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Chapitre 1

Introduction

L’ordinateur, tel que nous le connaissons aujourd’hui, est né des travaux du mathématicien Alan
Turing dans les années 1940 concernant la science de l’information. L’invention du transistor par J.
Bardeen et W. H. Brattain en 1947 [1] a permis, quelques années plus tard, de concevoir des ordinateurs
se basant sur cette technologie pour encoder et traiter l’information classique, ce qui a révolutionné
le quotidien et la recherche scientifique. La puissance de ces ordinateurs classiques n’a pas cessé de
croître depuis les années 1970 selon la loi de Moore [2] qui stipule que la densité de transistors sur les
puces informatiques (et donc leur puissance) double tous les 2 ans comme la figure 1.1 peut l’attester
jusqu’aux années 2010. Depuis quelques années, il est difficile de réduire les tailles caractéristiques des
transistors car celles-ci sont limitées par des effets quantiques [3] (fuites par effet tunnel par exemple)
et thermodynamiques limitant les performances de cette technologie.

FIGURE 1.1 – Loi de Moore prédite par G. Moore dans les années 1970 montrant le nombre de transis-
tors par puce en fonction de l’année de son lancement. Tiré de la référence [4].

Dans les années 1980, le physicien Richard Feynman introduisit le concept du simulateur quantique
[5] qui utilise les propriétés quantiques de la matière pour simuler un autre système quantique plus
rapidement qu’avec un ordinateur classique. L’ordinateur quantique est une déclinaison plus générale
de ce concept [6]. Cet ordinateur hypothétique serait plus efficace qu’un ordinateur classique pour cer-
taines tâches bien spécifiques [7] en tirant parti de la parallélisation massive permise par le principe de
superposition de la mécanique quantique. En 1994, Peter Shor [8] introduisit un algorithme quantique
permettant de factoriser plus rapidement de grands nombres avec un ordinateur quantique qu’avec une
machine classique. En 1996, Lov Grover [9] construisit un algorithme quantique réduisant le temps de
recherche d’un objet dans une liste non ordonnée en utilisant la parallélisation massive intrinsèque aux
machines quantiques.
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Chapitre 1. Introduction

1.1 Système quantique à deux niveaux : le qubit
La parallélisation massive d’un ordinateur quantique est permise par un des principes fondamentaux

de la mécanique quantique : la superposition d’états quantiques [10]. Tandis que l’information élémen-
taire stockée dans un bit classique peut être représentée soit par la valeur 1 (courant passant pour un
transistor), soit par la valeur 0 (courant bloqué), celle d’un bit quantique est encodée comme la super-
position des états {|0〉, |1〉} d’un système quantique à deux niveaux (qubit). L’état |ψ〉 de ce qubit peut
donc s’écrire :

|ψ〉 = α|1〉+ β|0〉 , (1.1)

où α, β ∈ C, et |α|2 + |β|2 = 1. La quantité |α|2 (respectivement |β|2) correspond à la probabilité
d’obtenir l’état |1〉 (respectivement |0〉) lors d’une mesure du système.

Nous pouvons généraliser cette construction à un système de N bits. L’état de deux bits classiques
doit ainsi être une des quatre configurations suivantes : (0, 0), (1, 0), (0, 1), ou (1, 1), tandis que l’état
|ψ〉 d’un système de deux qubits est une superposition de ces quatre états :

|ψ〉 = α|00〉+ β|10〉+ γ|01〉+ δ|11〉 , (1.2)

où, cette fois-ci, α, β, γ, δ ∈ C, et |α|2 + |β|2 + |γ|2 + |δ|2 = 1. De manière générale l’expression (1.2)
ne peut pas se factoriser |ψ〉 6= |ψ1〉 ⊗ |ψ2〉 où |ψi〉 serait la fonction d’onde du qubit i [voir éq. (1.1)].
Les états de chaque qubit sont donc entremêlés, et nous parlons ainsi d’intrication quantique.

De façon générale, N bits classiques sont caractérisés par N variables d’état, tandis que N qubits
sont caractérisés par 2N variables d’état. Ainsi, pour stocker dans une mémoire classique toutes les
variables d’état d’un système se composant, par exemple, de 64 bits quantiques, il faudrait environ
100 000 petaoctets 1 (1 petaoctet= 1015 octets), ce qui est gigantesque ! Il y a donc une très grande
quantité d’information contenue dans un système quantique.

L’intérêt de l’ordinateur quantique se trouve notamment dans les possibilités d’effectuer des opé-
rations en parallèles offertes par le principe de superposition de la mécanique quantique, et la quantité
d’information stockée dans un système quantique. En effet, pour toute opération logique caractérisée
par une transformation unitaire Û sur deux qubits nous obtenons par exemple :

Û |ψ〉 = α[Û |00〉] + β[Û |10〉] + γ[Û |01〉] + δ[Û |11〉] . (1.3)

Ainsi, si l’entrée est une superposition d’états, la sortie est de même une superposition des opérations
correspondantes. Le calcul peut donc progresser en parallèle sur cette superposition de solutions. Cette
superposition doit être manipulée de façon adéquat avant sa mesure de façon à fournir un résultat perti-
nent plus rapidement qu’un ordinateur classique [8, 9].

Concrètement, tout système quantique à deux niveaux peut définir un qubit. Il existe ainsi différentes
technologies pour concevoir un qubit. Un qubit peut ainsi être défini par deux états de polarisations
(horizontale ou verticale) d’un photon unique [11] ou encore, dans des systèmes supraconducteurs, par
des états de charge [12], de flux [13], ou de phase [14]. En 1998, Loss et Di Vincenzo [15] proposèrent
d’encoder l’information quantique dans le spin d’un électron dans des boites quantiques. Nous allons
discuter la dynamique d’un tel qubit de spin et la manipulation de son état.

1.1.1 Dynamique intrinsèque d’un qubit de spin
Nous allons discuter la dynamique intrinsèque d’un qubit. Nous détaillons, par exemple, un qubit de

spin mais les résultats peuvent être généralisés à tout type de qubit.
Considérons un système portant un spin. Un champ magnétique statique et homogène B0 est appli-

qué à ce système, et sépare l’état fondamental |0〉 et l’état excité |1〉 d’une énergie Ez. Cette énergie,
appelée énergie Zeeman, s’écrit :

Ez = µBg‖B0 (1.4)

1. Chacune des variables d’état est un nombre complexe caractérisé par deux réels, et nous supposons que chaque réel
peut être stocké sur 4 octets (float)
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1.1. Système quantique à deux niveaux : le qubit

avec µB le magnéton de Bohr, et g‖ le facteur gyromagnétique. Ainsi, l’hamiltonien H de ce système
s’écrit dans la base {|0〉, |1〉} :

H =

(
−hfL/2 0

0 hfL/2

)
, (1.5)

où fL = Ez/h est la fréquence de Larmor et h est la constante de Planck.
Un état initial |ψ〉 quelconque peut se décomposer sur les deux états {|0〉, |1〉} [éq. (1.1)]. En résol-

vant l’équation de Schrödinger dépendante du temps, nous obtenons cet état au temps t :

|ψ(t)〉 = cos
θ

2
|1〉+ sin

θ

2
eiϕ(t)|0〉 , (1.6)

où l’angle θ défini le poids des états |0〉 et |1〉 dans |ψ〉, et ϕ(t) = 2πfLt décrit la pulsation intrinsèque
du qubit. Cet état, entièrement caractérisé par les angles θ et ϕ, peut donc se représenter à la surface
d’une "sphère de Bloch" dont les pôles correspondent aux états |1〉 (θ = 0) et |0〉 (θ = π). Au cours
du temps, il décrit une trajectoire circulaire sur la surface de la sphère de Bloch (voir figure 1.2) à la
fréquence de Larmor fL : il précesse ainsi autour de l’axe des pôles à cette fréquence (précession de
Larmor). La fréquence de Larmor correspond donc à l’horloge "intrinsèque" du qubit.

FIGURE 1.2 – Représentation de l’état d’un qubit sur la surface d’une sphère de Bloch (point rouge).
L’angle ϕ(t) = 2πfLt caractérise la dynamique intrinsèque du qubit. L’état |ψ(t)〉, représenté à la
surface de la sphère de Bloch, précesse à la fréquence fL autour de l’axe reliant les pôles : ce mouvement
est la précession de Larmor.

1.1.2 Oscillations cohérentes de spin
L’état d’un qubit de spin peut être contrôlé via l’application d’un champ magnétique oscillant (ac)

résonnant avec la transition entre deux états de spin |0〉 et |1〉. Nous appliquons ainsi un champ ma-
gnétique ac perpendiculaire au champ magnétique statique B0 d’amplitude Bac, et de fréquence fac. De
manière générale, ce champ ac couple les spins entre eux, et ainsi, dans la base {|0〉, |1〉} l’hamiltonien
H ′ du qubit sous champ magnétique ac s’écrit :

H ′ =

(
−hfL/2 K∗ sin(2πfact)

K sin(2πfact) hfL/2

)
, (1.7)

oùK ≡ µBg⊥Bac
2 caractérise le couplage entre les deux états |0〉 et |1〉 induit par le champ magnétique

ac. Lorsque la fréquence de l’excitation fac est proche de la fréquence de Larmor fL du qubit, des
oscillations cohérentes sont entretenues entre les états |0〉 et |1〉.

2. De façons générale, les facteurs gyromagnétiques g‖ et g⊥ peuvent être différent dans des systèmes anisotropes.
De plus, K peut aussi caractériser un couplage à un champ électrique ac lorsqu’une interaction spin-orbite permet une
manipulation électrique du spin (voir sous-sections 1.2.2 et 1.3.2).

13



Chapitre 1. Introduction

Ces oscillations peuvent être mises en évidence en résolvant l’équation de Schrödinger dépendante
du temps associée à l’hamiltonien (1.7) dans une approximation d’onde tournante (RWA pour Rotating
Wave Approximation). La RWA tient compte des variations les plus lentes des coefficients α et β de la
fonction d’onde (1.1) quand fac ∼ fL.

À la résonance fac = fL, les oscillations entres les états sont complètes, et en supposant |ψ(0)〉 =
|1〉, l’état |ψ(t)〉 s’écrit :

|ψ(t)〉 = cos
( |K|

2~
t
)
|1〉+ sin

( |K|
2~

t
)
ei(2πfLt+ϕ0) |0〉 , (1.8)

où ϕ0 est la phase initiale. Cette fois-ci, le poids de l’état |ψ〉 sur les états {|0〉, |1〉} varie au cours de
temps. En particulier, l’état |ψ〉 oscille entre les états |0〉 et |1〉 de sorte que la probabilité de mesurer
l’état |0〉 est :

P|0〉 = |〈0|ψ〉|2 = [1− cos(2πfRt)]/2 . (1.9)

Ces oscillations sont caractérisées par une fréquence appelée fréquence de Rabi fR = |K|/h. La figure
1.3 a) représente la probabilité P|0〉 [éq. (1.9)] d’obtenir l’état |0〉 lors de la mesure du spin en fonction
du temps d’application du champ magnétique ac résonnant.

FIGURE 1.3 – a) Probabilité P|0〉 [éq. (1.9)] d’obtenir l’état |0〉 lors de la mesure du spin en fonction
de temps d’application du champ magnétique ac résonnant avec le qubit ; oscillations cohérentes entre
les états |0〉 et |1〉. L’unité de l’axe des abscisses est arbitraire (u.a.). b) Trajectoire circulaire de l’état
|ψ〉 sur la sphère de Bloch tournante, allant de pôle en pôle à la fréquence de Rabi lorsque un champ
magnétique ac résonnant est appliqué sur le qubit de spin.

Nous pouvons introduire une sphere de Bloch tournant à la fréquence de Larmor fL, c’est à dire que
l’état du qubit (1.6) sans champ magnétique ac est immobile sur cette sphère. Sous champ magnétique
ac résonant, l’état du qubit (1.8) décrit une trajectoire circulaire allant de pôle en pôle à la fréquence de
Rabi sur cette sphère de Bloch tournante. La figure 1.3 b) représente cette trajectoire sur la sphère de
Bloch tournante. Nous pouvons donc programmer un spin par des impulsions ac résonantes.

Nous venons de discuter la dynamique d’un qubit de spin idéal, c’est à dire un qubit sans interaction
non intentionnelle avec l’environnement extérieur. Cependant, comme nous allons le montrer dans le
paragraphe suivant, il existe en pratique des interactions parasites entre l’environnement et le qubit.

1.1.3 Perte de l’information
Le stockage et la manipulation de l’information encodés dans des qubits nécessitent de préserver

la cohérence des états. La cohérence est intrinsèquement fragile, et l’interaction non intentionnelle du
qubit avec l’environnement tend à la détruire. En pratique, nous pouvons distinguer deux mécanismes
de décohérence.

Le premier est la relaxation du qubit correspondant à la transition de l’état excité vers l’état fonda-
mental. Il peut être associé à la perte d’information classique du qubit, et se manifeste par des variations
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FIGURE 1.4 – a) Relaxation de l’état excité |1〉 vers l’état fondamental |0〉, dans un temps caractéristique
T1. b) Dérive de phase d’un état dans le plan équatorial de la sphère de Bloch tournant à la fréquence
de Larmor fL associée à un temps caractéristique T ∗2 . Nous définissons les états x = (|1〉+ |0〉)/

√
2 et

y = (|1〉+ i|0〉)/
√

2.

de l’angle θ [voir figure 1.2] avec un temps caractéristique T1 [voir figure 1.4 a)]. Ce processus de re-
laxation est inélastique, et nécessite l’émission ou l’absorption de phonons ou de photons. Le second
mécanisme, purement quantique, correspond à la perte de cohérence de phase de l’état du qubit. Il cor-
respond à des dérives de l’angle ϕ [voir figure 1.2] avec un temps caractéristique T ∗2 [voir figure 1.4
b)].

Finalement, le temps de cohérence total T2 est donné par 1/T2 = 1/(2T1) + 1/T ∗2 [16]. Nous
notons que généralement T1 � T ∗2 . Il est ainsi possible de contrôler le qubit pendant ce temps de
cohérence. De plus, ce temps de cohérence T2 dépend fortement du protocole expérimental utilisé pour le
mesurer. Des expériences, comme par exemple les échos de spin de Hahn [17], permettent de compenser
dynamiquement des dérives lentes de ϕ, et d’allonger T2.

La décohérence limite ainsi les opportunités d’exploiter les propriétés d’un qubit de spin. Nous allons
voir qu’il est néanmoins possible d’implémenter un qubit de spin dans des matériaux semiconducteurs.

1.1.4 Réalisations de qubits de spin
Comme discuté précédemment, Loss et Di Vincenzo [15] proposèrent d’utiliser le spin d’un électron

dans des boites quantiques de matériaux semiconducteurs pour encoder l’information quantique.
La première manipulation de spin dans des matériaux semiconducteurs a été démontrée dans des

hétérostructures à base d’arséniure de gallium (GaAs) [18, 19]. Typiquement, les boites quantiques sont
construites à partir d’un gaz 2D d’électrons créé aux interfaces GaAs/AlGaAs. Ce gaz est ensuite dépeu-
plé en appliquant des tensions négatives appropriées aux grilles métalliques le surplombant. La figure
1.5 a) représente un exemple de boites quantiques définies dans des hétérostructures GaAs/AlGaAs. Un
champ magnétique statique modéré B0 ∼ 0.1 T (fL ∼ 0.5 GHz) permet de séparer les états de spin dans
ces boites et créer des qubits. Cependant, il est difficile de détecter directement le moment magnétique
d’un seul électron car celui-ci est très faible. Néanmoins, il est possible de le mesurer indirectement par
l’intermédiaire d’une conversion spin-charge ; l’état de spin peut alors être détecté par la transition d’un
électron d’une boite à un réservoir [20] ou encore, dans un système de double boite quantique, d’une
boite à l’autre [18, 19]. Ces transitions peuvent en effet être bloquées par le principe d’exclusion de
Pauli et donc dépendre du spin de l’électron (blocage de Pauli, voir chapitre 3). Dans ce dernier sys-
tème, l’état de spin est mesuré par détection d’un courant entre les boites quantiques [18] ou encore par
un changement de conductance dans un transistor à un électron proche de la boite quantique de mesure
[19].
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FIGURE 1.5 – a) Deux boites quantiques (en cercles pointillés blancs) définies dans des hétérostructures
GaAs/AlGaAs par des grilles de déplétion (en gris clair). La conversion spin-charge permet de détécter
l’état de spin d’une des deux boites par l’intémédiaire du courant Idot à travers les boites quantiques.
b) Oscillations du courant à travers les deux boites quantiques en fonction du temps d’application d’un
champ magnétique ac résonant pour différentes puissances d’excitation. Ce courant refléte l’état de spin
et ces oscillations sont caractéristiques des oscillations de Rabi. Tirés de la référence [18].

Le qubit est, en pratique, initialisé dans son état fondamental par équilibre avec l’environnement (à
champ magnétique de l’ordre du Tesla, et à faible température ∼ 100 mK). Son état peut être ensuite
manipulé directement par un champ magnétique acBac perpendiculaire àB0. Ce champ ac peut être créé
par une ligne de courant à proximité du qubit. Cette résonance magnétique de spin (ESR pour Electron
Spin Resonance) entraîne des oscillations de Rabi comme illustré dans la figure 1.5 b) pour différentes
amplitude de champ magnétique oscillant Bac.

Les qubits de spin dans ces hétérostructures présentent des temps de relaxations T1 supérieurs à la
seconde à faible champ magnétique et faible température [21]. Cependant le temps de cohérence T2

dans ces systèmes est très faible, de l’ordre de quelques dizaines de nanosecondes, ce qui limite leur
propriétés quantiques. La source principale de cette décohérence est l’interaction hyperfine entre les
spins nucléaires des noyaux atomiques du matériau hôte et le spin du qubit [19]. Il est donc pertinent de
choisir un matériau présentant une faible interaction hyperfine pour accroître la durée de vie des qubits
de spin.

Le couplage spin-orbite peut aussi contribuer à la décohérence et à la relaxation. Cet effet relativiste
intrinsèque au matériau, couple en effet le spin des électrons à leur mouvement orbital, donc aux champs
électriques. Il s’interprète de façon semi-classique comme l’effet d’un champ magnétique produit par
les noyaux en mouvement dans le référentiel de l’électron sur son spin (voir chapitre 2). Le couplage
spin-orbite offre néanmoins également des opportunités de manipulation électrique des qubits de spin
(voir 1.3.2).

1.2 Silicium
Le silicium, un des matériaux les plus répandus en microélectronique classique, est à priori un ex-

cellent matériau hôte pour accueillir un qubit de spin. Ce semiconducteur est composé d’un isotope
naturel majoritaire (28Si) ne présentant pas de spin nucléaire, et seul l’isotope 29Si, présent en faible
quantité dans la nature (5 %), en porte un [22]. Ainsi la décohérence entraînée par le bain environnent
de spin nucléaires des atomes de silicium est faible. De plus, il peut être isotopiquement purifié en 28Si,
ce qui allonge drastiquement la durée du vie des qubits silicium [23]. Par la suite nous détaillons la
structure de bandes et les propriétés du silicium, puis nous présentons les différentes implémentations
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des qubits de spin dans le silicium.

1.2.1 Cristal de silicium
Le silicium est un matériau semiconducteur de structure cristallographique de type diamant. La

figure 1.6 a) représente la maille conventionnelle cubique à faces centrées du silicium, de coté a0 =
0.543 nm, et définit les axes cristallographiques x = [100], y = [010], et z = [001]. La maille primitive
se compose de deux atomes de silicium : un premier atome en (0, 0, 0), et un second en a0(x+y+z)/4.
Les vecteurs de la maille primitive du réseau direct ne sont pas orthogonaux entre eux, et sont a1 =
a0(y + z)/2, a2 = a0(z + x)/2, et a3 = a0(x + y)/2. Ils sont représentés sur la figure 1.6 b).

FIGURE 1.6 – a) Maille conventionnelle du silicium. Les axes du cristal sont x = [100], y = [010],
z = [001]. La structure est de type diamant ; structure cubique à faces centrées ayant deux atomes de
silicium par maille primitive positionnés en (0, 0, 0) et en a0(x + y + z)/4. Les doubles traits montrent
les liaisons entre les différents atomes de silicium. b) Réseau de Bravais cubique faces centrées associé
à la maille du silicium. Les vecteurs de la maille primitive sont a1 = a0(y + z)/2, a2 = a0(z + x)/2,
et a3 = a0(x + y)/2 où a0 = 0.543 nm est le paramètre de maille du silicium. Adaptés de la référence
[24].

Le réseau réciproque du silicium est de structure cubique centré de paramètre de maille 4π/a0. Nous
repérons les vecteurs d’onde dans les axes cristallographiques kx = [100], ky = [010], kz = [001]. La
première zone de Brillouin est un octaèdre tronqué (voir figure 1.7) ayant pour centre le point Γ. Les
points X [2π/a0kx] et L [π/a0(kx + ky + kz)] sont des points particuliers de bord de zone auxquels
nous ferons référence plus tard.

1.2.2 Structure de bandes du silicium
La figure 1.8 représente la structure de bandes du silicium. Elle comporte, comme pour tous les

semiconducteurs, une bande de valence et une bande de conduction séparées par une bande interdite. Le
maximum de la bande de valence est situé en Γ comme pour tous les semiconducteurs conventionnels.
Une des particularités du silicium est sa bande interdite indirecte (c’est à dire que le minimum de la
bande de conduction se situe à k 6= 0). Nous allons discuter brièvement la structure de la bande de
conduction puis celle de la bande de valance.

Bande de conduction

Le minimum de la bande de conduction du silicium se situe le long le chemin Γ→ X à une distance
k0 ∼ 0.85 · 2π/a0 du point Γ. Compte tenu de la symétrie de la zone Brillouin [voir figure 1.7], il y a
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FIGURE 1.7 – Réseau réciproque cubique centré de paramètre de maille 4π/a0 et première zone de
Brillouin (octaèdre tronqué) du réseau réel cubique à faces centrées. Γ est le centre de zone. X [2π/a0kx]
et L [π/a0(kx + ky + kz)] sont des points en bord de zone. a0 = 0.543 nm pour le silicium. Adapté de
la référence [24].

FIGURE 1.8 – Structure de bandes du silicium. Cette structure est tracée le long du chemin L→ Γ→ X
de la premère zone de Brillouin. Le maximum de la bande de valence se situe en Γ (l’énergie à ce point
est nulle par convention). Le minimum de la bande de conduction se situe sur le chemin Γ → X à une
distance k0 = 0.85 · 2π/a0 du point Γ. La bande interdite du silicium Eg = 1.17 eV à T = 0 K [25]
est donc indirecte. La zone rectangulaire délimitées par des pointillés est agrandie dans la figure 1.10.
La structure de bandes est calculée avec une méthode de liaisons fortes sp3d5s∗ par le code TB_Sim du
CEA.

six points équivalents au point X. Le minimum de la bande de conduction est donc six fois dégénérés.
Ces six vallées sont notées {±X,±Y,±Z}, et correspondent respectivement aux minimums présents
en ±k0kx, ±k0ky, ±k0kz (voir figure 1.9)
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FIGURE 1.9 – Six minima d’énergie équivalents dans la bande de conduction du silicium massif. Les
surfaces de niveaux dans l’espace réciproque sont des ellipsoïdes centrées en k0 = 0.85 · 2π/a0 sur
chaque axe ±kx,±ky et ±kz.

Autour de ces minima, la structure de bandes peut être décrite par une théorie de masse effective
[26] où, par exemple, l’énergie E associée aux vallées ±X s’écrit :

E =
~2

2m‖
k2
x +

~2

2m⊥
(k2
y + k2

z) , (1.10)

où m‖ = 0.92m0 correspond à la masse effective "longitudinale" d’un électron selon l’axe x, m⊥ =
0.19m0 à la masse effective "tranverse" d’un électron selon les axes y et z, et m0 est la masse d’un
électron libre. Ces masses effectives résultent du couplage entre la bande de conduction et les bandes
éloignées [26]. Compte tenu de l’expression de l’énergie (1.10), et de l’anisotropie des masses, les
surfaces d’énergie constante dans la première zone de Brillouin sont des ellipsoïdes centrées sur chaque
minimum et dont le grand axe est aligné selon le vecteur d’onde k0 correspondant (voir la figure 1.9).

Dans les nanostructures, le confinement structural lève la dégénérescence des vallées. Si la direction
de confinement est z = [001] par exemple, alors les deux états de vallées de plus basse énergies sont
±Z. La dégénérescence résiduelle entre les vallées ±Z est en général levée de quelques dizaines de
µeV à quelque meV par les champs électriques à l’interface Si/SiO2. La séparation entre les vallées
±Z peut donc être comparable à l’énergie Zeeman (1.4). Ainsi, le degré de liberté "vallée" peut être
limitant puisqu’il est parfois difficile d’isoler proprement les deux états de spin du qubit des excitations
de vallées. Cependant, le couplage spin-orbite est faible dans la bande de conduction, et limite donc la
décohérence, mais aussi les opportunités de manipuler électriquement le spin d’un électron.

Bandes de valence

Précédemment, nous avons mentionné que le maximum de la bande de valence est atteint en Γ. En
ce point, cette bande est six fois dégénérée en l’absence de couplage spin-orbite (les fonctions de Bloch
étant en première approximation des combinaisons liantes des orbitales 3px, 3py, et 3pz du silicium
toutes équivalentes dans la structure cubique). En prenant en compte le couplage spin-orbite, elle se
sépare en deux bandes dégénérées et une bande plus profonde distante de ∆so ∼ 44 meV. Ces deux
premières bandes se nomment trous lourds et trous légers, et la troisième se nomme bande de split off.
La figure 1.10 représente ces différentes bandes. Les bandes de valence peuvent être décrites autour de
Γ en utilisant des méthodes k ·p qui sont des généralisations de la masse effective [éq. 1.10]. Le chapitre
2 est consacré à ces méthodes. À l’inverse de la bande de conduction, le couplage spin-orbite est fort
dans la bande de valence. Au cours de cette thèse, nous allons montrer comment exploiter ce couplage
pour manipuler électriquement le spin d’un trou.

Certaines des propriétés du silicium sont exploitées pour définir des qubits de spin. Par la suite, nous
allons discuter des différents qubits de spin qui ont été implémentés dans le silicium.
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FIGURE 1.10 – Structure du maximum des bandes de valence du silicium. Cette figure est un agrandis-
sement de l’encadré en pointillés de la figure 1.8. Nous notons→ X la direction vers le point X (idem
avec le point L).

1.3 Qubit de spin silicium
De façon similaire aux dispositifs basés sur des hétérostructrures GaAs/AlGaAs décrits dans le pa-

ragraphe 1.1.4, des boites quantiques peuvent être obtenues par déplétion de charges à partir d’un gaz
2D d’électrons dans des hétérostructures Si/SiGe [27, 28]. Là encore, la manipulation de l’état d’un
qubit a été démontrée dans ces systèmes avec des temps de cohérences T2 de deux ordres de grandeurs
plus grand que ceux dans les hétérostructures GaAs/AlGaAs [28] compte tenue de la faible interaction
hyperfine du silicium avec le spin du qubit.

1.3.1 Manipulation magnétique de spin
Dans les années 2010, une équipe australienne à Sydney (UNSW pour University of New South

Wales) a démontré l’implémentation d’un qubit de spin à partir d’un électron lié à un donneur de phos-
phore implanté dans un substrat de silicium [29, 30]. Dans ces expériences, le donneur de phosphore
et un électron sont couplés à un transistor à un électron (SET pour Single Electron Transistor) servant
à la fois de détecteur de charge pour la mesure du spin et de réservoir d’électrons. La figure 1.11 a)
représente un donneur implanté intentionnellement dans un substrat de silicium. Un champ magnétique
B0 est appliqué au dispositif, ce qui permet de séparer les deux états de spin de l’électron. L’état de
spin électronique peut être mesuré en positionnant le potentiel chimique du SET, situé à proximité du
donneur, entre les deux niveaux "↑" et "↓" du qubit [voir figure 1.11 b)]. Le courant à travers le SET
dépend de son environnement électrostatique, et, en particulier, de l’occupation du donneur. La figure
1.11 b) représente ce courant source-drain ISET en fonction de l’état de spin du qubit où seul l’électron
"↑" sur le donneur peut transiter vers le SET, entraînant un pic de courant qui perdure jusqu’à ce qu’un
nouvel électron se lie au donneur. Dans ce système, une ligne de courant ESR permet de créer un champ
magnétique ac qui, en résonance, entraîne des rotations de spin. Aussi des oscillations de Rabi ont été
démontrées dans ce dispositif.

Cependant, il est difficile de contrôler des qubits individuellement avec un champ magnétique ac
(ce champ étant généralement non local). De plus, la production de ce champ oscillant nécessite la
présence d’une ligne de courant "volumineuse" pour le contrôle d’un seul spin. Cette ligne peut entre
autres dissiper une certaine quantité de chaleur au voisinage du qubit, ce qui dégrade ses propriétés.
À l’opposé, un champ électrique ac local est facilement obtenu en faisant varier les tensions de grilles
ciblant le spin à manipuler. Ce champ électrique ac peut engendrer des oscillations de spins via une
interaction spin-orbite [31] ou via un gradient de champ magnétique [27, 32, 33]. La manipulation
électrique offre donc des solutions intéressantes pour le contrôle d’un grand nombre de qubits sur une
puce.
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ISET

Bac

FIGURE 1.11 – a) Dispositif implémentant un électron lié à un donneur de phophore à proximité d’un
SET dans un substrat de silicium. Une ligne de courant permet de générer un champ magnétique ac pour
manipuler l’état du qubit à la résonance. Le courant source-drain à travers le SET détécte le spin du qubit
par l’intermédiaire d’une conversion spin-charge. Adapté de la référence [29]. b) Schéma des niveaux
d’énergie du qubit et du SET. L’état du qubit peut être mesuré en positionnant le potentiel chimique du
SET entre les deux niveaux d’énergie "↑" et "↓" du qubit. Le courant source-drain ISET montre un pic
lors de la détection d’un spin "↑". Tiré de la référence [30].

1.3.2 Manipulation électrique de spin
Le groupe japonais de Tarucha (CEMS pour Center for Emergent Matter Science) a été un des

groupes de recherche a avoir réalisé un qubit de spin dont l’état est manipulé par un champ électrique
oscillant [32]. Ce qubit, défini dans des hétérostructures GaAs/AlGaAs, est soumis à un gradient de
champ magnétique. Typiquement, un champ électrique oscillant vient déplacer un électron dans ce gra-
dient. Dans son référentiel, l’électron ressent un champ magnétique oscillant, ce qui entraîne la rotation
de son spin.

Le groupe de l’université de Delft a adopté cette méthode de manipulation électrique dans des hété-
rostructures Si/SiGe en utilisant un micro-aimant pour générer le gradient de champ magnétique [34]. Ce
groupe a montré des temps de cohérence T2 du qubit de spin de plusieurs centaines de nanosecondes. La
figure 1.12 montre le dispositif utilisé qui se compose de grilles définissant deux boites quantiques dans
un gaz 2D d’électrons dans des hétérostructures Si/SiGe. Les grilles, à proximité des boites quantiques
sont également utilisées pour contrôler électriquement le qubit.

FIGURE 1.12 – Schéma d’un dispositif formant deux boites quantiques dans un gradient de champ
magnétique dans des hétérostructures Si/SiGe. Tiré de la référence [27].

Une des idées des groupes du CEA (Commissariat à l’Énergie Atomique et aux Énergies Alterna-
tives) a été de s’affranchir du micro-aimant qui crée le gradient de champ magnétique en exploitant le
couplage spin-orbite intrinsèque du silicium. Bien que ce couplage soit faible dans la bande de conduc-
tion, la résonance électrique dipôle-spin (EDSR pour Electric Dipole Spin Resonance) a été démontrée
expérimentalement [35] et théoriquement [36] dans des dispositifs d’électrons dans des nanofils de sili-

21



Chapitre 1. Introduction

cium. Les compétences du CEA pour élaborer des transistors classiques à partir des technologies CMOS
(Complementary Metal Oxyde Semiconductor) ont permis d’en décliner des versions quantiques. Un
dispositif typique est représenté dans la figure 1.13. Le système se compose d’un nanofil de silicium
connecté à une source et à un drain jouant le rôle de réservoir d’électrons. Deux grilles métalliques
positionnées au dessus du nanofil de silicium localisent un électron sous chacune d’elles. Sous champ
magnétique, le qubit est défini par le spin d’un des deux électrons, l’autre servant de filtre de spin pour
la conversion spin-charge-courant via le blocage de Pauli (voir chapitre 3).

FIGURE 1.13 – Nanofil de silicium connecté à une source et à un drain surplombé par deux grilles
métalliques attirant un électron sous chacune d’elles. Tiré de la référence [35].

Cependant, l’interaction spin-orbite dans la bande de conduction est plus faible que celle dans la
bande de valence. De ce fait, les trous sont plus faciles à manipuler électriquement dans le silicium ou
le germanium [37, 38] que les électrons. Ces qubits, manipulés électriquement en tirant parti de l’in-
teraction spin-orbite sont appelés qubits spin-orbite. Des qubits spin-orbite de trou ont été implémentés
récemment au CEA dans des dispositifs CMOS [39, 40, 41, 42]. Un exemple de dispositif CMOS de
trous est représenté dans la figure 1.14, où, typiquement, les grilles sont polarisées pour localiser des
trous dans un nanofil de silicium. Comme nous allons le détailler dans le chapitre 3, ce système montre
une forte dépendance des facteurs gyromagnétiques avec la polarisation des grilles [39], et une forte
anisotropie de la fréquence de Rabi et des facteurs gyromagnétiques avec l’orientation du champ ma-
gnétique statique [41].

a) b)

75 nm 50 nm

FIGURE 1.14 – Nanofil de silicium connecté à une source et à un drain surplombé par deux grilles
métalliques attirant un trou sous chacune d’elles. La source et le drain sont des réservoirs de trous. a)
Vue du dessus. b) Vue latérale. Tiré de la référence [40].

Dans ces dispositifs, le spin du qubit peut être lu par plusieurs techniques. Ces techniques se basent
sur le blocage de Pauli pour la détection de la transition de charge d’une boite à l’autre qui dépend du
spin. En effet, la transition d’un trou d’une des deux boites vers l’autre sur une même orbitale n’est
pas permise si les spins de chaque boite sont identiques : le principe d’exclusion de Pauli stipule que
deux trous sur une même orbitale doivent posséder un spin différent. La première technique consiste
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à mesurer le courant à travers ces boites. En pratique, ce courant est un courant moyen sur un grand
nombre de transition de charge (voir chapitre 3). Ensuite, la seconde technique est une technique de
réflectométrie [42]. Elle consiste à coupler un qubit à une boite de mesure qui est contrôlée par une
grille connectée à un circuit radio-fréquence extérieur. Le signal réfléchi sur cette grille peut varier en
amplitude et en phase. Ce changement de phase dépend de la capacité quantique de cette grille, et en
particulier, de l’environnement électrostatique de la boite quantique de mesure. Ainsi, l’état de spin peut
être détecté par un changement de phase du signal lors de la transition d’un trou d’une boite à l’autre (qui
peut être bloquée par le principe d’exclusion de Pauli et dépendre du spin des trous). Cette technique
permet en principe de détecter la transition d’un seul trou (single-shot readout en anglais).

1.4 Conclusions
Depuis la proposition de Loss et Di Vincenzo [15], plusieurs groupes de recherche à travers le monde

ont implémenté des qubits de spin dans des semiconducteurs. Les premières manipulations magnétiques
d’un qubit de spin ont été réalisées par l’équipe de Delft dans des hétérostructures GaAs où des oscilla-
tions cohérentes de spin ont été mesurées. Cependant le temps de cohérence de ce système est court à
cause de l’interaction entre les spins nucléaires des atomes du matériau hôte et le spin du qubit. Ainsi,
un des choix possibles pour limiter cette interaction est d’utiliser le silicium comme matériau hôte. En
effet, le silicium naturel se compose à plus de 90% d’un isotope ne portant pas de spin nucléaire, ce
qui entraîne une bien plus faible interaction hyperfine que dans GaAs/AlGaAs, où tous les atomes en
portent. Le silicium peut aussi être purifié isotopiquement pour diminuer cette interaction et accroître
encore la durée de vie du qubit. L’équipe de l’UNSW a d’abord montré le contrôle magnétique d’un
spin d’un électron lié à un donneur de phosphore implanté dans un substrat de silicium. Cependant, il
est préférable de manipuler électriquement l’état d’un qubit dans la perspective de concevoir des puces
comportant un grand nombre de qubits. Le groupe de Delft a ainsi montré des oscillations cohérentes de
spin engendrées par un champ électrique oscillant, dans des hétérostructures Si/SiGe dans un gradient de
champ magnétique. Ce couplage spin-orbite artificiel créé par le gradient de champ magnétique néces-
site cependant la présence d’un micro-aimant à proximité du qubit. Les compétences du CEA a élaborer
des transistors classiques à partir des technologies CMOS leur ont permis de construire des qubits de
spin basés sur cette technologie. En particulier, l’équipe du CEA a démontré la manipulation électrique
du spin d’un trou dans un nanofil de silicium via le couplage spin-orbite intrinsèque du matériau.

1.5 Objectifs de la thèse
Dans ce manuscrit, nous modélisons un qubit spin-orbite de trou similaire aux dispositifs CMOS du

CEA pour comprendre la physique et prédire le comportement de ce type de dispositif, afin d’optimiser
ses performances, et en particulier, d’améliorer la vitesse de manipulation du spin. Ainsi, ce manuscrit
porte sur la modélisation de la manipulation électrique des qubits de trou dans le silicium.

La manuscrit se construit comme suit. Tous d’abord, le chapitre 2 discute de la méthode k · p dé-
crivant, en particulier, le sommet des bandes de valence dans des matériaux massifs de type diamant
tels que le silicium ou le germanium. Nous détaillons l’impact du couplage spin-orbite sur les bandes
de valence. Ensuite, nous discutons de l’approximation des fonctions enveloppes pour décrire une na-
nostructure, et de l’effet du champ magnétique sur les fonctions d’ondes. Puis nous présentons le fonc-
tionnement du code numérique utilisé aux chapitres 4 et 6, basé sur la théorie précédemment décrite.
Ensuite, le chapitre 3 démontre expérimentalement la manipulation cohérente de spin de trou dans des
dispositifs silicium CMOS réalisés au CEA. Il introduit, en particulier, un formalisme de matrices gy-
romagnétiques permettant d’interpréter les résultats expérimentaux, et d’extraire les mécanismes qui
entretiennent les oscillations de Rabi. Le chapitre 4 présente différents formalismes de calculs de la
fréquence de Rabi et souligne l’efficacité des calculs numériques avec le formalisme de la matrice gy-
romagnétique. Ensuite, il discute l’effet des symétries dans ce dernier. Nous détaillons, en particulier,
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l’impact de plans miroirs d’un qubit sur l’anisotropie de sa fréquence de Larmor et de sa fréquence
de Rabi. Nous terminons ce chapitre par l’application de ces différents formalismes et par l’étude des
symétries d’un qubit spin-orbite de trou sur SOI. Nous calculons numériquement la fréquence de Rabi,
comparons les différents formalismes entre eux, et interprétons les observations numériques telles que la
quasi-extinction des oscillations de Rabi pour une polarisation électrique particulière ou pour des orien-
tations de champ magnétique particulières. Finalement nous discutons des ingrédients manquants pour
décrire quantitativement le comportement du qubit expérimental discuté au chapitre 3. Pour continuer,
le chapitre 5 introduit un modèle simple de boite quantique rectangulaire dans un matériau semiconduc-
teur, dont les hypothèses sont basées sur les conclusions du précédent chapitre. Il permet d’expliciter
la dépendance de la fréquence de Rabi avec les paramètres et l’orientation cristalline du matériau hôte.
Nous montrons, en particulier, que le silicium est un matériau très bien adapté à la réalisation de ce
type de qubit grâce à ses bandes de valence très anisotropes. Ensuite, dans le chapitre 6 nous établis-
sons l’expression des temps de relaxation d’un qubit spin-orbite dus aux processus à un phonon, et
nous l’appliquons au dispositif étudié numériquement au chapitre 4. Finalement, le chapitre 7 conclut,
et mentionne les perspectives de cette thèse.
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Chapitre 2

Méthodes théoriques et numériques

Ce chapitre introduit la méthode k · p six bandes qui permet de décrire la structure de bandes de
valence d’un semiconducteur massif au voisinage du point Γ. Nous introduisons les paramètres de Lut-
tinger qui décrivent l’anisotropie de cette structure de bandes et résultent du traitement en perturbation
d’un terme∝ k ·p couplant les fonctions de Bloch des bandes de valence à celles des bandes de conduc-
tions éloignées. Nous montrons comment le couplage spin-orbite sépare les bandes de valence en trous
"lourds", "légers" et "split-off". Ensuite nous introduisons le formalisme des fonctions enveloppes qui
permet de décrire les fonctions d’ondes des bandes de valence dans des potentiels lentement variables.
Puis nous discutons l’effet du champ magnétique sur ces fonctions enveloppes, et sur les fonctions de
Bloch. Dans un second temps, nous présentons le code TB_Sim développé au CEA Grenoble qui per-
met de calculer les propriétés électroniques de nanostructures de semiconducteurs (et en particulier de
qubits de silicium) dans différentes approximations dont la méthode k · p six bandes pour les trous.
Nous décrivons brièvement son fonctionnement général en nous appuyant sur un exemple de dispositif
pouvant être étudié avec ce code.

2.1 Description empirique : la méthode k · p
La méthode k·p permet de décrire la structure de bandes d’une grande variété de semiconducteurs en

se basant sur une approche perturbative autour d’un vecteur d’onde particulier. Dans toute cette partie,
nous allons discuter le cas d’un semiconducteur massif dont la structure cristallographique est de type
diamant. Nous allons développer la structure de bandes au voisinage de k = 0 mais la méthode peut
être appliquée autour de n’importe quel vecteur d’onde [43].

