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EFFECT OF IMPERFECT MATCHING AND PHASING IN 
SUPERCONDUCTING ACCELERATOR FEEDBACK LOOP WITH BEAM LOADING 

Introduction 
Part I -Matching Considerations 

The use of external feedback in a superconducting accelerator has been 
. 

studied in considerable detail by Neal’ and others. By recirculating the rf 
power back through the input end of the accelerator the conversion efficiency 
of the accelerator can be made close to 100%. An alternative to the external 
feedback loop is internal feedback in the form of a standing wave accelerator. 
The beam conversion efficiency is nearly as high, but it suffers from a higher 
ratio of peak to average electric fields in the accelerating section. We can 
resolve the standing wave field configuration into its forward and backward wave 
components. The backward wave experiences no net exchange with the electron 
beam. Therefore, half of the stored energy is not being used, but is still con- 
tributing to i2R losses in the accelerator walls and increasing the cost of refrig- 
eration. For a given beam energy, the electric field strength at each maxima 
in a x mode standing wave structure is about 31% higher than for the same energy 
in the 2x/3 mode traveling-wave structure with feedback. Hence a strong case 
is made for the TW structure with feedback. 

There are some difficulties, however, with the TW accelerator with feedback 
which are not present to nearly the extent in the standing-wave accelerator. Some 

of these problems will be discussed in detail in this paper. The first problem dis- 

cussed is the effect of a small perturbation or reflection in the waveguide loop. 
Also, the effect of an imperfectly matched dummy load will be covered. Then, the 

effect of a small error in the electrical length of the loop and in the phase of the 
bunched electron beam will be discussed. Lastly, the combined effects of these 
perturbations will be discussed. 

Ideal Superconducting Accelerator with Feedback Under Steady State Conditions 
A schematic of a traveling-wave accelerator and feedback loop is shown in 

Fig. 1. The bridge is assumed to be an ideal lossless directional coupler with 
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Fig. 1 
Accelerator and feedback loop schematic. Bridge coupler reference planes 

are chosen so there is zero phase shift for straight ahead waves and 90 degrees 
for coupled waves. 



a coupling ratio given in db by 
c = 10 loglo (1 + g). (1) 

The tentative value for g at 2856 MHz is 5460. 

Consider a voltage wave Vs incident upon arm 1 of the bridge coupler. A 
very small fraction of this wave initially is coupled into the accelerator and 
feedback loop while the rest goes into the dummy load connected to arm 2 of 

the bridge coupler. The wave coupled from arm 1 to arm 4 of the bridge into 

the loop before buildup has begun to occur is 
jVs 

(1 + g)1’2 

where j = -and takes into account that the coupled wave has shifted 90’ with 
respect to the wave Vs. A transient analysis of the accelerating wave buildup 

was shown by Neal’ for the ideal case where the loop is perfectlyreflectionless 
and the phase length around the loop is an exact multiple of 2~. 

It is necessary to use a scattering matrix approach, however, to develop 
exact expressions for the steady-state behavior of the accelerating wave for the 
non-ideal case where there are small reflections within the loop. In order to become 
familiar with this type of notation we can first develop the steady-state expression 
for the accelerating wave for the ideal case. 

We can begin by labeling the four arms of the input bridge as shown in Fig. 1. 
Incoming waves will be represented by am and scattered waves by bn. These are 

related to each other by the scattering coefficients where 
b,=S a mn m 

Using scattering matrix notation 

bl 

b2 

b3 

b4 

= 

sll S 12 S 13 S 14 

s21 s22 ‘23 ‘24 

s31 S 32 S 33 s34 

s41 S 42 S 43 S 44 

X 

Symmetry requires that 
S 12 = s34 and S14 = s3 . 

Reciprocity requires that 
S 14 = s41 = s23 = s32 , 

“1 

a2 
. 

“3 

a4 

(2) 

(3) 

(4) 

(5) 
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Since the bridge is assumed to be an ideal directional coupler 

Sll = szz = s33 = s44 = 0. 

