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1　導入

量子論において，状態概念は物理量代数の双対概念として物理的状況・実験設定を指定す

るために欠かすことのできない役割を果たしている。状態の違いは物理的状況・実験設定

の違いであり，そのマクロに見た質的な差をセクターとして様々な測定過程を介して確率

論的に捉えるのである。しかしながら，状態の指定それ自体が非常に難しい作業であり，

物理的にも数学的にも理想化が入らざるを得ないのも事実である。とはいえ，相対論的場

の量子論において全時空領域にわたる状態の指定など (理想化せずには)到底不可能であ

るし，そもそも，状態変化の記述を物理的に現実的な形で実現できるとは考えづらい。そ

れ故，本稿では場の量子論の文脈において状態概念をより融通のきく形式で整備し，それ

をセクター理論および測定理論と結びつけて議論する。この一環で定義される概念が「局

所状態 (local state)」であり，有界時空領域では状態の機能を持ちながら全時空領域にお

いては量子操作 (quantum operation)として理解すべき概念である。

本稿の一部の内容は幾つかの報告集の記事 (特に過去のRIMS講究録)とも重複してい

るため，重複する内容（特に次章の準備）については簡潔な記述にとどめる。尚，小嶋泉

氏との共著 [25] (発展的内容は [22]参照)には本格的かつ体系的に量子論の新しい定式化

についてまとめられており，本稿に関連する作用素環論の詳細事項については [5, 35, 36]

を参照していただきたい。

2　準備：量子論の代数的定式化とセクター概念

X がC∗-代数とする。ωはX 上の線型汎関数であって，ω(A∗A) ≥ 0および ω(1) = 1を

満たすとき X 上の状態であると呼ばれる。EX でX 上の状態全体を表す。状態とは，非
可換代数上に一般化された期待値を与える汎関数 (期待値汎関数)である。C∗-代数X とそ
の上の状態 ωの組 (X , ω)をC∗-確率空間と呼ぶ。

公理 1 (物理量と状態 [26, 25]). 物理系の物理量のなす代数はC∗-代数X によって与えら
れる。そして，物理系の実験設定・測定状況はX 上の状態 ωを与えるごとに指定される。

C∗-代数X の状態空間EX には次のような近傍から生成される位相が導入される：任意

のAi ∈ X , εi > 0（i = 1, 2, · · · , n）に対し，

Oω({Ai, εi}ni=1) = {ω′ ∈ EX | |ω(Ai)− ω′(Ai)| < εi, i = 1, 2, · · · , n}.

この位相は有限個の量を有限精度で測る状況に対応したものである。任意の ω ∈ EX に

対し，Hilbert空間Hω,単位ベクトル Ωω ∈ Hω と X からB(Hω)への表現（対合を保つ
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準同型写像のこと）πωで ω(A) = ⟨Ωω|πω(A)Ωω⟩ およびHω = πω(X )Ωω を満たす 3つ組

{πω,Hω,Ωω}をX の ωに伴うGNS表現と呼ぶ (GNS表現定理)。GNS表現は各状態に対

してユニタリー同値を除いて一意に定まる。S ⊂ B(H)に対し，

S ′ = {A ∈ B(H) | AB = BA,B ∈ S} (1)

を S の可換子と呼ぶ。S ′′ := (S ′)′ を S の再可換子と呼ぶ。B(H)の ∗-部分代数Mで

M′′ = M を満たすものを（H上の）von Neumann代数と呼ぶ。πω(X )′′は状態 ωにおい

て生成される自然な（Hω上の）von Neumann代数である。

定義 1 (セクター [19]). 因子状態の準同値類をセクターと呼び，その全体 FX/ ≈を
⌢

X で
表す。

セクターはマクロに見て異なる構造の分類指標の一単位である。一般化された熱力学的

純粋相および確率論での根源事象の統合概念であって，ミクロから創発する動的な背景を

持ちながら熱力学的な安定性に支えられており，マクロの基本単位であってミクロな内部

構造も持ち合わせている。

以下ではセクターの定義に用いた用語の説明を行う。ω ∈ EXは，対応するvon Neumann

代数 πω(X )′′の中心が自明，すなわち，Zω(X ) := πω(X )′′ ∩ πω(X )′ = C1のとき，因子状
態であると呼ばれる。X 上の因子状態全体を FX で表す。X の 2つの表現 π1, π2はどの

π1-正規状態
2も π2-正規であり，その逆も成立するとき準同値であるといい，π1 ≈ π2で

表す。X の 2つの表現 π1, π2は，どの π1-正規状態も π2-正規でなく，その逆も成立すると

き無縁であるといい，π1 ◦

–

π2で表す。正値線型汎関数に対してもGNS表現を用いて同様

に定義される。本稿で与えたセクターの定義の根拠が次の定理にある。

定理 2. 2つの因子状態は準同値であるか，無縁であるかの二者択一である。

セクターの定義から次は容易に了解される：

同一のセクターに属する⇒準同値， 異なるセクターに属する⇒無縁

状態空間EX は先ほどの位相でコンパクト局所凸空間である。それ故，Choquet の積分

論が適用可能で，各 ω ∈ EX に対し，ωを重心にもつ (EX ,B(EX ))上の正則Borel確率測

度が存在する。無縁性が状態識別の基準であるという立場から状態の積分分解について議

論しよう 3：

定義 3 (準中心測度＝無縁な分解を与える測度). (EX ,B(EX ))上の正則Borel確率測度 µ

が準中心測度であるとは次の性質を満たすときをいう：任意の∆ ∈ B(EX )に対して，∫
∆

dµ(ρ) ρ ◦

–

∫
EX \∆

dµ(ρ) ρ. (2)