Dans un premier temps, nous considérons un hamiltonien Ĥ0 à une particule sans spin :

Ĥ0 =
p̂2

2m0

+ Vc(r) , (2.1)

où p̂ = −i~∇ est l’opérateur impulsion, et Vc(r) est le potentiel créé par les noyaux du cristal. Ce
potentiel a la même période que le cristal, i.e. Vc(r + R) = Vc(r) pour tout vecteur R du réseau de
Bravais. Ainsi, d’après le théorème de Bloch, les états propres Ψnk(r) de l’hamiltonien (2.1) prennent
la forme d’ondes de Bloch :

Ψnk(r) = eik·runk(r) , (2.2)

où n est un indice de bandes, k est un vecteur d’onde, et pour tout point de l’espace r, nous avons
unk(r+R) = unk(r). En injectant cette expression dans l’équation aux valeurs propres pour les énergies
Enk [Ĥ0Ψnk = EnkΨnk], nous obtenons une nouvelle équation pour les fonctions de Bloch unk :

Ĥ(k)unk(r) = Enkunk(r) , (2.3)

avec l’hamiltonien Ĥ(k) dépendant du vecteur d’onde k :

Ĥ(k) = Ĥ0 +
~
m0

k · p̂ +
~2k2

2m0

. (2.4)
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Nous pouvons voir apparaître un terme proportionnel à k · p qui donne son nom à la méthode. En
pratique, nous pouvons écrire une représentation matricielle de l’hamiltonien H(k) dans la base {un0}
des fonctions de Bloch en Γ (supposées connues) :

H(k) = H0 + Ec(k
2) +Hk·p , (2.5)

avec H0 = diag(E0, E1, ...) et En = En0 les énergies propres de H0 (elles aussi supposées connues),
Ec(k

2) = ~2k2

2m0
· 1 où 1 est la matrice identité, et (Hk·p)ij = ~

m0
k · 〈ui0|p|uj0〉 = ~

m0
k · 〈i|p|j〉. En

diagonalisant exactement l’hamiltonien H(k) ci-dessus, nous sommes en mesure d’établir la structure
de bandes du matériau pour tout vecteur d’onde k.

Par la suite nous allons étudier la structure de bandes au voisinage du maximum des bandes de
valence au point Γ. Ainsi, les vecteurs d’onde k considérés sont petits, ce qui permet de traiter le terme
Hk·p comme une perturbation. Nous allons étudier la structure de bandes pour des particules sans spin,
puis nous introduirons le couplage spin-orbite, et nous verrons l’impact d’un tel couplage sur la structure
de bandes.

2.1.1 Bandes de valence sans spin
Nous considérons le sommet des bandes de valence sans spin au point Γ. En ce point les états sont

trois fois dégénérés, et nous notons {|X〉, |Y 〉, |Z〉} = {un0} ces trois états (cette notation vient du fait
que ces états ont des symétries similaires aux orbitales px, py, et pz respectivement). Nous pouvons tout
d’abord écrire la matrice H(k) dans la base {|X〉, |Y 〉, |Z〉}. Toutefois, le terme k · p n’a aucun effet
dans cette base ; compte tenu de la symétrie d’inversion du cristal tous les termes ∝ k · 〈i|p|j〉 sont nuls
pour tout i, et j parcourant {|X〉, |Y 〉, |Z〉}. Ainsi, la dispersion des bandes obtenue est positive, ce qui
n’est pas correct. Il est donc nécessaire de prendre en compte le couplage aux bandes éloignées. Pour
faire cela deux solutions s’offrent à nous.

La première consiste à travailler dans une base plus grande contenant les états {|X〉, |Y 〉, |Z〉} mais
aussi des états des bandes éloignées : nous parlons alors de méthodes k · p 8, 15, ou 30 bandes [26],
qui sont utilisées pour décrire la structure de bandes sur des larges gammes d’énergies, mais qui sont
complexes à manipuler.

La deuxième solution, que nous allons utiliser dans cette thèse, consiste à garder la base dégénérée
{|X〉, |Y 〉, |Z〉} en incorporant les effets des bandes éloignées en perturbation dans cette même base
(transformation de Lowdin [44]) : il est pertinent de faire cela pour décrire localement la structure de
bandes autour du point Γ (où se joue la physique que nous étudions). Par conséquent en incorporant ces
corrections, l’hamiltonien effectif s’écrit, à l’ordre le plus bas en k, dans la base {|X〉, |Y 〉, |Z〉} :

H(k) =

HXX HXY HXZ

HY X HY Y HY Z

HZX HZY HZZ

 , (2.6)

où la matrice H(k) a pour éléments :

Hij =
∑
α,β

kαkβH
αβ
ij , (2.7)

avec

Hαβ
ij =

[ ~2

2m0

δαβδij +
~2

m2
0

∑
l

〈i|pα|l〉〈l|pβ|j〉
Ev − El

]
. (2.8)

Les indices i,j parcourent les états {|X〉, |Y 〉, |Z〉} d’énergie Ev, l’indice l parcourt les fonctions de
Bloch des bandes éloignées (i.e. autres que |X〉,|Y 〉, et |Z〉) d’énergie El, et pα = −i~∂α.

Ensuite, l’idée est d’utiliser les symétries des éléments de H(k), pour simplifier sa forme [45]. Nous
pouvons ainsi identifier quels éléments 〈i|pα|l〉 sont nuls et lesquels sont identiques. Par conséquent

26



2.1. Description empirique : la méthode k · p

−150

−100

−50

0

E
n

(m
eV

)

L← Γ → X

FIGURE 2.1 – Structure de bandes du silicium en l’absence de couplage spin-orbite suivant le chemin
L→ Γ→ X autour de Γ, avec L = −5.641, M = −3.607, N = −8.676 en unité de ~2/(2m0) [46, 47].
Les deux bandes de plus hautes énergies sont deux fois dégénérées sur ce chemin. Au point Γ, les états
sont trois fois dégénérés (six fois avec le spin). Nous notons→ X la direction vers le point X (idem avec
le point L). Environ 7% de la première zone de Brillouin est représentée.

l’hamiltonien à trois bandes H3k·p(k) ≡ H(k) prend la forme [45] :

H3k·p(k) =

Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

Nkykx Lk2
y +M(k2

z + k2
x) Nkykz

Nkzkx Nkzky Lk2
z +M(k2

x + k2
y)

 , (2.9)

où les coefficients L, M , et N peuvent être exprimés en fonction des termes de la série en perturbation
(voir la référence [45] et l’annexe A pour les détails). En pratique ces coefficients sont ajustés sur des
mesures expérimentales des masses des trous [26]. Le vecteur d’onde k est exprimé dans le système
d’axes cristallographiques x ‖ [100], y ‖ [010], z ‖ [001]. La figure 2.1 montre la structure de bandes
du silicium à partir d’une description k · p trois bandes le long du chemin L→ Γ→ X. Généralement,
pour un k donné non nul, les états sont non dégénérés. Cependant, sur des chemins de hautes symétries,
les états peuvent rester dégénérés. Par exemple, deux des trois états sont dégénérés le long du chemin
L→ Γ→ X.

2.1.2 Bandes de valence avec couplage spin-orbite
Dans cette partie nous prenons en compte le spin des particules, et en particulier l’effet du couplage

spin-orbite. Le couplage spin-orbite est un effet relativiste qui lie le spin d’une particule à son mouve-
ment dans l’espace réel. En effet, un électron orbitant autour de noyaux voit des charges positives en
mouvement dans son référentiel. Il perçoit donc un courant dépendant du temps qui induit un champ
magnétique agissant directement sur le spin attaché au référentiel de l’électron.

L’hamiltonien de couplage spin-orbite s’obtient à partir de l’équation relativiste de Schrödinger
(équation de Dirac), dont le terme dominant s’écrit [48] :

Ĥso =
~

4m2
0c

2
(σ ×∇V ) · p̂ , (2.10)

où c est la vitesse de la lumière dans le vide, σ = (σx, σy, σz) sont les matrices de Pauli, et ∇V
est le gradient de l’énergie potentielle électrique (généralement ∇V devient grand proche des noyaux
atomiques). Avec ce nouveau terme, l’hamiltonien k · p (2.4) devient :

Ĥ(k) = Ĥ0 +
~
m0

k · p̂ +
~2k2

2m0

+ Ĥso , (2.11)
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où le terme de couplage spin-orbite dépendant du vecteur d’onde k a été négligé [45]. Ainsi, le couplage
spin-orbite intervient à l’ordre zéro en k via le terme Ĥso.

Dans un premier temps, nous allons établir les états au point Γ avec le couplage spin-orbite avant
d’introduire l’effet d’un vecteur d’onde non nul.

Couplage spin-orbite au point Γ

Au point Γ, l’équation (2.11) devient :

Ĥ(k = 0) = Ĥ0 + Ĥso . (2.12)

En introduisant le spin, nous notons le nouvelle base {|ασ〉} où |ασ〉 = |α〉 ⊗ |σ〉 avec α ∈ {X, Y, Z}
les fonctions de Bloch, et σ ∈ {↑, ↓} le spin de la particule. Le couplage spin-orbite est traité exactement
dans cette base. Par des arguments de symétrie sur les différents éléments de la matrice spin-orbite dans
cette base, nous pouvons écrire [45] :

Hso =
∆so

3


0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 , (2.13)

avec ∆so le paramètre caractérisant l’intensité du couplage spin-orbite, qui peut s’écrire en fonction des
états de Bloch (voir la référence [48] et l’annexe A pour des détails).

Nous pouvons remarquer que cet hamiltonien peut se mettre sous la forme Hso = λsoL · S, avec L
une représentation matricielle du moment cinétique orbital l = 1, S une représentation matricielle du
moment cinétique de spin, et λso = 2∆so/(3~2). Comme [L · S,L + S] = 0, nous pouvons caractériser
les états propres de Hso par leur moment cinétique total J = L + S. Nous pouvons donc introduire la
base {|j,mj〉}, où j = 1/2 ou 3/2 le moment total [J2|j,mj〉 = ~2j(j+1)|j,mj〉] et mj sa composante
le long de z 1 [Jz|j,mj〉 = ~mj|j,mj〉, |mj| < j] :

|3/2,+3/2〉 =
1√
2
|(X + iY ) ↑〉 (2.14a)

|3/2,+1/2〉 =
1√
6

[
|(X + iY ) ↓〉 − 2|Z ↑〉

]
(2.14b)

|3/2,−1/2〉 = − 1√
6

[
|(X − iY ) ↑〉+ 2|Z ↓〉

]
(2.14c)

|3/2,−3/2〉 = − 1√
2
|(X − iY ) ↓〉 (2.14d)

|1/2,+1/2〉 =
1√
3

[
|(X + iY ) ↓〉+ |Z ↑〉

]
(2.14e)

|1/2,−1/2〉 =
1√
3

[
|(X − iY ) ↑〉 − |Z ↓〉

]
. (2.14f)

Dans cette même base, l’hamiltonien de couplage spin-orbite est bien diagonal :

H ′so =
∆so

3


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

 . (2.15)

1. Le choix d’un axe de quantification pour J est en principe arbitraire. Le choix z = [001] s’avère pertinent pour les
structures que nous allons décrire dans ce manuscrit et qui sont fortement confinées le long de cette axe.
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L’effet du couplage spin-orbite est donc de lever la dégénérescence au point Γ : les quatre états de
moment cinétique total j = 3/2 sont dégénérés à une énergie ∆so/3, et les deux autres états de moment
cinétique total j = 1/2 sont dégénérés à une énergie −2∆so/3. Ainsi, la séparation en énergie entre les
états de spin total j = 3/2 et j = 1/2 est ∆so. Les états correspondant à un spin total j = 1/2 forment
la bande de split-off.

Couplage spin-orbite proche du point Γ (k 6= 0)

Dans la base {|ασ〉}, le terme de couplage spin-orbite est traité exactement, et le couplage k ·
p avec les autres bandes est traité en perturbation à l’ordre deux comme au paragraphe 2.1.1. Donc
l’hamiltonien k · p six bandes total est :

H(k) =

(
H3k·p 03

03 H3k·p

)
+Hso , (2.16)

avec H3k·p défini dans l’équation (2.9), et Hso défini dans l’équation (2.13). Dans la base {|j,mj〉}, cet
hamiltonien prend la forme :

H6k·p(k) = −



P +Q −S R 0 1√
2
S −

√
2R

−S∗ P −Q 0 R
√

2Q −
√

3
2
S

R∗ 0 P −Q S −
√

3
2
S∗ −

√
2Q

0 R∗ S∗ P +Q
√

2R∗ 1√
2
S∗

1√
2
S∗

√
2Q −

√
3
2
S
√

2R P + ∆so 0

−
√

2R∗ −
√

3
2
S∗ −

√
2Q 1√

2
S 0 P + ∆so


(2.17)

où les coefficients P , Q, R et S peuvent s’exprimer en fonction des coefficients L, M , N définis dans
l’hamiltonien k · p trois bandes (2.9) (le bloc 4× 4 délimité par des pointillés sera discuté plus tard). Il
est pertinent d’introduire les paramètres sans dimension de Luttinger γ1, γ2, γ3, tel que :

P = P (k) =
~2

2m0

γ1(k2
x + k2

y + k2
z) (2.18a)

Q = Q(k) =
~2

2m0

γ2(k2
x + k2

y − 2k2
z) (2.18b)

R = R(k) =
~2

2m0

√
3(−γ2(k2

x − k2
y) + 2iγ3kxky) (2.18c)

S = S(k) =
~2

2m0

2
√

3γ3(kx − iky)kz . (2.18d)

Ces paramètres de Luttinger peuvent s’exprimer en fonction des coefficients L, M , N :

~2

2m0

γ1 = −1

3
(L+ 2M) (2.19a)

~2

2m0

γ2 = −1

6
(L−M) (2.19b)

~2

2m0

γ3 = −1

6
N . (2.19c)

Les paramètres de Luttinger sont donnés pour quelques semiconducteurs dans la table 2.1. Les para-
mètres γ2, et γ3 caractérisent l’anisotropie des bandes de valence. La figure 2.2 montre la structure de
bandes du silicium le long du chemin L → Γ → X avec une description k · p six bandes prenant en
compte le couplage spin-orbite ∆so.
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FIGURE 2.2 – Structure de bandes du silicium en présence du couplage spin-orbite (traits pleins), et
sans couplage spin-orbite (traits pointillés) le long du chemin L → Γ → X. Au point Γ, les états
dégénérés sans couplage spin-orbite sont séparés en deux groupes : états quatre fois dégénérés et états
deux fois dégénérés. Les paramètres du silicium sont γ1 = 4.285, γ2 = 0.339, γ3 = 1.446 [46][47], et
∆so = 0.044 eV. Nous notons→ X la direction vers le point X (idem avec le point L). Environ 7% de
la première zone de Brillouin est représentée.

Si Ge InP GaAs InAs InSb
∆so (eV) 0.044 0.29 0.11 0.34 0.41 0.80

γ1 4.285 13.38 4.95 6.85 20.40 37.10
γ2 0.339 4.24 1.65 2.10 8.30 16.50
γ3 1.446 5.69 2.35 2.90 9.10 17.70

mh
z (m0) 0.277 0.204 0.606 0.377 0.263 0.244

mh
xy (m0) 0.216 0.057 0.152 0.112 0.035 0.019

κ -0.42 3.41 0.97 1.20 7.60 15.60

TABLE 2.1 – Énergie spin-orbite ∆so dans les bandes de valence, paramètres de Luttinger, masses des
trous lourds selon l’axe z [mh

z = m0/(γ1−2γ2)], dans le plan (xy) [mh
xy = m0/(γ1 +γ2)], et paramètre

κ [48] pour différents semiconducteurs.

Trous lourds, trous légers

Selon l’hamiltonien k · p six bandes (2.17), l’énergie d’un pur état |3/2,±3/2〉 est Eh = P +Q, ou
encore :

Eh =
~2

2mh
xy

(k2
x + k2

y) +
~2

mh
z

k2
z , (2.20)

avec mh
xy = m0/(γ1 + γ2), et mh

z = m0/(γ1 − 2γ2). De même, l’énergie d’un pur état |3/2,±1/2〉
prend une forme similaire avec mh

xy → ml
xy = m0/(γ1 − γ2), et mh

z → ml
z = m0/(γ1 + 2γ2). Ainsi,

typiquement mh
z > ml

z, et par convention nous appelons trous lourds les états |3/2,±3/2〉, et trous
légers les états |3/2,±1/2〉. Ainsi, Les fonctions de Bloch de trous lourds vont naturellement dominer
l’état fondamental de trou des nanostructures fortement confinées le long de z = [001].

Fort couplage spin-orbite : k · p quatre bandes

Lorsque le couplage spin-orbite ∆so est grand, il est pertinent de ne travailler qu’avec les trous
lourds et les trous légers, et de négliger le mélange à la split-off. Dans ce cas, l’hamiltonien qui décrit le
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système est le sous bloc 4 × 4 à l’intersection des 4 premières lignes et colonnes de l’équation (2.17),
délimité par des pointillés. Cet hamiltonien k ·p quatre bandes sera étudié et détaillé dans le chapitre 5.

2.1.3 Nanostructure : fonctions enveloppes
Dans des nanostructures, lorsque le système est soumis à un potentiel extérieur U(r) lentement

variable à l’échelle atomique, il est possible de décomposer la fonction d’onde totale ψ comme une
somme de fonctions enveloppes Fn multipliées par des fonctions de Bloch un0 [45] :

ψ(r) =
∑
n

Fn(r)un0(r) . (2.21)

Ce potentiel lentement variable ne couple pas les différentes bandes entre elles, et nous pouvons en
général découpler l’action sur les fonctions de Bloch de l’action sur les fonctions enveloppes car celles-
ci ont des longueurs caractéristiques très différentes. La figure 2.3 schématise ces différentes longueurs
caractéristiques.

FIGURE 2.3 – Représentation schématique de la fonction d’onde ψn(r) = Fn(r)un0(r) et de la fonction
enveloppe Fn(r). En haut, la fonction enveloppe Fn varie lentement par rapport aux variations de un0.
En bas, le potentiel périodique d’un cristal créé par des noyaux atomiques (cercles noires). Adapté de la
référence [48].

Dans le cas d’une description k · p six bandes la fonction d’onde totale peut s’écrire :

ψ(r) =
∑
jmj

Fjmj(r)⊗ |j,mj〉 . (2.22)

L’équation de Schrödinger associée à ces fonctions enveloppes est :[
H6k·p(−i∇) + U(r) · 16

]
F̃ = EF̃ , (2.23)

où H6k·p est l’hamiltonien (2.17), le vecteur d’onde k a été remplacé par l’impulsion k→ −i∇, 16 est
la matrice identité de taille 6, et F̃ est le vecteur des six fonctions enveloppes des trous lourds, trous
légers et de la split-off [F̃ = (F3/2,±3/2, F3/2,±1/2, F1/2,±1/2)].

En pratique, le potentiel U(r) peut inclure aussi bien les champs électriques appliqués au dispositif
que les potentiels de confinement structuraux imposés par les décalages de bandes entre les matériaux,
même si ceux-ci ne sont pas habituellement lentement variables au voisinage des interfaces.
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2.2 Effet du champ magnétique
Dans cette section, nous établissons l’effet du champ magnétique sur la fonction d’onde d’une nano-

structure. Plus précisément, nous détaillons son impact sur les fonctions enveloppes et sur les fonctions
de Bloch. Nous verrons que le potentiel vecteur couple les différentes fonctions enveloppes d’une part,
et la partie orbitale des fonctions de Bloch d’autre part, et que le champ magnétique agit directement
sur le spin physique des fonctions de Bloch.

2.2.1 Effet du potentiel vecteur
Nous allons tout d’abord établir l’effet du potentiel vecteur en Γ sur la partie spatiale de la fonction

d’onde (fonctions enveloppes et partie orbitale des fonctions de Bloch). Le potentiel vecteur A [B =
∇×A où B est le champ magnétique statique et homogène] est habituellement introduit en remplaçant
k→ −i∇ + e

~A ce qui entraine la non commutativité des composantes de k. Ainsi, l’idée de Luttinger
[49] est de séparer les différents termes kαkβ (α, β ∈ {x, y, z}) de l’équation (2.7) en contributions
"symétriques" {kα, kβ} = (kαkβ + kβkα)/2 , et en contributions "antisymétriques" [kα, kβ] = kαkβ −
kβkα. La contribution symétrique agit sur les fonctions enveloppes et s’obtient en remplaçant kαkβ →
{kα, kβ} dans les hamiltoniens k ·p avant de faire la substitution k→ −i∇+ e

~A [éqs. (2.9) et (2.17)].
En utilisant la relation k× k = −ieB/~, la contribution antisymétrique fait apparaître le terme :

HA = −(3κ+ 1)µBB · L , (2.24)

où L est une représentation matricielle du moment cinétique orbital des fonctions de Bloch de nombre
quantique l = 1, et où κ peut s’exprimer en fonction des termes de la série en perturbation de l’équation
(2.8) (voir annexe A), et est donc dépendent du matériau. Cet hamiltonien décrit ainsi l’effet du potentiel
vecteur sur les fonctions de Bloch.

2.2.2 Effet Zeeman
L’effet Zeeman est l’action du champ magnétique statique et homogène B sur les spins des fonctions

de Bloch, et l’hamiltonien associé à cet effet peut s’écrire :

Hz =
1

2
g0µBσ ·B , (2.25)

où σ est le vecteur des matrices de Pauli dans la base des spins physiques.

2.2.3 Effet total du champ magnétique sur les fonctions de Bloch
L’hamiltonien total décrivant l’action du champ magnétique sur les fonctions de Bloch est HB =

Hz + HA avec Hz (respectivement HA) défini par l’équation (2.25) [respectivement par l’équation
(2.24)]. Comme les fonctions de Bloch peuvent s’identifier à des spins (j = 3/2, j = 1/2), nous
appelons par extension cet hamiltonien l’hamiltonien Zeeman HZ ≡ HB. Celui-ci peut se mettre sous
la forme :

HZ = µBB ·K (2.26)

avec K = −(3κ + 1)L + 2S en approximant g0 ∼ 2. Les matrices de K dans la base {|j,mj〉} sont
données en annexe A. Nous négligeons l’effet du terme ∝ q de la référence [49]. Par le suite, nous
discutons brièvement la réponse des trous lourds et des trous légers au champ magnétique.
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Réponse des trous lourds et trous légers au champ magnétique

Dans le sous-espace j = 3/2 (trous lourds, trous légers), l’hamiltonien Zeeman (2.26) prend la
forme :

HZ = −2κµBB · J , (2.27)

où J = L + S est le moment angulaire total des fonctions de Bloch [49]. Les matrices de J dans la base
{|j,mj〉} sont également données en annexe A. Nous pouvons alors établir la réponse gyromagnétique
des trous lourds et légers en négligeant dans un premier temps l’action du potentiel vecteur sur les
enveloppes.

Trous lourds Dans le sous espace {|3/2,±3/2〉} (trous lourds), l’hamiltonien (2.27) se réduit àHZ =
−3κµBBzσ3, ce qui se met sous la forme HZ = 1

2
µB

tσ · ĝd · B où ĝd = diag(0, 0, 6|κ|) sont les
facteurs gyromagnétiques et tσ = (σ1, σ2, σ3) les matrices de Pauli. Ainsi, les trous lourds répondent
exclusivement à la composante z du champ magnétique.

Trous légers Dans le sous espace {|3/2,±1/2〉} (trous légers), l’hamiltonien (2.27) se réduit, cette
fois, à HZ = 1

2
µB

tσ · ĝd ·B où ĝd = diag(4|κ|, 4|κ|, 2|κ|). Ainsi, la réponse des trous légers au champ
magnétique est moins anisotrope que celle des trous lourds.

2.3 Physique numérique : dispositif réel
Dans cette partie, nous détaillons l’implémentation numérique de la théorie précédemment décrite.

Nous allons présenter le fonctionnement du code TB_Sim développé au CEA (qui préexistait à ma
thèse) permettant notamment de calculer la structure de bandes de semiconducteurs avec des méthodes
de liaisons fortes et des méthodes k ·p. Ce code permet de simuler différentes structures réelles de qubit
semiconducteur, et en particulier des géométries linéaires et des géométries planaires.

2.3.1 Présentation d’une géométrie
Nous introduisons brièvement un exemple de dispositif en géométrie linéaire, tel que modélisé avec

ce code. Ce dispositif se compose d’un nano-fil de silicium orienté selon l’axe [110], gravé dans la
couche de silicium d’un substrat SOI. Le substrat du silicium massif sous l’oxyde enterré peut servir de
grille arrière après dopage. Une grille avant recouvre à moitié le nano-fil. Elle est séparée électriquement
du fil par du SiO2 et du HfO2. Deux grilles latérales imitent les qubits voisins. L’ensemble est encapsulé
dans du Si3N4. La figure 2.4 représente un tel dispositif et le système d’axes utilisé (x = [110], y =
[1̄10], et z = [001]). Cette géométrie (taille du nanofil, épaisseur des oxydes, tensions de grille, ...) sera
détaillée au chapitre 4.

Il est important aussi de noter que le code offre la possibilité de construire d’autres géométries et
d’autres configurations de grilles et d’oxydes que celles montrées dans cet exemple [50].

2.3.2 Fonctionnement du code TB_Sim
Concrètement, nous voulons établir certaines propriétés du qubit (par exemple la fréquence de Rabi

entre deux états). Pour cela, nous devons connaître les états et énergies propres de l’hamiltonien du
qubit. Cet hamiltonien, en l’absence de champ magnétique, s’écrit :

H = H6k·p + Ustruct(r) + Uelec(r) , (2.28)

où H6k·p est l’hamiltonien k · p six bandes. En se plaçant dans le système d’axes ci-dessus, et en
choisissant une phase appropriée pour chaque fonction de Bloch {|j,mj〉}, l’hamiltonien k·p six bandes
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~

FIGURE 2.4 – Exemple de géométrie pouvant être générée avec le code TB_Sim.

dans le silicium massif [26] prend une forme identique à celui de l’équation (2.17) avec cette fois-ci
R → ~2

2m0

√
3
[
−γ3

(
k2
x − k2

y

)
+ 2iγ2kxky

]
(kx, ky et kz étant les composantes du vecteur d’onde dans

les axes x = [110], y = [1̄10], et z = [001]). L’énergie potentielle de confinement structural Ustruct

est obtenue à partir de la géométrie du nanofil de silicium, et l’énergie potentielle électrique Uelec est
obtenue en résolvant l’équation de Poisson dans le dispositif (voir les prochains paragraphes). La figure
2.5 représente les différentes étapes de calcul du code TB_Sim pour établir les propriétés du qubit.

Discrétisation

Tous d’abord, nous discrétisons l’ensemble du dispositif sur un maillage parallélépipédique. Typi-
quement, le maillage est plus fin (∼ 0.3 nm) dans le nanofil sous la grille que dans le reste du dispositif.
La figure 2.6 montre un exemple de maillage dans le plan (xz) dont la densité a été réduite d’un facteur
∼ 6 dans chaque direction par souci de clarté.

Confinement structural

Nous appliquons des conditions périodiques le long de l’axe x du nanofil, et des conditions de
confinement "dur" à la surface du fil (les fonctions d’onde ne pénètrent ni les oxydes, ni Si3N4). À ce
stade, la rugosité de surface peut être introduite mais ce n’est pas le cas dans le dispositif exemple. Ces
conditions définissent le potentiel de confinement structural Ustruct provenant de l’équation (2.28).

Confinement électrique

Puis, nous calculons l’énergie potentielle électrique Uelec sur le maillage de la simulation pour un
ensemble de tensions de grilles données. Pour cela, nous résolvons l’équation de Poisson pour le poten-
tiel électrique Velec = Uelec/(−e) en utilisant la méthode des volumes finies en supposant les constantes
diélectriques relatives suivantes pour les matériaux : εSi = 11.7, εSiO2 = 3.9, εHfO2 = 20 et εSi3N4 = 7.5.
L’équation de Poisson en présence d’une densité de charge ρ, dans un milieu de permittivité électrique
ε s’écrit :

∇(ε∇Velec) = −ρ (2.29)

avec les conditions aux limites appropriées :
— Velec(rg) = Vg pour tout point de l’espace rg où la tension de grille Vg est appliquée,
— Conditions aux limites périodiques le long de l’axe x.
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FIGURE 2.5 – Schéma du fonctionnement simplifié du code TB_Sim appliqué au calcul des états quan-
tiques d’un qubit. Lorsque qu’un champ magnétique est présent, l’hamiltonien Zeeman des fonctions de
Bloch et l’effet du potentiel vecteur sur les fonctions enveloppes sont incorporés à l’hamiltonienH avant
la résolution de l’équation de Schrödinger. Il en est de même pour les contraintes dont les effets peuvent
être incorporés à l’hamiltonien H . Par exemple, la matrice gyromagnétique ĝ et, la fréquence de Rabi
fR sont obtenues à partir du post-traitement. Les bulles, où les engrenage sont présents, représentent des
parties du code TB_Sim.

— Composante normale du champ électrique nulle sur les faces (xy) et (xz) de la boîte de simula-
tion contenant l’ensemble du dispositif (hors grilles avant et arrière).

Des défauts chargés positivement ou négativement peuvent être ajoutés à la simulation pour rendre
compte de l’effet du désordre de charge. Leur nombre et leur position peuvent être définis par l’utili-
sateur ou caractérisés avec une fonction de distribution et une densité surfacique (pour les charges aux
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FIGURE 2.6 – Représentation du maillage utilisé pour résoudre l’équation de Poisson (volumes finis) et
l’équation de Schrödinger (différences finies). Par souci de clarté, le nombre de point de maillage est
divisé par six dans chaque direction. Le plan de coupe est perpendiculaire au substrat et contient l’axe
du fil nanofil. Le code couleur des différents matériaux est identique à celui de la figure 2.4.

FIGURE 2.7 – Potentiel électrique Velec crée par les grilles dans le plan (zx) passant par l’axe du nanofil,
et calculé en résolvant l’équation de Poisson. La grille centrale est polarisée à Vfg = −0.100 V, la grille
arrière à Vbg = −0.150 V, et les grilles latérales sont à la masse.

interfaces Si/SiO2), ou volumique (pour les charges en volume dans les espaceurs Si3N4). La figure 2.7
montre un exemple de carte de potentiel électrique obtenue en résolvant Poisson dans la géométrie de la
figure 2.4.

États quantiques

Une fois que l’énergie potentielle électrique, et l’énergie potentielle structurale sont calculées, l’ha-
miltonien total du système (2.28) peut être construit, et l’équation de Schrödinger pour les fonctions
enveloppes est résolue en utilisant une méthode de différences finies. Les équations pour les fonctions
enveloppes sont discrétisées sur le même maillage que précédemment. Les états propres du dispositif
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FIGURE 2.8 – Exemple de calcul de la probabilité de présence d’un trou dans le nanofil de silicium,
soumis au potentiel électrique représenté dans la figure 2.7. Une couleur sombre indique une probabilité
de présence élevée.

sont calculés avec une méthode itérative de type Jacobi-Davidson [51, 52]. Un exemple de fonction
d’onde obtenue est représenté sur la figure 2.8.

L’effet du champ magnétique sur les fonctions de Bloch et sur leur spin est décrit par l’hamilto-
nien Zeeman (2.26) [49]. L’effet du potentiel vecteur sur les fonctions enveloppes est décrit par une
substitution de Peierls similaire aux méthodes de liaisons fortes [53].

Post-traitement

Finalement, une fois les états quantiques du dispositif calculés, nous pouvons établir divers pro-
priétés physiques, tel que la fréquence de Rabi entre deux états de la boite quantique, ou calculer des
matrices gyromagnétiques (voir la section 4.1.3).

2.4 Conclusions
Nous avons montré comment la méthode k · p six bandes permet de décrire la structure de bandes

d’un matériau massif autour du point Γ avec peu de paramètres. L’énergie spin-orbite ∆so caractérise
la force du couplage spin-orbite dans la base des fonctions de Bloch, et sépare les bandes de trous
lourds et de trous légers de la bande de split off. Les paramètres de Luttinger caractérisent l’énergie
cinétique et l’anisotropie des bandes de valence. Dans une nanostructure, l’effet du champ magnétique
sur les fonctions de Bloch est capturé par le paramètre κ (effet Zeeman) et son effet sur les fonctions
enveloppes par les paramètres de Luttinger (effet du potentiel vecteur).

Nous avons introduit le code TB_Sim qui permet d’étudier des nanostructures de géométries réa-
listes. Il utilise des méthodes de volumes finies sur un maillage parallélépipédique pour calculer le
potentiel électrique dans le dispositif, et ce même maillage pour résoudre l’équation de Schrödinger
avec une méthode k · p six bandes. Les propriétés du qubit telles que sa réponse au champ magnétique,
ou encore la vitesse des oscillations de spin peuvent être déduites du post-traitement de ces solutions.
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Chapitre 3

Expériences sur les qubits de trou

L’objectif de ce chapitre est de présenter les expériences récentes menées au CEA sur un qubit spin-
orbite de trou défini à partir d’une boite quantique dans un nanofil de silicium. L’état de ce qubit est
mesuré en utilisant une seconde boite quantique qui joue le rôle de filtre de spin par une conversion spin-
courant. Pour cette raison, nous introduisons tout d’abord, de manière générale, la notion de diagramme
de stabilité et de triangle de courant dans un dispositif de double boite quantique connecté à une source
et à un drain, et nous présentons les phénomènes de blocage de Coulomb et de blocage de Pauli. Ensuite,
après avoir décrit le dispositif expérimental, nous détaillons les expériences réalisées sur ce qubit de trou.
L’objectif est de caractériser la fréquence de Larmor et de Rabi du qubit en fonction de l’orientation du
champ magnétique afin, notamment d’optimiser ces performances. De plus, l’anisotropie des facteurs
gyromagnétiques de ce qubit permet de sonder et d’explorer sa physique, et en particulier la nature
des trous. Finalement, nous introduisons un formalisme de matrice gyromagnétique qui nous permet de
distinguer différents mécanismes de manipulation électrique du spin, et de préciser la localisation de la
fonction d’onde du qubit dans ce dispositif.

3.1 Double boite quantique
Dans ce paragraphe, nous étudions un système de deux boites quantiques pour introduire les élé-

ments clefs nécessaires à la compréhension de la partie 3.2 portant sur le dispositif expérimental. Nous
considérons un système de deux boites quantiques en série dont les potentiels chimiques sont contrôlés
par deux grilles portées aux tensions VG1 et VG2 auxquels sont connectées ces boîtes. Une tension Vd
peut être appliquée entre le drain et la source. La figure 3.1 représente ce système. Un ou plusieurs trous
peuvent être transférés entre la source, le drain et les boites quantiques.

FIGURE 3.1 – Schéma de deux boites quantiques connectées à un drain et à une source. Vd est la tension
appliquée au drain, et la source est à la masse. Les tensions de grilles VG1 et VG2 contrôlent les potentiels
chimiques des boites quantiques. Les flèches noires indiquent les transferts possibles de trous. Inspiré
des références [54, 55].
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Dans un premier temps, nous allons décrire le mécanisme de remplissage de ces boites en construi-
sant le diagramme de stabilité du système. Puis nous expliquerons comment un courant peut circuler à
travers ces boites quantiques à faible tension drain-source, ainsi que les conditions de son blocage.

3.1.1 Remplissage des boites quantiques
Le remplissage de ces deux boites quantiques disposées en série repose sur le principe du blocage

de Coulomb. Tout d’abord nous discutons brièvement du remplissage d’une boite quantique, puis nous
généralisons cette physique au système de la double boite quantique. Dans cette partie, nous travaillons
à une tension drain-source nulle.

Blocage de Coulomb

Tout d’abord, une boite quantique de N particules peut être caractérisée par son potentiel électro-
chimique µ(N). L’énergie à fournir pour ajouter une particule dans cette boite est :

µ(N + 1)− µ(N) = Ec + ∆E , (3.1)

où Ec est l’énergie d’interaction coulombienne et ∆E est la différence d’énergie entre états quantiques
dans cette boîte [55] . Cette énergie de Coulomb Ec augmente le potentiel chimique des boites quan-
tiques à chaque ajout de particule, et en particulier lors de l’ajout d’une particule de spin différent sur
une orbitale déjà occupée (∆E = 0 sans champ magnétique). Cela permet de remplir la boite particule
par particule (blocage de Coulomb).

Dans un transistor à un électron, la boite quantique est en contact avec une source et un drain.
À tension drain-source nulle, cette boite quantique accueille une particule supplémentaire quand le
potentiel chimique µ(N + 1), contrôlé par la grille, descend sous le niveau de Fermi du drain (ou de la
source). À l’inverse, la boite perd une particule si le potentiel chimique µ(N) monte au dessus du niveau
de Fermi. Tant que µ(N) < EF < µ(N + 1), le nombre de particules dans la boite est stable.

FIGURE 3.2 – Schéma des potentiels chimiques dans deux boites quantiques connectées à une source et
à un drain mettant en évidence a) le blocage de Coulomb, et b) le remplissage d’une des deux boites. La
tension drain/source est nulle dans les deux cas.

Dans le cas de deux boites quantiques en série (comme représenté sur la figure 3.1), la physique
de remplissage des boites est similaire au cas précédemment décrit. La figure 3.2 a) représente une
configuration de charge stable correspondant au blocage de Coulomb des deux boites quantiques en
série. Une particule de la boite quantique 2 ne peut pas être transférée vers la boite 1 car le potentiel
chimique de la boite ainsi chargée est trop élevée. La figure 3.2 b) représente le transfert d’une particule
de la source vers la boite quantique 2 lorsque le potentiel chimique correspondant à la boite 2 descend
sous le niveau de Fermi des réservoirs.
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Diagramme de stabilité

Dans le cas de deux boites quantiques en série, les potentiels chimiques de ces boites quantiques sont
contrôlés électrostatiquement par les tensions des grilles VG1 et VG2 définissant les boites quantiques.
La figure 3.1 représente ces grilles.

Ainsi, les potentiels chimiques varient avec les tensions de grilles ce qui permet de remplir ou de
vider les boites quantiques grâce aux effets de blocage de Coulomb. Nous pouvons alors construire un
diagramme représentant le nombre stable de particules présentes dans ces boites quantiques en fonction
des tensions de grilles {VGi} : ce diagramme se nomme diagramme de stabilité. La figure 3.3 représente
des diagrammes de stabilité possibles du système où le nombre de charges dans les boites est représenté
par le couple (N1, N2) où N1 (respectivement N2) est le nombre de charges dans la boite quantique
1 (respectivement boite quantique 2). Les lignes correspondent aux tensions de grilles pour lesquelles
le nombre de charges dans les boites varie (passant d’une configuration (N1, N2) à (N1 + 1, N2) par
exemple). Autrement dit, ces lignes correspondent à l’alignement des potentiels chimiques des boites
avec celui du drain (ou de la source).

Idéalement, le potentiel chimique de la boite quantique i est contrôlé exclusivement par la tension de
la grille i où i ∈ {1, 2}. La figure 3.3 a) représente un tel diagramme de stabilité idéal où les différents
domaines de stabilité sont séparées par des lignes soit verticales, soit horizontales.

FIGURE 3.3 – Diagramme de stabilité en fonction des tensions de grilles VG1 et VG2 . a) Cas idéal :
Chacun des potentiels chmiques des boites quantiques est contrôlé exclusivement par une grille. b) Cas
pratique : les boites quantiques sont couplées. Le carré marron encadre deux points triples. c) Triangles
de courant théoriques aux points triples encadrés dans b) à une tension source-drain non nulle. Les
niveaux de gris correspondent à différentes intensités de courant à travers les deux boites quantiques.
Inspiré des références [54, 55]

Cependant, en pratique les potentiels chimiques de ces boites quantiques ne sont pas découplés et
des effets croisés peuvent apparaître ; c’est à dire que la tension de la grille 1 (respectivement de la grille
2) influence le potentiel chimique de la boite quantique 2 (respectivement grille 1). Le diagramme de
stabilité présente alors, non plus des lignes horizontales ou verticales, mais des lignes obliques (nous
discuterons du lien entre la pente de ces lignes et le couplage des grilles avec les boites quantiques dans
la sous section suivante). La figure 3.3 b) montre un tel diagramme de stabilité. Ce diagramme présente
des points particuliers appelés points triples où trois configurations de charge sont dégénérées avec un
potentiel chimique aligné sur celui de la source et du drain.

Pour conclure, les interactions de Coulomb permettent de séparer les potentiels chimiques associés
à des nombres de particules différents dans chacune des boîtes quantiques, ce qui permet de contrôler
leur remplissage par l’intermédiaire de grilles agissant sur leurs potentiels chimiques. Typiquement,
nous pouvons construire un diagramme de stabilité représentant le nombre de particules (N1, N2) dans
chaque boîte en fonction des tensions de grilles VG1 et VG2 .
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3.1.2 Courant drain-source
Dans cette partie, nous considérons deux boites quantiques en série en contact avec une source et un

drain comme illustré dans la figure 3.1.

Triangles de courant

Une faible tension Vd est appliquée entre le drain et la source de sorte qu’un courant puisse circuler
au travers des boites au voisinage des points triples [54, 56]. Dans ce cas, les potentiels chimiques de
plusieurs états de charge sont dans la fenêtre ouverte entre les niveaux de Fermi de la source et du drain
[via par exemple des processus de la forme (N,M)

drain→ (N + 1,M) → (N,M + 1)
source→ (N,M)].

Le courant est non nul à l’intérieur de triangles centrés sur les points triples [voir figure 3.3 b)] et dont
l’extension est proportionnelle à Vd. La physique dans ces triangles de courant est très riche, car une
étude de l’intensité du courant mesuré et de ses variations permettent de sonder les énergies des états
des boites quantiques [54, 55]. De plus, la "taille" des triangles et la pente de leurs cotés permettent
de quantifier l’influence des grilles sur le potentiel chimique des boites quantique [57]. Nous pouvons
introduire des bras de leviers αij = ∂µj/∂VGi (0 ≤ αij ≤ 1 eV/V) caractérisant le contrôle du potentiel
chimique de la boite j par la grille i. En particulier, si αij = 1 eV/V, la grille i contrôle de manière
optimale la boite quantique j, et si αij = 0 eV/V, la grille i n’a aucun effet sur le potentiel chimique de
cette même boite quantique [voir figure 3.3 a)].

