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ABSTRACT

In the relatively new but extremely fast growing field of topological mat-
ter research, this thesis should contribute to the understanding of the be-
havior of the underlying quasiparticle: the Dirac fermion. For this purpose
the reader gets a brief introduction to the emergence of relativistic quantum
mechanics in solid state systems. The connection to the topological invari-
ant and its indispensability in giving a unified description of the physics at
topological defects like surfaces, domain-walls, and vortices is made. The
main focus, however, lies in the description of the dynamical behavior of
the Dirac fermion quasiparticle in this non-trivial spatial and, possibly, time
dependent potential and mass landscapes. To allow an efficient numerical
simulation, a new scheme is developed. Along the way, the famous fermion
doubling problem is introduced, and avoided by a special time and space
staggering of the numerical finite difference grid. Like in the underlying
differential equation, this special discretization of the Dirac equation treats
time and space on an equal footing. Schemes for (1+1)D, (2+1)D, and (3+1)D
are formulated, and their numerical properties are derived. The important
topic of open boundary conditions is discussed and, in the one-dimensional
case, perfect absorbing boundary conditions (so-called discrete transparent
boundary conditions) are derived. In (2+1)D absorbing boundary condi-
tions, using imaginary potential regions, are introduced. On the applied
physics side, the utilization of domain-wall fermions for dissipation-less
electric circuits is proposed. Using these principles, an interferometer de-
vice which can be controlled by an electrical gate is envisioned and its work-
ing principle is shown numerically.
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ZUSAMMENFASSUNG

In dem relativ jungen, aber extrem schnell wachsenden, Forschungs-
feld der topologischen Materie soll diese Arbeit einen Beitrag zum Ver-
ständnis des Verhaltens des zugrundeliegenden Quasiteilchens liefern: dem
Dirac Fermion. Einleitend findet der Leser eine kurze Einführung, welche
die Emergenz von relativistischer Quantenmechanik im Festkörper demon-
striert. Die Verbindung zu der topologischen Invariante und ihrer Unent-
behrlichkeit für eine geschlossene, vollständige Beschreibung der Physik
an topologischen Defekten wie etwa Oberflächen, Domänenwänden und
Vortices wird hergestellt. Der Schwerpunkt der Arbeit liegt jedoch in der
Beschreibung und Simulation des dynamischen Verhaltens des Dirac Ferm-
ion Quasiteilchens in nichttrivialen örtlich, und nach Möglichkeit auch zeit-
lich, variierenden Potential- und Masse-Landschaften. Um eine effiziente
numerische Simulation zu gewährleisten wurde ein neues numerisches Sche-
ma entwickelt. Auf diesem Wege stößt man auf das Fermion-Verdopplungs
Problem, welches durch eine Verschachtelung des numerischen Gitters in
Ort und Zeit gelöst wird. Wie die zugrundeliegende Differentialgleichung,
behandelt diese spezielle Diskretisierung Ort und Zeit gleichwertig. Sche-
men für (1+1)D, (2+1)D und (3+1)D werden formuliert und ihre numerischen
Eigenschaften gezeigt. Das wichtige Thema der Randbedingungen wird
diskutiert und im eindimensionalen Fall werden perfekt absorbierende Rand-
bedingung (sogenannte diskrete transparente Randbedingung) hergeleitet.
In (2+1)D werden absorbierende Randbedingungen unter Verwendung von
imaginären Potential Regionen vorgestellt. Auf der angewandten Seite wird
die Verwendung von Domänenwand-Fermionen für verlustfreie, elektrische
Schaltungen vorgeschlagen. Mit diesen wird das Prinzip eines Interfero-
meter-Bauteils gezeigt, welches durch ein Gate gesteuert werden kann, und
dessen Wirkungsweise numerisch demonstriert.
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Chapter 1

PREFACE

1.1 Motivation

The common worldview in the 18th century was that the general laws in
physics had been already found. Everything could be understood within
classical Newtonian physics. Max Planck was one of the students of Philipp
von Jolly, who advised Max Planck not to go into physics by saying "in this
field, almost everything is already discovered, and all that remains is to fill a
few unimportant holes." Nevertheless, Max Planck did go into physics and
filled an important hole, discovering the quantization of black body radia-
tion. The latter turned out to be decisive in the development of quantum
mechanics (QM), which led to a paradigmatic shift in physics and the fun-
damental understanding of our world.1 In hindsight, it seems even more
surprising that a basic consequence of QM had been overlooked for so long.
The phase of the wavefunction, describing a QM system, does not lead to
any observable effect. This is known since the early days of QM and is called
gauge freedom. But, in addition to a phase from time evolution, an adiabatic
change in the parameters of a QM system leads to an additional phase, the
geometrical phase. 1928 M. Born and V. Fock [1] stated that independently
of the path, which is taken in the parameter-space, one can always find a

1It is not very likely that non scientists will read this, but for them I want to note: QM
is not only a nice toy for theoretical physicists, caught in their ivory towers, but nowadays
it has great influence in peoples everyday lives. Without writing down a full list of devices
which today would probably not exist without the development of QM let me just give one
example, which I would call "condensed quantum physics": the smartphone.

3
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suitable gauge leading to a cancellation of the geometrical phase. This was
the general belief until 1984, when M. V. Berry [2] investigated a closed path.
He found, that in this case, the geometrical phase can not be gauged away.
It is now called the Berry phase and is an integer multiple of 2π. As usual,
the closed path integral over a vector field can be transformed into an area
integral over the curl of the quantity which, in this case, is called the Berry
curvature. Since the latter is gauge invariant it leads to measurable effects.
In solid state physics the topological invariant is the total Berry flux, the in-
tegral over the Berry curvature, in the Brillouin zone. In fact, it was a major
breakthrough, which allows for a unified description of the quantum Hall
effect (QHE), quantum anomalous Hall effect, valley Hall effect, electric po-
larization of crystalline solids, adiabatic pumps, etc. [3]. It has lead to a
burst of experimental discovering [4, 5, 9, 10, 11, 12, 13] and a theoretical
understanding [4, 5, 14, 15, 16, 8, 17] of a new form of matter, the topolog-
ical matter. One is the time-reversal symmetry protected class, being the
quantum spin Hall effect and the topological insulator (TI) [5]. Without a
claim to completeness, the phenomena which show up are: the emergence
of relativistic quasiparticle physics, non-local transport, weak antilocaliza-
tion, half integer QHE on the surface, quantum spin Hall effect (QSHE),
quantum anomalous Hall effect (AHE), the topological magnetoelectric ef-
fect (axion electrodynamics), magnetic monopoles, Dyons, and Majorana
fermions [5].

In G. E. Voloviks famous Book "The Universe in a Helium Droplet", the uni-
versality classes of fermionic vacua can be found. They are quantum vacua
having (i) Fermi surfaces, (ii) Fermi points, and (iii) gapped fermionic vacua
[18]. In this thesis, we will deal with (ii) and (iii), which can be described
with a mathematical structure called the Dirac equation. The latter is also
the relativistic description of elementary spin 1/2 fermions (e.g. the elec-
tron) [19]. The conclusion that the low energy sector of discrete microscopic
models can resemble (ii), with the emergence of all the properties of con-
tinuous space-time, such as Lorenz invariance, might have some interesting
philosophical consequences. At least, the standard model could be an ef-
fective theory of some, until now, unknown more fundamental microscopic
theory [18]. The (3+1)D Dirac equation leads to correction terms which, may
have to be incorporated in, non relativistic, microscopic theories. They sur-
vive the non-relativistic limit in form of the well-known spin-orbit coupling.
The latter, in turn, allows the emergence of topological matter with the Dirac
equation, as effective theory, describing the underlying quasiparticles. So,
which came first, the chicken or the egg?
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Most results from this thesis research have been published or, at least,
been submitted for publication. Starting point is an effective model, which
describes (2+1)D Dirac fermions on the surface of a three dimensional TI.
Exchange coupling of the spin, carried by the Dirac fermion, with magnetic
moments of e.g. magnetic impurities or a near by ferromagnetic layer allows
one, to tune the mass of the Dirac fermions [5, 7]. Exploiting this principle,
one can induce topological defects on the surface of the TI. An example
are 1D chiral (one-way) conducting states, living at ferromagnetic domain-
walls. These novel states allow dissipation-less current and are related to
the QHE edge states. In fact they arise from the half integer QHE showing a
non-zero Hall conductivity without applying a magnetic field. The sign of
the Hall conductivity depends on the mass of the surface region, encircled
by the Hall current. In contrast to the QHE it has spin polarized (chiral) edge
channels. Moreover, compared to the QSHE it shows only one propagation
direction (one-way transport). This avoids spin-flip scattering and should
allow to observe (and exploit) the edge channel transport over a macro-
scopic length scale (hundreds of µm), like in the recently observed QAHE
[20]. Moreover, one can think of utilizing this one-way spin polarized chan-
nels together with beam-splitters, given by domain-wall intersections, in
order to construct complex networks (see paper reprints in CHAPTER 10
and 11) [22, 23]. These dissipation-less networks could be part of future low
power consuming electronic and/or spintronic devices.

To allow numerical simulation, a scheme for solving the dynamics of
the Dirac quasiparticle has to be developed. It is a (2+1)D finite-difference
scheme with a staggered grid in space and time by which the famous fermion
doubling problem can be avoided (paper reprints CHAPTER 9 and 12) [24,
25]. The fully (3+1)D version of this scheme is presented and should be
valuable in various other areas where the Dirac equation is used. These are
for example particle physics, atomic physics and cosmology. In particular
it can provide an efficient numerical algorithm for the simulation of the dy-
namics of electrons in strong laser fields (paper reprint CHAPTER 12).
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1.2 Contents

An introduction to topological matter is given in CHAPTER 1. The Dirac
equation is established as an effective equation describing the quasiparticles
near Fermi points. Furthermore, an outline of potential device applications
is given.

CHAPTER 2 contains a brief introduction to the Dirac equation. The
Minkowski space-time and the Lorenz transformation are introduced. The
latter together with parity is sufficient for the derivation of the Dirac equa-
tion and directly reveals its left-/right-handed structure. The solution for
constant coefficients is shown and the simpler two space-dimensional and
two component spinor Dirac equation is given.

CHAPTER 3 deals with the emergence of effective relativistic quantum
mechanics in a solid state environment. For that purpose simple tight-
binding models are used. Topological nontriviality is introduced using the
concept of the Chern number. A pedagogical topological nontrivial model
is explained, which serves as a demonstration for the emergence of edge
channels. With that, a model showing helical states at the surface of the 3D
topological insulator is presented.

In CHAPTER 4, the short history of 3D topological insulators is sum-
marized. The focus is given to the challenges with respect to future device
applications.

Numerical simulation of the Dirac equation is discussed in CHAPTER
5. Finite difference modeling, its advantages and its problems (e.g. fermion
doubling) are discovered pedagogically. Open boundary conditions are dis-
cussed.

Numerical simulations of the wave packed dynamics of the Dirac fermion
are shown in CHAPTER 6 for various potential and mass textures. Among
them are the free propagation, the Klein-step, superlense-focusing, and Lan-
dau orbits.

CHAPTER 7 deals with special bound states in mass domain-walls and
vortices. For the domain-wall states photoexcitation is discussed. The vor-
tex zero modes are shown for various angular momentum numbers and
different magnetic structures, e.g. hedgehog and tilted hedgehog configu-
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rations.

In the paper reprint CHAPTER 8, a dispersion and norm preserving
leap-frog staggered-grid finite difference scheme for the (1+1)D Dirac equa-
tion is introduced [21]. An exactly preserved functional, for the norm, is
identified and stability for arbitrary space- and time-dependent mass and
potential terms, is proven. Transparent boundary conditions are derived for
the continuum equation, as well as for the discretized problem. This gives
exact discrete transparent boundary conditions for the numerical problem.

An extension of the scheme to (2+1)D, preserving its continuum prop-
erties along the principal coordinate axes, is contained in the paper reprint
CHAPTER 9 [24]. As a drawback, this method yields a second Dirac cone at
the Brillouin zone boundary. Because of the special properties of the disper-
sion relation, the scheme performs best for rectangular structures and prop-
agation mainly in the direction of the coordinate axes. This is the case for
the interferometer setup shown in CHAPTER 10, were the scheme shows
extremely low phase error. Various numerical examples demonstrate the
general properties of the scheme, as well as the physics of the (2+1)D Dirac
equation.

In the paper reprint CHAPTER 10 a Dirac fermion interferometer on the
topological insulator surface is proposed and verified numerically [22]. It is
shown, that the interferometer can be controlled by an electrical gate. The
interferometer consists of one-way chiral channels located at the domain-
walls and their intersections. A realistic model for the mass-texture is ob-
tained by free energy minimization of the magnetic structure. The device
should be robust against perturbations because it relies on the stability of
the half-integer quantum Hall effect on the surface [5].

In the paper reprint CHAPTER 11, a more systematic numerical investi-
gation of the splitting behavior of ferromagnetic domain-wall intersections
is given for various domain-wall parameters [23]. Important parameters are
the angle of intersection, the domain-wall width (relative to the confinement
width of the wave packet) and the energy of the wave packet relative to the
asymptotic gap created by the magnetic domains.

The last paper reprint shows an extension of the (1+1)D scheme to the
(2+1)D case and the full four spinor (3+1)D Dirac equation [25]. In contrast
to previous finite difference schemes in the literature, it completely avoids
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the fermion doubling by staggering of the spinor components in space and
time. As for the (1+1)D scheme, an exactly preserved functional is identi-
fied and stability is proven for arbitrary space- and time-dependent mass
and potential terms.

In the last CHAPTER 13 an outlook is given regarding further subjects to
be investigated with the numerical schemes, as well as potential extensions
of the formalism.
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Chapter 2

A BRIEF INTRODUCTION TO THE DIRAC EQUA-
TION

The aim of this chapter is not to expose the theory of the Dirac equation, for
which many excellent textbooks exist [1, 2, 3, 4], but to condense the basic
facts and to introduce the notations used later in this thesis.

Interestingly the Dirac equation, being the relativistic description of spin
1/2 particles (e.g. electrons), was found by P. A. M. Dirac only two years
after the non-relativistic quantum-mechanical evolution equation was pre-
sented by E. Schrödinger [6, 5]. Historically, the Dirac equation is intro-
duced by demanding the fulfillment of the relativistic energy-momentum
relation E =

√
m2c4 + |p|2c2. The square-root is linearized, by the intro-

duction of Dirac matrices and spinors [1]. As usual p = (px, py, pz) is the
3-momentum, m is the mass and c is the speed of light.
Symmetry principles are among the most beautiful entities of models, which
we use to describe nature. Every observer, regardless of his/her state of
motion, has to agree with all others about all physical processes in the uni-
verse: the principle of relativity [7]. For observers in inertial systems simply
moving with constant speed, this postulate is mathematically expressed by
invariance under Lorenz transformation [7]. Therefore, perhaps the most
elegant way of deriving the relativistic description of the electron is to de-
mand invariance under Lorenz transformation together with parity [3]. This
will be shown briefly below.
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2.1 Minkowski space-time: 4-vector notation

Under rotation, the distance between two points1 in Euclidean space has to

be invariant dr2 :=
3∑
j=1

dx2
j = dx2 + dy2 + dz2 = const. Similarly, within

Minkowski space, the distance between events (space-time points), in addi-
tion, has to be invariant under boosts (transformations between initial sys-
tems having different velocity). This is written as

ds2 :=
3∑

µ=0

dxµdxµ = c2dt2 − dx2 − dy2 − dz2 = const . (2.1)

Einstein summation convention will be used in the following, which means
that if an index occurs "twice" in an expression, a summation has to be per-
formed and one can omit the sum sign. E.g. the second expression in the
last equation can be simply written as dxµdxµ. Here, as usual, the 4-vectors2

are introduced in their covariant and contravariant form

xµ := (x0, x1, x2, x3) = (ct, x, y, z)

xµ := (x0, x1, x2, x3) = (ct,−x,−y,−z) . (2.2)

2.2 Lorenz transformation and derivation of the
Dirac equation

The Lorenz group includes rotation and boosts (for a more detailed discus-
sion see for example [3]). A boost can be expressed as a rotation in hyper-
bolic space (Minkowski space) which, e.g., for a boost in x1 direction can be
written as follows

x′0
x′1
x′2
x′3

 =


cosh η1 sinh η1 0 0
sinh η1 cosh η1 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B1


x0

x1

x2

x3

 . (2.3)

and analogous for the other spatial directions. Here we have the rapidity
ηj = arctanh vj/c. The generators of the Lorenz group form a Lie group

1The incices for the components of a spatial 3-vector are by convention always written
in Latin letters.

2The indices for 4-vectors are always expressed by Greek letters.
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with the generators

Kj =
1

i

∂

∂ηj
Bj

∣∣∣∣∣
ηj=0

. (2.4)

From the rotation matricesR one gets the matrix representation of the known
angular momentum operators

Jj =
1

i

∂

∂θj
Rj

∣∣∣∣∣
θj=0

. (2.5)

One can easily prove, that the boosts alone do not form a group[
Ki, Kj

]
= −εijkJk . (2.6)

This means a boost in one direction e.g. x, followed by a boost in an other
direction e.g. y and then back in negative x-direction followed by a boost
in negative y-direction, brings the object back to the starting point. Surpris-
ingly, (in addition) it has accumulated a rotation around the z-axis. Now
comes the interesting step which will lead us to the Dirac equation. One can
combine the generators in the following way

A :=
1

2
(J + iK) , (2.7)

B :=
1

2
(J− iK) . (2.8)

Then A and B form two commuting subgroups of the Lorenz group in the
sense that [

Ai, Aj
]

= εijkAk ,[
Bi, Bj

]
= εijkBk ,[

Ai, Bj

]
= 0 . (2.9)

Both fulfill the algebra of angular momenta forming SU(2) groups. Thus,
the "Lorenz group is SU(2) ⊗ SU(2)" and the elements can be labeled by
the angular momenta (j1, j2). For the case B = 0 (j, 0) one gets J = iK
and for A = 0 (0, j) one obtains J = −iK. Using known representations
of the generators of the rotation immediately leads to the two following
inequivalent representations of the Lorenz transformation

ψL → exp

(
i
σ · n

2
+
σ · η

2

)
ψL (2.10)
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and

ψR → exp

(
i
σ · n

2
− σ · η

2

)
ψR . (2.11)

σ is the vector of Pauli matrices, n is the vector of the angles of rotation in
space and η contains the boost parameters. Remark: the behavior under
rotation is characteristic for spin-1/2 particles, whose wave-function gain a
minus sign from rotation by 2π. The velocity and thus the generators of the
Lorenz boost change sign K→ −K Under the parity operation, whereas the
angular momentum does not J → J. Therefore, under parity transforma-
tion one gets ψL ↔ ψR. Finally, to combine both within one object, following
construction is made (bi-spinor)

ψ :=

(
ψL
ψR

)
. (2.12)

Writing the rapidity in terms of energy and momentum (using c = 1) leads
to

ψL(p) =
E +m+ σ · p√

2m(E +m)
ψL(0) (2.13)

and
ψR(p) =

E +m− σ · p√
2m(E +m)

ψR(0) . (2.14)

This can be rearranged to

ψR(p) =
E + σ · p

m
ψL(p) (2.15)

and
ψL(p) =

E − σ · p
m

ψR(p) . (2.16)

Using the definitions of the gamma matrices

γ0 = σ1 ⊗ 112 :=

(
0 112

112 0

)
, γi = iσ2 ⊗ σi :=

(
0 σi
−σi 0

)
, (2.17)

one arrives at the momentum space representation of the Dirac equation in
Weyl, or also called chiral, form

(γµpµ −m)ψ(p) = 0 , (2.18)

and in real-space
(iγµ∂µ −m)ψ(xµ) = 0 . (2.19)



19

For m = 0, the equation decouples into an equation for the right-handed ψR
and for the left-handed ψL part and is called the Weyl equation. The cou-
pling of the electrically charged Dirac particle q = −e) to an electromagnetic
external field is established within the minimal coupling prescription

pµ → Πµ = pµ + eAµ or ∂µ → Dµ = ∂µ − ieAµ, (2.20)

with e being the electron charge, the scalar potential A0 = φ, and the vector
potential Ai. There are infinitely many unitary equivalent representations
of the Dirac equation. In this manuscript the Schrödinger, or also called
standard, representation is used frequently. The transformations from the
chiral form are

β := Sγ0S−1 =

(
112 0
0 −112

)
and αi := SγiS−1 =

(
0 σi
σi 0

)
, (2.21)

using

S :=

(
112 112

112 −112

)
. (2.22)

Finally using this definitions, the Dirac equation in Schrödinger representa-
tion has the form

i~
∂

∂t
ψ = H ψ , (2.23)

with

H = −i~cαi
(
∂

∂xi
− i e

c~
Ai

)
+ βmc2 − eφ . (2.24)

2.3 Solution, observables and interpretation

It follows from Eqs. (2.10) and (2.11) that

ψ̄ψ = ψ†LψR + ψ†RψL (2.25)

is invariant under Lorenz transformation, where ψ̄ := γ0ψ†. The later is also
invariant under parity transformation and is therefore a true scalar under
Lorenz transformation. A useful expression not being Lorenz invariant is

jµ = ψ̄γµψ . (2.26)

Its zeroth component

j0 = ψ†γ0γ0ψ = ψ†ψ = ψ†LψL + ψ†RψR = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 , (2.27)
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is positive definite, allowing the interpretation of a probability density. Then,
the other components ji are the spatial components of the current density.
By insertion of the Dirac equation Eq. (2.19) it can be shown that the conti-
nuity equation ∂µj

µ = 0 is fulfilled. Mass and charge density deviate from
the probability density only in prefactors leading to the conclusion that total
mass and charge are conserved.

The solution for the free Dirac equation can be obtained most easily by ex-
amining the Schrödinger representation in the rest frame

i
∂

∂t
ψ = βmψ , (2.28)

giving
ψn = wn(0)e−iεnmt (2.29)

where ε1 = ε2 = 1, ε3 = ε4 = −1 and wn(0) are 4-component vectors with
a 1 at the n-th position and the rest zero. Thus, in the rest frame one can
identify the purely positive and negative energy solutions. The general case,
having momentum p = (px, py, pz) can be obtained by applying a Lorenz
transformation Eqs. (2.13) and (2.14) [3]

wn(p) =

√
E +m

2m


1 0 pz

E+m

px−ipy
E+m

0 1 px+ipy
E+m

− pz
E+m

pz
E+m

px−ipy
E+m

1 0
px+ipy
E+m

− pz
E+m

0 1

wn(0) . (2.30)

The eigenvectors are the columns of the matrix in the expression above. The
solution including a constant 4-vector potential is obtained by substitution
using the minimal coupling prescription Eq. (2.20). Then the eigenvectors
of Eq. (11.2) corresponding to positive energy are (using V = −eφ)

ψ1(xµ) =

√
E − V +m

2m


1
0

Πz
E−V+m
Πx+iΠy
E−V+m

 e−iΠ
µxµ (2.31)

and

ψ2(xµ) =

√
E − V +m

2m


0
1

Πx−iΠy
E−V+m

− Πz
E−V+m

 e−iΠ
µxµ . (2.32)
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The negative energy eigenstates are

ψ3(xµ) =

√
E + V +m

2m


Πz

E+V+m
Πx+iΠy
E+V+m

1
0

 eiΠ
µxµ (2.33)

and

ψ4(xµ) =

√
E + V +m

2m


Πx−iΠy
E+V+m

− Πz
E+V+m

0
1

 eiΠ
µxµ . (2.34)

The eigenenergies are

E± = ±E = ±
√

Π2
x + Π2

y + Π2
z +m2 + V . (2.35)

The spectrum is not bounded from below. This is a major problem for the
Klein-Gordon equation, which deals with bosons. An arbitrary number of
particles can be in the same quantum state and the system can make a tran-
sition to a lower energy state by radiation. In this way it can loose an infi-
nite amount of energy. For fermions, this puzzle can be solved within the
particle-hole interpretation. For fermionic systems a quantum state can be
only singly occupied (the Pauli principle). Within the particle-hole interpre-
tation one assumes that all the negative energy states are filled (the Dirac
sea), preventing the Dirac particle from decaying to lower energy states.
Moreover, particle-hole creation can be explained within this construction.
An electron, having positive energy, negative charge and spin "up", can be
kicked out of the Dirac sea when a minimum energy of 2mc2 (being the ex-
citation gap, or in other words, twice the energy corresponding to the rest
mass of the electron) is transfered to it by a photon. Then the sea contains
a hole, which can be reinterpreted as an antiparticle (the positron) having
positive energy, positive charge and spin "down". Within solid state sys-
tems such filled bands are natural. This suggests that the Dirac equation
and the field theories in general, used in the standard model, may be effec-
tive theories of an underlying more fundamental microscopic theory [8].

Analytic solutions of the Dirac equation for external fields with time-
and/or space-dependence are rare. Without claim to completeness they in-
clude the case of a homogeneous magnetic field [9], the Dirac oscillator [10],
an electromagnetic plane wave [11], and the Coulomb potential [12]. In gen-
eral, the problem has to be treated numerically.
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2.4 The Dirac equation in lower dimensions

The Dirac equation in three spatial dimensions requires a minimal dimen-
sion for the Dirac matrices of four. The dimension for the Dirac matri-
ces has to be even [1] and one cannot provide four anti-commuting two-
dimensional matrices. Things look different in one or two dimensions. Here,
one can choose e.g. σx for the x-momentum term, σy for the y-momentum
term and σz for the mass term

HD = σxpx + σypy +mσz . (2.36)

Of course this cannot capture the full particle-hole and spin degree of free-
dom of a general Dirac particle, but sometimes the spin does not matter. In
other cases it is fully locked to the momentum, as in the topological insu-
lator case [13]. Also, one can have translational invariance in one or two
directions allowing for a one or two dimensional description. But particles
can also be confined to lower dimensions leading to an effective 1D or 2D
Dirac Hamiltonian. An example for the 1D situation are the edge channels
in the quantum spin Hall effect [13]. The 2D case occours for example in
narrow band semiconductors, graphene, and again in topological insula-
tors [13]. More about these issues and how the Dirac equation arises as an
effective model will be shown in the next chapter.
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Chapter 3

EMERGING "RELATIVISTIC" QUANTUM ME-
CHANICS IN SOLID STATE PHYSICS

In periodic systems, like solids or cold atomic lattices, a linear dispersion
relation can occur when energy bands touch. The simplest example for this
behavior is the electron in a periodic potential. The Bloch solutions have
a degeneracy of two at most and therefore the bands cannot overlap. At
a touching point they must have linear dispersion (see e.g. [1]). The be-
havior of the quasiparticle, near this so-called Dirac-point, can be described
by the Dirac equation. In general, topological non-triviality, like emerging
symmetry protected surface states, is expressed in form of topological in-
variants. More precisely, the occurrence/non-occurrence of this protected
surface states can be fully classified by these invariants, which themselves
are determined by the symmetry of the bulk Hamiltonian [2]. The rele-
vant symmetries are time-reversal symmetry (TRS), particle-hole symmetry
(PHS) and sub-lattice (or chiral) symmetry (SLS).

In a QM mechanical system, if parameters are changed adiabatically, the
wave function picks up a geometrical phase, the Berry phase [3]. In general
the Berry phase can be computed by the Berry vector potential, in analogy
to the vector potential in electrodynamics, and is not gauge invariant. In the
case of a closed path the phase can not be removed by gauge transformation.
The locally defined gauge invariant quantity, corresponding to the magnetic
field in electrodynamics, is the Berry curvature [3]. A system can have a con-
served quantity, the topological charge (Z2 or Chern number), which can
be computed from the Berry curvature [6]. The latter has singularities at
the Dirac-points. They determine the connectedness in the parameter space
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and thus its topology. For time-reversal invariant systems Dirac points usu-
ally exist in pairs. This is called fermion doubling. Topological non-triviality
can occur "holographically", leading to the topological insulator (TI) [7]. For
this material the time-reversal partners sit on opposite sides of the surface.
The computation of topological invariants for "almost" touching bands, will
be discussed briefly on hand of a generic two band model (3.1.3). Com-
ments regarding topological triviality/ non-triviality, for the Hamiltonians
presented, will be made. For a certain tight-binding model, having a Chern
number of one, dimensional reduction reveals the 1D quantum Hall (QH)
edge states always lying in the band-gap of the 2D bulk states [8].

First, it will be discussed how linear dispersion relation arises by exam-
ining simple tight-binding models. Linear dispersion behavior of touching
bands can also be understood within the k · p approach or in general by
examining symmetry principles. Here, we will argue with tight-binding
models because they are very closely related to finite difference approxima-
tions used to develop the numerical scheme. They show common features
arising from the lattice, most prominently the periodic band structure and
the famous fermion doubling.

3.1 Dirac equation from tight-binding models and
the fermion doubling problem

In general, a tight-binding model trivially needs at least two "states" per unit
cell to show a two band structure, eventually having touching energy bands
with a linear dispersion relation.

3.1.1 1D two atom tight-binding model

Here, the behavior is demonstrated with a simple 1D two atom, nearest
neighbor, tight-binding model. Let us call one atom u and the other one v
(see Fig. 3.1). The electron has the probability amplitude u sitting on the
atom at position j, where we use the notation uj . It can hop to (one can also
say: the atom is coupled to) the atom at position vj , being in the same unit
cell, and to vj−1, which is in the neighbor unit cell. The electron on vj can
undergo a transition to uj and uj+1 respectively. Thus, for the Schrödinger
equation in tight-binding representation and matrix form one can write

i
∂

∂t
~ψ = −

(
0 1 + T

1 + T−1 0

)
~ψ , (3.1)
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u v u vu v
jj-1 j+1

Figure 3.1: 1D two atom tight-binding model.

where ~ψ = (u, v) and T is the translation operator Twj = wj+1 with w = u, v.
Then the Fourier transformed Hamiltonian is

H = −
(

0 1 + eik∆

1 + e−ik∆ 0

)
, (3.2)

with ∆ being the distance between unit cells (= two times the distance be-
tween the atoms). The Hamiltonian can be diagonalized giving the eigen-
values

E(k) = ±2 cos
k∆

2
. (3.3)

The domain for k ("Brillouin zone") is k ∈
(
− π

∆
, π

∆

]
. One can conclude,

that the Hamiltonian (3.2) has one cone at the Brillouin zone boundary. To
obtain a model with the cone at k = 0 one substitutes k → k + π

∆
leading to

H = −
(

0 1 + ei(k∆+π)

1 + e−i(k∆+π) 0

)
(3.4)

= −
(

0 1− eik∆

1− e−ik∆ 0

)
, (3.5)

having the dispersion relation

E(k) = ±2 sin
k∆

2
. (3.6)

Note that the shift by a general value k → k + A corresponds to the Peierls
substitution by which a vector potential A can be included [9, 10]. Expan-
sion at the Dirac point gives

HW =

(
0 −ik
ik 0

)
→ −i

(
0 −i∂y
i∂y 0

)
, (3.7)

which is the 1D Weyl (massless Dirac) Hamiltonian. Finally a mass term is
included by a σz term leading to the Dirac Hamiltonian

Hy
D = −iσy∂y +mσz . (3.8)
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Figure 3.2: Dispersion relation of a 1D two atom tight-binding model. It
shows a linear dispersion relation at the Brillouin zone boundary π/∆. A
vector potential A = π/∆ shifts the Dirac cone to the center (k → k + A).

The Pauli matrices fulfill the Lie algebra and a rotation from the 1D rep-
resentation along the y-axis to the x-axis can be performed by the unitary
transformation

UHy
DU
−1 = Hx

D = −iσx∂x +mσz , (3.9)

with
U = exp

(
− iα

2
n · σ

)
= cos

α

2
− i n · σ sin

α

2
, (3.10)

σ is the vector of Pauli matrices, n = (0, 0, 1) is the rotation axis, and α = π/2
is the angle of rotation.

3.1.2 The 2D Dirac Hamiltonian and the fermion doubling
problem

Demanding rotational symmetry in the xy-plane one gets the full 2D Dirac
Hamiltonian from Eqs. (3.8) and (3.9)

HD = −iσx∂x − iσy∂y +mσz . (3.11)

Here one should note that Eq. (3.5) is the finite difference expression of
the differential operator given in Eq. (3.7) using only right- and left-sided
finite difference expressions of the first derivative. In 2D (or higher dimen-
sions) it is not possible to construct a local finite difference approximation
of the Hamiltonian (3.11), which is Hermitian without using central finite
difference expressions instead of one-sided ones. A central finite difference
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approximation of the first derivative always omits the central point, which
in turn can have arbitrary values without changing the value, which the fi-
nite difference expression yields. Thus, the constant and the function with
the highest possible spatial oscillation frequency, on the grid leads to the
value zero and therefore to energy equal zero. This is a special case of what
is called the fermion doubling problem [11]. In general, the induced non-
monotonic behavior of the dispersion relation leads to additional solutions,
propagating with opposite group velocity. The linear dispersion relation can
be approximated exactly by the SLAC derivative operator, which includes
infinitely many neighbor points [12]. This makes the operator non-local,
since even in the limit of vanishing lattice spacing an infinite region in space
is included in the approximation. Nielsen and Ninomia stated a no-go the-
orem for the Dirac-equation. They found that its discretization on a regular
grid inevitably leads to additional fermion flavors under the assumptions of
translational invariance, locality, and Hermiticity of the Hamiltonian [11].

3.1.3 The Chern number of a general two band Hamiltonian

A general two band model can be written as (see e.g. [7])

h(k) = σ · d(k) + 11ε(k) , (3.12)

where d is the vector of spin or pseudospin, depending on the concrete
problem. The first Chern number (also called the topological charge), for
this system, is defined as [7]

C1 =
1

4π

∫
dkx

∫
dkyd̂ ·

∂d̂

∂kx
× ∂d̂

∂ky
. (3.13)

As an example writing Eq. (3.11) in momentum space gives

d̂(k) =
1√

k2
x + k2

y +m2

 kx
ky
m

 . (3.14)

Remark: This vector field is called a meron, for m > 0 (m < 0) pointing
upwards (downwards) in the origin and in-plane at infinity. It is half a
skyrmion which also points upwards (downwards) at infinity.

The Chern number of (3.11) gives C1 = 1/2 for m > 0 and C1 = −1/2 for
m < 0. From the Chern number the Hall conductance can be calculated by
[13]

σxy =
e2

h
C1 . (3.15)
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Figure 3.3: (a) Tight-binding model for graphene, consisting of two stag-
gered triangular lattices having the "atoms" A and B respectively. a1 and
a2 are the lattice vectors. (b) The reciprocal lattice (Brillouin zone) with the
reciprocal vectors b1 and b2 and the positions of the Dirac cones at the Bril-
louin zone corners K and K ′.

A general result in topological band and field theory is that a system needs
to have either broken time-reversal or inversion symmetry to be topolog-
ically non-trivial [13, 7]. Then, what is broken in the 2D Dirac equation
(3.11)? It turns out parity (=space inversion symmetry) is violated. 1 With
P = σx being a suitable parity transformation one gets

PHD(kx,−ky,m)P−1 = σxσxσxkx − σxσyσxky +mσxσzσx (3.16)
= σxkx + σyky −mσz
= HD(kx, ky,−m) ,

which means that parity is broken by the mass term.

3.1.4 Graphene, topologically trivial

In the 2D honeycomb lattice material graphene time-reversal symmetry and
inversion symmetry is preserved, thus fermion doubling has to be expected.
Indeed, in graphene one observes two valleys within the Brillouin zone atK
and K ′ [16]. In the low energy limit they resemble two Dirac cones at these
points. One transforms into the other under time-reversal and also under
inversion. In analogy to real spin this degree of freedom is called pseu-
dospin (compare Kramers theorem [15]). For a tight-binding model consist-
ing of two staggered triangular lattices including atoms A and B (Fig. 3.3)

1In contrast to 3D parity in 2D inverts only one coordinate e.g. (x, y) → (x,−y) other-
wise it would simply be a rotation.
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Figure 3.4: Band structure of graphene, showing linear dispersion relation
at the Dirac points. It is shown for the simplest tight-binding model [16],
allowing only nearest neighbor hopping.

respectively, I refer to a review article [16]. Therefore, a minimal continuum
model has to describe electrons and holes together with the two fermion
flavors and requires a four-component Dirac spinor. Essentially, the con-
tinuum model for Dirac fermions in graphene consists of two copies of the
massless 2D Dirac Hamiltonians with opposite parity [16]

HG = kx(σ
v
z ⊗ σphx ) + ky(11

v ⊗ σphy ) . (3.17)

The superscript "v" stands for the valley subspace and the "ph" for the particle-
hole subspace. Within this model, graphene is topologically trivial, because
the Berry curvature is zero in the whole Brillouin zone (see result for the
Dirac equation (3.13) in the case of m = 0). Breaking inversion symmetry
in graphene leads to a mass term and non vanishing Berry curvature at the
Dirac points. In principle, the mass terms at the valleys can have the same
(normal case for graphene) or opposite sign. In the former case one has
C1 = 1/2 at K and C1 = −1/2 at K ′ adding to zero. Equal signs for the
Chern number at the Dirac points lead to the valley Hall effect [6]. Taking
into account the electron spin and therefore spin-orbit coupling leads to a
Hamiltonian consisting of two copies of the Haldane Hamiltonian [4] with
opposite sign of the Hall conductivity for up and down spin. This results in
graphene being a QSHE material, although with a very small gap [5].



32

E

k

εF

E

k

εF

(a) (b)

π π-π -π0 0

Figure 3.5: Energy dispersion relations of 1D systems. (a) The dispersion
relation of an ordinary 1D spin-1/2 system always crosses the Fermi-energy
four times because at least at k = 0 and at k = π there are Kramers-
degenerate points (shown as filled circles). This is called the fermion dou-
bling (one has two fermion flavors). (b) For a 1D system, emerging "holo-
graphically" at the boundary of a 2D time-reversal invariant system, one
obtains only one Dirac cone. In this case the time invariant point at k = π
merges with the dispersion relation of the opposite boundary (not shown).

3.1.5 Systems with half integer spin, Kramers theorem

Fermion doubling also arises in Hamiltonians describing half integer spin
systems. Even with spin-orbit coupling (splitting the spin-up/spin-down
degeneracy) there exist time-reversal invariant points in the Brillouin zone.
These points are always twofold degenerate (Kramers theorem) [15]. This
behavior already can be seen in 1D where the time-reversal invariant points
are at k = 0 and k = π/∆ with ∆ being the size of the unit cell. Then the
Fermi energy is crossed at least four times, twice as often as it would for a
single fermion flavor (see Fig. 3.5(a)). In contrast, for a 1D system emerging
"holographically" at the edge of a 2D time-reversal invariant system, one
has also Kramers degeneracy, but at k = π/∆ the state of one edge is the
Kramers degenerate partner of a state on the other edge Fig. 3.5(b). This
circumvents the fermion doubling and allows a single fermion flavor.

3.2 How nature circumvents the fermion doubling
problem: The topological insulator

Topological insulators are materials insulating in the bulk (2D or 3D) but
having conducting surface states, which cannot be removed by perturba-
tions unless time-reversal symmetry is broken.
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3.2.1 Topologically non-trivial 2D tight-binding model and
dimensional reduction

A 2D tight-binding model, being topologically non-trivial, was first intro-
duced by Haldane [8]. This was achieved on a honeycomb lattice by using
imaginary next nearest neighbor hopping. An also topological non-trivial,
but simpler, model on a rectangular grid was introduced in [6]. It shall,
along with its topological surface states, be shown here briefly. In the tight-
binding Hamiltonian the σ’s represent the spin degree of freedom, where
the latter is coupled to momentum due to strong spin-orbit coupling and
the σz corresponds to out of plane ferromagnetic polarization

H =
∑
n

(
c†n
σz − iσx

2
cn+x̂ + c†n

σz − iσy
2

cn+ŷ +m c†nσzcn +H.c.

)
. (3.18)

x̂ and ŷ are the unit vectors in x- and y-direction respectively. In Fourier
space this writes

h(k) = (sin kx)σx + (sin ky)σy + (m+ cos kx + cos ky)σz . (3.19)

In the low energy limit this Hamiltonian leads to the 2D Dirac Hamiltonian
(3.11) withm→ m+2. The occurence of additional Dirac cones is avoided in
a certain parameter range for m because of the momentum dependent mass
(σz) terms, which corresponds to the Wilson solution to the fermion dou-
bling problem [17]. Using Eq. (3.13) one computes the first Chern number
of the Hamiltonian (3.19) as

C1 =

{ 1 for 0 < m < 2
−1 for − 2 < m < 0
0 otherwise.