2(1) von Neumann代数M上の状態ωは任意の正の有界増大ネットAα ↗ Aに対し，limα ω(Aα) = ω(A)
を満たすとき正規状態という。M∗,1 でM上の正規状態全体を表す。

(2) X を C∗-代数，πを X の表現とする。ω ∈ EX が π-正規であるとは，π(X )′′ 上の正規状態 ρが存在し
て，ω(X) = ρ(π(X)), X ∈ X を満たすことをいう。

3「直交性」の概念を出発点とする状態の積分分解については 5章と比較の上で [5, 24, 25]等を参照して
頂きたい。



無縁な分解を与える測度を準中心測度と呼ぶ理由については次の定理が明確な解答を与

える：

定理 4 (冨田分解定理 [5, Theorem 4.1.25]の系). (1) ωの準中心測度 µと中心 Zω(X )の

von Neumann部分代数Bは一対一対応する。µ, Bにこの対応があるとき，L∞(µ) :=

L∞(EX , µ)は次で定義される写像 κµ : L∞(µ) → BによりBと ∗-同型である：

⟨Ωω|κµ(f)πω(X)Ωω⟩ =
∫

dµ(ρ) f(ρ) ρ(X). (3)

(2) 状態ωにおいて，中心Zω(X )に対応する準中心測度µω（ ωの中心測度と呼ぶ）はFX

に準台をもつ。X が可分ならば，µωは FX に台をもつ。

中心の von Neumann部分代数の包含関係で大きい代数であればあるほど，対応する準

中心測度はより細かい積分分解を与える。その中でも中心測度は最大であって，各状態

に対し一意に存在する。それ故に，因子状態を状態の基本単位にする。言い換えれば，中

心測度はFX に準台をもち，中心測度は状態をセクターへと分解する唯一の重心測度であ

る。物理的には，中心測度が中心に対応した状態の積分分解を与える確率測度であるこ

とから了解されるように，中心Zω(X )はあらゆる物理量 (πω(X )′′の元)と可換な物理量の

極大系であって，これを用いることによりこの状態 (およびそのGNS表現)を用いて指定

できる限りの実験 (測定)状況で共通のパラメータで状態を分解できるということを意味

している。準中心分解とはこの観点から中心測度より“粗い”分解であり，ある程度セク

ターを“束”にしてまとめて扱う場合に対応している。

公理 2 (セクターと確率空間 [26, 25]). X を系の物理量代数とする。状態空間のマクロな
基本単位はセクターによって与えられ，系の状態が ω ∈ EX であるときに∆ ∈ B(EX )に

属するセクターが出現する確率は µω(∆)で与えられる。

この公理を認めることで先の議論を測度論的確率論の現実的な状況 (測定過程等)へと

応用可能になる [25, 26]。統計学的な議論の展開については [23, 24, 27]を参照して頂き

たい。

3　代数的場の量子論の基本事項

代数的場の量子論 [1, 16]とは端的に言って，

「時空自由度に依存した量子系を扱う理論体系」への代数的アプローチ

である。場の量子論の数学的基盤が未だ出来上がっていないため，この手法（の一般に提

示されるような一辺倒なあり方）だけでは限界があるのだが，von Neumannが量子論の

数学的基礎の追究という動機を持って作用素環の研究を始めたことから歴史的には自然な

研究手法であって（von Neumann以後の歴史的な経緯は私には荷が重いため省く），そ

のため，荒木先生とHaag-Kastlerによる提唱に必然性はあったと思っており，私個人と

しても有望だと考えている。

局所ネット {A(O)|O ∈ K}とは，Minkowski空間M4の二重錐の集合K = {O = (a +

V+) ∩ (b− V+) | a, b ∈ M4} （V+ = {x ∈ M4 | x2 = x2
0 −

∑3
j=1 x

2
i > 0, x0 > 0}はM4の前

方光錐）からC∗-代数への写像（正しくは圏論における函手）O 7→ A(O) であって，以下

の 3条件を満たすものである：



1) O1 ⊂ O2ならば，A(O1) ⊂ A(O2)；

2) Kの元O1とO2が空間的であるとき，A(O1)の任意の元とA(O2)の任意の元は互い

に可換である。ここで，2つの時空領域O1とO2が空間的であるとは，一方の領域

O1の因果的補集合O′
1 = {x ∈ M4 | (x− y)2 < 0, y ∈ O1}に対しO′

1 ⊃ O2を満たす

ときをいう；

A := ∪O∈KA(O)は全ての局所ネットから生成される最小のC∗-代数である。また，Aut(A)

