbitrary O(N,N) matrix acting on the {I} coordinates in some ordering
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{i, i+N}.

In terms of the solution (5.2.21), the variation (5.2.15) can be written as

δS =

∫
∂M

[
∗
(
J i + ∗J i

)
∧ δAi + ∗

(
J i − ∗J i

)
∧ δĀi

]
(5.2.22)

with the fields sourcing the self-dual and anti-self-dual currents being

Ai = ci
(
v+
i

)
I
AI = ci (MUA)i and Āi = −ci

(
v−i
)
I
AI = −ci (MUA)i+N (5.2.23)

where the ci are arbitrary proportionality constants and the matrix U is constructed row-wise

as

U =

√2k+
i u

+
i

T√
2k−i u

−
i

T

 (5.2.24)

In terms of the Ai and Āi, the currents are given by

Ji = ∗ 1

2πc2
i

(
Ai − Āi

) ∣∣∣
∂M

(5.2.25)

As advertised, we have that

d ∗ Ji =
1

2πc2
i

(
dAi − dĀi

) ∣∣∣
∂M

= 0 (5.2.26)

by the flatness of the gauge fields. In terms of (5.2.23) and (5.2.25), the counter term can

be written as

SCT =

∫
∂M

[
πc2

i

2
J i ∧ ∗ Ji +

1

4πc2
i

Ai ∧ Āi
]

(5.2.27)

from which we see that the stress tensor is of the Sugawara form, given by

Tµν = −πc
2
i

2

(
J iµJi,ν − 1

2
gµνJ

i
λJ

λ
i

)
(5.2.28)
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In flat coordinates, the non-zero components are

Tzz = −πc
2
i

2
J izJi,z and Tz̄z̄ = −πc

2
i

2
J iz̄Ji,z̄ (5.2.29)

5.2.4 Interfaces with conserved currents

In order for an interface to preserve the stress tensor components (5.2.29), the matching

conditions on the gauge fields must act as an O(N) transformation on the ciJ i. Specifically,

if the boundary conditions on the fields are

A
(L)
I = ΛJ

IA
(R)
J (5.2.30)

then we are concerned with the matrix Λ̂ implementing the conditions on the c−1
i Ai and

c−1
i Āi,  1

c
(L)
i

(
A

(L)
i − Ā

(L)
i

)
1

c
(L)
i

(
A

(L)
i + Ā

(L)
i

)
 = Λ̂

 1

c
(R)
i

(
A

(R)
i − Ā

(R)
i

)
1

c
(R)
i

(
A

(R)
i + Ā

(R)
i

)
 (5.2.31)

given by

Λ̂ =
1

2

1 1

1 −1

M (L)U (L)Λ
(
M (R)U (R)

)−1

1 1

1 −1

 (5.2.32)

Thus, in order for the matching conditions (5.2.30) to act as

c
(L)
i J

(L)
i = Sji c

(R)
j J

(R)
j (5.2.33)

for some S ∈ O(N), the matrix Λ̂ must decompose according to

Λ̂ =

 S 0

Λ̂21 Λ̂22

 (5.2.34)
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Writing (5.1.4) in terms of Λ and utilizing the spectral decomposition of the level matrices,

we see that the combination

MΛ = U (L)Λ
(
U (R)

)−1
(5.2.35)

is always an O(N,N) matrix, from which fact we determine that all solutions obeying (5.2.34)

are given by

M (L)MΛ

(
M (R)

)−1
=

S 0

0 S

 (5.2.36)

The above shows that there is always enough freedom in the choice of counter terms on the

left and right theories to produce a continuous boundary stress tensor.

As an example, for N = 1 (5.2.36) implies that

MΛ = ±Mη
(L)
+ η

(R)
+

η
(L)
− η

(R)
−

(λ(R) − λ(L)) (5.2.37)

where

Mη+
η− (λ) =

coshλ sinhλ

sinhλ coshλ


η+ 0

0 η−

 (5.2.38)

is a general O(1, 1) element. We will consider two examples of N = 1 bulk interfaces, the

first of which are

MΛ =

η1 0

0 η2

 (5.2.39)

for the matching conditions respecting the gluing conditions of the level matrices (5.1.6),

where η1, η2 = ±1. In order for (5.2.37) to be obeyed, we must have η
(L)
+ η

(R)
+ = ±η1,

η
(L)
− η

(R)
− = ±η2, and λ(L) = λ(R). As a second example, we consider

MΛ =

 n
m

√
n2

m2 − 1√
n2

m2 − 1 n
m

 (5.2.40)

for the matching conditions respecting the level matrices (5.1.11). This time, the condition
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(5.2.37) sets η
(L)
+ = η

(L)
− = ±η(R)

+ = ±η(R)
− and λ(R) − λ(L) = arccosh (n/m).

