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Abstract
Quantum neural networks have emerged as a promising approach to solving complex problems across various domains,
especially when integrated with classical methods. Several hybrid quantum-classical architectures have been developed to
leverage the potential of quantum advantages for image classification tasks. The design of the quantum layer plays an
important role in exploiting quantum properties such as superposition and entanglement. In this research, we propose hybrid
quantum neural networks with multiple quantum layers, utilizing sequential circuits for enhanced feature representation
through structured depth, and non-sequential circuits to reduce complexity and improve performance. Our experimental
results demonstrate that stacking multiple layers in the quantum circuit enhances performance significantly. Furthermore, the
results indicate that the optimal range of 6–10 qubits achieves the best trade-off between accuracy and computational efficiency.
The results also show that amplitude embedding consistently outperformed angle embedding for image classification tasks.
Notably, our proposed hybrid sequential model with amplitude embedding outperforms traditional convolutional neural
networks onMNIST and Fashion-MNIST datasets, while requiring fewer parameters. These findings provide valuable insights
for advancing quantum machine learning in real-world applications.

Keywords Hybrid quantum neural networks · Quantum embedding · Image classification · Quantum machine learning

1 Introduction

Quantum computers are considered more powerful than
classical computers due to the potentiality of parallel cal-
culations and exponential speed-ups. Currently, in the noisy
intermediate-scale quantum (NISQ) era, quantum devices
face several challenges, such as a limited number of qubits
and high error rates (Preskill 2018). Due to these hard-
ware constraints, replacing classical computing entirely with
quantum is not feasible. A key challenge is harnessing the
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properties of quantum computing while integrating them
with existing classical approaches.
Quantum computing offers novel approaches for various
research problems integrated with traditional machine learn-
ing concepts (Biamonte et al. 2017). In addition to quantum
machine learning approaches (Rebentrost et al. 2013; Lloyd
et al. 2014; Amin et al. 2018), deep learningmodels have also
gained quantum advantages for image classification (Sagin-
galieva et al. 2025; Mari et al. 2020). One of the widely
accepted deep learning approaches in image processing is
the convolution neural network (CNN) (Krizhevsky et al.
2012). Inspired by the capability of this architecture, various
quantum-classical hybrid classification models have been
developed (Warrier et al. 2024; Wang et al. 2024).
One of the prominent hybrid approaches is quantum CNN
(QCNN) (Cong et al. 2019), where filters are modified with
quantum-based quanvolution filters for feature extraction
(Henderson et al. 2019; Vu et al. 2024). Due to the hard-
ware limitations of quantum, these approaches often lead
to lower accuracy compared to classical convolution filters
in practical applications. Different optimization techniques
have been applied to design parameterized quantum circuits
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(PQCs) and leverage the quantum properties with classical
architecture (Liao et al. 2024). Optimizing these PQCs plays
a crucial role in enhancing the performance of quantum cir-
cuits in quantum neural networks (QNN) (Zhang et al. 2024).
The integration of QNN with the classical models, known as
HQNN, has shown promising advances in image classifica-
tion tasks (Senokosov et al. 2024; Ling et al. 2024).
In this paper, we propose layered hybrid quantum neural net-
works for multi-class image classification. In the proposed
model, both sequential and non-sequential quantum layer
(QL) configurations are designed, with varying the depth
of the circuit. Rather than optimizing the quantum circuit,
our motivation is to study the deeper quantum network to
utilize the quantum properties, i.e., superposition and entan-
glement, for image classification. The performance of the
proposed architectures is evaluated with respect to several
variables, such as the optimal range of qubits, embedding
techniques, and the structure of the quantum circuit. The key
contributions of the proposed research are as follows:

• Wepropose sequential and non-sequential layered hybrid
quantum neural networks (LHQNN) for image clas-
sification problems. Multiple layers in these hybrid
architectures harness quantum properties effectively,
with sequential models providing structured depth and
non-sequential models minimizing circuit length for
improved efficiency. Our proposed models explore quan-
tum circuits with varying numbers of stacked quantum
layers that outperform traditional approaches.

• We investigate how the number of qubits and embedding
techniques, such as amplitude and angle encoding, affect
the performance of LHQNN models, focusing on their
impact on accuracy and computational efficiency.

• We analyze the effects of the complexity and the size of
quantum circuits on models performance, highlighting
the role of circuit depth in leveraging quantumproperties.
This research provides valuable insights into design-
ing optimal resource configuration models and enhanced
accuracy.

The rest of the paper is organized as follows: In Section
2, we summarize the basic preliminaries for quantum com-
puting. The proposed LHQNN architectures are introduced
in Section 3. The experimental setup and analysis of results
are presented in Sections 4 and 5, respectively. Finally, Sec-
tion 6 concludes with a summary and future direction of the
research.

