
3.3

A Normalization Condition for the
Probability Current in Some
Remarkable Cases

Antonio Feoli, Elmo Benedetto and Antonella Lucia Iannella

Article

https://doi.org/10.3390/quantum6020012

https://www.mdpi.com/journal/quantumrep
https://www.scopus.com/sourceid/21101043793
https://www.mdpi.com
https://doi.org/10.3390/quantum6020012


Citation: Feoli, A.; Benedetto, E.;

Iannella, A.L. A Normalization

Condition for the Probability Current

in Some Remarkable Cases. Quantum

Rep. 2024, 6, 147–155. https://

doi.org/10.3390/quantum6020012

Academic Editor: Margarita A.

Man’ko

Received: 16 March 2024

Revised: 12 April 2024

Accepted: 14 April 2024

Published: 23 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

quantum reports

Article

A Normalization Condition for the Probability Current in Some
Remarkable Cases

Antonio Feoli 1, Elmo Benedetto 2,* and Antonella Lucia Iannella 1

1 Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy;

feoli@unisannio.it (A.F.); antolucia.iannella@gmail.com (A.L.I.)
2 Department of Computer Science, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy

* Correspondence: ebenedetto@unisa.it

Abstract: Starting from the dynamics of a bouncing ball in classical and quantum regime, we have

suggested in a previous paper to add an arbitrary function of time to the standard expression of

the probability current in quantum mechanics. In this paper, we suggest a way to determine this

function: imposing a suitable normalization condition. The application of our proposal to the case of

the harmonic oscillator is discussed.

Keywords: Bohmian mechanics; probability current; quantum velocity

1. Introduction

The description of the trajectory of a quantum particle is still possible by adopting the
de Broglie–Bohm interpretation of quantum mechanics. In a paper of 1953 [1], Einstein
underlined a problem in the predictions of the theory regarding the motion of a particle in
a box with perfectly reflecting walls. In that case, the solution of Schrödinger equation for
stationary states is a real wave function, and the corresponding momentum predicted by
the Bohmian mechanics is vanishing. Einstein, on the contrary, believes that if a classical
macroscopic body must oscillate between the two walls, a quantum particle, at least for
high values of quantum numbers, must also have the same behavior, and he considers the
prediction p = 0 highly unsatisfying. In order to give an answer to Einstein’s objection,
it can be very useful to study the particular case of a bouncing ball and to follow the
evolution of its velocity in spacetime. In the paper [2], we have already deepened some
aspects of the quantum dynamics of a bouncing ball, starting from the analysis contained
in a previous article [3], where we had described from a classical and a quantum point
of view the behavior of a body of mass m in the potential V(x) = mgx, where g is the
acceleration of gravity. The ball moves up and down between the points x = 0 and x = h
with a classical period τ =

√
8h/g (bounce period). Summarizing the main results of the

previous paper [2], we start from the consideration that in classical physics, the probability
that the ball can be found in the region between x and x + dx is proportional to the time
the body spends in that region

Q(x)dx = Q(x)vdt =
2dt

τ
. (1)

Hence, the classical probability density Q(x) is related to the magnitude of the classical
velocity field vc(x) =

√
2(E − V(x))/m of the particle (where E = mgh) by the formula

Q(x) =
2

τvc(x)
. (2)
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In the previous paper [2], we have preserved Equation (2) in the transition from the classical
to the quantum regime, supposing that

|ψ|2 =
2

τvq
(3)

This choice was supported by the fact that we recover the classical Formula (2) when we
perform a sort of averaging of the quantum probability density in Equation (3). For the

bouncing ball, if we start from the result obtained for |ψ|2 in the stationary phase approxi-
mation [2]

|ψ|2 ≈ 2Q(x) cos2

(
2

3
|k(h − x)|3/2 − π

4

)
, (4)

we observe that I(x) = 2Q(x) represents the upper envelope of the oscillating function
reaching all its maximal values. If we take, for each x, half of I(x), we obtain a new function
going through all the points at half height of the original solution (4). In general, we can
define on a generic oscillating function f (x), an operation << f 2 >> that calculates this
half height function (HHF) that we will call the “HHF average”.