5.3 Higher-dimensional generalizations

We can consider higher-dimensional generalizations of three-dimensional CS topological field

theory. The most straightforward generalization exists in d = 4n+ 3 dimensions with n ≥ 1,

utilizing (2n+ 1)-dimensional anti-symmetric tensor fields

S =
KIJ

4π

∫
M4n+3

BI ∧ dBJ (5.3.1)

For n = 1 the matrix K is symmetric just as for the three-dimensional CS theory, and the

theory describes the topological sector of (2, 0) theories on M5-branes. This topological field

theory has been studied in the past, see e.g. [112–114]. Following the three-dimensional

example we can consider a (4n + 2)-dimensional interface Σ separating two AST theories

with different K matrices living on ML,R respectively3

Sint =
K

(L)
IJ

4π

∫
ML

B(L)I ∧ dB(L)J +
K

(R)
IJ

4π

∫
MR

B(R)I ∧ dB(R)J (5.3.2)

A topological interface with a good variational principle would, as before, have a vanishing

symplectic one-form

Θ = δS| on shell = − 1

4π

∫
Σ

(
K

(L)
IJ B

(L)I ∧ δB(L)J −K(R)
IJ B

(R)I ∧ δB(R)J
)

+ ΘCT (5.3.3)

with matching conditions which restrict the AST fields to a half-dimensional Lagrangian

subspace. A topological interface condition is given when no counter terms which depend on

the induced metric on the interface Σ have to be added. While there are many mathematical

subtleties in the exact treatment of these theories [113, 115] it seems likely that topological

3For theories in d = 4n + 1 with 2n-dimensional AST fields, the matrix K is anti-symmetric and the
analysis of topological interface theories does not parallel the CS case.
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interfaces can be constructed for these theories, and it would be interesting to investigate

what would be the analog of the two-dimensional topological interfaces for the boundary

theories when (5.3.2) is placed in AdS4n+3.

5.4 Discussion

In this chapter we placed Abelian three-dimensional CS theories in AdS3 and related the

topological interfaces in this theory to topological interfaces in the boundary CFT. In order to

obtain both holomorphic and anti-holomorphic currents and stress tensors, we generalized

a construction which produces conserved U(1) currents with both holomorphic and anti-

holomorphic components in the boundary. There are many open questions which would be

interesting to pursue. The relation between CS theories and rational CFTs generalizes to

non-Abelian CS theories (and WZW models); does the relation of topological interfaces in

bulk and boundary theories generalize to this case? The first step in answering this question

involves generalizing the classification of topological interfaces in Abelian CS theories [65]

to the non-Abelian case. One very important property of topological interfaces in two-

dimensional CFTs is that they have a nontrivial fusion product, which can be constructed

by bringing two topological interfaces close together. It would be interesting to understand

what the analog of this product is on the bulk side. The higher-dimensional generalization

is also very interesting, in particular whether the topological interfaces – if they can be

consistently defined – have any interpretation or application in the M5-brane (2, 0) theory.
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Appendix A

CFT conventions

In this appendix we review the explicit CFT conventions that we use throughout the paper,

specifically the free boson and free fermion theories on the cylinder and torus.

A.1 Free scalar field

For a cylinder of circumference 2π the action

S[ϕ] =
1

4πα′

∫
d2x ∂µϕ∂

µϕ (A.1.1)

describes the compact free boson field ϕ(x, t) = ϕ(x+ 2π, t)− 2πwR, where w is the integer

winding number of the boson around the cylinder and R is the compactification radius. The

equation of motion is satisfied by

ϕ(z, z̄) = ϕ0 − i
(
nα′

2R
+

1

2
wR

)
ln z + i

√
α′

2

∑
k 6=0

1

k
akz

−k

− i
(
nα′

2R
− 1

2
wR

)
ln z̄ + i

√
α′

2

∑
k 6=0

1

k
ākz̄

−k (A.1.2)
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with holomorphic and anti-holomorphic coordinates given by

z = et+ix , z̄ = et−ix (A.1.3)

If we define

a0 =
n

R

√
α′

2
+

wR√
2α′

, ā0 =
n

R

√
α′

2
− wR√

2α′
(A.1.4)

then the mode expansion (A.1.2) is brought into the simpler holomorphic and anti-holomorphic

expressions

i∂ϕ(z) =

√
α′

2

∞∑
k=−∞

akz
−k−1 , i∂̄ϕ̄(z̄) =

√
α′

2

∞∑
k=−∞

ākz̄
−k−1 (A.1.5)

Radial quantization on the complex plane imposes commutation relations between the bosonic

operators (formerly expansion coefficients)

[an, am] = [ān, ām] = n δn+m,0 , [an, ām] = 0 (A.1.6)

The Hamiltonian of this boson (on the torus) is now

H = L0 + L̄0 −
1

12
(A.1.7)

with Virasoro generators given by

Ln =
1

2

∞∑
m=−∞

: an−mam : , L̄n =
1

2

∞∑
m=−∞

: ān−mām : (A.1.8)

for n 6= 0 and

L0 =
∞∑
n=1

a−nan +
1

2
a2

0 , L̄0 =
∞∑
n=1

ā−nān +
1

2
ā2

0 (A.1.9)
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The ground state quantum numbers, the momentum and winding number n and w, are

related to the eigenvalues of the zero mode operators by

√
1

2α′
(a0 + ā0) |n,w〉 =

n

R
|n,w〉 ,

√
1

2α′
(a0 − ā0) |n,w〉 =

wR

α′
|n,w〉 (A.1.10)