2 Preliminaries

This section presents a brief background and preliminaries
related to this paper. It focuses on basic quantum com-
puting concepts, such as quantum bits, quantum encoding
techniques, quantum circuits, and different types of quan-
tum gates. These concepts and notations will be useful in
comprehending the terminology of the proposed LHQNN
architectures in this paper.

2.1 Quantum bits

Quantum bit or qubit is the fundamental component of infor-
mation in quantum computing. In classical computing, bits
hold two states- 0 and 1 for storage and processing infor-
mation. On the other hand, qubits can have a mixed state
of 0 and 1 (Fig. 1) (Team 2024). Based on quantum the-

Fig. 1 The figure shows two Bloch spheres representing the quantum bit in classical states. The left and right spheres illustrate the qubit in state
|1〉 and |0〉, respectively
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ory, a qubit exhibits some properties such as superposition,
entanglement, and interference, which make it distinguish-
able from classical bits (Nielsen and Chuang 2010).
In quantum computing, to represent the quantum states of a
qubit, a mathematical notation is used, which is called Dirac
notation or bra-ket notation. According to Dirac notation,
mainly two types of symbols, ket ( |�〉) and bra ( 〈�|) are
used to describe any instant of a qubit. The computational
basis state of a qubit can be represented by column vec-
tors in multidimensional Hilbert Space using these notations
(Griffiths and Schroeter 2018). The state of vector a using
ket notation can be described as,

|a〉 =
(
a1
a2

)
(1)

Mainly, two computational basis states |0〉 and |1〉 are used
for quantum and can be expressed as a matrix as follows,

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
. (2)

2.2 Quantum gates and circuits

In quantum computing, quantumgates and circuits are funda-
mental components for designing quantum models. Mainly,
quantum gates are mathematical operations that act on one or
more qubits to manipulate the quantum state (Mermin 2007).
TheHadamard, CNOT,Rotation, and Pauli gates are themost
frequently used gates in quantum computing.

Hadamard gate The Hadamard gate is used to create super-
position on qubits. It performs transformation from state |0〉
or |1〉 into a superposition of |0〉 and |1〉. Mathematically, it
can be represented as:

H = 1√
2

[
1 1
1 −1

]
(3)

CNOT gate CNOT gate is an effective two-qubit gate that
establishes entanglement between qubits. These two qubits
are known as control and target qubits. With this gate,
depending on the value of the control qubits, the state tar-
get qubits change.

CNOT =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (4)

Rotation gates Rotation gates are single-qubit gates with
parameterize of angle θ that perform rotation around the X,

Y, or Z axes of the Bloch sphere.

Rx (θ) = cos

(
θ

2

)
I −i sin

(
θ

2

)
X =

[
cos

(
θ
2

) −i sin
(

θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)
]
(5)

Ry(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

[
cos

(
θ
2

) − sin
(

θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)
]

(6)

Rz(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

[
e−iθ/2 0

0 eiθ/2

]
(7)

Pauli gates Pauli gates manipulate the quantum state of a
qubit by rotation of the X, Y, or Z axes. With these gates, bit,
phase, or both states of a quantum bit can be modified with
Pauli X, Y, and Z gates, respectively.

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(8)

QuantumcircuitAquantum circuit is a set of quantumgates
that are used in quantum algorithms tomanipulate the state of
qubits. In quantum circuits, superposition and entanglement
are created with one and two-qubit gates, respectively. At
the end of the circuit, the measurement gate measures the
quantum state to extract the classical information.

2.3 Quantum encoding

In quantum computing, classical data are encoded into quan-
tum bits to leverage the principles of quantum mechanics
(Lloyd et al. 2020). In this research, two of the most pop-
ular embedding techniques- amplitude encoding and angle
encoding are used.

2.3.1 Amplitude encoding

In amplitude encoding, classical information is represented
by the probability amplitudes of a quantum state. To rep-
resent information using quantum superposition principles,
the states are observed to determine the outcome from prob-
ability amplitude in quantum superposition (Schuld and
Petruccione 2018). The main advantage of this technique is
that a large amount of data can be represented with a lim-
ited number of qubits. Specifically, a classical dataset of M
inputs, each having N number of features, can be encoded
with n = logNM number of qubits.
To encode classical data into quantum, the classical vectors
are normalized using the Euclidean norm. If X is a classi-
cal vector of dataset x = (x1, x2, ..., xn), the corresponding
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quantum state |ψ〉 can be represented as,

|ψ〉 = 1

‖x‖
N−1∑
i=0

xi |i〉 (9)

Again,with the computational basis state |i〉 and the i-th com-
ponent of classical data xi , normalization can be calculated
as,

‖x‖ =
√√√√N−1∑

i=0

x2i (10)

Depending on the number of classical data vectors, the initial
state |0〉⊗n is prepared, where n determines the number of
qubits with all-zero initial states. Afterward, a series of dif-
ferent unitary gates, such as rotation gates, controlled gates,
etc., are applied to the initial state to transform the initial
state into the encoded quantum state.