From Eq. (1) 
l/2 

S14 = S41 = S32 = S23 = j 

Since the coupler is lossless 

(6) 

(7) 

( > i$ l/2 
S 12 = SZl = s34 = s43 = (8) 

For large coupling ratios S14 <I 1 and g >> 1. 
We can now write the equations for the accelerator/waveguide loop in terms 

of incident and scattered waves at the four arms of the bridge coupler. 

bl 

b2 

b3 

b4 

= 0 l a1 + 

g l/2 ( > r+ a2 + 
1 l/2 

O-a3 ‘- +J l+g % ( ) = 
( )’ 

g !2 
1+g al + O-a2 + j 

1 m 

( > l+g a3 + O ’ a4 

= 0 l al + j 
1 ‘2 

( 1 

l/2 
I+g a2 + O*a3 + R 

( > l+g a4 
1 m 

( ) 
+ -AL 

l/2 = *- 
J l+g “1 + O* a2 ( > 1+g a3 + O*a4 

(9) 

(10) 

(11) 

(12) 

The incident wave equations on the low power (arms 1 and 2) side of the bridge 
for a reflectionless dummy load are 

al = vs (13) 

a2 = 0 (14) 

The equation for a4 on the high power side of the coupler (arms’ 3 and 4) contains 
both a passive and an active term. The passive term is merely the voltage trans- 
mission coefficient for the accelerator and feedback waveguide. The active term 
takes into account the energy that is transferred to the electron beam. This is 
most easily handled by the superposition of the voltage wave induced by the electron 
beam along with the wave from the rf source. Hence the last two equations are 

a3 
= b4e-(7 + r+j@) _  jv e-(y+N) lmeeT i 

8 (27 ‘n (15) 

a4 =o (16) 
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where 

-Y= 
r= 

vs = 
Vb = 

e= 
i = 
;= 

attenuation parameter of feedback portion of waveguide in nepers 
altenuation parameter of accelerator portion of loop in nepers 
voltage wave into arm 1 from source 
voltage wave induced by the electron beam 
phase length around accelerator/waveguide loop 
normalized electron beam current (see Eq. (18)) 
phase angle between the bunched electron beam and the impressed 
voltage wave jV,/( 1 + g) l/2 from the source. 

The initial voltage wave coming out of the accelerator that is induced by the 
bunched electron beam is given by’ 

‘b . -jt) 
T = -Je 

The normalized electronbeam current, in is defined by’ 

i2roe ‘I2 
in’ - ( ) pS 

(17) 

(18) 

where 
i = peak electron beam current 

‘0 = accelerator shunt impedance per unit length 
1 = accelerator length 

Ps = power from source into arm 1 of bridge. 

The negative sign in Eq. (17) indicates that when the electron bunches are in phase 
with theimpressed rf wave [jV,/( 1 + g) m ] before buildup, the induced wave is 
180 degrees out of phase with the impressed rf wave. The ‘ljft appears since Vb is 
normalized to Vs, taking into account the 90 degree phase shift in the bridge coupler. 
Solving Eqs. (9) through (12) we obtain 

1 _ gl/2e-(y+j$) l- em7 ). 
v. b4 
T=T=j 

(f7l 27)l 2 n 

t1+gy2 - g We-(7 +r+j$) 
(19) 

which is the steadystate normalized accelerating voltage wave. This is expressed 
in complex form. For $ = n27r where n is an integer and $!J = 0 (i. e., beam is in 
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phase with the accelerating wave) Eq. (19) is identical to that obtained in Ref. 1. 
It should be mentioned at this point that the maximum rf power is transferred to 

the electron beam when in M (2g7 ) -l/2 1 . This will henceforth be referred to as the 
design current. Equation (19) reduces approximately to g l/2 at the design current. 

Non-Ideal Superconducting Accelerator with Mismatch in Feedback Loop Under 
Steady-State Condition 

Extreme care will be taken in the machining and matching of the accelerator 
structure and waveguide feedback loop. It will be impossible, however, to 
eliminate reflections entirely and these residual reflections must be tuned out to 
several orders of magnitude better than normally required for efficient rf power 
transmission. The effect of any residual reflections on the steady-state accelera- 
ting wave will be examined here. Waves scattered in the backward direction will 
build up just as the desired wave launched through the bridge coupler builds up 
in the forward direction. A transient analysis for multiple discreet mismatches 
becomes highly complex and will not be treated in this paper. 

A number of very small mismatches in the resonant loop can be represented 
by a single mismatch discreetly located and having the scattering matrix 

jr 
9 = 

(l- Y2)1/2 

(1 -r2)1’2 jr 
(20) 

where r is the magnitude of the effective reflection coefficient in the waveguide 
part of the loop. If r is to represent the combined effect of a number of mis- 
matches, it must be assumed that each of these are quite small so that significant 
traps of stored energy, do not exist, thereby making an adjustment in the loop 
loss parameter y unnecessary. The accelerator structure, of course, stores 

considerably more energy per unit length than the feedback waveguide but this 
is taken into account in the accelerator attenuation parameter 7’. 