Blocage de Pauli

La boite quantique i peut être remplie avec Ni trous. Si Ni est pair alors le spin total porté par
cette boite quantique est nul, tandis que si Ni est impair, alors le spin total est 1/2. Nous supposons
maintenant que les deux boites sont remplies avec un nombre impair de trous et nous nous intéressons à
la transition inter-boites (N1, N2)→ (N1− 1, N2 + 1). Celle-ci est équivalente à la transition générique
(1, 1) → (0, 2), les niveaux restant doublement occupés étant "spectateur" des processus en première
approximation. Nous appliquons un champ magnétique fini de sorte à séparer les états de spin "⇑" des
états de spin "⇓" 1, et un petit potentiel positif sur le drain de sorte que le courant circule via le cycle
(1, 1) → (0, 2)

source→ (0, 1)
drain→ (1, 1). Dans cette configuration, la configuration relative de spin entre

les deux boites 1 et 2 peut bloquer la transition (1, 1) → (0, 2) (blocage de Pauli, voir figure 3.4). Sous
réserve qu’il n’y ait qu’un seul état (⇑ ou ⇓) de la boite 2 accessible depuis la boite 1 :

FIGURE 3.4 – Distribution des potentiels chimiques pour le blocage de Pauli. Le potentiel chimique
d’une particule de spin "⇑" est représenté en vert, tandis que celui d’un spin "⇓" est en bleu. a) Les états
de spin sont non bloqués : une charge peut être transférée à la source. b) Les états de spin sont dans un
état bloqué : aucune charge ne peut être transférée du drain à la source.

1. En présence de couplage spin-orbite, les états "⇑" et "⇓" sont des pseudo-spins comme c’est le cas dans la section 3.2.
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— Si l’état (1, 1) est (⇓,⇓) [ou (⇑,⇑)] alors le principe d’exclusion de Pauli interdit les configura-
tions (0,⇓⇓) [ou (0,⇑⇑)], et l’état (0, 2) reste interdit. Le système est bloqué dans l’état (1, 1).
Il n’y a pas de courant.

— Sinon si l’état (1, 1) est (⇓,⇑) [ou (⇑,⇓)] alors la configuration (0,⇑⇓) [ou (0,⇓⇑)] est possible,
et ainsi l’état de charge (0, 2) est accessible. Il en résulte un transfert de charge de la boite
quantique 1 vers la boite quantique 2 puis vers la source. Finalement la boite quantique 1 est
remplie à partir du drain avec une autre charge et le système se retrouve une nouvelle fois dans
la configuration de charge (1, 1) qui est soit bloquée, soit non bloquée suivant l’état de spin de
cette configuration. Au moins une charge a été transférée entre la source et le drain.

En pratique, le système relaxe dans son état fondamental (⇓,⇓) où le courant est bloqué (ou minimal,
si nous tenons compte de processus de déblocages parasites). En manipulant le spin du qubit (boite
2), nous pouvons alors débloquer le courant jusqu’à ce que le système retourne dans l’état (⇓,⇓). Le
courant moyen qui circule dans le dispositif est donc représentatif de l’évolution de l’état de spin du
qubit, comme illustré aux paragraphes 3.2.1 et 3.2.2. La boite 1 agit ici comme un "filtre de spin" vis à
vis du qubit afin de réaliser une conversion spin-courant.

3.2 Dispositif expérimental
Le dispositif expérimental étudié est représenté dans la figure 3.5 a). Il se compose d’un nano-fil

de silicium orienté [110] d’épaisseur 8 nm et de largeur 25 nm gravé dans la couche de silicium (Si)
d’un substrat de silicium-sur-isolant (SOI pour Silicon-On-Insulator). Cette couche repose sur 145 nm
d’oxyde enterré (BOX pour Burried oxyde). Deux grilles métalliques recouvrantes de longueur 35 nm
séparées par 30 nm, sont définies en série le long du nanofil. Elles se composent d’un empilement de
5 nm de nitrure de titane (TiN) et de 50 nm de silicium polycristallin (PolySi) et elles sont séparés élec-
triquement du nanofil par quelques nanomètres de dioxyde de silicium (SiO2) et d’oxyde d’hafnium
(HfO2) de forte permittivité électrique. Des espaceurs isolants en nitrure de silicium (Si3N4) sont dépo-
sés autour de ces grilles. La source et le drain sont fortement dopés p par implantation en bore et agissent
donc comme réservoir de trous. Pendant cette implantation, les espaceurs protègent le nano-fil pour qu’il
reste non dopé. L’axe x = [1̄10] est dans le plan du substrat et perpendiculaire à l’axe y = [110] du
nanofil. L’axe z = [001] est perpendiculaire au substrat.

FIGURE 3.5 – a) Image du dispositif obtenue par microscopie électronique à balayage. b) Triangles de
courant mesurés dans le dispositif expérimental. Les polarisations électriques V0 et V1 correspondent à
une configuration de blocage de Coulomb. La polarisation électrique représentée par une étoile jaune
correspond à une configuration de blocage de Pauli possible. La tension drain-source est Vd = 5 mV.
Tiré de la référence [41].

À basse température (∼ 15 mK), les boites quantiques de trous sont définies par accumulation de
charges sous les deux grilles recouvrantes. Ce dispositif permet de former deux boites quantiques en
série : une boite quantique 1 sous la grille 1, et une boite quantique 2 sous la grille 2. Le nombre de
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FIGURE 3.6 – Courant source-drain Id mesuré en fonction de la fréquence fac de l’onde radio-fréquence
et de l’amplitude du champ magnétique B en blocage de Pauli [au point de polarisation indiqué par une
étoile jaune dans la diagramme tension-courant de la figure 3.5 b)]. Une ligne de courant correspond
à la levée du blocage de Pauli, et donc à la manipulation du spin à la résonance hfac = µBgB. La
modulation radio-fréquence est appliquée en continu sur la grille 2. Adapté de la référence [41].

charges dans ces boites est contrôlé par les tensions des grilles VG1 (tension appliquée sur la grille 1) et
VG2 (tension appliquée sur la grille 2). Ces tensions sont ajustées de sorte que les boites contiennent un
faible nombre de trous.

La figure 3.5 b) représente des triangles de courant obtenus dans ce dispositif expérimental à faible
tension drain-source Vd = 5 mV. Les bras de leviers sont extraits à partir de cette figure où α11 ∼
0.70 eV/V, α22 ∼ 0.26 eV/V, α12 ∼ 0.18 eV/V, et α21 ∼ 0.0022 eV/V ce qui laisse penser que la boite
quantique 1 se situe sous la grille 1 et que l’autre boite quantique est localisée entre les deux grilles (les
deux grilles contrôlent de manière équivalente le potentiel chimique de cette boite).

Nous notons deux polarisations électriques V0 et V1 correspondant à une configuration de blocage
de Coulomb, et un blocage de Pauli (blocage du transfert de charge (1, 1) → (0, 2) dépendant de l’état
de spin (1, 1)) est représenté par une étoile jaune. En pratique, et par la suite, nous appliquons un champ
magnétique pour définir un qubit de spin dans la boite quantique 2 utilisé en tant que qubit pour le
stockage de l’information quantique, et un second dans la boite quantique 1 utilisé pour la lecture de
cette information.

Tout d’abord nous allons montrer la manipulation électrique de spin dans ce dispositif puis nous
allons mettre en évidence le contrôle électrique d’oscillations cohérentes de spin.

3.2.1 Manipulation électrique de spin
Dans cette partie nous montrons la manipulation électrique du spin des trous dans le dispositif précé-

demment décrit. Nous travaillons dans la configuration de blocage de Pauli indiquée par une étoile jaune
dans la figure 3.5 b). Le système relaxe naturellement vers une configuration de spin bloqué (⇓,⇓) : il
n’y a pas de courant au travers du nano-fil. Nous appliquons en continu une modulation sur la grille
2, de fréquence fac. Quand cette fréquence est résonnante avec les états d’une boite, son spin tourne et
le blocage de Pauli est levé. Le système ne reste donc jamais longtemps piégé dans l’état (⇓,⇓), et un
courant fini Id circule dans le nano-fil. La figure 3.6 représente le courant moyen Id mesuré en fonction
de la fréquence de modulation fac et de l’amplitude du champB orienté suivant l’axe z. Nous observons
une ligne de courant de forte intensité correspondant à la résonance avec les états du qubit de la boite
quantique 2. Cette résonance vérifie donc la condition :

hfac = µBgB , (3.2)

où h est la constante de Planck, µB est le magnéton de Bohr, et g est le facteur gyromagnétique du qubit.
Nous observons une seconde ligne de résonance de plus faible intensité qui correspond à la manipulation
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du spin de la boite quantique 1. À partir des pentes de ces lignes de courant, nous extrayons les facteurs
g des boîtes qui sont respectivement g1 = 1.96± 0.02 et g2 = 2.02± 0.02.

Pour conclure, nous avons montré la manipulation électrique d’un qubit spin-orbite de trou. À la
résonance, la modulation radio-fréquence, appliquée en continue, modifie l’état de spin du qubit, et lève
ainsi le blocage de Pauli ce qui permet à un courant de traverser le nano-fil. Un tel couplage du spin
au champ électrique implique l’existence d’un mécanisme de couplage spin-orbite, ici intrinsèque aux
bandes de valence du silicium.

3.2.2 Contrôle électrique : oscillations cohérentes de spin
Précédemment, nous avons montré qu’il est possible de manipuler électriquement un qubit de spin.

Dans cette partie nous mettons en évidence des oscillations cohérentes de l’état du qubit dans la boite
quantique 2.

FIGURE 3.7 – Schéma d’un cycle initialisation/manipulation/lecture avec un retournement complet du
spin. a) Initialisation en blocage de Pauli. b) Contrôle électrique du spin en appliquant une modulation
radio-fréquence résonnante sur la grille 2 pendant un temps τ en blocage de Coulomb. c) Lecture en
blocage de Pauli. En pratique la lecture et l’initialisation se confondent. Ce cycle est répété en conti-
nue, et le courant moyen mesuré. Ce courant est maximal quand le spin est totalement débloqué après
manipulation, et il est minimal si le spin reste bloqué.

La connaissance de l’état de spin après manipulation du qubit dans la boite quantique 2 se fait
par mesure du courant moyen sur plusieurs cycles initialisation/manipulation/lecture. Tous d’abord, les
spins sont initialisés dans la configuration de blocage de Pauli indiquée par une étoile jaune sur la figure
3.5 b). Ensuite nous polarisons la grille 2 en configuration de blocage de Coulomb au point V0. Puis
nous appliquons une modulation de tension résonante avec les états du qubit sur la grille 2 pendant un
temps τ . Le blocage de Coulomb évite un saut du spin de la boite quantique 2 vers la boite quantique 1
pendant la manipulation. Après la manipulation du spin, le système est ramené en blocage de Pauli pour
lire son état. La figure 3.7 représente un tel cycle. Ce cycle initialisation/manipulation/lecture est répété
en continu, et en pratique la lecture et l’initialisation se confondent. Il circule donc un courant moyen
représentatif de l’état du spin de la boite quantique 2 après manipulation.

La figure 3.8 représente ce courant moyen Id mesuré en fonction du temps de manipulation τ à un
champ magnétique B = (0, 0,−0.36) T. La fréquence de ces oscillations du spin dans la boite 2, qui
ont été caractérisées dans un dispositif similaire [40], est proportionnelle à l’amplitude de la modulation
radio-fréquence, ce qui est une signature des oscillations de Rabi.

Pour conclure, nous avons mis en évidence l’excitation électrique d’oscillations cohérentes de spin
dans la boite quantique 2.
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FIGURE 3.8 – Courant moyen détecté Id en fonction du temps τ de manipulation du qubit à un champ
magnétique B = (0, 0,−0.36) T. Le courant est centré en zéro par souci de clarté. Tiré de la référence
[41].

3.3 Anisotropie des facteurs gyromagnétiques
Cette section introduit les concepts théoriques nécessaires à l’interprétation de l’anisotropie des

facteurs gyromagnétiques (facteurs g). Puis nous discutons la mesure des facteurs g expérimentaux que
nous analysons.

3.3.1 Formalisme de la matrice gyromagnétique
Cette partie introduit le formalisme de la matrice gyromagnétique ĝ qui est une généralisation du

concept de ’tenseur g’ [58]. Tout système quantique à deux niveaux, dont la séparation en énergie est
linéaire en champ magnétique, peut être décrit de manière générique par un hamiltonien effectif (à une
translation diagonale près) :

H(V,B) =
1

2
µB

tσ · ĝ(V ) ·B , (3.3)

où σ = t(σ1, σ2, σ3) est le vecteur des matrices de Pauli, ĝ est une matrice 3 × 3 réelle (pas néces-
sairement symétrique) qui peut dépendre de la polarisation V des grilles, et B = t(Bx, By, Bz) est le
champ magnétique. Le chapitre 4 décrit le calcul numérique de cet hamiltonien. Par construction, cette
matrice ĝ dépend du choix des axes magnétiques dans lesquels le champ magnétique est exprimé, et
dépend aussi du choix d’une base {|⇑〉, |⇓〉} 2 pour les états du système à deux niveaux (défini à une
transformation unitaire près) à champ magnétique nul. Cette matrice ĝ n’est pas toujours diagonalisable
mais elle peut se décomposer en valeurs singulières :

ĝ = Û · ĝd · tV̂ , (3.4)

où Û et V̂ sont des matrices orthogonales directes (det Û = det V̂ = 1) et ĝd = diag(g1, g2, g3) est une
matrice diagonale. Par la suite nous allons détailler le sens physique de ces trois matrices en introduisant
l’énergie Zeeman de ce qubit, puis en discutant l’effet de la matrice Û sur les matrices de Pauli.

Énergie Zeeman

L’hamiltonien effectif (3.3) peut s’écrire H =
∑

i,j σigijBj où {gij} sont les éléments de la matrice
ĝ, soit encore :

H =
1

2
µB

( ∑
j g3jBj

∑
j(g1j − ig2j)Bj∑

j(g1j + ig2j)Bj −∑j g3jBj

)
. (3.5)

2. ⇑ et ⇓ sont des indices de pseudo spin, utilisés pour labelliser les états du système à deux niveaux.
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Ses énergies propres E± = ±1
2
µBε vérifient ε2−(

∑
j g3jBj)

2 = (
∑

j g1jBj)
2 +(

∑
j g1jBj)

2. L’énergie
Zeeman, EZ = E+ − E− = 2E+, peut donc finalement s’écrire :

(EZ)2 = µ2
B|ĝB|2 = µ2

B
tB · Ĝ ·B , (3.6)

où Ĝ = tĝ · ĝ est une matrice symétrique réelle. Le tenseur Ĝ peut être diagonalisé à partir de la
décomposition en valeurs singulières (3.4) de la matrice ĝ :

Ĝ = V · ĝ2
d · tV̂ . (3.7)

Par conséquent le carré des éléments de la matrice ĝd, g2
1 , g2

2 et g2
3 sont les valeurs propres de Ĝ et

définissent les facteurs g principaux. De plus, les colonnes de V̂ sont les vecteurs propres de Ĝ et
définissent les axes magnétiques principaux correspondants.

Rotation des matrices de Pauli

La décomposition en valeurs singulières fait apparaître une matrice Û agissant dans l’espace des
spins. En substituant l’expression de la matrice ĝ décomposée en valeurs singulières dans l’hamiltonien
effectif (3.3), celui-ci s’écrit :

H =
1

2
µB

tσ̃ · ĝd · B̃ , (3.8)

où B̃ = tV · B sont les coordonnées du champ magnétique dans les axes magnétiques principaux, et
où σ̃ = tÛ · σ. Nous pouvons montrer (voir annexe B) qu’il existe une transformation unitaire R(Û)
dans l’espace {|⇑〉, |⇓〉} telle que σ̃ = t(R†σ1R,R

†σ2R,R
†σ3R). Autrement dit, la matrice ĝ ≡ ĝd est

diagonale dans la base {|⇑d〉, |⇓d〉} = R{|⇑〉, |⇓〉} pour le système à deux niveaux, et pour un champ
magnétique exprimé dans les axes magnétiques principaux. Réciproquement, une rotation de la base du
système à deux niveaux {|⇑d〉, |⇓d〉} = R{|⇑〉, |⇓〉} entraîne une rotation ĝ′ = A(R)ĝ de la matrice ĝ où
A est une matrice 3 × 3 unitaire de déterminant +1. Il est important de remarquer que la matrice ĝ est
définie par le tenseur Ĝ à une transformation unitaire près [car Ĝ = tĝĝ = t(Âĝ)(Âĝ) pour toute matrice
unitaire Â]. En particulier, une rotation de la base du système à deux niveaux {|⇑d〉, |⇓d〉} = R{|⇑〉, |⇓〉}
laisse donc invariant le tenseur Ĝ, mais pas la matrice ĝ. Le tenseur Ĝ est bien indépendant de la matrice
Û de la décomposition en valeurs singulières, comme le montre l’équation (3.7)

Finalement, la connaissance du tenseur G permet de construire les facteurs (g1, g2, g3) principaux (à
un signe prés) et les axes magnétique principaux mais laisse la matrice Û inconnue.

3.3.2 Caractérisation expérimentale du tenseur gyromagnétique
Cette section présente le protocole de mesure des facteurs gyromagnétiques du qubit pour différentes

orientations de champ magnétique ainsi que la détermination expérimentale du tenseur Ĝ introduit dans
la sous-section précédente.

Mesure des facteurs g

Nous travaillons à une orientation de champ magnétique B et à une polarisation V données. Le
courant source-drain moyen est mesuré en fonction de la fréquence fac de la modulation radio-fréquence
pour un temps τ de manipulation fixé (voir insert de la figure 3.9). Il présente un pic à la résonance
fac = fL = EZ/h permettant d’estimer la fréquence de Larmor fL. Ces mesures sont répétées 400
fois et reportées sur un histogramme des fréquences de Larmor. Cet histogramme est représenté dans la
figure 3.9 à un champ magnétique B = (0, 0.216, 0.216) T, et à deux polarisations électriques V0 et V1

définies dans la figure 3.5 b). La fréquence de Larmor moyenne f̄L est alors calculée ainsi que le facteur
gyromagnétique g(V ) = hf̄L/(µBB). En particulier, g(V0) = 2.013± 0.001 et g(V1) = 2.010± 0.001
à cette même orientation de champ magnétique.
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FIGURE 3.9 – Histogramme des fréquences de Larmor à deux polarisations électriques V0 et V1 [définies
dans la figure 3.5 b)]. Cet histogramme est construit à partir de 400 mesures de la fréquence de Larmor
extraites du pic du courant Id (insert) mesuré en fonction de la fréquence fac de la modulation radio-
fréquence pour un temps de manipulation τ = 20 ns dans un champ magnétique B = (0, 0.216, 0.216) T.
Tiré de la référence [41].

Ce protocole expérimental permet donc de caractériser la dépendance du facteur g(V,B) à l’orien-
tation du champ magnétique et à la polarisation des grilles. En particulier, la figure 3.10 a) montre la
carte du facteur g mesuré à V = V0 en fonction des angles θ et ϕ définissant l’orientation du champ
magnétique. Nous remarquons que le facteur g est très anisotrope et varie entre 1.6 et 2.5.

Mesure du tenseur Ĝ

L’équation (3.6) montre que le facteur g s’écrit :

(g)2 = |ĝb|2 = tb · Ĝ · b , (3.9)

avec b = B/||B||. Ainsi, le tenseur Ĝ permet de caractériser complètement l’anisotropie des facteurs
gyromagnétiques. La mesure de l’énergie Zeeman suivant six orientations du champ magnétique permet
de définir six équations indépendantes pour les six éléments inconnus de Ĝ, et donc de construire Ĝ.
Ensuite, l’équation (3.9) peut être utilisée pour calculer le facteur gyromagnétique pour une orientation
de champ magnétique arbitraire. La figure 3.10 b) représente la carte du facteur g calculée à partir
du tenseur Ĝ ainsi reconstruit en fonction de l’orientation du champ magnétique (nous supposons les
facteurs g positifs).

Comme discuté précédemment, le tenseur Ĝ peut être diagonalisé et a pour valeurs propres le carré
des facteurs gyromagnétiques principaux g2

1 , g2
2 , g2

3 . De plus, en notantB1,B2, etB3 les composantes du
champ magnétique dans le système d’axe {X,Y,Z} qui diagonalise Ĝ, l’énergie Zeeman s’exprime :

EZ = µB

√
g2

1B
2
1 + g2

2B
2
2 + g2

3B
2
3 . (3.10)

Les surfaces de niveaux de l’énergie Zeeman sont donc simplement des ellipsoïdes. La figure 3.11
représente ces surfaces pour des facteurs g principaux g1 = 2.08, g2 = 2.48, et g3 = 1.62 extraits à partir
du tenseur Ĝ mesuré à VG2 = V0. L’axe principal Y = (−0.22, 0.98, 0.01) correspond presque à l’axe y
du nanofil tandis que les deux autres axes principaux X = (0.82, 0.19,−0.53) et Z = (0.52, 0.11, 0.84)
sont légèrement inclinés par rapport aux axes x et z du dispositif.

Les valeurs de facteurs g principaux mesurés suggèrent un fort mélange trous lourds/légers. En
effet, comme montré dans la section 2.2.3, pour un qubit ayant un caractère presque pur trous lourds, les
facteurs principaux sont g1 ∼ g2 ∼ 0, et g3 ∼ 6|κ|. Dans le cas d’un qubit ayant un caractère presque
pur trous légers, l’anisotropie est moins prononcée et g1 ∼ g2 ∼ 4|κ|, et g3 ∼ 2|κ|. La nature de ce
mélange sera discutée plus tard dans les chapitres 4 et 5.

48



3.4. Anisotropie de la fréquence de Rabi

FIGURE 3.10 – a) Anisotropie du facteur g directement mesuré en fonction des angles θ et ϕ du champ
magnétique. b) Anisotropie du facteur g calculé à partir du tenseur Ĝ reconstruit à partir de a). Les
angles θ et ϕ varient par pas de 10◦ de 0◦ à 180◦. Le reste de la carte est construit par symétrie g(θ, ϕ) =
g(π − θ, π + ϕ) (B→ −B). Adapté de la référence [41].

FIGURE 3.11 – Axes magnétiques principaux {X,Y,Z} représentés dans les axes du dispositif
{x,y, z}, et une surface de niveau de l’énergie Zeeman EZ = g∗µBB à V = V0. Tiré de la référence
[41].

3.4 Anisotropie de la fréquence de Rabi
Dans cette partie, nous démontrons une expression de la fréquence de Rabi dans le cadre du forma-

lisme de la matrice ĝ. Cette expression permet de distinguer deux mécanismes pour les oscillations de
Rabi que nous caractériserons ensuite expérimentalement.

3.4.1 Mécanismes des oscillations de Rabi
Cette partie introduit une expression de la fréquence de Rabi à partir de l’hamiltonien effectif (3.3)

faisant intervenir la matrice gyromagnétique ĝ et sa variation ĝ′ par rapport à la tension modulée. Nous
allons distinguer deux contributions aux oscillations de Rabi.

Fréquence de Rabi

Comme discuté précédemment, la matrice ĝ(V ) peut dépendre de la polarisation électrique V des
grilles. Nous pouvons développer ĝ(V ) à l’ordre un en δV = V − V0 autour du point de polarisation de
référence V0 :

ĝ(V ) = ĝ(V0) + δV ĝ′(V0) , (3.11)
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où ĝ′ = ∂ĝ/∂V est la dérivée de la matrice ĝ par rapport à la tension qui est modulée. Nous introduisons
le vecteur de Larmor ~Ω = 1

2
µB ĝ(V0)B, et sa dérivée ~Ω′ = 1

2
µB ĝ

′(V0)B, et ainsi l’hamiltonien effectif
(3.3) peut s’écrire :

H(V0 + δV,B) = ~|Ω|σω + ~|Ω′|δV σω′ , (3.12)

avec ω = Ω/|Ω| et ω′ = Ω′/|Ω′|. En séparant Ω′ = Ω′‖ + Ω′⊥ en ses composantes parallèles et
perpendiculaires à Ω, nous obtenons :

H(V0 + δV,B) ≈ ~(|Ω|+ |Ω′‖δV |)σω + ~|Ω′⊥|δV σω′
⊥
. (3.13)

Ω′‖ caractérise la modulation de la fréquence de Larmor par la tension de grille, tandis que Ω′⊥ caractérise
la modulation de l’axe de précession. La fréquence de Rabi est définie par les éléments de matrice
non-diagonaux de la modulation radio-fréquence dans la base des états propres de l’hamiltonien sans
excitation. Pour un signal radio-fréquence δV (t) = Vac sin(|Ω|t+ ϕ) resonant avec les états propres de
H(V0,B), la fréquence de Rabi fR est le module de [58, 59] :

fR =
1

2π
Ω′⊥Vac

=
1

2π
(ω ×Ω′)Vac

=
µBBVac

2hg
[ĝ(V0)b]× [ĝ′(V0)b]

, (3.14)

avec le facteur g = |ĝ ·b|. Il est donc en principe possible de caractériser l’anisotropie de la fréquence de
Rabi avec les mesures ou les calculs des matrices ĝ et ĝ′. Le formalisme de la matrice ĝ permet d’analyser
et d’interpréter les oscillations de Rabi dans un cadre de réponse linéaire en champ magnétique, et en
amplitude de la modulation radio-fréquence.

Kato et al [58] a introduit initialement ce formalisme pour décrire les variations des facteurs g
principaux (soit la matrice diagonale gd) par une modulation radio-fréquence. Comme discuté par la
suite, le formalisme de la matrice ĝ permet de capturer d’autres mécanismes participant aux oscillations
de Rabi.

Modulation du tenseur Ĝ et résonance de spin iso-Zeeman

D’après la section 3.3.1, il est possible d’établir les facteurs g principaux à partir du tenseur Ĝ, et
ainsi d’écrire la matrice ĝ = ĝd dans une base qui reste cependant inconnue. Toutefois, il est impossible
de construire la matrice ĝ′ dans la même base à partir de la seule dépendance électrique du tenseur Ĝ.
En effet :

Ĝ′ = tĝ · ĝ′ + tĝ′ · ĝ , (3.15)

où G′ est la dérivée du tenseur Ĝ par rapport à la tension modulée, si bien que Ĝ′ = 0 implique tĝ · ĝ′
antisymétrique mais n’impose en aucun cas ĝ′ = 0. Cela signifie que les variations de la matrice ĝ ne
sont pas totalement capturées par le tenseur Ĝ. Par la suite nous distinguons donc deux mécanismes :
un premier dans lequel la mesure du tenseur Ĝ et de ses variations électriques caractérisent totalement
les matrices ĝ et ĝ′ ; et un second où le tenseur Ĝ ne montre aucune dépendance électrique mais où la
matrice ĝ′ est non nulle.

Pour distinguer ces mécanismes, nous écrivons ĝ′ et Ĝ′ dans le système d’axe magnétiques prin-
cipaux et la base {|⇑d〉, |⇓d〉} définies par la décomposition en valeurs singulières à V = V0. Alors
par construction ĝ = ĝd, Û = V̂ = Î , tV̂ ′ = −V̂ ′ (respectivement tÛ ′ = −Û ′) puisque tV̂ V̂ = Î
(respectivement tÛ Û = Î) , et aussi [éqs. (3.4) et (3.15)] :

Ĝ′ = V̂ ′ĝ2
d − ĝ2

dV̂
′ + 2ĝdĝ

′
d , (3.16)
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et :
ĝ′ = Û ′ĝd − ĝdV̂ ′ + ĝ′d

=
1

2
ĝ−1
d Ĝ′ − 1

2
ĝ−1
d

(
ĝ2
dV̂
′ + V̂ ′ĝ2

d

)
+ Û ′ĝd .

(3.17)

Il est donc clair que les modulations électriques de Û contribuent à ĝ′, mais pas à Ĝ′. De même, les
effets de la modulation électrique de V̂ ne sont pas totalement capturés par Ĝ′.

En particulier, quand le système est suffisamment symétrique (V̂ ′ = Û ′ = 0) alors seulement les
facteurs g principaux sont modulés par le champ électrique, et ĝ′ = ĝ′d = 1

2
ĝ−1
d Ĝ′ peut être complètement

reconstruite à partir des mesures du tenseur Zeeman (Ĝ), et de sa dépendance aux tensions de grilles
(Ĝ′). Ce cas de figure est le scénario de la g-TMR (g-Tensor Modulation Resonance) conventionnelle
de la référence [58]. La g-TMR se manifeste principalement lorsque le potentiel de confinement est
fortement anharmonique et que la modulation radio-fréquence change de manière significative sa forme
sans briser ses symétries [voir figure 3.12 a)].

FIGURE 3.12 – Principes des deux paradigmes des mécanismes des oscillations de Rabi induites par un
champ électrique oscillant Eac. Ces oscillations de Rabi sont excitées via : a) un changement de forme
de la fonction lors de l’excitation électrique variant les facteurs gd principaux (g-TMR), b) un dépla-
cement en bloc de la fonction d’onde dans un confinement harmonique laissant invariant les facteurs
gyromagnétiques principaux (IZR)

En générale, ĝ′ ne peut pas être reconstruite à partir de Ĝ et Ĝ′ dès que les axes principaux ma-
gnétiques (V̂ ), et la base de pseudo-spin (Û ) dépendent des tensions de grilles. Par conséquent, nous
séparons :

ĝ′ = ĝ′TMR + ĝ′IZR (3.18)

en deux contributions. L’une :
ĝ′TMR = ĝ−1

d Ĝ′/2 (3.19)

est la matrice g-TMR généralisée qui peut être extraite des variations du tenseur Zeeman, et l’autre :

ĝ′IZR = −ĝ−1
d (ĝ2

dV̂
′ + V̂ ′ĝ2

d)/2 + Û ′ĝd (3.20)

est la matrice IZR (Iso-Zeeman Resonance) qui laisse inchangée l’énergie Zeeman lorsque le champ
électrique/les tensions de grilles varient. De façon correspondante, nous pouvons introduire deux méca-
nismes pour les oscillations de Rabi : la g-TMR, et l’IZR. Ainsi la fréquence de Rabi fR = |fR|, peut
s’écrire :

fR = fTMR + fIZR , (3.21)

où fTMR (respectivement fIZR) est obtenue en remplaçant ĝ′ par ĝ′TMR (respectivement ĝ′ par ĝ′IZR) dans
l’expression de fR (3.14).

Un mécanisme de pur IZR se manifeste lors de la manipulation électrique d’un spin par un champ
électrique radio-fréquence uniforme dans un potentiel de confinement harmonique [voir figure 3.12 b)].
En effet, sous l’effet du champ électrique, la forme du potentiel de confinement reste inchangée et
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la fonction d’onde du qubit est déplacée comme un tout, et les facteurs g sont donc constants. Cette
configuration n’entraine aucune modulation du tenseur Ĝ (Ĝ′ = 0) mais induit bien des oscillations
de Rabi (ĝ′ 6= 0) [31]. L’annexe C discute de ce cas en détails. En général, g-TMR et IZR coexistent
comme nous allons le voir par la suite.

3.4.2 Caractérisation expérimentale de la fréquence de Rabi
La fréquence de Rabi a été mesurée pour différentes orientations du champ magnétique. Elle est

représentée sur la figure 3.13 a). Cette carte de Rabi est établie en variant l’amplitude du champ magné-
tique pour travailler à énergie Zeeman constante donc à fréquence de résonance fixe (9 GHz) de sorte
que l’atténuation de la circuiterie autour du qubit ne varie pas d’une orientation à l’autre. La fréquence
de Rabi est très anisotrope, et s’étale de 3 à 40 MHz.

FIGURE 3.13 – a) Anisotropie de la fréquence de Rabi mesurée en fonction des angles θ et ϕ définissant
l’orientation du champ magnétique à énergie Zeeman constante (9 GHz). b) Anisotropie de la fréquence
de Rabi reproduite en ajustant les paramètres de l’équation (3.14). Adapté de la référence [41].

FIGURE 3.14 – a) Contribution iso-Zeeman EDSR à la fréquence de Rabi extraite des mesures expéri-
mentales. b) Contribution g-TMR à la fréquence de Rabi extraite des mesures expérimentales. Adapté
de la référence [41].

Nous rappelons que la matrice ĝd = diag(2.08, 2.48, 1.62) a été caractérisée dans la sous-section
3.3.2. Le tenseur Ĝ′ est estimé à partir de deux tenseurs Ĝ mesurés à des points de polarisations proches
(δV = V1 − V0 = 0.25 mV). Dans les axes magnétiques principaux {X,Y,Z} à V = V0 :

Ĝ′(V0) =

−17.9 21.1 7.2
21.2 17.1 −19.8
7.2 −19.8 9.1

V −1 . (3.22)

Ĝ′ n’est pas diagonal ce qui suggère que les axes magnétiques principaux varient avec les tensions de
grilles (V̂ ′ 6= 0). Ainsi, à partir de l’équation (3.19), dans la base {|⇑d〉, |⇓d〉}, la contribution g-TMR
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est :

ĝ′TMR(V0) =

−4.3 5.1 1.7
4.3 3.4 −4.0
2.2 −6.1 2.8

V −1 . (3.23)

Il se trouve que la matrice ĝ′IZR [éq. (3.20)] peut se factoriser sous la forme ĝ′IZR = ĝ−1
d Â où Â est

une matrice anti-symétrique ( tA = −A), ce qui laisse seulement trois degrés de liberté (sur 9) dans ĝ′,
qui ne peuvent pas être déduits des mesures du tenseur Zeeman Ĝ (et Ĝ′). Ces trois inconnues peuvent
être ajustées sur les mesures de la fréquence de Rabi pour quelques orientations de champ magnétique,
et ainsi nous trouvons :

ĝ′IZR(V0) =

 0 −7.5 −4.9
6.2 0 −24.0
6.4 36.6 0

V −1 (3.24)

Finalement, dans les axes magnétiques principaux et dans la base {|⇑d〉, |⇓d〉} dans laquelle la ma-
trice ĝ(V0) est diagonale, la matrice ĝ′ est :

ĝ′(V0) =

−4.3 −2.4 −3.2
10.5 3.4 −28.0
8.6 30.5 2.8

V −1 . (3.25)

La fréquence de Rabi calculée à partir des matrices ĝd et ĝ′ reconstruites expérimentalement est
représentée dans la figure 3.13 b). L’amplitude de modulation estimée est Vac = 0.41 mV. La figure 3.14
représente les contributions IZR (|fIZR|) et g-TMR (|fTMR|) à la fréquence de Rabi expérimentale. Les
deux mécanismes coexistent mais l’IZR est plus importante ici.

La forte composante IZR suggère que la fonction d’onde du qubit est plutôt localisée entre les deux
grilles que sous la grille 2. Cela permettrait en effet de la déplacer comme un tout le long de l’axe du
nano-fil sous l’effet du champ électrique radio-fréquence sans trop changer les facteurs g principaux et
la matrice Ĝ′. Les bras de leviers extraits de la figure 3.5 b) montrent que la boite 2 est contrôlée presque
identiquement par les grilles 1 et 2 ce qui confirme cette hypothèse. Nous y reviendrons au chapitre 4.

3.5 Conclusions
Nous avons mis en évidence la résonance de spin et le contrôle d’oscillations cohérentes entre les

états de spin d’un qubit de trou défini électrostatiquement par des grilles dans un nanofil de silicium.
Les mesures des facteurs gyromagnétiques de ce qubit montrent une forte anisotropie avec l’orienta-

tion du champ magnétique suggérant un fort mélange trous lourds/légers. Cette anisotropie est capturée
par un tenseur Ĝ extrait à partir d’un formalisme de matrice ĝ permettant de décrire le système à deux
niveaux du qubit de façon linéaire avec le champ magnétique. À partir de la mesure de ce tenseur, ce
formalisme a permis d’extraire les facteurs g principaux ainsi que les axes magnétiques principaux qui
diagonalisent ce tenseur, ce qui permet d’écrire de façon diagonale la matrice ĝ = ĝd dans une base de
spin restant inconnue expérimentalement.

Ensuite, nous avons démontré que la fréquence de Rabi est caractérisée par la matrice ĝ et sa varia-
tion ĝ′ par rapport à la tension de grille où la modulation radio-fréquence est appliquée. Cette expression
permet de décrire les oscillations des états du qubit de manière compact. Cependant, nous avons vu que
la mesure de la matrice ĝ′ n’est pas ’direct’. Une partie de cette matrice est caractérisée par les variations
du tenseur Ĝ ce qui correspond au mécanisme de résonance par modulation du tenseur Ĝ (g-TMR) mis
en évidence par Kato et al [58]. La dépendance électrique du tenseur Ĝ (Ĝ′) peut être extraire à partir
de la mesure du tenseur Ĝ à deux polarisations électriques proches. La seconde partie de cette matrice
ĝ′ ne correspond à aucune variation du tenseur Ĝ ; elle est donc appelée résonance iso-Zeeman (IZR).
Cette matrice IZR a été ajustée pour correspondre à l’anisotropie de la fréquence de Rabi observée. Fi-
nalement la formalisme de la matrice ĝ a mis en évidence que le mécanisme de l’IZR est prépondérant
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dans ce dispositif expérimental. Cela suggère que la fonction d’onde du qubit sondé est localisée entre
les deux grilles plutôt que sous la grille 2 comme attendu.

Pour finir, le formalisme de la matrice ĝ est un outil d’interprétation des résultats expérimentaux
mais, comme nous allons le voir dans le chapitre 4, permet aussi un calcul numérique rapide et efficace
pour déterminer l’anisotropie des propriétés d’un qubit de spin dans les hypothèses de ce formalisme.
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Chapitre 4

Formalismes de calcul de la fréquence de Rabi
et applications

Dans ce chapitre, nous introduisons les éléments clefs de la manipulation électrique d’un qubit spin-
orbite. Ensuite nous présentons trois formalismes qui permettent de caractériser la vitesse des oscilla-
tions de Rabi d’un tel qubit : le premier est la définition même de la fréquence de Rabi, le second est
le formalisme de la matrice gyromagnétique introduite au chapitre 3, et le dernier, issu d’un développe-
ment en série de perturbations en champ magnétique, explicite les couplages électromagnétiques entre
les états de la boite quantique. Puis nous discutons l’impact des symétries d’un tel qubit sur l’anisotropie
de ses facteurs gyromagnétiques et de la fréquence de Rabi par rapport à l’orientation du champ magné-
tique. Ensuite nous appliquons les éléments théoriques précédemment décrits à un qubit spin-orbite de
trou dans un nanofil de silicium. Nous présentons le dispositif et nous montrons comment l’étude des
symétries du système permet d’expliquer l’anisotropie de la fréquence de Rabi calculée dans ce dispo-
sitif. Finalement nous comparons les mesures expérimentales du chapitre 3 avec les simulations faites
dans ce chapitre, et nous discutons la nature et la localisation du qubit dans le dispositif expérimental.

4.1 Formalismes de calcul de la fréquence de Rabi
Dans cette section, nous mettons en évidence les ingrédients nécessaires pour manipuler et contrôler

le spin d’un qubit semiconducteur par un champ électrique radio-fréquence. La manipulation se mani-
feste par des oscillations de l’état du qubit entre deux états propres, dont la vitesse est caractérisée par la
fréquence de Rabi. Ici, nous étudions un qubit spin-orbite dont le couplage spin-orbite est intrinsèque,
mais le raisonnement peut se généraliser à un couplage spin-orbite artificiel créé par un micro-aimant
[27] par exemple.

4.1.1 Présentation générale
Nous considérons une boite quantique dont le potentiel de confinement est modulé par une grille

métallique (en réalité, le potentiel du qubit peut être modulé par plusieurs grilles et le raisonnement à
une grille de cette section peut facilement se généraliser à plusieurs grilles). De manière générale, nous
notons V la tension appliquée à la grille. Par la suite nous appelons V0 la tension électrique statique de
cette grille, et δV une petite modulation de tension de cette même grille. La figure 4.1 schématise le
système étudié.

Polarisation électrique statique ...

Nous polarisons tout d’abord la tension de la grille à V0 sans champ magnétique extérieur (B = 0).
Nous notons Ĥ0(V0) l’hamiltonien de système. Il est important de noter que cet hamiltonien inclut tous
les effets de couplage spin-orbite (intrinsèque et extrinsèque) du système. De plus, nous notons |n, σ〉
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FIGURE 4.1 – Modèle d’un qubit de spin. Une modulation radio-fréquence δV (t), résonnante avec les
états du qubit, appliquée à la grille entraîne des oscillations entre les états |0〉 et |1〉 d’une boîte quantique
soumise à un champ magnétique statique B. V0 est la tension électrique statique de la grille. δE(t) est
la modulation du champ électrique induite par δV .

(respectivement En,σ) les états propres (respectivement les énergies propres) de Ĥ0, avec n ≥ 0 et
σ ∈ {⇑,⇓} un index de “pseudo-spin”. En effet, le spin n’est pas un bon nombre quantique en présence
de couplage spin-orbite, mais les états propres sont dégénérés par paires (dégénérescence de Kramers) :
En,⇑ = En,⇓ = En et |n,⇑〉 = T |n,⇓〉 (à une phase arbitraire prés) où T est l’opérateur de renversement
du temps.

... champ magnétique ...