2.3.2 Angle encoding

Angle encoding is a widely used embedding technique in
quantum computing to encode classical data into quantum
states. In angle embedding, classical data are encoded into
quantum states by a rotation about X , Y , or Z axes by a
specific angle.
A classical dataset x having n number of features x =
(x1, x2, ..., xn), can be encoded with rotation about Y axis
such as:

|ψ(x)〉 = Ry(x1) ⊗ Ry(x2) ⊗ · · · ⊗ Ry(xn)|0〉⊗n (11)

where |0〉 is the initial state, and each feature is encoded
with an individual angle (⊗) to generate a quantum state
|ψ〉. In general, any classical dataset having n number of
features requires the same amount of qubits. For large and
complex datasets with a high number of features, it becomes
impractical to use angle encoding for hardware limitations
due to quantum computers.

3 Proposedmethodology

This section describes the architecture of the proposed
layered hybrid quantum neural networks. The generalized
architecture of the proposedmodels is depicted inFig. 2a.The
convolution block of CNN extracts significant features from
input images using convolution layers. It typically includes
an activation function, Rectified Linear Unit (ReLU) for non-
linearity, and a pooling layer to reduce spatial dimensions.
These components worked together to capture meaningful
patterns for dense layers. In the dense layers, the quantum

layer is integrated with a fully connected layer for classifica-
tion.Notably, the design incorporates a single fully connected
layer to maximize the utilization of quantum properties. Fur-
ther details of each component of LHQNN architectures are
presented in the subsequent sections.

3.1 Convolution and pooling layers

The first module of LHQNN is classical convolution, which
is used to identify significant patterns and extract features
from images. In the first convolutional layer, with 16 output
channels, a square kernel of dimension 3×3 is employed.
Smaller kernels can effectively capture these fine-grained
details, which is crucial for our datasets. In addition, a single-
pixel stride and padding are utilized for the input data to
preserve the spatial dimensions. This layer is followed by a
pooling layer for down-sampling the input with an activa-
tion function ReLU. In this layer, max-pooling with a kernel
size of two pixels, stride with two pixels, and zero padding
is applied, resulting in a feature map having dimensions of
16×14×14 pixels.
The second convolutional layer has 16 input channels and
32 output channels, preserving the stride and padding con-
figuration from the first layer. The output is passed through a
pooling layer, which reduces the spatial dimensions while
retaining crucial features. The output of this layer gener-
ates a feature map with dimensions 32×7×7. This low-
dimensional feature map is subsequently fed into the next
layers for further processing.

3.2 Flatten and fully connected layer

In the flattened layer, the multidimensional feature space
generated from the previous layers is converted into a one-
dimensional vector. Mainly, 3D tensors of images (height,
width, and channels) are flattened into a 1D vector by com-
bining their dimensions. From the final feature map of the
convolutional module, a vector of dimension 1568 is gener-
ated. As the research focuses on leveraging the strength of
quantumproperties, only one fully connected layer is utilized
before the quantum layer.
The vector in the flattened layer is fed into the first fully
connected layer. The patterns of the extracted features by
the convolution layer are learned by the model in this layer.
An activation function, ReLU, is applied here to identify the
non-linear relationship among the features and pass it into
the quantum layer (Agarap 2019). In the proposed LHQNN
architecture, different numbers and shapes of quantum layers
are infused between fully connected layers. Finally, the last
fully connected layer performs the classification depending
on the number of classes in the dataset. Notably, since the
research aims to harness the power of quantum properties,
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Fig. 2 a Architecture of the proposed LHQNN networks. A series of
convolution and pooling layers are applied to input data to extract sig-
nificant features and reduce the spatial dimensions. The outputs are
flattened into a single vector and passed to a hybrid dense layer that
combines classical neural network components. The final output layer
is used to classify the input image into predefined categories. bDetailed

architecture of quantum layer. Features are encoded and distributed in
a quantum circuit. A parameterized quantum circuit is implemented
using CNOT and entangling gates across n layers to capture and learn
complex feature spaces. The resultant quantum states aremeasured, and
the outputs are fed into the final classification layer

only a single fully connected layer is employed before the
quantum layer.

3.3 Quantum layer

In the proposed LHQNN models, the quantum layer plays
a key role in leveraging quantum properties for enhanced
image classification. Quantum layers mainly consist of three
components- embedding, quantumcircuit, andmeasurement.
A detailed architecture of the quantum layer is depicted in
Fig. 2b.
The fully connected layer connects all input features into n
output features, where n represents the number of qubits.
Classical data are encoded into quantum states using a pri-
mary embedding technique. This research investigates the
performance of both amplitude and angle embedding to
assess their effectiveness in image classification tasks. A uni-

tary transformation is applied in the encoding operation E to
map the classical data vector x onto a quantum state, trans-
forming the initial state into a quantum representation. If
initial states are represented by |0〉, for n qubits, the encoded
state can be expressed as follows.