It will be assumed that any phase shift caused by the reflection f will be 
absorbed in the total loop phase length term $. It is necessary however, that 

the phase of the transmitted wave be related to the phase of reflected wave by 

*7r/2.6 This is taken care of by the lljf’ term in the reflection scattering matrix. 
A positive “j” is used but a negative j will give the same results. 
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A schematic of the accelerator/waveguide loop is shown in Fig. 1. For this 
analysis the mismatch will be assumed to be located close to the output end of 
the accelerator. This will eliminate the need to separate y into two parts. The 
location does not affect the final result however. 

The complete set of loop equations are now 

bl = ($&-)l’2a2 + j ($--r’2a4 (21) 

b2 = (-+J2al + j (&J’2a3 

b3 = (&)l’2a4 + j (&f2a2 

b4 = 01/2a3 + j($$J2a1 

al = vs 

(22) 

(23) 

(24) 

(25) 

az=o (26) 

a3 = b4(l-r 2 l/2,-(7 +Y+.i@)-j( l_ r2)1/2e-(y+j$) ) 

= b (I_ r2)1/2e-(Y+T + jd+ jre 
-2b +h&) 

a4 3 4 (28) 

where $I is the electrical length from arm 4 of the bridge to the mismatch and 
C$I~ is the electrical length from the mismatch to arm 3 of the bridge. 

The loop Eqs. (21) through (24) are the same as those for the ideal reflection- 

less accelerator/loop network. Equations (27) and (28) must now replace Eqs. (15) 
and (16) to provide a complete set of loop equations which completely describe all 
the steady-state waves in the non-ideal system with reflections in the loop. 
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Effect of Reflection on Beam Energy 
The wave of most interest of course is the steady-state accelerating voltage 

wave b4. Solving the new set of loop equations one obtains 

v. b4 
(1+g)1/2_g1/2(1_r2)1/2e-(T +r+jN 

Vs al j 
[ I[ 

l~gl12e-Wj$) L-i', in -z-z (WI 
l+g+geB2tT +r+j~)_2g1/2(1+g)1/2(1- r2)l/2e-(T +r+j$) 

l (29) 

It is too difficult to tell by inspection how this normalized wave varies with the 
magnitude of the effective net reflection coefficient f. If $= 0, $I = 0, r<< 1 and 

(7 -I- Y) << g-l, Eq. (29) simplifies approximately to 

voz, 
2 l/2 

.2 
1p 

g [(I 

m 

B 1 + (202 
l- 2 . (30) 

From Eq. (30) we see that the accelerating wave is affected even by very small 
values of r. A net voltage reflection coefficient of r= (2g)-‘=1x 10m4 will cause a 
50% reduction in electron beam energy. Equation (29) reduces to Eq. (19) for 
r = 0. A plot of the normalized accelerating voltage wave versus loop reflection 
coefficient r is shown in Fig. 2. 

For a very small net reflection we can simplify further by expressing incre- 
mental change in beam energy in terms of r. For r<< (2g) -1 the incremental 
change in beam energy is given by 

- x -(2f12 . AV 
V 

In simplifying Eq. (29) it was assumed that +!I, the electron bunch phase and C#I, 
the phase length around the loop were 0 and n 27~ respectively. It can be shown 
that Eq. (29) can exhibit a double peak resonance as $ is varied for a certain 
range of r 1s. The separation between these peaks becomes greater as r becomes 
larger. This characteristic will be discussed in more detail in the section of this 
paper dealing with combined mismatch and phase perturbations. 