(3.20)

Thus, in a certain parameter range the Hamiltonian is topologically non-
trivial and one has to expect topological surface states on the boundary to
a topologically trivial material (e.g. vacuum). This can be shown by dimen-
sional reduction and diagonalizing the resulting uncoupled 1D Hamiltonians.
Here we merely sketch the idea, details can be read in [6]. Generally, one
wraps up (by imposing periodic boundary conditions) one dimension, e.g.
y , getting a cylinder in the 2D case. Then, one can apply a partial Fourier
transform in y-direction and obtains uncoupled 1D Hamiltonians in the x-
direction. The wave number of the Fourier transformed direction ky then
enters as a parameter in the 1D models. From an added vector potential
ky → ky + Ay = ky + Eyt, coming from a constant electric field Ey, one can
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Figure 3.6: (a) Chiral edge states of a topologically non-trivial 2D tight-
binding model with periodic boundary conditions in y-direction. (b) 2D
bulk states and 1D chiral edge states in the bulk band-gap. Adapted with
permission from Qi et al. [7], Copyright (2008) by The American Physical
Society.

compute the charge that flows trough the system in one adiabatic cycle of
the parameter ky. Finally, using this result one obtains the Hall response in
this model without external magnetic field of the system. Complementary,
direct diagonalization of the 1D Hamiltonians reveals the energy spectrum,
showing chiral (one-way) propagating states localized in the gap and on
opposite ends of the cylinder (see Fig. 3.6 adapted from Qi et al. [7]).

3.2.2 The topological insulator

In contrast to a purely 2D material on the surface of a topological insulator,
there can exist a single (or generally an odd number of) Dirac cone, although
time-reversal symmetry is preserved. It is also called a "holographic metal",
because it exists only due to the topological non-trivial bulk, interfaced with
a topological trivial material. In actual experimentally confirmed topolog-
ical insulators, a single fermion flavor for the quasiparticles on the surface
lives on the domain-wall between a spin-orbit driven band inversion within
the topological insulator and normal band ordering in vacuum. Conversely,
the time-reversal symmetry topological protection of the surface states can
be understood by the fact, that a single Dirac cone can not exist in a solely
2D material having time-reversal symmetry (see Kramers theorem [15].

In 1D and 2D, the simple Dirac model (3.11) with mass is topologically
non-trivial. With the mass changing sign it shows domain-wall solutions.
They will be shown in detail in CHAPTER 7. The same is true for the,
slightly more complicated, effective Hamiltonian for the strong spin-orbit
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coupled states in the bulk of a topological insulator [13]

H(k) = ε0(k)114 +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz
A2k+ 0 −A1kz −M(k)

 . (3.21)

Here we have k± = kx± iky, ε0(k) = C+D1k
2
z +D2k

2
⊥, M(k) = M −B1k

2
z −

B2k
2
⊥ and k⊥ =

√
k2
x + k2

y . The model has time-reversal symmetry, inversion
symmetry, and rotation symmetry around the z-axis. The Hamiltonian is
unitary equivalent to a uniaxially anisotropic 3D Dirac Hamiltonian (see Eq.
(11.2)) with the difference, that the mass termM and the potential term ε0(k)
are k dependent. For theM andB’s having the same sign, the bands at k = 0
are inverted compared to large k. Under these conditions the Hamiltonian is
topologically non-trivial and supports gap-less symmetry protected surface
states. One can compute the domain-wall solutions exponentially confined
perpendicular to the surface. A projection of the bulk Hamiltonian (3.21) to
these surface states gives the effective Hamiltonian [13]

Hsurf = C + A2(σxky − σykx) . (3.22)

Here C is the chemical potential µ and A2 corresponds to the effective ve-
locity v. The latter, e.g. for Bi2Se3, is 6.2 × 105m/s. By a unitary transfor-
mation Eq. (3.10) (rotating the spin by α = π/2) the Hamiltonian can be
transformed to the 2D Dirac Hamiltonian in standard form Eq. (3.11). This
Hamiltonian is a good approximation for the physics near the Dirac point.
It is well confirmed by spin and angle resolved photo emission measure-
ments (SARPES), which are shown in Fig. 3.7 [14]. The data clearly show
the surface band structure in the form of a Dirac cone for Bi2Se3 and Bi2Te3,
as well as the spin-momentum locking. In principle, there are also correc-
tions from higher orders of k. E.g. for Bi2Se3, one can consider k3 terms,
which break the rotational symmetry around the z-axis. By explicitly break-
ing time-reversal symmetry in the Hamiltonian a mass term, opening a gap,
can be introduced. More details how this actually can be done will be given
in CHAPTER 7.
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Figure 3.7: ARPES measurements of (a), (c) calcium doped Bi2Se3 (for Fermi
level tuning) and of (b), (d) Bi2Te3. (e) y-component of spin polarization.
(f) x-(red triangles) and z-components (black circles) of spin polarization.
(g) Spin-resolved spectra from the y-component spin-polarization data. (h)
Fitted values, showing the spin polarization of the spin-Dirac cone. With
permission, from Hsieh et. al [14]
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Chapter 4

EXPERIMENTAL CHALLENGES AND RECENT
PROGRESS WITH TOPOLOGICAL INSULATORS

In this chapter the history of 3D topological insulators (TI) and their promises
for future device applications are discussed. The literature has become very
extensive due to the booming of TI research. Thus, here we can only give
a brief overview with prominent examples from the literature, guiding the
reader into this rapidly expanding field. For a recent review article see [4].

The 2D version of the TI, the so-called quantum spin Hall effect QSHE, was
found theoretically for graphene (2005) by Kane and Mele [1]. The proposal
of HgTe/CdTe quantum-wells as a QSHE material by Bernevig, Hughes and
Zhang (2006) was soon followed by an experimental confirmation by König
et al. (2007) [2, 3]. After the theoretical generalization of the 2D topological
field theory to 3D and the prediction of 3D TIs (2007) [5, 6, 7, 8, 9] the run
for experiments, proving the existence of this form of matter, was opened.
Because this method is extremely surface-sensitive, rapid progress was made
with angle-resolved photo emission spectroscopy measurements
(ARPES). The single Dirac cone surface band structure [10, 11, 12, 13] (see
Fig. 3.7) was verified already in (2008). Under the most promising mate-
rials which were investigated are Bi1−xSbx [10], Bi2Te3 [11, 12, 29], Bi2Se3

[13, 34, 14] and Sb2Te3 [12]. Recently, with Kawazulite even a natural TI was
found [15]. The theoretically predicted spin texture of the surface states was
confirmed experimentally using spin resolved ARPES (SARPES)[16, 17, 12]
(see Fig. 3.7). Scanning tunneling spectroscopy (STS) was also used as a
surface sensitive probe [18]. In principle this method allows a very good

39



40

Figure 4.1: Gold-catalyzed vapor-liquid-solid (VLS) grown Bi2Se3 nanorib-
bons. (a) shows the crystal structure with Se-Bi-Se-Bi-Se quintuple layers
which (along c direction) are loosely bonded (by Van-der-Waals interac-
tions) to each other. (b) SEM image of the VLS grown ribbons. (c) SEM im-
age of a 30 nm thick ribbon. SEM image (d) and TEM image (e) of a nanorib-
bon with the catalyzing gold nanoparticle at the end. (f) high-resolution
TEM and electron diffraction figure (inset) confirming the crystalline struc-
ture of the ribbon. (g) X-ray powder diffraction pattern. The ribbons can
be identified as single crystals, along its length, with a size of the unit cells
a = b = 0.4140 nm and c = 2.8636 nm. With permission, from Peng et. al
[33].

spatial resolution and, in contrast to ARPES, can give additional informa-
tion on hetero-structures, nano-structures, impurities etc.

For transport experiments and possible applications it is crucial to tune
the Fermi level into the bulk gap. This was done by bulk doping e.g. with
Sn for Bi2Te3 [21] or with Sb [29] or Ca [30] for Bi2Se3. In Bi2−δCaδSe3, tuning
of the Dirac point towards the Fermi level, by NO2 absorption at the surface,
was shown (see Fig. 4.2). Despite great efforts the unintended doping, e.g.
due to vacancies and antisites, still leads to a large bulk contribution to the
electrical transport. In order to reduce the latter, the research direction goes
to thin films and nanoribbons [31, 32, 33]. Nanoribbons grown by Peng et
al. [33], using gold-catalyzed vapor-liquid-solid (VLS) growth, are shown
in Fig. 4.1. Gate control of the chemical potential was shown in [28, 34].
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Figure 4.2: ARPES measurements, showing the Dirac point by NO2 absorp-
tion at the surface. The introduction of hole-carriers shifts the Dirac point
towards the Fermi energy. With increasing NO2 absorption the spectrum
becomes more diffuse due to surface disorder. With permission, from Hsieh
et. al [12].

Massless Dirac fermions cannot be confined (efficiently) by an electrical
potential because of Klein tunneling (see CHAPTER 9). Thus, for applica-
tions the possibility to open a gap in the surface spectrum is very important.
This can be done by breaking time-reversal symmetry using a magnetic field
and, more promising, by nearby magnetic layer or magnetic impurities ex-
change coupled to the surface Dirac fermions [9, 23]. Recently, this was also
demonstrated experimentally [22, 23, 24, 25]. For Fe as dopant, in-plane
magnetization was reported [24]. Out of plane ferromagnetic order was
shown e.g. for Mn doped Bi2Se3 thin films [27], or for Cr doped thin films of
(BixSb1−x)2Te3 [26]. Doping of Bi2Se3 with ferromagnetically ordering Mn
impurities, with out of surface-plane magnetization and opening of a gap
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Figure 4.3: Doping of Bi2Se3 with Mn impurities, showing out of surface-
plane magnetization and opening of a gap for the surface states. (a) NO2

surface doping to set the chemical potential inside the surface gap. (b) Berry
phase as a function of the effective gate voltage from NO2 doping. (d)-(f)
schematic spin textures of Bi2Se3, (d) for Mn doping a gap opens due to time
reversal breaking by the ferro-magnetically ordered impurities, (e) time re-
versal texture for Zn doping, (f) ultrathin-film 3 QL with opened tunneling
gap. With permission, from Xu et. al [27].

for the surface states, was shown in [27] (see Fig. 4.3).
Because of the difficulties mentioned above, it was a great experimen-

tal challenge to confirm the topological surface states in transport measure-
ments. Clear signals of surface transport were found in nanoribbons show-
ing Aharonov-Bohm oscillations [33, 35, 36] (see Fig. 4.4). Another poten-
tially Nobel Prize worthy experimental breaktrough was the recent confir-
mation of the quantum anomalous Hall effect in a thin magnetic topological
insulator [37]. It combines the robustness and the dissipationless one-way
transport of the edge states of the QHE and the spin polarization of the
QSHE, without requiring an external magnetic field. This is a very interest-
ing combination for future device applications [37].
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Figure 4.4: Aharonov-Bohm oscillations of the resistance of Bi2Se3 nanorib-
bons. (a) schematic ribbon with magnetic field along the ribbon axis (black
arrows). The red arrow is the current direction and the green arrows show
phase coherent paths on the surface encircling the flux quantum. (b) STM
image of a Ti/Au contacted 120 nm wide nanoribbon. (c) and (d) Magne-
toresistance at 2 K. The magnetic field at the resistance minima is shown
in the left inset. The right inset shows the fast Fourier transform of the
derivative dR/dB with labeling of the flux quantization h/e and 2/2e. With
permission, from Peng et. al [33].
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Chapter 5

NUMERICAL SIMULATION

Since analytic solutions for the Dirac equation are very rare (see introduc-
tion in the paper reprint: CHAPTER 10) efficient numerical algorithms are
called for. Their strengths and weaknesses mainly have to do with the dis-
cretization. It can be done either in real- or momentum-space, or a combi-
nation thereof. Real-space schemes, like finite difference or finite element
schemes, allow for an easy implementation of space- and time-dependent
mass and potential terms. In addition, real-space schemes avoid the Fourier
and inverse Fourier transform, but they are plagued by the so-called fermion
doubling problem [1, 2, 3]. Thus, in this chapter we focus on issues which
arise when the derivatives in the Dirac equation are approximated by fi-
nite difference expressions, especially the fermion doubling problem (see
also CHAPTER 3 about tight-binding models, where fermion doubling also
arises). The main result not only will be that fermion doubling can be
avoided, but the structure of the Dirac equation allows a staggering of the
grid in time and space which leads to an efficient explicit method (see paper
reprints CHAPTER 8 and 10).

5.1 Finite difference modeling

Finite difference (FD) modeling is the oldest and also the best understood
method for the numerical treatment of partial differential equations [4]. One
of the advantages of FD is that translation from the underlying partial dif-
ferential equation to a FD scheme is more or less straightforward. Their ac-
curacy and stability can be proved rigorously. However, it is also a fact that
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FD in many fields has been replaced by "more sophisticated" finite element
methods, finite volume methods, spectral methods, operator splitting meth-
ods etc. Nevertheless, there are also situations where finite difference meth-
ods are among the most efficient and widely used ones. The most prominent
one is the finite difference time domain (FDTD) method in computational
electromagnetics [5]. There, the clever utilization of the special structure of
the partial equations at hand, namely the Maxwell equations, makes this fi-
nite difference scheme very efficient. The trick is to compute the electric and
magnetic field variables in a space and time staggered fashion. Because the
time-stepping is explicit no linear algebra is needed in order to evolve the
solution. One gets optimal linear scaling, with the number of gridpoints.
The FDTD method is used for highly complex engineering problems and
excels especially when the simulation region is highly packed with inhomo-
geneous structures [6]. The ever growing computational resources probably
will not reduce its importance because together with them the demands re-
garding scaling behavior and parallelizability rather grows also.

For the Dirac equation the equal status of time and space suggests to
treat them on an equal footing. As will be shown below, this can be achieved
by staggering of the spinor components in space and time leading to a sim-
ple, explicit, and efficient algorithm.

5.1.1 Finite difference approximation of the first derivative
(and its problems)

We use the following notation for the discretization of a function on a reg-
ular grid: u(xj, tn) ≈ unj , where xj = j∆x with j ∈ Z, and tn = n∆t with
n ∈ N. For later reference, we introduce the translation operators

Etu
n
j := un+1

j , (5.1)

Exu
n
j := unj+1 , (5.2)

where their inverse are
E−1
t unj := un−1

j , (5.3)

E−1
x unj := unj−1 . (5.4)

With them, and the identity operator 11, one can write the first order accu-
rate, forward/backward difference operators as

δ±t := ±(E±1
t − 11)

∆t

, (5.5)
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δ±x := ±(E±1
x − 11)

∆x

. (5.6)

Analogously, the second order accurate, centered difference operators are
defined as

δ0
t :=

(Et − E−1
t )

2∆t

, (5.7)

δ0
x :=

(Ex − E−1
x )

2∆x

. (5.8)

For convenience we also introduce arithmetic averaging operators

a±t :=
(E±1

t + 11)

2
, (5.9)

a±x :=
(E±1

x + 11)

2
. (5.10)

On the grid one can define a discrete translation group where the wave
vector (frequency in space) kx is the creator of the translation

unj+1 = eikx∆xunj . (5.11)

Thus E±1
x corresponds to e∓ikx∆x . For the translation in time E±1

t one has
e±iω∆t , where ω is the frequency in time

un+1
j = e−iω∆tunj . (5.12)

With this, one immediately obtains the action of the operators in Fourier
space. The centered approximation leads to

δ0
x →

i

∆x

sin kx∆x , (5.13)

where kx ∈ (− kx
∆x
, kx

∆x
] on the grid. Thus, the difference expression gives zero

for a constant function but also for a function, oscillating with the maximal
frequency, which can be resolved by the grid. This can lead to additional
(spurious) solutions in the finite difference solution of a differential equation
(see fermion doubling problem SECTION 3.1.2). In the next section this
issue will be demonstrated using the advection equation for a prototypical
case. The forward/backward difference operator has the following action
in Fourier space

δ±x →
2i

∆x

e±ikx∆x/2 sin
kx∆x

2
, (5.14)
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Figure 5.1: The Fourier transform of centered difference operators shown
for the 2nd order, 4th order and 2th order accurate approximation and ∆ = 1.
There is a zero at 0 and π/∆ regardless, of the order of accuracy of the finite
difference operator.

δ±t →
2i

∆t

e∓iω∆t/2 sin
ω∆t

2
. (5.15)

For completeness, the averaging operator takes on the form

a±x → e±ikx∆x/2 cos
kx∆x

2
, (5.16)

a±t → e∓iω∆t/2 cos
ω∆t

2
. (5.17)

Higher order accurate centered approximations of the first derivative do not
solve the problem of having additional spurious solutions, see Fig. 5.1.

5.1.2 Prototypical case: The advection equation

The advection equation (or one-way wave equation) is the simplest trans-
port equation and writes as follows [4]

∂tu(x, t) = c∂xu(x, t) , (5.18)

with initial conditions u0(x) = u(x, 0) for x ∈ R. It has the characteristic
solution

u(x, t) = u0(x− ct) . (5.19)

Thus, the function given by the initial condition is simply propagated to the
right without changing the shape of the function. In other words it prop-
agates solutions which need not to be smooth or even continuous. It is
this behavior which constitutes a challenge in designing accurate numeri-
cal schemes for this equation, or hyperbolic equations in general.
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Since the forward-in-time and centered-in-space scheme is unconditionally
unstable, let us first consider a centered-in-space finite difference operator
together with Crank-Nicolson in time

δ+
t u

n
j = ca+

t δ
0
xu

n
j , (5.20)

or
un+1
j − unj
c∆t

=
un+1
j+1 − un+1

j−1

4∆x

+
unj+1 − unj−1

4∆x

. (5.21)

For constant coefficients (here the velocity c) and periodic boundary condi-
tions one can use von Neumann (Fourier) analysis to prove stability. One
transforms to Fourier space in the spatial variable and obtains the growth
of the amplitude of each Fourier mode. One gets un+1(kx) = λun(kx), where
λ is called the amplification factor. If |λ| ≤ 1, the scheme is stable. For the
Crank-Nicolson scheme one gets

λ =
1 + c∆t

2∆x
sin kx∆x

1− c∆t

2∆x
sin kx∆x

. (5.22)

|λ| = 1 regardless the ratio r = c∆t

∆x
, which means that the scheme is uncon-

ditionally stable. This is a property which only implicit schemes can have.
Explicit schemes are always limited in the size of the time step due to the
Courant-Friedrichs-Lewy (CFL) condition. A growth factor of |λ| = 1 also
implies that there is no amplitude error (dissipation).
But now comes the dark side of this scheme (arising from the centered-in-
space difference operator). Fourier transform in time, or simply using the
ansatz un+1

j+1 = ei(kx∆x−ω∆t)un(kx), leads to the dispersion relation

ω =
2

∆t

arctan

(
c∆t

2∆x

sin kx∆x

)
≈ c

∆x

sin kx∆x . (5.23)

It is plotted in Fig. 5.2. For the continuum advection equation (5.18) the
phase velocity

vph =
ω

k
= c , (5.24)

is equal to the group velocity

vg =
dω
dk

= c . (5.25)

Obviously this is not the case for the centered-in-space and Crank-Nicolson
in time discretization of the advection equation. For certain wave vectors
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Figure 5.2: Dispersion relation for the Crank-Nicolson in time and centered-
in-space discretization of the advection equation, compared to the linear
continuum disperison relation. Shown for c = ∆t = ∆x = 1.

the group velocity even is negative, which leads to parts of the solution
propagating in the wrong direction →, typical for spurious solutions (see
the fermion doubling problem, SECTION 3.1.2). This kind of errors are
known as dispersive errors. Even for smooth initial conditions, having only
wave numbers for which the dispersion relation is approximated accurately,
high wave numbers are induced by the finite computational precision of the
function on each grid point.
One has to be particularly careful when imposing boundary conditions. For
the continuum problem one is only allowed to impose boundary conditions
at the outgoing boundary. For the discretized case one requires boundary
conditions on both boundaries, because of the spurious solutions. In SEC-
TION 5.3 transparent boundary conditions will be derived.

It is not the purpose of this introduction to present all available finite dif-
ference schemes for the advection equation. Without claim of completeness
further stable methods are: Backward Euler, upwind, Lax-Friedrichs, Lax-
Wendroff, MacCormack, Leapfrog, and the Box scheme [4]. Some schemes
resemble the analytical characteristic solution without inducing any error
for a certain value of r = ∆t/∆x. The simplest scheme with this property is
the upwind scheme

δ+
t u

n
j = cδ−x u

n
j . (5.26)

In one time step the initial condition is shifted one spatial grid spacing to
the right, without disturbing its shape. Like in the continuum case, the dis-
persion relation in this case is ω = kx.

The next section shows that the Dirac equation can be seen as two cou-
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pled advection equations. Further, the occurrence of fermion doubling is
demonstrated, again using the example of the Crank-Nicolson scheme. By
using the upwind strategy the fermion doubling can be avoided for the 1D
chiral form (section 5.1.3). This strategy does not work in higher dimen-
sions. The discretization for the standard form leads to a staggered-grid
leap-frog scheme, which avoids fermion doubling and can be generalized to
the (2+1)D (paper reprint CHAPTER 9) and (3+1)D (paper reprint CHAP-
TER 12) case.

5.1.3 1D Dirac equation in chiral form: two advection equa-
tions coupled by the mass vs. standard form

By a unitary transformation of the 1D Dirac equation (3.8) it can be trans-
formed to the chiral form

U(−iσx∂x +mσz)U
−1 = −iσz∂x +mσx , (5.27)

where

U =

(
1 1
1 −1

)
. (5.28)

This is equivalent to two advection equations which are coupled by the
mass (

∂t − ∂x −im
−im ∂t + ∂x

)(
u
v

)
= 0 (5.29)

First let us consider the Crank-Nicolson (CN) in time and centered-in-space
discretization

δ+
t ψ

n
j − σza+

t δ
0
xψ

n
j − imσxa+

t ψ
n
j = 0 . (5.30)

Substitution with Eq. (5.13) and (5.17) gives the dispersion relation

ω = ± 1

∆t

arccos

[
16∆2

x(
1− cos(2kx∆x)

)
∆2
t + 2(m2∆2

t + 4)∆2
x

− 1

]
(5.31)

≈ ± 1

∆x

sin kx∆x ,

where both the space and time discretization lead to dispersive errors. In
the last line the limit ∆t → 0 is taken, revealing the error coming solely from
the space discretization. Since the domain for the wave vector on the grid is
kx ∈ (−π/∆x, π/∆x], this discretization leads to a non monotonic dispersion
relation: the so-called fermion doubling. In Fig. 5.4 the dispersion relation
is shown for m = 0 and ∆t = ∆x = 1. In the SECTION 5.3 we will see that
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this equation has four different solutions: a right- and a left-going physical
and a right- and left-going spurious mode, which all have to be taken into
account for the boundary conditions.

Using forward differences for the approximation of the spatial deriva-
tives of the upper spinor component and backward differences for the lower
one, solves this problem but leads to an unstable scheme.(

δ+
t − a+

t δ
−
x −ia+

t m
−ia+

t m δ+
t + a+

t δ
+
x

)(
unj
vnj

)
= 0 (unstable) . (5.32)

This strategy does work in the standard form of the Dirac equation (com-
pare to the tight-binding chain SECTION 3.1.1)(

δ+
t + a+

t m a+
t δ
−
x

a+
t δ

+
x δ+

t − a+
t m

)(
unj
vnj

)
= 0 , (5.33)

and gives the dispersion relation [3]

ω ≈ ± 2

∆x

sin
kx∆x

2
. (5.34)

Interestingly in the chiral form, with forward/backward differences in space,
the CN time averaging can be omitted(

δ+
t − δ−x −im
−im δ+

t + δ+
x

)(
unj
vnj

)
= 0 . (5.35)

It only leads to a stable explicit scheme for the special value r = 1 showing
the following dispersion relation

ω = ±arcsec

[
4(1 +m2∆2

x)

2(2 +m2∆2
x) cos kx∆x −

√
2m4∆4

x(−1− 2m2∆2
x + cos 2kx∆x)

]
.

(5.36)
For m = 0 this is equivalent to the dispersion relation of the continuum
problem ω = kx. In this case the scheme has the same dispersion relation
as the staggered-grid leap-frog scheme (applied to the standard form of the
Dirac equation), which will be introduced below. The later is stable for r ≤ 1
and can be more easily generalized to higher spatial dimension.

5.2 Leap-frog staggered-grid finite difference scheme

We have seen that the centered difference approximation is the reason for
fermion doubling in the discretization of the Dirac equation. Because a uni-
tary time evolution is required a forward/backward approximation only is
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a solution in one spatial dimension. In higher dimensions, one can solve the
problem by either incorporating the central point (adding a momentum de-
pendent mass, the Wilson term [7]), or by avoiding the existence of this point
(using a staggered grid [8]). The Wilson strategy leads to an implicit scheme.
We use the staggering strategy, which leads to an explicit scheme. The u-
component of the spinor is defined only on integer grid-points, whereas the
v-component is defined only on half-integer points. For the (1+1)D problem,
staggering only the space component is equivalent to the forward/back-
ward strategy (see SECTION 5.1.3) [3]. An additional staggering in time im-
proves the dispersion relation. The (1+1)D staggered grid scheme including
transparent boundary conditions is presented in the paper reprint CHAP-
TER 8.1 For more than one space dimension, staggering in space can be
performed in several ways. A scheme showing perfect dispersion along the
main axes, but showing a non monotonic dispersion in the diagonal direc-
tion, is shown in the paper reprint CHAPTER 9. A (2+1)D scheme and its
(3+1)D analogue which completely avoids the fermion doubling problem is
presented in CHAPTER 12.

5.3 Open boundary conditions

In a real-space finite difference scheme one has to implement appropri-
ate boundary conditions. Here, absorbing conditions (ABC) or transpar-
ent boundary conditions (TBC) are used. They cut the infinite domain of
the problem into a finite one by minimizing (ABC) or fully avoiding reflec-
tions (TBC) at the boundary. For this purpose there are two main strategies:
By wrapping an absorbing layer around the simulation region (leading to
ABCs) and feeding the boundary with data which it would have if there
was no artificial boundary (TBCs possible). For the derivation of the latter
there are again two possible ways. The first one is to get a solution of the
partial differential equation on the outer domain analytically. Afterwards,
a discretization of this TBCs is necessary [9]. In general this leads to reflec-
tions and in some cases to instabilities [10]. The alternative way, which leads
directly to discrete TBCs (DTBCs), is to discretize first and match the solu-
tions for the discrete problem [11, 13, 12]. In this section we show the latter
strategy on the example of the advection equation and the chiral Dirac equa-
tion, both for centered-in-space and Crank-Nicolson in-time discretization.
The derivation of TBCs for the leap-frog staggered-grid scheme we refer to
the paper reprint shown in CHAPTER 8.

1A Matlab code is shown in APPENDIX A.2
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To simplify the derivation of DTBCs following simplifying assumptions are
made

• The initial data ψ0(x) = ψ(0, x) is compactly supported inside the
computational domain.

• In each exterior domain the mass m(x, t) = m and potential V (x, t) =
V are constant in t and x.

5.3.1 DTBCs for the 1D advection equation

The 1D advection equation Eq. (5.1.2) with the centered-in-space and Crank-
Nicolson approximation in time Eq. (5.21) reads

un+1
j+1 − un+1

j−1

4∆x
+
unj+1 − unj−1

4∆x
−
un+1
j − unj
c∆t

= 0 . (5.37)

A Z-transformation, β(z) := Z(bn) =
∞∑
n=0

bnz
−n, in the discrete time domain,

use the shifting properties of the Z-transform,

Z(bn+1) =
∞∑
n=0

bn+1z
−n =

∞∑
n´=1

bn´z
−n´+1 = zβ(z)− zb0 ,

and assume b0 = 0 (the initial data are compactly supported on the interior
domain), gives

(z + 1)
ζj+1(z)− ζj−1(z)

4∆x
− (z − 1)

ζj
c∆t

(z) = 0 . (5.38)

This is a simple difference equation of second order:

ζj+1 −
4∆x

c∆t

z − 1

z + 1
ζj − ζj−1 = 0 (5.39)

which can be solved with the ansatz:

ζj+1(z) = λ(z)ζj(z) , (5.40)

and the characteristic polynomial has the solution:

λ±(z) =
2∆x

c∆t

z − 1

z + 1
±

√(
2∆x

c∆t

)2(
z − 1

z + 1

)2

+ 1 . (5.41)
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It shows up that there are two solutions which are propagated by the nu-
merical scheme, the physical and the numerical one, due to the fermion
doubling. According to this we have to deal with one solution traveling
rightward (plus sign in 5.41), which has to be computed by the boundary
on the right side and one additional numerical (spurious) mode traveling
in the wrong direction which has to be processed on the left boundary. The
condition for λ is that the solution of the difference equation has to decay
towards infinity in the outside regions. Insertion of the proper solution λ in
the Ansatz (5.40) gives us the condition for the left and right boundary

left TBC: ζ0(z) = λ+(z)ζ1(z) (5.42)

right TBC: ζL(z) = λ−(z)ζL−1(z) (5.43)

All work now remaining is to do the inverse Z-transformation back to the
discrete time domain. The product in Z-space leads to a convolution in time.
According to this the of the TBC on the right boundary in "Dirichlet form"
is

unL =
n∑
k=0

l
(n−k)
right u

k
L−1 (5.44)

for implementation with the finite difference scheme it can also be written
in "von Neumann form":

unL − l
(0)
rightu

n
L−1 =

n−1∑
k=0

l
(n−k)
right u

k
L−1 (5.45)

In general, the inverse Z-transformation of λ (eq.: 5.41) can not easily be
done because it is a non-rational function in z. The Z-transformed solutions
difference equations discussed below will be even more complicated and
must be treated numerically. Due to this, no special effort will be made here
to find an analytical inverse (or approximation) in this particular case. A
series expansion by first replacing z (in eq.: 5.41) by 1/z using the symbolic
math program Mathematica is a pragmatic and efficient way of getting the
desired coefficients. From the numerical point of view (to avoid subtractive
cancellation errors) it is preferable to transform z+1

z
λ(z). This corresponds

to the summed coefficients s(n) := l(n) + l(n−1) for n ≥ 1 and s(0) := l(0). In
this case l(n) behaves like const ∗ (−1)n for large n (this was also done in
the Schrödinger case [11]). The decay in discrete time of s(n) can be seen in



60

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5
l

n

Figure 5.3: Coefficients for the TBC’s of the advection equation s
(n)
right with

∆t = 0.005 and ∆x = 0.01 with centered-in-space and Crank-Nicolson in
time discretization.

figure (5.3.1). The coefficients for the left boundary show up to be the same
but multiplied with (−1).

5.3.2 DTBCs for the (1+1)D Dirac equation with centered-
in-space and Crank-Nicolson in time discretization

One has the same situation as in the prototype case, SECTION 5.3.1, now
with two physical and two spurious modes, V = 0, and m is arbitrary, but
constant. CN discretization in time and Z-transformation in the discrete
time variable gives the result(

∂xu(z, x)
∂xv(z, x)

)
=

(
+ 2

∆t
z−1
z+1

+im

−im − 2
∆t

z−1
z+1

)(
u(z, x)
v(z, x)

)
. (5.46)

At this stage of the calculation it would be possible to diagonalize the sys-
tem and separate the left and right-decaying eigenmodes corresponding
to the two eigenvalues. But afterwards one must discretize the continu-
ous TBC´s. This leads to spurious reflections and eventually to stability
problems. In our treatment we perform the discretization first. For this
purpose we use the centered difference expression of the space derivative
∂xw −→ wj+1−wj−1

2∆t
.
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(
1 0
0 1

)(
uj+1(z)
vj+1(z)

)
+

(
−4∆x

∆t
z−1
z+1

−2im∆x

+2im∆x 4∆x z−1
z+1

)(
uj(z)
vj(z)

)
(5.47)

−
(

1 0
0 1

)(
uj−1(z)
vj−1(z)

)
= 0 .

We can rewrite this system of two difference equations of second order into
four difference equations of first order:

uj+1(z)
vj+1(z)
uj(z)
vj(z)

 =


4∆x
∆t

z−1
z+1

2im∆x 1 0

−2im∆x −4∆x
∆t

z−1
z+1

0 1

1 0 0 0
0 1 0 0


︸ ︷︷ ︸

T


uj(z)
vj(z)
uj−1(z)
vj−1(z)

 , (5.48)

where T has the eigenvalues:

λ±,± = ± 1√
2

√
F (z)±

√
F (z)− 4 , (5.49)

with

F (z) := 2 + 4m2∆x2 +

(
4∆x

∆t

)2(
z − 1

z + 1

)2

. (5.50)

Let us think about the meaning of the solutions which correspond to four
modes in the numerical simulation. One can easily see that the λ−,± are
highly oscillating in space with the maximum lattice wave-number. They
give no smooth physical solution and are therefore called the spurious ones.
On the other side the λ+,± are slowly varying in space and correspond to the
physical solution of the continuum problem. The occurrence of this multi-
ple solutions can be understood by looking at the dispersion relation (Fig.:
5.3.2). Furthermore, there are eigenvalues which lead to a solution of the
difference equation decaying (growing) in the outside regions, towards in-
finity. Now we transform to an eigensystem, where we can separate the
modes in the numerical scheme

U−1~ζj = U−1TU︸ ︷︷ ︸
Λ

U−1~ζj−1 , U = (. . . , ~vν , . . .) , (5.51)

~̃
ζj = Λ

~̃
ζj−1 , Λ =


λ−,−

λ+,−
λ−,+

λ+,+

 . (5.52)
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Figure 5.4: Dispersion relation of the centered-in-space and CN in time
scheme for the (2+1)D Dirac equation using V = 0, m = 1 with ∆t = 0.1
and ∆x = 0.1 in comparison to the dispersion of the continuous problem
(the dispersion is mirror symmetrical for k −→ −k and ω −→ −ω so only
k > 0, ω > 0 is shown.)

The ~vν ’s are the eigenvectors of T. The matrix U represents the unitary
matrix which diagonalizes the system. The eigenvalues have the following
correspondence to the solutions of the difference equation:

• λ−,− . . .spurious right-decaying

• λ+,− . . .physical right-decaying

• λ−,+ . . .spurious left-decaying

• λ+,+ . . .physical left-decaying

One allows only right-decaying solutions on the right boundary and, re-
spectively, left-decaying solutions on the left boundary. To accomplish this
one projects out the "wrong" solutions to obtain

Λleft =


0

0
λ−,+

λ+,+

 , Λright =


λ−,−

λ+,−
0

0

 .

(5.53)



63

Finally, one gets the DTBC´s for the left and right boundary in Z-transformed
form

left TBC:
~ζ0 = U−1Λ−1

leftU︸ ︷︷ ︸
Bleft(z)

~ζ1(z) , (5.54)

right TBC:

~ζL(z) = UΛrightU
−1︸ ︷︷ ︸

Bright(z)

~ζL−1(z) . (5.55)

After inverse Z-transformation one gets the nonlocal-in-time DTBCs in Dirich-
let form

(
1− a(0)

right

)
unL − b

(0)
rightv

n
L − c

(0)
rightu

n
L−1 − d

(0)
rightv

n
L−1 (5.56)

=
n−1∑
k=0

(
a

(n−k)
right u

k
L + b

(n−k)
right v

k
L + c

(n−k)
right u

k
L−1 + d

(n−k)
right v

k
L−1

)
.

The numerical evaluation of the coefficients (again with a series expansion
using Mathematica in powers of 1/z) shows that b(n)

right ≡ 0. The other ones
show a behavior in time which can be seen in the figures (5.3.2–5.3.2).

5.3.3 DTBCs for the (1+1)D Dirac equation with the leap-
frog staggered-grid scheme

The derivation of DTBCs for the 1D Dirac equation within the leap-frog
staggered-grid discretization is somewhat easier. This is because on the
left boundary there is only a coupling of the u-component of the spinor to
the outside region. On the right boundary only the v-component couples a
point lying outside of the computational domain. The derivation is shown
in the paper reprint CHAPTER 8 and a Matlab code can be found in the
APPENDIX A.2.
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Figure 5.5: Coefficients for DTBC of centered-in-space CN in time scheme
of the (2+1)D Dirac equation, using V = 0, m = 1: a(n)

right with ∆t = 0.1 and
∆x = 0.1.
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Figure 5.6: Coefficients for DTBC of centered-in-space CN in time scheme
of the (2+1)D Dirac equation, using V = 0, m = 1: c(n)

right with ∆t = 0.1 and
∆x = 0.1.
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Figure 5.7: Coefficients for DTBC of centered-in-space CN in time scheme
of the (2+1)D Dirac equation, using V = 0, m = 1: d(n)

right with ∆t = 0.1 and
∆x = 0.1.

5.3.4 DTBCs for the (2+1)D Dirac equation with the leap-
frog staggered-grid scheme

For the physical simulations of the (2+1)D Dirac equation, with the leap-
frog staggered-grid scheme as in the paper reprints CHAPTER 10 and 11,
we have used absorbing boundary conditions in the form of an absorbing
layer. This issue is discussed in detail in the paper reprint CHAPTER 9.
Here, extension of the (1+1)D TBCs CHAPTER 8 to higher dimensions is
sketched. For a quasi (1+1)D system, having finite size or periodic boundary
conditions in one spatial direction, one can apply a Fourier transform in this
direction. Then, one obtains uncoupled (1+1)D systems for each transversal
wave number. They then can be treated separately with the 1D DTBCs in
CHAPTER 8. Here, this procedure is sketched for the scheme presented in
CHAPTER 9. Discrete Fourier transform in y-direction gives the scheme for
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a single transverse mode p

un+1
j,p − unj,p

∆t
+ i(m− V )

un+1
j,p + unj,p

2
(5.57)

+
(1 + eip∆y)(vnj,p − vnj−1,p)

2∆x
− i

(1− eip∆y)(vnj,p + vnj−1,p)

2∆y
= 0 ,

vn+1
j,p − vnj,p

∆t
− i(m+ V )

vn+1
j,p + vnj,p

2

+
(1 + e−ip∆y)(un+1

j+1,p − un+1
j,p )

2∆x
+ i

(e−ip∆y − 1)(un+1
j+1,p + un+1

j,p )

2∆y
= 0 .

By rearranging we get an equation similar to Fig. (8.23)

un+1
j,p − unj,p

∆t
+ i(m− V )

un+1
j,p + unj,p

2
+
f(p)vnj,p − f ∗(−p)vnj−1,p

2∆x∆y
= 0 , (5.58)

vn+1
j,p − vnj,p

∆t
− i(m+ V )

vn+1
j,p + vnj,p

2
+
f(−p)unj+1,p − f ∗(p)unj,p

2∆x∆y
= 0 ,

where

f(p) =
[
∆y − i∆x+ (∆y + i∆x)eip∆y

]
. (5.59)

The steps for the derivation of the DTBCs are analogous to CHAPTER 8.4.

For the fully 2D case one idea is to Fourier transformation only the spinor-
data at the boundary like it is sketched in Fig. 5.8. Then one can implement
the 1D DTBCs for each transverse Fourier mode at the boundary. In a fi-
nal step one applies an inverse Fourier transform on the obtained data to
supply them to the scheme in real-space.

Here, I want to emphasize that this procedure was not tested numeri-
cally or even proven rigorously. It is expected to work perfectly if no data
loss in the Fourier transform occurs. Unfortunately this is only the case if
the solution, e.g a wave-packet impinges only upon one boundary type, for
example the vertical one, at once. If this is not so, the information of the
wave packet which has left across the other boundary, in this case the hori-
zontal one, can get lost. In principle it is stored in all the past values of the
spinor on the boundary, assuming, for example, constant coefficients in the
outside domain.