The action of the Hamiltonian on these vacuum states is

H |n,w〉 =

(
n2α′

2R2
+
w2R2

2α′
− 1

12

)
|n,w〉 (A.1.11)

With these conventions, the effects of a T-duality transformation are

n←→ w , R←→ α′

R
, an ←→ an , ān ←→ −ān (A.1.12)

Two important identities for bosonic oscillators are

eanqL0 = qL0eq
nan and eānqL̄0 = qL̄0eq

nān (A.1.13)

where n ≥ 0 and q = e2πiτ . These follow from [an, L0] = [ān, L̄0] = n and the general braiding

relation

Ad eA = eadA =⇒ eAd
eA
B = Ad eAe

B = ee
adAB (A.1.14)

where the group and algebra adjoints are defined to be AdAB ≡ ABA−1 and adAB ≡ [A,B].

A.2 Free spin-1
2 field

The free Majorana fermion on the cylinder is described by the action

S[ψ, ψ̄] =
1

2πα′

∫
d2z
(
ψ̄ ∂ψ̄ + ψ ∂̄ψ

)
(A.2.1)
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where ψ and ψ̄ are the component spinors of the Majorana fermion. The equations of

motion simply require ψ(z) to be a holomorphic function and ψ̄(z̄) to be an anti-holomorphic

function. These spinors are chosen to be either periodic ψ(ze2πi) = ψ(z) or anti-periodic

ψ(ze2πi) = −ψ(z). The anti-periodic spinors are said to be in the Neveu-Schwarz sector and

have the mode expansions

iψ(z) =
∑

n∈Z−1
2

ψn z
−n−1/2 and iψ̄(z̄) =

∑
n∈Z−1

2

ψ̄n z̄
−n−1/2 (A.2.2)

The periodic spinors are said to be in the Ramond sector and have the mode expansions

iψ(z) =
∞∑

n=−∞

ψn z
−n−1/2 and iψ̄(z̄) =

∞∑
n=−∞

ψ̄n z̄
−n−1/2 (A.2.3)

In either case, radial quantization on the complex plane imposes anti-commutation relations

between the fermionic operators (formerly expansion coefficients)

{ψn, ψm} = {ψ̄n, ψ̄m} = δn+m,0 , {ψn, ψ̄m} = 0 (A.2.4)

The Hamiltonian of this fermion (on the torus) is now

H = L0 + L̄0 −
1

24
(A.2.5)

with Virasoro generators given by

Ln =
1

2

∑
m

(
m+ 1

2

)
: ψn−mψm : , L̄n =

1

2

∑
m

(
m+ 1

2

)
: ψ̄n−mψ̄m : (A.2.6)
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for n 6= 0, where m is summed over the half-integers or integers for the Neveu-Schwarz or

Ramond sectors, respectively. For the Neveu-Schwarz sector the n = 0 generators are

L0 =
∑

n∈N−1
2

nψ−nψn , L̄0 =
∑

n∈N−1
2

n ψ̄−nψ̄n (A.2.7)

and for the Ramond sector the n = 0 generators are

L0 =
∞∑
n=1

nψ−nψn +
1

16
, L̄0 =

∞∑
n=1

n ψ̄−nψ̄n +
1

16
(A.2.8)

The action of the Neveu-Schwarz Hamiltonian on the vacuum state is

H |0〉 = − 1

24
|0〉 (A.2.9)

and the action of the Ramond Hamiltonian on the vacuum states is

H |±〉 =
1

12
|±〉 (A.2.10)

The zero mode operators of the Ramond sector act on these vacuum states according to

ψ0|±〉 =
1√
2
e±iπ/4|∓〉 , ψ̄0|±〉 =

1√
2
e∓iπ/4|∓〉 (A.2.11)

furnishing a representation of (A.2.4) for n = m = 0.

The fermionic analogs of the bosonic identities (A.1.13) are

eβψnqL0 = qL0eq
nβψn and eβψ̄nqL̄0 = qL̄0eq

nβψ̄n (A.2.12)
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where n ≥ 0 and q = e2πiτ . They can be shown through direct expansion; explicitly,

qnψ−nψn =
∞∑
m=0

1

m!
(n log q)m (ψ−nψn)m

= 1 +
∞∑
m=1

1

m!
(n log q)m ψ−nψn = 1 + (qn − 1)ψ−nψn (A.2.13)

so that

eβψnqnψ−nψn = (1 + βψn) (1 + (qn − 1)ψ−nψn)

= 1 + qnβψn + (qn − 1)ψ−nψn = qnψ−nψneq
nβψn (A.2.14)

As a final note, specific values of the coupling α′ are often chosen in the literature. In [21]

and [22] the authors use α′ = 1/2. In other works, e.g. [96], α′ = 2 is used.

124



Bibliography

[1] M. Gutperle and J. D. Miller, “Entanglement entropy at holographic interfaces,”

Phys. Rev. D93 (2016), no. 2 026006, 1511.08955.

[2] M. Gutperle and J. D. Miller, “A note on entanglement entropy for topological

interfaces in RCFTs,” JHEP 04 (2016) 176, 1512.07241.