でA上の ∗-自己同型写像全体を表す。

3) Poincaré群 P↑
+の作用 (∗-準同型) αg : P↑

+ → Aut(A), g ∈ P↑
+, に対して共変である，

すなわち，αg(A(O)) = A(gO)が任意のO ∈ K と g ∈ P↑
+に対して成り立つ。

この抽象的な定義の物理的動機は有界な時空領域において測定可能な物理量の全体を指

定することで物理系を特徴づけることを第一に，因果的制約および相対論的制約を加味し

たものである。言い換えるならば，定義からして明示的なのだが，局所ネットは時空自由

度に依存しているため，考察対象の物理系と接する（外部）系と対比が可能となるような

マクロなスケールで自然な条件を課している。場の量子論とはミクロとマクロの対比から

系の動力学を探り記述する物理体系であると言える。

代数的量子論の記述形式に則れば，系の状態を指定する必要がある。代数的場の量子論

において基準となる状態があり，その代表格が「真空状態」である。ω0が真空状態であ

るとは，ω0はA上の状態であって以下の 3条件を満たすことを言う：

A) ω0はP↑
+-不変状態である，すなわち，任意のA ∈ Aおよび g ∈ P↑

+に対して

ω0(αg(A)) = ω0(A); (4)

この条件からω0に対するGNS表現 (π0,H0,Ω0)においてαgはユニタリー実現する：任意

のA ∈ Aおよび g ∈ P↑
+に対して

π0(αg(A)) = Ugπ0(A)U
∗
g . (5)

加えて，このユニタリー表現はUgΩ = Ωを満たす。このUgを用いることで続く条件が記

述できる：

B) Poincaré群P↑
+の並進部分群R4に関するUgの生成子 P = (Pµ)µ=0,1,2,3 のスペクトル

は閉前方光錐 V+ = {x ∈ M4 | x2 = x2
0 −

∑3
j=1 x

2
i ≥ 0, x0 ≥ 0} に含まれる；

C) 任意のO ∈ Kに対して，Ω0は π0(A(O)) に対する巡回分離ベクトルである；

A)は時空に関する一様性，B)は最低エネルギーの存在と粒子的振舞いをする励起の存在

に関する条件である。C)はReeh-Schlieder定理から得られる性質で，真空表現における

表現空間が局所ネットにより生成および分離されるという特筆すべき特徴である。物理的

状況・実験設定の記述には本来全時空にわたる物理量代数A上の状態を指定することな
ど到底不可能であるが，一種の理想化・極限として想定することは可能であり，そのよう

な位置づけの下に採用される状態である。この状態を基準として，与えられた局所ネット



{A(O)|O ∈ K}において物理的な励起を記述する状態を考察する理論がDHR(Doplicher-

Haag-Roberts)理論である。

本稿では今後，真空状態ω0に対するGNS表現は可分なHilbert空間H0上の忠実 (ker(π0) =

{0})な既約表現であることを仮定する。加えて，以下の 2つ条件を課す：

1 (Haag双対性). 非有界な時空領域 Õに対して A(Õ) = ∪O⊂Õ,O∈KA(O)と定義する。

任意の 2重錐Oに対して，π0(A(O))′′ = π0(A(O′))′ が成り立つとき，局所ネット

{A(O)|O ∈ K}はHaag双対性を満たすという。

2 (性質B). O1がO2の内部に含まれる時空領域とするとき，任意の射影作用素E ∈ A(O1)

に対し，W ∗W = E, WW ∗ = 1を満たすW ∈ A(O2)が存在する。

Haag双対性は局所ネットが因果的部分順序集合 (causal partially ordered set)として因果

的完備 (causally complete) であるという要求であり，性質 Bは III型W∗-代数のもつ特

徴を物理的に読み換えたものである。性質BはBorchersによりPoincaré群作用のユニタ

リー実現可能性，4元運動量のスペクトルの正値性の仮定から導出された。

O1,O2 ∈ Kに対して，O1 ⊊ O2ならばO1 ⋐ O2と表す。以下の集合を導入する：

K⋐ = {Λ = (OΛ
1 ,OΛ

2 ) ∈ K ×K | O1 ⋐ O2}, (6)

KDC
⋐ = {Λ = (OΛ

1 ,OΛ
2 ) ∈ K⋐ | OΛ

1 と OΛ
2 は 2重錐 }. (7)

4　分裂性質と局所状態

局所ネット {A(O)|O ∈ K}を考察する限り，各O ∈ Kにおける物理量代数A(O)上の正規

状態A(O)∗,1を考察する行為自体は大変自然である。この考え方の延長上で {A(O)∗|O ∈
K}のもつ前層構造に着目し，A(O)∗の貼り合わせにより，考察している有界時空領域に