The Backward Wave 
We have seen the effect of a small mismatch within the loop in the forward 

wave which is the accelerating voltage wave. The backward wave that is 

generated can also build up to a very high level. Solving Eqs. (21) through (28) 

(31) 
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Fig. 2 

The steady state forward (accelerating) and backward waves vs magnitude 
of a single discreetly located discontinuity within the accelerator loop. 
These waves are normalized to the wave incident upon arm 1 of the bridge coupler. 



for a4/al gives the normalized reverse wave in the accelerator loop. This is 

V 
(l+g)1/2r 1 _ gl/2e-(y+j+) 

O(reverse) 
vs = l+g+ge-2(7 +Y+j~)_2g1/2(1+g)1/2(1_r2)1/2e-(T +r+jN * (32) 

This expression has the form of a resonance curve and is plotted as a function of 
r along with the accelerating wave in Fig. 2. It was noted that the accelerating 
wave has dropped in half for r % (2g)-1 from the r = 0 value. At r%(2g)-l 
the reverse wave has reached a maximum where it is equal to the accelerating 
(forward) wave. This results in an infinite standing wave ratio field configura- 
tion within the accelerator loop. The backward wave, as mentioned previously, 
does not undergo any net energy exchange with the electron beam. 

For r<< 1 Eq. (32) can be expressed approximately as 

V O(reverse) x 
vS 

4g3/2r2 [l _ (i:;y2] . 

1 +(w) 

The reverse wave is greater than the accelerating (forward) wave for all values of 
r >(2g)-le (4 is approximately 1 X 10 -4 . 

It should be mentioned at this point that if the directivity of a monitor coupler 
placed in the loop is poor, the signal observed will be some combination of the 
forward and reverse waves (the forward wave contribution being larger). This 
signal will always become greater as r becomes smaller, hence stringent 
monitor coupler directivity is not a requirement for tuning out a reflection r. 

This can be seen from Fig. 2. 

Ratio of Backward to Forward Wave 
Also of interest 

of Eqs. (21) through 
forward wave as 

is the ratio of the two waves in the accelerator loop. Solution 
(28) for a4/b4 gives the ratio of the backward wave to the 

V 
‘O( reverse) = (1+g)1/2r 

V O(forward) (1+g)1/2_g1/2(1_r2)l/2e-(T+Y+j~) 

(33) 

(34) 

and is independent of electron beam current. 
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This expression also has the form of a resonance curve, but can be misleading 
since the magnitude of the backward wave is indeed quite small when this ratio 
reaches its maximum value. The plot of this ratio as a function of r is shown 
in Fig. 3. It is noted that this ratio can exceed unity by a considerable amount. 
Therefore, even though the initial wave is coupled in the forward direction, the 
resulting steady state backward wave may exceed the forward wave. Equation 
(34) can be simplified considerably for r<< 1 and g << (T +7)-l to 

V  0( reverse) 
VO(forward) 

(35) 

Some may prefer to call this ratio the steady-state effective loop reflection 

coefficient. It is interesting to note that this ratio reaches a maximum value of 

V  O(reverse) 
= fz l/2 

vO( forward) 
(36) 

at a net voltage reflection coefficient of 
-I/2 

r=g l (37) 
Equation (34) is valid for all values of f . For f = 1 this ratio again becomes 
unity as it did at f NN (2g)-‘. 

The above, however, assumes that C$ = O(or2nQ. It is interesting to note 
from Eq. (32) we can solve for the accelerating wave for r = 1 which is 

vO 
(l+g)1’2 1 - g l/2,-(y+j$) 1- ee7 . 

27 ln 
5= l+g+ge-2(~ +r+j@ ) (38) 

and is very small for C#I = 0. However, by changing the phase length of the loop 
by C#I = f 77/Z, Eq. (38) becomes 
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Fig. 3 
The steady state ratio of the backward wave to the forward wave as a 
function of a reflection within the loop. This ratio is independent of beam 

current and exceeds unity for all values of I’ >1/2 g. 



and for g <c (T + r) -1 becomes 

giving a standing wave accelerator with one-half the design energy at the design 
current and equal to the design energy at zero electron beam current. 

Effect of Reflection on Input Impedance to the Bridge Coupler 
The high backward wave which may build up in the accelerator/waveguide 

loop will also make its presence known at the waveguide input to the bridge 
coupler. This input reflection coefficient which can be called r, is given 

6 
exactly by r 1 _ gl/2e-ty+j+) l-e;;Zi 

(27) “, 
l+g+ge 47 -v+j@)- 2g1/2(1+g~1/2(1_r2~1/2e-(7 +r+jN l 14’) 

This input reflection coefficient exhibits a resonance as shown in the plot in 
Fig. 4. The value of rg depends on the electron beam current and phase. The 
plot shows rg as a function of f for zero electron beam current and for the 
design value of electron beam current. It is seen that the input reflection coef- 
ficient to the bridge becomes unity when the loop reflection coefficient f = (2g)-‘. 
For the specified value of g = 0.546 x lo4 there is virtually a short circuit at the 
input to the bridge for T=(Zg)-‘z 1 x 1o-4 , if the electron beam current is zero. 
At the design beam current the input reflection coefficient is 0.5 at this resonance. 