|ψencoded〉 = E(x)|0〉⊗n (12)

The encoded quantum states are fed into the quantum circuit,
where strongly entangling layers (SEL) architecture is uti-
lized as a quantum circuit (Schuld et al. 2020). SEL increases
the number of superposed quantum states and entangle-
ment between qubits, which is crucial for achieving quantum
advantages. This circuit consists of a combination of single-
qubit rotations followed by entangling CNOT gates between
adjacent qubits. For single i-th qubit rotation, with the angle
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of θ
(l)
i , φ(l)

i , and λ
(l)
i in the l-th layer can be defined as,

R(θ
(l)
i , φ

(l)
i , λ

(l)
i ) = Rz(φ

(l)
i )Ry(θ

(l)
i )Rz(λ

(l)
i ) (13)

and,

Ry(θ) = exp

(
−i

θ

2
Y

)
, Rz(λ) = exp

(
−i

λ

2
Z

)
(14)

where Y and Z are Pauli matrices.
For entanglement between neighboring qubits of total n
qubits, CNOT gates are applied.

U (l)
entangle =

n−1∏
i=1

CNOT(i, i + 1) (15)

With the combination of rotation and entanglement, The uni-
tary operation is performed by the quantum circuit SEL.

U (l)
SEL =

n−1∏
i=1

CNOT(i, i +1) ·
(

n⊗
i=1

R(θ
(l)
i , φ

(l)
i , λ

(l)
i )

)
(16)

After applying the SEL to the encoded data, state |ψ ′
i 〉 is

obtained, which can be presented by the following expres-
sion.

|ψ ′
i 〉 = U (l)

SEL|ψencoded〉 (17)

In the quantum layer, the final states |ψfinal〉 are measured by
applying Pauli Z operations.

|ψfinal〉 = Z |ψ ′
i 〉 (18)

Lastly, themeasured classical data are fed into the final output
layer for classification.

3.4 Architectures of LHQNN

We design two variations of the LHQNN model- sequen-
tial and non-sequential LHQNN based on the consecutive
number of qubits. While in sequential LHQNN, the quan-
tum circuit is constructed with a total of n qubits, in
non-sequential LHQNN, the qubits are divided into smaller
groups in the quantum layer. The diverse quantum architec-
tures in LHQNNcan significantly influence the performance,
depending on how the data is manipulated within the quan-
tum layers. In the NISQ era, the quantum circuit has several
hardware limitations when utilizing quantum resources.

3.4.1 Quantum layers in sequential LHQNN

In sequential LHQNN, the quantum circuit is designed with
a total of n qubits that perform simultaneously. Multiple lay-
ers of SEL can increase the quantum expressivity to represent
more complex quantum states. In this architecture, the com-
plete unitary transformation for L layers can be presented as
follows.

U (l)
entangle =

n−1∏
i=1

CNOT(i, i + 1) (19)

USEL =
L∏

l=1

(
U (l)
entangle ·

(
n⊗

i=1

R(θ
(l)
i , φ

(l)
i , λ

(l)
i )

))
(20)

Alternatively, the expression can be expanded to provide a
more detailed representation.

USEL = U (L)
entangle ·

(
n⊗

i=1

R(θ
(L)
i , φ

(L)
i , λ

(L)
i )

)
· . . . ·

U (1)
entangle ·

(
n⊗

i=1

R(θ
(1)
i , φ

(1)
i , λ

(1)
i )

)
(21)

3.4.2 Quantum layers in non-sequential LHQNN

In non-sequential LHQNN, parallel operations are per-
formed on encoding, circuit, and decoding, where qubits
are arranged in groups. These smaller groups of qubits can
be processed independently or in parallel, enabling a more
dynamic approach to quantum information processing. This
approach minimizes the number of consecutive quantum
operations, directly reducing the overall length. The detailed
non-sequential LHQNN architecture is illustrated in Fig. 3.
The non-sequential LHQNN model is designed to minimize
the circuit complexity, which is important in reducing noise
and decoherence in NISQ computing.
Consider the classical input data x = (x1, x2, . . . , xn),
where n is a multiple of k (i.e., n = k × m), and the
data is divided into m groups, each containing k val-
ues (xk(i−1)+1, xk(i−1)+2, . . . , xki ) having i = 1, 2, . . . ,m.
Each of these group is encoded into a k-qubit quantum state
using an encoding function Ei :

|ψi 〉 = Ei (xk(i−1)+1, xk(i−1)+2, . . . , xki ) (22)

resulting in m parallel k-qubit states: |ψ1〉, |ψ2〉, . . . , |ψm〉.
After encoding, a strongly entangling layer is applied to
each group individually. The SEL introduces entanglement
within each k-qubit group in parallel, applying CNOT gates
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Fig. 3 Sample architecture of
the non-sequential LHQNN
networks. For ten qubits, five
groups are created, each having
two qubits. These groups can
perform encoding, SEL, and
decoding independently. k
represents each group
constructed with three rotations
and CNOT of SEL. The decoded
outputs are merged together to
be fed into the final
classification layer

in sequence within each group. For each layer l, the entan-
gling unitary (l)

entangle is defined as:

U (l)
entangle =

k−1∏
j=1

CNOT( j, j + 1) (23)

Across all layers, the complete SEL operator USEL applies
entanglement and rotation gates in parallel for each group as
follows:

USEL =
L∏

l=1

⎛
⎝ m⊗

i=1

⎛
⎝U (l)

entangle ·
⎛
⎝ k⊗

j=1

R(θ
(l)
i j , φ

(l)
i j , λ

(l)
i j )

⎞
⎠

⎞
⎠

⎞
⎠

(24)

where R(θ
(l)
i j , φ

(l)
i j , λ

(l)
i j ) represents a rotation applied to qubit

j in group i at layer l.
Alternatively, the sequence of operations within each group
can be presented explicitly as:

USEL =
⎛
⎝ m⊗

i=1

U (L)
entangle ·

k⊗
j=1

R(θ
(L)
i j , φ

(L)
i j , λ

(L)
i j )

⎞
⎠ · · ·

×
⎛
⎝ m⊗

i=1

U (1)
entangle ·

k⊗
j=1

R(θ
(1)
i j , φ

(1)
i j , λ

(1)
i j )

⎞
⎠ (25)

After applying SEL to the quantum state |ψi 〉, the trans-
formed state |ψ ′

i 〉 = USEL(|ψi 〉) is obtained, and the Pauli-Z
expectation values 〈Z〉i are measured for each qubit. Finally,
the measured expectation values are concatenated into a sin-
gle vector to serve as input to the classical classification layer:

|�concat〉 = concat (〈Z〉1, 〈Z〉2, . . . , 〈Z〉m) (26)

where 〈Z〉i = 〈ψ ′
i |Z |ψ ′

i 〉 represents the Pauli-Z measure-
ment of the i-th qubit, and |�concat〉 is the concatenated vector
of measurement results that is input into the classical classi-
fication layer for further processing.

4 Experimental setup and performance
evaluation

This section describes the experimental setup, datasets, and
metrics used to evaluate the performance. It includes detailed
information about the hardware and software environment,
training configurations, and metrics used to validate the
results.

4.1 Environment details

The research experiments were conducted on a desktop com-
puter with an Intel(R) Core(TM) i9-14900 and a NVIDIA
GeForce RTX 4090 GPU. The software environment was
based on Windows 11, with Python 3.10 as the program-
ming language.Allmodelswere implemented using PyTorch
1.13.1 and CUDA 11.8 with CuDNN 8.6 for GPU acceler-
ation. Pennylane simulation is used to design and run the
quantum sections (Bergholm et al. 2022).
In these experiments, a random seed of 42 is set for repro-
ducibility. Batch sizes 64 and 128 are considered for training
and testing, respectively. Datasets were normalized before
training (Bishop and Nasrabadi 2006).
The Adam optimizer is used with a learning rate of 0.001.
The loss function employed for training was the cross-
entropy loss. To avoid over-fitting, an early stopping method
is applied where patience=5 with delta=0.0001.

4.2 Datasets

In this experiment, two publicly available datasets are used
to evaluate performance. Description of these datasets are
given below:
MNIST dataset: MNIST handwritten digit recognition is a
widely use dataset for image classification (Fig. 4a) (Deng
2012). It has ten classes, which represent the digits from 0
to 9. Mainly, there are a total of 70,000 grayscale images of
28×28 dimensions each. Among them, 60,000 images are
training data, and the rest are testing data.
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Fig. 4 Samples from MNIST
and Fashion-MNIST dataset

Fashion-MNIST dataset: Fashion MNIST is a substitute for
MNIST data consisting of images of 10 fashion categories
(Fig. 4b) (Xiao et al. 2017). It has 60,000 training and 10,000
test images for classification. Each image has a dimension of
28×28, ranging the pixel value from 0–255.

4.3 Evaluation criteria

Accuracy, recall, precision, and f-score are used as met-
rics to evaluate the performance of this experiment (Bishop
and Nasrabadi 2006). These evaluation metrics are described
below:
Accuracy: Accuracy quantifies a model’s performance by
measuring the correct number of predictions. It is the ratio
of true identified instances and the total number of instances.
Mathematically,

Accuracy = True Positives + True Negatives

Total Instances
(27)

Precision: Precision measures how often a model can cor-
rectly predict positive instances. Mathematically,

Precision = True Positives

True Positives + False Positives
(28)

Recall: The recall metric quantifies the percentage of actual
positive cases that the model can detect accurately.

Recall = True Positives

True Positives + False Negatives
(29)

F1 score: TheF1 score represents the harmonicmeanof recall
and precision.