おける状態の指定を行う発想がある [14, 17]。けれども，貼り合わせにおいて同値関係を

入れているために局所的に状態を指定しただけではA上の状態は決まらず，全時空領域
を被覆するように各O ∈ KにおけるA(O)∗,1の元を指定しなければならない

4。しかし，

そのこととEAの局所正規 (locally normal)な元の指定とは物理的にほぼ等価である。そ

れ故，{A(O)∗|O ∈ K}のもつ前層構造の物理的解釈とも整合的な利用方法を考えなけれ
ばならない。新しい方向性を考えるうえで次の性質に着目したいと思う：

定義 5 (分裂性質). {A(O)}O∈Kを局所ネットとする。{A(O)}O∈Kは任意のO1,O2 ∈ K
でO1 ⊊ O2 を満たすものに対して I型因子環N でA(O1) ⊂ N ⊂ A(O2). を満たすもの

が存在するとき分裂性質 (split property)を満たすという。

4誤解が生じないよう，コメントをつけておきたい。本稿では未だ関係が見いだせていないが，前双対の

なす前層構造を考察する利点は時空 1点 x ∈ M4 での状態を芽 (germ)として扱えることにある [17]。[17]
で議論されているようにこの観点と演算子積展開 (operator product expansion, OPE)は大変結びつきが強
い。この議論を受けて，Bostelmann[4]では (分裂性質より強い)核型条件に似た条件と 1点上で定義され
た量子場との関係が見出された上でOPEが数学的に厳密に正当化され，Buchholz-Ojima-Roos[3]では (熱
的な非平衡状態の定義・特徴づけの目的で)時空 1点における物理量が議論された。したがって，前双対の
なす前層構造の利用は大変有益かつ有用であることは間違いないものであり，あくまで直観的なレベルでは

正しいことでも修正が必要な場合があることと (当然ではあるが)万能でない点をここでは指摘しただけに
すぎない。そして，その修正の新たな方向性が本稿の主題である「局所状態」なのである。



この性質の重要性をいち早く見抜いたのは [6]である。性質B・既約性等の条件のもと

で真空表現 π0において分裂性質を満たすことと等価な条件が知られている：

定理 6 (Werner[38]+D’Antoni-Longo[7]). 次の 3条件は等価である：

(1) {π0(A(O))′′}O∈Kは分裂性質を満たす；

(2)任意のφ ∈ π0(A(O))′′∗,1に対し，π0(A)′′ = B(H)上の単位的完全正値写像TでT (X) =∑
j C

∗
jXCj, Cj ∈ π0(A(O2))

′′の表示をもち，T (X) = φ(X)1, X ∈ π0(A(O1))
′′を満たす

ものが存在する；

(3) O3とO4とが空間的に離れているとき，

π0(A(O3))
′′ ∨ π0(A(O4))

′′ ∼= π0(A(O3))
′′ ⊗ π0(A(O4))

′′. (8)

本稿において特に重要な条件は (2)であり，A(O1)上の正規状態が少し広い領域O2上

で内部的な完全正値写像として大域的に拡張されることである。これはよくよく考えれ

ば自然な発想であり，有界時空領域において状態を指定することも一種の物理操作である

から完全正値写像として定義される量子操作の特殊なクラスとして解釈できるのである。

各 φ ∈ π0(A(O))′′∗,1に対し (2)により得られる写像はO2と因果的な領域においては恒等

的な作用をするので，これは所謂 “局所的な (local)”量子操作である。以上の考察を受け

て，局所状態の概念を次のように定義する：

定義 7 (局所状態). A上の単位的完全正値写像Tは次の条件を満たすとき，Λ = (OΛ
1 ,OΛ

2 ) ∈
K⋐を局在領域とするA上の局所状態と呼ばれる：
(1) 任意のA ∈ A, B ∈ A((OΛ

2 )
′)に対して，

T (AB) = T (A)B. (9)

(2) φ ∈ A(OΛ
1 )∗,1で，任意のX ∈ A(OΛ

1 )に対して，

T (X) = φ(X)1, (10)

を満たすものが存在する。

EL
A(Λ)でΛを局在領域とするA上の局所状態の集合を表す。

「局所状態」という名前はあくまで有界時空領域上の状態の指定であって大域的な状態

指定でない点からつけられたものであることに注意されたい。π0は忠実な (既約)表現で

あるので，定理 6の等価な条件を満たすとき，{A(O)}O∈Kも分裂性質をもつ。性質Bと

分裂性質を満たす局所ネット {A(O)}O∈K は任意の Λ ∈ K⋐に対して Λ = (OΛ
1 ,OΛ

2 ) を局

在領域とするA上の局所状態をもつことを示すことができる (定理 6と同様の証明で)。

T をEL
A(Λ)の元，πをAの表現とする。π ◦ T はAから π(A)′′への単位的完全正値写

像である：

(π ◦ T )(A) := π(T (A)), A ∈ A. (11)

π ◦ T ∈ CP(A, π(A)′′) に対してはGNS表現定理および Stinespring表現定理が適用でき

る。ただし，C∗-代数A, Bに対し，Aから Bへの完全正値写像の全体を CP(A,B)で表
す。それ故，局所状態を次のように定義しても良いと考えられる：



定義 8 (局所状態の異なる定義). T ∈ CP(A, π(A)′′)は次を満たすとき Λ ∈ K⋐を局在領

域とするAから π(A)′′への局所状態と呼ばれる：

(1) 任意のA ∈ A, B ∈ A((OΛ
2 )

′)に対して，T (AB) = T (A)π(B).