[3] M. Gutperle and J. D. Miller, “Entanglement entropy at CFT junctions,” Phys. Rev.

D95 (2017), no. 10 106008, 1701.08856.

[4] M. Gutperle and J. D. Miller, “Topological interfaces in Chern-Simons theory and

the AdS3/CFT2 correspondence,” Phys. Rev. D99 (2019), no. 2 026014, 1810.08713.

[5] V. Riva and J. L. Cardy, “Scale and conformal invariance in field theory: A Physical

counterexample,” Phys. Lett. B622 (2005) 339–342, hep-th/0504197.

[6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal

Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B241 (1984)

333–380.

[7] V. S. Dotsenko, “Critical Behavior and Associated Conformal Algebra of the Z(3)

Potts Model,” Nucl. Phys. B235 (1984) 54–74.

[8] P. Di Francesco, H. Saleur, and J. B. Zuber, “Modular Invariance in Nonminimal

Two-dimensional Conformal Theories,” Nucl. Phys. B285 (1987) 454.

125

http://xxx.lanl.gov/abs/1511.08955
http://xxx.lanl.gov/abs/1512.07241
http://xxx.lanl.gov/abs/1701.08856
http://xxx.lanl.gov/abs/1810.08713
http://xxx.lanl.gov/abs/hep-th/0504197


[9] B. Bellazzini, M. Mintchev, and P. Sorba, “Bosonization and scale invariance on

quantum wires,” J. Phys. A40 (2007) 2485–2508, hep-th/0611090.

[10] A. Sen, “String network,” JHEP 03 (1998) 005, hep-th/9711130.

[11] C. P. Bachas, “On the Symmetries of Classical String Theory,” in Quantum

Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity: Claudio

Bunster Festschrift, pp. 17–26, 2009. 0808.2777.

[12] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, “Entanglement in quantum critical

phenomena,” Phys. Rev. Lett. 90 (2003) 227902, quant-ph/0211074.

[13] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “A Quantum Source of Entropy

for Black Holes,” Phys. Rev. D34 (1986) 373–383.

[14] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666–669,

hep-th/9303048.

[15] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP

08 (2006) 045, hep-th/0605073.

[16] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel.

Grav. 42 (2010) 2323–2329, 1005.3035. [Int. J. Mod. Phys.D19,2429(2010)].

[17] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch.

Phys. 61 (2013) 781–811, 1306.0533.

[18] B. Czech, L. Lamprou, S. McCandlish, and J. Sully, “Integral Geometry and

Holography,” JHEP 10 (2015) 175, 1505.05515.

[19] C. Bachas, J. de Boer, R. Dijkgraaf, and H. Ooguri, “Permeable conformal walls and

holography,” JHEP 06 (2002) 027, hep-th/0111210.

126

http://xxx.lanl.gov/abs/hep-th/0611090
http://xxx.lanl.gov/abs/hep-th/9711130
http://xxx.lanl.gov/abs/0808.2777
http://xxx.lanl.gov/abs/quant-ph/0211074
http://xxx.lanl.gov/abs/hep-th/9303048
http://xxx.lanl.gov/abs/hep-th/0605073
http://xxx.lanl.gov/abs/1005.3035
http://xxx.lanl.gov/abs/1306.0533
http://xxx.lanl.gov/abs/1505.05515
http://xxx.lanl.gov/abs/hep-th/0111210


[20] C. Bachas and I. Brunner, “Fusion of conformal interfaces,” JHEP 02 (2008) 085,

0712.0076.

[21] K. Sakai and Y. Satoh, “Entanglement through conformal interfaces,” JHEP 12

(2008) 001, 0809.4548.

[22] E. M. Brehm and I. Brunner, “Entanglement entropy through conformal interfaces in

the 2D Ising model,” JHEP 09 (2015) 080, 1505.02647.

[23] T. Quella, I. Runkel, and G. M. T. Watts, “Reflection and transmission for conformal

defects,” JHEP 04 (2007) 095, hep-th/0611296.

[24] N. Ishibashi, “The Boundary and Crosscap States in Conformal Field Theories,”

Mod. Phys. Lett. A4 (1989) 251.

[25] J. L. Cardy, “Boundary Conditions, Fusion Rules and the Verlinde Formula,” Nucl.

Phys. B324 (1989) 581–596.

[26] C. Bachas, I. Brunner, and D. Roggenkamp, “A worldsheet extension of O(d, d|Z),”

JHEP 10 (2012) 039, 1205.4647.

[27] A. Recknagel, “Permutation branes,” JHEP 04 (2003) 041, hep-th/0208119.

[28] I. Brunner and M. R. Gaberdiel, “Matrix factorisations and permutation branes,”

JHEP 07 (2005) 012, hep-th/0503207.

[29] J. Fuchs, M. R. Gaberdiel, I. Runkel, and C. Schweigert, “Topological defects for the

free boson CFT,” J. Phys. A40 (2007) 11403, 0705.3129.

[30] I. Brunner, N. Carqueville, and D. Plencner, “Orbifolds and topological defects,”

Commun. Math. Phys. 332 (2014) 669–712, 1307.3141.