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(30)

5 Results and discussion

We thoroughly evaluate the proposed sequential and non-
sequential LHQNNmodels on MNIST and Fashion-MNIST
datasets. To understand the different properties of quan-
tum regarding image classification, diverse architectures of
quantum layers are investigated, maintaining minimum clas-
sical layers. Two popular encoding techniques- amplitude
and angle embedding are implemented separately on each
model with 10 qubits to understand their significance in
image classification tasks. These experiments employed 5-
fold cross-validation to ensure robustness, with the average
results being presented for evaluation.

Fig. 5 Accuracy curve for different numbers of qubits on Fashion-MNIST data with a amplitude and b angle embedding
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Table 1 Performance metrics of
sequential LHQNN models on
MNIST data (best results are
shown in boldface)

Encoding techniques No of QL Accuracy (%) Precision (%) Sensitivity (%) F-score (%)

Amplitude 1 44.98 47.26 43.87 35.59

2 98.75 98.76 98.74 98.74

3 99.18 99.17 99.17 99.17

4 99.20 99.20 99.19 99.19

5 99.26 99.26 99.26 99.26

Angle 1 95.82 95.88 95.79 95.81

2 95.46 95.52 95.39 95.42

3 97.49 97.49 97.48 97.45

4 97.30 97.31 97.27 97.28

5 97.30 97.30 97.28 97.29

5.1 Performance analysis with different qubit
numbers

The performance of Sequential LHQNNby varying the num-
ber of qubits is presented here. The accuracy achieved with
three quantum layers is illustrated in Fig. 5a for amplitude
embedding and in Fig. 5b for angle encoding.

Due to the noisy and error-prone nature of quantum, there
is no consistent improvement in accuracy with an increasing
number of qubits and fluctuations in the results. However, the
accuracy significantly improves with 6 qubits and maintains
strong performance beyond that point. While specific qubit
numbers cannot be precisely determined, the range of 6 to 10
qubits appears optimal, balancing accuracy and the number
of parameters effectively.

5.2 Performance evaluation of sequential LHQNN

The experimental results of sequential LHQNN models on
MNIST and Fashion-MNIST datasets are demonstrated here.

In this experiment, amplitude and angle encoding are utilized,
varying the stacked quantum layer from 1 to 5.
Table 1 represent the detailed experimental results of the
sequential LHQNN model on the MNIST dataset. The
highest accuracy achieved by this model is 99.26%, using
amplitude embedding with 5 quantum layers. With angle
embedding, the best accuracy achieved is 97.49% with 3
layers, which is significantly lower compared to amplitude
encoding. It is prominent that the accuracy consistently
improves as the number of quantum layers increases. For
both embedding techniques, the accuracy increases consid-
erably up to 3 quantum layers. However, after the third layer,
there is marginal to no improvement in accuracy, indicat-
ing that additional layers do not significantly enhance the
model’s performance.
To evaluate the generalization and robustness of sequential
LHQNN, loss, and accuracy curves are depicted in Fig. 6a
and b respectively. The best results among the 5-fold cross-
validation are considered to demonstrate these figures. The
training and validation loss consistently decreases over time,
reaching an optimal point after 19 epochs and five early

Fig. 6 Performance plot for sequential LHQNN model on MNIST data with amplitude embedding. Graph a shows training and validation loss,
and graph b illustrates training and testing accuracy
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Table 2 Performance metrics of
sequential LHQNN models on
Fashion-MNIST data (best
results are shown in boldface)

Encoding techniques No of QL Accuracy (%) Precision (%) Sensitivity (%) F-score (%)

Amplitude 1 86.76 86.52 86.76 86.06

2 90.64 90.63 90.64 90.62

3 91.36 91.34 91.36 91.29

4 91.54 91.54 91.54 91.51

5 91.54 91.54 91.54 91.51

Angle 1 84.40 84.82 84.40 84.45

2 88.70 88.94 88.76 88.78

3 88.64 88.83 88.64 88.68

4 89.04 89.14 89.04 89.05

5 89.51 89.54 89.51 89.48

stops, with final values of 0.0005 for training loss and 0.0255
for validation loss. While the training accuracy has a sharp
edge, reaching 100%, the validation accuracy shows a steady
improvement, reaching 99.32% in the accuracy curve.
Table 2 shows the results of sequential LHQNN on the
Fashion-MNIST dataset, which exhibit a trend similar to
that observed with MNIST. The results indicate that per-
formance improves with the addition of more quantum
layers, which highlights the advantage of deeper architec-
tures. Using amplitude embedding, this model achieved the
best accuracy of 91.54%with 5 quantum layers, outperform-
ing angle embedding, which achieved an accuracy of 89.51%
with the same number of layers.
Fig. 7a illustrates the loss curves for both training and valida-
tion data, showing a steady decline as the model trains. The
training loss decreased to 0.174, while the validation loss
stabilized at 0.3034 after 18 epochs. Figure7b depicts the
corresponding accuracy curves with the training accuracy

reaching 94.25% and the validation accuracy following at
89.93%. The final epoch represents the optimal performance
point, demonstrating the model’s ability to reduce loss and
achieve high accuracy.