Another strategy might be to apply a real-space operator-splitting algorithm
for the values at the boundary. Such a method was proposed by Gourdeau
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Figure 5.8: The sketch of an idea for the implementation of ABCs into the
(2+1)D scheme. In the exterior and on the boundary translational invariance
is assumed. Thus, by Fourier transform the problem on the boundaries can
be transformed into effective 1D problems for all transverse wave numbers
separately. Computing the DTBCs for them and transforming back to real-
space gives ABCs for the fully (2+1)D real-space scheme.

et al. [14], where the Dirac equation is transformed into advection equa-
tions. Then the method of characteristics can be used for the solution and
can be applied one after another in x- and y direction. For the 1D advection
equation, using characteristic solutions, the boundary conditions are trivial.
E.g. in one time-step one simply shifts the solution one space-step towards
the boundary. This operator splitting in x and y induces a second Dirac cone
at the Brillouin zone corners. In fact this method has the same dispersion
relation as one of our schemes (shown in CHAPTER 9). Thus spurious so-
lutions, traveling in the wrong direction, can occur again when kx and ky
are both large. One can conclude, that the resulting ABCs are only good for
small wave-numbers.

In practice, e.g. for the simulations shown in CHAPTER 9, 10 and 11,
an absorbing boundary layer consisting of an imaginary potential, has been
found to be sufficient for avoiding spurious back reflection into the simula-
tion domain.
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Chapter 6

THE DYNAMICS OF DIRAC FERMIONS ON TOPO-
LOGICAL INSULATOR SURFACES

For a trivial metallic 2D electron gas coherent reflection at impurities with
increasing disorder strength drives the system towards an Anderson local-
ization [1]. The situation is completely different for quasiparticles on the
surface of a TI. Due to spin momentum locking the electrons wave func-
tion picks up a Berry phase when it is reflected. If time-reversal symmetry
holds, the two possible backscattering paths (clockwise and counterclock-
wise) interfere destructively. For this reason, such a quasiparticle cannot
be localized, as long as the energy gap of the 3D bulk is not closed. This
is called the weak antilocalization phenomenon [3]. The coherence length
for this quasiparticles is rather large [2]. It should make it possible to ex-
ploit coherent phenomena in a hundreds of nm lengthscale. Thus, the TI
allows "relativistic physics" in a table-top experiment. As shown in SEC-
TION 3.22, the effective theory for these quasiparticles near the Dirac point
is the (2+1)D Dirac equation. Among the rich dynamics, characteristic for
these 2D Dirac fermions, presented in this chapter is: the general dynamics
of a free 2D Dirac fermion (section 6.2.1), the dynamics in external poten-
tials (e.g. the Klein step and superlens-focusing (SECTION 6.2.2)), and the
dynamics under the influence of external magnetization (SECTION 6.2.3).
More about the latter and how magnetic texturing can be exploited for a
potential device application will be discussed in the CHAPTERS 10 and 11.

For the numerical simulations we have developed two slightly different fi-
nite difference schemes, which are shown in the paper reprints CHAPTER
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(a) (b)

Figure 6.1: Rotation of a spin when an electron on a topological insulator
is encircling a magnetic impurity clockwise (a) or anticlockwise (b). The
overall phase difference, which their wave function picks up, is π, leading
to destructive interference.

9 and 11.

6.1 Special properties of the Dirac fermion on the
topological insulator

One essential property of the Dirac fermions on the TI is the spin momen-
tum locking (for experimental evidence see [4] and Fig. 4.3). Those who are
familiar with condensed matter physics will have recognized the Hamil-
tonian (3.22) as the Rashba Hamiltonian. In this case, it is the dominant
k-dependent term and therefore there is spin-orbit locking

HSO = v(σxky − σykx) . (6.1)

In Eq. (6.1) the Pauli vector σ is proportional to the spin and the spin density
is given by

S(x) = ψ(x)†σψ(x) , (6.2)

whereas the momentum density (or respectively the current) is given by

j(x) = vS(x)× ẑ , (6.3)

and the probability or charge density is given by

ρ(x) = ψ(x)†ψ(x) . (6.4)

The suppressed backscattering can be understood by simple arguments. Be-
cause of spin momentum locking the spin-1/2 particle, encircling an impu-
rity 180o clockwise (counterclockwise), picks up a phase of π/2 (-π/2). This
gives an overall phase of π (a minus sign for the wave-function) for this
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time-reversal symmetry related paths. This leads to destructive interfer-
ence and prohibited backscattering. If time-reversal symmetry is broken,
for example by a local magnetic moment, destructive interference no longer
occurs.

An external magnetic perturbation with magnetization normal to the sur-
face opens a gap leading to a Dirac Hamiltonian with mass [3, 5]. This is-
sue will be discussed in detail in SECTION 7.2. Inhomogeneous mass tex-
tures lead to chiral (one-way) electronic domain-wall channels which can
be exploited to utilize complex networks on the surface of the TI (see paper
reprints CHAPTERS 10 and 11).
The possibility of introducing a mass texture is of huge importance for wave-
function engineering, since an electric potential cannot confine a Dirac par-
ticle (this is one of the major problems in single-layer graphene electronics
[6]). A Dirac fermion simply goes trough a potential barrier regardless of its
hight by propagating as an electron state on one side of the barrier and as
a hole state on the other side. This is known as Klein tunneling and will be
shown in SECTION 6.2.2.

6.2 Numerical examples for Dirac wave packet dy-
namics

In this section, some examples of the Dirac wave packet dynamics on the
topological insulator are shown. The simulations are done with the (2+1)D
scheme, showing a single Dirac cone, presented in CHAPTER 12.1 The
Fermi velocity is chosen to be v = 6.2 ∗ 105m/s [3] and the ratio ∆t =
∆x/(v

√
2).

6.2.1 Dynamics of the free Dirac fermion on the topological
insulator

As will be discussed in more detail in the SECTION 6.2.3 a mass term can be
introduced for the Dirac fermions on the topological insulator by breaking
time-reversal symmetry

HSO = v(σxky − σykx) +mσz . (6.5)

1A Matlab code is shown in APPENDIX A.3
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Figure 6.2: Dispersion relation of the 2D Dirac fermion with a gap due to a
mass term m σz.

Solving the eigenvalue problem gives the dispersion relation

ω(kx, ky) = ±
√
v2k2

x + v2k2
y +m2 . (6.6)

The phase velocity is

vph =
ω

|k|
(6.7)

and the group velocity is

vg =
dω
dk

. (6.8)

The mass term opens a gap of 2m in the Dirac spectrum, as is shown in
Fig. 6.2. Snapshots of a wave packet propagation are shown in Fig. 6.3
and 6.4. The initial wave packet has an upper component which is chosen
to be Gaussian and a lower component of the spinor which is zero. This
corresponds to a mean value for the wave-number in x- and y-direction of
(kx, ky) = (0, 0). The mass-less case of the Dirac equation is equivalent to the
wave equation (modeling a spring-mass system), which can be seen most
easily in the chiral form 5.29. The group velocity is constant and equal to
the phase velocity vg = vph = v. As a consequence, the whole solution leaves
the starting point with constant speed (Fig. 6.3). The mass term introduces
a coupling of the right- and the left-chiral mode. This results in a group
velocity vg ≤ v. It can be even zero if there is a component k = 0 in the initial
condition. Then the amplitude remains finite in the center of the simulation
region (see Fig. 6.4).
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Figure 6.3: Wave packet propagation of an initial wave packet with a Gaus-
sian upper component and a zero lower component of the spinor. In the four
successive snapshots at tn = 0, 40, 80, 120 the probability density is shown
in gray-scale and m = 0.

In general, the a wave packet can have a center wave number k = (kx, ky).
The shift in the mean wave number is equivalent to a modulation of the ini-
tial Gaussian wave packet.

ψ0 =

(
u
v

)
exp

[
− (x− x0)2

2b2
x

− ikxx

]
exp

[
− (y − y0)2

2b2
y

− ikyy

]
. (6.9)

To reveal this phase information, the following plots show the real part of
the upper spinor component by a color/brightness variation, whereas the
probability density is shown as a brightness saturation.

6.2.2 Dynamics with external scalar potential: Klein-step and
superlens-focusing

Rather unfamiliar behavior of a wave packet occurs at a high potential bar-
rier. In the massless case, at this so-called Klein-step, the wave packet is not
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Figure 6.4: Wave packet propagation of an initial wave packet with a Gaus-
sian upper component and a zero lower component of the spinor. In the four
successive snapshots at tn = 0, 40, 80, 120 the probability density is shown
in gray-scale and m = 0.04 eV.

reflected, but propagates as electron state on one side of the step and as hole
state at the other side (see Figs. 6.6 and 6.7). The phase velocity and also
the group velocity for the hole state is opposite to the electron state. It leads
to a negative angle of refraction. This behavior can be exploited to obtain
a superlens effect, as can be seen in Fig. 6.8. A potential of V = 0.1 eV is
applied in a region forming a middle barrier. The wave packet has a mean
energy of V = 0.05 eV leading to a propagation as a hole state and negative
refraction at the middle barrier.

6.2.3 Dynamics in external magnetization: Landau orbits and
domain-wall fermions

The coupling of the Dirac fermion to an external magnetic field enters the
effective Hamiltonian in two places. First it influences the orbital part of the
equation, by adding to the momentum, in form of a vector potential Π =
p + e

c
A(x, y, t). Secondly, it couples to the spin σB. More simulations with
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Figure 6.5: Propagation of an initial Gaussian wave packet. In the four suc-
cessive snapshots at tn = 0, 50, 100, 150 the probability density is shown as
brightness saturation and the phase is encoded in the color/brightness vari-
ation. Here, the mean energy of the wave packet is chosen to be E = 0.07 eV
and m = 0.04 eV. In this case the fine ripples move with phase-velocity and
are slightly faster than the whole wave packet which moves with group-
velocity. This is indicated by the black arrows.

inhomogeneous external potential, and in and out of plane magnetic field,
can be found in the next SECTION 7.2 and in the paper reprints CHAPTER
9, 10 and 11.
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Figure 6.6: Initial Gaussian wave packet impinging a Klein step at 90o. In
the six successive snapshots at tn = 0, 50, 100, 150, 200, 250 the probability
density is shown as brightness saturation and the phase is encoded in the
color/brightness variation. Here, the mean energy of the wave packet is
chosen to be E = 0.1 eV, m = 0 eV and V = 0.2 eV at the left side of the step
and V = 0.2 eV at the right side, respectively. The wave packet propagates
as electron state on the left-hand and as hole state on the right-hand side.
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Figure 6.7: Initial Gaussian wave packet impinging a Klein step at 37o to the
lot. In the six successive snapshots at tn = 0, 50, 100, 150, 200, 250 the proba-
bility density is shown as brightness saturation and the phase is encoded in
the color/brightness variation. Here, the mean energy of the wave packet
is chosen to be E = 0.05 eV, m = 0 eV and V = 0.1 eV at the left side of
the step and V = 0.2 eV at the right side respectively. At the right side the
phase velocity and the group velocity are opposite to one other, leading to
a negative angle of refraction.
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Figure 6.8: The negative angle of refraction in the metamaterial-like mid-
dle barrier V = 0.1eV leads to superlens-focusing. This is shown for six
successive snapshots at tn = 40, 80, 120, 160, 200, 240. The probability den-
sity is shown as brightness saturation and the phase is encoded in the col-
or/brightness variation.
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Chapter 7

TOPOLOGICAL DEFECTS: DOMAIN WALL FERMIONS
AND VORTEX ZERO MODES

As already mentioned in the introduction CHAPTER 1, the development of
topological band and field theory was a great success regarding the under-
standing and prediction of a completely new state of matter. The proper-
ties of this topological matter are fully determined by symmetry principles.
These are the time-reversal, particle-hole, and chiral symmetry. They lead
to 10 different Altland-Zirnbauer symmetry classes for the Bloch and Bloch
Bogoliubov de Gennes Hamiltonians (BdG) [1]. The symmetry classes of
the bulk material, together with its underlying dimension, fully determine
the topological invariants [2]. These in turn, due to bulk boundary corre-
spondence, are sufficient to determine the occurrence, or non-occurrence,
of symmetry protected gap-less surface states [2, 4]. Within this classifica-
tion one can also describe D dimensional defects within a d dimensional
Hamiltonian. A D dimensional defect in real space can be enclosed by a
D = d−D− 1 dimensional surface. It is a general result that the topological
invariant, and thus the properties of the defect, only depend on δ = d−D [3].
This can be arranged in a table given by the symmetry class and the dimen-
sion of the Hamiltonian. There are only four different entries: 0 for the triv-
ial case showing no topological state at the defect, Z or 2Z for odd or even
Chern numbers respectively, and Z

2. For systems having a Chern number
there emerge chiral Dirac or Majorana defect states, whereas in the case of a
Z

2 number they are helical. Furthermore, for a Bloch Hamiltonian they are
Dirac like states, whereas for the particle-hole symmetric BdG Hamiltonian
they are Majorana states. In this classification, the surface (D=2 defect) of
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the time-reversal invariant 3D bulk TI (being in the symmetry class AII) is
classified by a Z2 topological invariant and therefore shows a helical surface
state. The time-reversal breaking d = 2 bulk state of the integer QHE has a
D=1 defect with an odd Chern number showing chiral nature [3]. Here, we
are interested in D = 0 (skyrmions) and D = 1 (domain-wall fermions) for
the 3D bulk topological insulator (d = 3).

7.1 Domain-wall fermions on topological insula-
tors and some potential applications

Pedagogically, the domain-wall fermions can be described as a bound state
on the line, where the mass parameter of the effective surface Dirac Hamil-
tonian Eq. (6.5) changes its sign. This is sketched in Fig. 7.1. The analytical
solution of the quasi-1D chiral Dirac fermion state is described and used in
the paper reprints CHAPTER 10 and 11. These one way channels can be
exploited to build complex Dirac fermion networks, when combined with
beam-splitters, forming at domain-wall crossings. Interference can be tuned
by an external potential allowing a transistor-like setup, see CHAPTER 10.
For the coating of the topological insulator with a thin magnetic film a free
energy minimization gives a realistic mass texture (see CHAPTER 10 and
11).

In the experiment there are several possibilities for generating a current
in the chiral channels. Besides electric contacts, tunneling from a STM tip
and photo-excitation can be used. When the Fermi energy lies within the
surface gap, permanent current in the 1D channels flows. This may be an
unwanted property. An alternative is a lower (or higher) Fermi level and
performing an excitation into the channels which is locally restricted in time
and/or space. Then, as shown in Fig. 7.2, the lower (or alternatively upper)
band-edge of the semiconductor contacts has to lie at the same energy as the
1D chiral states.

The lifetime of the 1D carriers are expected to be longer than the runtime
in the chiral 1D paths, because of limited relaxation channels. The coherence
length of the 2D surface states can be measured by Aharonov-Bohm oscil-
lations to be in the µm range at low temperatures. The coherence length of
the 1D channels may even be longer. When coherence is not required, and
ballistic transport is sufficient, devices can have "macroscopic" size. This is
the case for the beamsplitter (see CHAPTER 11) whose working principle,
however, is local. Due to the close relation of the 1D chiral channels to the
recently observed quantum anomalous Hall effect states, ballistic transport
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Figure 7.1: (a) 3D heterostructure consisting of a topological insulator and
two ferromagnetic insulators with opposite perpendicular magnetization
relative to the topological insulator surface. In this setup a quasi-1D, one-
way, chiral Dirac fermion channel state emerges. (b) dispersion of the chan-
nel state. (c) mass of the 2D helical Dirac fermion on the topological insula-
tor changing its sign perpendicular to the channel, leading to the quasi-1D
channel state.

can be expected over several hundreds of µm [5].

7.2 Zero modes and bound states on topological
insulators induced by magnetic vortex struc-
tures

Another defect on the TI surface which shows interesting physics, and could
find application in TI devices is the mass vortex. Zero modes and bound
states localized at in-plane magnetic vortices have been found analytically
[6]. These solutions show spin polarized current around the vortex center.
The standard representation for the Dirac equation was used, where the
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Figure 7.2: Possible alignment of source and drain bands relative to the TI
bulk states, the 2D surface states and the 1D chiral states which allow e.g.
optical excitation into the 1D chiral channels.

Pauli matrices represent the momentum direction Eq. 2.36.1 In order to
obtain the solution, the problem was written in polar coordinates. The in-
plane vortex mass structure in polar coordinates can be written using the
unit radial vector r̂ and the unit angular vector φ̂.

M = Mrr̂ +Mφφ̂ (7.1)

with
Mr = M cosφo , Mφ = M sinφo . (7.2)

For φo = ±π/2 one gets a curly type mass vortex, whereas φo = 0 and φo = π
corresponds to hedgehog configurations. The effective model Hamiltonian
Eq. 2.36 for the TI surface Dirac fermions in polar coordinates becomes

H = −i~vF

(
0 e−iφ

(
∂
∂r
− i

r
∂
∂φ
− Mφ−iMr

~vF

)
eiφ
(
∂
∂r

+ i
r
∂
∂φ

+
Mφ+iMr

~vF

)
0

)
(7.3)

The product ansatz

φ(r) =

(
eimφχ1(r)

ei(m+1)φχ2(r)

)
(7.4)

gives (
d

dr
+
m+ 1

r
− Mφ − iMr

~vF

)
χ2(r) = i

E

~vF
χ1(r) , (7.5)

1Another representation, where they directly correspond to the spin, is more frequently
used in the literature [4] (see (3.22) the comment below it).
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(
d

dr
− m

r
+
Mφ + iMr

~vF

)
χ1(r) = i

E

~vF
χ2(r) . (7.6)

For E = 0 the differential equations decouple. For a mass vortex which is
oriented clockwise Mφ = M one gets the zero-mode solution

ψ(t, φ) = al

(
0
1

)
1

rl+1
e
− M

~vF ei(l+1)φ , l = 0,±1,±2, . . . . (7.7)

For a counterclockwise oriented mass vortex Mφ = −M one gets

ψ(t, φ) = bl

(
1
0

)
rle
− M

~vF eilφ , l = 0,±1,±2, . . . . (7.8)

al and bl are normalizing constants and can be found in [6]. A radial com-
ponent of the mass vortex enters the solution as an imaginary mass term in
the solution [6].

Here, we use the time dependent scheme (CHAPTER 12 for the 2+1D
case), to show the stationary solution (7.7) for different angular momentum
quantum number l = 0, 1, 2, 3, 4, 5 Fig. 7.3. For all simulations with the
mass vortex we use a magnitude of M = 50 meV. In Fig. 7.4 a quench
from a purely radial vortex configuration to one where the magnetization is
tilted slightly is shown. We choose a sudden tilt of 0.2π, which is enough
to let a significant part of the probability density vanish to infinity, but let a
remainder be bound to the vortex.

For the E 6= 0 case the problem is equivalent to that of a 2D hydro-
gen atom. The general solution, dependent on the energy quantum number
n and the angular momentum number l is given by hypergeometric func-
tions [6]. In Figs. 7.5 and 7.6 we show the scattering of a Gaussian wave
packet having the mean energy E = 2M . In Fig. 7.5 the impact parameter
is positive b = 100 nm corresponding to clockwise direction of the current,
whereas the magnetization prefers anticlockwise current. This leads to a re-
pulsing behavior (positive scattering angle). In Fig. 7.6 the same setup is
shown with b = −100 nm, leading to attractive behavior.

Complex structures, consisting of vortices and domain-walls, are con-
ceivable and will be an interesting subject to study for future studies.
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Figure 7.3: Spin polarized vortex zero modes on the topological insulator
surface, shown for the angular momentum number l = 0, 1, 2, 3, 4, 5. The
probability density is shown as brightness saturation and the phase is en-
coded in the color/brightness variation. The black arrows show the mass
vortex.
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Figure 7.4: Spin polarized vortex zero mode l = 5 on the topological insula-
tor surface after suddenly tilting the mass vortex φo = π/2→ φo = π/2+0.2π
at t = 0, giving it a radial component. In the six successive snapshots at
tn = 0, 100, 200, 300, 400, 10000 the probability density is shown as bright-
ness saturation and the phase is encoded in the color/brightness variation.
The black arrows show the mass vortex. Part of the probability density van-
ishes to infinity, whereas the remainder is localized at the vortex.
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Figure 7.5: Dirac fermion scattered on a mass vortex with magnitude m =
50 meV, having the vortex core at (500, 500) nm. The wave packet has the
mean energy of E = 100 meV and an impact parameter of b = 100 nm. In
the six successive snapshots at tn = 0, 120, 240, 360, 480, 600 the probability
density is shown as brightness saturation and the phase is encoded by the
color/brightness variation. The black arrows show the mass vortex. The
mass vortex acts repulsive, because it prefers an anticlockwise direction of
the current.
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Figure 7.6: Dirac fermion scattered on a mass vortex with magnitude m =
50 meV, having the vortex core at (500, 500) nm. The wave packet has the
mean energy of E = 100 meV and a impact parameter of b = −100 nm. In
the six successive snapshots at tn = 0, 120, 240, 360, 480, 600 the probability
density is shown as brightness saturation and the phase is encoded by the
color/brightness variation. The black arrows show the mass vortex. The
mass vortex acts attractive, because it prefers an anticlockwise direction of
the current.
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Chapter 8

PAPER REPRINT:
A DISPERSION AND NORM PRESERVING FI-
NITE DIFFERENCE SCHEME WITH TRANSPAR-
ENT BOUNDARY CONDITIONS FOR THE DIRAC
EQUATION IN (1+1)D

Journal of Computational Physics 256 (2014)
(in press)
http://dx.doi.org/10.1016/j.jcp.2013.09.022

R. Hammer, W. Pötz, and A. Arnold

A finite difference scheme is presented for the Dirac equation in (1+1)D. It can han-
dle space- and time-dependent mass and potential terms and utilizes exact discrete
transparent boundary conditions (DTBCs). Based on a space- and time-staggered
leap-frog scheme it avoids fermion doubling and preserves the dispersion rela-
tion of the continuum problem for mass zero (Weyl equation) exactly. Considering
boundary regions, each with a constant mass and potential term, the associated DT-
BCs are derived by first applying this finite difference scheme and then using the Z-
transform in the discrete time variable. The resulting constant coefficient difference
equation in space can be solved exactly on each of the two semi-infinite exterior do-
mains. Admitting only solutions in l2 which vanish at infinity is equivalent to im-
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posing outgoing boundary conditions. An inverse Z-transformation leads to exact
DTBCs in form of a convolution in discrete time which suppress spurious reflec-
tions at the boundaries and enforce stability of the whole space-time scheme. An
exactly preserved functional for the norm of the Dirac spinor on the staggered grid
is presented. Simulations of Gaussian wave packets, leaving the computational do-
main without reflection, demonstrate the quality of the DTBCs numerically, as well
as the importance of a faithful representation of the energy-momentum dispersion
relation on a grid.

8.1 Introduction

We start out with a brief summary regarding important properties of the
Dirac equation, its role played in physics, existing numerical schemes for its
solution, and the issue of open boundaries.

8.1.1 The Dirac equation

Next to its fundamental role in relativistic quantum mechanics and field
theory, which provide the foundation of modern nuclear and high energy
physics [1, 2], the Dirac equation has received a rapidly growing impor-
tance in condensed matter systems as well. Especially, in the context of the
recent experimental realization of graphene [3], 2D and 3D topological in-
sulators [4, 5], and optical lattices [6, 7, 8] the Dirac equation describes the
underlying physics as an effective field theory. Historically it was proposed
by Dirac with his ingenious idea of linearizing the square root of the rel-
ativistic energy momentum relation by the introduction of Dirac matrices
and multi-component wave functions, nowadays known as Dirac spinors.
Imposing the condition that the twofold application of this Dirac operator
onto the spinor must yield the Klein-Gordon equation, leads to the Clifford
algebra for the Dirac matrices. In (1+1)D and (2+1)D the minimum dimen-
sion for a representation of this group is two, whereas in (3+1)D the Dirac
spinor must have a minimum of four components. However, one can work
with two components if one accepts higher–order derivatives in space and
time [1, 2]. The latter has lead to the prediction of anti-matter and the con-
cept of the filled Fermi sea in many-particle physics. Alternatively, the Dirac
equation emerges from an investigation of the transformation properties of
spinors under the Lorentz group [9]. In condensed matter physics Dirac-like
equations arise in context of low-energy two-band effective models, e.g. in
k · p perturbation theory or the tight-binding approximations [5]. Indeed,
the study of Dirac fermion realizations has developed into one of the most
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exciting current topics of condensed matter physics [5].
In this work we restrict ourselves to a study of the (1+1)D Dirac equa-

tion and present a numerically stable scheme for its solution under open
boundary conditions. The latter are motivated by a particle transport sit-
uation, as well as the fact that, unlike for the Schrödinger particle, a deep
one-particle potential does not ensure confinement for Dirac particles. In its
Schrödinger form, also called the standard or Pauli-Dirac form, the (1+1)D
Dirac equation may be written as (using c = 1, e = 1, and ~ = 1)

i∂tψ(x, t) = Ĥψ(x, t) , Ĥ = m(x, t)σz − i∂xσx − V (x, t)112 . (8.1)

The σi’s are the 2 × 2 Hermitian anti-commuting Pauli-matrices, and 112 is

the identity matrix. x ∈ R, t ∈ R
+, and ψ =

(
u
v

)
∈ C

2 is the complex

2-spinor. m,V ∈ R represent, respectively, a space- and time-dependent
mass and scalar potential. For constant coefficients, Fourier-transformation
in the space and time variable and solving the eigenvalue problem gives
the energy spectrum E± = ±

√
m2 + p2. In the physical ground state all

negative energy states are filled with fermions. Empty negative energy
states are reinterpreted as filled hole states (anti-particles) with positive en-
ergy, in analogy to multi-band systems in (non-relativistic) condensed mat-
ter physics [1]. The norm of the spinor is defined as
|ψ(x, t)|2 =

√
|u(x, t)|2 + |v(x, t)|2, and its square can be interpreted as the

probability density in space for given time t. The norm is conserved because
Eq. eqrefdirac-eq is of Schrödinger form and Ĥ is Hermitian [1]. Global
gauge-invariance holds as for the case of the Schrödinger equation: the ad-
dition of a constant V simply adds a phase to the solution. The free Dirac
equation has various other symmetries [1, 10]. First there are the continu-
ous transformations of spatial rotation (only meaningful for more than one
space dimension) which, with the Lorentz boost, form the Lorentz group.
Together with space and time translations, they form the Poincaré group.
The latter is the fundamental group in particle physics, but is of minor im-
portance in solid state physics because the crystal lattice necessarily breaks
these continuous symmetries. The discrete symmetries holding for arbi-
trary constants m ∈ R, V ∈ R are space reflection (parity) and time reversal
symmetry which will also be present in the finite difference scheme.

8.1.2 Numerical aspects

Several schemes have been proposed and used for particle transport simu-
lations based on the time-dependent Dirac equation. For a numerical treat-



98

ment one has to discretize the continuum problem either in real- or Fourier-
space, or a combination thereof. Real-space schemes are, for example, the
finite-difference [11, 12, 13] and finite-element methods [14], whereas the
spectral methods [15] are examples for the momentum space approach. Split-
operator methods separate the time-evolution operator into several parts,
with each of them depending only on either momentum or position [16, 17].
There also exists a coordinate space split-operator method which transforms
the Dirac equation into an advection equation and uses its characteristic so-
lutions [18]. While having the advantage of a natural implementation of
space- and time dependent potential and mass terms, the finite-difference
and finite-element schemes have to deal with the issue of fermion doubling,
which means that, for a given sign of the energy, there are two (or more)
extrema in the m 6= 0 energy-momentum dispersion relation instead of the
single one of the continuum problem [12]. In fact the ’Nielsen-Ninomiya
no-go theorem’ forbids the existence of a single fermion flavor for chirally
invariant fermions on a regular grid without breaking either translational
invariance, locality, or Hermiticity [19]. In (1+1)D one can get rid of the
fermion doubling using a staggered grid for the two spinor components.
This is equivalent to taking the left-sided first-order derivative operator for
one component of the spinor and the right-sided for the other one [12]. One
obtains a monotonic dispersion relation with only one minimum. Here we
present a scheme which provides an even better result by applying stag-
gering to both the space and the time coordinate. This yields a numeri-
cal scheme which preserves the exact dispersion relation of the continuum
problem for the special choice of the ratio between time and space grid
r := ∆t/∆x = 1 and mass m = 0. For m,V 6= 0 and r = 1 the disper-
sion relation improves for all possible wave-numbers k ∈ [−π/∆x, π/∆x]
with the refinement of the grid. For ∆x → 0 the numerical dispersion rela-
tion becomes identical to the continuum one. This is not true for most finite
difference schemes in general and, to our knowledge, no finite difference
scheme with this property for the Dirac equation has been reported before.

Let us mention that numerical methods for the (1+1)D non-linear Dirac
(NLD) equation also got some attention in the literature [20]. Besides be-
ing an interesting playground on its own, it might also have some physical
relevance by incorporating electron self-interaction into the Dirac equation.
Scalar self-interaction leads to the Soler model [21], whereas vector-like in-
clusion of the self-interaction leads to the Thirring model [22]. Interestingly,
the latter is S-dual to the quantum sine-Gordon model [22]. In contrast to
the linear Dirac equation it provides solitary wave solutions, standing wave
solutions, and collapse after collision of two solitary waves [20]. As already
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for the Dirac equation, analytic solutions are rare, most of the behavior of
the NLD equation can only be investigated numerically [20]. For this pur-
pose plenty of algorithms can be found in the literature. Without claim to
completeness, they are of Crank-Nicholson type [23, 24, 25], explicit finite
difference schemes [26, 20], spectral schemes [27, 28], Runge-Kutta methods
[29, 30], and moving mesh methods [31].

Remarkably, for the finite difference method no effort was made so far to
eliminate the spurious solutions, e.g. by staggering the grid for the spinor
components. Being well aware of the different behavior of the NLD equa-
tion, we think our scheme could also have some relevance there. At least
it could serve to solve the linear part in the operator-splitting method, thus
avoiding the transformation to Fourier space. From a physics perspective,
however, the most natural way for the incorporation of self-consistency
(e.g., self-interaction) is to solve the standard Dirac equation self-consistently
and in parallel to the differential equations for the external potentials which
appear in the former. A brief discussion will be given in the Conclusions in
Sect. 8.5.

8.1.3 Boundary conditions

For a numerical treatment of a differential equation, such as the Dirac equa-
tion, the number of degrees of freedom must be finite. In addition to the
discretization of the time and space variable in a real-space scheme one
has to restrict the simulation domain to a finite region in time and space.
Then, appropriate boundary conditions are needed to ensure that the solu-
tion obtained within the finite domain is (at least) a good approximation to
the solution of the whole space problem. Generally, the time-dependent
Dirac equation is solved as an initial-value problem in time. The stan-
dard approach for the derivation of spatial transparent boundary conditions
(TBCs), e.g. for the Schrödinger equation, has been to solve the continuous
exterior problem by using the Laplace-transformation in time and to dis-
cretize the continuous TBCs afterwards [32]. To avoid stability problems
[33] and spurious reflections at the boundary from inconsistent discretiza-
tion schemes, recently, a new improved approach in which the whole do-
main is discretized first and then solved exactly in the constant-coefficient
exterior domains using a Z-transform in time has been developed for the
Schrödinger equation [34, 37]. In this way one maintains the stability prop-
erties of the scheme on the whole space and avoids inconsistent discretiza-
tion for the simulation region and the boundary conditions. The resulting
discrete transparent boundary conditions (DTBCs) which are non-local in
time are exact in the sense that they do not introduce a procedural error. An
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alternative approach which, in most cases is easier to handle because an in-
verse Z-transform can be avoided, is to discretize in space only, derive TBCs,
and discretize in time thereafter. This has been done with good results for
hyperbolic systems [38, 39, 40]. However for the proposed scheme, where
the good properties regarding dispersion and conservation of norm arise
from the simultaneous discretization of space and time in an interlaced man-
ner, paying the extra price in form of an inverse Z-transformation is well
justified. Therefore we follow the fully discrete approach of [34] to develop
TBCs for the time- and space-staggered leap-frog scheme. Furthermore, in
order to preserve the covariant symmetry of the Dirac equation on a space-
time grid, time and space coordinates must be treated on an equal footing.
This is particularly important in higher dimensions.

As a major difference to the Schrödinger equation one should mention
that a massless relativistic particle cannot be trapped by a scalar one-particle
potential [1]. The same holds for massive relativistic particles with energy
E, when the potential depth V is such thatE+mc2 > V > E−mc2. This phe-
nomenon is related to the Klein paradox and is due to the two-band-nature
of the dispersion relation, consisting of an electron and a positron band.
One is necessarily dealing with a scattering problem whenever there are
no bound states supported by the Hamiltonian. Then, for initial data which
are compactly supported on the computational domain, the solution always
reaches the boundary after a finite time. For simulation times beyond that
threshold, open boundary conditions are required to close the finite differ-
ence scheme in a particle transport situation, similar to non-relativistic par-
ticle transport simulations in nano-devices [35, 36].

8.2 Continuous transparent boundary conditions
for the Dirac equation in (1+1)D

In this section we derive continuous TBCs for the Dirac equation Eq. (8.1).
We divide the entire space into the computational domain (0, L), and the
semi-infinite exterior domains (−∞, 0] and [L,∞). The mass is assumed to
be constant m(x, t) = m and the potential is constant in space V (x, t) = V (t)
in the exterior domains. This reduces to the case V = 0 with the following
gauge change of the spinor:

ψ(x, t) = eiV(t)χ(x, t) with V(t) =

∫ t

0

V (s)ds . (8.2)
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With χ = (u, v), in the exterior, we have

i

(
u(x, t)
v(x, t)

)
t

=

(
m −i∂x
−i∂x −m

)(
u(x, t)
v(x, t)

)
. (8.3)

The multiplication with σx and a Laplace transformation with respect to the
time variable leads to(

ũ(x, s)
ṽ(x, s)

)
x

=

(
0 −s+ im

−s− im 0

)(
ũ(x, s)
ṽ(x, s)

)
. (8.4)

Eq. (8.4) has the general solution(
ũ(x, s)
ṽ(x, s)

)
= c1

(
−s+ im

− +
√
s2 +m2

)
e−

+√s2+m2x + c2

(
−s+ im
+
√
s2 +m2

)
e

+√s2+m2x ,

(8.5)
where +

√ is written for the square root with positive real part. Because the
solution must be in L2(R) the constant c2 must vanish on the right exterior
domain. For the same reason c1 must be zero on the left exterior domain.
Therefore, the boundary conditions on the right boundary are

∂xũ(x, s)
∣∣
x=L

= − +
√
s2 +m2 ũ(L, s)

and
∂xṽ(x, s)

∣∣
x=L

= − +
√
s2 +m2 ṽ(L, s) . (8.6)

On the left boundary one gets

∂xũ(x, s)
∣∣
x=0

=
+
√
s2 +m2 ũ(0, s)

∂xṽ(x, s)
∣∣
x=0

=
+
√
s2 +m2 ṽ(0, s) . (8.7)

The structure for both spinor components and both boundaries is the same,
so we proceed with ũ on the right boundary. First we derive boundary
conditions as a Neumann-to-Dirichlet map by writing

ũ(L, s) = − 1
+
√
s2 +m2

∂xũ(x, s)
∣∣
x=L

. (8.8)

Then the inverse Laplace transformation leads to the convolution at the
right boundary:

u(L, t) = −J0(mt) ∗t ∂xu(x, t)
∣∣
x=L

= −
∫ t

0

J0(mτ)∂xu(L, t− τ) dτ , (8.9)
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with J0 being the Bessel function of first kind. Analogously for the left
boundary:

u(0, t) = J0(mt) ∗t ∂xu(x, t)
∣∣
x=0

. (8.10)

Finally, this leads with the gauge Eq. (8.2) for V 6= 0 to the TBCs in the form
of a Neumann-to-Dirichlet map:

ψ(L, t) = −eiVr(t)
{
J0(mt) ∗t

[
∂xψ(x, t)

∣∣
x=L

e−iVr(t)
]}

. . . right TBC , (8.11)

ψ(0, t) = eiVl(t)
{
J0(mt) ∗t

[
∂xψ(x, t)

∣∣
x=0

e−iVr(t)
]}

. . . left TBC . (8.12)

For the derivation of TBCs in the form of a Dirichlet-to-Neumann map we
write:

∂xũ(x, s)
∣∣
x=L

= −g̃(s)ũ(L, s) , (8.13)

with:

g̃(s) :=
+
√
s2 +m2 =

(
s2 +m2

+
√
s2 +m2

− s

)
+ s . (8.14)

We use
f̃(s) :=

1
+
√
s2 +m2

L−1

→ f(t) = J0(mt) (8.15)

and
s2f̃(s)− sf(0)

L−1

→ m2J ′′0 (mt) . (8.16)

This leads to the following inverse Laplace transform of g̃(s):

g̃(s)
L−1

→ g(t) = m2
[
J ′′0 (mt) + J0(mt)

]
+ δ′ =

m2

2

[
J2(mt) + J0(mt)

]
+ δ′ ,

(8.17)
where δ′ is the first derivative of the delta distribution. Then the TBC as a
Dirichlet-to-Neumann map on the right boundary is

∂xψ(x, t)
∣∣
x=L

= −eiVr(t)
{m2

2

[
J2(mt)+J0(mt)

]
∗tψ(L, t)e−iVr(t)+∂tψ(L, t)e−iVr(t)

}
.

(8.18)
On the left boundary one gets

∂xψ(x, t)
∣∣
x=0

(8.19)
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= eiVr(t)
{m2

2

[
J2(mt) + J0(mt)

]
∗t ψ(0, t)e−iVr(t) + ∂tψ(0, t)e−iVr(t)

}
.

Discretizations of Eqs. (8.11) and (8.12) or Eqs. (8.18) and (8.19) can serve
as boundary conditions for arbitrary finite difference discretizations of the
Dirac equation Eq. (8.1). But one has to be aware of the fact that inconsistent
discretization of the differential equation and the associated boundary con-
ditions usually leads to spurious reflections or even instability. As already
mentioned in the introduction we will therefore first apply the discretization
scheme to Eq. (8.1) for the the boundary regions also and derive the associ-
ated TBCs by Z-transformation. Eqs. (8.11), (8.12), (8.18), and (8.19) serve as
a guide to gain intuition for the behavior of the convolution coefficients.

8.3 Time- and space-staggered leap-frog scheme

Leap-frog time-stepping, in combination with a staggered spatial grid, plays
a special role among the finite difference methods because, in addition to
the elimination of the fermion-doubling problem, it proves to be dispersion
relation preserving in (1+1)D for the ‘golden ratio’ of r = ∆t/∆x = 1, m =
0, and V = 0 (Weyl equation). Moreover, for m 6= 0 and/or V 6= 0 the
dispersion relation is still monotone and improves with a refinement of the
grid. It is identical to the exact analytic dispersion when ∆t,∆x → 0, for
fixed r = 1. This is particularly important for simulations where the whole
possible range of the wave numbers k ∈

[
− π

∆x
, π

∆x

]
is used, for example, in

strong external fields. An initial wave-packet which consists only of wave-
components near k = 0 may acquire high wave number components due to
strong spatial and/or temporal changes of potential and/or mass.