If the proposed scheme where a single klystron feeds two accelerator/loop 
systems is used, the reflection coefficient seen by the klystron will be down by a 
factor of two from rg at the bridge providing the other accelerator/waveguide 
system is well matched. However, it is more likely that both accelerator loops 
will contribute to a mismatch at the klystron. The reflection coefficient seen at 
the klystron is given by 

rl+ r2eBje 
r,= g 2 (42) 

where rk is the reflection coefficient seen by the klystron and r 
gl 

and r 
!@ 

are the respective input reflection coefficients at the respective bridges for each 
of the two accelerator loops. 19 is the phase angle between the two waves. rk 
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can be as high as unity at zero beam current and as high as 0.5 at the design 
beam current. 

Effect of Reflection in Dummy Load on Beam Energy 
If the rf dummy load that is connected to arm 2 of the bridge coupler is 

not perfectly reflectionless, it is possible for a backward wave to build up in 
the accelerator loop. This wave is small compared to the forward waveand 
does not build up to nearly the extent of the backward wave caused by an equiva- 
lent reflection within the loop. A steady-state backward wave will be present 
only when there is a steady-state wave traveling towards the load. At the design 
beam current there is no power to the load and the mismatch has no effect once 
steady-state conditions are established. 

Referring to Eqs. (9) through (16) we can substitute in place of Eq. (14) 

a2 = r, b2 (43) 

where rL is the reflection coefficient for the dummy load. Solving Eqs. (9) 
through (16) with Eq. (43) substituted for (14) we obtain the normalized reverse wave 
due to a mismatch in the dummy load. This is 

l/2 
V 

i 

g _ (1+g)l/2e-(T +r+jN+ e-W+jd4 l-e-’ i 
0 (reverse) = 

vS 

r (Fn 
L 

r 
(l+g)l/2 _ gl/2e-(~ +r+W 2 1 

-l/2 1 

’ (44) 

When in X (2gr) , then Eq. (44) goes approximately to zero in the steady-state 

condition for all values of r.. Where g << (7 + y) -1 Eq. (44) reduces approximately 
to 

V O(reverse) z 2g l/2 

vS 
rL [1 - (2m)1’2in] (45) 

The normalized backward wave is plotted as a function of normalized beam current, 
i n , for various values of load reflection coefficient rL in Fig. 5. 

Also of interest is the ratio of the backward wave to the forward wave in the 
accelerator loop in the presence of a load mismatch. This is obtained by dividing 
Eq. (14) by Eq. (19) giving 

V 
-tl+gj1/2e-(7 +r+j$4+e-(Y+j+) leeD7i 

O(reverse) = 
vO r, 

(Fn 

l/2 _ g1/2e-(r+y+ _ g1/2e-(y+ j$) l-G7 1 
(46) 

. 
(p ill 
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A steady state backward wave can also exist when the dummy load is not 
perfectly matched but only if the beam current is not equal to the design 
current. The normalized backward wave is shown vs normalized beam 
current for various dummy load reflection coefficients. 
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This ratio is zero when the electron beam current is equal to the design current 
since no power is going to the dummy load. The ratio is infinite when the electron 
beam current is equal to twice the design current since the forward accelerating 
wave is exactly canceled by the wave induced by the beam. The ratio is shown 
in Fig. 6. Using the aforementioned assumptions, Eq. (46) reduces approximately 
to 

V Weverse) 
vO 

= 2gr- 
[*]a (47) 

Equation (47) gives a very good approximation for Eq. (46) for all values of rL. 
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for various dummy load reflection coefficients (see Fig. 5 caption). This 
ratio becomes infinite at twice the design current. 



Part II - Phase Perturbations 

General 
The previous discussion dealt with the effect of mismatches within the 

accelerator loop and in the dummy load on the waves of interest in the system. 
The exact expressions took into account the phase length through the accelerator 
and around through the feedback loop. The curves that were plotted and the sim- 
plified approximations, however, were based on the assumption that r@, the 
electrical length of the path around the loop was an exact multiple of 27~. It was 
also assumed that the electron beam bunches were in phase with the accelerating 
wave. 