5.3 Performance evaluation of non-sequential
LHQNN

This section presents the results of non-sequential LHQNN
models using amplitude and angle encoding, with architec-
tures varying from 1 to 5 stacked quantum layers.
The results of non-sequential LHQNN architecture on the
MNIST dataset are presented in Table 3. There is a mini-
mal change in performance as the number of quantum layers
changes. The best accuracy with amplitude embedding is
98.99% using 4 quantum layers, whereas angle embedding
shows an accuracy of 98.11%with 5 quantum layers. Ampli-
tude embedding consistently outperforms angle embedding

Fig. 7 Performance plot for sequential LHQNNmodel on Fashion-MNIST data with angle embedding. Graph a shows training and validation loss,
and graph b illustrates training and testing accuracy
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Table 3 Performance metrics of
non-sequential LHQNN model
on MNIST data (best results are
shown in boldface)

Encoding techniques No of QL Accuracy (%) Precision (%) Sensitivity (%) F-score (%)

Amplitude 1 10.03 1.00 1.00 1.00

2 98.82 98.81 98.82 98.81

3 98.95 98.94 98.95 98.94

4 98.99 99.00 98.98 98.99

5 98.61 98.61 98.61 98.60

Angle 1 98.03 98.02 98.01 98.01

2 98.00 98.01 97.97 97.99

3 98.08 98.07 98.07 98.06

4 98.08 98.07 98.06 98.06

5 98.11 98.11 98.09 98.10

in all configurations. However, with just 1 layer, it encounters
issues that prevent the model from effectively learning and
training on this dataset.
In non-sequential LHQNNarchitectures, all themodels show
consistency to converge and achieve the best accuracy. Using
angle embedding, the highest training accuracy is 99.72%,
while the validation accuracy reached amaximumof 98.48%,
which is shown in Fig. 8b. Figure8a demonstrates that after
16 epochs, the training and validation losses are minimum,
having values of 0.0117 and 0.0558, respectively.
In non-sequential LHQNN with FMNIST data, the detailed
evaluation is presented in Table 4. For amplitude embed-
ding, these are fluctuations with the changing number of
quantum layers having the maximum result of 90.97%
with 2 quantum layers. However, angle embedding exhibits
a marginally lower performance compared to amplitude
embedding, achieving abest accuracyof 89.82%with 5quan-
tum layers.

The performance analysis curve for non-sequential LHQNN
with amplitude embedding is illustrated in Fig. 9a and b.
The validation loss reached a minimum of 0.2592 after eight
epochs. The accuracy also shows a continuous improvement,
achieving an accuracy of 91.43%. Similarly, the training
loss steadily decreased to 0.147, while the training accuracy
increased to 94.85%, further indicating effectivemodel train-
ing.

5.4 Comparison with traditional and quantum
approaches

A detailed comparative analysis of classical CNN and pro-
posed LHQNN models is presented in this subsection. The
graphical representation is illustrated in Fig. 10a for MNIST
dataset and Fig. 10b for Fashion-MNIST dataset. The best
accuracy across all cross-validation folds is presented for
comparison.

Fig. 8 Performance plot for non-sequential LHQNNmodel on MNIST data with angle embedding. Graph a illustrates training and validation loss,
and graph b depicts training and testing accuracy
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Table 4 Performance metrics of
non-sequential LHQNN models
on Fashion-MNIST data (best
results are shown in boldface)

Encoding techniques No of QL Accuracy (%) Precision (%) Sensitivity (%) F-score (%)

Amplitude 1 90.56 90.61 90.56 90.55

2 90.97 90.93 90.97 90.93

3 90.38 90.34 90.38 90.28

4 90.85 91.01 90.85 90.89

5 90.87 90.91 90.87 90.79

Angle 1 89.61 89.61 89.61 89.58

2 89.80 89.76 89.80 89.75

3 89.75 89.75 89.75 89.72

4 89.61 89.54 89.61 89.53

5 89.82 89.91 89.82 89.84

Fig. 9 Performance plot for non-sequential LHQNN model on Fashion-MNIST data with amplitude embedding. Graph a depicts training and
validation loss, and graph b shows training and testing accuracy

Fig. 10 Performance comparison of traditional CNN with proposed LHQNN models on a MNIST and b Fashion-MNIST data
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Table 5 Performance comparison of the proposed approach with exist-
ing quantum approaches on MNIST data (best results are shown in
boldface)

Study Model Accuracy(%)

Li et al. (2020) QDCNN 98.97

Zeng et al. (2022) HQNN 89.06

Riaz et al. (2023) Classical NN 92.00

QuanvNN 93.00

NNQE 93.80

Gong et al. (2024) CNN 96.04

QCNN(VQC) 98.40

Hassan et al. (2024) QCNN 97.50

ResNet(50) 98.90

MQCNN 99.60

Proposed (LHQNN) LHQNN 99.92

For both datasets, sequential LHQNNwith amplitude embed-
ding achieved the best result, outperforming traditionalCNN.
The non-sequential LHQNN with amplitude embedding
shows slightly lower performance than the classical CNN.
With angle embedding, the non-sequential LHQNN outper-
forms the sequential LHQNN significantly.
Table 5 presents a comparative analysis of existing quantum
approaches with LHQNN. The proposed model was evalu-
ated over multiple independent runs on the MNIST dataset,
with the best result selected. The results demonstrate that our
proposed LHQNN outperforms existing quantum techniques
for image classification.