Nous plaçons maintenant le système précédemment décrit dans un champ magnétique statique et
homogène B. La présence de ce champ magnétique lève la dégénérescence des paires de Kramers.
Nous pouvons ainsi définir de manière univoque les deux états du qubit |0〉 et |1〉 provenant, sans perte
de généralité, de la paire de Kramers de plus basse énergie (mais le choix peut porter sur n’importe quelle
autre paire). Ces deux états sont séparés par l’énergie Zeeman EZ = gµBB, où µB est le magnéton de
Bohr, g est le facteur gyromagnétique (qui peut dépendre de l’orientation du champ magnétique B, et
de la polarisation des grilles), et B = ||B||. Pour des raisons pratiques, nous développons l’hamiltonien
du système Ĥ(V0,B) en puissances de B :

Ĥ(V0,B) = Ĥ0(V0)−BxM̂1,x −ByM̂1,y −BzM̂1,z +O(B2)

= Ĥ0(V0)−B · M̂1 +O(B2) ,
(4.1)

où Ĥ0(V0) est l’hamiltonien sans champ magnétique, et M̂1,α = −∂Ĥ/∂Bα|B=0. Dans la suite, nous
donnerons la relation entre le facteur g et l’opérateur M̂1. De plus, nous supposons que l’opérateur
M̂1 = (M̂1,x, M̂1,y, M̂1,z) est indépendant de la polarisation des grilles V0. Typiquement l’opérateur M1

contient l’hamiltonien Zeeman, et la contribution linéaire en champ magnétique provenant de l’effet du
potentiel vecteur sur les fonctions enveloppes. Le terme O(B2) provient de la contribution quadratique
en champ magnétique du potentiel vecteur.

... et champ électrique radio-fréquence

Enfin nous appliquons une petite modulation δV sur la grille autour du point de référence V0, et nous
développons Ĥ(V,B) en puissances de δV = V − V0 :

Ĥ(V,B) = Ĥ(V0,B)− eδV D̂1 +O(δV 2) (4.2)

où Ĥ(V0,B) est l’hamiltonien sous champ magnétique sans modulation électrique [défini par l’équa-
tion (4.1)], et D̂1(r) = ∂V̂elec(V, r)/∂V |V=V0 est l’opérateur de la dérivée du potentiel électrique total
V̂elec(V, r) dans le dispositif par rapport à la tension de grille V qui est modulée.

Cette modulation peut être un signal radio-fréquence de la forme δV (t) = Vac sin(2πfact+ ϕ) avec
une amplitude Vac > 0, une fréquence fac, et une phase arbitraire ϕ. À la résonance (hfac = EZ),
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cette modulation radio-fréquence entraîne des oscillations cohérentes entre les états |0〉 et |1〉, avec une
fréquence de Rabi :

fR =
e

h
Vac

∣∣∣〈1|D̂1|0〉
∣∣∣ . (4.3)

Nous notons que cette équation pour la fréquence de Rabi fR est d’ordre un en Vac, mais contient tous
les ordres en champ magnétique, à travers la dépendance de |0〉 et de |1〉 en B. Ainsi, nous appelons
cette expression "calcul direct" de la fréquence de Rabi.

4.1.2 Traitement du champ magnétique en perturbation
À partir de maintenant, à champ magnétique B nul, nous supposons que les états {|n, σ〉}, et les

énergies En,σ ≡ En,⇑ = En,⇓ sont connus à la polarisation électrique V = V0. Nous rappelons que les
états |n,⇑〉 et |n,⇓〉 étant dégénérés, ils sont définis à une transformation unitaire près. Nous allons nous
intéresser à la paire de Kramers fondamentale {|0,⇑〉, |0,⇓〉}, mais le raisonnement peut être généralisé
à n’importe quelles paires de Kramers.

Fréquence de Rabi à champ magnétique nul

Comme nous l’avons mentionné plus haut, sans champ magnétique extérieur, les états du qubit ne
sont pas bien définis (ils sont dégénérés) et il n’est pas possible d’induire des oscillations cohérentes
entre ces états. En effet, quelque soit le choix des états dégénérés {|0,⇑〉, |0,⇓〉}, les états du qubit
s’écrivent à une phase près 〈r|0,⇓〉 = u(r)|↑〉+ v(r)|↓〉 et 〈r|0,⇑〉 = 〈r|T |0,⇓〉 = v∗(r)|↑〉 − u∗(r)|↓〉
où |↑〉 et |↓〉 sont les composantes physique du spin. Et donc :

〈0,⇑|D̂1|0,⇓〉 =

∫
d3rD1(r) [v(r)u(r)− u(r)v(r)] = 0 , (4.4)

car D̂1 est un opérateur diagonal dans l’espace des spins physiques. La fréquence de Rabi (4.3) est donc
nulle.

L’application d’un champ magnétique brise la symétrie de renversement du temps liant les états |0〉
et |1〉, et permet en principe d’entretenir des oscillations ente ces états (et une fréquence de Rabi non
nulle). Nous allons traiter le champ magnétique en perturbation à l’ordre zéro puis à l’ordre un.

Champ magnétique : ordre zéro

Les états d’ordre zéro |00〉 et |10〉 sont les états propres de la matrice H1(B) :

H1(B) = −
(
〈0,⇑|B · M̂1|0,⇑〉 〈0,⇑|B · M̂1|0,⇓〉
〈0,⇓|B · M̂1|0,⇑〉 〈0,⇓|B · M̂1|0,⇓〉

)
, (4.5)

où M1 est l’opérateur de la réponse linéaire au champ magnétique défini par l’équation (4.1). Nous
notons que 〈0,⇓|B ·M1|0,⇓〉 = −〈0,⇑|B ·M1|0,⇑〉 puisque le renversement du temps transforme
B en −B. À cet ordre en perturbation, la fréquence de Rabi fR reste toutefois nulle. En effet, les états
propres d’ordre zéro en perturbation qui diagonalisentH1(B), |00〉 = α|0,⇑〉+β|0,⇓〉 et |10〉 = β∗|0,⇑
〉 − α∗|0,⇓〉 (avec α, β des nombres complexes) ont la même forme que {|0,⇑〉, |0,⇓〉} :

|00〉 = ũ(r)|↑〉+ ṽ(r)|↓〉 (4.6a)
|10〉 = −ṽ∗(r)|↑〉+ ũ∗(r)|↓〉 , (4.6b)

où ũ(r) = αu(r) + βv∗(r), et ṽ(r) = αv(r)− βu∗(r). Par conséquent 〈10|D̂1|00〉 est nul. À cet ordre,
la symétrie de renversement du temps n’est pas brisée : elle le sera à l’ordre un.
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Champ magnétique : ordre un

Les états à l’ordre un {|01〉, |11〉} sont :

|01〉 = |00〉 −
∑
n>0,σ

〈n, σ|B · M̂1|00〉
E0 − En

|n, σ〉 (4.7a)

|11〉 = |10〉 −
∑
n>0,σ

〈n, σ|B · M̂1|10〉
E0 − En

|n, σ〉 , (4.7b)

et donc, la fréquence de Rabi devient à l’ordre un en B :

fR =
e

h
Vac

∣∣∣〈11|D̂1|01〉
∣∣∣

=
e

h
BVac

∣∣∣∣∣∑
n>0,σ

〈10|D̂1|n, σ〉〈n, σ|b · M̂1|00〉
E0 − En

+
∑
n>0,σ

〈10|b · M̂1|n, σ〉〈n, σ|D̂1|00〉
E0 − En

∣∣∣∣∣ , (4.8)

où b = B/B est le vecteur unitaire de même direction et même sens que le champ magnétique. De
manière générale, la fréquence de Rabi définie par l’équation (4.8) est non nulle.

Les équations ci-dessus fournissent une décomposition et une interprétation physique à la fréquence
de Rabi : les couplages induits par les champs électrique et magnétique entre les différents états du qubit
sont explicites. Nous interpréterons les résultats de la section 4.3 à l’aide de cette décomposition.

4.1.3 Formalisme de la matrice gyromagnétique
Dans cette partie, nous détaillons le formalisme de la matrice gyromagnétique ĝ en établissant dans

un premier temps la relation entre la matrice ĝ et l’opérateur M̂1. Puis nous rappelons l’expression de la
fréquence de Rabi dans le cadre de ce formalisme. Celle-ci dépend de la matrice ĝ et de sa dérivée par
rapport à la tension modulée ĝ′.

Hamiltonien effectif

Dans cette partie nous démontrons que l’hamiltonien effectif (3.3) faisant intervenir une matrice ĝ
est un hamiltonien exact d’ordre un en champ magnétique. Reprenons l’équation (4.1) en prenant en
compte seulement le terme linéaire en champ magnétique qui est le seul pertinent pour notre étude.
Nous pouvons écrire :

Ĥ(V0,B) = Ĥ0(V0)−B · M̂1. (4.9)

Nous supposons que les états propres {|n, σ〉} de Ĥ0(V0) ayant pour énergies {En,σ} sont connues. Par
conséquent, dans cette base, H0 est diagonale avec les éléments En,σ sur celle-ci. Nous traitons le terme
B · M̂1 lié au champ magnétique en perturbation à l’ordre zéro pour les états et à l’ordre un pour les
énergies de chaque paire de Kramers. Ainsi, l’hamiltonien d’ordre un en champ magnétique H(n) de la
paire de Kramers n, est l’hamiltonien deux par deux [de manière similaire à l’équation (4.5)] vérifiant :

H(n) = En · 12 −
(
〈n,⇑|B · M̂1|n,⇑〉 〈n,⇑|B · M̂1|n,⇓〉
〈n,⇓|B · M̂1|n,⇑〉 〈n,⇓|B · M̂1|n,⇓〉

)
, (4.10)

où 12 est la matrice identité de taille 2.
Pour alléger les notations, nous détaillons l’expression de cet hamiltonien pour une paire de Kramers

donnée n, et nous notons cette paire |⇑〉 ≡ |n,⇑〉, |⇓〉 ≡ |n,⇓〉, et H ≡ H(n). Nous choisissons comme
référence d’énergie En = 0, de sorte que l’hamiltonien peut s’écrire :

H = −Re[〈n,⇓|B · M̂1|n,⇑〉] · σ1 − Im[〈n,⇓|B · M̂1|n,⇑〉] · σ2 − 〈n,⇑|B · M̂1|n,⇑〉 · σ3 , (4.11)
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car 〈n,⇓|B ·M1|n,⇓〉 = −〈n,⇑|B ·M1|0,⇑〉 puisque le renversement du temps transforme B en −B,
ce qui se factorise en :

H =
(
σ1, σ2, σ3

)
·

−Re[〈n,⇓|B · M̂1|n,⇑〉]
−Im[〈n,⇓|B · M̂1|n,⇑〉]
−〈n,⇑|B · M̂1|n,⇑〉

 . (4.12)

Finalement, l’hamiltonien effectif de cette paire de Kramers peut s’écrire :

H(V0,B) =
1

2
µB

tσ · ĝ(V0) ·B (4.13)

avec :

ĝ(V0) = − 2

µB
×

Re〈⇓|M1,x|⇑〉 Re〈⇓|M1,y|⇑〉 Re〈⇓|M1,z|⇑〉
Im〈⇓|M1,x|⇑〉 Im〈⇓|M1,y|⇑〉 Im〈⇓|M1,z|⇑〉
〈⇑|M1,x|⇑〉 〈⇑|M1,y|⇑〉 〈⇑|M1,z|⇑〉

 , (4.14)

s’identifiant à une matrice gyromagnétique, et σ = t(σ1, σ2, σ3) les matrices de Pauli. Il est important
de rappeler que la matrice ĝ, qui est associée à une paire de Kramers particulière, est une matrice réelle
qui dépend de la polarisation des grilles V0 par l’intermédiaire des états de cette paire. De plus, cette
matrice ĝ dépend non seulement du choix des axes x, y et z du champ magnétique, mais aussi du choix
des états de la paire de Kramers considérée (définis à une transformation unitaire près) : l’écriture de
la matrice ĝ n’est donc pas unique. Cet hamiltonien effectif est valide tant que le couplage magnétique
entre les différentes paires de Kramers reste petit devant leur séparation en énergie.

De plus, à partir de l’équation (4.13) (voir la section 3.3.1) la séparation Zeeman des énergies propres
est :

EZ = µBgB , (4.15)

avec g = |ĝ(V0) · b| et b = B/B. Cette dernière équation et l’équation (4.14) montrent le lien entre le
facteur g, la matrice ĝ, et l’opérateur M1.

Fréquence de Rabi

Cette section est un rappel de l’expression de la fréquence de Rabi dans le cadre du formalisme de
la matrice ĝ (voir section 3.4.1 pour les détails). Pour un signal électrique radio-fréquence δV (t) =
Vac sin(2πfLt) resonant (hfL = EZ) avec l’énergie Zeeman du qubit, la fréquence de Rabi fR s’écrit
[58, 59] :

fR =
µBBVac

2hg

∣∣∣[ĝ(V0)b]× [ĝ′(V0)b]
∣∣∣ , (4.16)

où ĝ′ = ∂ĝ/∂V est la dérivée de la matrice ĝ par rapport à la tension qui est modulée. Puisque les
équations (4.8) et (4.16) sont toutes les deux valides à l’ordre un en B et Vac, elles doivent être équiva-
lentes. Cela est montré en annexe D. Les matrices ĝ(V0) et ĝ′(V0) fournissent une description complète
(pour toutes les orientations de champ magnétique) des fréquences de Larmor et de Rabi du qubit. En
effet, elles permettent de reconstruire les cartes de fréquence de Larmor et de Rabi à partir de seules
les fonctions d’ondes calculées à B = 0 [éqs. (4.15) et (4.16)] alors que l’évaluation directe [éq. (4.3)]
nécessite de recalculer les fonctions pour chaque orientation de B. Numériquement, il est nécessaire de
prendre des précautions pour le calcul de ĝ′ (ces précautions sont détaillées dans l’annexe E).

4.2 Effets des symétries sur la matrice gyromagnétique et la fré-
quence de Rabi

Dans cette section, nous discutons l’impact des symétries spatiales d’un qubit spin-orbite sur la
forme que peuvent prendre les matrices ĝ et ĝ′, et sur l’anisotropie de la fréquence de Rabi. De telles
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considérations de symétries peuvent aider l’analyse de données expérimentales et numériques. Nous
détaillons en particulier les effets de plans miroirs car ils expliquent les tendances mesurées dans les
expériences présentées dans le chapitre 3 et dans les expériences numériques de la section 4.3.

Nous considérons un repère orthonormal quelconque {x,y, z}. Nous introduisons une liste hiérar-
chisée des symétries spatiales du qubit à champ magnétique nul :

1. Pas de symétrie particulière

2. Un plan miroir, σyz perpendiculaire à l’axe x (groupe double Cs)

3. Deux plans miroirs, σyz et σzx. Un tel système doit aussi présenter un axe de rotation d’ordre
deux autour de z (groupe double C2v)

4. Trois plans miroirs, σyz, σzx et σxy. Un tel système doit aussi présenter des axes de rotation
d’ordre deux autour de x, y et z et un centre d’inversion (groupe double D2h)

Nous notons que le système peut éventuellement basculer d’un groupe à un autre en fonction du
champ électrique appliqué par des grilles extérieurs (voir figure 4.2).

FIGURE 4.2 – Illustration des symétries considérées dans ce travail sur le modèle d’une particule dans
une boîte. Les surfaces de niveaux du module carré de la fonction d’onde du qubit sont tracées en bleu.
(a) La boîte (et le module carré de la fonction d’onde) comportent trois plans miroirs, σyz, σzx et σxy
(en rouge). (b) L’application d’un champ électrique statique selon l’axe y déforme la fonction d’onde et
brise le plan σzx.

4.2.1 Forme de la matrice gyromagnétique
Chaque plan miroir impose des contraintes spécifiques à la forme de la matrice ĝ. Les arguments,

issus de la théorie des groupes [60] sont détaillés dans l’annexe F. Nous exposons les principales conclu-
sions ici. À partir de maintenant, nous écrivons la matrice ĝ et sa dérivée dans le système d’axes magné-
tiques {x,y, z}.

Forme de la matrice ĝ

Dans tous les groupes de symétrie précédemment mentionnés, il existe une base {|⇑〉, |⇓〉} pour
la paire de Kramers dans laquelle les plans miroirs imposent à certains éléments de ĝ d’être nuls. Dans
cette base, la matrice ĝ prend la forme donnée dans la table 4.1 pour les différents plans miroirs, et prend
la forme donnée dans la table 4.2 pour les différents groupes de symétrie. Les formes de la matrice ĝ
obtenues dans la table 4.2 sont les intersections des éléments non nuls de la table 4.1 pour chaque plan
miroir appartenant aux groupes de symétrie.

Nous avons vu dans le chapitre 3, que les axes magnétiques principaux diagonalisent le tenseur
Ĝ = tĝ · ĝ. Pour chaque plan miroir, le tenseur Ĝ a la même forme que la matrice ĝ. Par conséquent, il
est certain qu’un axe magnétique principal est perpendiculaire à chaque plan miroir. Par exemple, quand
il y a un seul plan miroir σyz, l’axe x est un axe magnétique principal, les deux autres axes principaux
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σαβ σyz σzx σxy

ĝ

• 0 0
0 • •
0 • •

 • 0 •
0 • 0
• 0 •

 • • 0
• • 0
0 0 •


TABLE 4.1 – Forme de ĝ imposée par chaque plan miroir σαβ . Les points noirs sont les éléments pouvant
être non nuls.

Groupe Cs C2v D2h

ĝ

• 0 0
0 • •
0 • •

 • 0 0
0 • 0
0 0 •

 • 0 0
0 • 0
0 0 •


TABLE 4.2 – Forme de la matrice ĝ dans chaque groupe de symétrie. Les points noirs sont les éléments
pouvant être non nuls.

étant orthogonaux (mais à priori arbitraires) dans le plan (yz). Tout plan miroir additionnel vérouille
tous les axes magnétiques sur {x,y, z}.

L’analyse de la forme de ĝ′ dans cette même base dévoile l’anisotropie de la fréquence de Rabi pour
chaque groupe de symétrie.

Forme de la matrice ĝ′

Le point de départ est de considérer que le système au point de polarisation statique (V = V0) com-
porte un plan miroir σαβ , et d’étudier comment se transforme la réponse linéaire du potentiel électrique
D1(r) à une modulation radio-fréquence de tension sur la grille. En effet, cette réponse peut briser les
symétries du système au point V = V0. Nous pouvons alors distinguer au moins trois comportements
différents :

1. La modulation radio-fréquence ne brise pas σαβ : D1(r) est invariant par rapport à cette trans-
formation [D1(σαβ(r)) = D1(r)]. De manière équivalent, la modulation du champ électrique
E1(r) = −∇D1(r) est ’paire’ sous σαβ :

E1(σαβ(r)) = σαβ(E1(r)) . (4.17)

Dans ce cas, σαβ impose la même contrainte sur ĝ′ que sur ĝ (table 4.1 et première ligne de la
table 4.3). Ce comportement représenté dans la figure 4.3 a), est par exemple rencontré quand le
champ électrique E1 est homogène dans le plan (αβ).

2. La modulation radio-fréquence brise le plan miroir σαβ (D1(r) n’est pas invariant) mais E1 est
’impair’ par σαβ :

E1(σαβ(r)) = −σαβ(E1(r)) . (4.18)

De manière équivalente, D1(r) est impair par cette transformation à une constante K près, i.e.
D1(σαβ(r)) +D1(r) = K, puisqu’un décalage homogène du potentiel dans le dispositif ne doit
pas avoir d’effet sur la physique du système. Alors σαβ impose les contraintes sur ĝ′ listées dans
la seconde ligne de la table 4.3. Ce comportement représenté dans la figure 4.3 b) est par exemple
rencontré quand le champ électrique E1 est homogène et perpendiculaire au plan (αβ).

3. La modulation radio-fréquence brise le plan miroir σαβ , mais E1(r) ne montre pas de relation de
symétrie particulière par cette transformation. Ainsi, σαβ n’impose pas en général de condition
sur ĝ′ (troisième ligne de la table 4.3)

La forme finale de ĝ′ est donnée par l’intersection de tous les éléments pouvant être non nuls dans la
table 4.3, pour toutes les opérations des groupes de symétrie à la polarisation électrique considérée.
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FIGURE 4.3 – Illustration des symétries du champ électrique radio-fréquence E1. Le plan miroir consi-
déré ici est le plan (zx). (a) Ce champ électrique homogène appartenant à ce plan est ’pair’. (b) Ce
champ électrique homogène perpendiculaire à ce plan est ’impair’.

σαβ σyz σzx σxy

E1 pair

• 0 0
0 • •
0 • •

 • 0 •
0 • 0
• 0 •

 • • 0
• • 0
0 0 •


E1 impair

0 • •
• 0 0
• 0 0

 0 • 0
• 0 •
0 • 0

 0 0 •
0 0 •
• • 0


Autre

• • •• • •
• • •

 • • •• • •
• • •

 • • •• • •
• • •


TABLE 4.3 – Forme de ĝ′ imposées par chaque plan miroir σαβ selon que l’ordre un du champ électrique
est pair [E1(σαβ(r)) = σαβ(E1(r))], impair [E1(σαβ(r)) = −σαβ(E1(r))], ou ne montre pas de relation
particulière par cette transformation. Les points noirs sont les éléments pouvant être non nuls. La figure
4.3 représente des exemples de champs électriques E1 pair et impair.

4.2.2 Anisotropie de la fréquence de Rabi
Les tables 4.2 et 4.3 peuvent être utilisées pour analyser l’anisotropie de la fréquence de Rabi, en

substituant la forme des matrices ĝ et ĝ′ dans l’équation (4.16). En guise d’illustration, nous discutons
par la suite deux cas pertinents pour la section 4.3 (et illustrés dans la figure 4.2).

Faible symétrie

Commençons par considérer un dispositif avec un simple plan miroir σyz au point de polarisation
V = V0 (groupe double Cs). Nous supposons que la modulation radio-fréquence autour de ce point ne
brise pas le plan miroir. Alors, selon les tables 4.2 et 4.3, dans la base {|⇑〉, |⇓〉} appropriée :

ĝ(V0) =

g11 0 0
0 g22 g23

0 g32 g33

 ; ĝ′(V0) =

g′11 0 0
0 g′22 g′23

0 g′32 g′33

 . (4.19)

Si B = Bx, alors ĝ(V0)b = g11x, et ĝ′(V0)b = g′11x, et ainsi fR ∝ |[ĝ(V0)b]× [ĝ′(V0)b]| = 0. Il n’y a
pas d’oscillations de Rabi quand le champ magnétique est perpendiculaire au plan miroir.

Haute symétrie

Nous supposons que ce même dispositif a deux plans miroirs supplémentaires σzx et σxy à un autre
point de polarisation V = V ′0 (groupe double D2h). Nous supposons que la modulation radio-fréquence
autour de V ′0 brise ces plans miroirs, mais que le champ électrique E1 est (en première approximation)
homogène et parallèle à y, donc pair par σyz et σxy mais impair par σzx. Alors,
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ĝ(V ′0) =

g11 0 0
0 g22 0
0 0 g33

 mais ĝ′(V ′0) ∼

0 0 0
0 0 0
0 0 0

 . (4.20)

Il n’y a aucune oscillation de Rabi à ce point de polarisation (du moins dont la fréquence soit propor-
tionnelle à B et à Vac) peu importe l’orientation du champ magnétique. Il est connu [48] que la symétrie
d’inversion (impliquée par les trois plans miroirs à V ′0) entrave l’action du couplage spin-orbite. Nous
allons mettre en évidence un tel comportement dans la section suivante.

4.3 Application à un qubit spin-orbite de trou
Les équations et les arguments de la section 4.1 et 4.2 sont valables pour un qubit de trou et d’électron

dans l’hypothèse où la fréquence de Rabi est proportionnelle à l’amplitude du champ magnétiqueB, et à
l’amplitude de la tension modulée Vac. Ils s’appliquent donc à la plupart des qubits de semiconducteurs
III-V, et aux qubits de trou dans le silicium. Cependant, ils ne sont pas valides dans les qubits d’électron
dans le silicium car la fréquence de Rabi n’est pas necessairement proportionnelle à B dans l’intervalle
de travail à cause des couplages spin-vallées [35, 36]. L’étude des symétries du système peut, en parti-
culier, apporter des informations sur le contrôle du dispositif. Comme illustration, nous appliquons la
méthodologie décrite dans la section 4.1 à un qubit spin-orbite de trou sur SOI (dispositif similaire à
celui présenté dans le chapitre 3). Nous décrivons d’abord le dispositif en insistant sur le double contrôle
électrique par une grille "arrière" (substrat) et une grille "avant" semi-recouvrante, puis nous analysons
la dépendance de la fréquence de Rabi à l’orientation du champ magnétique (et le rôle des symétries),
et nous discutons les mécanismes à l’origine de la dépendance électrique du facteur gyromagnétique.
Enfin nous comparons les données expérimentales et numériques, et suggérons la présence possible de
contraintes résiduelles dans les dispositifs expérimentaux.

4.3.1 Dispositif SOI et modèle
Le dispositif, présenté dans la figure 4.4, se compose d’un nano-fil rectangulaire de silicium orienté

[110] de 30 nm de largeur, et 10 nm de hauteur. Un champ magnétique homogène B est appliqué dans
le dispositif. Le nano-fil est séparé du substrat en silicium par 25 nm d’oxyde de silicium (BOX). Ce
substrat est polarisé à une tension Vbg pour agir en tant que grille arrière. Une grille avant portée à une
tension Vfg = −0.1 V est utilisée non seulement pour confiner un trou sous celle-ci, mais aussi pour
manipuler son spin en appliquant une modulation résonnante avec le qubit d’amplitude Vac = 1 mV.
Cette grille mesure 30 nm de long, et chevauche environ la moitié du nano-fil (20 nm sur les 30 nm).
Elle est isolée du nano-fil par une couche de 2 nm de dioxyde de silicium (SiO2), et une couche de 2 nm
de dioxyde d’hafnium (HfO2). Deux grilles supplémentaires, à 30 nm à gauche et à droite de la grille
centrale imitent les qubits voisins, et sont polarisées à une tension V = 0 V. L’ensemble du dispositif est
encapsulé dans du nitrure de silicium (Si3N4). Par la suite, x ‖ [110] est aligné avec le nano-fil, y ‖ [1̄10]
est perpendiculaire au nano-fil, et z ‖ [001] est perpendiculaire au substrat (ces axes diffèrent de ceux
utilisés dans le chapitre 3). Sauf mention contraire, nous travaillons à Vfg = −0.1 V, Vac = 1 mV, et
B = 1 T, sans désordre de charge, sans rugosité de surface et sans contrainte structurale.

L’introduction de la grille arrière permet de changer la forme de la fonction d’onde sans modifier
la profondeur du potentiel de confinement qui est déterminé principalement par la différence de tension
entre la grille avant et les grilles latérales. C’est pourquoi par la suite, nous allons varier la tension de
grille arrière pour changer la forme de la fonction d’onde et ainsi sa symétrie afin d’illustrer les principes
de la partie 4.2.

Nous appliquons les méthodes numériques décrites dans le chapitre 2 pour la calcul de la fréquence
de Rabi et des facteurs g. Ainsi, le potentiel électrique dans le dispositif est d’abord calculé en résolvant
l’équation de Poisson avec une méthode de volumes finies. Puis la structure électronique du qubit dans
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~

  

FIGURE 4.4 – Représentation schématique du dispositif. En rouge, le nano-fil de silicium de section
10 nm× 30 nm orienté [110] sur 25 nm d’oxyde (vert) en dessous duquel le silicium est dopé et permet
de définir une grille arrière. La grille avant de 30 nm de long (en gris) recouvre à moitié le canal du nano-
fil ; elle est séparée électriquement du fil par 2 nm de SiO2 et 2 nm de HfO2 (vert et bleu). Les deux autres
grilles latérales (aussi en gris) représentent des qubits voisins. Elles sont polarisées à V = 0 V. L’axe x
est parallèle au nano-fil, et l’axe z est perpendiculaire au substrat. L’orientation du champ magnétique
est caractérisée par un angle polaire θ, et un angle azimutal ϕ définies sur cette figure (même angles que
dans le chapitre 3). Le plan délimité par des pointillé sous la grille avant est le plan miroir (yz) exact du
dispositif. La grille avant est polarisée à Vfg = −0.1 V, et une modulation d’amplitude Vac = 1 mV peut
être appliquée. La tension de grille arrière est Vbg.

ce potentiel est établie avec un modèle k · p six bandes qui est discrétisé sur un maillage de différences
finies. Enfin la fréquence de Rabi est calculée avec les méthodes introduites dans la section 4.1.

4.3.2 Fréquence de Rabi d’un qubit de trou
Nous validons le formalisme de la matrice ĝ sur un intervalle de champ magnétique pertinent d’un

point de vue expérimental, et nous montrons la forte anisotropie, et la dépendance en polarisation élec-
trique de la fréquence de Rabi dans ce dispositif.

Validité du formalisme de la matrice ĝ

Pour vérifier la validité du formalisme de la matrice ĝ, nous comparons l’évaluation directe [éq.
(4.3)] et le calcul par le formalisme de la matrice ĝ [éq. (4.16)] de la fréquence de Rabi pour quelques
orientations de champ magnétique. En particulier, la figure 4.5 montre la fréquence de Rabi en fonction
de l’amplitude du champ magnétique B ‖ (y + z) (θ = 45◦, ϕ = 0◦). Le formalisme de la matrice ĝ
capture le pente à l’origine de la fréquence de Rabi, tandis que l’évaluation directe de la fréquence de
Rabi contient tous les ordres en B par l’intermédiaire des états |0〉 et |1〉 calculés à champ magnétique
fini. La figure 4.5 montre que la fréquence de Rabi se comporte bien de manière linéaire jusqu’à environ
un Tesla, et que les corrections restent négligeables jusqu’à des champs magnétiques de l’ordre de
quelque Tesla. En particulier, le formalisme de la matrice ĝ décrit très bien la physique du système pour
des champs magnétiques typiques des expériences, de l’ordre du Tesla (voir chapitre 3).

Le formalisme de la matrice ĝ est valide pour différentes tensions de grille arrière Vbg comme le
montre la figure 4.6, qui met en évidence un excellent accord entre la formule de la matrice ĝ et l’éva-
luation directe à tout Vbg (les détails de la dépendance de la fréquence de Rabi avec la tension de grille
arrière sont discutés dans les prochains paragraphes).
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FIGURE 4.5 – Fréquence de Rabi en fonction de l’amplitude du champ magnétique B ‖ (y + z). La
formule de la matrice ĝ [éq. (4.16)] est comparée à l’évaluation directe à partir des fonctions d’onde à
champ magnétique fini [éq. (4.3)]. Vfg = −0.1 V, Vbg = −0.2 V, et Vac = 1 mV. Le formalisme de la
matrice ĝ est valide pour des champs magnétiques typiques de l’ordre du Tesla (intervalle typique de
travail des expériences : ∼ 0.2− 0.8 T).
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FIGURE 4.6 – Fréquence de Rabi en fonction de la tension de grille arrière Vbg pour B = 1 T parallèle à
y +z (Vfg = −0.1 V et Vac = 1 mV). La formule de la matrice ĝ [éq. (4.16)] est comparée à l’évaluation
directe à partir des fonctions d’onde à champ magnétique fini [éq. (4.3)]. Les symboles (cercle, triangles,
et carré) identifient de manière unique la tension de grille arrière sur les figures 4.6, 4.7, 4.8, et 4.13.

Cartes de fréquence de Rabi

Nous discutons maintenant la dépendance de la fréquence de Rabi à l’orientation du champ magné-
tique. Les cartes de fréquence Rabi sont calculées pour différentes tensions de grille arrière, et elles sont
représentées sur la figure 4.7 en fonction des coordonnées angulaires (colatitude et longitude) du champ
magnétique B définies dans la figure 4.4. La fréquence de Rabi est calculée à partir de la matrice ĝ et de
sa dérivée en utilisant l’équation (4.16). Comme discuté dans la section 4.1, ces matrices peuvent être
obtenues à un point de polarisation donné (Vfg, Vbg), à partir des fonctions d’onde du qubit sans champ
magnétique à trois points de polarisations (Vfg − δVfg, Vbg), (Vfg, Vbg) et (Vfg + δVfg, Vbg) où δVfg est ty-
piquement de l’ordre du mV. Une fois que ces deux matrices sont calculées, nous obtenons directement
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FIGURE 4.7 – Cartes de fréquence de Rabi en fonction des coordonnées angulaires de B définies sur
la figure 4.4, pour différentes tensions de grille arrière Vbg (Vfg = −0.1 V, Vac = 1 mV, B = 1 T). La
fréquence de Rabi étant la même pour des champs magnétiques opposés (fR(B) = fR(−B)), les cartes
sont tracées pour 0◦ ≤ ϕ < 180◦. Les symboles (cercle, triangles, carré) identifient les tensions de grille
arrière étiquetés sur la figure 4.6.

la dépendance orientationnelle de la fréquence de Rabi à partir de l’équation (4.16) sans avoir besoin
de calculer les états propres pour chaque orientation du champ magnétique comme c’est le cas pour
l’évaluation directe. Les calculs numériques sont donc beaucoup plus rapides dans le formalisme de la
matrice ĝ (trois calculs à champ magnétique nul pour N orientations de champ magnétique, au lieu de
N calculs à champ magnétique fini).

Les cartes de la fréquence de Rabi de la figure 4.7 montrent une structure complexe avec des (quasi-)
extinctions selon l’axe z (θ = 0◦ et θ = 180◦) et dans le plan (xy) (θ = 90◦) – même si la fréquence
de Rabi est rigoureusement nulle seulement pour B ‖ x (θ = 90◦ et ϕ = 90◦). De plus, la fréquence de
Rabi est très faible lorsque la tension de la grille arrière est proche de Vbg = −0.15 V.

Ce phénomène est aussi visible dans la figure 4.6, qui représente la fréquence de Rabi en fonction de
la tension de grille arrière Vbg pour B ‖ (y+z). Il y a en effet un creux prononcé près de Vbg = −0.15 V.
La fréquence de Rabi augmente des deux cotés de ce creux avant de décroître à grand |Vbg|. Elle atteint
des valeurs de l’ordre de ' 300 MHz. Ces simulations démontrent la forte anisotropie de la fréquence
de Rabi avec l’orientation du champ magnétique mais aussi une grande dépendance avec la polarisation
électrique du système.

4.3.3 Interprétation
Cette section introduit les outils pour comprendre l’anisotropie et la forte dépendance en tension de

grille de la fréquence de Rabi. Dans un premier temps, nous établissons (en l’absence de champ ma-
gnétique) la nature de la paire de Kramers fondamentale du qubit étudié, qui est (quasi) trous lourds.
Nous exploitons la décomposition de la fréquence de Rabi sur toutes les paires de Kramers [éq. (4.8)]
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pour mettre en évidence que, dans ce dispositif, seulement une paire d’états excité particulière contribue
en quasi-totalité à la fréquence de Rabi. Cette excitation, dont la fonction enveloppe est de type "py",
montre un grand mélange trous lourds et trous légers. Lorsque la tension de grille varie, le champ élec-
trique dans le dispositif couple la paire de Kramers fondamentale et l’excitation de type "py". La paire
fondamentale incorpore ainsi le mélange trous lourds/légers de cet état excité, si bien que sa composi-
tion varie avec la tension de grille. Cela entraîne des variations de facteurs ĝ de la paire fondamentale,
et des oscillations de type g-TMR lorsqu’une modulation radiofréquence de tension est appliquée sur la
grille avant.

Contrôle de la forme de la fonction d’onde

Dans un premier temps, il est nécessaire de connaître la nature (fonction enveloppe et composition
des trous) des états du qubit sans champ magnétique, et en particulier la nature de la paire de Kramers
fondamentale.

Des lignes de niveau du module carré des fonctions d’onde de la paire de Kramers fondamentale
sont représentées dans la figure 4.8 pour différentes tensions de grille arrière. Nous observons que le
trou est poussé sous la grille avant à grand Vbg positif, occupe une position centrale à Vbg ' −0.15 V, et
est attiré à l’opposé de la grille avant à grand Vbg négatif. Ainsi, la grille arrière contrôle la position, et en
particulier la symétrie de la fonction d’onde, comme c’est le cas pour les électrons [36]. Le confinement
en "coin" est cependant moins prononcé que pour des électrons [61] à cause des différentes masses
effectives mises en jeu. Ainsi, nous pouvons émettre l’hypothèse à partir de la figure 4.8 que le trou
répond essentiellement à la composante y du champ électrique créé par les grilles, la polarisabilité étant
visiblement bien plus faible selon z (qui est l’axe de plus grand confinement structural). L’extinction de
la fréquence de Rabi correspond à une tension de grille arrière où la fonction d’onde du trou est la "plus
symétrique". Nous noterons que ce contrôle de symétrie est facilité par la conception non-planaire de la
grille avant du dispositif.
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FIGURE 4.8 – Lignes de niveau du module carré des fonction d’onde de la paire de Kramers fondamen-
tale du qubit de trou à différentes tensions de grille arrière (Vfg = −0.1 V). Les fonctions d’onde sont
tracées dans le plan (yz) à x = 0 (zone claire délimitée par des pointillés sous la grille centrale sur la
figure 4.4). Les lignes de niveau correspondent à 25%, 50%, et 75% du maximum du module carré de
chaque coupe. Les symboles (cercle, triangles, carré) identifient les tensions de grille arrière étiquetés
sur la figure 4.6. La zone sombre indique une probabilité de présence de trou élevée.

Rigoureusement, le groupe de symétrie du système est Cs peu importe la tension de grille arrière
Vbg, avec un plan de symétrie σyz exact perpendiculaire au nano-fil et coupant la grille en deux (délimité
par les pointillés dans la figure 4.4). La figure 4.8 suggère que la fonction d’onde de l’état fondamental
comporte un plan horizontal de quasi-symétrie σxy sur une grande gamme de tensions de grille arrière
(correspondant à un faible confinement en coin), et un plan de quasi-symétrie σzx supplémentaire autour
de Vbg = −0.15 V.

Compte tenue de la symétrie approchée du champ radio-fréquence (cet aspect sera détaillé dans les
prochains paragraphes), le plan de symétrie approché σxy explique la raison d’une faible fréquence de
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Rabi pour un champ magnétique B ‖ z (θ = 0 et θ = 180◦), et le plan de symétrie exacte σyz explique
pourquoi la fréquence de Rabi est faible pour un champ magnétique B ‖ x (θ = 90◦ et θ = 90◦). De
plus, le plan de symétrie supplémentaire σzx à Vbg = −0.15 V explique la suppression globale de la
fréquence de Rabi à ce point de polarisation.

Décomposition microscopique

Pour comprendre les mécanismes microscopiques des oscillations de Rabi, nous exploitons la dé-
composition de la fréquence de Rabi comme une somme des couplages électriques et magnétiques
entre la paire fondamentale et les états excités [éq. (4.8)]. Ainsi, cette expression de la fréquence Rabi
peut s’écrire comme fR = |∑n>0 fR,n|, où n désigne une paire Kramers, et où nous pouvons écrire
fR,n = |fR,n|eiΘn . Sur la figure 4.9, nous représentons la contribution fR,n de chaque état excité à la
série de perturbation sur le spectre En − E0 du qubit en fonction de Vbg.
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FIGURE 4.9 – (a) Spectre En − E0 de la boite quantique en fonction de la tension de grille arrière
(Vfg = −0.1 V, B = 0 T). Nous pouvons écrire la série en perturbation pour la fréquence de Rabi
[éq. (4.8)], comme fR = |∑n>0 fR,n|, où n désigne une paire de Kramers. La surface des points est
proportionnelle à l’amplitude |fR,n| de la contribution de chaque paire. La couleur quantifie la phase de
cette contribution Θn = arg(fR,n). (b) Fréquence de Rabi calculée à partir de la série en perturbation
[éq. (4.8)], en fonction de la tension de grille arrière. Les sommes incluant 1, 3 et 24 paires d’états
excités sont comparées à la somme de toutes les paires de Kramers, obtenue par le formalisme de la
matrice ĝ (Vfg = −0.1 V, Vac = 1 mV et B ‖ (y + z)).

Nous observons que la série de perturbations est dominée par une paire d’états en particulier, dont la
séparation en énergie avec l’état fondamental montre une forte dépendance à Vbg mais qui reste la plus
proche de celui-ci sur une large gamme de tensions de grille.

Cela est confirmé dans la figure 4.9 b), qui compare le résultat de l’équation (4.8) incluant les pre-
mières, les trois premières, les 24 premières excitations, et la somme de toutes les paires de Kramers
(obtenue par le formalisme de la matrice ĝ). La série en perturbation avec le premier état excité seule-
ment capture les grandes tendances de la fréquence de Rabi autour du creux à Vbg = −0.15 V, et, dans
ce cas, la fréquence de Rabi se limite à fR ∼ |fR,1|.
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Nature des trous

La figure 4.10 représente la composition (trous lourds, trous légers, split-off) de la paire fondamen-
tale du qubit sans champ magnétique en fonction de la tension de grille arrière. Nous observons que
cette paire a un caractère trous lourds dominant avec une faible composante trous légers. La compo-
sante split-off semble négligeable (≤ 5%), ce qui est confirmé par des calculs k · p quatre bandes (qui
négligent le couplage à la split-off) qui montrent les même tendances pour la fréquence de Rabi en fonc-
tion de l’orientation du champ magnétique et de la tension de grille. La faible composante trous légers
résulte du confinement latéral par la structure et le champ électrique créé par les grilles.
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FIGURE 4.10 – Poids total des enveloppes de trous lourds (|3/2,±3/2〉), de trous légers (|3/2,±1/2〉), et
de la split-off (|1/2,±1/2〉) de l’état fondamental du qubit en fonction de Vbg (Vfg = −0.1 V, B = 0 T).
Les contributions des enveloppes de la bande de split-off sont ≤ 5%.

Après avoir démontré que les composantes trous lourds et trous légers sont suffisantes pour décrire ce
qubit, nous détaillons la nature de leurs fonctions enveloppes. Le module carré des fonctions enveloppes
des trous lourds et des trous légers d’un des états de la paire de Kramers fondamentale, et d’un des
états de la première paire de Kramers excitées sont représentés au point de haute symétrie à Vbg =
−0.15 V dans les figures 4.11 et 4.12. Le moment angulaire total est quantifié selon l’axe de plus grand
confinement z. Ces figures sont en fait tracées à un faible champ magnétique Bz = 5 mT pour lever la
dégénérescence de Kramers et identifier les états avec une composante jz = +3/2 maximale. Comme
discuté précédemment, les enveloppes de la bande de split-off (|1/2,±1/2〉) ne sont pas pertinentes ici.