For schemes with non-monotonic dispersion a problem can also arise at
the boundary. The modes of such a scheme consist of additional, spurious,
numerically generated modes on the lattice which, nevertheless, must be
accounted for in the DTBCs for consistency. This requires special attention
at the boundary because improper realization of the boundary condition
may lead to ‘energy’ transfer between the modes, spurious reflections, and
eventually instability (see e.g. [40]). A correct dispersion relation means
correct phase and group velocity on the grid and is essential for faithful
long-time propagation studies. We now present such a scheme.
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8.3.1 The discretization scheme

We shall consider the following leap-frog discretization of the Dirac equa-
tion in Pauli-Dirac form given in Eq.(8.1):

u
n+1/2
j − un−1/2

j

∆t
+ i(mn

j − V n
j )
u
n+1/2
j + u

n−1/2
j

2
+

(Dvn)j
∆x

= 0 ,

(8.20)

vn+1
j−1/2 − vnj−1/2

∆t
− i(mn+1/2

j−1/2 + V
n+1/2
j−1/2 )

vn+1
j−1/2 + vnj−1/2

2
+

(Dun+1/2)j−1/2

∆x
= 0 ,

(8.21)

with j ∈ Z, n ∈ N. Here we used the notationψ(x, t) =
[
u(x, t), v(x, t)

]
with

u(xj, t
n−1/2) ≈ u

n−1/2
j and v(xj−1/2, t

n) ≈ vnj−1/2. The symmetric spatial dif-
ference operator is defined as (Dvn)j = vnj+1/2 − vnj−1/2 and (Dun+1/2)j−1/2 =

u
n+1/2
j − un+1/2

j−1 . For the mass and potential term we use the averages gnj =(
g
n+1/2
j + g

n−1/2
j

)
/2 for the integer spacial grid-points and

g
n+1/2
j−1/2 =

(
gn+1
j−1/2 + gnj−1/2

)
/2 for the half-integer ones, where g = m,V . The

space-time stencil is shown in Fig. 8.1 (a). As one can see, the components
u and v are not defined on the same space-time grid points but on sub-grids
shifted by a half time and space grid spacing. A Taylor expansion about the
grid points (xj, tn) and (xj−1/2, tn+1/2) shows that the staggered-grid leap-
frog scheme is second order accurate in space and time.
The leap-frog time stepping is not self starting. Assume, for example, initial
dataψ(x, t) given at the time-level t0. Then the u component has to be prop-
agated from t0 to t1/2. In principle this can be done by any time stepping
method. We have chosen a symplectic Euler step [42] with half space-time
grid spacing, which is algorithmically equivalent to the leap-frog scheme,
with the exception that all the data (u and v) are stored at the same time and
space level. Moreover it is only first order accurate (omitting indices for m
and V ):

u
1/2
j − u0

j

∆t/2
+ i(m− V )

u
1/2
j + u0

j

2
+
v0
j − v0

j−1/2

∆x/2
= 0 , j ∈ Z/2. (8.22)

After this first initialization step the u-component is stored only at integer
and the v-component at half integer spatial points. With a relabeling of the
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Figure 8.1: (a) Staggered-grid scheme for Dirac equation in Pauli-Dirac form
with leap-frog time-stepping; (b) the algorithmically equivalent (except for
starting procedure) symplectic Euler time-stepping.

indices, the algorithm Eq. (8.21) can be written as follows:

un+1
j − unj

∆t
+ i(m− V )

un+1
j + unj

2
+
vnj − vnj−1

∆x
= 0 ,

vn+1
j − vnj

∆t
− i(m+ V )

vn+1
j + vnj

2
+
un+1
j+1 − un+1

j

∆x
= 0 , (8.23)

with j ∈ Z, n ∈ N0. Here we use the approximations unj ≈ u(xj−1/4, t
n−1/4),

vnj ≈ v(xj+1/4, t
n+1/4) (see Fig. 8.1 (b)). Rearranging of terms leads to the

following equations for the explicit recursive update

un+1
j =

2− i(m− V )∆t

2 + i(m− V )∆t
unj −

2∆t/∆x

2 + i(m− V )∆t

(
vnj − vnj−1

)
, (8.24)

vn+1
j =

2 + i(m+ V )∆t

2− i(m+ V )∆t
vnj −

2∆t/∆x

2− i(m+ V )∆t

(
un+1
j+1 − un+1

j

)
. (8.25)

The starting procedure for the leap-frog scheme with a symplectic Euler step
of half grid-size is especially suitable since symplectic Euler is algorithmi-
cally equivalent to the leap-frog staggered-grid scheme and has the same
dispersion relation for equal ratio r.

8.3.2 Von Neumann stability analysis

For constant coefficients in Eq. (8.23), Fourier analysis can be used to per-
form a von Neumann stability analysis and to derive the dispersion relation
for the whole space problem. A Fourier transform in space of Eq. (8.23)
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leads to (
1

∆t
+ i(m−V )

2
0

e−ik∆x−1
∆x

1
∆t
− i(m+V )

2

)
︸ ︷︷ ︸

=:A

(
ũn+1

ṽn+1

)
(8.26)

+

(
− 1

∆t
+ i(m−V )

2
1−eik∆x

∆x

0 − 1
∆t
− i(m+V )

2

)
︸ ︷︷ ︸

=:B=−A∗

(
ũn

ṽn

)
= 0 .

Using the definitions ξ = k∆x, µ = m∆t, ν = V∆t, and r = ∆t/∆x the
eigenvalues of the amplification matrix

G = −A−1B = A−1A∗ =

(
2i−ν+µ
2i+ν−µ

2ir(eiξ−1)
2i+ν−µ

2r(1−e−iξ)(2+iν−iµ)
4−ν2−4νi+µ2

4+ν2−µ2+4µi+8r2[cos ξ−1]
4−ν2−4νi+µ2

)
(8.27)

are computed by means of

λ± = P/2±
√(

P/2
)2 −Q , (8.28)

where P = tr[G] and Q = det[G], with

P =
[
2(ν2 − µ2) + 8(1− r2 + r2 cos ξ)

]
/N (8.29)

and
Q =

[
µ2 − (ν − 2i)2

]
/N , (8.30)

whereN = µ2−(ν+2i)2. A lengthy but straightforward computation yields
|λ±| = 1 for r ≤ 1. The eigenvalues are non-degenerate except for the case
k = µ = 0 and r = 1 (with geometric multiplicity 2), as well as the case
k = π/∆x, ν = 0, and r = 1 (with geometric multiplicity 1). Except for
the latter case, the scheme is stable under the constraint r ≤ 1, which consti-
tutes its Courant-Friedrichs-Lewy (CFL) condition. Below we use a different
technique to prove stability which allows one also to identify a functional
(related to the l2-norm defined on the staggered grid) which is exactly con-
served.

8.3.3 The energy-momentum dispersion relation

The Fourier transform of Eq. (8.26) with respect to the time variable with
ω̃ = ω∆t leads to the homogeneous system

(eiω̃A + B)ψ̃ = 0 , (8.31)
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Figure 8.2: Numerical dispersion relation ω(k) for the staggered-grid leap-
frog scheme with m = 1 and r = 1 for real k (hyperbolically shaped curves)
and for imaginary k inside the energy gap (elliptically shaped curve) shown
as solid lines. The dispersion relation for the continuum problem is shown
for comparison using dotted lines: (a) very coarse grid ∆x = 1.5 and k ∈
[π/∆x, π/∆x]; (b) finer grid ∆x = 0.5 where merely an excerpt of the wave
number range k ∈ [π/(3∆x), π/(3∆x)] is shown.
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Figure 8.3: Dispersion relation ω(k) for V = 0, m = 1, and ∆x = 0.1, and
k ∈ [0, π/∆x] with r = 1, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5 (from top to bottom).

with the solutions for r ≤ 1:

ω̃± = − i
r

ln[λ±] , (8.32)

where λ± is given in Eq. (8.28). By setting µ, ν = 0 they reduce to

ω̃± = − i
r

ln

{
1 + r2

(
cos ξ − 1

)
±
√[

r2
(

cos ξ − 1
)

+ 1
]2

− 1

}
, (8.33)

and with the choice r = 1 they read

ω̃± = −i ln
(

cos ξ ±
√

cos2 ξ − 1
)

= −i ln
(

cos ξ ± i sin ξ
)

= ±ξ . (8.34)
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Thus for µ, ν = 0, and r = 1 the linear dispersion of the continuum problem
(Weyl equation) is exactly preserved.

The connection to the phase of the growth factor (i.e. eigenvalues of G)
can be established via

ω̃± = − i
r

ln[λ±] = − i
r

[ln |λ±|+ i arg(λ±) + 2πin] =
1

r
[arg(λ±) + 2πn] . (8.35)

In Fig. 8.2 the dispersion relation for a rather coarse grid with ∆x = 1.5
is compared to that of a finer one using ∆x = 0.5, for m = 1, V = 0, and
r = 1. Clearly, the quality of the numerical dispersion relation improves for
a finer grid and, for all wave-numbers k ∈ [−π/∆x, π/∆x], it approaches the
continuum form in the limit ∆x → 0 and r = 1. In Fig. 8.3 the dispersion
relation for fixed values of m and V is shown for several values of r and
∆x = 0.1.

In Fig. 8.4, the scheme is compared to a scheme using a centered approxi-
mation for the space derivative and Crank-Nicolson time averaging, show-
ing the fermion-doubling problem. The comparison is made for m = 0 =
V , r = 1, and initial Gaussian wave packets with different mean ener-
gies. The Crank-Nicolson scheme shows large dispersive errors and for
high mean energy (large wavenumbers) and even propagation in the wrong
direction (fermion-doubling) occurs, whereas the leap-frog staggered-grid
scheme yields (almost) the exact solution.

8.3.4 Phase error and gauge invariance

One can define the phase error for one time-step as

εphase(k, r,∆t) =
[
ωanalytical(k)− ωnumerical(k, r,∆t)

]
∆t , (8.36)

where the analytic dispersion relation is ωanalytical = ±
√
m2 + k2 and the nu-

merical one is given in Eq. (8.32). Together with Eq. (8.34) it follows that
εphase vanishes in the case of m = V = 0 and r = 1 where the scheme indeed
propagates the solution without error. In Fig. 8.5, εphase is shown for differ-
ent values of m and V on a coarse grid ∆t = ∆x = 0.01 (a) and (b), and on a
finer grid ∆t = ∆x = 10−4 (c) and (d).

Due to gauge invariance, when adding a diagonal term V (constant scalar
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Figure 8.4: Comparison of the leap-frog staggered-grid scheme with a
scheme that is centered in space and Crank-Nicolson in time. We have
choosen ∆t = ∆x = 0.05 and m = V = 0. The Gaussian wave packet
is initially placed at the center (x = 200) and should then move to the
right. We give the results for 5 different energy mean values (E = 10, ..., 50).
For each prescribed energy we merge the simulation results at three times
(t = 0, 70, 140) into one graphics. The figures show the probability density
|ψ(x)|2 (solid lines for the leap-frog staggered-grid scheme) and the nega-
tive probability density (dash-dotted lines) for the Crank-Nicolson scheme.
The latter shows large dispersive errors, whereas the leap-frog staggered-
grid scheme shows the correct propagation.

potential) to the Hamitionan Eq. (8.1) one can introduce a new spinor

ψ̆(t) = ψ(t) exp
(
− iV t) , (8.37)

which fulfills the original equation. Therefore the gauge error per time-step
is equivalent to εphase due to a finite V (see Fig. 8.5 (b) and (d)). The gauge
invariant introduction of the electromagnetic vector potential is shown in
8.7.

8.3.5 Stability analysis within a multiplication technique

The von Neumann analysis above and the fact that the dispersion relation
ω(k) is real for r 6= 1 revealed the stability conditions of the scheme for con-
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Figure 8.5: The dependence of the phase error εphase on the wave vector
k ∈ [0, π/∆x] for V = 0, m = 1, 2, 3, 4, 5 (from bottom to top): (a) coarse
grid ∆t = ∆x = 0.01, (c) fine grid ∆t = ∆x = 10−4; for V = 1, 2, 3, 4, 5
(from bottom to top), m = 0: (b) coarse grid ∆t = ∆x = 0.01, (d) fine grid
∆t = ∆x = 10−4. In (d) the functions exceed the plot-range, where the
maxima for V = (1, 2, 3, 4, 5) are εphase = (1, 2, 3, 4, 5) ∗ 10−4 at k = 104π.

stant mass and potential terms. However, there is another technique avail-
able which is not based on the Fourier transform and leads to the identifi-
cation of an “energy" functional which is exactly conserved by the scheme,
even in the presence of non-constant mass and potential terms. The use of
this multiplication technique has been inspired by a stability analysis of a
leap-frog pseudo-spectral scheme for the Schrödinger equation [43].

We define the inner product (u, v) :=
∑

j uj v̄j on l2(Z;C) and we will
use the notation ‖u‖2 := (u, u). Taking the inner product of Eq. (8.20) with
(un+1/2 + un−1/2) and taking the real part gives

∥∥un+1/2
∥∥2 −

∥∥un−1/2
∥∥2

+ r<
[
(Dvn, un+1/2 + un−1/2)

]
= 0 . (8.38)
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Eq. (8.21) is multiplied by (v̄n+1 + v̄n) and again the real part is taken to give∥∥vn+1
∥∥2 − ‖vn‖2 + r<

[
(Dun+1/2, vn+1 + vn)

]
= 0 . (8.39)

Performing a summation by parts with vanishing boundary terms at infinity
gives

<
[
(Dvn, un+1/2 + un−1/2)

]
= −<

[
(Dun+1/2 +Dun−1/2, vn)

]
. (8.40)

Then adding Eq. (8.38) and Eq. (8.39) leads to

∥∥un+1/2
∥∥2

+
∥∥vn+1

∥∥2
+r<

[
(Dun+1/2, vn+1)

]
=
∥∥un−1/2

∥∥2
+‖vn‖2+r<

[
(Dun−1/2, vn)

]
(8.41)

and one immediately identifies the conserved functional

En
r :=

∥∥un+1/2
∥∥2

+
∥∥vn+1

∥∥2
+ r<

[
(Dun+1/2, vn+1)

]
= const = E0

r . (8.42)

With this result one obtains the stability condition for the scheme by using∣∣∣<[(Dun+1/2, vn+1)
]∣∣∣ ≤ ∥∥un+1/2

∥∥2
+
∥∥vn+1

∥∥2
. (8.43)

This gives the estimate

∥∥un+1/2
∥∥2

+
∥∥vn+1

∥∥2 ≤ E0
r

1− r
∀ n , (8.44)

for r < 1. The case r = 1 must be treated separately and one rewrites En
1 as

En
1 =

∑
j

|un+1/2
j |2 + |vn+1

j+1/2|
2 + <

∑
j

(
u
n+1/2
j+1 − un+1/2

j

)
v̄n+1
j+1/2 (8.45)

=
1

2

∑
j

|un+1/2
j − vn+1

j+1/2|
2 +

1

2

∑
j

|un+1/2
j+1 + vn+1

j+1/2|
2 . (8.46)

Alternatively, when shifting indices, one obtains

En
1 =

1

2

∑
j

|un+1/2
j + vn+1

j−1/2|
2 +

1

2

∑
j

|un+1/2
j − vn+1

j+1/2|
2 . (8.47)
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Using 1
4
‖a1 + a2‖2 ≤ 1

4

(
‖a1 + b‖ + ‖a2 − b‖

)2 ≤ 1
2
‖a1 + b‖2 + 1

2
‖a2 − b‖2

gives

from Eq. (8.46):
∥∥ũn+1/2

∥∥2
:=
∑
j

∣∣∣∣∣u
n+1/2
j + u

n+1/2
j+1

2

∣∣∣∣∣
2

≤ En
1 = E0

1 ∀n

(8.48)

from Eq. (8.47):
∥∥ṽn+1

∥∥2
:=
∑
j

∣∣∣∣∣v
n+1
j−1/2 + vn+1

j+1/2

2

∣∣∣∣∣
2

≤ En
1 = E0

1 ∀n

⇒
∥∥ũn+1/2

∥∥2
+
∥∥ṽn+1

∥∥2 ≤ 2E0
1 . (8.49)

One easily verifies that ‖ũ‖ is a norm on l2(Z). Indeed, ũ = 0 implies uj =
(−1)jλ for some λ ∈ C. And u ∈ l2 then yields u = 0.

This allows us to conclude that the scheme is stable for all r = ∆t/∆x ≤
1. Moreover we have identified the functional which is conserved by the
scheme (see Eq. (8.42)). In fact, it is conserved for arbitrary time and space
dependent m,V ∈ R.

8.3.6 Time-reversal invariance

The time reversal invariance of the scheme can easily be seen in Eqs. (20)
and (8.21). One has to set ∆t→ −∆t and replace the role of the old and new
time-levels n − 1/2 ↔ n + 1/2 and n ↔ n + 1. Then one observes that the
scheme for the backward propagation has exactly the same form as for the
forward propagation and concludes the scheme is time-reversal invariant.

8.4 Discrete transparent boundary conditions for
the staggered-grid leap-frog scheme

Having discussed the properties of the leap-frog scheme we now turn to
the derivation of the associated TBCs. Again, we divide the entire space
into the computational domain (0, L), a left semi-infinite exterior domain
(−∞, 0], and a right semi-infinite exterior domain [L,∞). This corresponds
to a typical device simulation geometry (scattering scenario) in which the
nano-device is placed in the computational domain and the (macroscopic)
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contacts are represented by the exterior domains. We make the following
simplifying assumptions:

• The initial data ψ0(x) = ψ(0, x) is compactly supported inside the
computational domain.

• In each exterior domain the mass m(x, t) = m and potential V (x, t) =
V are constant in t and x.

Both assumption are made for simplicity but can be loosened when needed,
as will be discussed below.

We first Z-transform Eq. (8.23) in t-direction on each of the exterior do-
mains, j ∈ {. . . ,−2,−1, 0} and j ∈ {J, J + 1, J + 2, . . .}, and solve the re-
sulting finite difference equations explicitly. Using the definition of the Z-

transform b(z) := Z(bn) =
∞∑
n=0

bnz
−n, its shifting property

Z(bn+1) =
∞∑
n=0

bn+1z
−n =

∞∑
n´=1

bn´z
−n´+1 = zb(z)− zb0, and setting b0 = 0 (since

the initial spinor is compactly supported on (0, L) ) we obtain

(
1

∆t
(z − 1) + i(m−V )

2
(z + 1) 1

∆x
z

∆x
0

)(
uj(z)
vj(z)

)
(8.50)

+

(
0 − 1

∆x

− z
∆x

1
∆t

(z − 1)− i(m+V )
2

(z + 1)

)(
uj−1(z)
vj−1(z)

)
= 0 .

Translation from grid point j to j + 1 therefore is given by(
uj
vj

)
=

(
n11 n12

n21 n22

)(
uj−1

vj−1

)
, (8.51)

where
n11 = 1 ,

n21 =
∆x

∆t
(1− z)− i(m− V )∆x

2
(1 + z) ,

n12 =
∆x

∆t

1− z
z

+
i(m+ V )∆x

2

1 + z

z
,

and

n22 = 1 +
∆x2

z

[(1− z)2

∆t2
+ iV

1− z2

∆t
+

(m2 − V 2)(z + 1)2

4

]
.
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This can also be written as(
uj − uj−1

vj − vj−1

)
=

(
0 a
b c

)
︸ ︷︷ ︸

=:M

(
uj−1

vj−1

)
, (8.52)

with

a =
∆x

∆t

1− z
z

+
i(m+ V )∆x

2

1 + z

z
,

b =
∆x

∆t
(1− z)− i(m− V )∆x

2
(1 + z) ,

and c = ab. Solving the system Eq. (8.52) leads to

uj+1 − (2 + c)uj + uj−1 = 0 , (8.53)

whose characteristic equation has the roots:

τ1,2 = 1 +
c

2
±
√
c+

c2

4
. (8.54)

The same result is obtained for the component v. Since τ1τ2 = 1, there is
one decaying mode (as j →∞) with |τ1| ≤ 1 and one increasing mode with
|τ2| ≥ 1. In order to have a solution in l2(Z) one has to choose the mode
with |τ1| ≤ 1. At each boundary only one spinor component couples to the
contact region. The spinor components u and v, respectively, only need a
right and a left TBC (see Eq. (8.23) and Fig. 8.1)

v0(z) = τ1(z)v1(z) (8.55)
uJ(z) = τ1(z)uJ−1(z)

Then, the inverse Z-transformed boundary conditions are in the form of a
convolution in the discrete time variable:

vn0 =
n∑
k=0

τ
(n−k)
1 vk1 . (8.56)

unJ =
n∑
k=0

τ
(n−k)
1 ukJ−1 . (8.57)

τ1(z) is a non-rational function of z, hence there is no easy way of finding
an analytic expression for its inverse Z-transformed in general. However,
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Re[z] Re[z]

Re[z] Re[z]

Im
[z

]
Im

[z
]

Im
[z

]
Im

[z
]

Abs[τ1]  for  m=0, V=0 Abs[τ1]  for  m=0, V=2

Abs[τ1]  for  m=2, V=0 Abs[τ1]  for  m=2, V=2

Figure 8.6: Absolute value of τ1 = 1/τ2 which is zero at |z| = 0 and |z| =∞,
shown for ∆t = ∆x = 0.1. The contour lines are at 0.1, 0.2, 0.3 . . . etc. The
branch-point locations are marked by (red) stars.

the poles and branch-points in the z-plane, which determine the general be-
havior of their inverse Z-transformed in (discrete) real time n, can be iden-
tified. We give a brief discussion of these special points for ∆ := ∆t = ∆x.
First, one observes that τ1 has no poles. For the branch cuts we examine
the branch points of the square root function – due to zeros of its argument.
This leads to the four branch points of τ1 (Fig. 8.6):

z1 = −1 , z2 = −4(1 + iV∆) + (m2 − V 2)∆2

4(1− iV∆) + (m2 − V 2)∆2
and z3,4 =

2i− (V ±m)∆

2i+ (V ±m)∆
.

(8.58)

It can easily be seen that they all lie on the unit circle. These branch points
induce damped oscillations in time for the convolution coefficients τ (n)

1 . The
high frequency part (−1)n of these oscillations, which arises from z1 = −1,
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can introduce numerical problems because of subtractive cancellation. It
may be advantageous to eliminate this behavior: A multiplication of τ1(z)
by (z+ 1)/z allows one to construct new coefficients as a linear combination
of the original coefficients involving the two time steps τ̃ (k) = τ (k) + τ (k−1)

(see [34, 41]). Then (8.56) becomes

vn0 =
n−1∑
k=0

τ̃
(n−k)
1 vk1 − vn−1

0 ,

where we used τ 0
1 = limz→∞ τ1(z) = 0.

For our numerical simulations, the inverse Z-transformation was carried
out by performing a power series expansion about z = 0 using Mathemat-
ica. In Fig. 8.7 we show the convolution coefficients τ (n)

1 for ∆t = ∆x = 0.1
and various values of m and V . For the special case m = V = 0 and r = 1
the inverse Z-transform can be computed analytically. One gets

τ1 =
1

2

(
z +

1

z

)
− 1

2

√(
z − 1

z

)2

= . . . =
1

z
. (8.59)

The convolution coefficient then simply is τ (n)
1 = δn1 , where δnk is the Kro-

necker symbol. In the 8.6 we shall give an explicit, analytic derivation of the
convolution coefficients τ (n)

1 in the general case.

8.4.1 Numerical examples

With the general properties of the scheme established and the associated
TBCs identified, we now put it to test in challenging numerical applications.

In Fig. 8.8 we show the results of a simulation run for a Gaussian wave
packet starting out with a mean value of k = 15.92% of kmax and a standard
deviation of σk = 1.59% of kmax. A coarse grid ∆t = ∆x = 0.05 is used. The
individual figures show the probability density |ψ(x, t)|2 computed with

|ψnj |2 := |un+1/2
j |2 + |vn+1

j+1/2|
2 + <

[(
u
n+1/2
j+1 − un+1/2

j

)
v̄n+1
j+1/2

]
, (8.60)

which gives the conserved functional Eq. (12.53) when summed over j on
an infinite grid. Additionally, the real part of the upper component u, and
the mass-gap (= energy region between the minimum of the electron band
and the maximum of the positron/hole band) is shown. One can observe
that the wave packet leaves the simulation domain without reflections (the
numerical error is less than machine precision = 2.2204e-16).
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Figure 8.7: Decay of the convolution coefficients τ (n)
1 for different values of

m and V for ∆t = ∆x = 0.1: (a) m = 1 and V = 0, (b) m = 0 and V = 1,
(c) m = 1 and V = 1, (d) m = 1 and V = 2. The darker (blue) color
shows the real part of the coefficients, the brighter (orange) color shows the
imaginary part. The zeroth coefficient τ (0)

1 is always zero and is not shown
in the plots. The first coefficient exceeds the plot-range and has the values:
(a) τ (1)

1 = 0.9975, (b) τ (1)
1 = 0.9925 + 0.0995i, (c) τ (1)

1 = 0.9901 + 0.0990i, (d)
τ

(1)
1 = 0.9682 + 0.1951i .

In Fig. 8.9 the time dependence of the probability for finding the Dirac
particle inside the computational interval ‖ψ(t)‖2 (:= Eq. (8.60) summed
over j on the computational domain) is shown for this simulation.

In Fig. 8.10 we show the reflection at a mass barrier (= spatial region
where the energy of the wave packet lies inside the mass-gap) with m = 7
and a width of 25 grid-points placed near the center of the simulation re-
gion. A variation of the mass term can be achieved for Dirac fermions on
topological insulators by magnetic texturing [47, 48]. The wave packet ini-
tially has a mean value of k = 1.59% of kmax and a standard deviation of
σk = 1.99% of kmax, where ∆t = ∆x = 0.01. In this tunneling problem it is
of profound importance that the dispersion relation is correct also for imag-
inary k, which is the case for the proposed scheme already for relatively
coarse grids, as illustrated in Fig. 8.2.



118

Fig. 8.11 shows a simulation for an initial wave packet with a mean
value of k = 27.06% of kmax and a standard deviation of σk = 1.99% of
kmax moving across a linear potential drop. In this process, the wave num-
ber grows beyond the maximum wave number provided by the grid kmax,
where the wave packet is under-sampled. The propagation is still correctly
described because the dispersion and therefore the group velocity is well
approximated for all possible wave numbers resolved by the grid.

8.4.2 Non-compactly supported initial condition for the spinor
and time-dependent exterior potential

The constraints stated at the beginning of SECTION 8.4 can be loosened:

• The DTBCs can readily be generalized to the case where the initial
wave packet is not compactly supported inside the computational do-
main x ∈ (0, L). The inhomogeneous boundary conditions can be de-
rived by substituting ψ(xr,l, t) with ψ(xr,l, t)−ψin(xr,l, t) and carrying
out the procedure as detailed in SECTION 8.4. Here, ψ − ψin should
initially have compact support in (0, L). And ψin should be a solution
to the discrete exterior domain problem, e.g. a discrete plain wave (see
[44] for details in the analogous Schrödinger case). Re-substitution af-
terwards leads to the result

unJ =
n∑
k=0

(
τ

(n−k)
1 ukJ−1

)
+ unJ,in , (8.61)

vn0 =
n∑
k=0

(
τ

(n−k)
1 vk1

)
+ vn0,in . (8.62)

The rationale is that the Dirac equation is a linear differential equa-
tion which here is approximated by a linear finite difference scheme.
Therefore one may simply add inhomogeneous boundary terms via
the superposition principle.

• The scalar potential V (t) on the exterior domain may depend on time.
This is useful when considering a time-dependent net potential drop
across the system. As for the case of the Schrödinger equation a time-
dependent exterior potential, e.g. at the right boundary, can be incor-
porated by treating it in the interaction picture which removes V (t)
from the Hamiltonian and leads to a gauge (phase change) for the
spinor Eq. (8.2) [41].
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8.5 Conclusions and future work

In this paper we have presented a finite difference scheme for the numeri-
cal solution of the time-dependent Dirac equation in (1+1)D, allowing fully
time- and space-dependent mass and potential terms. Owing to a combined
staggering of the grid both in space and time, unphysical additional Dirac
cones are avoided and, for the special case of the Weyl equation, the lin-
ear dispersion is preserved exactly for all wave numbers supported by the
grid. In the case of finite mass and/or potential terms the dispersion rela-
tion improves for all wave numbers, approaching the continuum dispersion
relation exactly, when the grid is refined. This is a relevant feature when
modeling Dirac fermions on a lattice, such as Dirac fermions propagating
on topological insulator surfaces, graphen, or in quantum spin Hall states.
The electromagnetic potentials accounting for an external electromagnetic
field are included in gauge invariant fashion. A stability analysis of the
scheme was performed and a functional, exactly conserved by the scheme,
was identified. It provides a valid norm for the spinor on the proposed
staggered grid.

Furthermore, we have derived exact DTBCs to close the finite differ-
ence scheme for constant mass and potential in the boundary regions. With
these BCs one is in the position to deal with particle transport scenarios
and to account for the multi-band nature of the Dirac equation which may
cause inter-band transfer rather than quantum confinement. For complete-
ness, DTBCs were also derived for the (1+1) Dirac (differential) equation in
Schrödinger form.

Using the norm for a measure, numerical simulations of Gaussian wave
packets show them leaving the computational domain without reflections
(with an error below computer precision), thus verifying the quality of the
DTBCs numerically. The importance of a faithful representation of the energy-
momentum dispersion relation, in particular, avoiding fermion doubling, is
exemplified in numerical simulations.

The assumptions of constant mass and potential on the exterior domain
can be loosened. It is however desirable that an analytic solution on the dis-
crete exterior domain can be found. The case of purely time-dependent ex-
terior potential can be treated by using a proper phase change of the spinor.
Initial conditions for which the initial wave packet is not compactly sup-
ported on the computational domain can be handled as well, leading to in-
homogeneous terms in the boundary conditions. There are various ways to
extend the proposed leap-frog scheme to the (2+1)D Dirac equation where
it retains many of its attractive features [45, 46, 49]. The formulation of DT-
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BCs for the (2+1)D Dirac equation in the spirit of this paper is the subject of
future work [49].

In view of existing work on non-linear versions of the Dirac equation ac-
counting, for example, for self-interaction corrections in a single equation,
we wish to point out that a self-consistent treatment of such effects can be
treated readily (and in more generality) within the present approach based
on the standard Dirac equation and a parallel self-consistent update of the
effective electromagnetic potentials. In a semi-classical picture, for exam-
ple, the latter may be accomplished within Maxwell’s theory for the elec-
tromagnetic potentials [53]. In this fashion, a self-consistent open-boundary
treatment of the Schrödinger equation was performed whereby, instead of
the nonlinear Hartree term, equivalently the Poisson equation was solved in
parallel [35]. Any nonlinearity arising from the (classical) electromagnetic
interaction can readily be treated within this approach and its advantages be
exploited, as long as the conditions on the asymptotic regions made for the
linear Dirac equation can be met. This is the case, for example, when non-
linear effects are confined to the simulation region and/or nonlinear effects
in the outer regions can be accounted for by constant electromagnetic po-
tential and mass terms. Clearly, the direct use of non-linear versions of the
Dirac equation requires the use of individually matched transparent bound-
ary conditions, as for the case of the Schrödinger equation [41].
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8.6 APPENDIX A: Analytic derivation of the con-
volution coefficients τ (n)

1 for the general case

We shall first consider the case m = V = 0 where (8.54) reads

τ1(z) = 1 +
1

2r2z
(z − 1)2 − z − 1

2r2z

√
z2 − 2µz + 1 ,
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with µ := 1 − 2r2. Here, the branch of the square root is chosen such that
τ1(z) = O(|z|−1) as z →∞. Using

Z−1

{√
z2 − 2µz + 1

z

}
= Pn−2(µ)−2µPn−1(µ)+Pn(µ) =

1

n
[Pn−2(µ)−µPn−1(µ)] ,

(8.63)
where Pn denotes the Legendre polynomials (with the convention P−1 =
P−2 := 0), we obtain

τ
(n)
1 = (1− 1

r2
)δn0 +

1

2r2
δn1−

1

2r2

[
Pn+1(µ)−(2µ+1)(Pn(µ)−Pn−1(µ))−Pn−2(µ)

]
,

and
n ≥ 0 .

And this simplifies to τ (n)
1 = δn1 for r = 1.

Next we shall discuss the general case with m, V ∈ R. Here we have

τ1(z) = 1 +
c̃

2z
− 1

2z

√
c̃
√
c̃+ 4z ,

where c̃(z) := z c(z) = αz2 +βz+γ is a quadratic polynomial given by (8.52).
Using again (8.63), both square root factors can be inverse Z-transformed.
And the explicit formula for the coefficients τ (n)

1 would then involve a dis-
crete convolution.

But we shall proceed differently here and rather derive a recursion relation
for τ (n)

1 (similar as in §3 of [50]). A lengthy, but straightforward computation
shows that τ̂1(z) := z τ1(z) satisfies the inhomogeneous differential equation

c̃(c̃+4z) τ̂ ′1−[2α2z3+3α(β+2)z2+(β2+4β+2αγ)z+(β+2)γ] τ̂1 = 2z(γ−αz2) .
(8.64)

Since all coefficients in (8.64) are polynomials we shall use the Laurent se-
ries of τ̂1, i.e. τ̂1 =

∑∞
n=0 s

(n)z−n, with τ
(n)
1 = s(n−1). A comparison of the

coefficients then yields:

s(0) =
1

α
, s(1) = −β + 2

α2
, s(2) =

β2 + 4β + 5− αγ
α3

,

and the exact recursion

(n+ 5)α2s(n+3) + (2n+ 7)α(β + 2)s(n+2) + (n+ 2)(β2 + 4β + 2αγ)s(n+1)

+(2n+ 1)(β + 2)γs(n) + (n− 1)γ2s(n−1) = 0 ,

for n ≥ 0 with the convention s(−1) := 0.
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8.7 APPENDIX B: Gauge-invariant introduction of
the electromagnetic vector potential

Dirac equation Eq. (8.1) sofar has been written for a charged massive par-
ticle in a scalar potential. For a general account of external electromagnetic
fields and/or self-interaction both scalar and vector potential are needed. A
gauge invariant introduction of the electromagnetic vector potential A(x, t)

is executed by replacing the complex 2-spinor ψ =

(
u(x, t)
v(x, t)

)
in Eq. (8.1)

by ψ(x, t) exp{−ia(x, t)} =

(
u(x, t) exp{−ia(x, t)}
v(x, t) exp{−ia(x, t)}

)
, with[51, 52]

a(x, t) :=
q

~c

∫ x

xo

dyA(y, t) .

Position xo is arbitrary but constant. Under this Peierls substitution the
canonical momentum p := ~

i
∂
∂x

in Eq. (8.1) is replaced by the kinetic mo-
mentum p − q

c
A(x, t) = ~

i
∂
∂x
− q

c
A(x, t). Under local gauge transformation

A(x, t)→ A(x, t)+ ∂
∂x

Λ(x, t), Φ(x, t)→ Φ(x, t)− ∂
c∂t

Λ(x, t), the spinor acquires
the phase factor exp{−i q~c (Λ(x, t)− Λ(xo, t))}, and the electromagnetic fields
E and B remain invariant.

Here it should be pointed out that in a (1+1)D model, orbital forces are con-
fined to one spatial direction (i.e., x), while non-vanishing torque on the
spin degree of freedom (in a Larmor term) arising from Ax(x, t) = A(x, t)
requires a non-vanishing B field component in the plane orthogonal to x.
Note, however, that the two-component nature of an effective Dirac model
may not arise from the spin degree of freedom. Most notable example in
2+1D is graphene [3]. This shows that the physical interpretation of the ef-
fective Dirac equation and the way an electromagnetic field couples to the
system is determined by the underlying basic theory.

We now discuss the consequences of the Peierls substitution on the leap-
frog scheme Eqs. (8.20) and (8.21). Again, we have V (x, t) = −Φ(x, t), and
for any grid point xj, tn we define anj := a(xj, tn). The leap-frog scheme for
non-zero vector potential is obtained by the substitution

u
n−1/2
j → û

n−1/2
j := u

n−1/2
j exp{−ian−1/2

j } ,
vnj−1/2 → v̂nj−1/2 := vnj−1/2 exp{−ianj−1/2} . (8.65)

Likewise, the stability analysis for zero vector potential detailed above can
immediately be extended to the case of a non-vanishing vector potential
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by the substitution Eq. (8.65) and noting that the vector potential A(x, t) is
real valued. Hence, a strictly conserved functional Ên

r is identified by this
substitution applied to the expression for En

r in Eq. (8.42) for arbitrary time
t and space x dependent m,V,A ∈ R. It follows that the scheme remains
stable for all r = ∆t/∆x ≤ 1.

Expressed in terms of spinor components u and v the scheme in presence
of an external electromagnetic potential takes the form

f+(a
n+1/2
j , a

n−1/2
j )

[
u
n+1/2
j − un−1/2

j

∆t
(8.66)

+ i

(
mn
j − V n

j −
a
n+1/2
j − an−1/2

j

∆t

)
u
n+1/2
j + u

n−1/2
j

2

]

+ if−(a
n+1/2
j , a

n−1/2
j )(mn

j − V n
j )
u
n+1/2
j − un−1/2

j

2

+ f+(anj+1/2, a
n
j−1/2)

[
(Dvn)j

∆x
− i

anj+1/2 − anj−1/2

∆x

vnj+1/2 + vnj−1/2

2

]
= 0 , (8.67)

f+(an+1
j−1/2, a

n
j−1/2)

[
vn+1
j−1/2 − vnj−1/2

∆t
(8.68)

− i(mn+1/2
j−1/2 + V

n+1/2
j−1/2 +

an+1
j−1/2 − anj−1/2

∆t
)
vn+1
j−1/2 + vnj−1/2

2

]

− if−(an+1
j−1/2, a

n
j−1/2)(m

n+1/2
j−1/2 + V

n+1/2
j−1/2 )

vn+1
j−1/2 − vnj−1/2

2

+ f+(a
n+1/2
j , a

n+1/2
j−1 )

[
(Dun+1/2)j−1/2

∆x
− i

a
n+1/2
j − an+1/2

j−1

∆x

u
n+1/2
j + u

n+1/2
j−1

2

]
= 0 .

(8.69)

Here we have used the definition f±(a1, a2) := (e−ia1 ± e−ia2)/2. As in the
main text, we set c = ~ = 1 = −q. For slowly varying vector potential (or
within first order in ∆t) one may approximate these equations by
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u
n+1/2
j − un−1/2

j

∆t
+ i(mn

j − V̂ n
j )
u
n+1/2
j + u

n−1/2
j

2

+

[
(Dvn)j

∆x
+ iAnj

vnj+1/2 + vnj−1/2

2

]
= 0 , (8.70)

vn+1
j−1/2 − vnj−1/2

∆t
− i(mn+1/2

j−1/2 + V̂
n+1/2
j−1/2 )

vn+1
j−1/2 + vnj−1/2

2

+

[
(Dun+1/2)j−1/2

∆x
+ iA

n+1/2
j−1/2

u
n+1/2
j + u

n+1/2
j−1

2

]
= 0 . (8.71)

Here we have used the following abbreviations on the two sub-lattices:

V̂ n
j := V n

j +
a
n+1/2
j −an−1/2

j

∆t
and V̂

n+1/2
j−1/2 = V

n+1/2
j−1/2 +

an+1
j−1/2

−an
j−1/2

∆t
denote the net

scalar potential associated with the E field after introduction of the vector

potential, and Anj =
an
j−1/2

−an
j+1/2

∆x
and A

n+1/2
j−1/2 =

a
n+1/2
j−1 −an+1/2

j

∆x
are the vector

potential, as defined by symmetric spatial derivatives of a(x, t). Note that
we use q = −1.

The approximate scheme (8.70) and (8.71) may have been guessed di-
rectly by inspection of Eqs. (8.20) and (8.21). Going the present way, how-
ever, not only has given the way for precise implementation of the vector
potential into the latter but also has taken care of the stability analysis for
this general case. Finding an exactly conserved functional for the approx-
imate scheme is complicated by the fact that the vector potential leads to
additional coupling between the spinor components u and v.
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Figure 8.8: Simulation run for a coarse grid ∆t = ∆x = 0.05 and an ini-
tial Gaussian wave packet with a mean value of k = 15.92% of kmax and a
standard deviation of σk = 1.59% of kmax. The figures show the probability
density |ψ(x)|2 (solid lines), the real part of the upper component u (dotted
lines), and the mass-gap (point-dotted lines). The zero line on the vertical
axis is shifted by 10, which is the mean energy of the wave packet. With
time evolving, the probability ‖ψ‖2 for finding the particle in the computa-
tional domain approaches zero because the wave packet leaves the domain
without reflection.
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Figure 8.10: Reflection at a mass barrier with a width of 25 grid-points and
a height of m = 7. ∆t = ∆x = 0.01, the initial Gaussian wave packet
has a mean value of k = 1.59% of kmax and a standard deviation of σk =
1.99% of kmax. The individual figures show the probability density |ψ(x)|2
(solid lines), the real part of the upper component u (dotted lines), and the
mass (dash-dotted lines). The zero for the vertical axis is shifted by 5, which
corresponds to the mean energy of the initial wave packet.
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Figure 8.11: Initial Gaussian wave packet with a mean value of k = 27.06%
of kmax and a standart deviation of σk = 1.99% of kmax meeting a linear
potential. A rather coarse grid ∆t = ∆x = 0.05 is used. The figures show
the probability density |ψ(x)|2 as dashed line, the real part of the upper
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Chapter 9

PAPER REPRINT:
STAGGERED GRID LEAP-FROG SCHEME FOR
THE (2+1)D DIRAC EQUATION

Computer Physics Communications
(in press)
http://dx.doi.org/10.1016/j.cpc.2013.08.013

R. Hammer and W. Pötz

A numerical scheme utilizing a grid which is staggered in both space and time
is proposed for the numerical solution of the (2+1)D Dirac equation in presence of
an external electromagnetic potential. It preserves the linear dispersion relation of
the free Weyl equation for wave vectors aligned with the grid and facilitates the im-
plementation of open (absorbing) boundary conditions via an imaginary potential
term. This explicit scheme has second order accuracy in space and time. A func-
tional for the norm is derived and shown to be conserved. Stability conditions are
derived. Several numerical examples, ranging from generic to specific to textured
topological insulator surfaces, demonstrate the properties of the scheme which can
handle general electromagnetic potential landscapes.
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9.1 Introduction

Ever since its presentation by P.A.M. Dirac in 1928, the Dirac equation has
played a central role in the development of modern physics [1]. It has lead
not only to the prediction and observation of antimatter but has also been
instrumental to the development of modern many-body physics [1, 2, 3, 37].
Known as the Weyl equation for zero mass, it has been of relevance to early
neutrino physics [35]. While its initial applications naturally were devoted
mainly to high-energy elementary particle physics, it has been known for
quite a while that touching energy bands in crystalline solids also can lead
to a Dirac-fermion-like energy dispersion [4, 5]. This can readily be seen for
a Schrödinger particle in a one-dimensional (1D) periodic potential: Since
the spectrum for Bloch solutions has degeneracy two at most, energy bands
cannot overlap. If they touch, they must have linear dispersion near the
point of contact [6]. A prominent example for such a situation is graphene,
which has regained great publicity due to its recent experimental realization
[7, 8]. For this 2D system, the Brillouin zone features 4 (counting spin) Dirac
cones with a small gap due to the spin-orbit interaction. Odd numbers of
Dirac cones have been predicted and experimentally verified on individual
surfaces of topological insulators (TIs) [9, 10, 11, 12, 13, 14]. In the simplest
case, a single Dirac cone of topologically protected metallic surface states
can occur on one side of a TI.

