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EFFECT OF IMPERFECT MATCHING AND PHASING IN
SUPERCONDUCTING ACCELERATOR FEEDBACK LOOP WITH BEAM LOADING

Part I—Matching Considerations
Introduction

The use of external feedback in a superconducting accelerator has been
studied in considerable detail by Nea.l1 and others. By recirculating the rf
power back through the input end of the accelerator the conversion efficiency
of the accelerator can be made close to 100%. An alternative to the external
feedback loop is internal feedback in the form of a standing wave accelerator.

The beam conversion efficiency is nearly as high, but it suffers from a higher
ratio of peak to average electric fields in the accelerating section. We can
resolve the standing wave field configuration into its forward and backward wave
components. The backward wave experiences no net exchange with the electron
beam. Therefore, half of the stored energy is not being used, but is still con-
tributing to iZR losses in the accelerator walls and increasing the cost of refrig-
eration. For a given beam energy, the electric field strength at each maxima

in a T mode standing wave structure is about 31% higher than for the same energy
in the 27/3 mode traveling-wave structure with feedback. Hence a strong case

is made for the TW structure with feedback.

There are some difficulties, however, with the TW accelerator with feedback
which are not present to nearly the extent in the standing-wave accelerator. Some
of these problems will be discussed in detail in this paper. The first problem dis-
cussed is the effect of a small perturbation or reflection in the waveguide loop.
Also, the effect of an imperfectly matched dummy load will be covered. Then, the
effect of a small error in the electrical length of the loop and in the phase of the
bunched electron beam will be discussed. Lastly, the combined effects of these
perturbations will be discussed.

Ideal Superconducting Accelerator with Feedback Under Steady State Conditions

A schematic of a traveling-wave accelerator and feedback loop is shown in

Fig. 1. The bridge is assumed to be an ideal lossless directional coupler with
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Accelerator and feedback loop schematic. Bridge coupler reference planes

are chosen so there is zero phase shift for straight ahead waves and 90 degrees




a coupling ratio given in db by
Cc=10 loglo (1+g). (1)
The tentative value for g at 2856 MHz is 5460.

Consider a voltage wave Vs incident upon arm 1 of the bridge coupler. A
very small fraction of this wave initially is coupled into the accelerator and
feedback loop while the rest goes into the dummy load connected to arm 2 of
the bridge coupler. The wave coupled from arm 1 to arm 4 of the bridge into
the loop before buildup has begun to occur is

Vs
(1+g)"?
where j = \/-—1 and takes into account that the coupled wave has shifted 90° with
respect to the wave Vs' A transient analysis of the accelerating wave buildup
was shown by Neal1 for the ideal case where the loop is perfectly reflectionless
and the phase length around the loop is an exact multiple of 27,

It is necessary to use a scattering matrix approach, however, to develop
exact expressions for the steady-state behavior of the accelerating wave for the
non-ideal case where there are small reflections within the loop. In order to become
familiar with this type of notation we can first develop the steady-state expression
for the accelerating wave for the ideal case.

We can begin by labeling the four arms of the input bridge as shown in Fig. 1.
Incoming waves will be represented by a and scattered waves by bn. These are

related to each other by the scattering coefficients where

b =S a (2)
n mn m
Using scattering matrix notation
by 511 512 513 S14 3y
by 551 So2 So3 So4 a
= X . (3)
by 531 539 S35 S34 a3
by S41 540 543 S44 a4
Symmetry requires that
Sig = 834 and 8, = §)4 . (4)

Reciprocity requires that
S.,=8,.=8S_,=8§ . (5)



Since the bridge is assumed to be an ideal directional coupler

117 S92 = 8337 Sy = 0. (6)
From Eq. (1)
814 = 849 = S35 = S5 = j(l—l‘)l/z (")
+g
Since the coupler is lossless
1/2
S12 = 551 = 834 = 845 = (‘1‘?—'@) (8)

For large coupling ratios S, , < 1 and g > 1.

14
We can now write the equations for the accelerator/waveguide loop in terms

of incident and scattered waves at the four arms of the bridge coupler.