(2) φ ∈ A(OΛ
1 )∗,1で T (X) = φ(X)1, ∀X ∈ A(OΛ

1 )を満たすものが存在する。

EL
A,π(A)′′(Λ)でΛ ∈ K⋐を局在領域とするAから π(A)′′への局所状態の集合を表す。

尚，上でのGNS表現定理とStinespring表現定理とは，それぞれHilbert加群及びHilbert

空間とそれらの上の有界線型作用素を用いて完全正値写像を表示する定理である。以下

の 2つの定理では，Aを C∗-代数，MをHilbert空間H上の von Neumann代数とする。

Hilbert M-加群とはM-値内積を持つ完備な右M-加群のことである。

定理 9 (GNS表現定理 [31, 33]). T ∈ CP(A,M)に対し，Hilbert M-加群ET ,
∗-準同型写

像 πT : A → Ba(ET ) (Ba(ET )はET に (左から )作用する随伴可能有界作用素のなすC∗-

代数 )および ξT ∈ ET で

T (A) = ⟨ξT |πT (A)ξT ⟩, A ∈ A (12)

と ET = span(πT (A)ξTM)を満たすものが存在する。3つ組 (πT , ET , ξT )を T のGNS表

現とよぶ。

Hilbert M-加群Eに対し，E ′でE上の右M-線型M-値線型汎関数の全体を表し，E∗ =

{ξ∗ ∈ E ′ | ξ∗η = ⟨ξ|η⟩, η ∈ E}と定める。E ′ = E∗が成立するHilbert M-加群Eは自己

双対であると呼ばれる (Rieszの定理の一般化が成立するHilbert M-加群と解釈できる)。

任意のHilbert M-加群 Eに対し，E ′は自己双対Hilbert M-加群であるような，次を満

たすM-値内積を持つ：
η(ξ) = ⟨η|ξ∗⟩, η ∈ E ′, ξ ∈ E. (13)

E ′へのMの作用は (η ·M)(ξ) := M∗η(ξ), ξ ∈ E, η ∈ E ′で定める。自己双対Hilbert M-

加群に対してはBa(E)がW∗-代数となることが知られている。更には，埋め込みE ∋ ξ 7→
ξ∗ ∈ E ′が存在するように，Ba(E)の元Cは一意にBa(E ′)の元 C̃へと拡張される (この対

応は ∗-等長同型)。これらの事実を用いて，T のGNS表現から，π̃T (A) := π̃T (A)と定め

ることで
T (A) = ⟨ξ∗T |π̃T (A)ξ

∗
T ⟩, A ∈ A (14)

を得る。本稿では以後，E∗
T とET を同一視することにより，π̃T , E

∗
T , ξ

∗
T それぞれを改め

て πT , ET , ξT と表し，(πT , ET , ξT ) = (π̃T , E
∗
T , ξ

∗
T )を T のGNS表現と呼ぶ。

定理 10 (Stinespring表現定理 [34, 2, 32]). T ∈ CP(A,M)に対し，Hilbert空間K, K上
の表現 πと V ∈ B(H,K)からなる Stinespring表現と呼ばれる 3つ組 (π,K, V )が存在し

て次を満たす：
T (A) = V ∗π(A)V, A ∈ A. (15)

加えて，K = span(π(A)VH) を満たす T の Stinespring表現は極小であると呼ばれ，T の

極小 Stinespring表現を (πs
T ,KT , VT )で表す。T の極小 Stinespring表現は必ず存在し，ユ

ニタリー同値を除いて一意である。

5　局所状態からのセクター理論



DHR(-DR)理論 [9, 10, 11, 12, 13]とは，真空を基準として，

局在励起＝時空的に局在した励起 (16)

を基本単位に据える理論である。時空的に局在している状況とは言い換えれば因果的な領

域では励起がなく真空と区別がつかない状況である。この状況の（標準的な定式化におけ

る）数学的な記述は以下のようになる：

DHR選択基準 局在励起を表す物理的なAの表現 (の族)は局在している領域O ∈ Kの
因果的補集合O′においては真空表現 π0とユニタリー同値である：

π|A(O′)
∼= π0|A(O′). (17)

DHR選択基準は，性質Bの仮定の下，表現のレベルである表現 πにおける π-正規状態を

同時に扱う場合に対応しているので，この選択基準は物理的にも数学的にも妥当であると

いえる。DHR選択基準を満たす表現に対し次の命題が成立する。

命題 11. Oに局在化したDHR選択基準を満たす表現 πに対し，次を満たすAの ∗-自己

準同型 ρが存在する：

(1) π = π0 ◦ ρ，
(2) ρ(A) = A, A ∈ A(O′)。

これらの条件を満たすAの ∗-自己準同型は局在自己準同型と呼ばれる。

この命題の証明は 1 (Haag双対性).を本質的に用いている。この命題を通して得られる

局在自己準同型の全体

DR(A) := {ρ ∈ End(A) | ∃O ∈ K s.t. ρ(A) = A,A ∈ A(O′)} (18)