In a condensed matter environment, effective 2D model systems for our
3D world frequently emerge in the low energy limit. The synthesization
of nano-structured materials has led to a number of systems in which elec-
tron motion in one spatial dimension is confined to within a few atomic
layers but essentially free (quasi-particle) motion over macroscopic length
scales occurs in the other two dimensions. Celebrated examples for such
genuine (2+1)D systems are the 2DEG and graphene [8]. Layered high-Tc
systems may be seen as an example in the wider sense [15]. Optical lattices
also constitute a rich play ground for the engineering of 2D physics with
the possibility of tuning various parameters and therewith controlling atom
localization and effective many-body interactions [17, 18, 19]. Surfaces of
solids in general provide a natural environment for the study of (quasi-) 2D
phenomena, with a remarkable recent example provided by the topologi-
cally protected 2D metallic surface states of TIs. Their intrinsically gap-less
energy spectrum can be manipulated by perturbations which break time-
reversal symmetry to introduce an energy gap (mass term). Electromag-
netic texturing can provide a landscape of electric potential and effective
mass, taking positive and negative values, potentially leading to protected
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1D chiral channel states [16, 9, 20, 21].
A theoretical analysis of the rich dynamics of Dirac fermion quasiparti-

cles in (2+1)D requires reliable numerical methods which can handle position-
and time- dependent potential and mass landscapes. Existing methods are
the real-space schemes, such as the finite-difference and finite-element meth-
ods [22, 23, 27]. Momentum-space spectral methods and split-operator meth-
ods have been developed also [28, 29, 30, 31]. While finite-difference and
finite-element schemes allow for an easy implementation of non-constant
coefficients they have to deal with the fermion doubling problem. This is
expressed in the Nielsen-Ninomiya no-go theorem which forbids a single
minimum in the energy dispersion of a Dirac-type equation on a regular
grid without breaking either Hermiticity, translational invariance, or local-
ity [32]. Elimination of fermion doubling by means of a nonlocal approx-
imation for the spatial derivative operator has been introduced by Stacey
[23] and implemented numerically for a stationary problem [33]. Fermion
doubling can also be avoided by split-operator methods [30]. A scheme
with a non-monotonic dispersion relation does not have to be ruled out for
numerical studies, but, the latter can severely constrain its useful domain
of wave numbers in momentum space and may require a very fine grid
in real space. Here we will present an easy-to-implement, explicit, finite-
difference method which preserves the zero-mass free Dirac-dispersion of
the continuum problem along the main axes of the grid and provides only
one extra Dirac cone at the corners of the first Brillouin zone. This scheme
is especially well-suited for long-time propagation studies where the oc-
curring wave vectors mostly are aligned parallel to the grid as envisioned,
for example, in Dirac fermion wave guides [21]. Details of the numerical
approach and the properties of this scheme are discussed in Sec. 9.2. Nu-
merical examples for the free particle propagation, the Klein step, and basic
domain wall structures are given in Sect. 9.3. Summary and conclusions can
be found in Sects. 9.4 and 9.5. Further details are given in the appendix.

9.2 The numerical approach

The generic (2+1)D Dirac equation in normalized units (velocity c = 1,
Planck’s constant ~ = 1, elementary charge e = 1) in Schrödinger form
may be written as

i∂tψ(x, y, t) = Ĥψ(x, y, t) , (9.1)
where ψ(x, y, t) ∈ C2 is a 2-component spinor and the Hamiltonian is of the
form

Ĥ = σxpx + σypy + σ ·m(x, y, t) + V (x, y, t) , (9.2)
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Figure 9.1: Leap-frog staggered-grid scheme: The left part shows the time-
stepping sequence where 1) the new u components (blue/dark gray) are
computed by the previous u and the spatial differences of old v-values. 2)
Then (knowing u at tn+1) the new v components (red/light gray) are com-
puted at tn+1 . The right part of this figure shows the pattern for the spatial
derivatives in x and y.

pi represents the component i = x, y of the momentum operator and σ =
(σx, σy, σz) is the vector of Pauli matrices. The scalar potential in Eq. (9.2) is
represented by V . The “magnetization vector”
m(x, y, t) = [mx(x, y, t),my(x, y, t),mz(x, y, t)] may have its origin in a vector
potential or an exchange coupling to a ferromagnetic medium. Note that
mz 6= 0 provides the mass term to the equation.

This generic two-component Dirac equation provides an effective model
for a number of physical systems. For topological insulators, this model de-
scribes the low energy surface excitations. The spin is locked to the momen-
tum, whereby the physical spin quantization axis is S ∝ ẑ× σ, correspond-
ing to a fermion with 2 degrees of freedom [9]. For given momentum, the
presence of two components may be interpreted as accounting either for the
existence of positive and negative energy solutions or the presence of two
spin directions. Note, that flipping the spin for given momentum is equiv-
alent to switching between the positive to negative energy branch. Indeed,
by a simple unitary transformation applied to Eq. (9.2) one can arrive at a
“physical" representation such that S ∝ σ which is useful in the presence of
external electromagnetic fields. Note that, in accordance with the Nielsen-
Ninomiya no-go theorem, a second Dirac cone is located on the opposite
side of the TI surface. For graphene, the two components arise from the |pz〉
bonding and anti-bonding band (without spin) [8]. In contrast, the stan-
dard four-component Dirac equation describes a spin-1/2 particle (Dirac
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fermion) with positive and negative energy solutions amounting to 2×2 = 4
degrees of freedom (“two energy bands and two spin directions"). The Ma-
jorana fermion solution is a special case. It is its own antiparticle, making it
“half a Dirac fermion" with two degrees of freedom [34, 36, 35, 37, 38].

9.2.1 Numerical scheme

We propose a staggering of the grid both in time and space with second-
order approximation for the time and space derivative, as shown in Fig. 9.1,

un+1
j,k − unj,k

∆t
= −i

(
(mz)

n
j,k + V n

j,k

) un+1
j,k + unj,k

2

−
(vnj,k−1 − vnj−1,k−1) + (vnj,k − vnj−1,k)

2∆x

+ i
(vnj−1,k − vnj−1,k−1) + (vnj,k − vnj,k−1)

2∆y
,

vn+1
j,k − vnj,k

∆t
= i
(
(mz)

n+1
j,k − V

n+1
j,k

) vn+1
j,k + vnj,k

2

−
(un+1

j+1,k − u
n+1
j,k ) + (un+1

j+1,k+1 − u
n+1
j,k+1)

2∆x

− i
(un+1

j,k+1 − u
n+1
j,k ) + (un+1

j+1,k+1 − u
n+1
j+1,k)

2∆y
(9.3)

with the notation ψ(xj, yk, tn) ≈ ψn
j,k = (unj,k, v

n
j,k) where n and j, k, respec-

tively, are the discrete time and space indices.
Here the mass term mz and the potential V enter the scheme in a Crank-

Nicolson time-averaged manner. A consistent incorporation of a "vector po-
tential"mx andmy will be detailed below. Since the time averaged functions
for the former only depend on one spatial grid-point a rearranging of terms
leads to an explicit scheme. We call it a leap-frog scheme because u and v
are computed in an alternating manner where first un+1

j,k is computed from
unj,k and vnj,k. Then using the updated components un+1

j,k , as shown in Fig. 9.1,
the new vn+1

j,k are computed. This spatial staggering allows for a centered
approximation of the first spatial partial derivatives without omitting the
central grid point, as is the case for a centered symmetric first derivative
operator on a regular grid. This eliminates one source of fermion-doubling.
Here it should be recalled that by using one-sided difference operators with
alternating direction for for u and v, fermion doubling can be avoided for
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the (1+1)D Dirac equation. For the (1+1)D case the latter is equivalent to the
present spatial staggering of the grid [23, 24]. We use staggering in time to
further improve the dispersion relation, which will be shown below.

mx and my terms in the Hamiltonian Eq. (9.2) are incorporated consistently
into the scheme above, for mx = my = 0, using a Peierls substitution[25, 26],

unj,k → ûnj,k ≡ unj,k exp{ianj,k}
vnj,k → v̂nj,k ≡ vnj,k exp{ianj,k} , (9.4)

where the real phase anj,k is defined as the line integral over the two-dimensional
magnetization vector m, starting at arbitrary, but fixed position (xo, yo) and
ending on the lattice point (x, y) = (j∆x, k∆y),

anj,k =

∫ (x,y)

(xo,yo)

ds ·m(s, t) |x=j∆x,y=k∆y,t=n∆t .

This substitution introduces mx and my in covariant fashion when inter-
preted as components of the electromagnetic vector potential, leading to
px → px + mx and py → py + my in the Dirac Hamiltonian Eq. (9.2). Details
of the resulting scheme are discussed in 9.6. In the limit of smooth variation
of mx and my in space and time the scheme takes the form

un+1
j,k − unj,k

∆t
= −i

(
(mz)

n
j,k + V̂ n

j,k

) un+1
j,k + unj,k

2

−
vnj,k−1 − vnj−1,k−1 + vnj,k − vnj−1,k

2∆x

+ i
vnj−1,k − vnj−1,k−1 + vnj,k − vnj,k−1

2∆y

− i(mx)
n
j,k

vnj,k + vnj−1,k + vnj,k−1 + vnj−1,k−1

4

− (my)
n
j,k

vnj−1,k + vnj−1,k−1 + vnj,k + vnj,k−1

4
, (9.5)
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and
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4
. (9.6)

Here V̂ n+1
j,k is the net scalar potential. Its relation to V n+1

j,k is is given in A.1.

9.2.2 Von Neumann stability analysis

For this linear system and constant coefficients, Fourier analysis is used to
determine the dispersion introduced by the grid. Furthermore, we use pe-
riodic boundary conditions (absorbing layers as introduced later do not vi-
olate periodicity). Thus, von Neumann stability analysis is sufficient to ex-
plore the stability of the finite difference scheme [39]. The Fourier transform
of Eq. (3) from real space to momentum space leads to:(

a11 a12

a21 a22

)
︸ ︷︷ ︸

=:A

(
ũn+1

ṽn+1

)
+

(
b11 b12

b21 b22

)
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=:B

(
ũn

ṽn

)
= 0 , (9.7)

where we define
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1
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2
, (9.8)
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Figure 9.2: The largest eigenvalue of the growth matrix G max(|λ±|) shown
over the entire scaled k-space for m = 0 and two different values of imagi-
nary V , for ratio r = ∆t/∆ = 0.9.
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It is convenient to define the amplification matrix G = −A−1B and to use
ξx = kx∆x, ξy = ky∆y Eq. (9.7) becomes

ψ̃n+1(ξx, ξy) = G(ξx, ξy)ψ̃
n(ξx, ξy) . (9.10)

We now consider ∆x = ∆y = ∆ and define the ratio r = ∆t/∆. Introducing
rescaled variables µi = mi∆t and ν = V∆t, we write the eigenvalues of G
using the root formula

λ± = P/2±
√(

P/2
)2 −Q , (9.11)

where P = tr[G] and Q = det[G]. The resulting lengthy expressions write
as:

P =
[
16(1− r2) + 4(ν2 − µ2

z)− 3(µ2
x + µ2

y) (9.12)

+ 4r(µx − µy)− 2(µ2
x + µ2

y)(cos ξx + cos ξy)

+ 4r(µx + µy)(cos ξx − cos ξy)

− (µ2
x + µ2

y)(cos ξx cos ξy + sin ξx sin ξy)

− 4r(µx − µy)(cos ξx cos ξy − sin ξx sin ξy)

+ 8r
(
µx sin ξx + µy sin ξy + µx sin ξx cos ξy

+ µy cos ξx sin ξy + 2r cos ξx cos ξy
)]
/(2N) ,

Q =[µ2
z − (ν − 2i)2]/N ,

where N = 4 + µ2
z − 4iν − ν2. For µx = µy = 0 it reduces to: P =

[2(ν2 − µ2
z) + 8r2(1/r2 − 1 + cos ξx cos ξy)]/N . Now one can show that for

r < 1 and µz, ν ∈ R: |λ±| = 1 for all allowed wave numbers on the grid,
ξx, ξy ∈ [−π, π]. Since under this constraints the eigenvalues are simple the
the scheme is stable for the ratio r < 1, which constitutes the CFL condition
for the scheme. For µi 6= 0 the scheme is stable for r < min

[√
1− (µx/4)2 −

µy/4,
√

1− (µy/4)2 + µx/4
]
. Let’s, for now and in momentum space, define

the square of the l2 norm of the spinor as:
‖ψ̃‖2 =

∫ π
−π dξx

∫ π
−π dξy(|ũ(ξx, ξy)|2+|ṽ(ξx, ξy)|2). It is preserved because ‖Gψ̃‖ =

‖ψ̃‖. If mz has an imaginary part, it turns out that the scheme is unstable
because the absolute value of one of the λ’s becomes larger than one in the
vicinity of the points (ξx, ξy) = (0, 0) and (ξx, ξy) = (±π,±π). If, on the other
hand, the potential V has an imaginary part its sign determines the stabil-
ity of the scheme: for ={V } < 0 it is unstable. For ={V } > 0 it is stable,
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however, max(|λ±|) < 1 and the norm is not conserved. One can utilize this
property to create absorbing layers which act as absorbing (open) boundary
conditions within this scheme. Furthermore, internal absorbing layers can
be used to simulate particle source and drain. In Fig. 9.2 we show, for illus-
tration, max(|λ±|) and its behavior for different values of r and ={V } > 0.

9.2.3 Dispersion relation

Let us now turn our attention to the dispersion relation of the proposed
scheme. It is obtained by a Fourier transformation of Eq. (9.10) in time or,
again by looking at the eigenmodes of the scheme. The ansatz: ũn+1 = eiω̃ũn

where ω̃ = ω∆t, gives us, in the notation from above, the homogeneous
system

(eiω̃A+B)ψ̃ = 0 , (9.13)

from which the non-trivial solutions are determined for ω̃ and expressed in
terms of the growth factor λ± (see Eq. (9.11))

ω̃ = − i
r

ln[λ±] . (9.14)

Here again the necessary and sufficient condition for the conservation of the
norm, using λn± = eiωrn, shows up as =(ω) = 0 which, for µx, µy = 0, gives
|λ±| = 1. Setting µz = 0 and ν = 0 it simplifies to

ω̃ = − i
r

ln

{
1 + r2

(
cos ξx cos ξy − 1

)
(9.15)

±
√[

r2
(

cos ξx cos ξy − 1
)

+ 1
]2

− 1

}
,

where choosing r = 1 leads to:

ω̃ = −i ln
(

cos ξx cos ξy ±
√

cos2 ξx cos2 ξy − 1
)
, (9.16)

which is plotted in Fig. 9.3. It can be seen that the dispersion relation is
linear along the x- and y-axis. For example, at the x axis where ξy = 0, we
get

ω̃ = −i ln
(

cos ξx ± i sin ξx

)
= ±ξx .
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Figure 9.3: Dispersion relation for ∆x = ∆y = ∆, µi = 0, ν = 0 and r = 1. (a)
Leap-frog staggered-in-space-and-time scheme. For comparison: (b) cen-
tered differences in space and Crank-Nicolson in time, without grid stag-
gering.
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This means that the dispersion relation of the continuum model (Weyl equa-
tion) is preserved along the x- and y- axis. For comparison we also show
the dispersion relation for a scheme using a centered second-order approx-
imation without spatial staggering of the spatial differences and without
time staggering but using Crank-Nicolson in time instead (Fig. 9.3 (b)).
With the staggered scheme one gets two Dirac cones, at (ξx, ξy) = (0, 0) and
(ξx, ξy) = (±π,±π) respectively, in contrast to the four Dirac cones obtained
by the scheme without staggering. The dispersion relation for µy 6= 0 is
computed numerically and shown in Fig. 9.4.

Putting a genuine continuum model on a lattice inevitably leads to
changes in the spectral properties. The spatial grid destroys momentum
conservation of the free-particle Dirac equation and introduces an invari-
ance under discrete (primitive) translations in real space. As a consequence,
k-vectors are defined up to reciprocal lattice vectors only. Similarly, a time
grid with spacing ∆t makes frequency well defined only within the interval
(−π/∆t,+π/∆t]. One remarkable feature of the present model is that for the
special case of r = 1 the linear energy dispersion of the free-particle Weyl
equation is preserved exactly along kx and ky. This is shown in Fig. 9.5 (a).
No phase errors occur in this case, which, has recently been used to study
the dynamics of Dirac fermions in a 2D interferometer setup [21]. As ex-
pected, however, errors (deviation from continuum behavior - dashed lines
in Fig. 9.5) occurs in all other cases: Adding a (constant) potential V , Fig. 9.5
(b), introduces an artificial “energy gap" at the BZ boundary while the cor-
rect dispersion should remain linear, merely shifted vertically by V . In this
case, periodic motion (Bloch oscillation) occurs when the k-vector crosses
the BZ boundary. Similarly for finite mass, Fig. 9.5 (c), a wave packet will
disperse while undergoing Bloch oscillations. Errors in the dispersion also
occur for r < 1, Fig. 9.5 (e). The effect of mx 6= 0 is shown in Fig. Fig. 9.5 (d).
While it changes the kinetic momentum leading to a horizontal shift of the
dispersion in the continuum model, additional band curvature arises on the
lattice.

9.2.4 The norm

The definition of a discrete L2 norm on a staggered grid requires some care
due to ambiguities when taking the continuum limit. In particular, the sim-
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ξx
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Figure 9.4: Dispersion relation of the present leap-frog scheme with r = 0.9,
∆x = ∆y = ∆, mx = mz = V = 0 and my = 0.1, 0.2, 0.3, 0.4 from the
upper left to the lower right figure. One observes a shift of the Dirac cone
away from the center of the momentum space by my consistent with the
continuum solution.

ple local form

||ψ||n2 :=

√∑
j,k

(
|unj,k|2 + |vnj,k|2

)
(9.17)

proves to be a poor choice since numerical tests show that, while conserved
on time average, it can show strong oscillations around its mean value.
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Figure 9.5: Dispersion relation for wave vectors aligned with the kx axis
(ky = 0), ∆x = 1 for various parameters. The topology of the dispersion
relation is that of a torus, periodic in kx, ky, and ω. In each figure, equiva-
lent points in the dispersion are marked by pairs of black filled circles and
empty diamonds, respectively. For comparison, the dispersion relation for
the continuum equation is shown by dashed lines.

In order to define a norm which is invariant under this scheme we first
define a scalar product between spinor components on the lattice as follows

(un; vn
′
)0,0 = (un; vn

′
) =

∑
j,k

(unj,k)
∗vn

′

j,k , (9.18)

and

||un||2 = (un;un) . (9.19)

Furthermore we define scalar products with shifted spinor components as
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(a)

(b) j

j

k
k

Figure 9.6: (a) Comparison of the propagation of a packet for m = V = 0
with a low wave numbers (kx, ky) = (10.0± 1.3, 0.0± 1.3)% to one prepared
with a mean wave number near the maximum for the grid (kx, ky) = (80.0±
1.3, 0.0± 1.3)%. (b) The same initial data using a finer grid having (kx, ky) =
(2.50± 0.32, 0.0± 0.32)% and (kx, ky) = (20.0± 0.32, 0.0± 0.32)%. The closed
lines represent the FWHM the brightness saturation the probability density
and the color/brightness variation encodes the phase.



148

follows

(un; vn
′
)±,0 = (un; vn

′

±,0) =
∑
j,k

(unj,k)
∗vn

′

j±1,k ,

(un; vn
′
)0,± = (un; vn

′

0,±) =
∑
j,k

(unj,k)
∗vn

′

j,k±1 ,

and
(un; vn

′
)±,± = (un; vn

′

±,±) =
∑
j,k

(unj,k)
∗vn

′

j±1,k±1 , (9.20)

Here the sum j, k runs over all lattice sites. n, n′ denote two time sheets,
and u and v denote any combination of two upper and/or lower spinor
components.

For any physical situation, we may consider either zero boundary con-
ditions or periodic boundary conditions. In both cases, a norm which is
conserved by the scheme Eqs. (9.3) for real-valued and finite mz(x, y, t) and
V (x, y, t), and mx = my = 0 is given by

En+1 = En =||un||2 + ||vn||2

− rx<
{

(un; vn)0,− − (un; vn)−,−

+ (un; vn)0,0 − (un; vn)−,0
}

− ry=
{

(un; vn)−,0 − (un; vn)−,−

+ (un; vn)0,0 − (un; vn)0,−
}
. (9.21)

with rx = ∆t/(2∆x) and ry = ∆t/(2∆y).
Furthermore, for the general case of non-vanishing mx and my, the con-

served norm Ên under the exact scheme (see A.1 and 9.7) is obtained by
subjecting u and v in En to the Peierls transformation Eq. (9.4), noting that
exp{ianj,k} is a local gauge field. Note also that the scheme Eq. (9.5) and Eq.
(9.6) is valid only in the limit of slowly-varying mx and my and hence will
conserve Ên only in this limit. The proof for the conservation of En and,
respectively, Ên is given in 9.7.

This definition of a norm also allows a stability analysis of the scheme. In
particular, it is valid for time- and position-dependent magnetization, mass,
and electromagnetic potential.

One finds

||un||2 + ||vn||2 ≤ Eo
1− r̃

, for r̃ = 2
√
r2
x + r2

y < 1 , (9.22)
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for scheme Eq. (9.3), as well as

||ûn||2 + ||v̂n||2 ≤ Êo
1− r̃

, for r̃ = 2
√
r2
x + r2

y < 1 , (9.23)

for scheme Eqs. (9.30) and (9.32), which is approximated by the scheme
Eqs. (9.5) and (9.6) above. Stability can also be shown for r̃ = 1. The proof
is given in 9.8.
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100 200 300 400 5000
x

y

Figure 9.7: Wave packet with (kx, ky) = (10.0 ± 1.3, 0.0 ± 1.3)% for m = 0
in a potential, shown by contour lines, rising linearly in x-direction from 0
to 0.2. The closed lines represent the FWHM, the brightness saturation the
probability density, and the color/brightness variation encodes the phase.

9.3 Numerical examples

With the numerical approach presented above, one is in a perfect position
to simulate ballistic Dirac fermion dynamics in (2+1)D in complex potential
landscapes under open boundary conditions. The numerical examples be-
low have been selected mainly to demonstrate the properties of the scheme
and provide some intuition for (2+1)D ballistic Dirac fermion dynamics in
simple effective TI mass and potential textures. For the examples given be-
low, we have chosen a spatial region of 500 × 500 units and use a rather
coarse discretization ∆x = ∆y = 1, and r = 0.9. We give k in percents
(%) of kmax = π/∆. While movies are ideally suited to visualize our nu-
merical results of Dirac fermion dynamics, here the figures show snapshots
taken every 100 time steps which are combined in a single plot. The closed
lines in these figures mark the FWHM of the wave packet for a given time
step and the brightness saturation shows the probability density ‖ψ‖2. Col-
or/brightness indicates the phase of the wave packet which is associated
with the real part of the upper spinor component u.
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Figure 9.8: Wave packet with (kx, ky) = (10.0 ± 1.3, 0.0 ± 1.3)% for m = 0
at a Klein step: on the left side the potential V = 0 and rises linearly to
V = 0.1 at the right side of the figure, as shown by contour lines. The closed
lines represent the FWHM, the brightness saturation gives the probability
density, and the color/brightness variation encodes the phase.

9.3.1 Dispersive properties of the scheme

Due to the chosen staggered-grid discretization a rather faithful representa-
tion of the exact continuum Dirac cone dispersion and constant "magnetiza-
tion" m,

Ω(kx, ky) =

√(
kx −mx

)2
+
(
ky −my)2 +m2

z + V , (9.24)

is possible over a wide region of k-space. Eq. (9.24) is to be compared with
the dispersion provided by the staggered grid discretization given in Eq.
(9.14).
First we demonstrate the quality of the dispersion on the lattice and inves-
tigate a "race" between two massless Dirac fermions on the grid. One is de-
scribed by a wave packet with small wave numbers, prepared with a mean
wave number of (kx, ky) = (10.0, 0.0)% of kmax, the other by a wave packet
with a high central wave number of kmax: (kx, ky) = (80.0, 0.0)%. Both wave
packets have a Gaussian half width in kx and ky of (1.3, 1.3)% of kmax. Re-
member kmax is the maximum wave number provided by the grid kmax =
π/∆. Below we use the abbreviated notation (kx, ky) = (80.0±1.3, 0.0±1.3)%.
Results are shown in Fig. 9.6 (a). Since the systematic errors in group ve-
locity associated with the present scheme are small the two wave packets
propagate essentially with equal speed. For this particular simulation we
chose r = 1 because it provides the best approximation to the exact lin-
ear dispersion. The stronger distortion of the wave packet with the smaller
wave number compared to the one with higher wave number is due to a
different slope in the y-direction of the dispersion for the wave packet lying
closer/farther to the center of the Dirac cone. This effect is also present for
the continuum problem. To demonstrate this fact we show this "race" using
the a very fine grid Fig. 9.6 (b).
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Figure 9.9: Wave packet with (kx, ky) = (5.0± 6.4, 0.0± 6.4)% for m = 0 at a
Klein step where on the left side V = 0 and rising linearly to V = 0.1 at the
right side of the figure as shown by contour lines. The closed lines represent
the FWHM, the brightness saturation gives the probability density, and the
color/brightness variation encodes the phase.
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Figure 9.10: (color online). Wave packet with (kx, ky) = (10.0±1.3, 0.0±1.3)%
for V = 0 at a step where on the left sidemy = 0 and is rising linearly tomy =
−0.2 to the right side of the figure as shown by contour lines. The closed
lines represent the FWHM, the brightness saturation gives the probability
density, and the color/brightness variation encodes the phase.

In Fig. 9.7 we show a wave packet of mass zero in a region of constant
electric field represented by a linear potential V growing from 0 to 0.1. The
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(a) (b)

Figure 9.11: (a) Wave packet with (kx, ky) = (5.0± 6.4, 0.0± 6.4)% for m = 0
at a step where on the left side my = 0 and rising linearly to my ± 0.01
(magnitude shown by contour lines and direction by arrows) where at the
upper right-hand quarter of the figure my = 0.01 and at the lower right-
hand quarter of the figure my = −0.01. (b) the same as in (a) but with
my = 0.03. The closed lines represent the FWHM, the brightness saturation
gives the probability density, and the color/brightness variation encodes
the phase.

initial Gaussian wave packet is prepared with (kx, ky) = (10.0, 0.0)% kmax
and a half width of (1.3, 1.3)%. The speed of propagation does not change
because the massless fermion on the grid always moves at maximum wave
velocity (c = 1). The change in kinetic energy shows up in the growth of
the wave number. Here it is remarkable that the wave number grows close
to the maximum wave number provided by the grid and yet the simulated
propagation is still a good approximation to the exact result for the contin-
uum problem. This is due to the ecellent dispersion properties of the scheme
for wave numbers aligned with the grid.

9.3.2 Dynamics at Klein steps

Next we consider a Klein potential step at which the wave packet (kx, ky) =
(10.0± 1.3, 0.0± 1.3)% propagates in positive energy states on the left-hand
side, where V = 0, and in negative energy states on the right-hand side of
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the step, where V = 0.1. For this simulation shown in Fig. 9.8 we choose
m = 0. This situation leads to a high transmission of ≈ 1 of the wave
packet under normal incidence since the potential step resonantly connects
particle states on one side to hole (anti-particle) states on the other. For the
case mz 6= 0, as is well known, the transmission probability grows with the
height of the potential step [37].

Figure Fig. 9.9 shows the same Klein potential step but for an initial wave
packet (kx, ky) = (5.0 ± 6.4, 0.0 ± 6.4)%. The observed focusing behavior is
a consequence of phase and group velocity changing their sign across the
step. Also demonstrated in this figure is the successful implementation of
absorbing boundary conditions. Note that wave contributions impinging
upon the simulation boundaries disappear without artificial reflection.

9.3.3 Dynamics under finite m

In this second part we explore simple cases for which m 6= 0 emulating, for
example, TI surfaces with ferromagnetic texture. First we consider a situa-
tion where my(x) changes from zero to a finite constant value. As seen in
Eq. (9.24) a constant my shifts the dispersion relation in y-direction of mo-
mentum space. Thus, when a wave packet impinges upon such a "magnetic
Klein step" a wave packet starting with group velocity component vy = 0
ends up with a finite group velocity component, as demonstrated numeri-
cally in Fig. 9.10. This effect can be exploited for the focusing of an incoming
fermion beam, as shown in Fig. 9.11. We set, for the right upper quarter of
the simulated domain, my = const and my = −const in the lower right
quarter. Therefore, for sufficiently small ky, the group velocity component
vy changes sign at the interface between these two regions. As a result, one
observes the emergence of interference fringes where the distance of the
maxima depends on my, see Fig. 9.11 (a) and (b).
Fig. 9.12 shows a mass-zero wave packet traveling on a relativistic Landau
orbit enforced by a magnetization in z-direction represented by a vector po-
tential my with linear x-dependence. Positions of constant my are indicated
in the figure by vertical lines. The Gaussian wave packet sets out in the 12
o’clock position and propagates in the direction indicated by the arrows.
In this case a strongly dispersive behavior is observed: inner portions of
the wave packet move ahead of the outer portion leading to a significantly
elongated wave packet after one completed orbit. This dispersive effect is
not a numerical error but a represents a peculiarity of a mass zero particle in
a magnetic field, for which the period T for completion of one orbit fulfills
T ∝ k/B, where k is the magnitude of the k-vector and B the z-component
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Figure 9.12: Wave packet starting with (kx, ky) = (10.0 ± 0.8, 0.0 ± 0.8)%
for V = 0 moving in a constant magnetic field in z-direction, represented
by a vector potential my rising linearly with x. The closed lines mark the
FWHM, the brightness saturation gives the probability density, and the col-
or/brightness variation encodes the phase.

of the magnetic field. Since the particle moves at constant group velocity,
also the classical cyclotron radius Rc scales linearly with k. Thus portions of
the wave packet closer to the center of the orbit move ahead of those further
away from it, as is clearly revealed in the numerical simulation shown in
Fig. 9.12. This effect is of course closely related to the

√
n dependence of the

cyclotron mass of graphene, with n denoting the particle density, which has
lead to the measurement of the Fermi velocity in graphene, as discussed in
a recent review article [8]. This effect can also be seen in a publication where
a FFT-split-operator code was used [40].

This numerical approach has also served as the basis for a theoretical
study of Dirac fermion propagation on magnetically textured surfaces of
topological insulators, in the vicinity of domain walls, domain wall inter-
sections, and Dirac fermion wave guides [20, 21].
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9.4 Discussion

The main advantages from this compact scheme are the preservation of the
free Weyl-Dirac fermion dispersion relation for wave vectors aligned along
both the x- and the y-axis, as well as a large, nearly isotropic monotonic re-
gion near the center of k-space. In particular for long-time simulations of
magnetic textures which are aligned along the main axes, like rectangular
waveguide structures which we have modeled [21], the advantages of the
present scheme pay off. As demonstrated above, for such setups errors in
phase and group velocity relative to the continuum model are small (see,
for example, the dispersion relation along the axes in Fig. 9.3 (a)). The re-
sults show high accuracy for wave-components up to the grid maximum
of two grid-points per wavelength, known as the Nyquist wave number. It
should also be remembered that the effective model captured by the Hamil-
tonian in Eq. (9.2) is valid only in the vicinity of the degeneracy point of the
surface states of a TI or the graphene band structure and for weak contri-
butions from the “magnetization" term. Therefore, the presence of a second
cone at (kx, ky) = (± π

∆x
,± π

∆y
) does not provide a serious drawback for most

applications.

Furthermore, this scheme leaves open the option to choose, within its ex-
plicitly derived convergence limits, any desirable ratios in the grid spacings.
For simulations with arbitrary propagation directions one has to estimate
the occurring wave numbers and choose the grid size such that the disper-
sion relation on the grid is a good approximation to the one for the con-
tinuum equation. Again, the present scheme has a significant advantage (in
addition of being explicit) over the standard scheme using a symmetric form
of the spatial derivatives, see Fig. 9.3 (b), since the region of k-space where a
good approximation of the continuum energy dispersion is provided is sig-
nificantly enlarged. Typical simulations shown here take a few minutes of
CPU time on an average PC. For this second order accurate scheme the nu-
merical cost increases linearly with the number of (space+time) grid-points,
offering a profound advantage compared to implicit schemes of the same
order, whenever simulations of high accuracy are required. If necessary, the
second Dirac cone can be removed within this scheme by adding mass to
the doublers using a Wilson term [41]. When properly implemented into
the present staggered grid scheme it leads to an implicit scheme which will
be shown elsewhere.
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9.5 Summary, conclusions, and outlook

In summary, we have presented a staggered-grid leap-frog scheme for the
numerical solution of the (2+1)D Dirac equation which has the following
favorable properties: it is an explicit scheme, it has the minimum number
"two" of Dirac cones on the lattice whereby the second cone sits at the cor-
ners of the “1st Brillouin zone", for the case of mass zero it provides the
correct linear dispersion along x- and y-direction, and it allows for the im-
plementation of absorbing boundary conditions for simulations on a finite
grid without spurious reflections from its boundaries, as well as the simu-
lation of particle sources and sinks. Here, generic numerical examples have
been given to demonstrate and explore these properties. As a consequence,
this approach is well suited for the study of Dirac fermion dynamics in po-
tential landscapes provided by external electromagnetic potentials, typical
to TI surface states. Applications to TI surface state dynamics based on this
algorithm have and will be presented elsewhere [20, 21]. A related numeri-
cal treatment of the (1+1)D two-spinor-component Dirac equation including
exact absorbing boundary conditions, displaying a single Dirac cone, has
been presented by us recently [24]. Furthermore, we have been able to de-
velop a scheme, respectively, for the to the (2+1)D two-spinor-component
Dirac equation and the (3+1)D four-spinor-component Dirac equation with
a single cone only [42].
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9.6 APPENDIX A: Scheme with Peierls substitu-
tion for the introduction of non-vanishing in-
plane “magnetization" mx and my

Here we show the consequence of the Peierls substitution Eq. (9.4) into the
scheme Eq. (9.3) to introduce non-vanishing “magnetization" mx and my

terms into the numerical scheme.
We first explore the effect of the substitution on difference quotients

(derivative terms)
u1 − u2

∆
→ eia1u1 − eia2u2

∆
. (9.25)

Simple regrouping gives the exact “product rule for differentiation on the
lattice"

eia1u1 − eia2u2

∆
= f+(a1, a2)

u1 − u2

∆
+
eia1 − eia2

∆

u1 + u2

2
, (9.26)

using the definition f±(a1, a2) = (eia1 ± eia2)/2. The last term on the rhs con-
tains a difference quotient representing the derivative of an exponential. It
may be approximated by the “chain rule" for the derivative of exponentials
on the grid

eia1 − eia2

∆
= f+(a1, a2)

i(a1 − a2)

∆
+

1

∆
O((a1 − a2)3) . (9.27)

The second type of terms to be dealt with are spatial averages of the struc-
ture

u1 + u2

2
→ eia1u1 + eia2u2

2
. (9.28)

Here one arrives at

eia1u1 + eia2u2

2
= f+(a1, a2)

u1 + u2

2
+ f−(a1, a2)

u1 − u2

2
. (9.29)
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The scheme which then arises from the Peierls substitution (9.4) into Eq.
(9.3) is

f+(an+1
j,k , a

n
j,k)

[
un+1
j,k − unj,k

∆t
+ i
(
(mz)

n
j,k + V n

j,k

) un+1
j,k + unj,k

2

]

+
eia

n+1
j,k − eianj,k

∆t

un+1
j,k + unj,k

2
+ if−(an+1

j,k , a
n
j,k)
(
(mz)

n
j,k − V n

j,k

) un+1
j,k − unj,k

2

+
1

2
f+(anj,k−1, a

n
j−1,k−1)

vnj,k−1 − vnj−1,k−1

∆x
+
eia

n
j,k−1 − eianj−1,k−1

∆x

vnj,k−1 + vnj−1,k−1

4

+
1

2
f+(anj,k, a

n
j−1,k)

vnj,k − vnj−1,k

∆x
+
eia

n
j,k − eianj−1,k

∆x

vnj,k + vnj−1,k

4

− i

2
f+(anj−1,k, a

n
j−1,k−1)

vnj−1,k − vnj−1,k−1

∆y
− ie

ianj−1,k − eianj−1,k−1

∆y

vnj−1,k + vnj−1,k−1

4

− i

2
f+(anj,k, a

n
j,k−1)

vnj,k − vnj,k−1

∆y
− ie

ianj,k − eianj,k−1

∆y

vnj,k + vnj,k−1

4
= 0 ,

(9.30)

and

f+(an+1
j,k , a

n
j,k)

[
vn+1
j,k − vnj,k

∆t
− i
(
(mz)

n+1
j,k − V

n+1
j,k

) vn+1
j,k + vnj,k

2

]

+
eia

n+1
j,k − eianj,k

∆t

vn+1
j,k + vnj,k

2
− if−(an+1

j,k , a
n
j,k)
(
(mz)

n+1
j,k + V n+1

j,k

) vn+1
j,k − vnj,k

2

+
1

2
f+(an+1

j+1j,k, a
n+1
j,k )

un+1
j+1,k − u

n+1
j,k

∆x
+
eia

n+1
j+1,k − eia

n+1
j,k

∆x

un+1
j+1,k + un+1

j,k

4

+
1

2
f+(an+1

j+1,k+1, a
n+1
j,k+1)

un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
eia

n+1
j+1,k+1 − eia

n+1
j,k+1

∆x

un+1
j+1,k+1 + un+1

j,k+1

4

+
i

2
f+(an+1

j,k+1, a
n+1
j,k )

un+1
j,k+1 − u

n+1
j,k

∆y
+ i

eia
n+1
j,k+1 − eia

n+1
j,k

∆y

un+1
j,k+1 + un+1

j,k

4

+
i

2
f+(an+1

j+1,k+1, a
n+1
j+1,k)

un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+ i

eia
n+1
j+1,k+1 − eia

n+1
j+1,k

∆y

un+1
j+1,k+1 + un+1

j+1,k

4
(9.31)

= 0 .