N %
b, = 0-a, + (FE) a, + 0- ag + J(I;E) a, (9
/2 ’ 1/2
_ g \" M1 .
b2 <1+g5 al + 0. 8.2 + ](l—_-}_—g-) a3 + 0 3.4 (10)
b o /1 V2 1/2
g = a + J(T-FE a, + 0- a, + (—g—1+g) a, (11)
1/2 1/2
= (1 . g
b, J<1+g) a, + 0-a, + (1+g) a; + 0-a, (12)

The incident wave equations on the low power (arms 1 and 2) side of the bridge
for a reflectionless dummy load are

a; = VS (13)

a, = 0 (14)

The equation for a 4 OB the high power side of the coupler (arms’ 3‘ and 4) contains
both a passive and an active term. The passive term is merely the voltage trans-
mission coefficient for the accelerator and feedback waveguide. The active term
takes into account the energy that is transferred to the electron beam. This is
most easily handled by the superposition of the voltage wave induced by the electron
beam along with the wave from the rf source. Hence the last two equations are

ay = bye T FVHO) gy (r+i9) (;1)_%21 i (15)

a, =0 (16)



where

v = attenuation parameter of feedback portion of waveguide in nepers
7 = altenuation parameter of accelerator portion of loop in nepers

VS = voltage wave into arm 1 from source
Vb = voltage wave induced by the electron beam

¢ = phase length around accelerator/waveguide loop

'in = normalized electron beam current (see Eq. (18))

¥ = phase angle between the bunched electron beam and the impressed

1/2

voltage wave jVs/(l +g) from the source.

The initial voltage wave coming out of the accelerator that is induced by the

bunched electron beam is given by1
V. : -T
b . -jY (1-e -
=L = -je i (17)
VS @r )1 2™n
The normalized electron-beam current, in is defined by1
izroﬂ 1/2
i=\—% (18)
s
where
i = peak electron beam current
ry = accelerator shunt impedance per unit length
£ = accelerator length
Ps = power from source into arm 1 of bridge.

The negative sign in Eq. (17) indicates that when the electron bunches are in phase
with theimpressed rf wave [jVS/(1+g)1/ 2] before buildup, the induced wave is

180 degrees out of phase with the impressed rf wave. The "j'" appears since Vb is
normalized to Vs’ taking into account the 90 degree phase shift in the bridge coupler.
Solving Eqgs. (9) through (12) we obtain

1o g2+ -e T i

= (B7) (19)
(1+g)1/2 ~ g1/26--(7- +y+jd)

which is the steady-state normalized accelerating voltage wave. This is expressed

ml’hc'

RS
1l
-

in complex form. For ¢ = n27 where n is an integer and ¥ = 0 (i.e., beam is in



phase with the accelerating wave) Eq. (19) is identical to that obtained in Ref. 1.

It should be mentioned at this point that the maximum rf power is transferred to

1/ 2. 1 This will henceforth be referred to as the

/2

the electron beam when inz (2gt )

design current. Equation (19) reduces approximately to g1 at the design current.

Non-Ideal Superconducting Accelerator with Mismatch in Feedback Loop Under
Steady-State Condition ‘
Extreme care will be taken in the machining and matching of the accelerator

structure and waveguide feedback loop. It will be impossible, however, to
eliminate reflections entirely and these residual reflections must be tuned out to
several orders of magnitude better than normally required for efficient rf power
transmission. The effect of any residual reflections on the steady-state accelera-
ting wave will be examined here. Waves scattered in the backward direction will
build up just as the desired wave launched through the bridge coupler builds up
in the forward direction. A transient analysis for multiple discreet mismatches
becomes highly c’omplex and will not be treated in this paper.

A number of very small mismatches in the resonant loop can be represented

by a single mismatch discreetly located and having the scattering matrix

ir (1- ["2)1/2

S
2.1/2 )
)1/ ir

r o (20)
where I is the magnitude of the effective reflection coefficient in the waveguide
part of the loop. If I is to represent the combined effect of a number of mis-
matches, it must be assumed that each of these are quite small so that significant
traps of stored energy, do not exist, thereby making an adjustment in the loop
loss parameter y unnecessary. The accelerator structure, of course, stores
considerably more energy per unit length than the feedback waveguide but this

is taken into account in the accelerator attenuation parameter .

It will be assumed that any phase shift caused by the reflection I~ will be
absorbed in the total loop phase length term ¢. It is necessary however, that
the phase of the transmitted wave be related to the phase of reflected wave by
+1/ 2.6 This is taken care of by the "'j' term in the reflection scattering matrix.

A positive 'j" is used but a negative j will give the same results.



