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The exponential stretching of length scales during inflation leads to the possibility that effects 
occurring at the smallest distance scales might be imprinted on large scale observables such 
as the CMB power spectrum. To be able to make credible predictions, we need to be able 
to construct an effective theory that absorbs the effects of new physics that could modify the 
initial state of inflaton quantum fluctuations. We provide such a formalism in terms of an 
effective initial state. We describe the formalism, the divergence structure of the effective 
theory and describe how it will be applied to computing TransPlanckian effects in inflation 

1 Introduction 

Observational data lend credence to the idea that the primordial metric perturbations observed 
in the CMB1 were produced during an inflationary epoch in the early universe. In fact, the data 
are strong enough to be able to constrain various models of inflation; as an example, WMAP3 
data1 together with large scale structure information places severe pressure on inflationary mod­
els based on certain power law potentials for the inflaton2• 

While only 60-70 e-folds of inflation are necessary to solve the various fine tuning problems 
inflation was devised to deal with, most models tend to inflate for many more e-folds than this. 
As a consequence, length scales corresponding to the largest cosmological structures today had 
their origin in quantum fluctuations whose length scales corresponded to sub-Planckian sizes 
during inflation. A natural question to ask is the following: if the length scales can be stretched 
from sub-Planckian sizes to cosmological, can physical effects from scales smaller than the Planck 
length be imprinted on cosmological observables such as the CMB? This is the "trans-Planckian" 
problem3 of inflation; we will take "trans-Planckian" here to mean energy scales larger than the 
Hubble scale during inflation. 

While it has been dubbed a problem, this peculiar effect of inflation could just as easily 
be called an opportunity. The downside of this effect is that if it did happen, it would be an 
egregious violation of the notion of decoupling of scales which underlies most of physics. If such 
an infiltration of short-distance physics could propagate to the longest distance measured, we 
would have a difficult time in understanding why we have been able to neglect this effect in high 
energy collisions, for example. On the other hand, there is an incredible upside if the physics 
scales up. In this case, measurements of the CMB would be able to access physics well beyond 
any currently envisaged accelerator. 

It is this possibility that motivates us to find ways to accurately estimate the size of generic 
trans-Planckian signals. Our approach is to develop an effective theory description of this effect. 
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This is based on a perturbative expansion that uses the smallness of the ratio of the two natural 
scales-H, the Hubble scale during inflation and M, the scale associated with new physics. If 
the signal were only suppressed by H / M, it could conceivably be observed in the not too distant 
future. 

From the perspective of the effective theory principle, new physics can appear in either 
the time evolution of the infiaton and its fluctuations or in their "initial" states. The first of 
these-how the system evolves-is more familiar since the evolution of the quantum fluctuations 
of the infiaton is determined by its interaction Hamiltonian. The form of the general set of 
possible corrections that we can add to this Hamiltonian, encoding the effects of the unknown 
physics, is rather constrained by the space-time symmetries. Given these constraints, the size of 
the corrections from the unknown physics relative to the leading prediction for an inflationary 
model is usually suppressed by a factor4 of (H / M)2 . The other ingredient-the state of the 
inflaton-is more directly related to the trans-Planckian problem because it is the details of the 
initial state we have chosen which are being stretched to vast scales. The leading correction 
from these effects is typically much less suppressed, scaling instead5 as H/M. 

In this article, we will concentrate on the effect of trans-Planckian physics on the initial 
state6 . We give a general parametrization of this initial state that contains corrections to the 
standard initial state in both the IR as well as the UV. We then discuss how the renormalization 
program is modified in the presence of this state and discuss the effects of this state on the 
problem of back-reaction onto the stress energy tensor. 

2 An Effective Theory of Initial Conditions 

Let's recall how the power spectrum is usually computed in inflation. We consider the gauge 
invariant variable <I> which is a linear combination of inflaton and metric perturbations; it behaves 
as a free field during inflation. We quantize it in the usual way: first decompose <I> in terms of 
the appropriate modes (solutions of the massless, minimally coupled, free scalar field equations 
of motion) and then convert the coefficients to operators acting on the relevant Fock space. If 
we write 

J d3k [ ·f - k - t ]  <I>(17, x) = 
(27r)3 Uk(1J) e' ·xak + Uk (17)e-' ·Xak ' 

where '// is conformal time, then 

[ d2 d ] 
d1J2 + 2aH 

dry
+ k2 Uk = 0. 