It immediately becomes more transparent when the chain rule approxima-
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tion Eq. (9.27) is used

f+(an+1
j,k , a

n
j,k)

[
un+1
j,k − unj,k

∆t
+ i

(
(mz)

n
j,k + V n

j,k +
an+1
j,k − anj,k

∆t

)
un+1
j,k + unj,k

2

]

+ if−(an+1
j,k , a

n
j,k)
(
(mz)

n
j,k − V n

j,k

) un+1
j,k − unj,k

2

+
1

2
f+(anj,k−1, a

n
j−1,k−1)

[
vnj,k−1 − vnj−1,k−1

∆x
+
vnj,k−1 + vnj−1,k−1

2

i(anj,k−1 − anj−1,k−1)

∆x

]
+

1

2
f+(anj,k, a

n
j−1,k)

[
vnj,k − vnj−1,k

∆x
+
vnj,k + vnj−1,k

2

i(anj,k − anj−1,k)

∆x

]
− i

2
f+(anj−1,k, a

n
j−1,k−1)

[
vnj−1,k − vnj−1,k−1

∆y
+
vnj−1,k + vnj−1,k−1

2

i(anj−1,k − anj−1,k−1)

∆y

]
− i

2
f+(anj,k, a

n
j,k−1)

[
vnj,k − vnj,k−1

∆y
+
vnj,k + vnj,k−1

2

i(anj,k − anj,k−1)

∆y

]
= 0 ,

(9.32)

and

f+(an+1
j,k , a

n
j,k)

[
vn+1
j,k − vnj,k

∆t
− i

(
(mz)

n+1
j,k − V

n+1
j,k −

an+1
j,k − anj,k

∆t

)
vn+1
j,k + vnj,k

2

]

− if−(an+1
j,k , a

n
j,k)
(
(mz)

n+1
j,k + V n+1

j,k

) vn+1
j,k − vnj,k

2

+
1

2
f+(an+1

j+1j,k, a
n+1
j,k )

[
un+1
j+1,k − u

n+1
j,k

∆x
+
un+1
j+1,k + un+1

j,k

2

i(an+1
j+1,k − a

n+1
j,k )

∆x

]

+
1

2
f+(an+1

j+1,k+1, a
n+1
j,k+1)

[
un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
un+1
j+1,k+1 + un+1

j,k+1

2

i(an+1
j+1,k+1 − a

n+1
j,k+1)

∆x

]

+
i

2
f+(an+1

j,k+1, a
n+1
j,k )

[
un+1
j,k+1 − u

n+1
j,k

∆y
+
un+1
j,k+1 + un+1

j,k

2

i(an+1
j,k+1 − a

n+1
j,k )

∆y

]

+
i

2
f+(an+1

j+1,k+1, a
n+1
j+1,k)

[
un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+
un+1
j+1,k+1 + un+1

j+1,k

2

i(an+1
j+1,k+1 − a

n+1
j+1,k)

∆y

]
(9.33)

= 0 .

Consistent with the “chain rule", under weak spatial and temporal varia-
tion of the magnetization (vector potential) m(x, y, t), the f− terms may be
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dropped and the f+ factors may be eliminated, leading to a simplified ver-
sion of the form

un+1
j,k − unj,k

∆t
+ i

(
(mz)

n
j,k + V n

j,k +
an+1
j,k − anj,k

∆t

)
un+1
j,k + unj,k

2

+
1

2

[
vnj,k−1 − vnj−1,k−1

∆x
+
vnj,k−1 + vnj−1,k−1

2

i(anj,k−1 − anj−1,k−1)

∆x

]
+

1

2

[
vnj,k − vnj−1,k

∆x
+
vnj,k + vnj−1,k

2

i(anj,k − anj−1,k)

∆x

]
− i

2

[
vnj−1,k − vnj−1,k−1

∆y
+
vnj−1,k + vnj−1,k−1

2

i(anj−1,k − anj−1,k−1)

∆y

]
− i

2

[
vnj,k − vnj,k−1

∆y
+
vnj,k + vnj,k−1

2

i(anj,k − anj,k−1)

∆y

]
= 0 , (9.34)

vn+1
j,k − vnj,k

∆t
− i

(
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n+1
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j,k −

an+1
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∆t

)
vn+1
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+
1

2

[
un+1
j+1,k − u

n+1
j,k
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un+1
j+1,k + un+1

j,k

2

i(an+1
j+1,k − a

n+1
j,k )

∆x

]

+
1

2

[
un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
un+1
j+1,k+1 + un+1

j,k+1

2

i(an+1
j+1,k+1 − a

n+1
j,k+1)

∆x
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+
i

2

[
un+1
j,k+1 − u

n+1
j,k
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+
un+1
j,k+1 + un+1

j,k

2

i(an+1
j,k+1 − a

n+1
j,k )

∆y

]

+
i

2

[
un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+
un+1
j+1,k+1 + un+1

j+1,k

2

i(an+1
j+1,k+1 − a

n+1
j+1,k)

∆y

]
= 0 , (9.35)

Here V̂ n(+1)
j,k = V

n(+1)
j,k +

an+1
j,k −a

n
j,k

∆t
denotes the net scalar potential in presence

of a vector potential. The x and y components of the magnetization (vector
potential) on the grid, respectively, are given by

(mx)
n
j,k ≈

anj,k − anj−1,k

∆x
≈
anj,k−1 − anj−1,k−1

∆x
,

(my)
n
j,k ≈

anj−1,k − anj−1,k−1

∆y
≈
anj,k − anj−1,k−1

∆y
,

(mx)
n+1
j,k ≈

an+1
j+1,k − a

n+1
j,k

∆x
≈
an+1
j+1,k+1 − a

n+1
j,k+1

∆x
,
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and

(my)
n+1
j,k ≈

an+1
j,k+1 − a

n+1
j,k

∆y
≈
an+1
j+1,k+1 − a

n+1
j+1,k

∆y
. (9.36)

Using these simplifications we finally arrive at the scheme Eqs. (9.5) and
(9.6)

un+1
j,k − unj,k

∆t
=− i

(
(mz)

n
j,k + V̂ n

j,k

) un+1
j,k + unj,k

2

−
vnj,k−1 − vnj−1,k−1 + vnj,k − vnj−1,k

2∆x

+ i
vnj−1,k − vnj−1,k−1 + vnj,k − vnj,k−1

2∆y

− i(mx)
n
j,k

vnj,k + vnj−1,k + vnj,k−1 + vnj−1,k−1

4

− (my)
n
j,k

vnj−1,k + vnj−1,k−1 + vnj,k + vnj,k−1

4
, (9.37)

and

vn+1
j,k − vnj,k

∆t
= + i

(
mz − V̂ n+1

j,k

) vn+1
j,k + vnj,k

2

−
un+1
j+1,k − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j,k+1

2∆x

−
un+1
j,k+1 − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j+1,k

2∆y

− i(mx)
n+1
j,k

un+1
j+1,k + un+1

j,k + un+1
j+1,k+1 + un+1

j,k+1

4

+ (my)
n+1
j,k

un+1
j,k+1 + un+1

j,k + un+1
j+1,k+1 + un+1

j+1,k

4
. (9.38)
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9.7 APPENDIX B: Derivation of a functional for
the norm which is exactly conserved by the
scheme

The proof of Eq. (9.21) can be given as follows [24]. Form the scalar product
of the first of equation Eqs. (9.3) with (un+1 + un), with the latter applied
from the left, and retain the real part of the resulting equation. This gives,
using the scalar products introduced above Eqs. (9.18) to (9.20),

||un+1||2 − ||un||2

∆t
=−<

{
(un+1 + un; vn)0,− − (un+1 + un; vn)−,−

2∆x

+
(un+1 + un; vn)0,0 − (un+1 + un; vn)−,0

2∆x

}

−=

{
(un+1 + un; vn)−,0 − (un+1 + un; vn)−,−

2∆y

+
(un+1 + un; vn)0,0 − (un+1 + un; vn)0,−

2∆y

}
.

(9.39)

Form the scalar product between the second equation of Eqs. (9.3) with
(vn+1 + vn), with the latter applied from the right, and take the real part of
this equation. This gives

||vn+1||2 − ||vn||2

∆t
=−<

{
(un+1; vn+1 + vn)−,0 − (un+1; vn+1 + vn)0,0

2∆x

+
(un+1; vn+1 + vn)−,− − (un+1; vn+1 + vn)0,−

2∆x

}

−=

{
(un+1; vn+1 + vn)0,− − (un+1; vn+1 + vn)0,0

2∆y

+
(un+1; vn+1 + vn)−,− − (un+1; vn+1 + vn)−,0

2∆y

}
.

(9.40)

Adding these two equations yields, on the lhs, ||un+1||2 + ||vn+1||2− ||un||2 +
||vn||2. On the rhs one finds three types of terms: scalar products between
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equal-time components (respectively nwith n and n+1 with n+1) and those
mixing n with n + 1. The latter cancel in pairs using a shift of indices, such
as (un; vn

′
)−,0 − (un; vn

′
) =

∑
jk(u

n
j,k; v

n′

j−1,k − vn
′

j,k) =
∑

jk(u
n
j+1,k − unj,k; v

n′

j,k).
The mz and scalar potential terms vanish when taking the real part. One
obtains,

||un+1||2 − ||un||2 + ||vn+1||2 − ||vn||2 =

− rx<{(un; vn)0,− − (un; vn)−,− + (un; vn)0,0 − (un; vn)−,0}
− ry={(un; vn)−,0 − (un; vn)−,− + (un; vn)0,0 − (un; vn)0,−}
+ rx<

{
(un+1; vn+1)−,0 − (un+1; vn+1)0,0 + (un+1; vn+1)−,− − (un+1; vn+1)0,−

}
+ ry=

{
(un+1; vn+1)0,− − (un+1; vn+1)0,0 + (un+1; vn+1)−,− − (un+1; vn+1)−,0

}
.

(9.41)

This is the identity En+1=En.
In case of space and/or time dependent mx or my, an exactly conserved

quantity is not obtained in this fashion from the Eqs. (9.5) and (9.6). How-
ever, it is readily constructed for the “exact" equations obtained within the
Peierls substitution, Eqs. (9.30) and (9.32), by simply applying it to En to
give Ên which has the exact structure of En, just with u, v replaced by û, v̂.
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9.8 APPENDIX C: Stability

In this appendix we prove the stability conditions for arbitrary space- and
time-dependent magnetization vector and potential terms, Eq. 9.22 and Eq.
9.23. We use norm conservation Eq. (9.21) and proceed as follows

E0 = En =||un||2 + ||vn||2

− rx<{(un; vn)0,− − (un; vn)−,− + (un; vn)0,0 − (un; vn)−,0}
− ry={(un; vn)−,0 − (un; vn)−,− + (un; vn)0,0 − (un; vn)0,−}

= ||un||2 + ||vn||2 −<
{

(rx + iry)
[
(un; vn)0,− − (un; vn)−,0

]
− (rx − iry)

[
(un; vn)−,− − (un; vn)0,0

]}
≥ ||un||2 + ||vn||2 −

∣∣∣<{(rx + iry)
[
(un; vn)0,− − (un; vn)−,0

]
− (rx − iry)

[
(un; vn)−,− − (un; vn)0,0

]∣∣∣}
≥ ||un||2 + ||vn||2− | <{(rx + iry)(u

n; vn)0,−} | − | < {(rx + iry)(u
n; vn)−,0]} |

− | < {(rx − iry)un; vn)−,−} | − | < {(rx − iry)(un; vn)0,0} |

≥ ||un||2 + ||vn||2 −
√
r2
x + r2

y

[
| <
{

(un−; vn)0,−
}
| + | <

{
(un−; vn)−,0

}
|

+ | <
{

(un+; vn)−,−
}
| + | <

{
(un+; vn)0,0

}
|
]

≥ ||un||2 + ||vn||2 − 2
√
r2
x + r2

y

(
||un||2 + ||vn||2

)
= (1− r̃)

(
||un||2 + ||vn||2

)
.

Here we have used the inequality 2 | < {(a, b)} |≤ ||a||2 + ||b||2, as well as
the abbreviation un± = e±iφun, where φ = arctan (ry/rx). Note also that the
norm of a spinor component shifted by ±∆x,±∆y is equal to the norm of
the unshifted component under zero or periodic boundary conditions.

The case r̃ = 1 can be dealt with as follows (omitting the superscript n
for brevity). Starting from the last identity in the previous proof, for this
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case one may write

E0 = En = ||u||2 + ||v||2 +
1

2
<{(u−; v)−,0 − (u−; v)0,− + (u+; v)−,− − (u+; v)0,0}

=
1

4

[
|| u+ + v−,− ||2 + || u+ − v ||2 + || u− + v−,0 ||2 + || u− − v0,− ||2

]
(9.42)

Note once more, that the single subscript on the spinor component (u) indi-
cates a phase shift, while a double subscript indicates a shift on the spatial
grid (here applied to component v). Here we use identities of the form

1

4

[
||u± + v||2 + ||u± − v′||2

]
=

1

2

[
||u||2 + ||v||2 + <{(u±, v)− (u±, v

′)}
]

when ||v|| = ||v′||. Note that this identity can be applied no more than twice,
since ||u||2 + ||v||2 is available in En = E0. This limits the magnitude of
r̃. In the second step we apply the inequality 2 [||a1 + b||2 + ||a2 − b||2] ≥
||a1 + a2||2, whereby u± plays the role of b, to obtain

E0 ≥
1

8

[
||v−,− + v||2 + ||v0,− + v−,0||2

]
≡ ||ṽ||2 .

Attaching the phase factor of r± to the components v and the grid shifts to
the components u, one obtains

E0 ≥
1

8

[
||u+,+ + u|2 + ||u0,+ + u+,0||2

]
≡ ||ũ||2.

Hence
||ũ||2 + ||ṽ||2 ≤ 2E0 .

This discussion also shows that En = E0 ≥ 0 for r̃ ≤ 1 and thus provides a
meaningful definition for a spinor norm within the scheme.

With E0, un, and vn, respectively, replaced by Ê0, ûn, and v̂n the stability
condition for Eqs. (9.30) and (9.32) is shown under arbitrary space-time
dependence of the external fields.
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Chapter 10

PAPER REPRINT:
SOLITONIC DIRAC FERMION WAVE GUIDE
NETWORKS ON TOPOLOGICAL INSULATOR
SURFACES

Applied Physics Letters 102 (2013)

R. Hammer, C. Ertler, and W. Pötz

Magnetic texturing on the surface of a topological insulator allows the design of
wave guide networks and beam splitters for domain-wall Dirac fermions. Guided
by simple analytic arguments we model a Dirac domain-wall fermion interferom-
eter consisting of two parallel pathways imprinted by solitonic ferromagnetic tex-
turing. A specially developed staggered-grid leap-frog discretization scheme in
2+1 dimensions with absorbing boundary conditions is employed to study the in-
terferometer in an open device geometry. Its net transmission can be tuned from
constructive to destructive interference, either by variation of the magnetization
texture (effective path length) or an applied gate bias (wave length). Possible ways
to observe and utilize this effect are discussed.
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In this Letter we study the dynamics of domain-wall (DW) Dirac
fermions, as may be found at the surface of a magnetically textured topolog-
ical insulator. Beam splitters for chiral fermions based on magnetic textur-
ing are used to model quantum interference effects, in analogy to interfer-
ence in optical wave guides. We numerically investigate a two-armed quan-
tum interferometer which can be controlled by magnetic structuring and an
electric gate bias. It provides the operation principle for a Dirac fermion
transistor. A recently developed numerical algorithm is used to demon-
strate the 2+1 dimensional fermion wave packet dynamics within the in-
terferometer under variation of gate bias and other structural properties.[1]
Generalization to more complex networks is discussed.

Rapid progress has been made in the understanding, realization, and
control of metallic surface states on three-dimensional (3D) topological insu-
lators (TI).[2] Both the theoretical foundation for the existence and topolog-
ical protection of Dirac fermion surface states within Chern-Simons theory,
as well as subsequent experimental verification of Dirac-cone helical surface
states with and without mass-gap have been presented.[2, 3, 4, 5] For a sin-
gle cone, the essential dynamics near the TR degeneracy point is described
by an effective 2D field theory and a single-particle Hamiltonian[2]

H = v (σ ×Π) · ẑ + M(x, y) · σ + V (x, y, t)1 (10.1)

leading to a 2D (2+1) Dirac equation for the surface states.[4, 6] Here, v(≈
5× 105m/s), Π = p + e

c
A, and σ denote, respectively, the effective velocity,

the kinetic momentum, and the Pauli vector. The first term on the r.h.s. de-
scribes the Dirac fermion spin-orbit interaction for vector potential A, while
second and third contribution, respectively, account for the Zeeman term
in presence of a (quasi-static) effective magnetic field and an external scalar
potential from a gate bias. The net effective magnetic field in general arises
from an external B field and, more importantly, from an exchange interac-
tion with magnetic impurities deposited at the surface. Physical origin may
be ferromagnetic STM-like tips near the surface, magnetic texturing intro-
duced by the proximity of insulating ferromagnetic layers, and/or magnetic
doping.[4, 7, 8] It breaks TR symmetry ofH and provides a space-dependent
"mass term" Mz(x, y). The order-of-magnitude for the mass-gap is expected
to be several 10’s of meV.[9] In contrast to graphene, the Pauli vector in Eq.
(11.2) is proportional the physical fermion spin whereby the spin direction
is locked perpendicular to the particle current density and the normal vec-
tor to the surface ẑ.[2]

Electric currents measured near the surface of a TI have bulk and sur-
face state contributions. With the positioning of the Fermi energy inside of
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Figure 10.1: Mass DW on the 2D surface of a 3D TI: For limy′→±∞M(x′, y′) =
m± and m−m+ < 0 a CDWS localized in y′-direction forms.

the bulk gap of the insulator the bulk current contribution can be strongly
suppressed.[10, 11] The surface contributions arise from the helical surface
states and, under suitable magnetic texturing, from chiral domain-wall states
(CDWS). Both are captured by H in Eq. (11.2). Realization of chiral surface
states opens the door for new types of transport phenomena and prospects
for device designs which utilize their coherence properties. Here we in-
vestigate theoretically ballistic Dirac fermion dynamics along helical edge
channels.

Quasi-1D one-way edge channel form along the domain boundary be-
tween two 2D TI surface areas when the effective mass changes its sign,
as sketched in Fig.10.1.[2, 4, 12] X-shaped crossings between pairs of DWs,
as sketched in Fig.10.2, produce a “beam splitter" for chiral fermions, as
shown below. To illustrate its principle we recall the low energy eigen-
state localized near an effective-mass DW. For example let, as in Fig.10.1,
the mass Mz(x, y) = Mz(y

′) be allowed to vary in y′-direction only, with
y′ = −x sinα + y cosα, and let us thus assume translational invariance in
x′-direction (x′ = x cosα + y sinα), such that limy′→±∞Mz(y

′) = m± and
m−m+ < 0. Then, considering a Bloch DWCS, i. e., My′ = V = 0, for the
sake of discussion, a low energy channel state

〈x, y |X ′,±〉 ∝ φo(α)e
± 1

~v
∫ y′
y′o

(Mz(y′′)∓iMx′ (y
′′))dy′′+ik′xx

′
,

φo(α) =
1√
2

(
±ie−iα/2
eiα/2

)
, (10.2)

exists for Eq. (11.2), with E = ±v~ k′x, with the upper sign for m+ < 0 and
m− > 0, and the lower sign for m− < 0 and m+ > 0.

Now consider the symmetric junctionA in Fig.10.2(a) arising from a rect-
angular crossing of two DWs, where the DW channel in +x-direction splits
into the two channels along the ±y-direction (α = ±π/2). At this junction
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we can express the incoming wave function |X,+〉 as a superposition of the
Y -out-channel states |X,+〉 = 1/

√
2 (|Y,+〉+ i |−Y,+〉). The two compo-

nents |Y,+〉 and |−Y,+〉, respectively, channeled along path 1 and 2, nec-
essarily recombine at junction B in Fig.10.2(a) to |X,+〉 as long as the the
phase difference between the upper and the lower channel is zero. How-
ever, the relative phase γ between path 1 and 2 can be set to a desired value
by adjusting the gate bias V as shown in Fig.10.2(b) and/or by changing the
relative path length by selectively changing the size of individual magnetic
domains. Using the decomposition |±Y,+〉 = 1/

√
2 (|±X,+〉 − i |∓X,+〉)

one has at junction B, up to an overall phase,

|ψ(γ)〉 = cos(γ/2) |X,+〉+ sin(γ/2) |−X,+〉 .

This gives |X,+〉 for γ = 0 and |−X,+〉 for γ = π which corresponds to
fermions propagating, respectively, from junction B out to the right (to-
wards drain 2) and fermions going to the left (towards junction A). The
phase difference determines selection of the out-channel. A phase shift can
be introduced by an electric potential V , which locally shifts the dispersion
by V . For a constant potential V applied over a path length L, a phase shift
γ = −V · L/(v~) is obtained. The transmission probability into drain 2 in
Fig.10.2(b) may be written

T2 = |〈X,+|ψ〉|2 = cos2

(
V L

2v

)
,

and the transmission probability to drain 1 in Fig.10.2(b) is T1 = 1 − T2.
Switching gate potentials, rather than the relative size and shape of mag-
netic domains, most likely is the more convenient way to control the device.
Gate potentials can also be used to compensate imperfect magnetic textur-
ing to calibrate the interferometer in experimental realizations.

We now proceed to study more realistic structures numerically. The in-
terferometer is based on static solitonic 2D ferromagnetic DW structures,
justified for hard, firmly pinned, and/or thick ferromagnetic domains, and
sufficiently low currents.[14, 15] The DW dynamics in general is known
to be slow compared to the fermion dynamics allowing for adiabatic so-
lution procedures.[16] We construct a model for the magnetic texture with
anisotropy in z-direction from local-minimum solutions to the generic free
energy functional in unit magnetization |m |= 1 and a, b > 0

F(m) =
1

2

∫
dV
[
a
(
(∇mx)

2 + (∇my)
2 + (∇mz)

2
)
− bm2

z

]
.

In spherical coordinate parametrization θ(x, y) and φ(x, y) the functional in



173

Figure 10.2: Coherent Dirac fermion interferometer on a TI surface: Chiral
channel states form at the domain boundaries between magnetization re-
gions of opposite direction (M↑ /M↓). There are two allowed paths trough
the structure (wavy lines). When a gate voltage is applied the paths pick up
an additional phase leading to destructive or constructive interference de-
pending on its magnitude and the device can be switched from transmission
to the left (drain 1) to transmission to the right (drain 2).

m = (sin θ cosφ, sin θ sinφ, cos θ) is degenerate with respect to φ

F(m) =
1

2

∫
dxdy

[
a(∂xθ)2 − b cos(θ)2

]
.

For a DW in y-direction the magnetization varies in x-direction only and
variational calculus leads to the (static) sine-Gordon equation θxx = sin θ
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Figure 10.3: Magnetic Néel wall texture of the insulating ferromagnet on
the surface of the topological insulator. The contour plot shows the z-
component of the magnetization mz. The asymptotic values mz = −1 are
represented by black and mz = +1 by white color. The vector plot shows
(mx,my). The dotted and crossed circles represent the magnetization direc-
tion of the thick hard ferromagnets pinning the thin insulating ferromag-
netic layer.

giving, for present boundary conditions, the well-known kink-soliton so-
lution, degenerate in DW position xdw, θ(x) = 2 tan−1 e−(x−xdw)/λdw , with
λdw =

√
a/b. [13] The azimuthal angle can e.g. be chosen to be φ = ±π/2
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Figure 10.4: Wave packet propagation in the interferometer with Bloch walls
for (a) phase difference γ = 0 and (b) phase difference γ = π. The wave
packet is shown for increasing time as it propagates along the DW channels.
The color (or brightness variation) encodes the probability density |ψ|2.

for a Bloch or φ = 0 or π for a Néel DW. The superposition of such soliton
solutions at given angle gives a new stationary soliton solution.[17, 18] For
an individual rectangular intersection of two DWs we use the two soliton
solution[18]

θ(x) = 2 tan−1 e−(x−xdw)/λdw + e(y−ydw)/λdw

1 + e−(x−xdw)/λdw−(y−ydw)/λdw
.

The width of the DWs is chosen to be small compared to the distance be-
tween parallel DW solitons. Thus, in good approximation, these two-soliton
solutions can be superposed to construct the magnetic texture for a Dirac
fermion interferometer, as shown in Fig.10.3 for a magnetic Néel wall real-
ization. For the simulations below individual magnetic domains are chosen
to have a length scale which is large compared to the transverse localization
length of the channel state which is determined by the asymptotic values
of the mass-profile, see Eq.(10.2). Physically such ferromagnetic DW struc-
tures may be produced below Tc by ferromagnetic impurities at the surface
with the magnetization direction controlled and stabilized by nanomagnets
above the surface.

According to Eq. (11.2) the presence of magnetic impurities and a sta-
bilizing external B-field has several implications for the Dirac fermion dy-
namics. The net B-field consisting of external B-field and the magnetiza-
tion of impurity spins enters the spin-orbit term via A. Both contributions
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Figure 10.5: Transmission of the coherent fermion interferometer (to drain
2) as a function of the gate voltage. The solid line represents the analytic
expression, and the markers are results of the simulation.

also enter the Zeeman term ("mass term"): the external B-field produces
a Zeeman splitting and the impurity magnetization leads to an exchange
interaction with the Dirac fermion. Here the latter, estimated to be of the or-
der of several tens of meV represents the dominant contribution.[9] With a
coupling strength J ≈ 130 meV nm2, fermion g-factor 20 the effective mag-
netic exchange field associated with a mass gap of 25 meV is of the order
of 10T, making the influence of a realistic additional external B-field arising
from nanomagnets of the order of 0.1T (or less) negligible in the Zeeman
term.[8, 19, 20] The impurity magnetization contribution to the total B-field
can be estimated to be less than 10−2 T, e.g. for Mn impurities.[21] Finally,
the contribution of the external B-field to the spin-orbit term has a negligi-
ble effect on the dynamics of DW Dirac fermions compared to the in plane
component of the exchange term, as we have verified numerically. Their
formation and dynamics is dictated by the DW structure and the external
bias. In principle there is an additional topological field, due to the magne-
toelectric effect, but it is extremely small in magnitude (≤ 10−6T ).[2, 15]

Numerical treatment of the Dirac fermion wave packet dynamics in the
soliton interferometer texture is treated within a staggered-grid leap frog
scheme which preserves the free-particle linear energy dispersion along the
main simulation axes exactly. By putting a layer with imaginary poten-
tial around the simulation region it allows an easy implementation of ab-
sorbing boundary conditions. Similarly, particle source and drain can be
modeled.[1, 22] For the present numerical analysis of the wave packet dy-
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namics the magnetic texture shown in Fig.10.3 is fed into Eq.(11.2) using
M(x, y) = Jm(x,y). In general, J may differ for in-plane and perpendic-
ular (z) direction of magnetization m. In addition a gate bias is applied on
the upper half-plane (path 1) over a channel length of ≈ 300 nm to adjust
the relative phase in the two arms. We use v = 6.2 × 105m/s. The initial
wave packet is prepared with mean energy of 30 meV and half Gaussian
width ≈ 15 meV. The maximum mass gap due to the magnetization is cho-
sen to be 50 meV. This leads to a transverse localization length of about 50
nm for an isolated CDWS. Note, however, that the numerical simulation ac-
counts for the magnetic texture of the entire structure and does not assume
isolated channel states. The network of chiral channels in fact is a property
of the entire structure and robust against moderate (magnetic) disorder. In
particular, any cross talk between channels, essential near DW crossings, is
accounted for and, in fact, utilized in the interferometer. Results for the in-
terferometer, laid out in Fig.10.2 and imprinted upon the surface by using
magnetic textures shown in Fig.10.3, are given in Figs.10.4 and 10.5. Fig.10.4
shows snapshots of the wave packet during its propagation across the struc-
ture. Incident from the left, at junction A it splits into two parts to propa-
gate, respectively, along path 1 and 2, to recombine at junction B. For a phase
difference γ = 0, shown in part (a) of Fig.10.4, the wave packet leaves the
interferometer to the right, whereas for γ = π in part (b) the wave packet
is forced to the left back into the interferometer. Thus, Dirac fermions can
exit the device either at drain 2 or 1 in Fig. 10.2, thus forming the founda-
tion for a transistor based on DW fermions. Over the range of ≈ 4 meV the
out-channel to drain 2 can be tuned from open to closed. The computed
interference fringes versus gate bias for transmission probability T2, plotted
in Fig.10.5, confirm the analytic predictions above for both Bloch and Néel
wall configuration.

In summary, we propose electronic networks of CDWS arising from mag-
netic domains built into the surface of topological insulators. The CDWS
can be understood as arising from the interface between two half quantized
Hall states with opposite Hall conductivity, leading to a net integer quan-
tum Hall state.[2] The intersection of two DWs provides a Dirac fermion
beam splitter. The combination of two such splitters leads to an interfer-
ometer which can be controlled by an electric gate and be extended to pro-
duce a “Dirac fermion transistor". The device is robust against (magnetic)
perturbations as long as the overall domain structure is preserved, domain
sizes are large compared to the transverse localization length of the CDWS
and DWs can be stabilized on a time scale characteristic for the fermion
transmission. Structural imperfections and disorder can readily be modeled
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within our approach. The extension to more complex Dirac fermion net-
works is straight-forward in principle, with DWs serving as one-way wave
guides and intersections of DW boundaries providing beam splitters. Phase
differences can be calibrated and controlled by electric gates, and charge can
be provided by electric contacts. More complex time-dependent phenom-
ena, including Dirac-fermion-induced DW motion, can be treated within
our numerical approach when adding to it the dynamics of the solitonic
magnetic DWs, e.g within a Landau-Lifshits-Gilbert-type equation.[14, 16]
Experimental challenges for realization include the avoidance of unwanted
current contributions, a problem related to the positioning of the Fermi
level, as well as successful magnetic texturing of TI surfaces. A preliminary
summary of the numerical scheme and a study of Dirac fermion propaga-
tion near non-rectangular DW intersections is available online.[22]

We acknowledge support from the Austrian Science Foundation project I395-
N16.
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Chapter 11

PAPER REPRINT:
DYNAMICS OF DOMAIN-WALL DIRAC FERMIONS
ON A TOPOLOGICAL INSULATOR: A CHIRAL
FERMION BEAM SPLITTER

submitted to Physical Review B
preprint available at arXiv:1306.6139

R. Hammer and W. Pötz

The intersection of two ferromagnetic domain walls placed on the surface of topo-
logical insulators provides a one-way beam splitter for domain-wall Dirac fermions.
Based on an analytic expression for a static two-soliton magnetic texture we per-
form a systematic numerical study of the propagation of Dirac wave packets along
such intersections. A single-cone staggered-grid finite difference lattice scheme is
employed in the numerical analysis. It is shown that the angle of intersection plays
a decisive role in determining the splitting ratio of the fermion beam. For a non-
rectangular intersection, the width and, to a lesser extent, the type of domain walls,
e.g. Bloch or Néel, determine the properties of the splitter. As the ratio between
domain-wall width and transverse localization length of the Dirac fermion is in-
creased its propagation behavior changes from quantum-mechanical (wave-like) to
classical ballistic (particle-like). An electric gate placed near the intersection offers
a dynamic external control knob for adjusting the splitting ratio.
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11.1 Introduction

There has been considerable progress in the investigation of Dirac fermions
on (textured) TI surfaces in external electromagnetic fields. Experimentally,
the Dirac cone spectrum with and without external magnetic field has been
verified in recent experiments.[1, 2, 3] Position control of the Fermi energy
within the bulk gap of the insulator has become feasible.[4, 5, 6, 7, 8, 9] Mag-
netic texturing of TI surfaces has been explored experimentally.[2, 10, 11] In
one study using iron as the dopant, however, the easy axis has been re-
ported to be in plane.[10] In thin films of MBE grown Cr doped ternary
(BixSb1−x)2Te3 ferromagnetic order has been reported.[12] With the theoreti-
cally predicted existence of topologically protected surface states confirmed
in experiment, one of the next steps is to learn to manipulate them by struc-
tural design and to utilize their properties in chiral fermion devices. On the
theoretical side, numerous papers have been published on related topics,
such as magneto-transport on TI surfaces in presence of ferromagnetic lay-
ers, [13, 14, 15, 16, 17, 18] spin-polarized magnetic impurities on TI surfaces
and Landau levels,[19, 20, 21, 22, 23] the interaction of magnetic domain
walls with Dirac fermions,[24, 25, 26] lensing effects and transport perpen-
dicular to domain walls,[27, 28] crossover from weak anti-localization to
weak localization,[29] and gate control of TI channel states.[30] An interfer-
ometer for chiral fermions has been proposed recently.[31]

Surfaces of 3D topological insulators can be interpreted as a 2D domain
wall between a spin-orbit driven band inversion within the insulator and
normal band ordering in vacuum.[32, 34, 33, 35] The topologically protected
gapless surface states in form of helical-state Dirac cones can be manipu-
lated further by time-reversal-symmetry-breaking (TRB) perturbations ap-
plied to the surface.[32, 36, 37] Indeed, it has been known for quite a while
that an effective-mass inversion domain wall can produce a 1D chiral edge
eigenstate for a 2D Dirac fermion Hamiltonian.[38] Such edge states are re-
quired to observe a quantized Hall effect. TRB can be induced by exposure
to an (effective) external magnetic field. For example, a ferromagnetic tip
or permanent magnetic texture arising from the proximity of ferromagnets,
in conjunction with magnetic doping of the surface, may be used to induce
sign changes in the mass term of the effective Dirac equation.[35, 10, 11, 37,
2] The expected order-of-magnitude for the mass-gap in materials, such as
Bi2Se3, is up to several tens of meV.[2, 39]

Nanostructuring of TIs enhances the surface over the bulk contributions
to fermion charge transport and provides another promising means to pro-
duce edge states, following strategies previously applied to graphene. It
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should be recalled that the properties of the surface states are a consequence
of the TI bulk properties. Bulk doping can be used to manipulate surface
state behavior.[40, 41, 42, 43] Compositional tuning of Dirac fermion elec-
tronic structure has been demonstrated for BiTl(S1xSed)2, Bi2(Te3−xSex). [44,
45] Placed on a substrate, electric contacts have been made to the TI.[41, 46]
Metal-TI junctions have been studied theoretically.[47] Such structuring can
be expected to lead to the realization of interesting quantum interference
effects due to the helical nature of surface states, implying spin-polarized
electric currents, the absence of back scattering, and robustness to mod-
erate disorder. This strategy has lead to the experimental observation of
the quantum anomalous Hall effect in a magnetic topological insulator.[46]
Quantum oscillations in TI nanoribbons in conjunction with high surface
conductance (e.g., for Bi2Te3) have been investigated theoretically and in
experiment.[48, 49, 41]

In this paper the dynamic properties of chiral fermions in channel states
introduced by magnetic texturing of the surface of a TI insulator are ex-
plored. We perform a theoretical study of the propagation of chiral domain-
wall fermions along the intersection of two ferro-magnetic domain walls
imprinted upon the surface of a TI. In a systematic numerical analysis, we
extract the one-way beam splitting properties regarding magnetic textur-
ing, such as the angle of intersection, domain-wall thickness, and details of
in-plane magnetization. Our time-dependent analysis is based on a newly
developed scheme for a numerical treatment of the (2+1)D Dirac equation
in presence of electromagnetic fields, whose numerical mathematical prop-
erties will be presented in a forthcoming publication. Here, the analysis is
performed using static solitonic domain-wall crossings, valid in the adia-
batic regime. The paper is organized as follows. In Sect. 11.2 we give a
brief summary of chiral (domain wall) fermions in external electromagnetic
fields, as relevant for TI surfaces and introduce 2-soliton magnetic textures.
In Sect. 11.2.3 we give the model Hamiltonian for our numerical analysis.
Sect. 11.3 gives a summary of our single-cone numerical lattice model for
(2+1) Dirac fermions. Sect. 11.4 features some of our numerical results for
chiral fermion beam splitters. Finally, a general summary and our conclu-
sions are given in Sect. 11.5.
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11.2 Chiral domain-wall fermions

11.2.1 Basic considerations

An effective (2+1)D model for the dynamics of Dirac fermions on a magnet-
ically textured TI surface may be founded upon a Hamiltonian

H = HF +HI +HFI , (11.1)

consisting of the fermion Hamiltonian HF , the impurity Hamiltonian HI ,
and the interaction HFI . For, the Dirac fermions in an external electromag-
netic field one may write

HF = v (σ ×Π) · ẑ + µBgFσB(x, y, t) + V (x, y, t) (11.2)

Here, Π = p + e
c
A(x, y, t) in the spin-orbit term denotes the kinetic mo-

mentum in presence of a vector potential A associated with the external
magnetic field B(x, y, t), V (x, y, t) = −eΦ(x, y, t) is the scalar potential en-
ergy, and µB = e~

2mc
and gF in the Pauli term are, respectively, the electron

Bohr magneton and the Landé factor. The Pauli vector is proportional to the
physical fermion spin with its direction-locked perpendicular to the parti-
cle current density and the normal vector to the surface ẑ.[32] Note, that the
simple form of the spin-orbit term can be extended to more precisely repre-
sent the energy dispersion away from the Dirac point, such as an account of
hexagonal warping.[32, 50]

The impurity spins may be modeled by a generic Heisenberg-type Hamil-
tonian of the form

HI = −
∑
i,j

JijSiSj −
∑
i

gIµBSiB
o
i , (11.3)

and the Dirac fermion-impurity interaction by

HFI = −
∑
i

J ′iSiσ . (11.4)

Here Si and Bo
i denote, respectively, the impurity spin and external mag-

netic field, for impurity site i. Note that one must differentiate between the
"external" magnetic field experienced by fermions and impurities.

The physical situation envisioned and captured by the Hamiltonian H is
that of a TI surface which is densely covered by magnetic impurities which
interact with one another, as well as with the Dirac fermions under an ex-
change interaction. Several possible origins for an exchange interaction Jij
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have been discussed in the literature.[51, 39] An external magnetic field may
be applied to imprint and stabilize domain-wall formation between ferro-
magnetic ordered domains.

Subjecting HI + HFI to a mean-field approximation one obtains HI +

HFI → (HI +HFI)
MF = −

∑
i gIµBB(I)

i, where the effective magnetic field
at impurity site i is given as

B
(I)
i = Bo

i +
1

gIµB

[∑
j

Jij〈Sj〉+ 〈J ′iσ〉

]
. (11.5)

The three contributions arise from the external magnetic field (including
contributions from the orbital motion of Dirac fermions), impurity magneti-
zation, and fermion spin polarization. The latter gives rise to a spin-transfer
torque.

Similarly for the fermions,

HF + HFI → (HF +HFI)
MF (11.6)

= v (σ ×Π′) · ẑ + µBgFσB(F)(x, y, t) + V (x, y, t) ,

where the effective magnetic field in the Pauli term is given by

BF (x, y, t) = B′(x, y, t)− 1

gFµB

∑
i

〈J ′iSi〉σ , (11.7)

and the vector potential A′ entering the canonical momentum Π′ in the spin-
orbit term contains the contribution from the external magnetic field and
the magnetization of the impurities, as will be discussed below, such that
B′(x, y, t) = ∇×A′(x, y, z, t) |z=0.

In what follows we concentrate on the Dirac fermion dynamics. The
impurity dynamics, in principle, can be treated self-consistently in parallel.
However, it is generally accepted that the latter occurs on a time-scale which
is long compared to the fermion dynamics and adiabatic schemes have been
used successfully to model the interplay between the two subsystems.[52]

According to Eq. (11.6) the presence of magnetic impurities and a sta-
bilizing external B-field has two consequences for the dynamics of Dirac
fermions: an impurity spin polarization (magnetization) M modifies the net
external magnetic field from B to B′ and, for Mz 6= 0, introduces an ex-
change term ("mass term"), in addition to the Zeeman term, in Eqs. (11.6)
and (11.2) below. Such a mass term has been estimated to be of the order
of up to several tens of meV and represents the dominant magnetic-field
contribution.[39] For a fermion g-factor 20 the effective magnetic exchange
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field required for a mass gap of 25 meV is about 10 T.[37, 53] Such a mag-
netic exchange field will, as usual for ferromagnets, dominate any typical
static external field B ≤ 0.5 T in Eq. (11.7) in the Pauli term of Eq. (11.6).