が局所ネット {A(O)|O ∈ K}で記述される系の局在励起を表す。DR(A)は真空からの“ず

れ”として局在励起を集めてきたものであって，DR(A)の元には演算が入る。その演算の

意味はDR(A)を“ C∗-圏”として扱うことで理解できる。Doplicher-Robertsの有名な結

果 [12]から，DR(A)はあるコンパクト群Gのユニタリー表現のなす圏Rep(G)と圏とし

て同値である。この結果は局在励起を識別するラベルはあるコンパクト群G の表現 γに

よって供給されることを物理的に意味している。このラベルは通常「量子数」と呼ばれ，

内部対称性（時空以外に関する対称性）を表すコンパクト群Gの既約表現がその最小単

位になる。また，この結果は内部対称性の起源を明らかにするものであり，実験データを

セクター理論的に解析するなかでDHR選択基準を満たす表現を集めることで内部対称性

を抽出できる。

ここでは議論しなかったが，実は (真空表現において)Haag双対性を満たす局所ネットで

は“対称性の破れ”は起こらない。Haag双対性の代わりに本質的双対性 (essential duality)

を満たす局所ネットを考察することで“対称性の破れ”が起きる場合を扱うことができ

る。それ故，上のDHR理論はあくまで“対称性の破れ”が起こらない系での局在励起と

それに関わる内部対称性の理論であり物理的には非常に限られた状況での量子場の記述

に他ならない点を注意しておく。“対称性の破れ”が起きる場合へのDHR理論の拡張は

[19, 20]を参照していただきたい。

本稿の主題である局所状態に基づけばDHR理論はより簡単なものになるうえ，状態概

念に基づいたより自然な議論が可能になる。それについて以下で見ていこう。



定義 12 (性質 DHR[10, I, pp.228, (A.4)]). Aの表現 πは任意の Λ ∈ KDC
⋐ と射影作用素

E ∈ πd(OΛ
1 ) := π(A((OΛ

1 )
′))′に対して，等長作用素W ∈ πd(OΛ

2 )でWW ∗ = E および

W ∗W = 1を満たすものが存在するとき性質DHRを満たすと呼ばれる。

命題 13 ([10, I, A.1. Proposition]). ωをA上の状態であって，ある 2重錐の増大列 {On}
に対して，

lim
n→∞

∥(ω − ω0)|A(O′
n)∥ = 0 (19)

を満たすものとする。GNS表現 πωが性質DHRを満たすならば，2重錐Oで

πω|A(O′)
∼= π0|A(O′) (20)

を満たすものが存在する。このとき， A上の局在自己準同型 ρで πω = π0 ◦ ρを満たすも
のが存在する。

任意の T ∈ EL
A(Λ)に対して，(πT,0,KT,0, VT,0)で π0 ◦ T の極小 Stinespring表現を表す。

以下は容易に示される：

(ω0 ◦ T )(X) = ω0(T (X)) = ⟨Ω|(π0 ◦ T )(X)Ω⟩
= ⟨Ω|V ∗

T,0πT,0(X)VT,0Ω⟩
= ⟨VT,0Ω|πT,0(X)VT,0Ω⟩, X ∈ A,

並びに，∥(ω0 ◦ T − ω0)|A((OΛ
2 )

′)∥ = 0。したがって，次の定理が成立する：

定理 14. T を Λを局在領域とするA上の局所状態とする。πT,0が性質DHRを満たすな

らば，OΛ
2 を局在領域とするA上の局在準同型 ρT で

(π0 ◦ T )(X) = V ∗
T π0(ρT (X))VT , X ∈ A. (21)

を満たすものが存在する。ただし，VT はB(H0)の元である。

この定理は性質DHRがDHR選択基準の局所状態版であることを示している。

DHR理論は真空状態ω0を基準状態とするセクター理論である。しかしながら，重要な

基準状態は真空状態だけではなく，たとえば，β-KMS状態ωβ, β > 0などがある [19, 20]。

それ故，一般の局所状態に対してAの表現 πと結びつけることでセクター理論を展開す

る。von Neumann代数に値をとる完全正値写像の積分分解という路線で議論していくこ

とになるが，一般の完全正値写像に物理的意味を与えられるとは限らないけれども，少な

くとも局所状態には状態概念の一般化という重要な物理的意味が与えられている点が肝

要である。局所状態以外でも物理的意味が与えられた完全正値写像に対しても同様の議

論 (数学的には全く同一な議論)でセクターを考察できる事実は今後セクター概念の適用

可能性と動的過程・創発過程との関係を深めるうえで重要であろう。これからの議論の先

行研究は 2章での状態の積分分解に関する参考文献と [15, 29]である。以下，AをC∗-代

数，MをHilbert空間H上の von Neumann代数とする。

Paschke[31]によるRadon-Nikodým型定理をまずは眺めよう：T1, T2 ∈ CP(A,M)に対

して，T1 ≤ T2を T2 − T1 ∈ CP(A,M)を満たすこととして定義する。



命題 15 (Paschke[31]). CP(A,M)の 2つの元 T1と T2は T1 ≤ T2を満たしているとする。

このとき，R ∈ πT2(A)′で 0 ≤ R ≤ 1および
T1(A) = ⟨ξT2 |RπT2(A)ξT2⟩, A ∈ A. (22)