(1)  

(2) 

How do we pick the appropriate solution of Eq. 2? The standard answer is to pick the linear 
combination that matches to the flat space vacuum as 1) -+ - oo .  This is the so-called Bunch­
Davies (BD) vacuum JED ) .  The reasoning here is that at short-distances, the field should not 
be able to tell that the spacetime is curved so that the vacuum should just b.e the Minkowski 
one. 

We have to take into account the possibility that as we try to match to the flat space ground 
state at short distance, it may be that the dynamics itself changes. For example, suppose the 
inflaton is a fermionic composite particle, with a scale of compositeness M. Then at distances 
shorter than M-1 ,  the scalar field description is completely inappropriate in terms of looking for 
the vacuum state. If M � M pb then we expect that at distances shorter than M-1 ,  we would 
expect both the field dynamics and gravity to be described by more complicated operators. 
What we can glean from this discussion is that assuming that we can make use of the scalar 
mode equations to arbitrarily short distances, and hence to argue that the BD vacuum is the 
"natural" choice of ground state, is a radical statement. A much more conservative statement 
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is that we should choose a ground state that is general enough to encode possible corrections to 
the Klein-Gordon equation of motion coming from physics at energy scales larger than M. 

We implement this by the imposition of boundary conditions at the initial tiµie hypersurface 
'f/ = 'f/O · If we start with the BD modes, up0, we write our modes as 

Uk ("I) Nk [uP0 (ry) + e"kUP0*] , 
e"k Wk - 'Wk 

wic + Wk 

Nk 
1 

Vl - e"k+ak . (3) 

Here wk is the frequency appearing in the scalar field equation, while 

(4) 

The structure function e"k describes how the state differs from the assumed vacuum at 
different scales. At very large distances, if we are considering an excited state the structure 
function need not vanish; but the signals of new physics should not be very apparent since the 
approximation that the theory is that of a nearly free scalar field is good far below M. In this 
regime, it is natural for the effects of new physics to be suppressed by powers of k/M. 

Our goal here is to implement an effective theory description of the initial state. From this 
perspective, the state in Eq. 3 is only meant to be appropriate for observables measured at scales 
well below M, and not that for a complete theory which is applicable to measurements made at 
any scale. As a consequence, the effective states can contain structures which are the analogues 
of the nonrenormalizable operators used in an effective field theory Lagrangian. In both cases, 
the theory remains predictive at long distances since there is a natural small parameter given by 
the ratio of the energy or momentum of the process being studied to the scale of new physics M. 
In both cases too, renormalization of the theory can introduce further higher order corrections so 
that an infinite number of constants is often needed to make a prediction to arbitrary accuracy; 
but to any finite accuracy, only a small number are needed since the rest are suppressed by 
high powers of the small ratio of scales. At scales near M, the effective Lagrangian description 
breaks down but at these energies we should be able to observe the dynamics which produced 
the nonrenormalizable operators in the low energy effective theory. Similarly, once we probe 
short distances directly, we should see corrections to the Klein-Gordon equation and the modes 
Uk("I) given in Eq. 3 should be replaced with the correct short-distance eigenmodes. 

The effective theory description of the initial state relies upon the smallness of the measured 
scale, kexp , compared with the scale of new physics, M, but this ratio is also influenced by the 
expansion, 

a("lnow) kexp « 1 
a (ryo) M ' (5) 

and the earliest time for which perturbative calculation works is one which does quite saturate 
this bound, 

a ( ,,.,5arliest) 
a("lnow) 

(6) 

Although this time dependence of scales limits the applicability of the effective theory, it should 
not be seen as anything mysterious or that "lo must be chosen either at this bound or at a time 
when some nontrivial dynamics is occurring. To study the inflationary prediction for the cosmic 
microwave background power spectrum, for example, it is sufficient to choose an "initial time" 
when all of the features of the currently observed power spectrum are just within the horizon 
during inflation and which still satisfies the condition in Eq. 5 for a well behaved perturbation 
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theory. What the effective theory approach accomplishes is not a complete description of the 
theory to an arbitrarily early time, but rather it provides a completely generic parameterization 
of the effects of these earlier epochs or of higher scale physics once the state has entered a regime 
where they can be treated perturbatively. 