The exact expressions for the various waves were given in complex 
form (i. e., the expressions contain both a real and an imaginary part except when 
both $ and $ are equal to 2nr or 0). In order to see more clearly the phase 
relationship between the electron beam and the resultant rf wave, for various 
phasing imperfections, the expressions can be expanded and converted to polar 
form. Three cases will be examined. These are: 1) Where the loop length is 
not an integral number of wavelengths (i.e., C$ # 2nn); 2) the electron bunches 
are not in phase with the impressed rf wave (i.e. $J # 0); and 3) both the beam 
and loop are misphased (i. e., JI # 0 and @  # 2nn). The polar expressions will 
be developed first, then drawn in phasor form. It will be assumed in this section 
that the accelerator loop is perfectly reflectionless. 

Equation (19) may be separated into two parts: the steady state wave due 
to the rf driving source alone and the steady state wave induced by the electron 
beam. From Eq. (19) we can obtain the normalized steady state wave due to the 
impressed rf. This is given in polar form by 

vO l/p 

Vs rf= 
(48) 

l+g+ge -2b + Y) _ 2gl/2 (1 +g)1/2 e-(T +-Y) COS (# 

where 

Lg 

1/2 
p=- arc tan 

e-(' +Y) sin ~ 

(l+g)li2 - gl"e-(' + y)cos r$ 1 
and C$ can now be considered the phase deviation from 2nT around the loop. 

(49) 
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For small values of @  Eq. (48) reduces approximately to 

TO 2g1'2 /-2g(b 

Vs rf= l+ 2w2 
(50) 

and Eq. (49) to 

P z - w (51) 

The angle /3 is a vector direction with respect to the impressed rf vector before 
buildup which has zero angle. 

From Eq. (19) the normalized steady state wave induced by the bunched 
electron beam is obtained and is given in polar form by 

VO 
y Induced = - 

For small values of $I Eq. (52) reduces approximately to 

% 

x Induced Z - 
(53) 

At the design beam current, in “H (2-g ) 
-l/2 , the steady state beam induced vector 

expressed by Eq. (53) is one-half the steady state rf vector expressed by Eq. (48). 
The vector addition of Eqs. (48) and (52) gives the resultant of the two waves as 

TO 
l+ge 2g 1/2e-y 

x Resultant = 1+g+ge’2(7 +y)-2g1’2(1+g)1’2e-(’ +‘)cos r#I 

where 

[ 

sin p - g 1/2,-y 1 - e-’ 

k? 
1 2 insin@++) 

T = arc tan (55) 
COSP - 1/2,-y 1 - e-’ g 

Y 
1 2 incos @++I 1 7 
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Simplifying as before 

% 
5 Resultant z 2g 

l/2 

n 

1 + w42 
b (56) 

The above expressions, Eqs. (48) through (56) completely describe the 
various combinations of steady state electron bunch phase and loop phase per- 
turbations. The three cases mentioned earlier are illustrated in the vector 
diagrams in Figs. 7 through 9. 

Case with Loop Phase Error Only ($I # 2nn, $ = 0) 
The accelerating wave buildup is shown in Fig. 7 for the case where there 

is a phase error in the length of the accelerator and feedback loop. In this case 
$I is the deviation in loop length from 2nr. The small arrows in the first quadrant 
of Fig. 7 represent the first three transits of the impressed rf vector, V,/(l+g) l/2 . 
Vti is the steady state rf wave due to the driving source after an infinite number 
of trips around the loop. Vrf would normally have a length of approximately 2g l/2 

if there were no loop phase error. The length of Vrf with a loop phase error $I 
is given exactly by Eq. (48) and approximately by Eq. (50). 

The buildup of the wave induced by the electron beam is the same as the buildup 
of the klystron wave except that it will normally (if $ = 0) by 180 degrees out of 
phase with the driven wave. The resultant wave will be the vector addition of Vti and 
V induced which is simply the difference in their magnitudes for 3/ = 0. Since $!J 
is defined as the phase angle between the electron bunches and the impressed rf 
wave before buildup, there will be a phase error between the electron bunches 
and the steady state resultant wave as shown in Fig. 7. The bunches will be off 
of the crest of the steady state accelerating wave (the vector sum of the driven wave 
and the induced wave) by an angle /3 defined by Eq. (49). Adding Eqs. (50) and 
(53) gives 

vO 
T Resultant NN 

2g1’2 2 
1+2@$) 
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‘RESULTANT = ‘RF + ‘INDUCED 

V BEAM = VRESULTANT cos tT + q, 
I 

1380A8 

Fig. 8 

A phase error $ between the beam and the accelerating field exists. The 
resultant field makes an angle T with the driven rf wave and an angle (T+$) 

with the electron beam. 