A schematic of the accelerator/waveguide loop is shown in Fig. 1. For this
analysis the mismatch will be assumed to be located close to the output end of
the accelerator. This will eliminate the need to separate v into two parts. The
location does not affect the final result however.

The complete set of loop equations are now

b, = (-l—jﬁ_-g—)l/zaz + j(ﬁ)l/za . (21)
by = (Tf-g-)l/zal + J(ﬁ)l/z% (22)
bg = (1_%)1/234 *] <1ig)1/2a2 (23)
by = T%_g)l/zaa * j(1}ug)1/2a1 (24)
a,; = VS (25)
a, = 0 (26)
oy - b4(1_rz)1/ze-(f +YHI0)_j 1 2/ 2 v+ iY) (217 _)f_; i a +i by 2V 193)
(27)
a, - b3(1-[“2)1/2e'(7+7 +ig), jre_z(T +J'¢1)[b4+je-(v+j¢) (21 -)el"; inal] (28)
i

where ¢1 is the electrical length from arm 4 of the bridge to the mismatch and
¢4 is the electrical length from the mismatch to arm 3 of the bridge.

The loop Eqgs. (21) through (24) are the same as those for the ideal reflection-
less accelerator/loop network. Equations (27) and (28) must now replace Eqs. (15)
and (16) to provide a complete set of loop equations which completely describe all

the steady-state waves in the non~ideal system with reflections in the loop.



Effect of Reflection on Beam Energy

The wave of most interest of course is the steady-state accelerating voltage

wave b 4 Solving the new set of loop equations one obtains

_ . _ N _ -T
v, b, [(1+g)1/2-g1/2(1-r2)1/2e (7+V+J¢)][1-g1/2e WHMLL_T);; - in]

v =77 - L i
Vo 2y 1+g+ge—2(7 +V+J¢)_2g172(1+g)1/2(1_1_,2)1/2e_(., T7179)

. (29)

It is too difficult to tell by inspection how this normalized wave varies with the
magnitude of the effective net reflection coefficient I”. If =0, ¢ = 0, I'«<1 and
(T +v) « g—l, Eq. (29) simplifies approximately to

2 1/2
V, 1/2 igr
s 1+ (2gl)

From Eq. (30) we see that the accelerating wave is affected even by very small
values of I'. A net voltage reflection coefficient of I'= (Zg)'lzlx 10_4 will cause a
50% reduction in electron beam energy. Equation (29) reduces to Eq. (19) for
I’ = 0. A plot of the normalized accelerating voltage wave versus loop reflection
coefficient I is shown in Fig. 2.

For a very small net reflection we can simplify further by expressing incre-
mental change in beam energy in terms of /. For '« (2g)_1 the incremental

change in beam energy is given by
AV 2

In simplifying Eq. (29) it was assumed that {, the electron bunch phase and ¢,

the phase length around the loop were 0 and n 27 respectively. It can be shown

that Eq. (29) can exhibit a double peak resonance as ¢ is varied for a certain

range of I 's. The separation between these peaks becomes greater as [ becomes
larger. This characteristic will be discussed in more detail in the section of this

paper dealing with combined mismatch and phase perturbations.

The Backward Wave
We have seen the effect of a small mismatch within the loop in the forward

wave which is the accelerating voltage wave. The backward wave that is

generated can also build up to a very high level. Solving Eqs. (21) through (28)
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The steady state forward (accelerating) and backward waves vs magnitude

of a single discreetly located discontinuity within the accelerator loop.

These waves are normalized to the wave incident upon arm 1 of the bridge coupler.



for a 4/a1 gives the normalized reverse wave in the accelerator loop. This is

1/2 1/2 ~(y+iy)_(1-e7) ]
(1+g)""I" |1-g ' "e - i
Vo(reverse) - [ . @r )1 2 ni |
-2(7 +v+1¢)_2g1/2(1+g)1/2(1_rz)1/ze-(., Ty +)9)

Vs l+g+ge

. (32)

This expression has the form of a resonance curve and is plotted as a function of
I along with the accelerating wave in Fig. 2. It was noted that the accelerating
wave has dropped in half for I » (2g)"1 from the I" = 0 value. At I z(2g)'1
the reverse wave has reached a maximum where it is equal to the accelerating
(forward) wave. This results in an infinite standing wave ratio field configura-
tion within the accelerator loop. The backward wave, as mentioned previously,
does not undergo any net energy exchange with the electron beam.