3 Renormalization 

If the initial state deviates from the standard vacuum state the renormalizability of the theory 
has to be checked. A major difference from the flat space case is that the information of 
interest concerns time evolution of the field modes as opposed to what happens in the 8-matrix 
approach. The correct approach to this problem involves the Schwinger-Keldysh or closed-time 
path formalism7. 

The divergences that arise when using the general initial state described above are of two 
types. The first, which we call bulk divergences, are the usual ones that would be encountered 
even with the standard vacuum. They can be absorbed by the standard local counterterms and 
the coupling constants in the theory acquire their usual scale dependence. 

The more interesting divergences are those arising from the change of initial state. What 
we have shown is that they only appear on the initial time hypersurface and can be absorbed 
by counterterms associated with this hypersurface. The fields inherit their mass dimension from 
the full 3 + 1 theory but the operators contained in the boundary counterterm Lagrangian are 
classified according to whether their mass dimension is greater than, less than or equal to the 
dimension of the boundary surface. The structure function can be expanded as 

ak _ � d Hn(T/o) + � !"2�(110) e 
- � n !"2�(110) � Cn an(17o)Mn . 

where flk (T/o) is a generalized frequency, defined through the BD modes by 

-i r drl' nk('l') 
BD e •o 

Uk ( 11) = -a-( 11-h�/2=n=k=( 11�) · 

(7) 

(8) 

The two series are associated with IR and UV aspects of the initial state; the IR part can 
be viewed as a non-vacuum excitation of the BD state since at large distances we expect the 
Klein-Gordon description to be a good one. The divergences associated with this part of the 
initial state can be absorbed by renormalizable (on the initial time hypersurface) counterterms. 
Trans-Planckian effects are encoded in the second series and these divergences require irrelevant 
operators on the boundary to absorb them. 

This formalism can also be used to renormalize the expectation value of the stress energy 
tensor and thus to understand the issue of the backreaction of the initial state on inflationary 
dynamics. If the expansion rate during inflation is denoted by H, and Mp1 and M correspond 
respectively to the Planck mass and to the scale of new physics responsible for that structure, 
we find that the size of this back-reaction, relative to the vacuum energy sustaining the inflation, 
is suppressed at least by 

(9) 

4 Conclusion 

The basic idea of the effective theory of an initial state is that a discrepancy can exist between 
what is the true state of the system and the state we have chosen to use in a quantum field theory, 
which thereby defines the propagator and the matrix elements of operators. Over distances 
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where have a good empirical understanding of nature and a reasonable knowledge about the 
relevant dynamics, we can usually make an appropriate choice for this state. Yet there always 
exist shorter distances where the behavior of nature is unknown and the correct state might 
not match with that we obtained by extrapolating our understanding at long distances down to 
these much shorter scales. This discrepancy is particularly important for inflation, where the 
relevant fields and their dynamics have not been observed directly and where the natural energy 
scale, the Hubble scale H, can be an appreciable fraction of the Planck scale, Mpl· At this scale, 
gravity becomes strongly interacting and so we do not even have a predictive understanding of 
the behavior of space-time. Since inflation naturally produces a set of primordial perturbations 
through the inherent quantum fluctuations of a field, it is important to determine, from a very 
general perspective, the observability of the features at short distances compared with 1/ H 
through their imprint on this primordial spectrum. While this imprint is not expected to be 
observed in the most recent experiments1 ,  future observations of the microwave background and 
of the large scale structure over large volumes of the observed universe should be able to extract 
the spectrum of primordial perturbations to a far better precision. 

The ultimate goal of this program is to compute the power spectrum of inflationary pertur­
bations as a function of the structure function of the initial state. Once this is done, we will be 
able to fit the coefficients c,,, dn in Eq. 7 and determine, in a controlled fashion, whether or not 
trans-Planckian physics changes in the initial state can affect the CMB. 
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