HHF =<< [ f (x)]2 >>=
I(x)

2
. (5)

that in our particular case gives

<< |ψ|2 >>= Q(x). (6)

This result can be used to define the quantum velocity vq of a bouncing ball this way

vq(x) =
2

τ|ψ(x)|2
(7)

and it represents only that the quantum velocity field that, using (6), corresponds to the
classical field vc(x) =

√
2(E − V(x))/m of Equation (2).

On the other hand, the usual formula defining the velocity in the de Broglie–Bohm
interpretation of quantum mechanics [4–9] is

−→v =

−→
J

ρ
=

ℏ

2im

ψ∗−→∇ψ − ψ
−→∇ψ∗

ψψ∗ (8)

that can be derived from the continuity equation

∂ρ

∂t
+
−→∇ · −→J = 0 (9)

It is well known [10] that the integral form of this equation is

d

dt

∫

V
ρdV +

∫

S
J⃗ · n̂dS = 0 (10)

where V is the volume contained in the closed surface S.
In electromagnetism, the continuity equation is interpreted in light of the conservation

of the charge, and it can be concluded that if in a volume surrounded by a closed surface
there is a decrease in the charge in an interval of time, this charge must have passed through
the surface as a flux of current density. By analogy with this point of view, in quantum
mechanics, there is a conservation of probability. Hence, if in a volume of space the
probability of finding a particle decreases, then the probability that this particle has crossed
the surface, which is the boundary of that volume, increases.
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Of course, the standard approach of Equation (8) leads to a vanishing current density
in the case of the stationary states of the bouncing ball that are real wave functions (ψ = ψ∗)
and do not allow to recover the velocity (7). However, in the paper of 1953 [1], regarding
the similar case of a particle in a box of perfectly reflecting walls, Einstein felt that the
prediction of a vanishing momentum “violated physical intuition which, for him, required
the particle move back and forth” [11]. The answer of Bohm and Hiley [11] to Einstein’s
objection started from the consideration that “even when the quantum number is high,
the wave function has a distribution of nodes, where there is zero probability of finding the
particle”. The prediction of the theory that “p = 0 is clearly a possibility that is consistent
with nodes. Certainly, equiprobability of opposing velocities is not”. Is it possible to
conciliate the existence of nodes with an oscillatory motion of the particle? On this question,
a more detailed discussion can be found in ref. [12].

In order to solve this problem, in the previous paper [2], we have proposed a correction
in the expression of the probability current that, in three dimensions, we can write as follows

−→
J =

ℏ

2im

[
ψ∗−→∇ψ − ψ

−→∇ψ∗ +
−→
F
]

(11)

because in the demonstration of the continuity equation in quantum mechanics, there is

the freedom to add an arbitrary vector
−→
F (t) = (Fx, Fy, Fz) to the standard expression of J⃗.

The consequence is that, even in the case of real wave functions, the probability current is no
longer vanishing. A similar result can also be obtained either generalizing the momentum
operator Appendixs A and B) or applying a suitable transformation to the wave function
(Appendix C).

In particular, for the bouncing ball

v⃗q =
ℏF⃗

2im|ψ|2
=

ℏFx

2im|ψ|2
x̂ = ± 2

τ|ψ|2
x̂. (12)

and we have

Fx = f (t)
4im

ℏτ
(13)

where f (t) = 1 for 0 < t < τ/2 and f (t) = −1 for τ/2 < t < τ so that f (t) is a square
wave that alternates between +1 and −1 with period τ.

From Equation (12), when there is a node in the wave function, the quantum velocity
vq → ∞. Hence, in a node, the probability of finding the particle is zero because the ball
acquires at that point an infinite velocity that forbids the ball from remaining long enough
to be detected. In this way, our correction of the formula of quantum velocity allows an
oscillating motion of the particle even in the quantum regime.

Of course, the quantum velocity tends to infinity in the non-relativistic approximation.
A relativistic extension of our model is far beyond the aim of this paper, and in a relativistic
framework the probability current is defined in four-dimensional spacetime Jµ = ρuµ in
terms of the four-velocity uµ = dxµ

dτ where dτ is the interval of proper time. In this case, uµ

tends to infinity when v = dx
dt tends to the speed of light. Furthermore, the de Broglie–Bohm

interpretation of quantum mechanics has some unsolved problems in its relativistic version
that are briefly summarized in [13]. On the other hand, the problem of uniqueness of
probability current also in the relativistic domain has been faced by Holland in a very
interesting paper [14] and by several authors in other previous publications [15–17].