[31] P. Di Vecchia and A. Liccardo, “D Branes in String Theory, I,” NATO Sci. Ser. C

556 (2000) 1–60, hep-th/9912161.

127

http://xxx.lanl.gov/abs/0712.0076
http://xxx.lanl.gov/abs/0809.4548
http://xxx.lanl.gov/abs/1505.02647
http://xxx.lanl.gov/abs/hep-th/0611296
http://xxx.lanl.gov/abs/1205.4647
http://xxx.lanl.gov/abs/hep-th/0208119
http://xxx.lanl.gov/abs/hep-th/0503207
http://xxx.lanl.gov/abs/0705.3129
http://xxx.lanl.gov/abs/1307.3141
http://xxx.lanl.gov/abs/hep-th/9912161


[32] P. Di Vecchia and A. Liccardo, “D-branes in string theory. 2.,” in YITP Workshop on

Developments in Superstring and M Theory Kyoto, Japan, October 27-29, 1999,

pp. 7–48, 1999. hep-th/9912275.

[33] P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J.

Stat. Mech. 0406 (2004) P06002, hep-th/0405152.

[34] C. Holzhey, F. Larsen, and F. Wilczek, “Geometric and renormalized entropy in

conformal field theory,” Nucl. Phys. B424 (1994) 443–467, hep-th/9403108.

[35] T. Azeyanagi, A. Karch, T. Takayanagi, and E. G. Thompson, “Holographic

calculation of boundary entropy,” JHEP 03 (2008) 054–054, 0712.1850.

[36] I. Affleck and A. W. W. Ludwig, “Universal noninteger ’ground state degeneracy’ in

critical quantum systems,” Phys. Rev. Lett. 67 (1991) 161–164.

[37] M. Oshikawa and I. Affleck, “Boundary conformal field theory approach to the

critical two-dimensional Ising model with a defect line,” Nucl. Phys. B495 (1997)

533–582, cond-mat/9612187.

[38] J. A. Harvey, S. Kachru, G. W. Moore, and E. Silverstein, “Tension is dimension,”

JHEP 03 (2000) 001, hep-th/9909072.

[39] J. M. Maldacena, “The Large N limit of superconformal field theories and

supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, hep-th/9711200. [Adv.

Theor. Math. Phys.2,231(1998)].

[40] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from

noncritical string theory,” Phys. Lett. B428 (1998) 105–114, hep-th/9802109.

[41] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998)

253–291, hep-th/9802150.

128

http://xxx.lanl.gov/abs/hep-th/9912275
http://xxx.lanl.gov/abs/hep-th/0405152
http://xxx.lanl.gov/abs/hep-th/9403108
http://xxx.lanl.gov/abs/0712.1850
http://xxx.lanl.gov/abs/cond-mat/9612187
http://xxx.lanl.gov/abs/hep-th/9909072
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9802150


[42] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field

theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,

hep-th/9905111.

[43] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS /

CFT correspondence,” in Strings, Branes and Extra Dimensions: TASI 2001:

Proceedings, pp. 3–158, 2002. hep-th/0201253.

[44] O. DeWolfe, “TASI Lectures on Applications of Gauge/Gravity Duality,” PoS

TASI2017 (2018) 014, 1802.08267.

[45] D. Bak, M. Gutperle, and S. Hirano, “A Dilatonic deformation of AdS5 and its field

theory dual,” JHEP 05 (2003) 072, hep-th/0304129.

[46] E. D’Hoker, J. Estes, and M. Gutperle, “Ten-dimensional supersymmetric Janus

solutions,” Nucl. Phys. B757 (2006) 79–116, hep-th/0603012.

[47] A. B. Clark, D. Z. Freedman, A. Karch, and M. Schnabl, “Dual of the Janus solution:

An interface conformal field theory,” Phys. Rev. D71 (2005) 066003,

hep-th/0407073.

[48] E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions.

I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021, 0705.0022.

[49] A. Karch and L. Randall, “Open and closed string interpretation of SUSY CFT’s on

branes with boundaries,” JHEP 06 (2001) 063, hep-th/0105132.

[50] O. DeWolfe, D. Z. Freedman, and H. Ooguri, “Holography and defect conformal field

theories,” Phys. Rev. D66 (2002) 025009, hep-th/0111135.

[51] O. Aharony, O. DeWolfe, D. Z. Freedman, and A. Karch, “Defect conformal field

theory and locally localized gravity,” JHEP 07 (2003) 030, hep-th/0303249.

129

http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/0201253
http://xxx.lanl.gov/abs/1802.08267
http://xxx.lanl.gov/abs/hep-th/0304129
http://xxx.lanl.gov/abs/hep-th/0603012
http://xxx.lanl.gov/abs/hep-th/0407073
http://xxx.lanl.gov/abs/0705.0022
http://xxx.lanl.gov/abs/hep-th/0105132
http://xxx.lanl.gov/abs/hep-th/0111135
http://xxx.lanl.gov/abs/hep-th/0303249


[52] D. Bak, M. Gutperle, and S. Hirano, “Three dimensional Janus and time-dependent

black holes,” JHEP 02 (2007) 068, hep-th/0701108.