For I"«<1 Eq. (32) can be expressed approximately as

2 1/2
, VOgreverse) - 4;;3/2[‘ 1- <1n gT)

Vs 1+@2el)> 2

(33)

The reverse wave is greater than the accelerating (forward) wave for all values of
I > (2g)—1., (2g)'1 is approximately 1x 10-4.

It should be mentioned at this point that if the directivity of a monitor coupler
placed in the loop is poor, the signal observed will be some combination of the
forward and reverse waves (the forward wave contribution being larger). This
signal will always become greater as I becomes smaller, hence stringent
monitor coupler directivity is not a requirement for tuning out a reflection I,

This can be seen from Fig, 2.

Ratio of Backward to Forward Wave ‘
Also of interest is the ratio of the two waves in the accelerator loop. Solution
of Egs. (21) through (28) for a 4/ b 4 gives the ratio of the backward wave to the

forward wave as

VO(reverse) _ (1+ g)l/ 2 r .
VO(forwal.rd) (1+ g)l/2 - g1/2(1 - 1"2)1/2 e"(’f +Y+j¢P)

(34)

and is independent of electron beam current.

- 10 -



This expression also has the form of a resonance curve, but can be misleading
since the magnitude of the backward wave is indeed quite small when this ratio
reaches its maximum value. The plot of this ratio as a function of /" is shown
in Fig. 3. It is noted that this ratio can exceed unity by a considerable amount.
Therefore, even though the initial wave is coupled in the forward direction, the
resulting steady state backward wave may exceed the forward wave. Equation
(34) can be simplified considerably for /"<« 1 and g < (7 +'y)_1 to

VO(reverse) ~ 28" (35)
VO(forward) 1+ gﬁ

Some may prefer to call this ratio the steady-state effective loop reflection

coefficient. It is interesting to note that this ratio reaches a maximum value of

A
_HYreverse) 1/2
Areverse) . gt/ (36)
O(forward)
at a net voltage reflection coefficient of
-1/2
I'=g / . (37)

Equation (34) is valid for all values of / . For [ =1 this ratio again becomes
unity as it did at I” = (2g)—1.

The above, however, assumes that ¢ = 0(or 2n7). It is interesting to note
from Eq. (32) we can solve for the accelerating wave for I = 1 which is

. -T
(1+g)t/? [1 _ g2 __1_:_97_in]

Yo_ 2y (38)
VS 1+g+ge_2(T +Y+i9)

and is very small for ¢ = 0. However, by changing the phase length of the loop
by ¢ = + 7/2, Eq. (38) becomes
. -T
(1+g)1/2 1- g1/2e~('y+](/;) l1-e in]
_(27)
1+ g[l - e AT +Y)]

(39)

o
I

- 11 -
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and for g «< (1 + ')/)_1 becomes

- rx3

v, 2 g /7]
v /2 ll _<_nz__> J (40)

giving a standing wave accelerator with one-~half the design energy at the design

<

current and equal to the design energy at zero electron beam current.

Effect of Reflection on Input Impedance to the Bridge Coupler

The high backward wave which may build up in the accelerator/waveguide
loop will also make its presence known at the waveguide input to the bridge

coupler. This input reflection coefficient which can be called I” . is given

exactly by I rl 1/2 ~(y+ig) 1- e T 1
b1 | f e

g a_l- l+g-+ge 2t +Y+io)_ 2g (1+g) 1/2 (1_1"2)1/2(;(7 tY+j)

This input reflection coefficient exhibits a resonance as shown in the plot in
Fig. 4. The value of I"_depends on the electron beam current and phase. The
plot shows I~ . as a function of I for zero electron beam current and for the
design value of electron beam current. It is seen that the input reflection coef-
ficient to the bridge becomes unity when the loop reflection coefficient / = (Zg)_l.
For the specified value of g = 0.546 X 104 there is virtually a short circuit at the
input to the bridge for I z(Zg)_lz 1 x 10_4, if the electron beam current is zero.
At the design beam current the input reflection coefficient is 0.5 at this resonance.
If the proposed scheme where a single klystron feeds two accelerator/loop
systems is used, the reflection coefficient seen by the klystron will be down by a
factor of two from I~ o at the bridge providing the other accelerator/waveguide
system is well matched. However, it is more likely that both accelerator loops
will contribute to a mismatch at the klystron. The reflection coefficient seen at

the klystron is given by

& (42)

where I’ Kk is the reflection coefficient seen by the klystron and I gl and I” o2
are the respective input reflection coefficients at the respective bridges for each

of the two accelerator loops. @ is the phase angle between the two waves. [ K

- 13 -
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can be as high as unity at zero beam current and as high as 0.5 at the design

beam current.