を満たすものが存在する。ただし，πT2(A)′は πT2(A)の Ba(E ′
T )における可換子である。

定理 16 (Paschke[31]). T ∈ CP(A,M)とする。[0, T ] = {T ′ ∈ CP(A,M) | 0 ≤ T ′ ≤ T}
と {R ∈ πT (A)′ | 0 ≤ R ≤ 1}の間にアファイン順序同型が存在する。

Paschkeによるこれらの結果はArvesonの先行研究 [2]を一般化したものである：

命題 17 (Arveson[2]). CP(A,B(H))の 2つの元 T1と T2は T1 ≤ T2を満たしているとす

る。このとき，R ∈ πs
T2
(A)′で 0 ≤ R ≤ 1および

T1(A) = V ∗
T2
Rπs

T2
(A)VT2 , A ∈ A. (23)

を満たすものが存在する。

定理 18 (Arveson[2]). T ∈ CP(A,B(H))とし，(πs
T ,KT , VT )を T の極小 Stinespring表現

とする。[0, T ] = {T ′ ∈ CP(A,B(H)) | 0 ≤ T ′ ≤ T} と {R ∈ πs
T (A)′ | 0 ≤ R ≤ 1}の間に

アファイン順序同型が存在する。

M ⊂ B(H)よりCP(A,M) ⊂ CP(A,B(H)) であるから，任意の T ∈ CP(A,M)に対

して極小Stinespring表現 (πs
T ,KT , VT )が存在する。しかしながら，R ∈ {R ∈ πs

T (A)′ | 0 ≤
R ≤ 1}に対応した TR(A) := V ∗

TRπs
T (A)VT , A ∈ A, は CP(A,B(H)) の元ではあっても

CP(A,M)の元になるとは限らない。そこで，

{R ∈ πs
T (A)′ | 0 ≤ R ≤ 1, TR ∈ CP(A,M)} (24)

を考えると，これは定理 16から {R ∈ πT (A)′ | 0 ≤ R ≤ 1}とアファイン順序同型であ
る。アファイン順序集合 {R ∈ πs

T (A)′ | 0 ≤ R ≤ 1, TR ∈ CP(A,M)} から生成される von

Neumann代数を πs
T (A)cで表す。

命題 19. T1, T2 ∈ CP(A,B(H))で T = T1 + T2とする。以下の条件は等価であり，以下

の等価な条件を満たすとき T1と T2とは直交するといい T1 ⊥ T2で表す：

(1) (πs
T ,KT , VT ) = (πs

T1
,KT1 , VT1)⊕ (πs

T2
,KT2 , VT2)；

(2) 射影作用素 P ∈ πT (A)′が存在して，

T1(A) = V ∗
T Pπs

T (A)VT , T2(A) = V ∗
T (1− P )πs

T (A)VT , A ∈ A; (25)

(3) T ′ ∈ CP(A,B(H))が T ′ ≤ T1および T ′ ≤ T2を満たすならば，T ′ = 0である。

GNS表現の場合には次の形になる：

命題 20. T1, T2 ∈ CP(A,M)で T = T1 + T2とする。以下の条件は等価であり，以下の等

価な条件を満たすとき T1と T2とは直交するといい T1 ⊥ T2で表す：

(1) (πT , ET , ξT ) = (πT1 , ET1 , ξT1)⊕ (πT2 , ET2 , ξT2)；

(2) 射影作用素 P ∈ πT (A)′が存在して，

T1(A) = ⟨ξT |PπT (A)ξT ⟩, T2(A) = ⟨ξT |(1− P )πT (A)ξT ⟩, A ∈ A. (26)

更に，(1)もしくは (2)が成り立つとき，次の性質が成立する：

(3) T ′ ∈ CP(A,M)が T ′ ≤ T1および T ′ ≤ T2を満たすならば，T ′ = 0である。

ET が自己双対ならば，(3)から (1)および (2)が導かれる。



定義 21. 3つ組 (S,B(S), µ)は以下の条件を満たすとき T ∈ CP(A,M)を重心にもつCP-

測度空間であるという：

(1) (S,B(S))は局所コンパクトHausdorff空間 S上のBorel空間である；

(2) µは (S,B(S))上のCP(A,M)-値測度であって，B(S)の互いに素な部分集合族{∆i}i∈N，
ρ ∈ M∗ とA ∈ Aに対し，

ρ(µ(∪i∆i, A)) =
∑
i

ρ(µ(∆i, A)), (27)

を満たし，更に T (A) = µ(S,A), A ∈ Aを満たす。

定義 22. 3つ組 (S,B(S), µ)は，CP-測度空間であって任意の∆ ∈ B(S)に対して µ(∆, ·)
⊥ µ(∆c, ·)を満たすとき，T を重心にもつ直交CP-測度空間であるといわれる。