[53] M. Chiodaroli, M. Gutperle, and L.-Y. Hung, “Boundary entropy of supersymmetric

Janus solutions,” JHEP 09 (2010) 082, 1005.4433.

[54] M. Chiodaroli, M. Gutperle, and D. Krym, “Half-BPS Solutions locally asymptotic to

AdS3 × S3 and interface conformal field theories,” JHEP 02 (2010) 066, 0910.0466.

[55] J. Kumar and A. Rajaraman, “New supergravity solutions for branes in AdS3 × S3,”

Phys. Rev. D67 (2003) 125005, hep-th/0212145.

[56] J. Kumar and A. Rajaraman, “Supergravity solutions for AdS3 × S3 branes,” Phys.

Rev. D69 (2004) 105023, hep-th/0310056.

[57] M. Chiodaroli, E. D’Hoker, and M. Gutperle, “Open Worldsheets for Holographic

Interfaces,” JHEP 03 (2010) 060, 0912.4679.

[58] M. Chiodaroli, E. D’Hoker, Y. Guo, and M. Gutperle, “Exact half-BPS

string-junction solutions in six-dimensional supergravity,” JHEP 12 (2011) 086,

1107.1722.

[59] E. Witten, “Quantum field theory and the Jones polynomial,” Communications in

Mathematical Physics 121 (Sep, 1989) 351–399.

[60] P. Kraus, “Lectures on black holes and the AdS3/CFT2 correspondence,” Lect. Notes

Phys. 755 (2008) 193–247, hep-th/0609074.

[61] S. Deser, R. Jackiw, and S. Templeton, “Topologically massive gauge theories,”

Annals of Phys. 140 (1982), no. 2 372.

[62] S. Gukov, E. Martinec, G. W. Moore, and A. Strominger, “Chern-Simons gauge

theory and the AdS3/CFT2 correspondence,” in From Fields to Strings (M. Shifman

et. al., eds.), vol. 2. World Scientific, Singapore.

130

http://xxx.lanl.gov/abs/hep-th/0701108
http://xxx.lanl.gov/abs/1005.4433
http://xxx.lanl.gov/abs/0910.0466
http://xxx.lanl.gov/abs/hep-th/0212145
http://xxx.lanl.gov/abs/hep-th/0310056
http://xxx.lanl.gov/abs/0912.4679
http://xxx.lanl.gov/abs/1107.1722
http://xxx.lanl.gov/abs/hep-th/0609074


[63] H.-C. Chang, M. Fujita, and M. Kaminski, “From Maxwell-Chern-Simons theory in

AdS3 towards hydrodynamics in 1 + 1 dimensions,” JHEP 10 (2014) 118, 1403.5263.

[64] D. M. Hofman and N. Iqbal, “Generalized global symmetries and holography,”

SciPost Phys. 4 (2018), no. 1 005, 1707.08577.

[65] A. Kapustin and N. Saulina, “Topological boundary conditions in abelian

Chern-Simons theory,” Nucl. Phys. B845 (2011) 393–435, 1008.0654.

[66] E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys.

B311 (1988) 46.

[67] A. Achucarro and P. K. Townsend, “A Chern-Simons Action for Three-Dimensional

anti-De Sitter Supergravity Theories,” Phys. Lett. B180 (1986) 89.

[68] E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms

and Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.

[69] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic

symmetries of three-dimensional gravity coupled to higher-spin fields,” JHEP 11

(2010) 007, 1008.4744.

[70] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, and J. M. S. Wu,

“Entanglement Entropy in a Holographic Kondo Model,” Fortsch. Phys. 64 (2016)

109–130, 1511.03666.

[71] M. R. Gaberdiel and R. Gopakumar, “Higher Spins & Strings,” JHEP 11 (2014) 044,

1406.6103.

[72] M. R. Gaberdiel and R. Gopakumar, “Stringy Symmetries and the Higher Spin

Square,” J. Phys. A48 (2015), no. 18 185402, 1501.07236.

[73] M. Gutperle, “A note on interface solutions in higher-spin gravity,” JHEP 07 (2013)

091, 1302.3653.

131

http://xxx.lanl.gov/abs/1403.5263
http://xxx.lanl.gov/abs/1707.08577
http://xxx.lanl.gov/abs/1008.0654
http://xxx.lanl.gov/abs/1008.4744
http://xxx.lanl.gov/abs/1511.03666
http://xxx.lanl.gov/abs/1406.6103
http://xxx.lanl.gov/abs/1501.07236
http://xxx.lanl.gov/abs/1302.3653


[74] M. Ammon, A. Castro, and N. Iqbal, “Wilson Lines and Entanglement Entropy in

Higher Spin Gravity,” JHEP 10 (2013) 110, 1306.4338.

[75] J. de Boer and J. I. Jottar, “Entanglement Entropy and Higher Spin Holography in

AdS3,” JHEP 04 (2014) 089, 1306.4347.

[76] J. de Boer, A. Castro, E. Hijano, J. I. Jottar, and P. Kraus, “Higher spin

entanglement and WN conformal blocks,” JHEP 07 (2015) 168, 1412.7520.