Effect of Reflection in Dummy Load on Beam Energy

If the rf dummy load that is connected to arm 2 of the bridge coupler is
not perfectly reflectionless, it is possible for a backward wave to build up in
the accelerator loop. This wave is small compared to the forward wave and
does not build up to nearly the extent of the backward wave caused by an equiva-
lent reflection within the loop. A steady-state backward wave will be present
only when there is a steady-state wave traveling towards the load. At the design
beam current there is no power to the load and the mismatch has no effect once
steady-state conditions are established.

Referring to Egs. (9) through (16) we can substitute in place of Eq. (14)

ay = I by

(43)
where [ L is the reflection coefficient for the dummy load. Solving Egs. (9)

through (16) with Eq. (43) substituted for (14) we obtain the normalized reverse wave
due to a mismatch in the dummy load. This is

g2 (1agl/2e T YD), (r+iW) L1oe T

Vogreverse[ =T . 427)1:2 n . (44)
A L [(1+g)1/2 _ g2l +Y+J¢)] 2

When i~ (Zg»r)"l/2

condition for all values of I 1+ Whereg « (r +'y)_1 Eq. (44) reduces approximately

, then Eq. (44) goes approximately to zero in the steady-state

to
V.
1/2 1/2.
Ogre‘w,/erse) ~ 2g / FL [1 - (2er) / ln] (45)
s

The normalized backward wave is plotted as a function of normalized beam current,
in’ for various values of load reflection coefficient I L in Fig. 5.

Also of interest is the ratio of the backward wave to the forward wave in the
accelerator loop in the presence of a load mismatch, This is obtained by dividing
Eq. (14) by Eq. (19) giving

/2 (14 2T ¥YHI0) (v +iY) Lo,

Vg re‘\;ersel _ FL : (2’7)1 “n (46)
. . ~T
0 [(1+ g)1/2 ) gl/ze-(7+y+3¢)] [1 - g1/2e-('Y+Jll’) (;1-;3Tﬁ in:l
: T

- 15 ~
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A steady state backward wave can also exist when the dummy load is not
perfectly matched but only if the beam current is not equal to the design
current. The normalized backward wave is shown vs normalized beam

current for various dummy load reflection coefficients.



This ratio is zero when the electron beam current is equal to the design current
since no power is going to the dummy load. The ratio is infinite when the electron
beam current is equal to twice the design current since the forward accelerating
wave is exactly canceled by the wave induced by the beam. The ratio is shown

in Fig. 6. Using the aforementioned assumptions, Eq. (46) reduces approximately
to

Vgreverse) -~ 1- Qg'r)l/zin
V. ~ 2l 7z, | (47)
0 2 - (2gr) iy

Equation (47) gives a very good approximation for Eq. (46) for all values of [ Le

- 17 -
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Part II - Phase Perturbations

General

The previous discussion dealt with the effect of mismatches within the
accelerator loop and in the dummy load on the waves of interest in the system.
The exact expressions took into account the phase length through the accelerator
and around through the feedback loop. The curves that were plotted and the sim-
plified approximations, however, were based on the assumption that ¢, the
electrical length of the path around the loop was an exact multiple of 27, It was
also assumed that the electron beam bunches were in phase with the accelerating
wave,

The exact expressions for the various waves were given in complex
form (i.e., the expressions contain both a real and an imaginary part except when
both ¢ and {rare equal to 2n7 or 0). In order to see more clearly the phase
relationship between the electron beam and the resultant rf wave, for various
phasing imperfections, the expressions can be expanded and converted to polar
form. Three cases will be examined. These are: 1) Where the loop length is
not an integral number of wavelengths (i. e., ¢ # 2n7); 2) the electron bunches
are not in phase with the impressed rf wave (i.e. ¥ # 0); and 3) both the beam
and loop are misphased (i.e., ¥ # 0 and ¢ # 2n7), The polar expressions will
be developed first, then drawn in phasor form. It will be assumed in this section
that the accelerator loop is perfectly reflectionless.