In order to estimate the magnetization M associated with an exchange
field of 10 T, we use parameters typical for Mn impurities.[54] Within the
simple form J ′i = J ′δ(x − xi)δ(y − yi) and J ′ ≈ 130 meV nm2 one needs an
impurity density of about 0.1 nm−2 to achieve a mass gap of 25 meV. Using
gI ≈ 2, the magnetization per area is of the order of 1.2× 10−6 meV/(Gauss
nm2). Based on this estimate and a layer thickness of 1 nm, the order of
magnitude of the magnetization contribution toB′, |B′−B| = 4πM , is about
2.5 × 10−3 T, making this effect negligible in both the spin-orbit and Pauli
term of Eq. (11.6). In principle there also is a topological field contribution
due to the magneto-electric effect, but it is extremely small in magnitude
(≤ 10−6T ).[32, 55] In summary, the dominant magnetic-field effect onto the
Dirac fermions arises from the exchange field, followed in importance by
the external magnetic field in the spin-orbit term. The effect of an external
magnetic field on the spectrum of TI Dirac fermions has been investigated
both theoretically and experimentally (see Introduction 11.1). It has a neg-
ligible effect on the dynamics of domain-wall Dirac fermions when com-
pared to the in-plane component of the exchange term, as we have verified
numerically in our studies detailed below. We conclude that the formation
of domain-wall states and the dynamics of domain-wall Dirac fermions is
dictated predominantly by the magnetic domain-wall structure (exchange
field) and the external electric bias. However, the presence of an external
magnetic field may be essential to pin domain walls and to imprint and sta-
bilize a specific ferromagnetic domain-wall structure.

11.2.2 Solitonic magnetic textures

The rich physics of ferromagnetic domain wall dynamics has been well doc-
umented in the literature.[56, 57, 24, 25, 26] Here we consider well-pinned
hard ferromagnetic textures and explore domain-wall fermion dynamics on
a time-scale which allows for a quasi-static treatment of the domain wall
structure, neglecting spin-transfer torque effects.[52] The latter implies the
regime of low current density. Our numerical approach can handle time-
dependent magnetic domains, however, such an analysis will be the topic
of future investigations.

An analytic model for stable, local-minima, 2D magnetic textures can be
derived from solutions to a simple free energy functional which consists of
an isotropic exchange term and an anisotropy term with z as the easy axis.
In terms of the unit magnetization m = (mx,my,mz) = (sin θ cosφ, sin θ sinφ, cos θ)
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and with a, b > 0 it is

F(m) =
1

2

∫
dxdy

[
a(grad m)2 − bm2

z

]
. (11.8)

In spherical coordinates θ(x, y) and φ(x, y) F takes the simple form

F(m) =
1

2

∫
dxdy[a

∑
i=x,y

(
(∂xiθ)

2 + (∂xiφ sin θ)2
)

−b cos(θ)2] . (11.9)

Optimality conditions lead to ∂xiφ = 0 and

θxx + θyy =
b

2a
sin 2θ. (11.10)

Setting u = 2θ and rescaling xi →
√
b/axi one obtains the sine-Gordon

equation (in "imaginary time" iy)

uxx + uyy = sin 2u.

Multi-soliton solutions are most directly found using Hirota’s bilinear ex-
pansion in ε.[58, 59, 60] The single-soliton solution takes the form

θ(1)(x, y) = 2 arctan
{
eη(x,y)

}
,

η(x, y) =
√
b/a(x′ − x′o), x′o = −

√
a/b ln ε

x′ = x cos β + y sin β, β ∈ [0, 2π]

φ(x, y) = φo, φo ∈ [0, 2π]. (11.11)

This solution represents a magnetization domain wall along y′ = −x sin β +
y cos β at xo.

A magnetic domain-wall intersection which represents a local minimum
to the free energy functional Eq. (11.8) can be constructed from the two-
soliton solution

θ(2)(x, y) = 2 arctan

{
eη1(x,y) + eη2(x,y)

1 + κ12eη1(x,y)+η2(x,y)

}
,

ηi(x, y) =
√
b/a(xi − xio),

xi = x cosαi + y sinαi, αi ∈ [0, 2π], i = 1, 2

κ12 =
(cosα1 − cosα2)2 + (sinα1 − sinα2)2

(cosα1 + cosα2)2 + (sinα1 + sinα2)2

φ(x, y) = φo, φo ∈ [0, 2π] . (11.12)
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wallwidth λ
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Figure 11.1: Magnetic texture of a domain wall intersection. The contour
plot encodes theMz component of the magnetization, asymptotically taking
the values ± |M | (black and white regions). The arrows show the in-plane
components (Mx,My). α is the angle of intersection and φ is the angle of
the in-plane magnetization direction relative to the x-axis. The wall width
is given by λ =

√
a/b, where a is the exchange constant and b the anisotropy

parameter (see main text).

We place the point of intersection at the coordinate origin, setting x1
o = x2

o =
0, retaining α1 − α2( 6= 0, π) and φo to characterize the type of intersection.
With suitable magnetic impurities present at or near the surface of the TI,
such a ferromagnetic domain wall intersection may be induced by an array

of magnetic poles of the form
[

+ −
− +

]
facing the TI surface.

11.2.3 The model Hamiltonian and domain-wall states

According to Sect. 11.2 the effective Hamiltonian for a single Dirac cone
on the surface of the TI interacting with magnetic texture M(x, y) may be
written[32, 35, 61]

H = v [σ ×Π(x, y, t)] · ẑ + M(x, y) · σ + V (x, y) . (11.13)
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According to Eq. (11.7) second and third term on the r.h.s., respectively,
account for the presence of the magnetic texturing M(x, y) = Ĵm(x, y), with
Ĵ denoting the effective exchange coupling tensor, and an external scalar
electric potential arising, for example, from a gate bias.

This effective Hamiltonian describes the 2D excitation spectrum near the
Dirac point, including 1D edge states in presence of domain walls. Domain-
wall edge states are responsible for an integer quantum Hall effect on the
TI surface, as discussed in the literature.[32, 35] For H Eq. (11.13) and a
single-soliton domain wall Eq. (11.11), with limx′→±∞Mz(x

′) = M± and
M−M+ < 0, a domain-wall eigenstate exists which takes the simple form[36]

〈x, y |Y ′,±〉 ∝ 1√
2

(
±e−iα/2
eiα/2

)
e∓

1
~v

∫ x′
x′o
Mz(x′′)dx′′+ik′yy

′
, (11.14)

when neglecting in-plane contributions to the magnetization (valid when
sufficiently far away from the domain wall).[31] It features a linear disper-
sionE = ±v~ k′y, with the upper sign forM− < 0 andM+ > 0, and the lower
sign for M+ < 0 and M− > 0. Note that a constant potential V in Eq.(11.2)
simply adds to the eigenvalue E. Parallel and curved zero-mass lines have
also been studied in the literature.[62] For a general form of an in-plane
magnetization Mx(x

′),My(x
′) 6= 0 or other more complicated domain-wall

structures eigenfunctions are best found numerically.
More complex magnetic texturing, where islands of positive mass neigh-

bor islands of negative mass, produces a network of one-way chiral channel
states.[31] Here we study an elementary building block of such a network
in form of an intersection of two linear domain walls. With the realization
of such a texture a reflection-less beam splitter for chiral fermions is estab-
lished. This is demonstrated numerically below for the two-soliton texture
Eq. (11.12).

11.3 Numerical method: a single-cone lattice model

The time-dependent Dirac equation is solved numerically forH in Eq. (11.2).
Putting the (single cone) Dirac equation onto a grid for numerical solution
traditionally has been hampered by fermion doubling, that is, the lattice
model has more eigenmodes than the original continuum model. Two dif-
ferent numerical finite difference schemes have been employed and com-
pared in the course of this analysis. Both use a staggering of the spinor
components in space and time. The first one has the following advanta-
geous features:[63] (i) it provides the exact (linear) dispersion relation for
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mass-less free Dirac fermions along the main axes kx and ky, (ii) it allows
an implementation of absorbing boundary conditions via an imaginary po-
tential term, and (iii) it allows for a removal of the second Dirac cone, lo-
cated at the corners of the Brillouin zone, by a Wilson term.[64] The sec-
ond one, briefly outlined below, avoids the fermion doubling problem al-
together at the cost of loosing the perfect (i.e., linear) dispersion property
along the main coordinate axes for mass zero.[65] It features a single Dirac
cone dispersion without the need for using a Wilson mass term to get rid of
the doublers. For simple rectangular magnetic structures aligned with the
grid’s x and y axis the first scheme has higher accuracy, for general setups,
however, the second scheme performs better. The figures shown below are
obtained with the second scheme. Results from various simulations within
the first scheme have and will be presented elsewhere.[31, 66, 63] Global
grid refinement experiments where done and then the simulations where
executed with a grid for which a further halving of the grid-spacings gave
an improvement no more than 1%. For comparison some simulations were
done with scheme one showing a difference in the result for the transmis-
sion of less than 1%.

The finite difference scheme for the Dirac equation i∂tψ(x, y, t) = Ĥψ(x, y, t)
with the Hamiltonian Eq. (11.2), where ψ(x, y, t) ∈ C

2 is a 2-component
spinor, may be summarized as follows. Introducing the space-time stag-
gered according to in Fig. 11.2 for the components of the spinor ψ = (u, v)
and using symmetric second order accurate approximations for the deriva-
tives we propose the following discretization of the (2+1)D Dirac equation
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Figure 11.2: Leap-frog time stepping on a time and space staggered grid for
the (2+1)D Dirac equation.

u
n+1/2
j,k − un−1/2

j,k

∆t
=

− i
[
(Mz)

n
j,k − V n

j,k

]un+1/2
j,k + u

n−1/2
j,k

2

−
(vnj+1/2,k − vnj−1/2,k)

∆x
+ i

(vnj,k+1/2 − vnj,k−1/2)

∆y
,

− (Mx)
n
j,k

(vnj+1/2,k + vnj−1/2,k)

2

− i(My)
n
j,k

(vnj,k+1/2 + vnj,k−1/2)

2
,

vn+1
j−1/2,k − vnj−1/2,k

∆t
=

+ i
[
(Mz)

n+1
j−1/2,k + V n+1

j−1/2,k

]vn+1
j−1/2,k + vnj−1/2,k

2

−
(u

n+1/2
j,k − un+1/2

j−1,k )

∆x
− i

(u
n+1/2
j−1/2,k+1/2 − u

n+1/2
j−1/2,k−1/2)

∆y

− (Mx)
n+1
j−1/2,k

(u
n+1/2
j,k + u

n+1/2
j−1,k )

∆x

+ i(My)
n+1
j−1/2,k

(u
n+1/2
j−1/2,k+1/2 + u

n+1/2
j−1/2,k−1/2)

∆y
. (11.15)
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The u-component defined for the discrete time indices n− 1/2 ∈ Z ‘lives’ on
the discrete space grid points (j, k) ∈ Z2 and (j−1/2, k−1/2) ∈ Z2, while the
v-component defined for n ∈ Z is defined for space indices (j − 1/2, k) ∈ Z2

and (j, k − 1/2) ∈ Z2.

The dispersion relation for constant coefficients is revealed using a plane-
wave ansatz un+1

j+1,k+1 = ei(ω∆t−kx∆x−ky∆y)unj,k (and analogously for v). The
centered approximation for the time and space derivatives, respectively,
translates into a multiplication by 2i

∆t
sin ω∆t

2
and 2i

∆x,y
sin kx,y∆x,y

2
. Time aver-

aging leads to the factor cos ω∆t
2

. Solving for ω gives the dispersion relation
for Mx = My = V = 0

ω =± 2

∆t
arcsin

[
∆t

2 + (Mz)2∆t√
(Mz)2 +

( 2

∆x
sin

kx∆x

2

)2

+
( 2

∆y
sin

ky∆y

2

)2
]
. (11.16)

The dispersion relation for Mx = My = V = 0 is monotonic and has its
single minimum at kx = ky = 0. On the grid the k vectors are defined up
to reciprocal lattice vectors, only, leading to k ∈ (−π/a, π/a], where a =
∆x,∆y. Accordingly the domain for the frequency is ω ∈ (−π/∆t, π/∆t].
Fig. 11.3 compares the dispersion within the (2+1)D lattice model for the
lattice parameters ∆x = ∆y = 1 and ∆t = 1/

√
2 and a mass gap 2m = 1 to

the exact cone of the continuum model (in green). A more detailed analysis
of the scheme including a rigorous stability analysis (as performed recently
for the (1+1)D case)[67] for general time- and space-dependent mass vector
M and electro-magnetic potentials will be given elsewhere.[68]

11.4 A Dirac fermion beam splitter: numerical re-
sults

The asymptotic value for the z-component of the magnetization in Eq. (11.2)
is chosen to be | mz |= 7.5 meV. This value is realistic in view of the expected
exchange coupling.[39] Note that the results obtained for this value can be
scaled to other values due to the scale invariant nature of the problem at
hand. Indeed, the relevant parameters characterizing a physical situation
can be separated into ratios and scale-free (absolute) parameters. The rele-
vant ratios are: the ratio of the confinement length of the wave packet to the
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Figure 11.3: The dispersion within the numerical approach for a mass gap
2Mz = 1 compared to the exact cone of the continuum approach (in green).
The grid spacings are chosen to be ∆x = ∆y = 1 and ∆t = 1/

√
2.

domain wall width, the ratio of the wave packet energy to the gap (estab-
lished by the asymptotic value of the z-component of the magnetization),
and the ratio of the in-plane to the out-of-plane exchange coupling constant
(in principle, the in plane component can also have an anisotropy). The
scale free parameters are the angle of intersection and the angle φ for the in
plane magnetization direction (see Fig. 11.1). For real structures in experi-
ment sample-specific imperfections, such as unwanted irregularities in the
magnetic structure, may play a role.

A typical simulation region of 1000× 1000 nm is used and, for the simu-
lations to follow, we place an initial Gaussian wave packet in the in-channel
(see also Fig. 11.1). It is characterized by its energy mean value E and stan-
dard deviation, see Fig. 11.5. Its initial shape perpendicular to the channel
is given by Eq. (11.12). Following the time-evolution of the wave packet
along the structure we determine the splitting ratio from the transmission
into the outgoing upward-running channel, i.e. in positive y-direction, for
rectangular intersections (see also Fig. 11.1).
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11.4.1 Rectangular intersections

Fig. 11.4 (a) gives a series of snapshots showing the wave packet as it prop-
agates horizontally along the in-channel and splits more or less symmetri-
cally into two outgoing wave packets traveling along the vertical channels.
For rectangular two-soliton magnetic textures of the form Eq. (11.12) there
are the domain width λ and the angle φ characterizing the in-plane magneti-
zation across the domain wall which can be varied. For the first simulations
of these dependencies for rectangular intersections shown in Figs. 11.5 and
11.6, the domain wall width is chosen to be a relatively large λ = 25 nm
compared to the perpendicular confinement of the wave packet ≈ 100 nm
to bring out more clearly the influence of the details of the in-plane compo-
nents of the magnetization on the wave packet propagation.

In Fig. 11.6 we show the effects on the transmission into the upper chan-
nel when the domain wall width λ and the magnetization angle φ are varied.
Here, the wave packet is prepared with an energy mean value E = 0. The
color-coded figures show grid lines (in gray), altitude lines (black) as well
as the altitude (as interpolated color map) which should allow the reader to
assign a transmission value to every parameter combination shown in the
plot. One observes that even for relatively large domain wall widths the
influence of the in plane magnetization to the splitting behavior is moder-
ate and, to a very high accuracy, a rectangular intersection provides a 50-50
beam splitter for domain wall states over a wide energy range. This is im-
portant for robustness of the splitting ratio under local imperfections.

This situation can be changed, when an electrode is placed asymmetri-
cally onto the junction, as sketched in Fig. 11.4 (b). The chosen bias value
is 15 mV. Note that a static potential cannot close the channel or revert the
propagation direction. However, if sufficiently large it provides a mixing of
2D surface states with the channel state and, when spatially confined per-
pendicular to the out channel, provides a wave guide-like channel, as is
shown in the simulation in Fig. 11.4 (b). This confinement effect, arising
from wave number mismatch, has been discussed in the literature.[13] Here
it is used, to control the splitting ratio which is shown for varying V and E
and λ = 25 nm and φ = 0 in Fig. 11.8. Dynamically, the confining effect by
the (rectangular) gate resembles total internal reflection which arises under
glancing incidence onto the potential wall. Tailoring the shape of the elec-
trode helps in effective “funneling" of fermions back into the domain-wall
state. This is demonstrated in Fig. 11.7 (a) and (b) in which we compare the
effect of a rectangular versus a triangular bias region.

Note that asymmetric biasing of one out channel shows influence on the
splitting ratio only when the applied voltage is sufficiently high to energet-
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ically move the Dirac fermion out of the magnetization gap (see Figs. 11.7
and 11.8). Otherwise it cannot influence significantly the propagation be-
cause the addition of a scalar potential does not change the group velocity
due to the linear dispersion relation of the channel states.

11.4.2 45-degree intersections

We now turn to 45-degree intersections and study them as a function of φ
(domain-wall type), λ (channel width), and E (mean energy of the wave
packet). Fig. 11.9 shows snapshots of the wave packet as it propagates
along the in-channel and splits up at the intersection. It is observed that the
preferred out-channel depends on the channel width. For wide channels the
upper out-channel is preferred, while for narrow channel width, the lower
channel is the preferred exit. This trend arises from an increased overlap
of the in-channel wave-packet with the lower out-channel as the channel
width decreases, whereas for wide channels, the path of lower momentum
transfer wins out. This effect therefore also displays an energy dependence,
in contrast to the rectangular case.

Results from a more systematic analysis are summarized in the following
figures. In Fig. 11.10 we show the transmission as a function of the in plane
magnetization angle φ and the energy mean value E for λ = 25 nm. In
Fig. 11.11 we vary the wall width λ and the in-plane magnetization angle φ
using E = 0. Fig. 11.12 shows the same setup but for E = 5 meV. Compared
to the rectangular intersections (Figs. 11.6 and 11.10) the influence of the in-
plane magnetization direction is more pronounced. For a fixed interaction
angle the most relevant parameter still is the wall width since it determines
the degree of asymmetry in the “channel cross-talk" near the junction, as
shown in quantitative detail in these figures. As the fermion approaches
the intersection it probes the surroundings and begins to leak into the lower
out-channel before it detects the upper one.

11.4.3 General angles of intersection

Referring to Fig. 11.1, general angles of intersection α are investigated. In
conjunction with the domain-wall thickness the angle of intersection plays
the dominant role for establishing the splitting ratio of such an intersection.
Results are summarized in the following figures. In Fig. 11.13 we vary α
and λ for E = φ = 0. For Fig. 11.14 we change E to E = 5 meV. Fig. 11.15
shows the variation of E and α where φ = π/2 and λ = 25 nm. For λ = 10
nm this setup shows a quite different behavior Fig 11.16. It is remarkable
that for small domain-wall widths, relative to the spatial extent of the Dirac
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fermion wave packet, the transmission into the upper channel decreases for
a more acute angle α. For large widths, on the other hand, the transmis-
sion into this out channel is favored, as one would suspect “intuitively" (see
Fig. 12 and 13). This effect is most dominant for wave packets with a center
energy of E = 0. The two competing effects responsible for this behavior
are the difference in spatial (time-dependent) overlap of the incident wave-
packet with the two outgoing channels and the “wave-vector" mismatch at
the intersection. As already pointed out for the α = 45o, the behavior of nar-
row channels is dominated by the former, while wide channels act ballistic,
favoring low momentum transfer. In other words, when going from nar-
row to wide channels, the Dirac fermion scattering behavior changes from
quantum-mechanical wave-like to “classical" particle-like. Note that, as per
Eq. (11.14), the (stationary) transverse extent of the wave packet is deter-
mined by the asymptotic values of the magnetic texture, while the width
of the domain wall independently is determined by the relative importance
between anisotropy and exchange contribution in the free energy functional
of the magnetization, Eq. (11.8). Hence, in principle, structural design al-
lows for both situations to occur.

11.5 Summary and conclusions

In summary, we have investigated numerically the dynamics of domain-
wall Dirac fermions at the intersections of two linear ferromagnetic domain
walls. To model a realistic stable magnetic intersection texture we have used
a two-soliton solution of the sine-Gordon equation which establishes the op-
timality condition for a minimum of a free energy functional accounting for
exchange and anisotropy. The time-dependent analysis of chiral fermion
propagation is based on a staggered grid numerical scheme to solve the ef-
fective (2+1)D Dirac equation. Developed for this particular purpose, it is
constructed such that fermion doubling is avoided and absorbing bound-
ary conditions in form of regions of imaginary scalar potential can be in-
corporated. Details of this model and an extension to (3+1)D can be found
elsewhere.[68]

The properties of such magnetic intersections as a one-way beam split-
ters for chiral fermions have been investigated. Based on this study, we can
conclude that the splitting ratio for domain-wall fermions at the intersection
depends strongly on the angle of intersection and, in case of non-rectangular
intersections, on the width of the domain-wall. The latter determines the
importance of the wave nature of the fermion onto the transmission behav-
ior: quantum-tunneling dominates the behavior at the intersection when
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the (transverse) localization length of the domain-wall fermion is large com-
pared to the channel width. For wide domain walls the Dirac fermion be-
havior at the intersection becomes particle-like. The type of domain wall, as
well as the mean energy of the Dirac fermion wave packet, have a weaker
influence on the splitting ratio. The former is characterized by the angle of
the in-plane magnetization when its z-component goes through zero and
allows one to compare Bloch- to Néel-type intersections. Although experi-
mental setups will have imperfections regarding the magnetic structure our
results should give a qualitative guide for the splitting behavior in such
structures, as long as defects do not destroy the channel states.

External control of of the splitting ratio may become feasible in experi-
ment via asymmetrically biased electric gates placed near the junction. Us-
ing specially tapered electrodes, “funneling" of laterally confined fermions
back into domain-wall states is shown in our simulation.

Here we have confined our analysis to the intersection of two linear do-
main walls. If more complex magnetic textures on topological insulators can
be realized in experiment, domain-walls can be used as chiral Dirac fermion
waveguides, with their mutual intersections acting as beam-splitters as, for
example, in a proposal for a domain-wall electric-gate controlled fermion
interferometer. [31]

The work is supported by the Austrian Science Foundation under Project
No. I395-N16.



198

Figure 11.4: Snapshots of the wave packet propagation in a 90-degree do-
main wall intersection: (a) unbiased, (b) biased (15 mV). The color (or
brightness variation) shows the probability density |ψ|2 (see color-bar). The
black contour lines and the white crossed and dotted circles show the Mz-
component of the magnetization. The vector plot shows the direction and
magnitude of the in-plane magnetization (Mx,My).
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Figure 11.5: Relative transmission to the upper channel in a rectangular
domain wall intersection with wall width λ = 25 nm as a function of the
in-plane magnetization angle φ and the energy mean value E of the wave
packet.

Figure 11.6: Relative transmission to the upper channel in a rectangular
domain wall intersection as a function of the in-plane magnetization an-
gle φ and wall width λ. The in propagation-direction Gaussian initial wave
packet is prepared with an energy mean value of E = 0.
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Figure 11.7: Snapshots of the wave packet propagation in a 90-degree do-
main wall intersection: (a) with rectangular electrode, (b) with tailored elec-
trode and a bias of 15 mV. The color (or brightness variation) shows the
probability density |ψ|2 (see color-bar). The black contour lines and the
white crossed and dotted circles show the Mz-component of the magneti-
zation.
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Figure 11.8: Relative transmission to the upper channel in a rectangular do-
main wall intersection as a function of the mean energy of the wave packet
E and the gating potential V as shown in Fig. 11.4 (b). The wall width is
chosen to be λ = 25 nm and φ = 0.
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Figure 11.9: Snapshots of the wave packet propagation in a 45-degree do-
main wall with a wall width of (a) λ = 25 nm, (b) λ = 15 nm and (c) λ = 5
nm. E = φ = π. The color (or brightness variation) shows the probability
density |ψ|2 (see color-bar). The black contour lines and the white crossed
and dotted circles show the Mz-component of the magnetization. The vec-
tor plot shows the direction and magnitude of the in-plane magnetization
(Mx,My).
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Figure 11.10: Relative transmission to the upper channel in a 45-degree
domain wall intersection with wall width λ = 25 nm as a function of the
in-plane magnetization angle φ and the energy mean value E of the wave
packet.

Figure 11.11: Relative transmission to the upper channel in a 45-degree do-
main wall intersection as a function of the in-plane magnetization angle
φ and wall width λ. The in propagation-direction Gaussian shaped initial
wave packet is prepared with an energy mean value of E = 0.
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Figure 11.12: Relative transmission to the upper channel in a 45-degree do-
main wall intersection as a function of the in-plane magnetization angle
φ and wall width λ. The in propagation-direction Gaussian shaped initial
wave packet is prepared with an energy mean value of E = 5 meV.

Figure 11.13: Relative transmission to the upper channel in a domain wall
intersection where the intersection angle α and the wall width λ are varied.
E = 0 meV and φ = 0.
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Figure 11.14: Relative transmission to the upper channel in a domain wall
intersection where the intersection angle α and the wall width λ are varied.
E = 5 meV and φ = 0.

Figure 11.15: Relative transmission to the upper channel in a domain wall
intersection where the intersection angle α and the mean energy E are var-
ied. φ = π/2 and λ = 25 nm.
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Figure 11.16: Relative transmission to the upper channel in a domain wall
intersection where the intersection angle α and the mean energy E are var-
ied. φ = π/2 and λ = 10 nm.
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Chapter 12

PAPER REPRINT:
SINGLE-CONE REAL-SPACE FINITE DIFFER-
ENCE SCHEME FOR THE TIME-DEPENDENT
DIRAC EQUATION

submitted to Journal of Computational Physics
preprint available at arXiv:1309.3452

R. Hammer, W. Pötz, and A. Arnold

A finite difference scheme for the numerical treatment of the (3+1)D Dirac equation
is presented. Its staggered-grid intertwined discretization treats space and time co-
ordinates on equal footing, thereby avoiding the notorious fermion doubling prob-
lem. This explicit scheme operates entirely in real space and leads to optimal linear
scaling behavior for the computational effort per space-time grid-point. It allows
for an easy and efficient parallelization. A functional for a norm on the grid is iden-
tified. It can be interpreted as probability density and is proved to be conserved by
the scheme. The single-cone dispersion relation is shown and exact stability condi-
tions are derived. Finally, a single-cone scheme and its properties are presented for
the two-component (2+1)D Dirac equation.
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12.1 Introduction

12.1.1 The Dirac Equation and Numerical Schemes

Even more than 80 years after its presentation by P. A. M. Dirac in 1928,
the Dirac equation has not lost its fascination and significance in physics
[1]. The Dirac equation (in quantized form) has been of fundamental im-
portance to the development of modern field theories and many-particle
physics [2, 3, 4, 5]. Interestingly, even today analytic solutions are very rare1

[6, 7, 8, 9]. In general, solutions have to be obtained numerically. They
have gained in relevance by rapidly increasing computational resources, as
well as the development of efficient numerical schemes. In a single parti-
cle picture, the (3+1)D Dirac equation is applicable whenever the external
electromagnetic fields are strong enough to accelerate a spin-1/2 particle
to relativistic speeds, but many-particle effects and electron-positron pair
production can be neglected [10, 11]. This regime is reached in the study
of light-matter interaction with the availability of short-pulse laser light in
the (sub-)femtosecond range and intensities in excess of 1018W/cm2, which
corresponds to the relativistic threshold2 [10, 11]. Much of the physics in
strong laser fields has been understood within a classical treatment of the
relativistic electron. More recently, a numerical treatment of the quantum
wave packet dynamics has become feasible [12, 13]. For an electron in a
plane wave field, a wave-packet description of an electron reveals a drift of
the wave packet in the direction of light propagation along with its spread-
ing and shearing [12]. For this investigation a (2+1)D FFT-split-operator
code was used. In such an approach, the propagation induced by the mo-
mentum part of the Hamiltonian is computed in momentum space, and the
remainder in real-space, using fast Fourier transformation between the two
representations [12]. The computational effort scales like O(N lnN) where
N is the number of grid-points. An efficient code using operator splitting
in real space, in combination with the exact characteristic solutions in each
space direction, was introduced for the (3+1)D case of the Dirac equation
recently [13]. It leads to the highly efficient operations count of O(N).

In condensed matter physics, relativistic effects frequently are well ac-
counted for by corrections to the Pauli equation derived from the Dirac
equation [2]. Recently, however, (topological) condensed matter systems
supporting effective Dirac and Majorana fermions have become a vivid play-

1E.g., spin-1/2 particle in a homogeneous magnetic field [6], the Dirac oscillator [7], an
electromagnetic plane wave [8], or the Coulomb potential [9].

2The electron is accelerated to relativistic speeds during one laser cycle.
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ground for this community [14, 15, 17]. In particular, metallic surface states
on topological insulator surfaces display 2D Dirac cone dispersion [16, 17,
18, 19]. A dynamic analysis of such Dirac fermions, e.g., in presence of ef-
fective electromagnetic fields calls for numerical schemes which faithfully
represent the low-energy excitation spectrum. We have recently developed
and applied such schemes for the (1+1)D and (2+1)D effective 2-component
Dirac equation. In the (1+1)D case, we have presented a single-cone lattice
scheme for which exactly absorbing open boundaries were derived [25]. In
(2+1)D, we have first developed a staggered grid scheme with one addi-
tional artificial cone which, however, is able to preserve the linear disper-
sion of the free m = 0 Dirac spin-1/2 particle along x- and y-axis [26]. More
recently, a staggered grid single-cone scheme was developed for the two-
component (2+1)D Dirac equation and used in studies of Dirac fermion dy-
namics on textured TI surfaces [27, 28]. This scheme, its properties, and
its generalization to the four-spinor-component (3+1)D Dirac equation are
topic of this paper. It operates entirely in real space and, due to symmeric
staggering, treats space and time on equal terms. This scheme avoids the no-
torious fermion doubling characteristic of direct discretization of the Dirac
derivative operators on a real space lattice [20]. To our knowledge, this is
the first multi-D finite difference scheme with this property. This is achieved
by redistributing the spinor components on a grid, staggered in space and
time, such that individual spinor components sit on different (adjacent) time
sheets. The proposed scheme, as will be shown below, shows an O(N) scal-
ing behavior.

12.1.2 The Fermion Doubling Problem

Real-space finite-difference schemes for the Dirac equation have been
plagued by the fermion doubling problem3. It was shown rigorously by
Nielsen and Ninomiya that the discretization of the Dirac equation on a
regular space grid forbids a single chirally invariant fermion flavor without
breaking one or more of the following assumptions: translational invari-
ance, locality, and Hermiticity [20]. Obtaining additional spurious solutions
due to discretization is not a problem specific to the Dirac equation, but
can occur in all the cases where one discretizes a first derivative operator
on a grid. Standard symmetric finite-difference approximations for the first
derivatives are applied to preserve Hermiticity. They leave out the central
grid point which, in turn, can take on arbitrary values without changing

3It manifests itself in a non-monotonic dispersion relation leading to additional Dirac
cones, in addition to the one at k = 0 of the underlying continuum Hamiltonian. For d
discretized spatial dimensions one ends up with up to 2d cones (“fermion flavors").
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the specific value which the finite difference expression yields. For exam-
ple, both a constant function and a function oscillating with the maximum
frequency which can be resolved on the grid lead to zero for the central fi-
nite difference expression. Already the simplest model, the advection equa-
tion in 1D shows a non-monotonic behavior with a second minimum in the
dispersion when a central approximation for the first spatial derivative is
used (e.g., the forward-time central-space (FTCS) method). In other words,
a symmetric first derivative in space utilizes twice the lattice spacing of the
underlying grid thereby, in the language of solid state physics, shrinking
the effective Brillouin zone in this direction by a factor of two.

Fermion doubling on a grid can be avoided by following basically two
main strategies: (i) the incorporation or (ii) the complete avoidance of the
central grid point in the scheme. As to the former, the use of a one-sided fi-
nite difference operator leads to so-called upwind schemes. For the Dirac
equation this seems to work only in 1D, when a unitary time-evolution
(conserving the norm) is to be maintained [29]. In this particular case it
is equivalent to distributing the spinor components over a staggered grid
[29, 25]. Unfortunately in higher dimensions this strategy either leads to
non-Hermiticity and a non-unitary scheme or again to the introduction of
fermion doubling. We note that the claim for a recently presented coordi-
nate space operator splitting scheme was not troubled by fermion doubling
could not be verified by us [13]. In contrast, we find that monotonic disper-
sion behavior is limited to K = c∆t/∆x ≤ 1/2 for the (2+1)D and (3+1)D
case within this scheme. However, in its present form it can only be exe-
cuted for K ∈ N, because characteristic solutions for advection equations,
e.g. f(x, t + ∆t) = f(x + K∆x, t), are used. It might be possible to repair
the scheme by using the reservoir technique, where the main idea is to wait
n time steps before updating the solution, which then allows one to use a
smaller ∆̃t = ∆t/n [30].

The presence of the central grid point in the scheme can also be enforced
by adding artificial terms to the scheme, such as the momentum-dependent
mass term suggested by Wilson, which lifts (splits) the spurious cones at
high momentum, but retains a k = 0 cone in good approximation of the
continuum dispersion [32]. This strategy comes with its price. In case of
the Dirac equation, it spoils chiral invariance for the physical mass m = 0
case4 [32]. Alternatively, one can violate one of the other premises of the
Nielsen-Ninomiya no-go theorem, for example, by breaking translational
invariance in an extra dimension. This leads to domain-wall fermions [33,
20]. Interestingly, nature uses this trick in topological insulators [15].

4For m 6= 0 chiral symmetry already is broken in the continuum problem.
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The other option is to retain the centered approximation and to ensure
that the disturbing central grid point cannot cause a problem: get rid of the
point - get rid of the problem. This is achieved by the use of a staggered
("checkerboard") grid whereby the grid is subdivided into subsets, with a
particular spinor component defined on one of them, but not on the other(s).
For the Dirac equation the idea of a staggered grid may be tracked back to
Kogut and Susskind in the context of lattice QCD [31]. Here we utilize a
staggered grid in space and time which treats time and space on equal foot-
ing, in accordance with the covariance of the underlying continuum model.
Given initial conditions on a time slice, time propagation is executed in a
leap-frog manner where the upper spinor components are computed from
the lower ones and vice versa in an explicit recursive scheme.

The paper is organized as follows. In Section 12.2 we present the (3+1)D
scheme and proceed with a discussion of its properties, such as norm con-
servation, stability, and the scaling behavior. In Section 12.3 we present this
analysis for the corresponding scheme applied to (2+1)D. Finally the gauge-
invariant inclusion of an external electromagnetic potential and its conse-
quences are outlined in Section 12.4. Summary and conclusions are given in
Section 12.5.

12.2 Numerical Scheme for the (3+1)D Dirac Equa-
tion

The single particle Dirac equation offers a relativistic description of spin 1/2
particles capturing their particle-antiparticle and spin degree of freedom. A
common representation is the (3+1)D Schrödinger form [34, 2]

i~c
∂

∂xo
~ψ(xµ) =

[
−i~c

∑
j=1,2,3

αj
∂

∂xj
+mc2β + V (xµ)114

]
~ψ(xµ) . (12.1)

Here we use the 4× 4 Dirac matrices in Pauli-Dirac (“standard") form [34]

αj = σx ⊗ σj =

(
0 σj
σj 0

)
(12.2)

and

β = σz ⊗ 112 =

(
112 0
0 −112

)
, (12.3)
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Figure 12.1: Space-time stencil for the first sub-step with explicit leap-frog
time stepping for the space-time staggered finite difference scheme of the
(3+1)D Dirac equation. The components A, B, C and D are defined on special
positions of the space-time grid in order to allow a centered approximation
of the first derivative without inducing fermion doubling.

expressed by the Pauli matrices σj and the 2 × 2 unit matrices 112. The first
element in the direct product form accounts for the particle-antiparticle sub-
space and the second one represents the spin degree of freedom. As usual,
(xµ) = (xo = ct, x1 = x, x2 = y, x3 = z) is the space-time four vector.
Writing the Dirac spinor as

~ψ(xµ) =


A(xµ)
B(xµ)
C(xµ)
D(xµ)

 (12.4)

one observes that, in the standard representation, components A and B, as
well as C and D, decouple. The remaining couplings are of two types: the
mass and potential terms couple the time derivative of a particular compo-
nent with itself, secondly, the time derivative of each of the upper two com-
ponents couples to spatial derivatives of the lower two components. With
jo, jx, jy, and jz ∈ Z, we define the time step progression in units ∆t, with
∆o = c∆t, for the spinor in two steps as shown in Fig. 12.1. FirstA andB are
propagated from time-sheet t−∆t/2 (i.e. index jo−1/2) to t+∆t/2 (i.e. index
jo + 1/2), followed by the propagation of C and D from time-sheet t (jo) to
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t+ ∆t (jo + 1). One needs x-, y-, and z-derivatives of C and D on time sheet
j0, for the former, and ofA andB on time sheet jo+1/2, for the latter update.
Each spinor component is placed onto every other time sheet: A and B are
put on half-integer time sheets jo± 1/2 and C and D are put on integer time
sheets, such as jo and jo + 1. This allows one to compute symmetric time
derivatives with step width ∆t. If one then puts A on a rectangular spatial
grid, jx, jy, jz the implementation of symmetric x- and y-derivatives of D
requires the latter to be put on a face-centered rectangular (fcr) sublattice
with grid points (jx, jy + 1/2), (jx + 1/2, jy) in the x-y planes. In order to
be able, in turn, to provide symmetric x-and y-derivatives of A when D is
updated, the sublattice of A has to be extended from simple rectangular to
fcr (adding lattice points jx + 1/2, jy + 1/2). Since it is necessary to compute
the z-derivative of C to obtain A at the new time sheet, C has to be given
at the jz + 1/2 sites, sharing its x- and y-positions with A. A and D may
share the same jz grid points. Similarly, B and D share grid points on the
x- and y- axis, while B and C share their grid points along the z-axis. This
determines all lattice sites on which individual spinor components need to
be defined as follows (again with jo, jx, jy and jz ∈ Z)

A(xµ) → A
jo−1/2,jz
jx,jy

, A
jo−1/2,jz
jx+1/2,jy+1/2 ,

B(xµ) → B
jo−1/2,jz+1/2
jx+1/2,jy

, B
jo−1/2,jz+1/2
jx,jy+1/2 ,

C(xµ) → C
jo,jz+1/2
jx,jy

, C
jo,jz+1/2
jx+1/2,jy+1/2 ,

D(xµ) → Djo,jz
jx+1/2,jy

, Djo,jz
jx,jy+1/2 . (12.5)

As the attentive reader probably has already recognized, the construc-
tion of the grid above was influenced by the use of the standard representa-
tion and the requirement of symmetric derivatives using single-lattice con-
stant discretization with a fully symmetric structure in time and space. One
can summarize: A and B (C and D) live on the same time sheets, A and D
(B and C) on the same z-sheets, and A and C (B and D) are defined on the
same x− y positions respectively. Let us discuss the number of grid-points
available (occupied and unoccupied) vs. the number of grid-points where a
spinor component is actually defined. The number of grid-points altogether
(occupied and unoccupied) is 24 = 16 times the number of grid-points avail-
able on a space-time-grid without the half-integer positions. Each compo-
nent is defined on two times the number of integer positions. Thus we can
conclude that 1/8 of all available grid-points are occupied by one concrete
spinor component (e.g. A). Remember that for an non-staggered grid, in
three spatial dimensions, one obtains 23 = 8 Dirac cones. Here, as we will
see below 12.2.1, one has only one Dirac cone. Due to the staggering of
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the lattice (here also in time!), all partial derivatives can be performed in
centered fashion about the grid points without modification of the "lattice
constants".