(I-2) in 

t2ry2 \ 

VRESULTANT = %F + ‘INDUCED 

I ‘BEAM I I = “RESULTANT I 
cos(Jr-T) 

Fig. 9 
Both a beam phase error + relative to the impressed rf and a loop phase 
error q5 exist. The electron bunches will not be in phase with Vrestitant 
except for the special case where $ = T. In the case shown, the beam 
phase error tends to compensate for the loop phase error. 

138086 



for J, = 0. The effective part of the resultant wave acting upon the beam is found 
by multiplying Eq. (57) by cos 2g$ giving 

vO 
T Beam0 

2g1’22 
1+2@#4 

[1 - (4f)l’2 in] cos 2g@ (58) 

The fractional change in beam energy due to a loop phase error $ is then given 

by 

"vO 
V = - (W2 

0 Beam 
(59) 

Case with Phase Error Between Electron Bunches and Impressed RF Wave 
p)# 0, c#l=O) 

If the loop length is an exact multiple of 27r but a phase error, $ exists 
between the impressed rf wave and the electron bunches the vector orientation 
appears as shown in Fig. 8. The steady state wave, Vresultant now makes an 
angle T with the steady state rf component Vti. I’ is defined by Eq. (55). For 
small values of the initial beam phase error JI 

r=qJ (60) 

if the electron beam current is at the design value. For smaller values of electron 
beam current +l’ also becomes smaller. 

The magnitude of the resultant for this case can be found from Eq. (54) by 
setting $ = 0. The resultant wave will always be greater than for the “in phase” 
case ( $ = 0) but the beam energy will always be slightly lower since the electron 
bunches will be off of the crest by an angle ( J, -t T ). The resultant wave, 
V resultant is expressed approximately by the numerator of Eq. (56). The effec- 
tive part of the resultant wave acting upon the electron beam is given by 

vO vO 

T Beam = x Resultant ‘OS ( ’ + ‘) 
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At the design current and for small values of $, the fractional change in energy 
is given by 

and at negligible beam loading the fractional change in energy is given by 

"vO l/J2 

‘0 Beam 
z:- 

2 (63) 

Case with Loop Phase Error and Beam Phase Error ($I # 0 and JI # 0) 
Figure 9 shows the vector orientation when both a loop phase error and a 

beam phase error exist. It must be emphasized that the beam phase error is 
defined in this paper as the phase angle between the electron bunches and the 
impressed rf wave and not the steady state rf wave. It will be seen that it is 
possible to have a beam phase error with respect to the impressed wave but 
not the steady state wave and conversely. 

In the example shown the beam phase error $ is in such a direction that 
it tends to compensate for the loop phase error @. If J, had the opposite sign 
the beam phase error would add to the loop phase error. The magnitude of the 
resultant wave is given by Eq. (54). The effective part of the resultant wave 
acting upon the electron beam is given by 

vO vO 
7 Beam = y Resdtant cos(J,*r) (64) 

The sign in the cosine argument depends upon the direction of the phase error. 
The fractional change in beam energy for this case is 

(65) 

at the design current. 
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Part III - Combined Phase and Mismatch Perturbation 

General 
The double peaked resonance behavior has been described by several 

authors 2,475 in papers on traveling wave resonator theory. The same theory 

applies to the accelerator and feedback loop and is not affected by beam loading. 
The behavior is as follows: For a net reflection coefficient I? less than a critical 
value there is a single maximum for the accelerating wave as either frequency or 
phase length of the loop is varied. This maximum occurs when $ = 2mr where n 
is an integer. As I is increased past the critical value the resonance separates 
into two peaks with a valley at $I = 2mr. The two peaks are symmetrically located 
about $ = 2nn. The greater the value of I?, the wider the separation between peaks 
and the smaller the magnitude of the accelerating wave. For the sake of simplicity 
the curves in Figs. 2,3 and 4 assumed that @  = 0 or 2nr. In the range where I? 
exceeded the critical value the magnitude of the accelerating wave could be 
increased by an adjustment of the $ parameter from 2mr to one of the resonant 
peaks. This behavior is analogous to coupled resonant circuits where the coupling 
(in this case the reflection magnitude) is varied. Here the two circuits are the 
forward and backward wave modes in the accelerator loop. 