Equation (19) may be separated into two parts: the steady state wave due
to the rf driving source alone and the steady state wave induced by the electron
beam. From Eq. (19) we can obtain the normalized steady state wave due to the

impressed rf. This is given in polar form by

V0 1 fﬁ .
~ = 7 y (48)
Vs | of [1+g+ge"2(T R 2g1/2(1 +g)1/:2 e (Tt ¢os ¢]1/2
where
1/2 ~(r+7) _.
B = -arctan < sin ¢ (49)

(1+g)1/2 - gl/ze—(T *Yeos ¢

and ¢ can now be considered the phase deviation from 2n7 around the loop.

- 19 -



For small values of ¢ Eq. (48) reduces approximately to

= 1/2
% | /[
Vv

~

> (50)
s|rf 1+ 2(go)

and Eq. (49) to

B~ -2g¢ (51)

The angle B is a vector direction with respect to the impressed rf vector before
buildup which has zero angle.

From Eq. (19) the normalized steady state wave induced by the bunched
electron beam is obtained and is given in polar form by

1/2 oY 1-e 7
_\70 12)172 n &iﬁ_
A =
s

= (52)
Induced E+ g+ ge'z('r ) 2g17 (1+ g)l/ 2e"(7 ) cos ¢] 1/2

For small values of ¢ Eq. (52) reduces approximately to

VO (27 gz)l/2 in
7 Mo [ Y - 289 (53)
Induced 1+2(go)
. . -1/2
At the design beam current, i = (2gr) ,

the steady state beam induced vector
expressed by Eq. (53) is one~half the steady state rf vector expressed by Eq (48)

The vector addition of Eqs. (48) and (52) gives the resultant of the two waves as

<

/2
l+ge 27(-1—2—-)- 2 2g 1/2 'y_(_l__e_17%i cos §
- (27)
Resultant

/T (54)
Lrgrge 2T TN 951721 126 T+ 0g
where

sin B - g1/2 ’Vﬂ_‘iﬂg_ insin(B-Hp)
T = arc tan (21)

(55)
cos B - gl/2 Y_Q_%i)_ i cos (B+Y)
(21)
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Simplifying as before

2
1/2,

Y [1—(2g7') 1n(1--‘23

g 2

s | Resultant 1+2(ge)

) +1/2gr irzl]l/z

2T (56)

<:[°<l

The above expressions, Eqs. (48) through (56) completely describe the

various combinations of steady state electron bunch phase and loop phase per-

diagrams in Figs. 7 through 9,

Case with Loop Phase Error Only (¢ # 2n7, ¥ = 0)

The accelerating wave buildup is shown in Fig. 7 for the case where there

is a phase error in the length of the accelerator and feedback loop. In this case

¢ is the deviation in loop length from 2n7. The small arrows in the first quadrant
of Fig. 7 represent the first three transits of the impressed rf vector, VS/(l + g)l/ 2.

Vet

of trips around the loop, Vrf would normally have a length of approximately Zgl

is the steady state rf wave due to the driving source after an infinite number/2
if there were no loop phase error. The length of Vrf with a loop phase error ¢
is given exactly by Eq. (48) and approximately by Eq. (50).

The buildup of the wave induced by the electron beam is the same as the buildup
of the klystron wave except that it will normally (if ¥ = 0) by 180 degrees out of
phase with the driven wave. The resultant wave will be the vector addition of V. of and

Vinduced

is defined as the phase angle between the electron bunches and the impressed rf

which is simply the difference in their magnitudes for Y = 0. Since ¥

wave before buildup, there will be a phase error between the electron bunches

and the steady state resultant wave as shown in Fig. 7. The bunches will be off

of the crest of the steady state accelerating wave (the vector sum of the driven wave
and the induced wave) by an angle 8 defined by Eq. (49). Adding Egs. (50) and

(53) gives

<

1/2 1/2
x ——2g—-——2- [1-(125) i ] (57)
s | Resultant  1+2(g¢) n
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(1-e'T) | Vet
[ 'n
(2T7)" | v
' RF
.
¥ T v
'
VINDUCED \ Vs VRESULTANT
(1+qg)'72
Veesutant = YR T Vinoucep
|VBEAM ' 3 l VREsuLTANT | €OS (T + V)
1380A8
Fig. 8