Furthermore, from the result (13), we can deduce a more general property of the vector−→
F (t). Even if it could be, in principle, an arbitrary function of time, the constraint (6) that

allows the classical velocity (2) to be recovered from the quantum velocity (7) requires that

−→
F (t) = g(t)(B, C, D) (14)
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where g(t) can have alternatively only the values +1 and −1 (just as the square wave f (t))
and B, C and D are constants and the dependence on time regards only the direction of
the vector but not its magnitude. This result is confirmed by a demonstration (reported
in the Appendix A) obtained by one of us following a different approach [18]. Now,
the problem is which way the constants can be determined. Knowing that there will
be other possible approaches to the problem of velocity in de Broglie–Bohm quantum
mechanics (see, for example, the recent papers of refs. [19,20]), our proposal is to consider a
suitable normalization of the probability current.

2. Determination of the Arbitrary Function

In the previous paper [2], we did not derive the Formula (13) from the typical equations
of quantum mechanics but from the comparison of the Equation (12) with the expression (7)
and the correspondence with its classical analogue (2). Our aim is to justify the solution (13)
regarding the bouncing ball, in light of the modified probability current (11), and to suggest
also a way to determine the new function F(t) in similar cases. Of course, it would be useful
to find a procedure which is valid in general, for all possible physical contexts, but this
is beyond the scope of this paper. We know that the arbitrary constant that represents
the amplitude of the wave function (derived solving the Schrödinger equation) can be
determined case by case, only recurring to an extra condition that is to the constraint

∫

V
|ψ|2dV = 1 (15)

In the same way, we can propose a suitable normalization condition that can fix the arbitrary
function F(t) in the expression of probability current.

The intuitive interpretation [10] of

J⃗ · n̂dSdt (16)

as the probability that a particle crosses the surface element dS in the time dt does not
always work because this expression may be negative [21]. Hence, only if the relation
(16) is non negative, it can represent a probability, and only in that case can we define the
probability that a particle has crossed the surface S in the direction n̂ during an interval of
time ∆t = t2 − t1, the integral of (16) over that surface and that time interval [10]

P(S, n̂) =
∫

S

∫ t2

t1

J⃗ · n̂dSdt (17)

In one spatial dimension, the wave function ψ(x, t) has the dimension of [length]−1/2,
and the probability current has the dimension of [time]−1. So, we can propose as the one
dimensional expression of (17)

P(a, n̂) =
∫ t2

t1

J⃗(a, t) · n̂dt (18)

that can be interpreted as the probability that the particle crosses the point x = a in the
direction n̂. On the x-axis, the normal n̂ can have only two possible directions; hence, if the
result of the integral is negative, it is enough to invert the direction of the normal to make it
positive and suitable to be interpreted as a probability.

We can apply this interpretation to the case of the bouncing ball. From the classical
point of view, there are limits for the ball dynamics both in space (from x = 0 to x = h and
vice versa) and in time (from t = 0 and t = τ/2 for the first part of the path and from τ/2
to τ for the descending part). In the transition from classical to quantum regime, it means
that there is an equation of normalization of probability density

∫
∞

0
|ψ|2dx = 1 (19)
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but also that the probability that the particle crosses a given point a belonging to the interval
[0, h] in a time τ/2 is P(a, n̂) = 1. From Equation (18), we obtain the normalization condition

P(a, n̂) =
∫ τ/2

0
J⃗(a, t) · n̂dt = 1 (20)

If we use the standard formula for the probability current, the result of the integral is
vanishing, leading to a paradox of a bouncing ball that does not move but that can be found
at rest in a given position x = a belonging to the interval [0, h]. On the contrary, if we adopt
our modified Formula (11), we obtain

P(a, n̂) =
ℏ

2im

∫ τ/2

0
F⃗(t) · n̂dt = 1 (21)

that holds for each position x = a in the interval [0, h]. At this point, remembering the
discussion at the end of the previous section, we consider from Equation (18) that F(t) is a
constant B during this interval of time; hence, in the present case, it is easy to calculate

B =
4im

ℏτ
. (22)

Of course, in the interval of time [τ/2, τ] the particle reverses direction, but the magnitude
of the function F(t) remains the same because it derives from

P(a, n̂1) =
ℏ

2im

∫ τ

τ/2
F⃗(t) · n̂1dt = 1 (23)

where n̂1 = −n̂ = −x̂. Putting together those results, we finally obtain the expression of the
function F(t) = f (t)B written in Equation (13) using the probabilistic approach of quantum
mechanics by imposing a suitable normalization condition on the probability current.