Analysis of Double Resonance 
The exact behavior of the accelerator resonance can be found from Eq. (29). 

Expanding, the magnitude may be expressed as 

vO -= 
vS 

1 1 1 I [ 1 
l+g+g( l-12)e -2h+Y) -2g’(l+g)‘(l-r ) e 2 2 -(T+y) cos$ I[ Z -y (l-e-‘). l-2g e 2T l/2 in+ge 

-2y (l-eBTfi 2 
27 n 1 

1 1 1 
( l+g)2+g2e-4(T+y) +4g( l+g)(l-12)e2(’ +y)-4g’( l+g)‘( l-12)‘&(T+y) -2(T+‘)’ l+g+ge osc$+2g( l+g)e -2(T+Y) cos2c#I I 

(66) 
Differentiating Eq. (66) with respect to $ and setting result equal to zero one 

obtains 

$J = 2nr 
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and 

$= &arc cos 

768) 
The minima occur at @  = 2nr and the maxima occur at the values of $ in Eq. (68). 
It should be noted that for a small critical value of I’ the arc cos argument is equal 
to unity and is slightly greater than unity in the range between r= 0 and the 
critical value. Values of $I for an arc cos argument greater than unity cannot 
exist hence this region of r’s do not produce a double peak but only a single 
peak at $J = 2nr. The critical value of r could be found by setting the argument 
in Eq. (68) to unity and rigorously solving for I?. The argument is complicated 
however and the value of I’ producing unity argument can most easily be found with 
a graphic solution. For g = 5460 and (T + y) << l/g the critical value of ?? is 
approximately 

r critical 7% 4 x 1o-5 (69) 

As r increases through and beyond this value the single peaks flatten and then 

separate into two distinct peaks. The maximum at $I = 2mr now becomes a 
minfmum. The ambitious calculus student may verify this by taking the second 
derivative of Eq. (66) with respect to C#I and equating the result to 0 and observing 
the sign reversal at the critical value of I’ . 

An unsuccessful attempt was made to plot Eq. (66) as a function of C$ for 
several values of r . The precision required was far greater than that for wave 
gain expressed where only a single perturbation of either r or @  existed such as 
in Eqs. (29) and (48). Approximations up to the 5th order were also not suffi- 
ciently valid. 

The following table gives the location of the peaks with respect to $I = 2nn 
but does not give the magnitude of the accelerating wave at each peak. 

r A@ (radians) Vo/Vo max (@ = 2nn) 

1 X 1o-6 single peak 0.9999 
1 x 1o-5 single peak 0.990 
1 x 1o-4 rtl. 11 x 10 -4 0.50 
2 x 1o-4 *2.14 x 10 -4 0.28 
5 x 1o-4 zt5.08 x 10 -4 0.04 
1 x 1o-3 *lO. 04 x 10 -4 0.013 
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From this table it is obvious that the peaks are displaced about @  = 2nn by 
approximately 

A@ z ztr (70) 

in the region where the double resonance exists. 

Effect on Input Reflection Coefficient and Backward Wave 
The backward wave experiences a double peaking also but the peaks occur at 

slightly different values of + than the forward wave. 2 The accelerating (forward) 
wave has a pronounced double peak before the backward wave has any evidence 
of a double peak. 2 The resonant peaks for the backward wave and for the input 
reflection coefficient occur at2 

i 

(1 - r2y2 l+g+ge -2(7 + 
$I = * arc cos 

Y)) 

2g1/2 (1 + g)m e-(T + Y) 
I 

(71) 

Again the critical value of l? at which double peaking begins to occur can be 
found by setting this argument in Eq. (71) to unity and solving for I?. This yields 

I? critical = 
1+ g- ge-2(T+Y) 

l+g+ge -w+ Y) 

For (T + y) << l/g Eq. (72) can be expressed approximately as 

r critical “, (zg)-l 

(72) 

(73) 

It was shown inPart I in the section on the “Effect of Reflection on Input 
Impedance to the Bridge Coupler” that the input reflection coefficient approaches 
unity when I’z=(2g)-l for @  = 2nn and in = 0. It can also be shown2 that there 
is a corresponding value of @I that will produce in input reflection close to unity 
for all values of I’ greater than (2g) -1 . 
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