定義 23. (1) (S1,B(S1), µ1) と (S2,B(S2), µ2) を T を重心にもつ CP-測度空間とする。

(S1,B(S1), µ1)が (S2,B(S2), µ2)に優越される（(S1,B(S1), µ1) ≺ (S2,B(S2), µ2)で表す）

とは，

{µ1(∆1, ·) ∈ CP(A,M) | ∆1 ∈ B(S1)} ⊆ {µ2(∆2, ·) ∈ CP(A,M) | ∆2 ∈ B(S2)}, (28)

および，任意の ρ ∈ M∗,1（M上の正規状態）に対して，射影作用素 P ∈ L∞(S2, ρ ◦ µ2)

で
(L∞(S1, ρ ◦ µ1), L

2(S1, ρ ◦ µ1)) ∼= (PL∞(S2, ρ ◦ µ2)P, PL2(S2, ρ ◦ µ2)),

を満たすものが存在する。ただし，(ρ ◦ µj)(·) := ρ(µj(·, 1)), j = 1, 2である。

(2) (S1,B(S1), µ1)と (S2,B(S2), µ2)が等価である (S1,B(S1), µ1) ≈ (S2,B(S2), µ2)とは

(S1,B(S1), µ1) ≺ (S2,B(S2), µ2)および (S2,B(S2), µ2) ≺ (S1,B(S1), µ1)が成立することを

言う。

T を重心にもつ直交 CP-測度空間の≈-同値類のなす圏OT を各同値類の代表元の優越

関係を射として定義し，πs
T (A)cの可換W ∗-部分代数のなす圏W ∗(πs

T )をW∗-代数の包含

関係を射とすることで定義する。次の定理は本章の主定理である：

定理 24 (完全正値写像に対する冨田定理). 　

各 T ∈ CP(A,M)に対し，OT とW ∗(πs
T )は圏同値である。

[(S,B(S), µ)] ∈ Ob(OT )とB ∈ Ob(W ∗(πs
T ))とが圏同値の一対一対応にあるとし，(S,B(S), µ)

を [(S,B(S), µ)]の代表元とする。このとき，∗-同型写像 κµ : L∞(S, ν) → Bで次で定義さ
れるものが存在する：

V ∗
T κµ(f)π

s
T (A)VT =

∫
f(s) dµ(s, A), f ∈ L∞(S, ν), A ∈ A. (29)

ただし，νは µと同値な正値測度である（νの選び方には依存しない）。

定義 25. T1, T2 ∈ CP(A,M)とする。

(1) T1と T2とが準同値 T1 ≈ T2であるとは πT1と πT2とが準同値であるときを言う。

(2) T1と T2とが無縁 T1 ◦

–

T2であるとは，πT1と πT2が無縁であるときを言う。



命題 26. T1, T2 ∈ CP(A,B(H))，T = T1 + T2とする。以下の条件は等価である：

(1) T1 ◦

–

T2；

(2) 射影作用素 P ∈ Zs
T (A) = πs

T (A)′′ ∩ πs
T (A)′であって，

T1(A) = V ∗
T Pπs

T (A)VT , T2(A) = V ∗
T (1− P )πs

T (A)VT , A ∈ A,

を満たすものが存在する。

GNS表現の場合も同様に成立する：

命題 27. T1, T2 ∈ CP(A,M)とし，T = T1 + T2とする。以下の条件は等価である：

(1) T1 ◦

–

T2；

(2) 射影作用素 P ∈ ZT (A) = πT (A)′′ ∩ πT (A)′であって，

T1(A) = ⟨ξT |PπT (A)ξT ⟩, T2(A) = ⟨ξT |(1− P )πT (A)ξT ⟩, A ∈ A,

を満たすものが存在する。

定義 28. (S,B(S), µ)は対応する可換W∗-代数が Zs
T (A)のW ∗-部分代数であるとき準中

心CP-測度空間であると呼ばれる。特に，(S,B(S), µ)は対応する可換W ∗-代数が Zs
T (A)

であるとき中心CP-測度空間であると呼ばれる。

6　場の量子論における測定過程論

T をEL
A,π(A)′′(Λ)の元とし，(πT , ET , ξT )を T のGNS表現とする。そして，Bを ZT (A)

の可換W∗-部分代数とし，P : B(S) → Bを PVMとする。このとき，次で定義される

IT : B(S)× πT (A)′′ → π(A)′′が思いつくだろう：

IT (∆;A) = ⟨P (∆)ξT |AξT ⟩, ∆ ∈ B(S), A ∈ πT (A)′′. (30)

この写像が完全正値インストゥルメント [29, 30]のもつ性質を満たすことは容易に確認で

きる。それ故，局所状態と完全正値インストゥルメントは無関係な概念ではなく，場の量

子論のような表現の間の移行を基本に据えるべき理論において局所的な状態準備とそれを

実行・検証するための測定方法を不可分な形で統一的に記述する方向性を示唆している。
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