Of course, the procedure followed for the bouncing ball can be applied in other similar
cases, such as the harmonic oscillator.

3. Harmonic Oscillator

It is very easy to apply our model to the case of the harmonic oscillator. The classical
potential is

V =
1

2
kx2, (24)

and the classical total energy is

Ecl =
1

2
kA2, (25)

where A is the maximal amplitude of oscillation in

xcl(t) = A cos(ωt + ϕ) (26)

and the period is

τ =
2π

ω
= 2π

√
m

k
. (27)

The corresponding classical probability density is

Q(x) =
1

π
√

A2 − x2
(28)

such that the relation

Q(x) =
2

τvc(x)
(29)
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holds and

vc(x) =

√
2(E − V)

m
. (30)

In the quantum regime, the solution of the Schrödinger equation using WKB approxi-
mation is

ψ(x) =
D√
K(x)

cos




x∫

−A

dzK(z) + ϕ


 (31)

where

K(x) =

√
2m(E − V(x))

ℏ
=

√
km(A2 − x2)

ℏ
. (32)

We underline that the WKB approximation fails at the classical turning points x = A
and x = −A and that there are two different WKB solutions: one for the classical region
−A < x < A and another one for the classically forbidden region. Since our aim is only to
show a simple application of our model, we restrict our study only to the classical region.

Hence,

ψ(x) =
D

4

√
km
ℏ2 (A2 − x2)

cos




x∫

−A

dz

(√
km

ℏ

)√
A2 − z2 + ϕ


 (33)

and the wave function satisfying the Langer boundary condition at the turning point in
x = −A is [22]

ψ(x) =
D

4

√
km
ℏ2 (A2 − x2)

cos

[
1

2

√
km

ℏ

(
x
√

A2 − x2 + A2 arctan

(
x√

A2 − x2

)
+

π

2

)
− π

4

]
(34)

From the normalization condition (15) we can determine the constant

D =

√
2km

πℏ
(35)

so that

|ψ|2 =
2

π
√

A2 − x2
cos2

[
1

2

√
km

ℏ

(
x
√

A2 − x2 + A2 arcsin
( x

A

)
+

π

2

)
− π

4

]
(36)

where A2 = 2En/k and En = h̄ω(n + 1/2). Applying the correction to the probability
current proposed in Equation (11) and the normalization condition (20), we also obtain in
the case of the harmonic oscillator the result (22) where τ is given now by Equation (27).
The consequence is that the quantum velocity is:

|⃗vq| =
ℏFx

2im|ψ|2
=

ℏB

2im|ψ|2
=

2

τ|ψ(x)|2
. (37)

We have also shown that for the harmonic oscillator, in the WKB approximation, the
formula of quantum velocity (37) (proposed by us in a previous paper [2]) holds. This
formula was developed considering the classical Formula (2) and substituting the classical

probability density Q(x) with the quantum one |ψ|2, noting that << |ψ|2 >>= Q(x).

4. Conclusions

We have described the problems connected with the definition of velocity in the de
Broglie–Bohm interpretation of quantum mechanics, and we have suggested a way to
generalize the concept of probability current at least for the bouncing ball and similar cases
of one dimensional periodic motions. Our model can conciliate the oscillatory motion
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with the existence of nodes of the wave function. We explicitly examined the case of the
harmonic oscillator.
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Appendix A

We briefly summarize in this appendix the demonstration made by one of us [18] to
obtain a nonvanishing momentum in the case of real wave functions R as solutions of the
time-independent Schrödinger equation. Following Dirac [23], the momentum operator
can be written