[77] V. B. Petkova and J. B. Zuber, “Generalized twisted partition functions,” Phys. Lett.

B504 (2001) 157–164, hep-th/0011021.

[78] V. B. Petkova and J. B. Zuber, “The Many faces of Ocneanu cells,” Nucl. Phys.

B603 (2001) 449–496, hep-th/0101151.

[79] J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Kramers-Wannier duality from

conformal defects,” Phys. Rev. Lett. 93 (2004) 070601, cond-mat/0404051.

[80] J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Duality and defects in rational

conformal field theory,” Nucl. Phys. B763 (2007) 354–430, hep-th/0607247.

[81] E. M. Brehm, I. Brunner, D. Jaud, and C. Schmidt-Colinet, “Entanglement and

topological interfaces,” Fortsch. Phys. 64 (2016), no. 6-7 516–535, 1512.05945.

[82] L. A. Pando Zayas and N. Quiroz, “Left-Right Entanglement Entropy of Boundary

States,” JHEP 01 (2015) 110, 1407.7057.

[83] D. Das and S. Datta, “Universal features of left-right entanglement entropy,” Phys.

Rev. Lett. 115 (2015), no. 13 131602, 1504.02475.

[84] G. Sarkissian, “Defects and Permutation branes in the Liouville field theory,” Nucl.

Phys. B821 (2009) 607–625, 0903.4422.

132

http://xxx.lanl.gov/abs/1306.4338
http://xxx.lanl.gov/abs/1306.4347
http://xxx.lanl.gov/abs/1412.7520
http://xxx.lanl.gov/abs/hep-th/0011021
http://xxx.lanl.gov/abs/hep-th/0101151
http://xxx.lanl.gov/abs/cond-mat/0404051
http://xxx.lanl.gov/abs/hep-th/0607247
http://xxx.lanl.gov/abs/1512.05945
http://xxx.lanl.gov/abs/1407.7057
http://xxx.lanl.gov/abs/1504.02475
http://xxx.lanl.gov/abs/0903.4422


[85] H. Poghosyan and G. Sarkissian, “On classical and semiclassical properties of the

Liouville theory with defects,” JHEP 11 (2015) 005, 1505.00366.

[86] G. W. Moore and N. Seiberg, “Polynomial Equations for Rational Conformal Field

Theories,” Phys. Lett. B212 (1988) 451–460.

[87] J. Fuchs, I. Runkel, and C. Schweigert, “TFT construction of RCFT correlators 1.

Partition functions,” Nucl. Phys. B646 (2002) 353–497, hep-th/0204148.

[88] H. J. Schnitzer, “Left-Right Entanglement Entropy, D-Branes, and Level-rank

duality,” 1505.07070.

[89] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory. Graduate

Texts in Contemporary Physics. Springer-Verlag, New York, 1997.

[90] N. Drukker, D. Gaiotto, and J. Gomis, “The Virtue of Defects in 4D Gauge Theories

and 2D CFTs,” JHEP 06 (2011) 025, 1003.1112.

[91] J. Teschner, “Liouville theory revisited,” Class. Quant. Grav. 18 (2001) R153–R222,

hep-th/0104158.

[92] Y. Nakayama, “Liouville field theory: A Decade after the revolution,” Int. J. Mod.

Phys. A19 (2004) 2771–2930, hep-th/0402009.

[93] I. Runkel and G. M. T. Watts, “A Nonrational CFT with c = 1 as a limit of minimal

models,” JHEP 09 (2001) 006, hep-th/0107118.

[94] A. R. Aguirre, “Type-II defects in the super-Liouville theory,” J. Phys. Conf. Ser.

474 (2013) 012001, 1312.3463.

[95] P. Calabrese, M. Mintchev, and E. Vicari, “Entanglement Entropy of Quantum Wire

Junctions,” J. Phys. A45 (2012) 105206, 1110.5713.

133

http://xxx.lanl.gov/abs/1505.00366
http://xxx.lanl.gov/abs/hep-th/0204148
http://xxx.lanl.gov/abs/1505.07070
http://xxx.lanl.gov/abs/1003.1112
http://xxx.lanl.gov/abs/hep-th/0104158
http://xxx.lanl.gov/abs/hep-th/0402009
http://xxx.lanl.gov/abs/hep-th/0107118
http://xxx.lanl.gov/abs/1312.3463
http://xxx.lanl.gov/abs/1110.5713


[96] M. Chiodaroli, M. Gutperle, L.-Y. Hung, and D. Krym, “String Junctions and

Holographic Interfaces,” Phys. Rev. D83 (2011) 026003, 1010.2758.

[97] T. Kimura and M. Murata, “Transport Process in Multi-Junctions of Quantum

Systems,” JHEP 07 (2015) 072, 1505.05275.

[98] W. Donnelly and A. C. Wall, “Geometric entropy and edge modes of the

electromagnetic field,” Phys. Rev. D94 (2016), no. 10 104053, 1506.05792.

[99] B. Michel and M. Srednicki, “Entanglement Entropy and Boundary Conditions in

1+1 Dimensions,” 1612.08682.