État fondamental : Nous observons que les enveloppes de l’état fondamental sont principalement de
type "s". De plus, celui-ci comporte une faible (∼ 1%) composante |3/2,+1/2〉 de type "dxy" qui est
cruciale pour expliquer la valeur du facteur principale gz calculé (voir le section 4.3.4 ci-après).

État excité : L’état excité identifié sur la figure 4.9 dominant la série de perturbations pour la fréquence
de Rabi montre un grand mélange trous lourds/trous légers, avec des enveloppes de type "py" (avec un
plan nodal perpendiculaire à y).

Quand Vbg varie autour de la position symétrique Vbg ' −0.15 V, ces deux états sont mélangés par
la composante y du champ électrique créé par les grilles. Ce couplage repousse ces états l’un de l’autre
et les sépare en énergie comme montré dans le spectre représenté dans la figure 4.9. De plus, ce mélange
renforce la composante trous légers de la paire de Kramers fondamentale du qubit. Ce même couplage à
la composante y du champ électrique est responsable des oscillations de Rabi entretenues par un signal
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FIGURE 4.11 – Module carré des fonctions enveloppes des trous lourds (jz = ±3/2) et des trous légers
(jz = ±1/2) de l’état fondamental du qubit dans le plan (xy) à z = 0 (haut), et dans le plan (zy) à x = 0
(bas) (Vfg = −0.1 V, Vbg = −0.15 V). Les lignes en pointillées sur chaque tracé indiquent la position
de ces plans. Nous rappelons que cet état est dégénéré à champ magnétique nul avec un partenaire
ayant une enveloppe symétrique par renversement du temps (précisément, jz = 3/2 ↔ jz = −3/2,
jz = 1/2 ↔ jz = −1/2). Le poids total de chaque enveloppe est donné en bas de chaque panneau.
Certains panneaux ont été multiplié par 102 ou 104 par souci de clarté.

FIGURE 4.12 – Identique à la figure 4.11 pour la première paire Kramers contribuant à la quasi-totalité
de la fréquence de Rabi dans la série de perturbations (voir figure 4.9).

radio-fréquence sur la grille qui module le mélange trous lourds - trous légers dans l’état fondamental,
donc ses facteurs gyromagnétiques. Cela donne lieu à des oscillations de type g-TMR. Les facteurs g et
leur dépendance Vfg et Vbg seront analysés au paragraphe 4.3.4.

Les états excités avec des modulations d’enveloppes selon z sont trop confinés et trop loin en énergie
pour induire une polarisabilité électrique significative le long de l’axe perpendiculaire au substrat. La
composante z du champ électrique, bien que dominante dans certaines régions du dispositif, n’engendre
pas d’oscillations de Rabi efficaces.
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Analyse des symétries

Ayant identifié les principaux couplages responsables des oscillations de Rabi, nous pouvons affiner
notre analyse des symétries développée dans la section 4.2. Le potentiel électrique total Velec dans le
dispositif est tracé dans la figure 4.13 à Vbg = 0 V et à Vbg = −0.15 V. Il montre approximativement des
symétries σxy et σzx à Vbg = −0.15 V, cohérentes avec la figure 4.8. Le plan σxy est légèrement brisé,
ce qui induit une dissymétrie à peine notable dans la fonction d’onde de l’état fondamental.
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FIGURE 4.13 – Potentiel électrique total Velec dans le plan (xy) à z = 0, et dans le plan (xz) à y = 0,
à (haut) Vbg = 0 V et (bas) Vbg = −0.15 V (Vfg = −0.1 V). Les lignes en pointillées sur chaque tracé
indiquent la position de ces plans. Les symboles (cercle, triangles, carré) identifient les tensions de grille
arrière étiquetés sur la figure 4.6. Les lignes de niveau sont séparées par 10 mV.

−20−10 0 10 20

x (nm)

−20

−10

0

10

y
(n

m
)

−20−10 0 10 20

x (nm)

−20

−10

0

10

z
(n

m
)

0 5 10 15 20
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FIGURE 4.14 – Champ électrique E1,y créé par la grille avant (Vfg = 1 V) dans le plan (xy) à z = 0, et
dans le plan (xz) à y = 0. Les lignes en pointillées sur chaque tracé indiquent la position de ces plans.

Puisque la fréquence de Rabi est contrôlée par la composante y du champ électrique radio-fréquence
créé par la grille avant, il suffit d’analyser la parité de E1,y pour ensuite utiliser la table 4.3, et ainsi
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extraire la forme de la matrice ĝ′. Comme l’électrostatique est linéaire dans notre description, D1 est
simplement le potentiel dans le dispositif avec la tension de la grille avant portée à une tension unité,
et toute les autres tensions à zéro, et donc E1,y est indépendant du point de polarisation. La figure 4.13
b) montre que E1,y est assez homogène dans un large volume sous la grille : les modulations du champ
électrique sont donc paires par rapport à σxy et σyz, mais impaires par rapport à σzx. D’après les tables
4.3, la matrice ĝ′ doit être zéro à Vbg = −0.15 V (ou presque zéro comme les symétries σxy et σzx sont
approchées), d’où une fréquence de Rabi faible (voir la figure 4.7). Cela met en lumière l’importance
de la brisure de symétrie pour maximiser les opportunités d’avoir des oscillations de Rabi comme déjà
montré par A. Corna et al [35]. Nous soulignons aussi que la géométrie spécifique de ces dispositifs
sur SOI , avec les grilles chevauchant partiellement le haut et le coté latéral des faces du nanofil, aide à
briser le plan σzx et à augmenter E1,y par rapport à E1,z.

En s’éloignant de Vbg = −0.15 V, la fréquence de Rabi décroît aussi à grand |Vbg| quand le trou
se trouve localisé à gauche ou à droite du nano-fil. Cela résulte de la diminution de la polarisabilité
du système selon l’axe y quand les états deviennent très confinés suivant cet axe. Donc, la figure 4.6
peut être décrite comme un seul large pic (formé par les éléments de matrice de D1), creusé près de
Vbg = −0.15 V à cause des symétries particulières à ce point [ce creux est en fait formé par les éléments
de matrice M1 dans l’équation (4.8)]. Un tel qubit peut, en principe, être basculé entre un point de
polarisation (par exemple Vbg = −0.2 V) où il est fortement couplé au champ électrique radio-fréquence
pour la manipulation, et en un point de polarisation (Vbg = −0.15 V) où il est découplé du champ
électrique mais aussi immunisé contre les bruits électriques des grilles et les bruits de charges [62].

4.3.4 Analyses des facteurs gyromagnétiques
Nous allons réaliser une analyse plus quantitative de la matrice ĝ et de sa dérivée pour expliquer des

caractéristiques supplémentaires de la figure 4.7 tel que la quasi-extinction de la fréquence de Rabi pour
des champs magnétiques dans le plan (xy).

Facteurs g

Comme le dispositif présente un plan miroir exact σyz, x (l’axe du nono-fil) est un axe magnétique
principal peu importe Vbg. Avec un plan additionnel σxy dans une large gamme de Vbg, y et z doivent
être aussi des axes magnétiques principaux approchés. La décomposition en valeurs singulières de la
matrice ĝ [ĝ = Uĝd

tV où ĝd = diag(g1, g2, g3)] confirme que c’est en effet le cas, aussi nous pouvons
définir les relations gx ≡ g1, gy ≡ g2, et gz ≡ g3. Ces derniers sont tracés en fonction de Vbg dans la
figure 4.15 a). Nous pouvons appliquer la même transformation qui diagonalise ĝ à ĝ′ (ĝ′ → tUĝ′V ). La
matrice qui en résulte est aussi presque diagonale. Les éléments diagonaux g′x, g′y et g′z sont eux aussi
tracés en fonction de Vbg dans la figure 4.15 b).

En négligeant l’action du potentiel vecteur sur les fonctions enveloppes, l’hamiltonien magnétique
des trous de nombre quantique j = 3/2 se réduit à H = −2κµBB ·J, où J est le moment angulaire total
de la fonction de Bloch et κ = −0.42. Les facteurs g d’un pur trou lourd (|3/2,±3/2〉) devraient donc
être gx = gy = 0, gz = −6κ = 2.52, tandis que les facteurs g d’un pur trou léger (|3/2,±1/2〉) devraient
être gx = gy = −4κ = 1.68, gz = −2κ = 0.84. La comparaison entre les données sur le mélange trous
lourds/légers de la figure 4.10 et les facteurs g de la figure 4.15 a) montrent un accord qualitatif avec cette
tendance. En effet, gz est maximal (et gx, gy minimaux) près de Vbg = −0.15 V où la composante trous
lourds est maximale. Ensuite gz décroit tandis que gx et gy augmentent, lorsque le confinement latéral
(créé par le champ électrique des grilles) augmente la composante trous légers dans l’état fondamental.
Cependant, le calcul des facteurs g du dispositif réel ne reproduit pas quantitativement l’hamiltonien
ci-dessus. En particulier le facteur gz du dispositif réel atteint un maximum autour de 5, bien loin de
6|κ| ∼ 2.52. Ces désaccords sont le résultat de l’action du potentiel vecteur sur les fonctions enveloppes
des trous lourds et trous légers comme discuté dans la référence [37].

En effet, le confinement latéral mélange également des enveloppes de type dxy |3/2,±1/2〉 à l’état
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fondamental principalement |3/2,±3/2〉 [grâce au terme S de l’hamiltonien k · p six bandes, voir
l’équation (2.17) et la figure 4.11]. Ce très faible mélange a tout de même un impact significatif sur
le facteur gz. Sous champ magnétique, le coefficient de mélange de |3/2,+1/2〉 dans |3/2,+3/2〉, et
de |3/2,−1/2〉 dans |3/2,−3/2〉 varient de façon opposé quand l’intensité du champ magnétique B
augmente, à cause de la brisure de la symétrie de renversement du temps. Cela sépare les deux états,
et ajoute une contribution supplémentaire ∆gz au facteur gz total. Dans un modèle de boîte quantique
rectangulaire de taille Lz � Lx, Ly [37],

∆gz =
217γ2

3

81π4 (3γ1 + 10γ2)
, (4.21)

où γ1, γ2 et γ3 sont les paramètres de Luttinger du matériau hôte. Dans le silicium, ∆gz = 2.14 et ainsi
gz doit atteindre −6κ + ∆gz ' 4.66 pour un état presque pur trou lourd, ce qui est en accord avec les
simulations numériques à Vbg = −0.15 V. La correction ∆gz est remarquablement proportionnelle à
γ3, et est indépendante des dimensions Lx et Ly de la boite quantique. ∆gz doit donc être faiblement
dépendant des tensions de grilles avant et arrière qui contrôlent la taille de la boîte quantique, et ainsi
contribue peu à ĝ′ et à la fréquence de Rabi.

Comme attendu, tous les g′i sont proches de zéro prés de Vbg = −0.15 V où le mélange trous
lourds/légers devient indépendant du champ électrique à l’ordre un, à cause des symétries supplémen-
taires (voir la figure 4.10).
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FIGURE 4.15 – (a) Les facteurs principaux gx, gy, et gz et (b) leur dérivées par rapport à Vfg en fonction
de la tension de la grille arrière (Vfg = −0.1 V).

73



Chapitre 4. Formalismes de calcul de la fréquence de Rabi et applications

Retour sur la fréquence de Rabi

Le fait que le fréquence de Rabi est faible quand B appartient au plan (xy) (voir la figure 4.7) peut
s’expliquer par le manque d’anisotropie de gi et g′i dans ce plan (gxg′y−g′xgy � gzg

′
x−g′zgx, gzg′y−g′zgy).

En négligeant gxg′y − gyg′x dans l’équation (4.16), nous obtenons en effet :

fR '
µBBVac

2h
|bz|

√
(gzg′x − g′zgx)2 b2

x +
(
gzg′y − g′zgy

)2
b2
y√

g2
xb

2
x + g2

yb
2
y + g2

zb
2
z

, (4.22)

où bx, by et bz sont les composantes du champ magnétique unitaire b = B/B. L’approximation ci dessus
reproduit bien les principales caractéristiques de la figure 4.7. Le paramètre de Luttinger γ3 joue un rôle
central dans cette équation. En effet, une analyse similaire à la référence [37] suggère que gx et gy sont
à l’ordre le plus bas, proportionnels à γ3 (par conséquence au mélange entre les enveloppes |3/2,±3/2〉
et |3/2,∓1/2〉 par le terme R de l’hamiltonien k ·p six bandes), et d’où fR ∝ γ3. Un modèle analytique
basé sur ces conclusions est présenté au chapitre 5.

Puisque ĝ′ reste (presque) diagonale dans la base où ĝ l’est, le champ électrique radio-fréquence
module essentiellement les facteurs g principaux mais fait peu varier les matrices Û et V̂ [ĝ = Û ĝd

tV̂ ].
Ainsi, la dépendance de ĝd au champ électrique peut en pratique être reconstruite à partir des mesures
de l’énergie Zeeman EZ en fonction des tensions de grille et de l’orientation du champ magnétique
(voir le chapitre 3). Quand le champ électrique module seulement les facteurs g principaux, comme
c’est le cas ici, les oscillations de Rabi peuvent être interprétées comme la g-TMR conventionnelle (qui
ici correspond au contrôle électrique de l’énergie Zeeman). De telles modulations de ĝd sont le résultat
d’un changement de la forme de la fonction d’onde dans un potentiel fortement non harmonique (comme
montré dans la figure 4.8).

4.3.5 Comparaison avec les données expérimentales
Dans cette section nous revenons sur le dispositif et sur les résultats expérimentaux du chapitre

3. La différence principale entre le système expérimental et le système simulé dans ce chapitre est le
chevauchement des grilles, qui est total dans le système expérimental et partiel dans le système simulé.

Cependant, le désordre présent dans le qubit expérimental brise sans doute la symétrie du nanofil,
ce qui localise vraisembablement l’état fondamental du qubit soit à droite, soit à gauche du canal du
nanofil (des expériences avec des électrons ont montré des états de coin dans une géométrie similaire à
celle-ci [61]) .

Nous rappelons que l’axe x du nano-fil est, expérimentalement, un axe magnétique principal, les
deux autres étant proches des axes y et z. Cela est cohérent avec l’existence d’un plan miroir de symétrie
(ou plutôt de quasi symétrie) perpendiculaire à l’axe x. Cependant les facteurs g mesurés expérimen-
talement (gx = 2.48, gy = 2.08 et gz = 1.62) ne correspondent pas à ceux calculés numériquement,
même qualitativement. En particulier, le facteur gz est le plus petit des facteurs g expérimentaux, tandis
qu’il est le plus grand dans nos calculs. De plus les cartes de fréquence de Rabi sont très différentes.
Expérimentalement, les oscillations de Rabi sont dominées par une contribution IZR, et la fréquence
de Rabi est maximale quand B ‖ z. Numériquement, les oscillations de Rabi sont dominées par une
contribution g-TMR, et la fréquence de Rabi est très petite pour B ‖ z.

Nature du champ électrique radio-fréquence

Tout d’abord, nous rappelons que les diagrammes de stabilité expérimentaux montrent que le qubit
n’est pas créé sous la grille G2, mais se situe entre la grille G1 et la grille G2 (car les bras de leviers
des deux grilles sont sensiblement identiques, voir la section 3.2). Par conséquent, la nature du champ
électrique modulé est différente de celle considérée jusqu’à maintenant : dans le qubit expérimental,
le champ électrique radio-fréquence E1 entre les grilles a tendance à s’aligner selon l’axe du nano-
fil x au lieu d’être perpendiculaire à celui-ci (la localisation de la fonction d’onde expérimentale peut
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s’expliquer par la présence de défauts chargés qui modifient le profil du potentiel électrique créé par la
grille, et qui ne permettent plus de localiser correctement la fonction d’onde sous celle-ci). Cela explique
la non correspondance entre les cartes de fréquences de Rabi, mais pas l’anisotropie des facteurs g
(puisque la matrice ĝ et les facteurs g ne dépendent pas de la distribution du champ électrique radio-
fréquence – seule ĝ′ en dépend).

FIGURE 4.16 – Schéma simplifié d’un qubit idéal et du qubit expérimental qui explique les désaccords
qualitatifs. Nous suggérons 1) une localisation du trou entre les grilles (plutôt que sous la grille), de ce
fait la modulation du champ électrique est plutôt alignée selon l’axe du nanofil (plutôt que perpendicu-
laire à celui-ci), et 2) la présence d’une contrainte uniaxiale ou biaxiale résiduelle qui favorise un état
fondamental trous légers. Les flèches noires correspondent au sens et à la direction de la déformation
engendrée par la contrainte. L’ellipse bleue indique la position approximative de la fonction d’onde dans
le nanofil.

Nature des trous : contraintes biaxiales

Les mesures expérimentales de l’anisotropie des facteurs g semblent, en fait, plus cohérentes avec
un qubit dominé par une composante de trous légers (car gz < gx, gy). Nous avons identifié deux expli-
cations possibles pour rendre compte de la nature trous légers de l’état manipulé expérimentalement.

États plus profonds? Expérimentalement s’agit-il de la signature d’un état plus profond (état excité) ?
Il y a, en effet, un nombre fini de trous dans la boite quantique, et ainsi les facteurs g et les cartes
de fréquences de Rabi ont donc été mesurées pour une paire plus profonde que l’état fondamental.
Quelques uns des états excités calculés numériquement montrent un fort caractère trous légers mais là
encore, les facteurs g et les cartes de fréquence de Rabi correspondent mal aux données expérimentales
(mais nous n’avons pas pris en compte l’interaction de Coulomb). De plus, des anisotropies similaires
ont été mesurées dans d’autres dispositifs avec un nombre de trous différents [39, 40]. Par conséquent
nous recherchons un mécanisme plus robuste pour expliquer ces observations.

Contrainte? Un scénario possible expliquant l’anisotropie des facteurs g mesurés est la présence de
contraintes non-intentionnelles créées pendant les opérations de fabrication et/ou de refroidissement
à des températures cryogéniques. En particulier, une contrainte uniaxiale ou biaxiale tensile modifie
la structure de bandes de valence en favorisant les trous légers. En guise d’illustration, les niveaux
d’énergies et le caractère trous lourds des états du qubit étudié numériquement sont tracés dans la figure
4.17 a) en fonction de la contrainte biaxiale dans le plan (xy). Les déformations dans le nano-fil sont
donc εxx = εyy = ε‖ et εzz = −2c12ε‖/c11 = −0.77ε‖, où c11 = 166 GPa et c12 = 64 GPa sont les
constantes élastiques du silicium. La contrainte biaxiale est ainsi caractérisée par la déformation ε‖.
Nous notons que de telles contraintes ne brisent pas la symétrie du dispositif (et donc n’interfèrent pas
avec notre précédente discussion sur l’effet des plans miroirs sur la fréquence de Rabi). Le caractère de
l’état fondamental passe d’un état quasiment pur trous lourds à pur trous légers pour des déformations
aussi faibles que ε‖ ' 0.1%. Les facteurs g de ce doublet correspondent à des trous lourds (gz > gx, gy)
pour ε‖ < 0 et à des trous légers (gz < gx, gy), comme dans les expériences, pour ε‖ & 0.1%. À
ε‖ ' 0.2%, les dix premières paires de Kramers ont une composante trous légers dominante.
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FIGURE 4.17 – (a) Énergie et nature de l’état fondamental de trou en fonction de la déformation biaxiale
εxx = εyy = ε‖ et εzz = −0.77ε‖ en l’absence de champ magnétique. Le caractère trous lourds est
identifié par la couleur des lignes. L’origine des énergies est fixée au sommet de la bande de valence
pour ε‖ = 0. (b) Facteurs g principaux de l’état fondamental de trous en fonction de la déformation
biaxiale ε‖. Vfg = −0.1 V et Vbg = −0.2 V (cercle bleu sur la figure 4.7).

La figure 4.16 schématise les différents ingrédients (champ-radio fréquence selon l’axe du nanofil,
et contraintes biaxiales) permettant un accord qualitatif entre le qubit idéal étudié numériquement et le
qubit expérimental (présenté dans le chapitre 3).

Fréquence de Rabi sous contraintes biaxiales

Nous traçons sur la figure 4.18 la carte des fréquences de Rabi de l’état fondamental de trous d’un
dispositif soumis à une contrainte biaxiale (ε‖ = 0.2%) à un point de polarisation tel que le qubit soit
localisé entre la grille centrale, et la grille à gauche de celle-ci comme suggéré par les expériences. Les
oscillations de Rabi sont dominées par la contribution IZR puisque le champ électrique radio-fréquence,
presque aligné selon l’axe x dans cette configuration, fait osciller la fonction d’onde dans son ensemble
(sans modifier significativement sa forme) selon cet axe. Par conséquent, les facteurs g principaux dé-
pendent peu de le tension de grille, contrairement à la matrice Û . Les facteurs g calculés et la carte des
fréquences de Rabi sont en meilleur accord qualitatif avec les données expérimentales, mais la fréquence
de Rabi calculée numériquement reste trop faible. Ces désaccords résiduels peuvent être les résultats de
la présence d’autres trous dans le dispositif (lissant le potentiel électrique), de la rugosité de surface et
du désordre de charge (restant inconnu) dans le qubit.

Tandis que l’existence de telles contraintes reste à confirmer, les résultats actuels montrent que les
qubits de trou sont trés sensibles aux contraintes [63, 64]. L’ingénérie des contraintes qui a été un succès
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FIGURE 4.18 – Carte de la fréquence de Rabi en fonction des coordonnées angulaires de B définies dans
la figure 4.4 (Vac = 1 mV). Cette carte est tracée pour une paire de Kramers fondamentale d’un qubit
sous contrainte biaxiale (εxx = εyy = 0.2%, εzz = −0.15%). Le dispositif de la figure 4.4 est polarisé
pour que la fonction d’onde fondamentale soit située entre la grille centrale et la grille de gauche :
Vfg = 0.15 V, Vleft = 0.15 V sur la grille la plus à gauche, Vright = 0.2 V sur la grille la plus à droite, et
Vbg = 0 V. Les facteurs g principaux de ce doublet sont gx = 2.06, gy = 2.41 et gz = 0.77. La carte est
tracée à énergie Zeeman constante (9 GHz) comme pour les carte de Rabi expérimentales, plutôt qu’à
champ magnétique constant comme dans la figure 4.7.

dans les transistors MOS classiques [65, 66], pourrait donc ouvrir de nouvelles opportunités pour les
qubits semiconducteurs également.

4.4 Conclusions
Nous avons montré que le formalisme de la matrice ĝ permet un calcul rapide et efficace des cartes

angulaires des fréquences de Larmor et de Rabi d’un qubit, dans un régime linéaire en champ magné-
tiqueB et en modulation radio-fréquence Vac. La structure électronique du qubit sans champ magnétique
fournit toutes les informations nécessaires pour cette théorie de réponse linéaire. La formule de la ma-
trice ĝ fournit un modèle compact pour le contrôle du qubit et se prête bien à une analyse de symétries.
Nous avons, en particulier, discuté des effets des plans miroirs sur l’anisotropie des facteurs g et de
la fréquence de Rabi. Le formalisme de la matrice ĝ peut être complété par une analyse en série de
perturbations qui peut apporter des explications supplémentaires sur la physique du qubit à l’échelle
microscopique. Cette analyse permet de construire un modèle analytique de qubit qui sera présenté au
chapitre 5.

Ces modèles s’appliquent à une grande variété de qubits de spin de trou et d’électron. Nous avons
pour illustrer, considéré un qubit spin-orbite de trou dans un dispositif composé d’un nanofil de silicium
et de grilles avant et arrière. Nous avons mis en avant la dépendance complexe de la fréquence de Rabi
par rapport à l’orientation du champ magnétique, qui résulte des symétries des fonctions d’onde du
qubit. Ces symétries peuvent être contrôlées par les grilles avant et arrière, grâce à la géométrie non
planaire de la grille avant dans ces dispositifs. En particulier, le qubit peut être basculé entre un point
de polarisation (de faible symétrie) où il est fortement couplé au champ électrique radio-fréquence pour
sa manipulation, et un point de polarisation (de haute symétrie) où il est découplé mais moins sensible
aux bruits électriques. Les facteurs g calculés restent, cependant, qualitativement différents des données
expérimentales récentes. Nous suggérons que ces désaccords peuvent être le résultat de contraintes
non-intentionnelles dans le dispositif. Cela souligne l’importance de la contrainte dans des qubits de
semiconducteurs, et ouvre la voie à une ingénierie des contraintes dans ces systèmes.
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Chapitre 5

Impact du matériau sur les performances du
qubit

Les simulations numériques du chapitre 4 ont mis en évidence les mécanismes induisant des oscil-
lations de Rabi dans des nano-fils de silicium sur SOI. Dans ce chapitre, nous modélisons de manière
simple le système réel. Ce modèle capture les tendances observées numériquement telles que la dépen-
dance de la fréquence de Rabi avec les champs électrique et magnétique appliqués sur ce système. Il
permet aussi d’expliciter la dépendance des fréquences de Rabi et de Larmor aux paramètres du matériau
hôte utilisé.

Tout d’abord, nous introduisons un modèle de boite quantique rectangulaire. Puis nous construisons
une base minimale capturant les tendances observées numériquement. Ensuite, nous développons ana-
lytiquement les expressions des facteurs gyromagnétiques et de la fréquence de Rabi, ce qui permet de
comprendre leur dépendance au matériau hôte et aux champs extérieurs appliqués. Ensuite nous vali-
dons le modèle par comparaison avec les simulations numériques de la boite quantique rectangulaire,
et nous discutons ses limites. Finalement, nous montrons que le silicium est un matériau idéal pour
exciter électriquement des oscillations de Rabi dans une configuration de type g-TMR grâce à la forte
anisotropie de ses bandes de valence.

5.1 Modèle simplifié pour une boite quantique
Il est utile de construire une géométrie simple de boite quantique qui reproduit et explique les ten-

dances observées dans la structure réelle simulée au chapitre 4. Dans cette section, nous introduisons
un modèle de boite quantique rectangulaire, dont la structure électronique des trous est décrite avec une
méthode k ·p quatre bandes. Ensuite nous discutons des solutions de cet hamiltonien dans une base mi-
nimale capturant les tendances observées numériquement au chapitre 4. Nous analysons, en particulier,
les effets du confinement quantique, des champs électrique et magnétique pour préparer le calcul de la
fréquence de Rabi du qubit de trou dans la section 5.2.

5.1.1 Structure et hamiltonien
Nous introduisons une boite quantique rectangulaire de dimensions Lx × Ly × Lz faite d’un maté-

riau semiconducteur et dont l’énergie potentielle de confinement structural Ustruct s’écrit (confinement
"dur") :

Ustruct(x, y, z) =

{
0 si |x| < Lx

2
, |y| < Ly

2
, |z| < Lz

2

+∞ sinon.
, (5.1)

De manière similaire aux simulations du chapitre 4, x, y, et z correspondent respectivement aux axes
[110], [1̄10] et [001] du cristal (d’autres choix d’axes cristallographiques sont discutés dans la section
5.5). La figure 5.1 représente cette boite quantique et le système d’axes utilisé.
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FIGURE 5.1 – Modèle de la boite quantique. Une boite rectangulaire ayant pour cotés Lx, Ly et Lz peut
être soumise à un champ magnétique statique et homogène B, à un champ électrique statique et homo-
gène E, et à une modulation radio-fréquence du champ électrique δE(t) = Eac sin(2πfLt) résonnant
avec les états du qubit, alignée avec E ici (Eac est homogène). L’orientation de B est caractérisée par
les coordonnées angulaires θ et ϕ.

Nous nous intéressons aux états de trous de cette boite quantique. Tout d’abord, nous savons que
l’interaction spin-orbite directe dans les bandes de valence est le moteur des oscillations de Rabi des
qubits spin-orbite de trou [62, 67, 68]. De plus, les conclusions du chapitre 4 suggèrent de négliger le
mélange à la bande de split-off (|1/2,±1/2〉). Par conséquent, nous supposons que les états de trous
dans cette boite quantique peuvent être décrits par l’hamiltonien k · p quatre bandes de Luttinger-Kohn
(LK) [26, 45]. En reprenant la notation du chapitre 4, nous notons les fonctions de Bloch de trous
lourds |±3/2〉 ≡ |3/2,±3/2〉, et celles des trous légers |±1/2〉 ≡ |3/2,±1/2〉 et ainsi dans la base
{|+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉} l’hamiltonien du matériau massif (de type diamant ou zinc-blend
[26]) s’écrit :

H4k·p =


P +Q −S R 0
−S∗ P −Q 0 R
R∗ 0 P −Q S
0 R∗ S∗ P +Q

 , (5.2)

où :
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2
√

3γ3

(
kx − iky

)
kz , (5.3d)

et k = (kx, ky, kz) est le vecteur d’onde dans les axes de la boite quantique, m0 est la masse d’un
électron libre, et γ1, γ2, γ3 sont les paramètres de Luttinger du matériau de cette boite. La prise en compte
de contraintes structurales dans cette hamiltonien est détaillée en annexe G. Par souci de simplicité, nous
avons changé le signe de l’hamiltonien H4k·p de façon à obtenir une dispersion positive comme pour les
électrons.

Comme détaillé dans le chapitre 2, la substitution k → −i∇ dans l’hamiltonien (5.2) donne un
ensemble de quatre équations différentielles couplées pour les fonctions enveloppes de trous lourds
(jz = ±3/2) et de trous légers (jz = ±1/2). Ces enveloppes doivent s’annuler au bord de la boite dans
ce modèle de confinement "dur". Nous choisissons de développer les solutions de ces équations sur la
base des fonctions harmoniques {|nxnynz〉 ⊗ |jz〉} où :

〈r|nxnynz〉 = χnx(x, Lx)χny(y, Ly)χnz(z, Lz) , (5.4)
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et :

χn(u, L) =

√
2

L
sin
[
nπ
(u
L

+
1

2

)]
, |u| ≤ L

2
. (5.5)

En particulier, et par analogie à ce qui a été fait numériquement dans le chapitre 4, la boite peut être
soumise à un champ magnétique statique B et à un champ électrique statique E = E0y induit par des
grilles extérieures. Les mêmes grilles sont utilisées pour appliquer un champ électrique radio-fréquence
δE(t), d’amplitude Eac, résonnant avec les états du qubit pour entraîner des oscillations de Rabi (le
champ électrique statique et le champ électrique radio-fréquence sont donc alignés ici). La figure 5.1
représente une telle configuration. Ainsi notre objectif est de calculer la fréquence de Rabi de la paire
fondamentale du qubit dans cette configuration de type g-TMR (modulation de la fonction d’onde par
le champ radio-fréquence dans un potentiel fortement anharmonique ; voir la section 3.4.1) [58].

Ce modèle est une description simple d’un qubit spin-orbite de trou comme implémenté dans les
dispositifs planaires et SOI par exemple. Dans ce chapitre, nous montrons qu’il capture la dépendance
de la fréquence de Rabi avec les champs électrique et magnétique dont les tendances ont été mises en
évidence dans les simulations du chapitre 4.

5.1.2 Base minimale pour les fonctions enveloppes
L’hamiltonien (5.2) du système précédemment décrit peut être diagonalisé numériquement dans

la base des fonctions harmoniques (5.5). Cependant, pour établir la relation entre les paramètres du
dispositif (dimensions et matériaux) et ses propriétés (facteurs g et fréquence de Rabi notamment), il est
pertinent de construire un modèle minimal en choisissant judicieusement une base simple de fonctions
harmoniques qui capture l’essentiel de la physique.

Sans champ extérieur, l’état fondamental de l’hamiltonien de la boite quantique rectangulaire est
dominé par des enveloppes de type s (nx = ny = nz = 1, voir le chapitre 4). Quand Lz � Lx, Ly
(une limite de couche mince que nous détaillons plus tard dans la section 5.2.2), les premiers états
excités se composent d’enveloppes dont les nombres quantiques nx et ny augmentent. Cependant, les
enveloppes avec nx > 1 jouent un rôle mineur dans ce modèle car les champs électriques statique
et radio-fréquence dans la boite sont orientés selon l’axe y. Ainsi, l’état fondamental de type s est
principalement mélangé avec une excitation de type py (ny = 2) par le champ électrique (voir conclusion
du chapitre 4). Donc, nous pouvons capturer les principales tendances dans la base minimale B suivante
qui inclut les enveloppes de type s et py des trous lourds et des trous légers :

B = {B0, TB0} (5.6)

où :
B0 = {|1,+3/2〉, |1,−1/2〉, |2,+3/2〉, |2,−1/2〉} , (5.7)

avec |i, jz〉 = |1i1〉 ⊗ |jz〉, {|1i1〉} sont définies dans l’équation (5.4), jz ∈ {|±3/2〉, |±1/2〉} et T est
l’opérateur de renversement du temps (T |+3/2〉 = |−3/2〉 et T |−1/2〉 = |+1/2〉). Dans les prochains
paragraphes, nous discutons l’effet du confinement structural, les champs électrique et magnétique dans
la base minimale B.

Effet du confinement structural

Dans un premier temps, nous considérons la boite quantique rectangulaire sans champs extérieurs et
nous décomposons les enveloppes dans la base minimale B.

Dans cette base, ni le terme S, ni le terme proportionnel à γ2 de R ne contribuent aux éléments
de l’hamiltonien H4k·p [éq. (5.2)] car toutes les fonctions de la base minimale ont les mêmes nombres
quantiques nx et nz : seulement les termes en k2

x, k2
y , et k2

z sont non nuls. L’hamiltonien est donc bloc-
diagonal dans cette base minimale B :

H4k·p =

(
H0 04×4

04×4 H0

)
, (5.8)
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où dans la base B0 :

H0 =


P1 +Q1 R1 0 0
R1 P1 −Q1 0 0
0 0 P2 +Q2 R2

0 0 R2 P2 −Q2

 , (5.9)

avec :

P1 =
~2

2m0

γ1π
2
(
L−2
x + L−2

y + L−2
z

)
(5.10a)

Q1 =
~2

2m0

γ2π
2
(
L−2
x + L−2

y − 2L−2
z

)
(5.10b)

R1 = − ~2

2m0

√
3γ3π

2
(
L−2
x − L−2

y

)
, (5.10c)

et :

P2 =
~2

2m0

γ1π
2
(
L−2
x + 4L−2

y + L−2
z

)
(5.11a)

Q2 =
~2

2m0

γ2π
2
(
L−2
x + 4L−2

y − 2L−2
z

)
(5.11b)

R2 = − ~2

2m0

√
3γ3π

2
(
L−2
x − 4L−2

y

)
. (5.11c)

L’état de trous lourds de nombre quantique ny = 1 est ainsi mélangé avec l’état de trous légers de
même nombre quantique ny = 1 par R1, tandis que l’état de trous lourds de nombre quantique ny = 2
est mélangé avec l’état de trous légers de même nombre quantique ny = 2 par R2. Ces couplages sont
contrôlés par le confinement latéral (Ri ∝ L−2

x , L−2
y ). Les états propres |i±〉 (i ≡ ny = 1, 2) de H0

sont :
|i−〉 = hi|i,+

3

2
〉+ li|i,−

1

2
〉

|i+〉 = −li|i,+
3

2
〉+ hi|i,−

1

2
〉 ,

(5.12)

où hi = (−Qi +
√
Q2
i +R2

i )/Wi, li = −Ri/Wi, et W 2
i = R2

i + (−Qi +
√
Q2
i +R2

i )
2. Les énergies

propres associées aux états propres des équations (5.12) sont :

Ei± = Pi ±
√
Q2
i +R2

i . (5.13)

Dans la limite d’une couche mince Lz � Lx, Ly (Qi < 0), les états |i−〉 sont dominés par une
composante trous lourds |i,+3/2〉, tandis que les états |i+〉 sont dominés par une composante trous
légers. La figure 5.2 représente les niveaux d’énergies et les fonctions enveloppes d’une boite quantique
de silicium ayant pour cotés Lx = 40 nm, Ly = 30 nm et Lz = 10 nm. Les états |1±〉 restent des états
de purs trous lourds/légers quand Ly = Lx (R1 = 0) tandis que |2±〉 le sont quand Ly = 2Lx (R2 = 0).

Chacun des états |i±〉 est deux fois dégénéré à cause de la symétrie de renversement du temps [voir
la forme de l’hamiltonien (5.8)]. Le partenaire dégénéré dans la base TB0 a la même expression que
les équations (5.12) avec |i,+3/2〉 remplacé par |i,−3/2〉 et |i,−1/2〉 remplacé par |i,+1/2〉. Nous
introduisons donc un index de pseudo spin pour distinguer les états |i±,⇑〉 ≡ |i±〉 dans la base B0 [éqs.
(5.12)] de leur partenaire symétrique par renversement du temps |i±,⇓〉 dans la base TB0.

Effet du champ électrique statique

Ensuite, nous appliquons le champ électrique statique E = E0y comme représenté dans la figure 5.1.
L’hamiltonien associé à ce champ électrique s’écrit alors Uelec = −eE0y. Cet hamiltonien est diagonal
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FIGURE 5.2 – Niveaux d’énergies et fonctions enveloppes selon l’axe y d’une boite quantique de sili-
cium ayant pour cotés Lx = 40 nm, Ly = 30 nm et Lz = 10 nm sans champ électrique ni magnétique
dans la base minimale. La composition des trous de chaque état est indiquée dans la case correspondante.
Les paramètres de Luttinger du silicium sont donnés dans la table 5.1.

par rapport au moment angulaire jz, et prend la même forme dans les bases B0 et TB0 :

He = Λ


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (5.14)

où Λ = 16eE0Ly/(9π
2). Donc, comme discuté ci-dessus, le champ électrique mélange les états ny = 1

et ny = 2 avec un même spin jz.
Pour capturer l’effet du champ électrique statique, nous effectuons, en première approximation un

développement en perturbation à l’ordre un en E0. Comme l’hamiltonien électrique ne couple pas des
états de pseudo-spins différents, nous pouvons introduisons les états de type s d’ordre un :

|1̃−〉 = |1−〉+ λ1−
2−|2−〉+ λ1−

2+|2+〉 (5.15a)

|1̃+〉 = |1+〉+ λ1+
2−|2−〉+ λ1+

2+|2+〉 , (5.15b)

et les états de type py d’ordre un :

|2̃−〉 = |2−〉+ λ2−
1−|1−〉+ λ2−

1+|1+〉 (5.16a)

|2̃+〉 = |2+〉+ λ2+
1−|1−〉+ λ2+

1+|1+〉 , (5.16b)

où :

λ1±
2± = −λ2±

1± = Λ
h1h2 + l1l2
E1± − E2±

(5.17a)

λ1±
2∓ = −λ2∓

1± = ±Λ
h1l2 − h2l1
E1± − E2∓

. (5.17b)

Les énergies présentes aux dénominateurs sont définies par l’équation (5.13), et les coefficients {hi} et
{li} sont définis dans les équations (5.12). Le développement ci-dessus est valable seulement loin des
éventuels anti-croisements des états |1±〉 et |2±〉.

Effet du champ magnétique statique

Enfin, nous appliquons un champ magnétique B homogène au système. L’hamiltonien du champ
magnétique Hm est alors la somme de trois contributions Hm = Hp + Hd + HZ. Les deux premières,
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Hp et Hd, sont le résultat de l’action du potentiel vecteur sur les fonctions enveloppes. Ces deux termes
sont obtenus après les substitutions kαkβ → {kα, kβ} [{A,B} = (AB +BA)/2] et k→ −i∇+ eA/~
dans l’hamiltonien k · p quatre bandes (5.2) où A est le potentiel vecteur tel que B = ∇ × A [voir
le chapitre 2 pour les détails]. Nous choisissons une jauge symétrique A = −r × B/2. L’hamiltonien
paramagnétique Hp collecte les termes proportionnels ∝ Ai tandis que Hd collecte les termes ∝ AiAj
(i, j ∈ {x, y, z}). La troisième contribution, HZ = 2κµBB · J, est l’hamiltonien Zeeman qui décrit
l’action du champ magnétique sur les fonctions de Bloch, J étant le moment angulaire 3/2 des trous
(voir section 2.2.3).

Comme discuté dans le chapitre 4, l’hamiltonien diamagnétique Hd ∝ B2 n’est pas pertinent pour
le calcul des fréquences de Larmor et de Rabi du qubit (à l’ordre un en champ magnétique) et sera donc
négligé par la suite. De plus, l’hamiltonien paramagnétique Hp n’a pas d’action dans la base minimale
B. Seul l’hamiltonien Zeeman HZ a des éléments non nuls dans cette base B :

〈i, jz|HZ|i′, j′z〉 = δi,i′〈jz|HZ|j′z〉 , (5.18)

où {i, i′} ∈ {1, 2}, etHZ s’exprime comme suit dans la base {|+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉} :

HZ = κµBB


3bz

√
3b− 0 0√

3b+ bz 2b− 0

0 2b+ −bz
√

3b−
0 0

√
3b+ −3bz

 . (5.19)

b = (bx, by, bz) est le vecteur unitaire aligné sur le champ magnétique, et b+ = b∗− = bx+ iby. Contraire-
ment au champ électrique statique, qui mélange les enveloppes ny = 1 et ny = 2 avec un même moment
angulaire total jz (∆jz = 0), le champ magnétique statique mélange des enveloppes ayant un même ny
avec des jz différents (∆jz = ±1).

5.2 Fréquence de Rabi
Dans cette section, nous rappelons l’expression ‘générale‘ de la fréquence de Rabi quand le champ

magnétique est traité à l’ordre un en perturbation, puis nous appliquons cette expression au qubit spin-
orbite de trou dans la base minimale B introduite dans la section précédente.