5.5 Analysis of parameter numbers

The number of parameters plays a crucial role in the model’s
complexity and performance. In this section, we analyze the
parameter count for LHQNN models with amplitude and
angle encoding having one quantum layer.
The total number of parameters using amplitude embed-
ding is depicted in Fig. 11a. The graph shows an exponential

Table 6 Number of parameters of LHQNN with amplitude and angle
encoding varying quantum layers

LHQNN QL 1 QL 2 QL 3 QL 4 QL 5
encoding

Amplitude 1,611,596 1,611,626 1,611,656 1,611,686 1,611,716

Angle 20,630 20,660 20,690 20,720 20,750

growth of parameters with the increase in qubit numbers.
On the other hand, in Fig. 11b, LHQNNwith angle encoding
demonstrates a linear upward trend varying the number of
qubits. It can be concluded that amplitude embedding con-
tains a more complex architecture than angle embedding for
image classification due to its capability to handle a high
number of features.
Table 6 presents the total number of parameters for LHQNN
architectureswith different numbers of quantum layers.Here,
both amplitude and angle encoding are implemented using 10
qubits. Based on the number of qubits and circuits, each layer
adds a few more parameters to the quantum layer. Specifi-
cally, in this architecture, the SEL circuit includes 3 rotations,
andwith 10 qubits, this results in a total parameter increase of
30 per layer. However, the proposed LHQNN achieves supe-
rior performance while using significantly fewer parameters
than CNN, which consists of 1,743,946 parameters.

5.6 Discussion

This study explores the performance of LHQNNs on bench-
mark datasets such as MNIST and Fashion-MNIST. Com-
pared to angle embedding, amplitude embedding yields a
better result across all configurations of quantum layers. For
sequential LHQNN, accuracy shows a consistent improve-
ment with an increasing number of quantum layers up to a
specific limit. However, non-sequential LHQNN does not
have a significant impact on the change of the quantum
layer. Due to the smaller circuit sizes in non-sequential archi-
tectures, angle embedding demonstrates lower errors and

Fig. 11 Total number of parameters on LHQNN varying qubit numbers with a amplitude and b angle embedding
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performs more effectively than in sequential LHQNN. In
contrast, with amplitude embedding, feature space is sig-
nificantly reduced in non-sequential LHQNN, which limits
the model’s ability to perform effectively. Among these
architectures, sequential LHQNN yields the best results, out-
performing classical approaches. It can be concluded that
although a deeper quantum circuit adds a few more param-
eters to the model, it significantly enhances the capacity to
capture complex patterns within the data.

6 Conclusion

In this research, we propose layered hybrid neural network
architectures using sequential and non-sequential approaches
for image classification. The integration of quantum layers
with CNN architecture leverages the quantum advantages in
themodels.Our proposed sequentialLHQNNwith amplitude
embedding achieves the highest accuracy compared to other
models and outperforms the traditional CNN.
Moreover, our research focuses on the fundamentals of
quantum layer architecture, including the number of qubits,
embedding techniques, and circuit design, specifically in
image classification problems. Our results indicate that
amplitude embedding outperforms angle embedding on both
the MNIST and Fashion-MNIST datasets since it has the
capacity to handle a large number of features. For quantum
circuit design, non-sequential architecture provides better
performance with angle embedding primarily due to its abil-
ity tominimize errors. In contrast, amplitude embedding does
not performaswell in non-sequential architectures, as no spe-
cific feature selection techniques are employed to handle the
prominent features. It is also observed that to capture the pat-
terns in the data effectively, the number of qubitsmust exceed
6. Finally, the performance and complexity of stacked quan-
tum layers are analyzedwith different embedding techniques.
Evaluating how parameter counts change with different con-
figurations provides valuable insights for designing hybrid
models and optimizing resource utilization.
In the NISQ era, the limitations of quantum hardware impose
significant constraints on the size and complexity of quan-
tum layers. Despite these challenges, our proposed LHQNN
models demonstrate the potential to leverage the strengths of
classical and quantum paradigms effectively. The architec-
tureswe present exhibit scalabilitywith respect to the number
of quantum layers, opening avenues for further research
to design quantum circuits. These findings lay the founda-
tion for exploring more efficient quantum-classical hybrid
models, which could unlock new possibilities in quantum
machine learning.
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