[100] L. A. Pando Zayas and N. Quiroz, “Left-Right Entanglement Entropy of Dp-branes,”

JHEP 11 (2016) 023, 1605.08666.

[101] B. Deconinck, “Multidimensional Theta Functions,” in NIST Handbook of

Mathematical Functions (F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W.

Clark, eds.), p. 537. Cambridge University Press, 2010.

[102] G. J. Tee, “Eigenvectors of block circulant and alternating circulant matrices,” Lett.

Inf. Math. Sci 8 (2005) 123.

[103] J. R. Silvester, “Determinants of Block Matrices,” The Mathematical Gazette 84

(2000), no. 501 460–467.

[104] S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the Canonical

Quantization of the Chern-Simons-Witten Theory,” Nucl. Phys. B326 (1989)

108–134.

[105] J. R. Fliss, X. Wen, O. Parrikar, C.-T. Hsieh, B. Han, T. L. Hughes, and R. G.

Leigh, “Interface Contributions to Topological Entanglement in Abelian

Chern-Simons Theory,” JHEP 09 (2017) 056, 1705.09611.

134

http://xxx.lanl.gov/abs/1010.2758
http://xxx.lanl.gov/abs/1505.05275
http://xxx.lanl.gov/abs/1506.05792
http://xxx.lanl.gov/abs/1612.08682
http://xxx.lanl.gov/abs/1605.08666
http://xxx.lanl.gov/abs/1705.09611


[106] V. Keranen, “Chern-Simons interactions in AdS3 and the current conformal block,”

1403.6881.

[107] F. D. M. Haldane, “Stability of Chiral Luttinger Liquids and Abelian Quantum Hall

States,” Phys. Rev. Lett. 74 (1995) 2090–2093.

[108] A. Kitaev and L. Kong, “Models for Gapped Boundaries and Domain Walls,” Comm.

Math. Phys. 313 (2012), no. 2 351, 11104.5047.

[109] J. Wang and X.-G. Wen, “Boundary Degeneracy of Topological Order,” Phys. Rev.

B91 (2015), no. 12 125124, 1212.4863.

[110] M. Levin, “Protected Edge Modes without Symmetry,” Phys. Rev. X 3 (2013)

021009, 1301.7355.

[111] T. Lan, J. C. Wang, and X.-G. Wen, “Gapped Domain Walls, Gapped Boundaries

and Topological Degeneracy,” Phys. Rev. Lett. 114 (2015), no. 7 076402, 1408.6514.

[112] E. P. Verlinde, “Global aspects of electric - magnetic duality,” Nucl. Phys. B455

(1995) 211–228, hep-th/9506011.

[113] D. Belov and G. W. Moore, “Holographic Action for the Self-Dual Field,”

hep-th/0605038.

[114] J. J. Heckman and L. Tizzano, “6D Fractional Quantum Hall Effect,” JHEP 05

(2018) 120, 1708.02250.

[115] D. S. Freed and C. Teleman, “Relative quantum field theory,” Commun. Math. Phys.

326 (2014) 459–476, 1212.1692.

135

http://xxx.lanl.gov/abs/1403.6881
http://xxx.lanl.gov/abs/11104.5047
http://xxx.lanl.gov/abs/1212.4863
http://xxx.lanl.gov/abs/1301.7355
http://xxx.lanl.gov/abs/1408.6514
http://xxx.lanl.gov/abs/hep-th/9506011
http://xxx.lanl.gov/abs/hep-th/0605038
http://xxx.lanl.gov/abs/1708.02250
http://xxx.lanl.gov/abs/1212.1692

	Introduction
	Conformal interfaces
	Entanglement entropy
	Asymmetric intervals in free field theories

	Holography
	Janus solutions
	Chern-Simons theories


	Entanglement Entropy at Holographic Interfaces
	Non-supersymmetric Janus solution
	Supersymmetric Janus solution
	Discussion

	Entanglement Entropy at RCFT Topological Interfaces
	Topological interfaces in RCFT
	Entanglement entropy at a topological interface
	Symmetric and left/right entanglement entropy
	Examples of entanglement entropies
	Remarks on entanglement entropies for Liouville theory
	Discussion

	Entanglement Entropy at CFT Junctions
	CFT construction of junctions
	Reflection and transmission for junctions

	Entanglement entropy at N-junctions
	Bosonic junction
	Fermionic NS junction
	BPS junction

	Specific 3-junction geometries
	Boundary state construction
	Transmission and entanglement entropy

	Discussion
	Special functions
	Theta functions and S-transformations
	Dedekind eta and related functions
	Bernoulli polynomials and dilogarithms

	Intermediate Gaussian integrals
	Bosonic integrals
	Fermionic integrals

	Calculation of determinants
	Bosonic determinant
	Fermionic determinant


	Holographic Topological Interfaces
	Background
	Topological interfaces in the AdS bulk
	AdS2 slicing
	Simple holomorphic example
	Pure CS counter terms and conserved currents
	Interfaces with conserved currents

	Higher-dimensional generalizations
	Discussion

	CFT conventions
	Free scalar field
	Free spin- section12 field