5.2.1 Équations générales ...
Nous supposons que le système est la boite quantique rectangulaire soumise à un champ électrique et

un champ magnétique homogènes décrit dans la section précédente. Nous considérons un qubit basé sur
deux états (|0,⇑〉, |0,⇓〉) dégénérés à champ magnétique nul mais séparés en énergie (|0〉, |1〉) à champ
magnétique fini. À ce stade, nous ne faisons pas d’hypothèse sur le choix de la base. Nous introduisons
l’effet du champ magnétique via une théorie de perturbation dégénérée pour calculer la fréquence de
Rabi à l’ordre un en B. Les états du qubit d’ordre zéro, |00〉 et |10〉, et les énergies d’ordre un, E1(0) et
E1(1), sont ainsi les vecteurs et énergies propres de l’hamiltonien (voir la section 4.1.2) :

H1(B) =

(
〈0,⇑ |H ′m|0,⇑〉 〈0,⇑ |H ′m|0,⇓〉
〈0,⇓ |H ′m|0,⇑〉 〈0,⇓ |H ′m|0,⇓〉

)
, (5.20)

où H ′m = Hp + HZ collecte tous les termes proportionnels à B de l’hamiltonien du champ magnétique
Hm. En particulier, nous soulignons que Hp n’a aucune action dans la base minimale B [H ′m ≡ Hz]
ce qui n’est pas vrai dans la base étendue qui sera considérée dans les simulations numériques de la
section 5.4. Les même grilles qui appliquent un champ électrique statique sont utilisées pour contrôler
les oscillations de Rabi entre |0〉 et |1〉 grâce à une modulation radio-fréquence du champ électrique
δE(t) = Eac sin(2πfLt)y résonnante avec la fréquence de Larmor fL du qubit. La figure 5.1 représente
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cette modulation. Dans ces conditions, l’opérateur décrivant l’effet du champ électrique radio-fréquence
[éq. (4.3)] est VacD1 = Eacy, et la fréquence de Rabi s’écrit :

fR =
e

h
Eac|〈1|y|0〉| . (5.21)

Comme discuté dans le chapitre 4, la fréquence de Rabi fR peut être calculée d’ordre un en B à
partir des états à l’ordre un en champ magnétique :

|01〉 = |00〉+
∑
n>0,σ

〈n, σ|H ′m|00〉
E0 − En

|n, σ〉 (5.22a)

|11〉 = |10〉+
∑
n>0,σ

〈n, σ|H ′m|10〉
E0 − En

|n, σ〉 , (5.22b)

où |n, σ〉 est un état excité de pseudo-spin σ et En l’énergie des états de la paire de Kramers. En les
substituant dans l’équation (5.21), nous obtenons :

fR =
eEac

h

∣∣∣∑
n,σ

1

E0 − En
(
〈10|y|n, σ〉〈n, σ|H ′m|00〉+ 〈10|H ′m|n, σ〉〈n, σ|y|00〉

)∣∣∣ . (5.23)

Nous rappelons que cette expression est valable pour tout choix de base. Nous allons maintenant exploi-
ter cette expression dans la base minimale B.

5.2.2 ... dans la base minimale
Nous nous plaçons dans la base minimale B. Nous choisissons les états du qubit |0,⇑〉 ≡ |1̃−,⇑〉, et

|0,⇓〉 ≡ |1̃−,⇓〉 (définies par les équations (5.15)) dégénérés sans champ magnétique (le choix des états
|1̃+,⇑〉, |1̃+,⇓〉 est discuté en annexe G). Dans l’expression de la fréquence de Rabi (5.23), la somme
sur n ne parcourt que les états |1̃+〉 et |2̃±〉. Nous allons développer les fréquences de Larmor et de
Rabi à l’ordre un en tous les champs, dont le champ électrique statique E0. D’abord, les énergies E1(0)
et E1(1), et les états |00〉 et |10〉 sont, à l’ordre un en champ électrique E0, les solutions propres de :

H1(B) =
1

2
µBB

(
gzbz gxbx − igyby

gxbx + igyby −gzbz

)
, (5.24)

où :

gx = 4κ
(√

3h1l1 + l21
)

(5.25a)

gy = 4κ
(√

3h1l1 − l21
)

(5.25b)

gz = 2κ
(

3h2
1 − l21

)
. (5.25c)

Les facteurs gx, gy et gz ont été développés à l’ordre 1 en E0 en introduisant l’équation (5.15) pour
|1̃,−〉 dans l’équation (5.20). gx, gy, et gz sont en fait indépendant de E0 à cet ordre. La fréquence de
Larmor est ainsi :

fL =
1

h
|E1(1)− E1(0)| = µBB

h

√
g2
xb

2
x + g2

yb
2
y + g2

zb
2
z , (5.26)

et gx, gy et gz peuvent donc être identifiés comme les facteurs g principaux selon les axes magnétiques
x, y et z. De plus, les états |00〉 et |10〉 s’écrivent :

|00〉 = α|1̃−,⇑〉+ β|1̃−,⇓〉 (5.27a)

|10〉 = −β|1̃−,⇑〉+ α∗|1̃−,⇓〉 , (5.27b)
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où :

α =
−gxbx + igyby

W
(5.28a)

β =
gzbz +

√
g2
xb

2
x + g2

yb
2
y + g2

zb
2
z

W
. (5.28b)

et W est un facteur de normalisation, tel que W 2 = g2
xb

2
x + g2

yb
2
y +

(
gzbz +

√
g2
xb

2
x + g2

yb
2
y + g2

zb
2
z

)2.
Sans champ électrique statique, le champ électrique radio-fréquence d’amplitudeEac peut seulement

coupler |1−〉 avec |2−〉 et |2+〉 (par l’intermédiaire de l’élément de matrice dipolaire y), tandis que
le champ magnétique statique (dont l’effet est capturé par l’hamiltonien HZ) peut seulement coupler
|1−〉 avec |1+〉. Par conséquent, il n’y a pas d’états excités capables de connecter |00〉 et |10〉 dans
l’équation (5.23), et la fréquence de Rabi est nulle. Une analyse des symétries confirme cette conclusion :
quand le champ électrique statique E0 = 0, le système comporte trois plans miroirs respectivement
perpendiculaires aux axes x, y, z qui, comme montré dans le chapitre 4 et compte tenue de la symétrie
du champ électrique radio-fréquence, suppriment les oscillations de Rabi à l’ordre un en B et en Eac.

Par conséquent, l’ordre minimal en champ électrique statique pour lequel la fréquence de Rabi peut
être non nulle est l’ordre un. Ainsi, à l’ordre un en champ électrique statique E0, l’équation (5.23) peut
être factorisée sous la forme :

fR =
e

h
B|E0|Eac

∣∣∣Π1̃+ + Π2̃− + Π2̃+

∣∣∣ , (5.29)

avec Π1̃+, Π2̃+ et Π2̃− les contributions des états |1̃+〉, |2̃+〉 et |2̃−〉 à l’équation (5.23) données dans
l’annexe H.

L’équation (5.29) avec les équations (5.12), (5.15), (5.16), (5.27) et l’annexe H fournissent un modèle
analytique pour la fréquence de Rabi fR à l’ordre un en tous les champs B, E0, et Eac dans la base
minimale B. Cependant, pour établir une expression de fR plus compacte et transparente, nous allons,
par la suite, la développer en puissances de Lz/Lx et Lz/Ly dans une limite de couche mince Lz �
Lx, Ly. Cette limite est appropriée pour la plupart des dispositifs planaires et SOI sur des substrats (001)
(voir chapitre 4).

Limite de la couche mince

Dans la limite Lz � Lx, Ly, les états |1−〉 et |2−〉 sont presque des états de purs trous lourds
(jz = ±3/2) tandis que les états |1+〉 et |2+〉 sont presque des états de purs trous légers (jz = ±1/2).
Ainsi le champ électrique statiqueE0 et le champ électrique radio-fréquence (d’amplitudeEac) couplent
essentiellement |1−, σ〉 et |2−, σ〉. À l’ordre le plus bas en Lz/Lx et Lz/Ly, seuls les états |2̃−〉 contri-
buent à la fréquence de Rabi dans l’équation (5.23). Plus précisément, les états |1−,⇑〉 et |2−,⇑〉 [éqs.
(5.12)] s’écrivent à l’ordre deux en Lz/Lx et Lz/Ly :

|1−,⇑〉 = |1,+3

2
〉+ δl1|1,−

1

2
〉

|2−,⇑〉 = |2,+3

2
〉+ δl2|2,−

1

2
〉 ,

(5.30)

où :

δl1 = −
√

3

4

γ3

γ2

(L2
z

L2
y

− L2
z

L2
x

)
(5.31a)

δl2 = −
√

3

4

γ3

γ2

(
4
L2
z

L2
y

− L2
z

L2
x

)
. (5.31b)
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Ensuite, à champ électrique statique fini E0 :

|1̃−,⇑〉 = |1,+3

2
〉+ λ|2,+3

2
〉+ δl1|1,−

1

2
〉+ λδl2|2,−

1

2
〉

|2̃−,⇑〉 = |2,+3

2
〉 − λ|1,+3

2
〉+ δl2|2,−

1

2
〉 − λδl1|1,−

1

2
〉 ,

(5.32)

où [voir les équations (5.15)] :

λ = − 32m0eE0L
3
y

27π4~2(γ1 + γ2)
. (5.33)

Les expressions sont similaires pour |1̃−,⇓〉 et |2̃−,⇓〉 (avec jz = 3/2 remplacé par jz = −3/2 et
jz = −1/2 par jz = 1/2).

Les facteurs g principaux des équations (5.25) sont ainsi, à l’ordre deux en Lz/Lx et Lz/Ly :

gx = gy = 4
√

3κδl1 = −3κ
γ3

γ2

(L2
z

L2
y

− L2
z

L2
x

)
(5.34a)

gz = 6κ . (5.34b)

Comme attendu pour des états de purs trous lourds, |gz| � |gx|, |gy|. Les éléments de matrice HZ entre
les états {|1̃−,⇑〉, |1̃−,⇓〉} (colonnes) et {|2̃−,⇑〉, |2̃−,⇓〉} (lignes) présents dans l’équation (5.23),
s’écrivent à l’ordre deux en Lz/Lx et Lz/Ly :

H(21)
Z = 2

√
3κµBBλ(δl2 − δl1)

(
0 b−
b+ 0

)
. (5.35)

Les éléments de matrice magnétique entre les pseudo-spin opposés ont pour origine l’interaction
proportionnelle à b± de la composante majoritaire jz = ±3/2 d’un pseudo-spin avec la composante
minoritaire jz = ±1/2 de l’autre. Si E0 = 0 ou δl1 = δl2, alors chacun des deux états |1̃−,⇑〉 et
|2̃−,⇓〉 peut être factorisé comme un produit d’une enveloppe par une fonction de Bloch mixte trous
lourds/légers où ces fonctions de Bloch sont identiques et où les deux enveloppes sont orthogonales.
Ainsi, l’élément de matrice magnétique entre ces états est nul car il ne peut pas coupler des états d’en-
veloppes orthogonales. Cela donne lieu le préfacteur∝ λ(δl2− δl1) dans l’équation (5.35). La physique
des oscillations de Rabi sera analysée plus en détails dans la section 5.4. En substituant les équations
ci-dessus dans l’expression de la fréquence de Rabi, nous obtenons :

fR =
64
√

3e

9π2h
µB|κ|BEacLy

|λ|(δl2 − δl1)

E2− − E1−

∣∣α2b+ − β2b−
∣∣ . (5.36)

Le dernier terme décrit comment la fréquence de Rabi dépend de l’orientation du champ magnétique, et
peut être factorisé comme suit :

|α2b+ − β2b−
∣∣ = G(θ) sin θ , (5.37)

avec θ l’angle entre le champ magnétique et l’axe z (voir figure 5.1), et :

G(θ) =
1√

1 + F 2(θ)

F (θ) =
γ3

2γ2

(L2
z

L2
y

− L2
z

L2
x

)
tan θ .

(5.38)

La fonction F (θ) est développée à l’ordre deux en Lz/Lx et Lz/Ly. Il n’est pas, cependant, pertinent
de développer G(θ) en puissance de Lz/Lx et Lz/Ly car la convergence de la série résultante est non
uniforme par rapport à la variable θ. En développant seulement le préfacteur de G(θ) dans l’équation
(5.36) à l’ordre deux en Lz/Lx et Lz/Ly, nous obtenons finalement :

f
(2)
R =

28m0e
3

34π9~4
B|E0|Eac

γ3|κ|
γ2(γ1 + γ2)2

L6
y

L2
z

L2
y

G(θ) sin θ , (5.39)
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À ce niveau d’approximation, la fréquence de Rabi ne dépend pas de la composante du champ magné-
tique dans le plan (xy) (pas de dépendance en angle ϕ). L’enveloppe sin θ = |b±| est le résultat de
la dépendance ∝ b± de l’élément de matrice de HZ présent dans l’équation (5.35). La fonction G(θ)
provient de la composition en pseudo-spin des états |00〉 et |10〉 [les coefficients α et β de l’équation
(5.36)]. La figure 5.3 représente la fonction G(θ) pour différents rapports de longueurs de boite quan-
tique Ly/Lx. Nous observons que G(θ) ∼ 1 pour une large gamme d’angle θ sauf près de π/2 où elle
diminue brutalement pour s’annuler en θ = π/2. L’origine de ce creux sera discutée plus tard (voir
section 5.4.2).
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FIGURE 5.3 – Fonction G(θ) (insert) et G(θ) sin θ pour différents rapports Lx/Ly à Lz/Ly = 1/3. Le
trait pointillé noir est l’enveloppe sin θ. G(θ) ∼ 1 pour une large gamme d’angle θ sauf près de π/2 où
elle diminue brutalement pour s’annuler en θ = π/2.

La fréquence de Rabi devient dépendante de la composante du champ magnétique dans le plan (xy),
donc de l’angle ϕ une fois que les états |1̃−〉 et |2̃−〉 sont développés à l’ordre quatre en Lz/Lx et
Lz/Ly. En procédant de façon similaire à ce qui précède, nous obtenons après calculs :

f
(4)
R = f

(2)
R

{
1 +

1

4γ2(γ1 + γ2)

[
A1
L2
z

L2
y

− A2
L2
z

L2
x

+ A3

(
5
L2
z

L2
y

− 2
L2
z

L2
x

)
cos 2ϕ

]}
, (5.40)

où A1 = 10(γ1γ2 + γ2
2 + 3γ2

3), A2 = 12γ2
3 , A3 = γ3(γ1 + γ2), et f (2)

R est définie par l’équation (5.39).

Corrections à fort champ électrique

Les expressions de la fréquence de Rabi d’une géométrie quelconque [éq. (5.29)] et d’une couche
mince [éqs. (5.39) et (5.40)] sont valides à champ électrique statique E0 suffisamment faible par rapport
à l’énergie de confinement selon z. Cependant, comme montré dans la section suivante, la fréquence
de Rabi décroit à grand E0, en particulier parce que l’élément de matrice dipolaire 〈2̃−|y|1̃−〉 devient
petit une fois que les états |1̃−〉 et |2̃−〉 sont spatialement séparés par le champ électrique statique (voir
discussion au chapitre 4).

Une expression de la fréquence de Rabi valable pour n’importe quel champ électrique peut être
construite quand λ1±

2∓ et λ2∓
1± sont négligeables [éqs. (5.17)]. Dans cette limite, le champ électrique couple

|1−〉 à |2−〉 mais pas à |2+〉 ; cet hamiltonien à deux niveaux peut être résolu exactement pour les états
propres |1̃−〉 et |2̃−〉. En introduisant ces expressions pour E1̃−, |1̃−〉, E2̃−, et |2̃−〉 partout sauf dans
les coefficients α et β [éq. (5.27)], la fréquence de Rabi [éq. (5.29)] est simplement renormalisée par un
facteur :

Fe(E0) =
[
1 +

1

2

( E0

Emax

)2]− 3
2
, (5.41)
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Si Ge InP GaAs InAs InSb
E ′g (eV) 4.34 0.89 1.42 1.52 0.42 0.24

∆so (eV) 0.044 0.29 0.11 0.34 0.41 0.80
γ1 4.285 13.38 4.95 6.85 20.40 37.10
γ2 0.339 4.24 1.65 2.10 8.30 16.50
γ3 1.446 5.69 2.35 2.90 9.10 17.70

mz (m0) 0.277 0.204 0.606 0.377 0.263 0.244
mxy (m0) 0.216 0.057 0.152 0.112 0.035 0.019

κ -0.42 3.41 0.97 1.20 7.60 15.60
ζ[110] (×100) 8.38 1.47 3.17 2.07 1.01 0.58
ζ[001] (×100) 1.96 1.10 2.23 1.50 0.92 0.54
ζ ′[110] (×100) 92.25 7.62 21.58 15.43 3.82 2.00
ζ ′[001] (×100) 21.63 5.68 15.15 11.17 3.48 1.87

TABLE 5.1 – Énergie de la bande interdite E ′g en Γ, énergie spin-orbite ∆so dans les bandes de valence,
paramètres de Luttinger, masses des trous lourds selon z [mz = m0/(γ1 − 2γ2)], et dans le plan (xy)
[mxy = m0/(γ1 + γ2)], paramètre κ [48] et coefficients ζ[110], ζ[100], ζ ′[110] et ζ ′[100] caractérisant la vitesse
des oscillations de Rabi dans des boites quantiques orientées [110] et [100], pour différents matériaux
[éqs. (5.45), (5.50) et (5.51)].

où :

E−1
max = 2

√
2e

∣∣〈2−|y|1−〉∣∣
E2− − E1−

. (5.42)

Cette approximation est pertinente dans la limite de la couche mince. À l’ordre le plus bas en Lz/Lx et
Lz/Ly, Emax s’écrit :

E(0)
max =

27π4~2(γ1 + γ2)

64
√

2m0eL3
y

. (5.43)

Les fréquences de Rabi renormalisées f̃ (2)
R (E0) = f

(2)
R (E0)Fe(E0) et f̃ (4)

R (E0) = f
(4)
R (E0)Fe(E0) sont

maximums quand E0 = Emax. À ce champ, f̃R(Emax) = fR(Ẽmax), où Ẽmax = (3/2)−3/2Emax. En
particulier,

f̃
(2)
R (E(0)

max) =
8e2

9
√

3π5~2
BEac

γ3|κ|
γ2(γ1 + γ2)

L3
y

L2
z

L2
y

G(θ) sin θ . (5.44)

Nous notons que la fréquence de Rabi maximale est proportionnelle à LyL2
z dans la limite de la couche

mince Lz � Ly.

5.3 Validation des hypothèses du modèle
Dans cette section, nous discutons de la validité des différentes hypothèses faites dans le modèle

de la boite quantique rectangulaire. Tout d’abord, nous estimons le domaine de validé des différentes
approximations pour le champ électrique [linéaire éq. (5.29), et renormalisé éq. (5.41)], puis celui de la
limite de couche mince [éqs. (5.39) et (5.40)]. Ensuite, nous montrons que la base minimale capture les
tendances de la fréquence de Rabi calculée dans une base convergée. Finalement, nous discutons des
limites de ce modèle.

Pour tester le modèle et les approximations de la section 5.2, nous considérons une boite quantique
de silicium ayant pour longueurs Lx = 40 nm, Ly = 30 nm et Lz = 10 nm soumise à un champ
magnétique statique B = 1 T parallèle à y + z (θ = 45◦, ϕ = 0◦). L’amplitude du champ électrique
radio-fréquence est Eac = 0.03 mV/nm. Les paramètres du silicium κ, γ1, γ2 et γ3 sont donnés dans la
table 5.1.
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Chapitre 5. Impact du matériau sur les performances du qubit

5.3.1 Traitement du champ électrique statique
La figure 5.4 représente la fréquence de Rabi en fonction du champ électrique statique E0. Elle est

calculée soit à partir de l’équation (5.23), en utilisant les états propres exacts de l’hamiltonien, soit à
partir de l’approximation d’ordre un en E0 [éq. (5.29)], dans la base minimale B dans les deux cas.
La limite de la couche mince n’est pas prise à cette étape. Comme attendu, l’approximation à l’ordre
un reproduit la pente de la fréquence de Rabi prés de E0 = 0. Cependant, à grand champ électrique
la fréquence de Rabi calculée à partir des états exacts diminue car la polarisabilité des états du qubit
devient plus faible à fort confinement latéral. Cette tendance est néanmoins très bien capturée par la
renormalisation de l’approximation d’ordre un [éq. (5.41)].
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Exacte B
Linearisée
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FIGURE 5.4 – Fréquence de Rabi en fonction du champ électrique statique E0 dans une boite quantique
de silicium ayant pour cotés Lx = 40 nm, Ly = 30 nm et Lz = 10 nm. Le champ magnétique B = 1 T
est orienté selon y+z. Le champ radio fréquence a pour amplitudeEac = 0.03 mV/nm. La fréquence de
Rabi est calculée soit en utilisant les états exacts de l’hamiltonien dans la base minimale B [“Exacte B”,
éq. (5.23)], soit en utilisant l’approximation d’ordre un en E0, d’abord brute [“Linéarisée”, éq. (5.29)],
puis renormalisée [“Renormalisée”, éq. (5.41)].

5.3.2 Limite de la couche mince
Nous comparons ensuite le développement à l’ordre L2

z (f (2)
R ) et L4

z (f (4)
R ) avec la fréquence de Rabi

contenant tous les ordres f (∞)
R définie par l’équation (5.29). Les trois fréquences de Rabi (qui restent

linéarisées par rapport à E0) sont représentées sur la figure 5.5 en fonction de Lz (pour Lx et Ly fixées),
à E0 = 0.1 mV/nm. Tandis que f (2)

R peut être significativement plus petite que f (∞)
R , f (4)

R s’en approche
beaucoup plus (mais reste toujours légèrement plus grande) dans la gamme Lz = 1− 10 nm .

5.3.3 Base minimale
Finalement, la figure 5.6 représente la dépendance de la fréquence de Rabi à l’orientation du champ

magnétique pour deux matériaux (Si, Ge) et pour quatre approximations différentes :

1. La formule analytique à l’ordre quatre [éq. (5.40)],

2. La solution exacte du modèle dans la base minimale B,

3. La solution exacte dans une base "convergée" incluant les nombres quantiques jusqu’à nx =
ny = nz = 18, mais prenant en compte l’hamiltonien Zeeman seul (H ′m = Hz),
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FIGURE 5.5 – Fréquence de Rabi en fonction de la hauteur Lz de la boite quantique dans trois différentes
approximations, f (2)

R [éq. (5.39)], f (4)
R [éq. (5.40)], et f (∞)

R [éq. (5.29)], où ces fréquences de Rabi sont
linéarisées par rapport au champ électrique statique E0. Ici Lx = 40 nm, Ly = 30 nm, E0 = 0.1 mV/nm,
Eac = 0.03 mV/nm, et B = 1 T parallèle à y + z.

4. La solution exacte dans la même base convergée mais en prenant en compte l’effet du potentiel
vecteur sur les fonctions enveloppes (H ′m = Hz +Hp).

Pour toutes ces approximations, les cotés de la boite sont les mêmes que dans la figure 5.4, et les
paramètres matériau du germanium sont aussi donnés dans la table 5.1. Le champ électrique statique est
E0 = 0.1 mV/nm et le champ magnétique est B = 1 T.

La formule analytique [éq. (5.40)] fournit une description raisonnable de la dépendance orientatio-
nelle de la fréquence de Rabi, qui est, de plus, cohérente avec les cartes calculées dans les dispositifs
SOI réalistes au chapitre 4 (allant au delà de ce modèle de boite quantique rectangulaire). La fréquence
de Rabi obtenue de la solution exacte du modèle dans la base minimale B est légèrement différente à
cause des corrections d’ordre supérieurs à l’équation (5.40).

La fréquence de Rabi fR croit de manière significative dans une base plus grande qui prend en
compte la contribution d’un grand nombre d’états excités mais montre toujours la même anisotropie.
L’hamiltonien paramagnétiqueHp (qui n’a aucune action dans la base B) apporte une correction notable
à la fréquence de Rabi. Tandis que les contributions venant de l’hamiltonien Zeeman sont proportion-
nelles à κ, celles de l’hamiltonien paramagnétique varient en γ2 et γ3. Elles sont en fait opposées dans
le silicium (où Hp augmente la fréquence de Rabi) et dans le germanium (où Hp la décroît) en raison
des signes opposés de κ dans les deux matériaux.

Pour conclure, les formules analytiques pour f (2)
R et f (4)

R [éqs. (5.39) et (5.40)] fournissent une des-
cription semi-quantitative des oscillations de Rabi et peuvent être analysées pour mettre en évidence les
tendances suivies par un tel dispositif en fonction de sa géométrie et du matériau qui le compose.

5.3.4 Intensité du couplage spin-orbite
De telles anisotropies de la fréquence de Rabi sont toujours présentes dans le cas d’oscillations de

Rabi créées par l’intermédiaire d’un couplage spin-orbite, même pour des électrons [69, 35]. Même si le
couplage spin-orbite n’est pas explicite dans l’hamiltonien de Luttinger-Kohn [éq. (5.8)], ces oscillations
de Rabi sont le résultat de son action sur les états de trous j = 3/2 et j = 1/2 [67, 62, 68]. En
l’absence de couplage spin-orbite, le spin des trous est découplé de leur mouvement orbital, et ainsi les
oscillations de Rabi induitent par un champ électrique ne sont pas possibles. L’hamiltonien de Luttinger-
Kohn suppose une séparation ∆so entre les états j = 3/2 et j = 1/2 si grande que les états j = 1/2

91



Chapitre 5. Impact du matériau sur les performances du qubit
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FIGURE 5.6 – Cartes de la fréquence de Rabi en fonction de l’orientation du champ magnétique pour
un qubit de silicium (première ligne) et de germanium (seconde ligne) dans une boite quantique rec-
tangulaire de dimensions Lx = 40 nm, Ly = 30 nm et Lz = 10 nm. Les différents champs sont
E0 = 0.1 mV/nm, Eac = 0.03 mV/nm, et B = 1 T. Quatre différentes approximations pour la fré-
quence de Rabi sont comparées : (première colonne) formule analytique à l’ordre quatre [éq. (5.40)] ;
(seconde colonne) solution exacte dans la base minimale B ; (troisième colonne) solution exacte dans
une base "convergée" en tenant compte de l’hamiltonien Zeeman seulement ; (quatrième colonne) solu-
tion exacte dans cette base "convergée" en tenant compte l’effet du potentiel vecteur sur les fonctions
enveloppes.

(split off) peuvent être négligés. Ainsi, la physique des trous de basses énergies devient indépendant de
la valeur ∆so. L’interaction avec la bande de split-off j = 1/2 à ∆so fini peut-être prise en compte dans
un modèle k · p six bandes [70]. Cependant, nous avons vérifié numériquement que l’introduction d’un
∆so fini n’entraîne pas de changement significatif dans le comportement du qubit de trou. En particulier,
le modèle de la boite quantique rectangulaire en k ·p quatre bandes se comporte qualitativement comme
le dispositif réel étudié dans le chapitre 4 où le k · p six bandes a été utilisé.

5.3.5 Limitations du modèle
Nous voulons finalement mettre en avant les spécificités du modèle et ses limites. Premièrement,

la situation décrite ici est un cas de g-TMR [58] dans un potentiel de confinement fortement anharmo-
nique (comme discuté dans le chapitre 4). Dans ce scénario, les oscillations de Rabi sont le résultat du
changement de la forme de la fonction d’onde du qubit induit par le champ électrique radio-fréquence.
Elles peuvent être reliées à la dépendance électrique des facteurs g principaux du qubit, bien que nous
n’ayons pas suivi cette approche ici. Ensuite, le modèle actuel ne tient pas compte de l’effet du potentiel
vecteur sur les parties enveloppes de la fonction d’onde, qui se manifeste notament par une correction
∆gz sur le facteur gyromagnétique principal gz résultant du couplage entre les enveloppes nz = 1 et
nz = 2 par le terme S de l’hamiltonien de Luttinger-Kohn (5.8) (voir la référence [37] et le chapitre 4).
De plus, un terme de renormalisation de la masse des trous apparaît également lorsque nous traitons les
états de modulations nz > 1 en perturbation [71]. Cela introduit une correction supplémentaire sur les
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5.4. Physique des oscillations de Rabi

facteurs g car ils dépendent de la masse effective des trous. Ces corrections ont cependant un plus grand
impact sur la fréquence de Larmor que sur la fréquence de Rabi dans la limite d’une couche mince.

5.4 Physique des oscillations de Rabi
Dans cette section, nous discutons en détails de la physique qui ressort de l’expression de la fré-

quence de Rabi dans la limite d’une couche mince [éq. (5.39)]. Tout d’abord, nous discutons la dé-
pendance de la fréquence de Rabi avec les dimensions de la boite quantique et avec les paramètres
de Luttinger. Puis nous analysons la dépendance de la fréquence de Rabi avec l’orientation du champ
magnétique.

5.4.1 Ingrédients nécessaires aux oscillations de Rabi
Selon l’équation (5.39), la fréquence de Rabi est proportionnelle à ζ[110]L

6
y(L

2
z/L

2
y), où :

ζ[110] =
γ3|κ|

γ2(γ1 + γ2)2
. (5.45)

L’indice [110] fait référence à l’orientation de la boite quantique (voir la section suivante sur l’orientation
de la boite). Cette équation met en évidence les ingrédients nécessaires aux oscillations de Rabi qui sont
induites par le couplage spin orbite dans la bande de valence.

Mélange trous lourds/légers [généralité]

Le mélange trous lourds/trous légers dans les états d’une boite quantique, induit par le confinement
latéral, est un ingrédient nécessaire pour contrôler électriquement un qubit de spin semiconducteur [68].
Nous allons montrer que l’absence de mélange trous lourds/trous légers entraîne nécessairement une
fréquence de Rabi nulle.

Considérons une boite quantique (quelconque) sans champ extérieur. Nous supposons que les états
du qubit peuvent tous être classés en deux familles distinctes caractérisées par leur fonctions de Bloch
u1σ et u2σ :

|n, σ〉 = |ϕn〉 × |u1σ〉 ou |ϕn〉 × |u2σ〉 . (5.46)

Les fonctions de Bloch u1σ et u2σ peuvent être celles des purs trous lourds et purs trous légers, mais le
raisonnement suivant s’applique dès que les trous forment deux familles découplées. Les états du qubit
d’ordre zéro (|00〉, |10〉) prennent alors la même forme que ceux de l’équation (5.46). Le champ élec-
trique statique E0 couple des états ayant des fonctions de Bloch identiques, et ainsi les états à champ
électrique statique fini ont, eux aussi, la même forme que ceux de l’équation (5.46). Dans le développent
en série de perturbations de la fréquence de Rabi (5.23), le champ électrique Eac ne couple des états de
même fonction de Bloch u1σ et u2σ, mais dont les enveloppes sont donc nécessairement orthogonales.
L’hamiltonien Zeeman ne peut pas coupler des états d’enveloppes orthogonales,et l’hamiltonien para-
magnétique Hp ne couple pas des fonctions de Bloch de pseudo-spin opposés.

Finalement, ni le champ électrique Eac, ni le champ magnétique ne sont capables de connecter l’état
|00〉 à |10〉 dans ce développement [éq. (5.23)], et donc la fréquence de Rabi est nulle. Ainsi, le mélange
de trous de fonctions de Bloch différentes, rendant impossible la factorisation de l’équation (5.46), est
nécessaire pour entretenir électriquement des oscillations de Rabi.

Seul le confinement latéral dans une boite quantique permet le mélange trous lourds/légers, via le
terme R de l’hamiltonien de Luttinger [éq. (5.2)]. En l’absence d’un tel confinement latéral (dans un
film par exemple), il n’y a pas d’oscillations de Rabi possible.
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Mélange trous lourds/légers [base minimale]

À partir de maintenant, nous reconsidérons la boite quantique rectangulaire. Dans la base minimale
B, le couplage des enveloppes jz = ±3/2 et jz = ±1/2 par le confinement latéral est caractérisé par
R1 et R2 [éqs. (5.10) et (5.11)], et est donc proportionnel à γ3. À l’ordre le plus bas en perturbation, le
mélange résultant entre les enveloppes de trous lourds et de trous légers est inversement proportionnel
à la séparation en énergie 2Qi ∝ γ2 des états purs trous lourds et des états purs trous légers [voir les
équations (5.31) pour les expressions du mélange des trous légers δl1 et δl2 dans la limite d’une couche
mince]. Cela explique le facteur γ3/γ2 dans l’expression de ζ[110] : plus le couplage entre les trous
lourds et trous légers est grand par rapport à leur séparation (γ3 � γ2), plus les oscillations de Rabi
sont rapides. Une analyse plus fine montre qu’il faut en fait un déséquilibre entre le mélange trous lourd
et trous légers dans l’état fondamental |1−〉 et dans l’état excité |2−〉 [voir discussion après l’équation
(5.35)] : c’est pourquoi la fréquence de Rabi est proportionnelle à δl2 − δl1 ∝ (γ3/γ2)(L2

z/L
2
y) dans

l’équation (5.39).

Brisure de la symétrie d’inversion

Le mélange trous lourds et trous légers par le confinement latéral n’est cependant pas suffisant pour
permettre des oscillations de Rabi induites par un champ électrique radio-fréquence. En effet, ce champ
radio-fréquence Eac ne peut pas coupler des enveloppes de même parité (par rapport au centre de la
boite). Or le confinement latéral mélange des enveloppes de trous légers et de trous lourds de même
parité, comme le font l’hamiltonien Zeeman HZ et l’hamiltonien paramagnétique Hp dans l’équation
(5.22). Dans la base minimale B, seul le champ électrique statique E0 mélange les enveloppes impaires
py aux enveloppes paires de type s des états du qubits. Ce champ électrique est ainsi un prérequis
pour les oscillations de Rabi, ce qui souligne à nouveau la nécessité de briser la symétrie d’inversion
de la boite quantique (voir la discussion sur les symétries du chapitre 4). Le mélange s/py est en fait
proportionnel à Λ ∝ Ly et inversement proportionnel à la séparation ∆E ∝ (γ1 + γ2)/L2

y entre les états
|1−〉 ≈ |1,±3/2〉 et |2−〉 ≈ |2,±3/2〉, et donne donc lieu à un terme proportionnel à L3

y/(γ1 +γ2) dans
l’équation (5.39).

Interaction avec le champ magnétique

Enfin, les états |1̃−〉 et |2̃−〉 sont couplés par l’hamiltonien Zeeman dans l’équation (5.22). Ce
mélange est proportionnel à κ, et, encore une fois, inversement proportionnel à la séparation ∆E ∝ (γ1+
γ2)/L2

y entre les états |1̃−〉 ≈ |1−〉 et |2̃−〉 ≈ |2−〉. Ce couplage brise la symétrie par renversement du
temps dans les équations (5.22) et rend possible les oscillations de Rabi entre |01〉 et |11〉. Le couplage au
champ électrique radio-fréquence Eac étant proportionnel à Ly (comme le couplage à E0), la fréquence
de Rabi varie finalement comme γ3|κ|/[γ2(γ1 + γ2)2]× L4

y/L
2
z.

5.4.2 Orientation du champ magnétique
D’après l’équation (5.39), la fréquence de Rabi est proportionnelle à G(θ) sin θ où θ est l’angle

entre l’axe z et le champ magnétique B. La dépendance de la fréquence de Rabi à l’orientation du
champ magnétique résulte de l’interaction entre la réponse magnétique des trous lourds et trous légers.
En effet, nous pouvons définir :

|1̃−,⇓′〉 ≡ |00〉 = α|1̃−,⇑〉+ β|1̃−,⇓〉 (5.47a)

|1̃−,⇑′〉 ≡ |10〉 = −β|1̃−,⇑〉+ α∗|1̃−,⇓〉 , (5.47b)

et appliquer la même transformation à |2̃−〉 :

|2̃−,⇓′〉 = α|2̃−,⇑〉+ β|2̃−,⇓〉 (5.48a)

|2̃−,⇑′〉 = −β|2̃−,⇑〉+ α∗|2̃−,⇓〉 , (5.48b)
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où α et β sont données par les équations (5.28). Le champ électrique radio fréquence couple |1̃−,⇑′〉 à
|2̃−,⇑′〉 et |1̃−,⇓′〉 à |2̃−,⇓′〉. Pour permettre des oscillations de Rabi,HZ doit être capable de mélanger
|2̃−,⇓′〉 à |1̃−,⇑′〉, et |2̃−,⇑′〉 à |1̃−,⇓′〉.

Quand il y a une composante bz significative, |⇑′〉 ≈ |⇑〉 et |⇓′〉 ≈ |⇓〉 comme |gz| � |gx|, |gy| pour
des trous lourds presque purs [éqs. (5.34)]. Ce grand gz ' 6κ est la signature de la forte séparation ∝ bz
entre les composantes |±3/2〉 majoritaires de |1̃−〉. Le couplage 〈2̃−,⇓|Hz|1̃−,⇑〉 ∝ b+ ∝ sin θ entre
|1̃−,⇑′〉 et |2̃−,⇓′〉 résulte de l’interaction magnétique entre la composante |±3/2〉 majoritaire d’un
pseudo spin avec la composante |±1/2〉 minoritaire de l’autre [éq. (5.35)].

Cependant, quand bz ' 0, |⇑′〉 et |⇓′〉 deviennent des mélanges équilibrés des états |⇑〉 et |⇓〉. Dans
ces conditions, la fréquence de Larmor montre un minimum et |2̃−,⇓′〉 n’est plus couplé à |1̃−,⇑′〉 par
le champ magnétique, comme le montre la forme anti-diagonal de l’équation (5.35). En d’autre termes,
l’effet Zeeman qui sépare les états |1̃−〉 et le couplage entre |1̃−〉 et |2̃−〉 sont maintenant créés par
l’interaction ∝ b± entre les enveloppes |±3/2〉 et |±1/2〉 ; puisque les états Zeeman définis par les
équations (5.47) et (5.48) diagonalisent par bloc cette interaction (dans le sous espace |⇑′〉 et |⇓′〉), HZ

ne peut donc plus mélanger les états |⇑′〉 et |⇓′〉. Cela donne lieu au creux G(θ) dans la dépendance de
la fréquence de Rabi à l’orientation du champ magnétique. La dépendance de la fréquence de Rabi à
l’angle ϕ apparaît à des ordres supérieur en Lz, et provient des faibles anisotropies de confinement dans
le plan (xy).

5.5 Effet de l’orientation et choix du matériau
Dans cette section, nous discutons l’impact de l’orientation de la boite et du choix de matériaux sur

la vitesse des oscillations de Rabi.
Comme montré par l’équation (5.40), et discuté dans la section précédente, le fréquence de Rabi (à

un champ magnétique et électrique donnés) varie comme ζ[110] [éq. (5.45)] dans la limite d’une couche
mince. Ce paramètre caractérise donc la dépendance de la fréquence de Rabi au choix du matériaux de
la boite.

Il est aussi intéressant d’étudier d’autres orientations de la boite quantique, en particulier x ‖ [100],
y ‖ [010], z ‖ [001] (la boite est tournée de 45◦ autour de l’axe z). Dans cette orientation, les hamilto-
niens Luttinger-Kohn et Zeeman sont inchangés sauf le terme R qui devient :

R =
~2

2m0

√
3
[
− γ2

(
k2
x − k2

y

)
+ 2iγ3kxky

]
, (5.49)

où γ2 et γ3 sont donc interchangés par rapport à l’équation (5.3). Ainsi, γ3|κ| est simplement remplacé
par γ2|κ| au numérateur des équations (5.39) et (5.40). La fréquence de Rabi de cette boite varie ainsi
comme :

ζ[100] =
γ2|κ|

γ2(γ1 + γ2)2
=

|κ|
(γ1 + γ2)2

. (5.50)

Cette expression pour ζ[100] souligne le fait que le couplage des trous lourds et légers par le confinement
structural latéral est proportionnel à γ2 dans cette orientation "[100]" plutôt que proportionnelle à γ3

dans l’orientation [110]. Cela ne fait pas de grande différence dans les matériaux dont la bande de
valence est presque isotrope comme pour le Ge ou les III-V (où γ3/γ2 ' 1), mais est décisif dans le
Si (où γ3/γ2 ' 5). Pour illustrer les tendances matériaux, nous donnons ζ[110] et ζ[100] pour quelques
semiconducteurs (Si, Ge et quelque III-V) dans la table 5.1.

En général, plus la bande interdite du semiconducteur en Γ est petite, plus les paramètres de Luttinger
(γ1, γ2 et γ3) sont grands (faible masse des trous) et plus κ est grand. Ainsi ce grand κ compense l’effet
néfaste du terme (γ1 + γ2)2 présent au dénominateur de ζ[110] et ζ[100]. Puisque γ3/γ2 > 1 pour tous les
matériaux, un qubit de trou orienté [100] a toujours une fréquence de Rabi plus faible qu’un qubit de
trou orienté [110].
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Les qubits de silicium répondent plus faiblement au champ magnétique que les autres semicon-
ducteurs conventionnels (petit |κ|). Mais les qubit de silicium orientés [110] tirent avantage de la forte
anisotropie de la bande de valence (γ3 � γ2) [68], et montrent ainsi les oscillations de Rabi les plus
rapides pour des champs électrique et magnétique donnés, malgré un faible couplage spin-orbite. En
effet, comme discuté dans la section 5.4, les effets du couplage spin-orbite direct sont indépendants de
la séparation ∆so avec la bande de split off tant que les énergies de confinement restent très inférieures
à ∆so.