A phase error ¥ between the beam and the accelerating field exists. The
resultant field makes an angle T with the driven rf wave and an angle (Y+y)

with the electron beam.,



_vz—

VRESULTANT

(l—éT)in

Veesurtant - VRt Vinoucep

IVBEAM | y IVRESULTANT cos (¢ -T)

ViNDUCED
138046
Fig.
Both a beam phase error ¥ relative to the impressed rf and a loop phase

error ¢ exist. The electron bunches will not be in phase with Vre sultant

except for the special case where Y =17T. Inthe case shown, the beam

phase error tends to compensate for the loop phase error,



for ¢y = 0. The effective part of the resultant wave acting upon the beam is found
by multiplying Eq. (57) by cos 2g¢ giving

v 1/2 1/2
"'\79 z___z.g___z_ [1 - (-723-) in] cos 2g¢ (58)
s|Beam 1+2(g¢) |

The fractional change in beam energy due to a loop phase error ¢ is then given
by

) VO
Vo

~ - (2g9) (59)

Beam

Case with Phase Error Between Electron Bunches and Impressed RF Wave
(U #0, $=0)

If the loop length is an exact multiple of 27 but a phase error, Y exists

between the impressed rf wave and the electron bunches the vector orientation

appears as shown in Fig. 8. The steady state wave, V now makes an

resultant
angle T with the steady state rf component V. o T is defined by Eq. (55). For

small values of the initial beam phase error
TRY (60)

if the electron beam current is at the design value. For smaller values of electron
beam current T also becomes smaller.

The magnitude of the resultant for this case can be found from Eq. (54) by
setting ¢ = 0. The resultant wave will always be greater than for the 'in phase"
case ( ¥ = 0) but the beam energy will always be slightly lower since the electron
bunches will be off of the crest by an angle (¥ + T ). The resultant wave,

Vv

resultant
tive part of the resultant wave acting upon the electron beam is given by

is expressed approximately by the numerator of Eq. (56). The effec-

Vo
cos (Y +B)
Resultant

<|<

s | Beam s

2 1/2,
1/2 ¥2gT)y 71
~ 1/2 g7 . 1 2 n
~ 2g [1- i ] [1——(1{1+T)] 1+
(2 ) n 2 . [1_(27)1/2111]2

(61)
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At the design current and for small values of ¥, the fractional change in energy
is given by

~- P (62)

and at negligible beam loading the fractional change in energy is given by

8V0 lIIZ
- -5 (63)
0 | Beam

Case with Loop Phase Error and Beam Phase Error (¢ # 0 and ¥ # 0)

Figure 9 shows the vector orientation when both a loop phase error and a

beam phase error exist. It must be emphasized that the beam phase error is
defined in this paper as the phase angle between the electron bunches and the
impressed rf wave and not the steady state rf wave. It will be seen that it is
possible to have a beam phase error with respect to the impressed wave but
not the steady state wave and conversely.

In the example shown the beam phase error ¥ is in such a direction that
it tends to compensate for the loop phase error ¢. If y had the opposite sign
the beam phase error would add to the loop phase error. The magnitude of the
resultant wave is given by Eq. (54). The effective part of the resultant wave

acting upon the electron beam is given by

Vo Vo
v = v cos(Y=T) (64)
s | Beam s | Resultant

The sign in the cosine argument depends upon the direction of the phase error.
The fractional change in beam energy for this case is
8V0

Vo

~ - [2 tll2 + 2(g¢)2 + T2 + 2’1‘!#] (65)
Beam

at the design current.
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Part III - Combined Phase and Mismatch Perturbation

General

The double peaked resonance behavior has been described by several
authors2’4’ 5 in papers on traveling wave resonator theory. The same theory
applies fo the accelerator and feedback loop and is not affected by beam loading.
The behavior is as follows: For a net reflection coefficient I' less than a critical
value there is a single maximum for the accelerating wave as either frequency or
phase length of the loop is varied. This maximum occurs when ¢ = 2n7m where n
is an integer. As T is increased past the critical value the resonance separates
into two peaks with a valley at ¢ = 2n7m. The two peaks are symmetrically located
about ¢ = 2nm. The greater the value of I', the wider the separation between peaks
and the smaller the magnitude of the accelerating wave. For the sake of simplicity
the curves in Figs. 2,3 and 4 assumed that ¢ = 0 or 2n7., In the range where T"
exceeded the critical value the magnitude of the accelerating wave could be
increased by an adjustment of the ¢ parameter from 2n7 to one of the resonant
peaks. This behavior is analogous to coupled resonant circuits where the coupling
(in this case the reflection magnitude)is varied. Here the two circuits are the

forward and backward wave modes in the accelerator loop.