P̂x = −iℏ
∂

∂x
+ f (x) (A1)

where f (x) is an arbitrary real function. The time-independent Schrödinger equation,
in one dimension

P̂2

2m
ψ + Vψ = Eψ (A2)

becomes
1

2m

[
−iℏ

∂

∂x
+ f (x)

][
−iℏ

∂

∂x
+ f (x)

]
ψ + Vψ = Eψ (A3)

Assuming that ψ = R(x) is a real function, the previous equation splits into a real part:

1

2m

[
−ℏ

2 ∂2R

∂x2
+ f (x)2R

]
+ VR = ER (A4)

and an imaginary part:

−∂ f

∂x
R − 2 f (x)

∂R

∂x
= 0 (A5)

Considering the last equation, we have

−dln| f |
dx

= 2
dln|R|

dx
(A6)

Through integration, we obtain the solution:

| f | = A

|R|2 (A7)

where A is a positive arbitrary constant. Hence, the Equation (A4) becomes

f (x)2

2m
= E − V +

ℏ2

2m

1

R

∂2R

∂x2
(A8)

where the first term can be interpreted as the kinetic energy in which the momentum is

p = ± f (x) = ± A

|R|2 (A9)
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Appendix B

In this appendix, we show some properties of the generalized momentum operator
(A1) used in the Appendix A. First of all, the operator (A1) is hermitian (self-adjoint):

< ψ
∣∣P̂xφ > =

b∫

a

dxψ∗
(
−ih̄

∂φ

∂x

)
+

b∫

a

ψ∗ f (x)φdx

= [−ih̄(ψ∗φ)]ba −
b∫

a

dx

(
−ih̄

∂ψ∗

∂x

)
φ +

b∫

a

f (x)ψ∗φdx. (A10)

Therefore

< ψ
∣∣P̂xφ > =

b∫

a

dx

(
−ih̄

∂ψ

∂x

)∗
φ +

b∫

a

( f (x)ψ)∗φdx =< P̂xψ|φ > . (A11)

The demonstration works if f (x) is a real function and if ψ and φ are “wave functions
that satisfy suitable boundary conditions. The conditions usually holding in practice are
that they vanish at the boundaries” [23].

Finally, we find the relation of the operator (A1) with the corresponding generator of
spatial translation that we denote dx following the Dirac notation [23]. The translation of
the position of an infinitesimal quantity δx is given by

x̂d =
(

1 + δxd̂x

)
x̂
(

1 − δxd̂x

)
= x̂ + δx

[
d̂x, x̂

]
= x̂ − δx1̂ (A12)

if [
d̂x, x̂

]
= −1̂. (A13)

The relation P̂x = ih̄d̂x can be conserved because d̂x = − ∂
∂x + f (x)

ih̄ satisfies (A13).

Appendix C

The transformation of the probability current

−→
J → −→

J ′ =
−→
J +

−→
G (t) (A14)

can also be obtained, avoiding changing the Formula (8) by which we usually calculate
the velocity, by using a suitable transformation of the wave function

ψ → ψ′ = e
i
h̄ S′

R = e
i
h̄ (α+S)R (A15)

in which

−→p =
−→∇S′ =

−→∇α +
−→∇S =

−→
G (t)

R2
+
−→∇S (A16)

because −→
J → −→

J ′ =
−→
G (t) + R2−→∇S =

−→
J +

−→
G (t). (A17)

In this framework, all the equations of “the quantum theory of motion” of the “de
Broglie–Bohm” interpretation

∂S

∂t
+

(
∇⃗S
)2

2m
+ V − h̄2

2m

∇2R

R
= 0 (A18)

∂R2

∂t
+ ∇⃗ ·

(
R2 ∇⃗S

m

)
= 0. (A19)



Quantum Rep. 2024, 6 155

remain the same after substituting S with S′. Furthermore, the probability density R2 is not
affected by this transformation.

However, the really interesting case remains the one in which the time-independent
Schrödinger equation has as a solution a real wave function [18]. This case, examined
following the approach in the Appendix A, can lead to a modified Hamilton–Jacobi Equa-
tion (A8) whose solution R is such that there is no longer the equilibrium between classical
and quantum potential invoked by Bohm [5,6] to explain the vanishing in each point of the
quantum velocity field.
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