Cependant, une comparaison juste entre les matériaux devrait être plutôt faite à une même fréquence
de Larmor fL ∝ |κ| obtenue en ajustant l’amplitude du champ magnétique, car celle-ci impose les
échelles de temps pour la dynamique intrinsèque du qubit et la circuiterie radio-fréquence. De plus, la
comparaison est également plus juste à un même couplage électrique λ ∝ E0(γ1 + γ2)−1 [éq. (5.33)]
obtenu en ajustant le champ électrique statiqueE0. En effet les trous répondent plus fortement au champ
électrique lorsque leur masse est élevée et atteignent donc la fréquence de Rabi optimale à un champ
électrique E(0)

max ∝ (γ1 + γ2) plus faible [éq. (5.43)]. Nous introduisons donc,

ζ ′ = ζ
γ1 + γ2

|κ| , (5.51)

c’est à dire ζ ′[110] = (γ3/γ2)×1/(γ1+γ2) pour l’orientation [110] et ζ ′[100] = 1/(γ1+γ2) pour l’orientation
[100]. La table 5.1 donne ζ ′[100] et ζ ′[110] pour différent matériaux. Le silicium orienté [110] reste de loin le
meilleur choix du matériaux pour faire de la g-TMR dans un qubit de trou. Nous avons vérifié que cette
conclusion reste valide aussi bien quand nous résolvons le modèle dans une base convergée, que dans le
cas du dispositif réel du chapitre 4. Les effets des contraintes et d’un qubit de trou légers sont discutés
dans l’annexe G.

5.6 Conclusions
Pour conclure, nous avons étudié un modèle de boite quantique rectangulaire dans un semiconduc-

teur qui décrit un qubit spin-orbite de trou soumis à un champ électrique statique, un champ magné-
tique, et à un champ radio-fréquence permettant d’exciter des oscillations de Rabi. Nous avons établi
les équations analytiques de la fréquence de Rabi dans un régime où les oscillations de Rabi résultent
d’un couplage avec l’état fondamental du qubit et une paire d’états excités bien définie. Ces équations
mettent en évidence la dépendance de la fréquence de Rabi avec les dimensions et l’orientation de cette
boite quantique, et les paramètres du matériau hôte. En particulier, nous montrons que, dans la limite
d’une couche mince, une boite orientée [110] sur un substrat (001) se comporte mieux qu’une boite
orientée [100], car elle prend l’avantage de l’anisotropie des bandes de valence. Ainsi, le silicium, qui
montre la plus grande anisotropie de bandes de valence parmi les semiconducteurs conventionnels de
type diamant ou zinc-blende, représente un choix optimal pour maximiser la fréquence de Rabi dans ce
régime, malgré un faible couplage spin-orbite. Cette tendance mise en avant dans ce modèle simple a
été vérifiée dans des dispositifs plus réalistes proches des dispositifs SOI étudiés dans le chapitre 4.
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Chapitre 6

Interaction spin-phonon

Dans le chapitre 1, nous avons brièvement discuté le temps de relaxation d’un qubit. L’interaction
d’un qubit spin-orbite avec un bain environnant de phonons peut assister la relaxation de ses états, et
est donc un des mécanismes contribuant à la perte d’information. Dans ce chapitre nous allons discuter
le temps de relaxation d’un qubit de trou via des processus d’émission ou d’absorption d’un phonon
unique. Dans un premier temps, nous établissons l’expression du taux de relaxation à partir de la règle
d’or de Fermi, puis nous l’appliquons au modèle k · p quatre ou six bandes en supposant la structure
de bandes des phonons isotrope. Ensuite nous considérons le qubit spin-orbite dans le dispositif SOI
présenté au chapitre 4, et nous discutons la dépendance électrique et magnétique du temps de relaxation
T1 et l’optimisation du facteur de qualité (nombre d’oscillations de Rabi pendant un temps de relaxation
T1).

6.1 Temps de relaxation assisté par des phonons
Les atomes d’un cristal peuvent vibrer ce qui crée des ondes élastiques. Les énergies de ces ondes

sont quantifiées et sont associées à des quasiparticules appelées phonons. Nous rappelons brièvement la
structure de bandes des phonons.

FIGURE 6.1 – Structure de bandes des phonons du silicium le long du chemin L → Γ → X dans la
première zone de Brillouin. Les traits pleins et les pointillés correspondent à deux méthodes de calculs.
Les cercles représentent des données expérimentales. Adapté des références [72, 73].

De manière similaire à la structure de bandes électronique d’un semiconducteur, les énergies de
bandes ~ωαq des phonons sont caractérisées par un vecteur d’onde q et un indice de bandes α. La
structure de bandes des phonons d’un matériau semiconducteur se compose typiquement de bandes
acoustiques [ω(q = 0) = 0] et de bandes optiques [ω(q = 0) 6= 0]. Les bandes acoustiques dans
un semiconducteur massif décrivent la propagation du son par des déformations de la maille du cris-
tal tandis que les branches optiques décrivent plutôt des déplacements relatifs d’atomes au sein d’une
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maille. Chacune de ces branches peut être polarisée longitudinalement ou transversalement par rapport
au vecteur d’onde q. La figure 6.1 représente la structure de bandes des phonons du silicium.

Comme discuté dans la sous-section suivante, les phonons responsables de la relaxation des états
du qubit ont pour énergie la fréquence de Larmor (~ωL). Cette fréquence dans les qubits de spin (ou
spin-orbite) est typiquement ≤ 40 GHz. Ainsi, d’après la structure de bandes des phonons du silicium
représentée dans la figure 6.1, il est clair que seules les branches acoustiques contiennent des phonons
dans cette gamme d’énergie. Par conséquent, dans tout ce chapitre, nous ne considérons que les branches
de phonons acoustiques. Celle-ci se composent d’une branche longitudinale caractérisée par une vitesse
de groupe vl = ∇qω et de deux branches transversales de vitesse de groupe vt1 et vt2 qui, de manière
générale, dépendent légèrement de l’orientation du vecteur d’onde q, et vt1 est proche de vt2 .

Les phonons acoustiques peuvent être caractérisés par les déformations du réseau. Chaque point r
du réseau se transforme sous l’effet des phonons en :

r′ = r + êr , (6.1)

où êij = ∂ui/∂rj où i, j ∈ {x, y, z}, et u(r) est le champ de déplacement des phonons. En l’absence
de rotation du cristal, nous pouvons introduire le tenseur symétrique des déformations ε̂ ≡ (ê + tê)/2
[72, 74] :

ε̂ij(r) =
1

2

(
∂ui(r)

∂rj
+
∂uj(r)

∂ri

)
. (6.2)

Ce tenseur des déformations ε̂ caractérise alors complètement les déformations du cristal.
Par la suite, nous 1 allons établir le taux de relaxation d’un qubit assisté par des phonons. Après avoir

exprimé de façon générique le taux de relaxation du aux processus à un phonon, nous établissons son
expression pour des bandes isotropes de phonons. Finalement, nous calculons le temps de relaxation
pour un qubit de trou dont la structure électronique est décrite par une méthode k · p quatre ou six
bandes.

6.1.1 Expression générale
Nous considérons un qubit basé sur deux états |0〉 et |1〉 d’un hamiltonienH0, ayant pour énergiesE0

etE1 respectivement. Ce qubit interagit avec le bain thermique des phonons acoustiques d’énergies ~ωαq
où α est un indice de branches et q un vecteur d’onde. Nous supposons le qubit et les phonons couplés
par l’hamiltonien Hint[εij(r)] dépendant linéairement des déformations locales εij(r) (i, j ∈ {x, y, z}).
L’opérateur du champ de déplacement d’un phonon de la branche α et de vecteur d’onde q s’écrit :

uαq(r, t) = Aαq(r, t)ĉαq , (6.3)

où ĉαq est le vecteur unitaire de polarisation du phonon et :

Aαq(r, t) =

√
~

2ρΩωαq
eiq·r(aαqe

−iωαqt + a†α,−qe
iωαqt) , (6.4)

avec ρ la masse volumique du matériau hôte (ρ = 2.329 g/cm3 pour le silicium), Ω le volume du système,
et a†αq (respectivement aαq) l’opérateur de création (respectivement d’annihilation) d’un phonon de la
branche α et de vecteur d’onde q. Le tenseur des déformations (6.2) est ainsi :

εαq(r, t) = iqAαq(r, t)εαq , (6.5)

avec q = ||q|| où :

εαq =
1

2

 2ĉxq̂x ĉxq̂y + ĉy q̂x ĉxq̂z + ĉz q̂x
ĉy q̂x + ĉxq̂y 2ĉy q̂y ĉy q̂z + ĉz q̂y
ĉz q̂x + ĉxq̂z ĉz q̂y + ĉy q̂z 2ĉz q̂z

 , (6.6)

1. Les formules du temps de relaxation de la section 6.1 ont été établies par Jing Li qui était un post-doctorant du
laboratoire. J’ai contribué à leur application dans l’étude de l’interaction spin-phonon dans le qubit de trou.

98



6.1. Temps de relaxation assisté par des phonons

avec ĉ ≡ ĉαq, et q̂ = q/q.
En supposant ~ωL = E1 − E0 > 0, le taux de transition Γ01 de l’état |0〉 vers l’état |1〉 du à

l’absorption d’un phonon est donné par la règle d’or de Fermi [75, 76, 77] :

Γ01 =
2π

~
∑
α

∫
d3q

Ω

(2π)3
Nαq

∣∣∣〈0|Hint[εαq(r)]|1〉
∣∣∣2δ(~ωL − ~ωαq) . (6.7)

Cette équation somme les contributions de toutes les branches de phonons et vecteurs d’onde pos-
sibles. La contribution de la branche α et du vecteur d’onde q est proportionnelle à la norme carrée de
l’élément de matrice 〈0|Hint[εαq(r)]|1〉. L’énergie totale du système qubit-phonon doit cependant être
conservée, ce qui fait apparaître le terme δ(~ωL−~ωαq). Finalement l’occupation des états des phonons
est introduite via la fonction de distribution de Bose-Einstein Nαq = 1/(eβ~ωαq − 1) où β = 1/(kBT ).
De plus, le taux de transition (6.7) ne prend en compte que les processus à un phonon, et n’est donc
valable qu’à température suffisamment faible.

De manière similaire, le taux de transition Γ10 de l’état |1〉 vers l’état |0〉 du à l’émission spontanée
et stimulée d’un phonon est donné par la même expression avec Nαq remplacé par Nαq + 1.

Par conséquent, le taux de relaxation total est Γph = Γ01 + Γ10. En substituant l’équation (6.5) dans
les expressions de Γ01 [éq. (6.7)] et Γ10, le taux de relaxation Γph s’écrit :

Γph =
1

8π2ρ

∑
α

∫
d3q coth

(
~ωαq
2kBT

)
q2

ωαq

∣∣∣〈0|eiq·rHint(εαq)|1〉
∣∣∣2δ(~ωL − ~ωαq) , (6.8)

Cette équation peut être transformée en :

Γph =
1

8π2ρ~ωL
coth

(
~ωL

2kBT

)∑
α

∫
Sα(ωL)

d2q
q2

|vαq|
∣∣∣〈0|eiq·rHint(εαq)|1〉

∣∣∣2 , (6.9)

où Sα(ωL) est la surface ωαq = ωL et vαq = ∇qωαq est la vitesse de groupe des phonons. L’intégration
peut être finalisée lorsqu’un modèle est choisi pour la structure de bandes des phonons et la structure
électronique du qubit, ce que nous allons faire par la suite.

6.1.2 Structure de bandes isotropes des phonons
Les vecteurs d’onde q des phonons acoustiques participant à la relaxation du qubit ont de faibles

amplitudes. Dans ces conditions, les branches de phonons acoustiques sont linéaires avec l’amplitude
du vecteur d’onde q. Nous considérons ainsi un modèle simplifié de trois branches acoustiques isotropes
et linéaires en q = |q| pour la structure des phonons : une branche longitudinale (LA) ωlq = vlq et deux
branches transversales dégénérées (TA) ωt1q ' ωt2q = vtq.

Pour finaliser l’intégration (6.9), nous spécifions l’orientation du vecteur d’onde des phonons par
l’angle azimutal θ et l’angle polaire ϕ tel que q̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Le vecteur de pola-
risation de la branche LA ĉl = q̂ peut, ainsi, être caractérisé par les angles (θl = θ, ϕl = ϕ), tandis
que les vecteurs de polarisations ĉt1 et ĉt2 des branches TA peuvent être caractérisés par les angles
(θt1 = θ + π/2, ϕt1 = ϕ) et (θt2 = π/2, ϕt2 = ϕ+ π/2) respectivement. Donc,

Γph =
ω3
L

8π2~ρ
coth

(
~ωL

2kBT

) ∑
α∈l,t1,t2

1

v5
α

∫ π

0

dθ sin θ

∫ 2π

0

dϕ
∣∣∣〈0|eiqαq̂(θ,ϕ)·rHint[εα(θ, ϕ)]|1〉

∣∣∣2, (6.10)

où vαqα = ωL, et :

εl(θ, ϕ) =
1

2

2 sin2 θ cos2 ϕ sin2 θ sin 2ϕ sin 2θ cosϕ
sin2 θ sin 2ϕ 2 sin2 θ sin2 ϕ sin 2θ sinϕ
sin 2θ cosϕ sin 2θ sinϕ 2 cos2 θ

 (6.11a)
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εt1(θ, ϕ) =
1

2

 sin 2θ cos2 ϕ 1
2

sin 2θ sin 2ϕ cos 2θ cosϕ
1
2

sin 2θ sin 2ϕ sin 2θ sin2 ϕ cos 2θ sinϕ
cos 2θ cosϕ cos 2θ sinϕ − sin 2θ

 (6.11b)

εt2(θ, ϕ) =
1

2

− sin θ sin 2ϕ sin θ cos 2ϕ − cos θ sinϕ
sin θ cos 2ϕ sin θ sin 2ϕ cos θ cosϕ
− cos θ sinϕ cos θ cosϕ 0

 . (6.11c)

Dans la section suivante, nous allons discuter un qubit de trou dont la structure électronique est
décrite par un modèle k · p six bandes.

6.1.3 Application à une méthode k · p six bandes
Dans le modèle k · p six bandes, les fonctions d’onde de trous se développent sous la forme (voir

chapitre 2) :
ψ(r) = FX↑(r)uX↑(r) + FX↓(r)uX↓(r)

+FY ↑(r)uY ↑(r) + FY ↓(r)uY ↓(r)

+FZ↑(r)uZ↑(r) + FZ↓(r)uZ↓(r)

, (6.12)

où {Fiσ} sont les fonctions enveloppes et {uiσ} sont les fonctions de Bloch au point Γ. Ces fonctions de
Bloch sont des combinaisons linéaire des orbitales pX , pY et pZ du silicium, de spin ↑ ou ↓ selon l’axe
Z, où X ‖ [100], Y ‖ [010] et Z ‖ [001] sont les axes de la maille conventionnelle du cristal. En fait, tout
modèle k ·p six bandes ou quatre bandes pour les trous peut se mettre sous la forme de l’équation (6.12)
(voir chapitre 2 par exemple). Dans la base {|X ↑〉, |Y ↑〉, |Z ↑〉, |X ↓〉, |Y ↓〉, |Z ↓〉}, l’hamiltonien
Hint(ε) est [26, 78, 79] :

Hint(ε) =

[
H ′int(ε) 03×3

03×3 ∆H ′int(ε)

]
, (6.13)

où les blocs 3× 3 de spin ↑ ou ↓ H ′int(ε) s’écrivent :

H ′int(ε) =

lεXX +m(εY Y + εZZ) nεXY nεXZ
nεXY lεY Y +m(εZZ + εXX) nεY Z
nεXZ nεY Z lεZZ +m(εXX + εY Y )

 (6.14)

avec :

l = av + 2bv ; m = av − bv ; n = dv
√

3 . (6.15)

av est le potentiel de déformation hydrostatique, bv le potentiel de déformation uniaxial, et dv le poten-
tiel de cisaillement de la bande de valence 2. Même si Hint est diagonal en spin, il peut entraîner, par
exemple, la relaxation d’un qubit spin-orbite ayant des états de spin texturé. Nous écrivons ensuite les
deux états du qubit :

〈r|0〉 =
∑

i∈{X,Y,Z}

∑
σ∈{↑,↓}

aiσ(r)uiσ(r) (6.16a)

〈r|1〉 =
∑

i∈{X,Y,Z}

∑
σ∈{↑,↓}

biσ(r)uiσ(r) , (6.16b)

et supposons que l’étendue des fonctions enveloppes {aiσ(r)} et {biσ(r)} est bien plus petite que la
longueur d’onde caractéristique des phonons à la fréquence de Larmor. Nous pouvons alors finaliser
l’intégration (6.10) en approximant le facteur de phase eiq·r ∼ 1. Une analyse a montré que les termes

2. Nous avons négligé la dépendance en contrainte du couplage spin-orbite ∆so qui est faible dans le silicium.
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d’ordres supérieurs à cette approximation ne sont pas pertinents dans la suite de notre travail. Ainsi,
l’élément de matrice (6.10) peut être développé de la façon suivante :∣∣∣〈0|eiq·rHint(εα)|1〉

∣∣∣2 ≈ ∣∣∣〈0|Hint(εα)|1〉
∣∣∣2 =

∑
i,j,k,l

HijHklSijS
∗
kl (6.17)

où Hij = Hij(εα) ≡ [H ′int]ij , les indices i, j, k, l parcourent {X, Y, Z}, et :

Sij =

∫
d3r

[
a∗i↑(r)bj↑(r) + a∗i↓(r)bj↓(r)

]
. (6.18)

Par conséquent, après intégrations, le taux de relaxation s’écrit :

Γph =
ω3
L

8π~ρ
coth

(
~ωL

2kBT

)∑
α=l,t

1

v5
α

2∑
n=1

BnΛnα , (6.19)

où les deux termes {Bn} sont définis par :

B1 =
∑
i

|Sii|2 (6.20a)

B2 =
1

2

∑
i 6=j

|Sij + Sji|2 , (6.20b)

et les paramètres de la branche longitudinale {Λnl} et des deux branches transverses {Λnt} sont :

Λ1l =
24b2

5
, Λ2l =

4d2

5

Λ1t =
3

2
Λ1l , Λ2t =

3

2
Λ2l

. (6.21)

Les deux branches transversales (TA1 et TA2) ont été sommées dans les paramètres {Λnt}. Les deux
termes {Bn} décrivent un mélange de bandes dont le préfacteur varie avec les déformations des phonons
(∝ q2/ωL ≡ ωL) et la densité d’état des phonons à la fréquence de Larmor (∝ ω2

L) . Ils sont gouvernés
par le recouvrement des différentes fonctions enveloppes. Nous notons que les termes {Bn} sont aussi
dépendants de ωL au moins à l’ordre deux. En effet, sans champ magnétique extérieur, les deux états du
qubit sont symétriques par renversement du temps et a∗i↑ = bj↓, a∗i↓ = −bi↑ [i ∈ {X, Y, Z}]. À partir
de l’expression des éléments {Sij} [éq. (6.18)], ces conditions imposent Sij = −Sji, et, en particulier,
Sii = 0. Ainsi B1 et B2 sont nuls à champ magnétique nul et Sii = O(B), Sij + Sji = O(B), et
B1 = O(B2), B2 = O(B2).

6.2 Application à un qubit spin-orbite de trou sur SOI
Dans cette section, nous appliquons les modèles introduits dans la section 6.1 à un qubit spin-orbite

de trou sur SOI représenté sur la figure 6.2. Le dispositif est similaire à celui mesuré dans le chapitre 3,
et est identique à celui modélisé dans le chapitre 4. Comme discuté dans les chapitres 2 et 4, le potentiel
électrique dans le dispositif est calculé en résolvant l’équation de Poisson par une méthode de volumes
finis. Les états du qubits de trou sont obtenus à partir d’un modèle k ·p six bandes avec une méthode de
différences finies. Les angles azimutal θ et polaire ϕ caractérisant l’orientation du champ magnétique
sont représentés dans la figure 6.2.

Pour le modèle de la structure de bandes des phonons, nous utilisons les vitesses de groupes vl =
9000 m/s et vt = 5400 m/s. Les potentiels de déformations des bandes de valence sont av = 2.38 eV,
bv = −2.1 eV, et dv = −4.85 eV [80, 81]. L’amplitude du champ magnétique est ajustée (sauf indication
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~

FIGURE 6.2 – Représentation schématique du dispositif identique à celui étudié au chapitre 4 avec
les principales hypothèses du modèle de relaxation assisté par les phonons : processus à un phonon,
branches acoustiques isotropes linéaires, longueur caractéristique du qubit Lqubit beaucoup plus faible
que la longueur caractéristique des phonons λph. La grille avant est polarisée à Vfg = −0.1 V, et une
modulation d’amplitude Vac = 1 mV peut être appliquée pour entretenir des oscillations de Rabi. La
tension de grille arrière est Vbg.

contraire) de sorte que la fréquence de Larmor soit ωL/(2π) = 10 GHz. À cette fréquence, la longueur
d’onde des phonons acoustiques λph est plus grande que λt = 2πvt/ωL = 540 nm, et est donc plus
grande que la taille de la boite quantique (Lqubit ∼ 30 nm), dans le domaine de validité de l’approxi-
mation eiq·r ∼ eiLqubit/λph ∼ 1. La température est fixée à T = 100 mK. Les résultats sont, cependant,
faiblement dépendants de la température T ≤ 100 mK, comme 1 < coth(~ωL/2kBT ) < 1.017 dans
cette intervalle.

Nous discutons l’effet de la fréquence de Larmor sur le taux de relaxation, de l’importance relative
des termes de l’équation (6.19), de la dépendance de Γph avec le champ électrique, et enfin du point
optimal en polarisation électrique et en orientation du champ magnétique pour ce qubit.

6.2.1 Effet de la fréquence de Larmor
La figure 6.3 représente le taux de relaxation en fonction de la fréquence de Larmor du qubit. Le

taux de relaxation est ∝ ω4
L à faible fréquence de Larmor et ∝ ω5

L à forte fréquence de Larmor. Le
comportement ∝ ω5

L est le résultat du préfacteur ∝ ω3
L des termes {Bn} (déformations des phonons et

densité d’état) et de la dépendance∝ ω2
L des termes {Bn} eux-même, comme discuté précédemment. En

effet, les termes {Bn} s’annulent à champ magnétique nul quand |0〉 et |1〉 sont des états symétriques
par renversement du temps l’un de l’autre, et augmentent comme ω2

L ∝ B2 une fois qu’un champ
magnétique B fini brise la symétrie de renversement du temps. À champ magnétique faible, le taux de
relaxation s’éloigne de la dépendance ∝ ω5

L à cause du préfacteur coth[~ωL/(2kBT )] ∝ ω−1
L . En effet,

la population de phonons acoustiques à faible fréquence de Larmor peut être très importante ce qui
accroît les processus d’absorption ou d’émission stimulée.

6.2.2 Termes dominants
Pour identifier les différentes contributions au taux de relaxation Γph, celui-ci est tracé en fonction

de la fréquence de Larmor ωL du qubit dans la figure 6.4 à Vbg = −0.15 V et est décomposé (a) en
contributions LA et TA, et (b) en contributions bv et dv.

La figure 6.4 a) montre que les phonons transverses dominent le taux de relaxation par un facteur
∼ 10 par rapport aux phonons longitudinaux. En fait, le rapport de ces contributions est principalement
défini par le rapport de leur vitesse de groupe parce que le taux de relaxation (6.19) contient un préfacteur
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FIGURE 6.3 – Taux de relaxation en fonction de la fréquence de Larmor [ωL/(2π)] à Vbg = −0.15 V.
L’orientation du champ magnétique est θ = 45◦, ϕ = 0.

∝ 1/v5
α pour les contributions de la branche α. Dans le silicium, les polarisations transverses impactent

ainsi plus fortement le taux de relaxation que la polarisation longitudinale d’un facteur (vl/vt)
5 ∼ 13.
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FIGURE 6.4 – Contributions des différents termes de l’équation (6.19) au taux de relaxation en fonction
de la fréquence de Larmor ωL (Vbg = −0.15 V) qui est dominé par (a) les phonons acoustiques trans-
verses, et (b) le potentiel de cisaillement dv. L’orientation du champ magnétique est θ = 45◦, ϕ = 0.

Les contributions des potentiels bv et dv au taux de relaxation (6.19) représentés dans la figure 6.4
b), sont similaires, bien que le potentiel de cisaillement dv semble légèrement dominer. Finalement, le
terme B2Λ2t ∝ d2 de l’équation (6.19) est la plus grande contribution au taux de relaxation, suivie par
le terme B1Λ1t ∝ b2.

Nous avons vérifié que les conclusions discutées ci-dessus restent valables sur un grand intervalle de
tensions de grille arrière comme la figure 6.5 peut l’attester. Nous discutons en détails de la dépendance
de Γph avec Vbg dans la section suivante.

6.2.3 Effet du champ électrique
Le taux de relaxation Γph est tracé avec la fréquence de Rabi fR en fonction de Vbg dans la figure

6.6. Les oscillations de Rabi sont entraînées par une modulation radio-fréquence Vac = 1 mV sur la
grille avant. Le facteur de qualité Q1 = fR/Γph est aussi tracé sur cette figure. Il donne le nombre
d’oscillations de Rabi pouvant être effectué pendant un temps de relaxation T1 = Γ−1

ph . La prise en
compte exclusive des phonons dans cette étude fournit une limite haute du facteur de qualité du qubit.
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FIGURE 6.5 – Dépendance du taux de relaxation en fonction de la tension de grille arrière Vbg à fré-
quence de Larmor ωL/(2π) = 10 GHz, assisté par des phonons acoustiques a) transversaux (TA), et b)
longitudinaux (LA). Chacune des polarisations est décomposée en contributions bv et dv. L’orientation
du champ magnétique est θ = 45 ◦, ϕ = 0 ◦.
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FIGURE 6.6 – Fréquence de Rabi fR, taux de relaxation Γph, et facteur de qualité Q1 = fR/Γph en
fonction de Vbg. La fréquence de Larmor est ωL/(2π) = 10 GHz. L’orientation du champ magnétique
est θ = 45◦, ϕ = 0.

Le taux de relaxation montre des variations en fonction de Vbg qui imitent celles de la fréquence
de Rabi. En particulier, Γph affiche un creux près de Vbg = −0.15 V où la fonction d’onde du trou
présente un centre d’inversion approché (voir chapitre 4). Cela entrave l’action du couplage spin-orbite
et découple les trous du champ électrique radio-fréquence de la grille. Les oscillations de Rabi sont ainsi
ralenties mais les trous deviennent aussi découplés des bruits électriques à ce point. Le creux dans Γph

n’est cependant pas aussi prononcé que celui de la fréquence de Rabi. Nous discuterons ce point dans
la sous-section suivante. La diminution du taux de relaxation à grandes tensions de grille positives ou
négatives est du au fort confinement latéral par le champ électrique statique de la grille (voir chapitre 4).
Même si le temps de vie est plus long à grand |Vbg|, la fréquence de Rabi est plus petite, ce qui diminue
légèrement le facteur de qualité. Le facteur de qualité est maximal près de Vbg = −0.2 V. Finalement,
le qubit peut être ramené au point Vbg = −0.15 V entre les manipulations car le temps de vie y est long
(∼ 10 ms) [62, 82].
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6.2. Application à un qubit spin-orbite de trou sur SOI

Les temps de vie limités par les phonons sont typiquement plus petits qu’attendu dans les qubits
d’électron [36, 77, 83] (mais restent > 5 ms), à cause au fort couplage spin-orbite dans les bandes de
valence. Cela est cependant compensé par de bien plus grandes fréquences de Rabi, si bien que les
facteurs de qualité restent significatifs.

6.2.4 Effet de l’orientation du champ magnétique
Nous avons vu dans le chapitre 4 que la fréquence de Rabi dépend fortement de l’orientation du

champ magnétique. C’est aussi le cas du taux de relaxation Γph et du facteur de qualité. La figure 6.7
représente ces trois grandeurs physiques en fonction de l’orientation du champ magnétique à fréquence
de Larmor ωL/(2π) = 10 GHz, et à Vbg = −0.2 V. L’anisotropie de la fréquence de Rabi a été discutée
dans les chapitres 4 et 5. Le taux de relaxation est maximal près de θ = π/2. Ainsi, le facteur de qualité
est faible près de θ = π/2. Le facteur Q1 est néanmoins important dans un grand intervalle de θ et est
faiblement dépendant de ϕ. En particulier, il montre un pic près de θ = 30◦ et θ = 150◦ de l’ordre de
quelque dizaines de milliers, près de l’orientation de référence choisie pour les figures 6.3, 6.4, et 6.5.

Pour comprendre les tendances observées, nous construisons un modèle simple similaire à celui
établi dans le chapitre 5.
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FIGURE 6.7 – (a) Taux de relaxation Γph, (b) fréquence de Rabi fR, et (c) facteur de qualitéQ1 = fR/Γph

en fonction de l’orientation du champ magnétique caractérisée par les angles azimutal θ et polaire ϕ
définis dans la figure 6.2, à Vbg = −0.2 V. La fréquence de Larmor est ωL/(2π) = 10 GHz dans toutes
les figures. Nous remarquons que la carte (b) semble différente de la figure 4.7 parce qu’elle est tracée
à fréquence de Larmor constante au lieu d’une amplitude de champ magnétique constante.

6.2.5 Retour sur le modèle de la boite quantique
Dans cette section, nous reprenons le modèle de la boite quantique rectangulaire de silicium de taille

Lx × Ly × Lz étudié au chapitre 5. Nous supposons que le champ électrique extérieur E est nul. Nous
utilisons un modèle k ·p quatre bandes pour décrire les bandes de valence. Ce modèle décrit donc le voi-
sinage du point Vbg = −0.15 V. Il est ainsi pertinent de travailler dans une base minimale dont les fonc-
tions enveloppes sont de type s ≡ |111〉 (voir la section 5.1.2). Par souci de simplicité, nous supprimons
les indices des enveloppes, et notons la base minimale {|jz〉 ≡ |111〉 ⊗ |jz〉} où jz ∈ {±3/2 ,±1/2}.
Ensuite, l’hamiltonien k · p quatre bandes dans cette base minimale {|+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉}
peut être diagonalisé exactement mais, pour souligner les tendances, nous considérons une limite de
couche mince suivant l’axe z, et nous négligeons dans un premier temps l’effet du confinement latéral.
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Les états propres de la boite quantique sont alors une paire de Kramers fondamentale pure trous lourds
(|±3/2〉), et une paire excité pure trous légers (|±1/2〉).

Nous définissons les états du qubit à partir de la paire de Kramers fondamentale. Le potentiel vecteur
n’a pas d’effet dans cette base minimale et nous prenons donc en compte seulement l’effet Zeeman. Les
deux états |±3/2〉 ne sont pas couplés par l’hamiltonien Zeeman, et selon la théorie de perturbation de
niveaux non dégénérés, nous pouvons écrire les états propres du qubit {|11〉, |01〉} à l’ordre un en champ
magnétique :

|01〉 =|+3/2〉+ Z0|+1/2〉 (6.22a)
|11〉 =Z∗0 |−1/2〉+ |−3/2〉 (6.22b)

où Z0 = κµBB
√

3(bx + iby)/(2Q0) est le rapport de l’élément de couplage magnétique entre les trous
lourds et trous légers et leur séparation en énergie 2Q0 ≡ E|+3/2〉−E|+1/2〉 = − ~2

m0
γ2π

2/L2
z. À partir de

l’expression des fonctions {|3/2,±3/2〉, |3/2,±1/2〉} dans la base {|X, ↑ / ↓〉, |Y, ↑ / ↓〉, |Z, ↑ / ↓〉}
(2.14) et un choix de phase appropriée, l’état |01〉 peut s’écrire :

|01〉 = − i√
2
|X ↑〉+

1√
6
Z0|X ↓〉+

1√
2
|Y ↑〉+

i√
6
Z0|Y ↓〉 −

2√
2
Z0|Z ↑〉 , (6.23)

et l’état |11〉 :

|11〉 =
1√
6
Z∗0 |X ↑〉 −

i√
2
|X ↓〉+

i√
6
Z∗0 |Y ↑〉 −

1√
2
|Y ↓〉 − 2√

2
Z∗0 |Z ↓〉 , (6.24)

Finalement, Sij =
∑

i,σ C
∗
iσC

′
jσ avec |01〉 =

∑
iσ Ciσ|iσ〉, |11〉 =

∑
iσ C

′
iσ|iσ〉, i ∈ {X, Y, Z}, et

i ∈ {↑, ↓}. Les éléments {Sij} (6.18) peuvent ainsi s’écrire à l’ordre un en champ magnétique :{
Sxx = −iSxy = −iSyx = −Syy = − i√

3
Z∗0

Sxz = Syz = Szx = Szy = Szz = 0
. (6.25)

En substituant les expressions des éléments {Sij} [éq. (6.25)] dans l’équation (6.20b), nous obtenons :

B1 =
2

3
|Z0|2 = 8

m2
0

h4
(κµBB)2L

4
z

γ2
2

sin2 θ

B2 = 2B1

, (6.26)

où m0 est la masse d’un électron libre, γ2 = 0.339 est un paramètre de Luntinger des bandes de valence,
κ = −0.42 est le coefficient Zeeman des trous et µB est le magnéton de Bohr [48]. Le taux de relaxation
du qubit s’écrit ainsi :

Γph =
ω3
L

8π~ρ
coth

( ~ωL
2kBT

)
ΛB1 . (6.27)

où le paramètre Λ =
∑

α(Λ1α + 2Λ2α)/v5
α dépend des potentiels de déformations uniaxial et de cisaille-

ment du matériau.
En prenant en compte le confinement latéral à l’ordre un dans les états du qubit (6.22) (comme

dans le modèle du chapitre 5), un calcul similaire montre que l’expression (6.26) reste inchangée. Les
termes B1 et B2 se comportent, comme attendu en ω2

L ∝ B2. Ainsi, à cet ordre en Lz, ils ne dépendent
pas des dimensions Lx et Ly du canal, et sont donc indépendants du confinement latéral. Pour cette
raison, la relaxation induite par les phonons se comporte différemment des oscillations de Rabi qui
nécessitent un confinement latéral. Ce résultat provient du fait que les déformations induites par les
phonons couplent directement les fonctions de Bloch trous lourds et trous légers contrairement à un
champ électrique radio-fréquence. En fait, le champ magnétique dans le plan ∝ B sin θ mélange la
composante |3/2,+3/2〉 de |0〉 avec une enveloppe |3/2,+1/2〉, qui peut être couplée par les phonons
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à la composante majoritaire |3/2,−3/2〉 de |1〉 via l’hamiltonien des déformations Hint(ε) [éq. (6.13)].
Le mélange magnétique entre les enveloppes |3/2,+3/2〉 et |3/2,+1/2〉 de |0〉 est inversement pro-
portionnel à la séparation entre les bandes de trous lourds et de trous légers confinées, ce qui donne
le dépendance en L4

z/γ
2
2 dans les équations (6.26), comme pour un puits quantique. Ensuite, d’après le

chapitre 5, fR ∝ sin θ quand θ → 0 ou π , et ainsi les équations (6.26) suggèrent queQ1 →∞ (bien que
cela ne soit pas pertinent car fR → 0). Les contributions d’ordres supérieurs à l’équation (6.26) donnent
un taux Γph fini, et la dépendance en ϕ clairement visible dans la figure 6.6 c), assurant que Q1 → 0
quand θ → 0 ou π comme montré dans cette même figure. Finalement, nous avons établi fR ∝ L2

z, et
Γph ∝ L4

z. Ainsi Q1 = fR/Γph ∝ L−2
z . Il est donc préférable de réaliser des qubits de faibles hauteurs

Lz pour accroître le facteur de qualité Q1, bien que la fréquence de Rabi soit plus faible.

6.2.6 Limite du modèle
Finalement, nous discutons les limites du modèle du taux de relaxation ci-dessus. Nous avons étudié

le temps de relaxation du qubit en prenant en compte les mécanismes de relaxation dus aux phonons.
Mais, d’autres mécanismes peuvent participer à la relaxation du qubit comme le bruit de Johnson-
Nyquist provenant de l’excitation thermique des porteurs et des fluctuations du point zéro dans le circuit
connecté aux grilles. Cependant ces mécanismes (Johnson-Nyquist et bruit de charge ...) sont extrin-
sèques au qubit, et sont en principe plus facile à optimiser (par exemple en réduisant les impédances
du circuit pour le bruit de Johnson-Nyquist). Les processus à plusieurs phonons et à photons (perti-
nents à haute température) [84, 85] et des mécanismes supplémentaires liés au couplage spin-orbite, via
les bandes de conduction par exemple, négligés dans cette étude peuvent aussi augmenter le taux de
relaxation, et ainsi dégrader le facteur de qualité du qubit.

6.3 Conclusions
Nous avons établi le temps de vie d’un qubit spin-orbite de trou limité par les processus de relaxation

à un phonon dans le cadre de la description de la bande de valence par une méthode k · p six bandes.
Les expressions qui en résultent peuvent en fait être appliquées à la relaxation de charge et de spin
dans les qubits de trou. Nous avons appliqué cette théorie à un qubit spin-orbite sur SOI identique à
celui étudié au chapitre 4. Nous avons montré que la relaxation de spin induite par les phonons dans
ce qubit est dominée par un terme de mélange de bandes qui couple le trou aux phonons acoustiques
transverses via le potentiel de déformation dv des bandes de valence. Nous avons ensuite optimisé le
point de polarisation et l’orientation du champ magnétique à la recherche du meilleur facteur de qualité
Q1 = fRT1 (nombre d’oscillations de Rabi pendant le temps de relaxation T1). Dans ce cadre, Q1 peut
atteindre quelque dizaines de milliers malgré le fort couplage spin-orbite dans les bandes de valence.
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Chapitre 7

Conclusions et perspectives

Ce chapitre conclut ce manuscrit en résumant les concepts et les résultats les plus importants des
précédents chapitres. Nous détaillons ensuite les codes développés, et les perspectives de cette thèse.

7.1 Conclusions générales
Dans le chapitre 1, nous avons introduit la brique élémentaire d’un ordinateur quantique : un système

quantique à deux niveaux appelé bit quantique (qubit). En 1998, les physiciens Loss et Di Vincenzo ont
proposé d’encoder un qubit dans le spin d’un électron piégé dans une boite quantique. Nous avons
discuté différentes implémentations d’un tel objet dans des matériaux semiconducteurs tel que le GaAs
et le Si. Le silicium se révèle être un bon matériau hôte pour accueillir un qubit de spin car il présente une
faible interaction hyperfine ce qui limite donc sa décohérence. En particulier, l’état d’un qubit de spin
peut être contrôlé électriquement via, par exemple, le couplage spin orbite intrinsèque, ce qui permet
d’adresser plus sélectivement les qubits dans des circuits quantiques denses. Ce couplage spin-orbite est
plus important dans les bandes de valence que dans la bande de conduction des semiconducteurs, et ainsi
les trous se manipulent plus facilement avec des champs électriques que les électrons. En particulier, les
équipes du CEA ont démontré la manipulation électrique d’un qubit spin-orbite de trou défini dans des
dispositifs CMOS.

Le chapitre 2 discute en détails la structure de bandes de valence autour du point Γ pour des maté-
riaux semiconducteurs de type diamant, et, en particulier, pour le silicium. Nous avons discuté l’effet
du couplage spin-orbite qui sépare les six bandes dégénérées en Γ en deux groupes : quatre bandes
dégénérées de basses énergies (trous lourds et trous légers), et deux bandes dégénérées de hautes éner-
gies (split-off) distantes de l’énergie de couplage spin-orbite ∆so. Nous avons aussi introduit le code
TB_Sim développé au CEA, qui permet notamment de construite une nanostructure, de calculer le po-
tentiel électrique dans celle-ci, et de calculer sa structure électronique avec une méthode k ·p six bandes
afin d’établir ses énergies et états propres.

Nous avons présenté, dans le chapitre 3, les expériences menées sur les qubits de trou dans un dis-
positif SOI du CEA. Dans ce dispositif, nous avons montré des oscillations cohérentes d’un spin de trou
excitées électriquement avec une fréquence de Rabi très dépendante de l’orientation du champ magné-
tique. Nous avons discuté comment caractériser la fréquence de Rabi par deux matrices 3×3 : la matrice
gyromagnétique ĝ et sa réponse avec le champ électrique oscillant ĝ′. Ces deux matrices peuvent être
obtenues expérimentalement bien que la mesure de ĝ′ soit très délicate. Nous avons distingué alors deux
mécanismes pour les oscillations de Rabi. Le premier, que nous avons appelé izo-Zeeman (IZR), corres-
pond aux modulations ĝ′ de la matrice ĝ qui laissent les facteurs gyromagnétiques et l’énergie Zeeman
invariants. Le second, appelé g-TMR, est associé aux modulations des facteurs et axes gyromagnétiques
principaux. Nous avons extrait ces deux contributions et nous avons conclus que l’IZR domine les os-
cillations de Rabi dans le dispositif expérimental ce qui permet, notamment, de préciser la position du
qubit dans ce dispositif.
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Le chapitre 4 est consacré aux formalismes de calculs de la fréquence de Rabi et à une étude nu-
mérique d’un qubit de trou sur SOI. Nous avons introduit trois expressions de la fréquence de Rabi. La
première est la définition même de la fréquence de Rabi comme par l’élément de matrice dipolaire entre
les deux états du qubit. La seconde est issue d’une théorie de perturbations linéaire en champ magné-
tique. La fréquence de Rabi est alors exprimée comme la somme des éléments de couplages électriques
et magnétiques des états du qubit avec tous les états excités. Cette expression permet une analyse micro-
scopique de la physique du qubit. La dernière expression est celle-obtenue dans le cadre du formalisme
de la matrice gyromagnétique ĝ, et fait intervenir la matrice gyromagnétique ĝ et sa variation avec le
champ électrique ĝ′. Ces matrices peuvent être calculées à partir des deux états du qubit à champ magné-
tique nul, et rendent compte de l’anisotropie des fréquences de Larmor et de Rabi à champ magnétique
fini, ce qui fait du formalisme de la matrice ĝ une approche très efficace du point de vue numérique.
Ensuite, nous avons appliqué le formalisme de la matrice ĝ à un qubit de trou sur SOI. Nous avons mis
en évidence de fortes anisotropies de fréquences de Rabi qui peuvent être expliquées par les symétries
du système. Nous avons identifié une paire d’état excité participant en quasi-totalité à la série de per-
turbations de la fréquence de Rabi. Cette paire d’état présente une enveloppe de type p orientée le long
du champ électrique statique. Ces éléments ont ainsi fournis les ingrédients nécessaires pour un modèle
minimale de boite quantique.