Analysis of Double Resonance

The exact behavior of the accelerator resonance can be found from Eq. (29).

Expanding, the magnitude may be expressed as

1 1 1 1 - 7
2. =2¢r+y) , 2 2 . .22 ~(1+y) 2 -y (1-e ). -2y (1-e~ f. 2
1+g+g(1-T")e -2g (1+g) (1-T' ) e cos¢] [1—2g e i——7-)1 +ge i ]
[ (27_)1 2'n 27 n
1 1 1
(1) +g76 M asg(11g)1-T7)6 27 T sg%(14g) (1T 26 () (1+g+ge’2<7+7)c osg+2g(L+ge 2T o052

(66)
Differentiating Eq. (66) with respect to ¢ and setting result equal to zero one

obtains

¢ = 2nm (67)
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and

[ 1+g+g(1-T26 2T V114 g+ P - TR M 214 ) -1“21@‘2(7”)]
2g™ 21+ )1 %(1-1%)L 2T

¢ = *are cos
68)

The minima occur at ¢ = 2n7 and the maxima occur at the values of ¢ in Eq. (68).
It should be noted that for a small critical value of I the arc cos argument is equal
to unity and is slightly greater than unity in the range between T'= 0 and the
critical value. Values of ¢ for an arc cos argument greater than unity cannot
exist hence this region of T''s do not produce a double peak but only a single

peak at ¢ = 2nm. The critical value of I could be found by setting the argument

in Eq. (68) to unity and rigorously solving for I'. The argument is complicated
however and the value of I producing unity argument can most easily be found with
a graphic solution. For g = 5460 and (r + y) << 1/g the critical value of T is
approximately

-5
rcritical R 4x10 (69)

As T increases through and beyond this value the single peaks flatten and then
separate into two distinct peaks. The maximum at ¢ = 2nm now becomes a
minimum. The ambitious calculus student may verify this by taking the second
derivative of Eq. (66) with respect to ¢ and equating the result to 0 and observing
the sign reversal at the critical value of T.

An unsuccessful attempt was made to plot Eq. (66) as a function of ¢ for
several values of I'. The precision required was far greater than that for wave
gain expressed where only a single perturbation of either T or ¢ existed such as
in Egs. (29) and (48). Approximations up to the 5th order were also not suffi-
ciently valid. '

The following table gives the location of the peaks with respect to ¢ = 2nm
but does not give the magnitude of the accelerating wave at each peak.

VO/VO max (¢ = 2nm)

T A¢ (radians)
1x10°6 single peak 0. 9999
1% 107° single peak 0.990
1x 1074 $1.11 % 1074 0.50
2x107% +2.14 x 1074 0.28
5x 1074 45,08 x 1074 0. 04
1% 1073 +10.04 x 10~ 0.013
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From this table it is obvious that the peaks are displaced about ¢ = 2n7 by
approximately
Ap =~ =T (70)

in the region where the double resonance exists.

Effect on Input Reflection Coefficient and Backward Wave

The backward wave experiences a double peaking also but the peaks occur at

slightly different values of ¢ than the forward wave.z The accelerating (forward)
wave has a pronounced double peak before the backward wave has any evidence
of a double peak. 2 The resonant peaks for the backward wave and for the input

. . . 2
reflection coefficient occur at

@-THY2 (14 g+ g2+ V)
26172 1+ gl 2 e T )

¢ = % arc cos (71)

Again the critical value of T at which double peaking begins to occur can be
found by setting this argument in Eq. (71) to unity and solving for I. This yields

r _lig-gedTtY) (72)
critical l+g+ ge-2(7+ v)
For (1 +7v) < 1/g Eq. (72) cah be expressed approximately as
-1
Loritical ™ (2g) (73)

It was shown inPart I in the section on the "Effect of Reflection on Input
Impedance to the Bridge Coupler' that the input reflection coefficient approaches
unity when I‘z(:Zg)-1 for ¢ = 2n7m and in = 0. It can also be shown2 that there
is a corresponding value of ¢ that will produce in input reflection close to unity

for all values of T greater than (2g)'1.
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