Le chapitre 5 présente ce modèle minimal. Nous avons considéré une boite quantique rectangulaire
dans un semiconducteur dont la structure de bandes est décrite par une méthode k·p quatre bandes. Nous
avons isolé une base minimale d’états du qubit, suggérée par les simulations numériques du chapitre 4,
reproduisant les propriétés du qubit réel. Cela nous a permis d’établir une expression analytique de la
fréquence de Rabi qui dépend des paramètres et de l’orientation cristalline du matériau hôte. Nous avons
ainsi montré que le silicium (orienté selon [110]) présente la plus grande fréquence de Rabi parmi les
semiconducteurs conventionnels grâce à l’anisotropie de ses bandes de valence.

Finalement, dans le chapitre 6 nous avons démontré une expression générique du taux de relaxation
Γph entre les deux états d’un qubit de trou assisté par des processus à un phonon. Nous l’avons précisé
pour un modèle k · p quatre et six bandes et un modèle de phonons acoustiques isotropes, puis nous
l’avons appliqué au qubit de trou étudié au chapitre 4. Le temps de relaxation montre une forte dépen-
dance avec la fréquence de Larmor et avec l’orientation du champ magnétique. Finalement, le facteur
de qualité, correspondant au nombre d’oscillations de Rabi pendant le temps de relaxation T1 = Γ−1

ph ,
peut atteindre plusieurs dizaines de milliers sur un grand intervalle d’orientation de champ magnétique.
Il est aussi possible de basculer le qubit d’une polarisation électrique où la manipulation électrique est
efficace (mais le temps de vie cours) à une polarisation où le qubit est découplé des champs électriques
mais le temps de vie est long.

7.2 Code développé
Cette section mentionne brièvement le code de modélisation que j’ai implémenté pendant cette thèse.

En complément de TB_Sim, j’ai développé un code (en python) de modélisation d’un qubit comme une
boite quantique rectangulaire. Ce code a été le support numérique du chapitre 5. Le confinement dans ce
système est soit "dur" selon les trois directions de la boite, soit harmonique suivant un des trois axes. Le
système peut être soumis à un champ électrique statique et homogène, et à un champ électrique radio-
fréquence lui aussi homogène. Le champ magnétique statique auquel le système est soumis est décrit par
un hamiltonien Zeeman, et par l’action explicite du potentiel vecteur sur les fonctions enveloppes. Des
contraintes homogènes peuvent aussi être appliquées au qubit. Finalement ce code numérique modèle,
dont certaines perspectives de cette thèse sont basées sur celui-ci, permet notamment de :

— Décrire la structure de bandes du qubit avec une méthode k ·p quatre ou six bandes [éq. (2.17)],
— Calculer les énergies et les états quantiques de la boite,
— Calculer efficacement la matrice gyromagnétique ĝ [éq. (4.14)],
— Obtenir l’anisotropie de la fréquence de Larmor et de la fréquence de Rabi par différent forma-
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lismes [éqs. (3.14), (4.3), (4.8)],
— Implémenter des mécanismes de manipulations électriques quelconques, et en particulier des

manipulations pures g-TMR et pures IZR [éqs. (3.19), (3.20)],
— Caractériser le temps de relaxation assisté par un phonon [éq. (6.19)].

7.3 Perspectives
Dans cette dernière section, nous présentons les quelques pistes à approfondir pour l’étude des pro-

priétés d’un qubit spin-orbite de trou dans le silicium.
Tous d’abord, l’effet des contraintes sur les performances du qubit a été brièvement étudié dans la

section 4.3.5 et dans l’annexe G. Dans la boite quantique rectangulaire restreinte à la base minimale
(5.6), nous avons mis en évidence un zéro de la fréquence de Rabi pour une contrainte particulière
à un champ électrique statique donné. Dans une base plus grande que la base minimale, et dans une
description des bandes de valence avec un modèle k · p six bandes, la fréquence de Rabi présente aussi
un creux (sans zéro). La fréquence de Rabi montre ainsi des variations non triviales en fonction de
la déformation biaxiale ε et du champ électrique E0 comme illustré dans la figure 7.1. Ces variations
méritent une étude plus approfondies afin d’optimiser la manipulation du qubit.
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FIGURE 7.1 – Fréquence de Rabi en fonction du champ électrique latéral statiqueE0 et de la déformation
biaxiale εxx = εyy = ε, εzz = −νε, où ν = 2c12/c11 est le coefficient de Poisson biaxial et c11, c12 sont
les constantes élastiques du silicium. Pour chaque pixel, le champ magnétique de 1 T est orienté afin
de maximiser la fréquence de Rabi. Calculé dans un modèle k · p six bandes (potentiel vecteur inclus)
dans une boite quantique rectangulaire de taille Lx = 40 nm, Ly = 30 nm, et Lz = 10 nm. Un champ
électrique ac résonant d’amplitude Eac = 1/30 mV/nm est appliqué le long de y (voir figure 5.1).

Ensuite, l’effet de la bande de split-off n’est pas trivial, et est donc intéressant à étudier. Par exemple,
la figure 7.2 représente la fréquence de Rabi en fonction du champ électrique latéral E0 calculée à partir
d’une méthode k · p quatre bandes (∆so = +∞) et six bandes (∆so = 44 meV). La fréquence de Rabi
calculée à partir de la méthode k · p quatre bandes est plus faible que celle calculée par une méthode
k · p six bandes dans une large gamme de champs électriques (|E0| < 0.5 MV/m). Ainsi un plus grand
couplage spin-orbite n’entraîne pas nécessairement de plus grandes fréquences de Rabi. L’effet précis
de cette bande de split-off reste donc à étudier.
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FIGURE 7.2 – Fréquence de Rabi par rapport à l’orientation du champ magnétique en fonction du champ
électrique latéral statique calculée à partir d’une description k · p quatre (∆so = ∞) et six bandes
(∆so = 44 meV). Calculée dans une boite quantique rectangulaire de taille Lx = 40 nm, Ly = 30 nm, et
Lz = 10 nm sans contraintes. Pour chaque point, le champ magnétique de 1 T est orienté pour maximiser
la fréquence de Rabi.

Finalement, il est pertinent de comprendre quels mécanismes, ou plutôt quelle nature d’excitation
électrique maximise la fréquence de Rabi. Le code modèle de la boite rectangulaire fournit un appui
numérique à cette étude. Récemment, Vincent Michal, un post-doctorant du laboratoire, a déterminé
analytiquement l’expression de la fréquence de Rabi dans le cas où le champ électrique ac est orienté
le long du nanofil (Eac ‖ x, voir figure 5.1) plutôt que perpendiculairement à celui-ci (Eac ‖ y, cas
étudié dans ce manuscrit). Le cas Eac ‖ x est en effet un paradigme de mécanisme IZR, alors que le cas
Eac ‖ y est un paradigme de la g-TMR. Nous avons pu aussi comparer l’efficacité relative de ces deux
mécanismes en fonction des dimensions de la boite quantique, des contraintes, du champ électrique
statique, et des paramètres matériaux. Le code pour la boite quantique a fourni un appui numérique
important à cette étude et a permis de valider les modèles analytiques. Un article sur le sujet est en cours
de finalisation.
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Annexe A

Paramètres de la méthode k · p

Coefficients L, M et N
En utilisant le définition de la section 2.1.1, les coefficients L,M etN de l’hamiltonien (2.9) peuvent

s’exprimer en fonction des termes de la série de perturbations [45] :

L = Hxx
XX

M = Hyy
XX

N = Hxy
XY +Hyx

XY

, (A.1)

où Hαβ
ij est défini dans l’équation (2.8).

Couplage spin-orbite
Le paramètre ∆so introduit dans l’équation (2.13) qui définit la force du couplage spin-orbite d’un

matériau dans une description k · p six bandes peut s’écrire [48] :

∆so =
3i~

4m2
0c

2
〈X|(∇V × p̂)z|Y 〉 . (A.2)

où ~ est la constante de Planck réduite, c est la vitesse de la lumière dans le vide, m0 est la masse d’un
électron dans le vide, ∇V est le gradient du potentiel, p̂ est l’impulsion, et |X〉, |Y 〉 sont deux fonctions
de Bloch définies dans la section 2.1.1.

Action du champ magnétique sur les fonctions de Bloch
Cette section donne les expressions du paramètre κ, provenant de l’effet du potentiel vecteur sur les

fonctions de Bloch, et de la matrice K.

Paramètre κ
Le paramètre κ introduit dans l’équation (2.24) peut s’exprimer [49] 3κ + 1 = Hxy

XY − Hyx
XY avec

Hxy,yx
XY définies dans la série de perturbations (2.8).

Matrice K

Nous avons vu que l’effet total du champ magnétique sur les fonctions de Bloch peut s’écrire HZ =
µBB ·K où K = (Kx, Ky, Kz).

119



Annexe A. Paramètres de la méthode k · p

Dans {|3/2,+3/2〉, |3/2,+1/2〉, |3/2,−1/2〉, |3/2,−3/2〉, |1/2,+1/2〉, |1/2,−1/2〉}, les compo-
santes de K (en supposant la facteur gyromagnétique g0 = 2) sont [49] :

Kx = −



0
√

3κ 0 0 −
√

3
2
κ′ 0√

3κ 0 2κ 0 0 − κ′√
2

0 2κ 0
√

3κ κ′√
2

0

0 0
√

3κ 0 0
√

3
2
κ′

−
√

3
2
κ′ 0 κ′√

2
0 0 κ′′

0 − κ′√
2

0
√

3
2
κ′ κ′′ 0



Ky = −



0 −i
√

3κ 0 0 i
√

3
2
κ′ 0

i
√

3κ 0 −2iκ 0 0 i κ
′
√

2

0 2iκ 0 −i
√

3κ i κ
′
√

2
0

0 0 i
√

3κ 0 0 i
√

3
2
κ′

−i
√

3
2
κ′ 0 −i κ′√

2
0 0 −iκ′′

0 −i κ′√
2

0 −i
√

3
2
κ′ iκ′′ 0



Kz = −



3κ 0 0 0 0 0

0 κ 0 0
√

2κ′ 0

0 0 −κ 0 0
√

2κ′

0 0 0 −3κ 0 0

0
√

2κ′ 0 0 κ′′ 0

0 0
√

2κ′ 0 0 −κ′′



(A.3)

où κ′ = 1 + κ et κ′′ = 1 + 2κ. Cette matrice K a la même forme dans les axes x = [100], y = [010], et
z = [001] que dans les axes x = [110], y = [1̄10], et z = [001].

Dans le sous espace j = 3/2 (trous lourds, trous légers) correspondant aux blocs 4 × 4 en haut
à gauche de chaque élement de K (délimités par des pointillés), HZ est rigoureusement équivalent à
−2κµBB · J, où J = L + S est le moment angulaire total des fonctions de Bloch [49].
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Annexe B

Hamiltonien effectif : rotation de la base de
spin

Dans cette annexe, nous discutons les effets d’un changement de base pour les états {|⇑〉, |⇓〉} du
qubit sur la matrice ĝ. Soit R la matrice de passage d’une base de spin {|⇑〉, |⇓〉} vers une nouvelle base
{|⇑′〉, |⇓′〉} définie par une transformation unitaire générique :

R =

(
αeiθ −β∗
βeiθ α∗

)
, (B.1)

où |α|2 + |β|2 = 1. Dans la base {|⇑′〉, |⇓′〉}, les matrices de Pauli σ′ = t(σ′1, σ
′
2, σ

′
3) s’écrivent :

σ′i = †RσiR , (B.2)

pour i ∈ {1, 2, 3}, avec {σi} les matrices de Pauli dans la base {|⇑〉, |⇓〉}. Chaque matrice σ′i peut
néanmoins se redécomposer dans la base des {σi}, et s’écrire sous la forme :

σ′i =
∑
j

Ujiσj , (B.3)

soit σ′ = tÛσ avec la matrice Û = {Uij} suivante :

Û =

Re[(α2 − β2)eiθ] −Im[(α2 + β2)eiθ] −2Re[αβeiθ]
Im[(α2 − β2)eiθ] Re[(α2 + β2)eiθ] −2Im[αβeiθ]

2Re[α∗β] 2Im[α∗β] |α|2 − |β|2

 . (B.4)

Par conséquent, dans la base {|⇑′〉, |⇓′〉}, H = 1
2
µB

tσ′ · ĝ′ · B, où ĝ′ = tÛ ĝ. La matrice Û est
unitaire et a pour déterminant +1. Par conséquent, toute rotation de la base {|⇑〉, |⇓〉} entraîne une
rotation correspondante de ĝ′. Réciproquement, toute matrice 3 × 3 unitaire U de determinant +1 peut
être associée à une transformation unitaireR de la base {|⇑〉, |⇓〉}. Finalement, appliquer un changement
de base {|⇑〉, |⇓〉} → R{|⇑〉, |⇓〉} est équivalent à remplacer σ par tÛσ. En particulier, la matrice Û
issue de la décomposition en valeurs singulières de la matrice ĝ [éq. (3.4)] est ainsi équivalente à un
changement de base de spin comme décrit ci-dessus.
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Annexe C

Résonance électrique de spin iso-Zeeman dans
un potentiel harmonique

Prenons l’exemple d’un électron dans une boite quantique très confinée suivant l’axe z avec un
potentiel harmonique U(x, y) = mω2

0(x2 + y2)/2 dans le plan (xy), où m est la masse d’un électron
libre, et ω0 caractérise la courbure de ce potentiel. Un champ magnétique B est appliqué au système,
et permet de définir les deux états |⇑〉 et |⇓〉 du qubit. Un champ électrique uniforme radio-fréquence
E = E0(exx + eyy) sin(ωt) où e2

x + e2
y = 1 est appliqué dans le plan (xy) et engendre des oscillations

entre les états |⇑〉 et |⇓〉 à la résonance.
D’après Golovach et Loss [31] l’hamiltonien effectif de ce système peut s’écrire (pour un champ E

statique) :

H =
1

2
g0µBB · σ + g0µB(B×Ω) · σ , (C.1)

où σ sont les matrices de Pauli, Ω = − eE0

mω2
0
(ey/λ−, ex/λ+, 0) avec λ± = ~/(m(β±α)), α et β étant les

constantes spin-orbite de Rashba et Dresselhauss, g0 est le facteur gyromagnétique d’un électron dans
le vide. Ainsi, la matrice ĝ à champ E0 = 0 s’identifie à ĝ = diag(g0, g0, g0). La matrice ĝ′ est définie
comme la dérivée de la matrice ĝ par rapport à E0 s’écrit :

ĝ′ = 2g0

 0 0 −Θy

0 0 Θx

Θy −Θx 0

 , (C.2)

où Θ = Ω/E0 = (Θx,Θy, 0). Le facteur gyromagnétique g0 est isotrope et ne varie pas lorsque le
champ radio-fréquence est appliqué (Ĝ′ = 0) mais la matrice ĝ′ est non nulle. En utilisant l’équation
(3.14) pour la fréquence de Rabi, nous trouvons ensuite :

hfR = g0µB|B×Ω| , (C.3)

ce qui est bien l’expression proposée par Golovach et Loss [31]. Le formalisme de la matrice ĝ capture
donc bien les oscillations de Rabi de type IZR.
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Annexe D

Équivalence entre le formalisme de la matrice
ĝ et la série de perturbation

Pour prouver l’équivalence entre les équations (4.8) et (4.16) nous choisissons un vecteur z ‖ B pour
une orientation donnée (et arbitraire) de B, et nous écrivons ĝ(V0) dans la base {|00〉, |10〉}. Puisque |00〉
et |10〉 sont états propres de M1,z, g13 = g23 = 0 dans l’équation (4.14), et ainsi ĝb = g33z, g = g33. Par
conséquent :

fR =
µBBVac

2h
|v| avec v = (−g′23, g

′
13, 0)

=
µBBVac

2h
|g′13 + ig′23|

=
BVac

h

∣∣∣∣ ∂∂V 〈10|M1,z|00〉
∣∣∣∣ . (D.1)

La dérivée ci-dessus peut facilement être calculée en traitant l’opérateur D1 comme une perturbation à
l’ordre un. Bien que |00〉 et |10〉 soient des états dégénérés de H0(V0,B), ils ne sont pas couplés par le
champ électrique, et la théorie des perturbations non-dégénéré s’applique :

∂

∂V
|00〉 = −e

∑
n>0,σ

〈n, σ|D1|00〉
E0 − En

|n, σ〉 (D.2a)

∂

∂V
|10〉 = −e

∑
n>0,σ

〈n, σ|D1|10〉
E0 − En

|n, σ〉 . (D.2b)

Nous avons ensuite :

∂

∂V
〈10|M1,z|00〉 =− e

∑
n>0,σ

〈10|M1,z|n, σ〉〈n, σ|D1|00〉
E0 − En

− e
∑
n>0,σ

〈10|D1|n, σ〉〈n, σ|M1,z|00〉
E0 − En

. (D.3)

La substitution de l’équation (D.3) dans l’expression (D.1) entraîne bien l’équation (4.8) comme attendu.
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Annexe E

Calcul numérique de la dérivée de la matrice ĝ

Pour établir la fréquence de Rabi à partir du formalisme de la matrice ĝ, nous devons calculer la
dérivée de la matrice ĝ par rapport à la tension de grille modulée. Dans cette partie, nous discutons la
méthodologie pour le calcul numérique de ĝ′. Nous étudions une paire de Kramers quelconque, et nous
notons |⇑〉 et |⇓〉 les états de cette paire calculés à une polarisation électrique V = V0. La matrice ĝ(V0)
dans la base {|⇑〉, |⇓〉} est facilement obtenue à partir des équations (4.14). En effectuant les même
calculs à V = V0 ± δV (où δV est petit) nous obtenons ĝ(V0 ± δV ) dans une autre base {|⇑±〉, |⇓±〉}.
La dérivée de la matrice ĝ, ĝ′(V0), peut en principe être calculée en différences finies :

ĝ′(V0) =
ĝ(V0 + δV )− ĝ(V0 − δV )

2δV
. (E.1)

Cependant, l’équation ci-dessus n’a aucun sens (sauf cas particulier). En effet les états {|⇑−〉, |⇓−〉}
et {|⇑+〉, |⇓+〉} sont calculés de manière indépendante, et sont définis à une transformation unitaire prés :
rien n’impose de passer de l’un à l’autre par continuité. L’idée est de construire les états {|⇑′+〉, |⇓′+
〉} (respectivement les états {|⇑′−〉, |⇓′−〉}) qui soient le prolongement analytique des états {|⇑〉, |⇓〉}
lorsque la polarisation varie de +δV (respectivement de −δV ). D’après les équations (D.2), les états
{|⇑′±〉} doivent rester (au premier ordre en δV ) orthogonaux à |⇓〉 et de même {|⇓′±〉} doivent rester
orthogonaux à |⇑〉. Par conséquent, les états {|⇑′±〉} et {|⇓′±〉} pertinent doivent vérifier :(

〈⇑′± | ⇑〉 〈⇑′± | ⇓〉
〈⇓′± | ⇑〉 〈⇓′± | ⇓〉

)
= α±12 , (E.2)

où 0 < α± ≤ 1. Nous recherchons donc la transformation unitaire P± dans le sous espace {|⇑±〉, |⇓±〉},
tel que les états |σ′±〉 = P±|σ±〉 satisfassent les équations ci-dessus. En résolvant ce problème, nous
pouvons définir de manière unique P±, tel que :

P± = β±

(
〈⇑± | ⇑〉 〈⇓± | ⇑〉
〈⇑± | ⇓〉 〈⇓± | ⇓〉

)
, (E.3)

où :
β−2
± = |〈⇑± | ⇑〉|2 + |〈⇓± | ⇑〉|2

= |〈⇑± | ⇓〉|2 + |〈⇓± | ⇓〉|2

α2
± = β−2

±

. (E.4)

Finalement, les différences finies (E.1) peuvent être utilisées en toute sécurité dans la nouvelle base
{|⇑′±〉, |⇓′±〉} :

|⇑′±〉 = β± (〈⇑± | ⇑〉|⇑±〉+ 〈⇓± | ⇑〉|⇓±〉) (E.5a)
|⇓′±〉 = β± (〈⇑± | ⇓〉|⇑±〉+ 〈⇓± | ⇓〉|⇓±〉) . (E.5b)
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Annexe F

Théorie des groupes pour les matrices ĝ et ĝ′

Dans cette annexe, nous donnons quelques détails concernant l’application de la théorie des groupes
aux matrices ĝ et ĝ′ [60]. Nous supposons que l’hamiltonien du système est un hamiltonien effectif
H(V0,B) donné par l’équation (4.13). Pour toute opération R qui laisse invariant le système, et pour
tous états |ϕ1〉 et |ϕ2〉, nous devons avoir :

〈ϕ1|H(V,B)|ϕ2〉 = 〈ΓS(R)ϕ1|H(V, Γ̂B(R)B)|ΓS(R)ϕ2〉 , (F.1)

où ΓS(R) est la représentation du groupe de symétrie dans l’espace de Hilbert du qubit, et Γ̂B(R) est la
représentation du groupe de symétrie dans l’espace du vecteur champ magnétique. Cela implique :

H(V,B) = Γ†S(R)H(V, Γ̂B(R)B)ΓS(R) . (F.2)

Les matrices Γ̂B(R) dans les axes {x,y, z} sont données dans la table F.1 pour les plans miroirs σyz,
σzx et σxy. Avec un choix approprié pour les états dégénérés {|⇑〉, |⇓〉} du qubit sans champ magnétique,
les matrices ΓS(R) prennent la forme donnée dans la table F.2 [86]. Le groupe double D2h a deux
représentations irréductibles possibles pour un doublet de Kramers qui diffèrent par le signe de ΓS(σxy)
mais les conclusions restent identiques que le doublet de Kramers appartienne à l’une ou l’autre des
représentations irréductibles.

Matrice ĝ
En utilisant la forme de l’hamiltonien effectif (4.13), et l’équation (F.2) nous obtenons :

σ · ĝ(V0)B =
[
Γ†S(R)σΓS(R)

]
· ĝ(V0)Γ̂B(R)B , (F.3)

pour chaque opération de symétrie R et tout champ magnétique B, où :

Γ†SσΓS = (Γ†Sσ1ΓS,Γ
†
Sσ2ΓS,Γ

†
Sσ3ΓS) . (F.4)

En développant cette relation pour les plans miroirs σyz, σzx et σxy, et nous pouvons construire les tables
4.1 et 4.2.

σαβ σyz σzx σxy

ΓB(σαβ)

1 0 0
0 −1 0
0 0 −1

 −1 0 0
0 1 0
0 0 −1

 −1 0 0
0 −1 0
0 0 1


TABLE F.1 – Représentation Γ̂B(σαβ) dans les axes {x,y, z}.
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Annexe F. Théorie des groupes pour les matrices ĝ et ĝ′

σαβ σyz σzx σxy

ΓS(σαβ)

(
0 −i
−i 0

) (
0 −1
1 0

) (
−i 0
0 i

)
TABLE F.2 – Représentation ΓS(σαβ).

Matrice ĝ′

Pour établir les conditions sur la dérivée de la matrice ĝ′(V0), nous devons généraliser les équations
(4.1) et (4.2) et considérer l’hamiltonien comme une fonction de B et comme une fonctionnelle du
potentiel électrique total Velec(V, r) dans le dispositif. Ainsi,

ĝ′(V0) =
∂ĝ

∂V

∣∣∣∣
V=V0

=

∫
d3r

δĝ

δVelec(r)

∂Velec(V, r)

∂V

∣∣∣∣
V=V0

=

∫
d3r

δĝ

δVelec(r)
D1(r) , (F.5)

où la dérivée de la fonctionnelle δĝ/δVelec(r) est évaluée au potentiel électrique Velec(V0, r). De manière
similaire à ĝ, nous obtenons en utilisant les équations (F.2) et (F.5) :

σ ·
[∫

d3r
δĝ

δVelec(r)
D1(r)

]
B =[

Γ†S(R)σΓS(R)
]
·
[∫

d3r
δĝ

δVelec(r)
D1(Γ̂R(R)r)

]
Γ̂B(R)B , (F.6)

où Γ̂R(R) est une représentation du groupe de symétrie dans l’espace réel (défini par une matrice de
rotation standard). Cette relation impose des conditions non-triviales sur ĝ′(V0) dans au moins deux
cas :

1. D1(r) = D1(Γ̂R(R)r) – ou encore, D1 est invariant par l’opération de symétrie R. L’équation
(F.6) est la même que l’équation (F.3) avec ĝ remplacée par ĝ′, et ainsi R impose les même
conditions sur ĝ(V0) et ĝ′(V0) (première ligne de la table 4.3). En introduisant la modulation du
champ électrique E1 = −∇D1, et en appliquant le gradient de part et d’autre de l’égalité, nous
obtenons E1(r) = Γ̂R(R)E1(Γ̂R(R)r). Ainsi la modulation du champ électrique doit être "paire"
sous la transformation R.

2. D1(r) = −D1(Γ̂R(R)r). Alors l’équation (F.6) impose que ĝ′(V0) prend la forme donnée dans la
seconde ligne de la table 4.3. Comme la matrice ĝ ne doit pas changer si D1(r) est une constante
(qui se traduit par

∫
d3r δĝ/δVelec(r) = 0), la condition ci-dessus peut se généraliser en D1(r) +

D1(Γ̂R(R)r) = K (K est indépendant de r). Par conséquent, E1(r) = −Γ̂R(R)E1(Γ̂R(R)r)
doit être "impaire" sous la transformation R.

Ces conditions sont le résultat de l’interaction entre la parité de l’hamiltonien du champ magnétique
(défini dans la table F.1) et la parité de l’hamiltonien du champ électrique (définie ci-dessus). Quand
les parités sont incompatibles, la somme des contributions de chaque paire d’états excités est zéro dans
l’équation (4.8), ne laissant aucune connexion entre les états |0〉 et |1〉 du qubit.
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Annexe G

Contraintes et fréquence de Rabi pour un trou
léger

Nous considérons la boite quantique rectangulaire, dont la structure électronique est décrite par une
méthode k · p quatre bandes (voit chapitre 5), soumise à une contrainte biaxiale homogène dans le plan
(xy) tel que εxx = εyy = ε‖, εzz = ε⊥ = −νε‖, où ν = 2c12/c11 est le coéfficient de Poisson biaxial et
c11, c12 sont les constantes élastiques du matériau de la boite.

Dans la base {|+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉
}

, l’hamiltonien des contraintes Bir-Pikus [87] est :

HBP =


∆EHH 0 0 0

0 ∆ELH 0 0
0 0 ∆ELH 0
0 0 0 ∆EHH

 , (G.1)

avec :

∆EHH =
[
(ν − 2)av − (ν + 1)bv

]
ε‖ (G.2a)

∆ELH =
[
(ν − 2)av + (ν + 1)bv

]
ε‖ , (G.2b)

et av, bv sont les potentiels de déformation hydrostatique et uniaxial de la boite. Les contraintes décalent
donc les purs trous lourds des purs trous légers. Elle sont introduites en remplaçant P par P+(ν−2)avε‖
et Q par Q− (ν + 1)bvε‖ dans l’équation (5.8).

Dans la base minimale B, il existe une relation entre l’hamiltonien total Htot (incluant les champs
magnétique et électrique) sans contrainte et avec contrainte. Nous remarquons que Htot ne dépend de
Lz qu’à travers la variable η ≡ L−2

z , et que :

Htot(ε‖, η) = Htot(0, η
′) + (ν − 2)avε‖ , (G.3)

avec :

η′ − η =
1

L2′
z

− 1

L2
z

=
m0(ν + 1)bv

~2π2γ2

ε‖ . (G.4)

Par conséquent, l’effet des contraintes biaxiales est introduit par une modification de la longueur de
fort confinement η = L2

z dans la fréquence de Rabi, qui suit la loi d’échelle :

fR(ε‖, η) = |fR(0, η′)| . (G.5)

En particulier, l’effet des contraintes biaxiales de compression (respectivement de tension) est équi-
valent à une diminution (respectivement augmentation) de L2

z (comme bv est typiquement négatif). Nous
notons que L2′

z peut diverger et devenir négatif à grandes contraintes de tension. Des valeurs positives
et négatives de L2′

z donnent lieu à des fréquences de Rabi identiques à l’ordre L2
z/L

2
x et L2

z/L
2
y [éqs
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Annexe G. Contraintes et fréquence de Rabi pour un trou léger
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FIGURE G.1 – La fonction H(θ, ϕ) sin θ caractérise la dépendance de la fréquence de Rabi d’un trou
léger à l’orientation du champ magnétique.

(5.39) et (G.6)], mais ce n’est pas nécessairement le cas aux ordres supérieurs. Cette relation d’échelle
s’applique au qubit défini par n’importe quelle paire d’états de la boite quantique.

Il doit être gardé à l’esprit que l’état fondamental passe d’un caractère presque pur trous lourds à
un caractère presque pur trous légers à grandes contraintes en tension. Dans une couche mince, les états
de plus basses énergies presque purs trous légers sans contrainte sont les états {|1̃+, σ〉} définis par
les équations (5.15). En suivant le même raisonnement que pour l’état trous lourds |1̃−〉, seule la paire
{|2̃+, σ〉} contribue à la fréquence de Rabi des états {|1̃+, σ〉} dans l’équation (5.23). La fréquence de
Rabi de cette paire est à l’ordre L2

z/L
2
y :

f
(2)
R =

28m0e
3

34π9~4
B|E0|Eac

γ3|κ|
γ2(γ1 − γ2)2

L6
y

L2
z

L2
y

H(θ, ϕ) sin θ , (G.6)

avec :

H(θ, ϕ) =

√
1 + 4 tan2 θ sin2 2ϕ

1 + 4 tan2 θ
. (G.7)

La fonction H(θ, ϕ) est tracée dans la figure G.1. La dépendance angulaire est très différente de la
paire |1−〉 de trous lourds mais le préfacteur est identique à celui de l’équation (5.39) avec (γ1 + γ2)2

remplacé par (γ1 − γ2)2 au dénominateur. La fréquence de Rabi peut donc être, en principe, légè-
rement plus grande pour des états de trous légers que pour des états de trous lourds (à même Lx,
Ly, suffisamment petit Lz et petites contraintes). Ce résultat est lié au fait que les trous lourds sui-
vant z (avec une masse mz = m0/(γ1 − 2γ2) ) sont en fait légers dans le plan (xy) (avec une masse
mxy = m0/(γ1 + γ2)) tandis que les trous légers suivant l’axe z (mz = m0/(γ1 + 2γ2)) sont lourds
dans le plan (xy) (mxy = m0/(γ1−γ2)), et d’où répondent donc plus fortement au champs électrique et
magnétique [voir les expressions de P et Q dans l’équation (5.8)]. La fréquence de Rabi d’une paire de
trous légers est maximale pour θ = 90◦, ϕ = 45◦ (modulo 90◦), tandis que la fréquence de Rabi d’une
paire de trous lourds est maximale quand ϕ = 0◦ (modulo 180◦) mais pour un angle θ qui dépend des
dimensions du qubit. La fréquence de Larmor est aussi moins anisotrope pour une paire de trous légers
(puisque |gx| ' |gy| ' 4|κ|, |gz| ' 2|κ|).

La composition trous lourds h2
1, et la fréquence de Rabi de l’état fondamental du qubit sont repré-

sentées en fonction de la déformation biaxiale ε‖ sur la figure G.2 a), dans une boite de silicium ayant
pour cotés Lx = 40 nm, Ly = 30 nm et Lz = 10 nm. Elles sont calculées à partir de la solution exacte
de l’hamiltonien dans la base B (ν = 0.77, bv = −2.1 eV). L’amplitude du champ électrique radio-
fréquence est Eac = 0.03 mV/nm et du champ magnétique est B = 1 T est orienté selon la direction
qui maximise la fréquence de Rabi pour chaque ε‖. Pour ε‖ < ε∗‖ = 0.0625 %, les états du qubit ont un
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FIGURE G.2 – (a) Composition en trous lourds (trait pointillé rouge, axe de droite) et fréquence de Rabi
(trait plein bleu, axe de gauche) de la paire fondamentale du qubit en fonction de ε‖ dans une boite de
silicium avec pour cotés Lx = 40 nm, Ly = 30 nm et Lz = 10 nm. Elles sont calculées à partir de la
solution exacte de l’hamiltonien dans la base B. L’amplitude du champ électrique radio-fréquence est
Eac = 0.03 mV/nm, celle du champ électrique statique E0 = 0.1 MV/m et celle du champ magnétique
est B = 1 T. B est orienté selon la direction qui maximise la fréquence de Rabi pour chaque ε‖. La
transition d’un état fondamental plutôt trous lourds (HH) vers un état plutôt trous légers (LH) se fait
vers ε‖ = ε∗‖ = 0.0625 %. (b) Longueur effective L′z =

√
|L2′

z | en fonction de ε‖ [éq. (G.4)]. L2′
z diverge

à ε‖ = ε∞‖ = 0.0686 %, est positive pour ε‖ < ε∞‖ et négative pour ε‖ > ε∞‖ . Le point de référence sans
contrainte ε‖ = 0 est mis en évidence par un disque noir sur les deux figures.

caractère plutôt trous lourds, tandis que pour ε‖ > ε∗‖, ils sont plutôt trous légers. La fréquence de Rabi
diminue à grandes contraintes de tension ou de compression car les états trous lourds et trous légers
sont très séparés en énergie par cette contrainte ce qui supprime le mélange trous lourds/trous légers
nécessaire aux oscillations de Rabi [de manière équivalente, L2′

z → 0, comme illustré dans la figure G.2
b)].

La fréquence de Rabi montre un pic séparé en deux par un creux prés de (mais pas exactement
à) la transition ε‖ = ε∗‖. Ce pic est le résultat d’une augmentation de la longueur effective L2′

z (fort
mélange entre les trous lourds et trous légers) bien que ni l’équation (5.39) ni l’équation (G.6) ne soient
applicables autour de ε‖ = ε∗‖. Le creux est centré à la contrainte ε‖ = ε0

‖ = 0.0643 % où h1 = h2,
l1 = l2 (le creux est centré soit sur h1 = h2, l1 = l2 ou sur h2 = −l1, h1 = l2 en fonction des dimensions
de la boite). Les états propres de l’hamiltonien H4k·p peuvent être alors tous factorisés comme des
produits d’une seule enveloppe par des fonctions de Bloch mixtes trous lourds/trous légers. Comme les
enveloppes, et/ou les fonctions de Bloch des différents états doivent être orthogonales, les états du qubit
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Annexe G. Contraintes et fréquence de Rabi pour un trou léger

et les états excités ne peuvent plus être couplés en même temps par Eac et HZ dans l’équation (5.23).
Le creux devient moins profond (mais ne disparaît pas) dans une base plus grande. Ainsi, les qubits de
trous se trouvent être très sensible à la contrainte, et l’intervalle de ε‖ exploitable pour augmenter la
fréquence de Rabi est très étroit. La fréquence de Rabi reste plus grande pour des états presque purs
trous lourds que pour des états presque pur trous légers prés du pic [où les équations (5.39) et (G.6), qui
suggèrent un comportement opposé ne sont plus valables].
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Annexe H

Décomposition de la fréquence de Rabi

La fréquence de Rabi de la boite quantique dans la base minimale s’écrit fR = e
h
B|E0|Eac

∣∣∣Π1̃+ +

Π2̃− + Π2̃+

∣∣∣ à l’ordre un en champs électrique et magnétique. L’équation pour Π2̃− est :

BE0Π2̃− =
D1

E1− − E2−
×
{
λ1−

2−

[
− 4αβ(Z

(2)
1 − Z(1)

1 )− 2β2(Z
(2)
2 − Z(1)

2 ) + 2α2(Z
(2)∗
2 − Z(1)∗

2 )
]

+λ1−
2+

[
− 4αβZ

(2)
3 − 2β2Z

(2)
4 + 2α2Z

(2)∗
4

]
+λ2−

1+

[
− 4αβZ

(1)
3 − 2β2Z

(1)
4 + 2α2Z

(1)∗
4

]}
, (H.1)

avec :
D1 = 〈2−,⇑ |y|1−,⇑〉 = −16Ly

9π2
(h1h2 + l1l2) (H.2)

et :

Z
(i)
1 = 〈i−,⇑ |Hz|i−,⇑〉 = κµBB(3h2

i − l2i )bz (H.3a)

Z
(i)
2 = 〈i−,⇑ |Hz|i−,⇓〉 = 2κµBB(

√
3hilib− + l2i b+) (H.3b)

Z
(i)
3 = 〈i−,⇑ |Hz|i+,⇑〉 = −4κµBBhilibz (H.3c)

Z
(i)
4 = 〈i−,⇑ |Hz|i+,⇓〉 = 2κµBB

[√3

2
(h2

i − l2i )b− + lihib+

]
. (H.3d)

L’équation pour Π2̃+ est :

BE0Π2̃+ =
D2

E1− − E2+

×
{
λ1−

2−

[
− 4αβZ

(2)
3 − 2β2Z

(2)
4 + 2α2Z

(2)∗
4

]
+λ2+

1+

[
− 4αβZ

(1)
3 − 2β2Z

(1)
4 + 2α2Z

(1)∗
4

]
+λ1−

2+

[
− 4αβ(Z

(1)
5 − Z(1)

1 )− 2β2(Z
(2)
6 − Z(1)

2 ) + 2α2(Z
(2)∗
6 − Z(1)∗

2 )
]}

,

(H.4)

où :
D2 = 〈2+,⇑ |y|1−,⇑〉 =

16Ly
9π2

(h2l1 − h1l2) (H.5)

et :

Z
(i)
5 = 〈i+,⇑ |Hz|i+,⇑〉 = κµBB(3l2i + h2

i )bz (H.6a)

Z
(i)
6 = 〈i+,⇑ |Hz|i+,⇓〉 = 2κµBB(−

√
3hilib− + h2

i b+) . (H.6b)
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Enfin, l’équation pour Π1̃+ est :

BE0Π1̃+ =
−4αβZ

(1)
3 − 2β2Z

(1)
4 + 2α2Z

(1)∗
4

E1− − E1+

×
[
D1

(
λ1+

2− + λ1−
2+

)
+D2

(
λ1+

2+ − λ1−
2−
)]
. (H.7)

Les coefficients α et β sont définis par l’équation (5.28), et les termes {hi, li} le sont par l’équation
(5.12).
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Résumé/Abstract

Titre
Modélisation de la manipulation électrique des qubits de trou dans le silicium.

Résumé
Les bits quantiques (qubits) de spin sont des dispositifs dans lesquels l’information est stockée

comme une superposition cohérente des deux états de spin d’une particule. Une des perspectives de
ces dispositifs est d’exploiter le parallélisme massif permis par une telle superposition de solutions.
Le CEA Grenoble étudie notamment des qubits de spin de trou dans le silicium, car leur manipulation
électrique est plus facile que les qubits d’électron grâce au couplage spin-orbite fort dans les bandes
de valence. Cette thèse porte ainsi sur la modélisation de la manipulation électrique de ces qubits de
trou. Tout d’abord, nous introduisons les méthodes k.p décrivant la structure des bandes de valence du
silicium, et qui permettent de construire des modèles numériques et analytiques. Puis nous présentons
les expériences menées au CEA Grenoble sur ces qubits dérivés des technologies CMOS. Ces expé-
riences mettent en évidence les fortes anisotropies magnétiques des fréquences de Larmor et de Rabi,
qui caractérisent respectivement la dynamique et la manipulation du qubit. Nous introduisons un forma-
lisme de matrice gyromagnétique qui décrit complètement ces deux fréquences. De plus, nous montrons
comment les symétries impactent la forme de cette matrice, et comment elles expliquent l’anisotropie
magnétique des qubits. Ensuite, nous identifions grâce à la simulation numérique, les mécanismes mi-
croscopiques à l’œuvre lors de la manipulation électrique du spin, ce qui nous permet de construire un
modèle minimal de qubit de trou. Ce modèle démontre que le silicium est un matériau hôte idéal pour
un tel qubit grâce à la forte anisotropie de ces bandes de valence. Pour terminer, nous étudions numéri-
quement l’impact des phonons sur le temps de vie des qubits de trou. Nous montrons que le temps de
relaxation est suffisamment grand pour effectuer plusieurs dizaines de milliers d’opérations malgré le
couplage spin-orbite fort.

Mots clefs : Information quantique, Physique numérique, Physique théorique, Bits quantiques, Sili-
cium, Spin

Title
Modeling of the electrical manipulation of hole silicon qubits

Abstract
Spin quantum bits (qubits) are devices in which information is stored as a coherent superposition

of two spin states of a particle. One of the perspectives of these devices is to exploit a massive paral-
lelism allowed by such a superposition of solutions. The CEA Grenoble is studying in particular hole
spin qubits in silicon, because their electrical manipulation is easier than electron qubits thanks to the
strong spin-orbit coupling of the valence bands. This thesis thus focuses on the modeling of the electri-
cal manipulation of these hole qubits. First of all, we introduce the k.p methods that describe the valence
bands structure of silicon, and which allow to build numerical and analytical models. Then we present
the experiments carried out by CEA Grenoble on these qubits derived from CMOS technologies. These
experiments reveal the strong magnetic anisotropy of the Larmor and Rabi frequency, which respecti-
vely characterise the dynamic and the manipulation of the qubit. We introduce a gyromagnetic matrix
formalism that completely describe these two frequencies. In addition, we show how symmetries im-
pact the shape of this matrix, and how they explain the magnetic anisotropy of qubits. Next, we identify
through numerical simulation, the microscopic mechanisms underlying the electrical manipulation of
spin, which then allow us to build a minimal model for hole qubits. This model demonstrates that sili-
con is an ideal host material for a such qubit thanks to the strong anisotropy of its valence bands. Finally,
we study numerically the impact of phonons on the lifetime of hole qubits. We show that the relaxation
time is large enough to perform tens of thousand of operations despite the strong spin-orbit coupling.

Key words : Quantum information, Numerical physics, Theoritical physics, Quantum bits, Silicon,
Spin
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