With jo, jx, jy, and jz ∈ Z the scheme looks as follows. For the update of
the first spinor component A on the (jx, jy) integer grid-points one has

A
jo+1/2,jz
jx,jy

− Ajo−1/2,jz
jx,jy

∆o

+
C
jo,jz+1/2
jx,jy

− Cjo,jz−1/2
jx,jy

∆z

+
Djo,jz
jx+1/2,jy

−Djo,jz
jx−1/2,jy

∆x

− i
Djo,jz
jx,jy+1/2 −D

jo,jz
jx,jy−1/2

∆y

=
1

i~c
(mc2 + V )jo,jzjx,jy

A
jo+1/2,jz
jx,jy

+ A
jo−1/2,jz
jx,jy

2
. (12.6)

For the half-integer (jx + 1/2, jy + 1/2) grid-points the update is

A
jo+1/2,jz
jx+1/2,jy+1/2 − A

jo−1/2,jz
jx+1/2,jy+1/2

∆o

+
C
jo,jz+1/2
jx+1/2,jy+1/2 − C

jo,jz−1/2
jx+1/2,jy+1/2

∆z

+
Djo,jz
jx+1,jy+1/2 −D

jo,jz
jx,jy+1/2

∆x

− i
Djo,jz
jx+1/2,jy+1 −D

jo,jz
jx+1/2,jy

∆y

=
1

i~c
(mc2 + V )jo,jzjx+1/2,jy+1/2

A
jo+1/2,jz
jx+1/2,jy+1/2 + A

jo−1/2,jz
jx+1/2,jy+1/2

2
. (12.7)

For B one has on the (jx + 1/2, jy) sub-grid

B
jo+1/2,jz
jx+1/2,jy

−Bjo−1/2,jz
jx+1/2,jy

∆o

−
D
jo,jz+1/2
jx+1/2,jy

−Djo,jz−1/2
jx+1/2,jy

∆z

+
Cjo,jz
jx+1,jy

− Cjo,jz
jx,jy

∆x

+ i
Cjo,jz
jx+1/2,jy+1/2 − C

jo,jz
jx+1/2,jy−1/2

∆y

=
1

i~c
(mc2 + V )jo,jzjx+1/2,jy

B
jo+1/2,jz
jx+1/2,jy

+B
jo−1/2,jz
jx+1/2,jy

2
, (12.8)

and on the (jx, jy + 1/2) sub-grid one uses

B
jo+1/2,jz
jx,jy+1/2 −B

jo−1/2,jz
jx,jy+1/2

∆o

−
D
jo,jz+1/2
jx,jy+1/2 −D

jo,jz−1/2
jx,jy+1/2

∆z

+
Cjo,jz
jx+1/2,jy+1/2 − C

jo,jz
jx−1/2,jy+1/2

∆x

+ i
Cjo,jz
jx,jy+1 − C

jo,jz
jx,jy

∆y

=
1

i~c
(mc2 + V )jo,jzjx,jy+1/2

B
jo+1/2,jz
jx,jy+1/2 +B

jo−1/2,jz
jx,jy+1/2

2
. (12.9)
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The update for the C-components living on (jx, jy) writes

Cjo+1,jz
jx,jy

− Cjo,jz
jx,jy

∆o

+
A
jo+1/2,jz+1/2
jx,jy

− Ajo+1/2,jz−1/2
jx,jy

∆z

+
B
jo+1/2,jz
jx+1/2,jy

−Bjo+1/2,jz
jx−1/2,jy

∆x

− i
B
jo+1/2,jz
jx,jy+1/2 −B

jo+1/2,jz
jx,jy−1/2

∆y

=
1

i~c
(−mc2 + V )

jo+1/2,jz
jx,jy

Cjo+1,jz
jx,jy

+ Cjo,jz
jx,jy

2
, (12.10)

and for the C-component on (jx + 1/2, jy + 1/2)

Cjo+1,jz
jx+1/2,jy+1/2 − C

jo,jz
jx+1/2,jy+1/2

∆o

+
A
jo+1/2,jz+1/2
jx+1/2,jy+1/2 − A

jo+1/2,jz−1/2
jx+1/2,jy+1/2

∆z

+
B
jo+1/2,jz
jx+1,jy+1/2 −B

jo+1/2,jz
jx,jy+1/2

∆x

− i
B
jo+1/2,jz
jx+1/2,jy+1 −B

jo+1/2,jz
jx+1/2,jy

∆y

=
1

i~c
(−mc2 + V )

jo+1/2,jz
jx+1/2,jy+1/2

Cjo+1,jz
jx+1/2,jy+1/2 + Cjo,jz

jx+1/2,jy+1/2

2
. (12.11)

Finally, for the D component on the (jx + 1/2, jy) sub-grid the update is

Djo+1,jz
jx+1/2,jy

−Djo,jz
jx+1/2,jy

∆o

−
B
jo+1/2,jz+1/2
jx+1/2,jy

−Bjo+1/2,jz−1/2
jx+1/2,jy

∆z

+
A
jo+1/2,jz
jx+1,jy

− Ajo+1/2,jz
jx,jy

∆x

+ i
A
jo+1/2,jz
jx+1/2,jy+1/2 − A

jo+1/2,jz
jx+1/2,jy−1/2

∆y

=
1

i~c
(−mc2 + V )

jo+1/2,jz
jx+1/2,jy

Djo+1,jz
jx+1/2,jy

+Djo,jz
jx+1/2,jy

2
, (12.12)

and, for (jx, jy + 1/2),

Djo+1,jz
jx,jy+1/2 −D

jo,jz
jx,jy+1/2

∆o

−
B
jo+1/2,jz+1/2
jx,jy+1/2 −Bjo+1/2,jz−1/2

jx,jy+1/2

∆z

+
A
jo+1/2,jz
jx+1/2,jy+1/2 − A

jo+1/2,jz
jx−1/2,jy+1/2

∆x

+ i
A
jo+1/2,jz
jx,jy+1 − A

jo+1/2,jz
jx,jy

∆y

=
1

i~c
(−mc2 + V )

jo+1/2,jz
jx,jy+1/2

Djo+1,jz
jx,jy+1/2 +Djo,jz

jx,jy+1/2

2
. (12.13)
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(a) (b)ky ky

Figure 12.2: Dispersion relation of the leap-frog staggered-grid finite dif-
ference scheme for the (3+1)D Dirac equation. ∆x = ∆y = ∆z = ~ = 1,
∆o = 1/

√
3, m = 0. (a) kz = 0, (b) kz = π.

12.2.1 Dispersion relation

There is no fermion doubling for this scheme. For constant coefficients (po-
tential and mass), this can be shown by considering the equivalent to con-
tinuum plane-wave solutions for frequency ω and k-vector (kx, ky, kz),

~ψkµ(xµ) =


Ã(kj)

B̃(kj)

C̃(kj)

D̃(kj)

 e−iωtei
∑
j kjxj . (12.14)

On the lattice, given by the scheme, plane-wave solutions take the form

~ψkµ(xµ) =


Ã(kj)e

iω∆t/2

B̃(kj)e
iω∆t/2eikx∆x/2eikz∆z/2

C̃(kj)e
ikz∆z/2

D̃(kj)e
ikx∆x/2

 e−iωjt∆tei
∑
j kjjj∆j , (12.15)

where ω = cko, ∆o = c∆t, and jt = jo. 5 Insertion into the scheme above
translates any discrete xo = ct derivative into a multiplication by

5The relative shift of the sub-grids e.g. in the x-y-plane can be established by a trans-
lation by one-half lattice spacing in x- or y-direction. In Eq. (12.15) the translation in x-
direction is choosen. This does not induce an asymmetry in the scheme. In each of the four
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− 2i
∆o

sin(ω∆t

2
) and every discrete partial position j = x, y, z derivative into

a multiplication by a factor 2i
∆j

sin(
kj∆j

2
). A time average leads to a factor

cos(ω∆t

2
).

For fixed ∆µ, we therefore obtain the dispersion for the lattice from the con-
tinuum solution by the substitutions

E = ~ω → E(ω) =
2~
∆o

sin(
ω∆t

2
) , (12.16)

pj = ~kj → Pj(kj) =
2~
∆j

sin(
kj∆j

2
) , (12.17)

and
mc2 → m(ω)c2 = mc2 cos(

ω∆t

2
) . (12.18)

With these translation rules, the plane-wave solutions on the lattice can be
obtained from the continuum solutions [34, 2]. In particular, the energy dis-
persion reads

E(ω) = ±
√
m(ω)2c4 + |cP|2 , (12.19)

were P = (P1, P2, P3) is the momentum vector with the components defined
in Eq. 12.17. This establishes the dispersion relation between ω and kj . Note
that on the lattice the kj’s are restricted to the values

(
− π

∆j
,+ π

∆j

]
and ω to(

− π
∆o
,+ π

∆o

]
. Equation (12.19) can be solved for ω by taking the square and

rearranging it to the final result for the dispersion relation

~ω = ±2~
∆t

arcsin
[
X(kj)

]
with X(kj) =

√
(mc2)2 + |cP|2

(mc2)2 + ( 2~
∆t

)2
. (12.20)

Moreover,

E(ω) = ±2~
∆t

X(kj) (12.21)

and
m(ω)c2 = mc2

√
1−X(kj)2 . (12.22)

The spinor eigenket structure, as for the continuum model, is [2]

equations the common e-factor for the center position in space and time can be canceled.
This neither changes the zeros of the characteristic determinant nor the spinor-component
ratios of the eigensolutions.
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~ψ(kj)
(1) = N


1
0
cPz

E(ω)+m(ω)c2

c(Px+iPy)

E(ω)+m(ω)c2

 , ~ψ(kj)
(2) = N


0
1

c(Px−iPy)

E(ω)+m(ω)c2

− cPz
E(ω)+m(ω)c2

 ,

~ψ(kj)
(3) = N


−cPz

|E(ω)|+m(ω)c2

− c(Px+iPy)

|E(ω)|+m(ω)c2

1
0

 , ~ψ(kj)
(4) = N


− c(Px−iPy)

|E(ω)|+m(ω)c2
cPz

|E(ω)|+m(ω)c2

0
1

 .

(12.23)

N depends on the choice of normalization.

12.2.2 Stability

A preliminary discussion of stability can be based on the dispersion relation
associated with plane wave solutions (in absence of an external potential),
Eq. (12.20). Instability occurs when |X(kj)| becomes larger than one, mak-
ing the two solutions for ω to become a pair of complex conjugate numbers.
Imposing ∣∣∣∣∣(mc

2)2 + (2~c)2
∑z

j=x
1

∆2
j

(mc2)2 + (2~c)2 1
∆2
o

∣∣∣∣∣ ≤ 1 ,

one arrives at the condition

r2
x + r2

y + r2
z ≤ 1 ,

for rj = ∆o/∆j . Thus, for equal spatial differences ∆x = ∆y = ∆z = ∆ this
gives the condition r = ∆o/∆ ≤ 1/

√
3.

In order to discuss stability of this scheme in more generality, we seek a
quantity (norm) which is conserved under the discrete time evolution. For
this purpose we introduce several definitions and abbreviations to simplify
notation. Let us recall on which grid positions the spinor components are
defined

Aj with j ∈ (jx, jy, jz) ∪ (jx + 1/2, jy + 1/2, jz) ,

Bj with j ∈ (jx + 1/2, jy, jz + 1/2) ∪ (jx, jy + 1/2, jz + 1/2) ,

Cj with j ∈ (jx, jy, jz + 1/2) ∪ (jx + 1/2, jy + 1/2, jz + 1/2) ,

Dj with j ∈ (jx + 1/2, jy, jz) ∪ (jx, jy + 1/2, jz) , (12.24)
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where jx, jy and jz are integer numbers. In what follows we consider a time
step ∆t where spinor A and B are propagated from jo − 1/2 to jo + 1/2, and
C and D are propagated from jo to jo + 1, using the short-hand notation
A−j , B

−
j , C

−
j , D

−
j → A+

j , B
+
j , C

+
j , D

+
j . Furthermore we define a scalar product

between spinor components F jo
j andGj′o

j+j′ on the lattice in which a sum over
all spatial sites j is performed

(F jo , Gj′o)j′ =
∑
j

F jo
j G

j′o∗
j+j′ =

∑
j

F jo
j−j′G

j′o∗
j . (12.25)

This short-hand notation involves a summation over all the spatial sublat-
tice sites j on the time sheet jo which belong to spinor component F . Also, j′

is limited to spatial shifts which connect the spatial sublattice of F to the one
associated with spinor component G. Note that this scalar product depends
on jo, j′o, the relative position vector j′, and the two spinor components in-
volved. Here, however, we only need to consider products for up to nearest
neighbor sites. For simplicity, we write (F jo , Gj′o)0 = (F jo , Gj′o).
j±i is defined as the vector shifting in the spatial direction i by one half grid-
spacing. Eg. j±x := (jx± 1/2, jy, jz). Finally we define for any spinor compo-
nent

(δiF )j := Fj+i − Fj−i . (12.26)

Using the notation introduced above, a quantity which is conserved under time
propagation is given by

Er = (A,A) + (B,B) + (C,C) + (D,D)

− rz<
[
(δzC,A)− (δzD,B)

]
− rx<

[
(δxD,A) + (δxC,B)

]
+ ry<

[
i(δyD,A)− i(δyC,B)

]
. (12.27)

The proof can be given following the (1+1)D paper [25].

Proof. We begin by writing the scheme in short-hand notation using the def-
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initions given above

A+
j − A−j + rz(C

−
j+z
− C−

j−z
) + rx(D

−
j+x
−D−

j−x
)− iry(D−j+y −D

−
j−y

)

=
∆o(mc

2 + V )j
2i~

(A+
j + A−j ) , (12.28)

B+
j −B−j − rz(D−j+z −D

−
j−z

) + rx(C
−
j+x
− C−

j−x
) + iry(C

−
j+y
− C−

j−y
)

=
∆o(mc

2 + V )j
2i~

(B+
j +B−j ) , (12.29)

C+
j − C−j + rz(A

+

j+z
− A+

j−z
) + rx(B

+

j+x
−B+

j−x
)− iry(B+

j+y
−B+

j−y
)

=
∆o(−mc2 + V )+

j

2i~
(C+

j + C−j ) , (12.30)

D+
j −D−j − rz(B+

j+z
−B+

j−z
) + rx(A

+

j+x
− A+

j−x
) + iry(A

+

j+y
− A+

j−y
)

=
∆o(−mc2 + V )+

j

2i~
(D+

j +D−j ) , (12.31)

where V = V jo , V + = V jo+1/2, and analogous for m.
Each of the Eqs. (12.28) to (12.31) is used to obtain an identity for the real
part of a scalar product. Eq. (12.28) is multiplied by (A+

j +A−j )∗ and summed
over all lattice sites j. Similarly Eq. (12.29) is multiplied by (B+

j +B−j )∗ and
so on. Adding up the real part of these four equations one obtains

(A+, A+)− (A−, A−) + (B+, B+)− (B−, B−)

+ (C+, C+)− (C−, C−) + (D+, D+)− (D−, D−)

+ <
{
rz
[
(A+ + A−, δzC

−) + (C+ + C−, δzA
+)

− (B+ +B−, δzD
−)− (D+ +D−, δzB

+)
]

+ rx
[
(A+ + A−, δxD

−) + (D+ +D−, δxA
+)

+ (B+ +B−, δxC
−) + (C+ + C−, δxB

+)
]}

− ry=
{

(A+ + A−, δyD
−)− (D+ +D−, δyA

+)

− (B+ +B−, δyC
−) + (C+ + C−, δyB

+)
}

= 0 . (12.32)

Whenever possible, terms have been grouped in pairs of the form <{(F+ +
F−, δkG

−) + (G+ + G−, δkF
+)} or ={(F+ + F−, δkG

−) − (G+ + G−, δkF
+)}.

Each of the second terms in these pairs may be rewritten as follows (i. e.



227

summation by parts)

(G+ +G−, δkF
+) =

∑
j

(G+
j +G−j ) (F+

j+k
− F+

j−k
)∗

= −(δkG
+, F+)− (δkG

−, F+) , (12.33)

We now observe that the contribution arising from mixed terms in time +
and − cancel when taking, respectively, the real and imaginary part, and
Eq. (12.32) takes the form E+ − E− = 0 with E given in Eq. (12.27).

In what follows, we utilize the conserved functional (12.27) to demon-
strate stability for arbitrary space- and time-dependent mass and potential.
The spinor elements stay finite, bounded by the estimate

(A,A) + (B,B) + (C,C) + (D,D) ≤ E0
r

1− rx − ry − rz
, (12.34)

when rx + ry + rz < 1 (e.g. using r = rx = ry = rz < 1/3). E0
r is the norm

(12.27) of the initial data A−1/2, B−1/2, C0, and D0.
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Proof.

Er = E0
r = (A,A) + (B,B) + (C,C) + (D,D)

− rz<
[
(δzC,A)− (δzD,B)

]
− rx<

[
(δxD,A) + (δxC,B)

]
+ ry<

[
i(δyD,A)− i(δyC,B)

]
≥ (A,A) + (B,B) + (C,C) + (D,D)

− rz
∣∣∣<[(δzC,A)

]∣∣∣− rz∣∣∣<[(δzD,B)
]∣∣∣

− rx
∣∣∣<[(δxD,A)

]∣∣∣− rx∣∣∣<[(δxC,B)
]∣∣∣

− ry
∣∣∣<[(δyD,A)

]∣∣∣− ry∣∣∣<[(δyC,B)
]∣∣∣

≥ (A,A) + (B,B) + (C,C) + (D,D)

− rz
∣∣∣<[(Cj+z , A)

]∣∣∣− rz∣∣∣<[(Dj+z
, B)

]∣∣∣
− rx

∣∣∣<[(Dj+x
, A)
]∣∣∣− rx∣∣∣<[(Cj+x , B)

]∣∣∣
− ry

∣∣∣<[(Dj+y
, A)
]∣∣∣− ry∣∣∣<[(Cj+y , B)

]∣∣∣
− rz

∣∣∣<[(Cj−z , A)
]∣∣∣− rz∣∣∣<[(Dj−z

, B)
]∣∣∣

− rx
∣∣∣<[(Dj−x

, A)
]∣∣∣− rx∣∣∣<[(Cj−x , B)

]∣∣∣
− ry

∣∣∣<[(Dj−y
, A)
]∣∣∣− ry∣∣∣<[(Cj−y , B)

]∣∣∣
≥ (A,A) + (B,B) + (C,C) + (D,D)

−
(
rx + ry + rz

)(
(A,A) + (B,B) + (C,C) + (D,D)

)
. (12.35)

In the last line we use the inequality 2|< {(a, b)} | ≤ ‖a‖2 + ‖b‖2.

By comparison with the result from the “reality condition" (={ω} = 0) of the
dispersion (obtained for constant mass and potential), one observes that the
condition derived here for arbitrary space- and time-dependent coefficients
gives a narrower bound for stability (i.e. r < 1/3 vs. r ≤ 1/

√
3). This is due
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to the coarse estimates in the short proof above. The proof of stability for the
general case is more lengthy and is shown in 12.6 confirming the stability
condition r ≤ 1/

√
3 and r = rx = ry = rz.

12.3 Numerical Scheme for the (2+1)D Dirac Equa-
tion

In some cases it is not necessary to solve the full (3+1)D Dirac equation.
For example, under translational invariance in one spatial direction (when
mass and potential terms are independent of this space coordinate) one can
perform a partial Fourier transform within the scheme above, essentially
leading to the substitution Eq. (12.17). The spin degree of freedom may be
unimportant or it may be locked to the orbital motion, as is the case for the
effective model for topological insulator (TI) surface states [15]. Then, a two
component spinor in a (2+1)D model is adequate to capture the underlying
physics. In some cases, low-dimensional models have been used simply
because they are easier to handle.

Once more, we use the Schrödinger form of the (2+1)D Dirac equation

i~c∂tψ(x, y, t) =

[
−i~cσx

∂

∂x
−i~cσy

∂

∂y
+σzm(x, y, t)+12V (x, y, t)

]
ψ(x, y, t) ,

(12.36)
where ψ(x, y, t) ≡ (u, v) ∈ C

2 is a 2-component spinor. For topological
insulators, the two components are associated with spin=1/2, whereby the
physical spin quantization axis is S ∝ ẑ×σ. Here, ẑ is the unit-normal vector
to the surface and c constitutes the effective velocity of the quasi-particles in
the effective model. V ∈ R is the scalar potential.

Earlier on and mainly for the treatment of rectangular structures we
have presented a scheme which shows perfect dispersion along the coor-
dinate axes for the free mass-less case, but with a second Dirac cone equally
shared by the four corners of the first Brillouin zone [26, 28]. It is therefore
ideally suited for TI surface states with rectangular structuring. Here a dif-
ferent staggering of the grid in space is applied to the u- and v-component
of the spinor ψ = (u, v) which eliminates the second cone. It is represented
graphically in Fig. 12.3 and follows the procedure for the (3+1)D case: A
progression in time by ∆o = c∆t involves two initial, t = jo − 1/2, jo, and
two final time sheets, t = jo + 1/2, jo + 1. Spinor component u lives on a
face-centered rectangular (fcr) lattice (fcr-u) on the half-integer time sheets.
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Figure 12.3: Leap-frog time stepping on a time and space staggered grid
for the (2+1)D two component spinor Dirac equation. 1) In the first sub-
step new u-components (blue/dark gray) are computed from old u and the
spatial differences of the v values. 2) Then in the second sub-step (red/-
light gray) the spatial differences of u are used together with the old v-
components to update for the new v’s.

Spinor component v lives on the fcr lattice (fcr-v) formed by the set of mid-
point positions of lines connecting nearest neighbors of the simple rectangu-
lar sub-lattice of u, however, shifted vertically onto the integer time sheets.
In other words, fcr-u is converted into fcr-y by a shift by (i + 1/2)∆xêx (or
(i+ 1/2)∆yêy) followed by ±(j + 1/2)∆oêo, i, j ∈ Z, and vice versa.

The time progression by ∆o is executed in two steps. First u is propa-
gated from time sheet jo−1/2 to jo+1/2 (both supporting fcr-u) by forming
symmetric x- and y-derivatives of v using fcr-v on time sheet jo. In the
second step, v on fcr-v on time sheet jo is propagated to fcr-v on time sheet
jo+1 using symmetric x- and y-derivatives of u living on fcr-u on time sheet
jo + 1/2. According to the discussion above, one has to propagate ujo−1/2

jx,jy
,

u
jo−1/2
jx+1/2,jy+1/2, vjojx+1/2,jy

, and vjojx,jy+1/2 for jν ∈ Z. Using second order accurate
symmetric approximations for the derivatives one arrives at the following
scheme for this grid
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u
jo+1/2
jx,jy

− ujo−1/2
jx,jy

∆t

=

(
m+ V

i~c

)jo
jx,jy

u
jo+1/2
jx,jy

+ u
jo−1/2
jx,jy

2
(12.37)

−
(vjojx+1/2,jy

− vjojx−1/2,jy
)

∆x

+ i
(vjojx,jy+1/2 − v

jo
jx,jy−1/2)

∆y

,

vjo+1
jx−1/2,jy

− vjojx−1/2,jy

∆t

=−
(
m− V
i~c

)jo+1/2

jx−1/2,jy

vjo+1
jx−1/2,jy

+ vjojx−1/2,jy

2
(12.38)

−
(u

jo+1/2
jx,jy

− ujo+1/2
jx−1,jy

)

∆x

− i
(u

jo+1/2
jx−1/2,jy+1/2 − u

jo+1/2
jx−1/2,jy−1/2)

∆y

,

and analogous equations for the other sub-grid

u
jo+1/2
jx−1/2,jy−1/2 − u

jo−1/2
jx−1/2,jy−1/2

∆t

(12.39)

=

(
m+ V

i~c

)jo
jx−1/2,jy−1/2

u
jo+1/2
jx−1/2,jy−1/2 + u

jo−1/2
jx−1/2,jy−1/2

2

−
(vjojx,jy−1/2 − v

jo
jx−1,jy−1/2)

∆x

+ i
(vjojx−1/2,jy

− vjojx−1/2,jy−1)

∆y

,

vjo+1
jx,jy−1/2 − v

jo
jx,jy−1/2

∆t

= −
(
m− V
i~c

)jo+1/2

jx,jy−1/2

vjo+1
jx,jy−1/2 + vjojx,jy−1/2

2
(12.40)

−
(u

jo+1/2
jx+1/2,jy−1/2 − u

jo+1/2
jx−1/2,jy−1/2)

∆x

− i
(u

jo+1/2
jx,jy

− ujo+1/2
jx,jy−1)

∆y

.

Note that the u-component defined for the discrete time indices jo−1/2 ∈ Z
‘lives’ on the discrete space gridpoints (jx, jy) ∈ Z

2 and on (jx − 1/2, jy −
1/2) ∈ Z2, whereas the v-component defined for jo ∈ Z is defined for space
indices (jx − 1/2, jy) ∈ Z2 and (jx, jy − 1/2) ∈ Z2.
For constant coefficients m and V von Neumann stability analysis reveals
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the stability of the finite difference scheme [36]. Moreover, the growth factor
shows that an imaginary potential can be utilized to model an absorbing
boundary layer. Fourier transformation in the spatial coordinates gives(

1
∆t
− m+V

i~c 0
2i
∆x

sin kx∆x

2
+ i 2i

∆y
sin ky∆y

2
1

∆t
+ m−V

i~c

)
︸ ︷︷ ︸

=:S

(
ũ+

ṽ+

)
(12.41)

+

(
− 1

∆t
− m+V

i~c
2i
∆x

sin kx∆x

2
− i 2i

∆y
sin ky∆y

2

0 − 1
∆t

+ m−V
i~c

)
︸ ︷︷ ︸

=:T

(
ũ−

ṽ−

)
= 0 .

One defines the amplification matrix G = −S−1T = S−1S∗ . Its eigenvalues
are the growth factors (written for ~ = 1, c = 1 and ∆x = ∆y = ∆)

λ± = P/2±
√

(P/2)2 −Q , (12.42)

with

P = tr[G] = −2
[
(m2 − V 2)∆2

t − 4c2(1−∆2
t )

− 4c2∆2
t (∆

2
y cos kx∆x + ∆2

x cos ky∆y)/(∆x∆y)
2
]
/N ,

(12.43)

Q = det[G] = (4c2 + (m2 − V 2)∆2
t − 4icV∆t)/N (12.44)

and

N = 4c2 + (m2 − V 2)∆2
t + 4icV∆t . (12.45)

For ∆t/∆ ≤ 1/
√

2 and m,V ∈ R the absolute value of the growth factors is
1. Whereas for V ∈ C it depends on the sign of the imaginary part whether
their absolute value is greater or lesser than 1. The latter can be used for
absorbing boundary layers. The size of the absolute value of the growth (or in
this case damping) factors is exemplified in Fig. 12.4.
The free-particle dispersion relation is revealed directly by using a plane wave
ansatz
ujo+1
jx+1,jy+1 = ei(ω∆t−kx∆x−ky∆y)ujojx,jy (and similarly for v) leading to the substi-

tutions Eqs. (12.16)-(12.18) and the dispersion relation
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(a)

(c)

|λ| |λ|

|λ| |λ|

(c)

(b)

Figure 12.4: Absolute value of the eigenvalues |λ±| of the growth matrix G
for m = 0 and ∆t/∆ = 0.99/

√
2. (a) V = 0.1i, (b) V = 0.2i, (c) V = 0.4i and

(d) V = 0.8i.

~ω = ±2~
∆t

arcsin

{√
1

(mc2)2 + 2~c/∆t

[
(mc2)2

+
( 2~

∆x

sin
kx∆x

2

)2

+
( 2~

∆y

sin
ky∆y

2

)2
]}

. (12.46)

The naive discrete expression for the norm ‖ψ‖ :=
√∑

jx,jy
|ujx,jy |2 + |vjx,jy |2

in general oscillates around its mean value and is conserved in time only on
average. We use a multiplication technique to identify an exactly conserved
functional and prove stability for arbitrary space and time dependent coef-
ficients, as for the (3+1)D case above. Let us again introduce a short-hand
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notation using

uj with j ∈ (jx, jy) ∪ (jx + 1/2, jy + 1/2) ,

vj with j ∈ (jx + 1/2, jy) ∪ (jx, jy + 1/2) .

(12.47)

We define spatial difference operators as (δxf
jo)jx,jy = f jojx+1/2,jy

− f jojx−1/2,jy
,

(δyf
jo)jx,jy = f jojx,jy+1/2 − f

jo
jx,jy−1/2 and (δ±f

jo)jx,jy = (δxf
jo)jx,jy ± i(δyf jo)jx,jy .

We define the inner product (ujo , vj
′
o)j′ :=

∑
j u

jo
j v
∗j′o
j+j′ =

∑
j u

jo
j−j′v

∗j′o
j on

l2(Z2;C) and the notation ‖ujo‖2
:= (ujo , ujo), with the sum over j running

over all spatial lattice points on the time sheet jo. j′ again denotes a dis-
placement vector connecting the two spatial sublattices of u and v. The real
part of the inner product of Eq. (39) with (ujo+1/2 + ujo−1/2) gives∥∥ujo+1/2

∥∥2 −
∥∥ujo−1/2

∥∥2
+ r<

[
(δ+v

jo , ujo+1/2 + ujo−1/2)
]

= 0 . (12.48)

Analogously, Eq. (40) is multiplied by (vjo+1 + vjo)∗ and again the real part
is taken to give∥∥vjo+1

∥∥2 −
∥∥vjo∥∥2

+ r<
[
(δ−u

jo+1/2, vjo+1 + vjo)
]

= 0 . (12.49)

Performing a summation by parts with vanishing "boundary terms" at in-
finity gives

<
[
(δxv

jo , ujo+1/2 + ujo−1/2)
]

= −<
[
(δxu

jo+1/2 + δxu
jo−1/2, vjo)

]
, (12.50)

<
[
(iδyv

jo , ujo+1/2 + ujo−1/2)
]

= <
[
i (ujo+1/2 + ujo−1/2, δyv

jo)∗
]

= <
[
(iδyu

jo+1/2 + iδyu
jo−1/2, vjo)

]
. (12.51)

Finally, adding Eq. (12.48) and Eq. (12.49) leads to

∥∥ujo+1/2
∥∥2

+
∥∥vjo+1

∥∥2
+ r<

[
(δ−u

jo+1/2, vjo+1)
]

=
∥∥ujo−1/2

∥∥2
+
∥∥vjo∥∥2

+ r<
[
(δ−u

jo−1/2, vjo)
]

(12.52)

and one immediately identifies the conserved functional using r = rx = ry

Ejo
r :=

∥∥ujo+1/2
∥∥2

+
∥∥vjo+1

∥∥2
+ r<

[
(δ−u

jo+1/2, vjo+1)
]

= const = E0
r . (12.53)
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ky

kx

(a) (b)

Figure 12.5: Dispersion relation of the leap-frog staggered-grid finite differ-
ence scheme for the (2+1)D Dirac equation. ∆x = ∆y = ~ = 1, ∆o = 1/

√
2,

m = 0. (a) Contour plot of the positive energy dispersion relation. (b) Com-
parison of the numerical dispersion relation with the exact Dirac cone dis-
persion.

Similar to the (3+1)D case in Section 12.2.2, we can use this result and give
a proof of stability for an arbitrary space- and time-dependent mass and po-
tential.

Proof.

E0
r = Ejo

r =
∥∥ujo+1/2

∥∥2
+
∥∥vjo+1

∥∥2

+ rx<
[
(δxu

jo+1/2, vjo+1)
]
− ry<

[
(iδyu

jo+1/2, vjo+1)
]

≥
∥∥ujo+1/2

∥∥2
+
∥∥vjo+1

∥∥2

− rx
∣∣∣<[(δxujo+1/2, vjo+1)

]∣∣∣− ry ∣∣∣<[(iδyujo+1/2, vjo+1)
]∣∣∣

≥
∥∥ujo+1/2

∥∥2
+
∥∥vjo+1

∥∥2

−
(
rx + ry

)( ∥∥ujo+1/2
∥∥2

+
∥∥vjo+1

∥∥2
)
.

Here we have used the inequality 2|< {(a, b)} | ≤ ‖a‖2 + ‖b‖2. With this one
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gets the result

∥∥ujo+1/2
∥∥2

+
∥∥vjo+1

∥∥2 ≤ E0
r

1− rx − ry
, (12.54)

proving stability for rx + ry < 1 (e.g. using rx = ry < 1/2) and arbitrary
space- and time-dependence of the mass and potential terms.

Again, this condition is too restrictive for constant mass and potential.
From the reality condition for the free-particle dispersion, one has r2

x + r2
y ≤

1. For the special case r = rx = ry this less restrictive stability condition
reads r ≤ 1/

√
2.

We use the special value r = 1/
√

2 in Eq. (12.53), i.e.

E =
∑
jx,jy

|ujx,jy |2 + |vjx+1/2,jy |2

+
1√
2
<
[(
ujx+1,jy − ujx,jy − iujx+1/2,jy+1/2 + iujx+1/2,jy−1/2, vjx+1/2,jy

)]
(12.55)

to show that this is the stability condition for the general case. Here and in
the following equations the summation runs over j = (jx, jy) ∈ Z

2 ∪ (Z +
1/2)2. We use the same strategy as in the (1+1)D version of the scheme [25].
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Proof. We first define the auxiliary quantity

Ẽ : =
1

2

∑
jx,jy

∣∣∣∣ujx+1,jy − iujx+1/2,jy+1/2√
2

+ vjx+1/2,jy

∣∣∣∣2
+

1

2

∑
jx,jy

∣∣∣∣ujx,jy − iujx+1/2,jy−1/2√
2

− vjx+1/2,jy

∣∣∣∣2
=
∑
j

|uj|2 + |vj|2

+
1

2
√

2

∑
jx,jy

[
(ujx+1,jy − iujx+1/2,jy+1/2) v∗jx+1/2,jy

+ (ujx+1,jy − iujx+1/2,jy+1/2)∗vjx+1/2,jy

− (ujx,jy − iujx+1/2,jy−1/2) v∗jx+1/2,jy

− (ujx,jy − iujx+1/2,jy−1/2)∗vjx+1/2,jy

]
+
i

4

∑
jx,jy

[
ujx+1,jyu

∗
jx+1/2,jy+1/2 − u∗jx+1,jyujx+1/2,jy+1/2

+ ujx,jyu
∗
jx+1/2,jy−1/2 − u∗jx,jyujx+1/2,jy−1/2

]
, (12.56)

where the last summation equals zero because the terms cancel, e.g. the first
term with jx = jy = 0 cancels with the last one having jx = jy = 1/2. Thus,
one gets Ẽ = E.

Using 1
4
‖a1 + a2‖2 ≤ 1

4

(
‖a1 + b‖ + ‖a2 − b‖

)2 ≤ 1
2
‖a1 + b‖2 + 1

2
‖a2 − b‖2

gives

‖ũ‖2 :=
∑
jx,jy

∣∣∣∣ujx+1,jy − iujx+1/2,jy+1/2

2
√

2
+
ujx,jy − iujx+1/2,jy−1/2

2
√

2

∣∣∣∣2 ≤ Ẽ = E0 .

(12.57)
The symmetry of the scheme and of E in u and v yields also: ‖ṽ‖2 ≤ Ẽ =
E0.

We remark that ‖ũ‖2 is a norm on l2
[
Z

2 ∪ (Z+ 1/2)2
]
.

Proof. Assume ‖ũ‖2 = 0, which leads to

ujx+1,jy − iujx+1/2,jy+1/2 + ujx,jy − iujx+1/2,jy−1/2 = 0 . (12.58)
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This is a leap-frog scheme ujx+1/2,jy−1/2, ujx,jy → ujx+1,jy , ujx+1/2,jy+1/2. To
show that is has no non-trivial solution in l2 we observe that the real part of
u
∣∣
Z2 is only coupled to the imaginary part of u

∣∣
(Z+1/2)2 :

<ujx,jy + =ujx+1/2,jy−1/2 = −(<ujx+1,jy + =ujx+1/2,jy+1/2)

= <ujx+1,jy+1 + =ujx+3/2,jy+1/2 = · · · (12.59)

The l2-summabilty of u implies Eq. (12.59) = 0 giving

<ujx,jy = −=ujx+1/2,jy−1/2 . (12.60)

Now we shift (12.58) by (1
2
,−1

2
) and take the imaginary part:

=ujx+1/2,jy−1/2 −<ujx+1,jy−1 = −(=ujx+3/2,jy−1/2 −<ujx+1,jy)

= =ujx+3/2,jy+1/2 −<ujx+2,jy = · · · = 0 , (12.61)

again due to the l2-summabilty. Combining (12.60) and (12.61) with their
integer grid-shifts yields

<ujx,jy = −=ujx+1/2,jy−1/2 = <ujx+1,jy−1 = −=ujx+3/2,jy−3/2 = · · · . (12.62)

By the l2-summabilty, Eq. (12.62)= 0.

Analogously, the imaginary part of u
∣∣
Z2 is only coupled to the real part of

u
∣∣
(Z+1/2)2 . The same arguments as before lead to

=ujx,jy = <ujx+1/2,jy−1/2 = =ujx+1,jy−1 = <ujx+3/2,jy−3/2 = · · · = 0 . (12.63)

Hence ũ = 0.

Thus, the stability condition r ≤ 1/
√

2 is confirmed.

12.4 Gauge-Invariant Introduction of a Vector Po-
tential

In the previous exposition, only the presence of a scalar potential has been
considered. The treatment of a Dirac fermion under the influence of a gen-
eral electromagnetic field, however, calls for the use of the electromagnetic
four-vector potential, i.e. both scalar and vector potential. The incorporation
of the vector potential A(x, y, z, t) poses no problem for the two schemes
presented above. It can be accomplished in the same fashion as discussed
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recently in conjunction with our (1+1)D and (2+1)D schemes, following the
standard Peierls substitution for the spinor components ψ on the lattice
[37, 38, 25, 26],

ψtj ,zjxj ,yj
→ ψ̂tj ,zjxj ,yj

:= ψtj ,zjxj ,yj
exp{−iatj ,zjxj ,yj

} . (12.64)

Here ψ denotes a spinor component and the real phase atj ,zjxj ,yj is defined as
the line integral of the vector potential A, starting at an arbitrary, but fixed
position (xo, yo, zo) and ending on the lattice point (xj, yj, zj),

atj ,zjxj ,yj
=

q

~c

∫ (x,y,z)

(xo,yo,zo)

ds · A(s, t) |x=xj ,y=yj ,z=zj ,t=tj .

q is the fermion electric charge. Here the grid notation for the more general
(3+1)D case has been adopted. The (2+1)D case can be handled analogously,
as discussed in detail for our earlier (2+1)D scheme [26].

The implications of the insertion of the Peierls phase-shifted wave func-
tions into the respective numerical schemes can be summarized as follows
[26]:

• Since the connectivity of grid points is determined by the structure
of the α− or, respectively, the σ− matrices, requirements on the grid
structure are not affected.

• Since every spinor component is multiplied merely by a phase factor,
all stability and convergence estimates, as well as the definition of the
norm, can be carried over simply by replacing spinor components by
their Peierls transformed ψ → ψ̂.

• The effect of the substitution on difference quotients (derivative terms)

ψ1 − ψ2

∆
→ e−ia1ψ1 − e−ia2ψ2

∆
.

can be implemented by using the product rule for “differentiation on
the lattice"

e−ia1ψ1 − e−ia2ψ2

∆
= f+(a1, a2)

ψ1 − ψ2

∆
+
e−ia1 − e−ia2

∆

ψ1 + ψ2

2
,

with the definition f±(a1, a2) := (e−ia1 ± e−ia2)/2. For the case of slow
variation of the vector potential over the grid, the difference quotient
for the exponential may be approximated by using the “chain rule" for
the derivative on the grid

e−ia1 − e−ia2

∆
= f+(a1, a2)

i(a2 − a1)

∆
+

1

∆
O((a1 − a2)3) . (12.65)
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• All symmetric averages of the structure

ψ1 + ψ2

2
→ e−ia1ψ1 + e−ia2ψ2

2
.

may be rewritten into

e−ia1ψ1 + e−ia2ψ2

2
= f+(a1, a2)

ψ1 + ψ2

2
+ f−(a1, a2)

ψ1 − ψ2

2

≈ f+(a1, a2)
ψ1 + ψ2

2
, (12.66)

whereby the f− term may be neglected for vector potentials which are
sufficiently smooth on the grid.

For such smooth vector potentials, approximations Eqs. (12.65) and (12.66)
lead us to the following simple rules:

• Every partial time-derivative renormalizes the associated scalar po-
tential term (which occurs in the same equation) according to

V tj(,zj)
xj ,yj

→ V tj(,zj)
xj ,yj

− q

c

∫ xj ,yj(,zj)

xo,yo(,zo)

ds · A(s, tj + ∆t/2)−A(s, tj −∆t/2)

∆t

.

• Every spatial j-derivative term transforms according to

ψj+1/2 − ψj−1/2

∆j

→
ψj+1/2 − ψj−1/2

∆j

− iq

~c
Aj
ψj+1/2 + ψj−1/2

2
.

The substitutions into the schemes above are straight-forward [25, 26]. Since
the resulting expressions at the various stages of approximation are rather
lengthy they are not given here in more detail.

12.5 Summary and Conclusions

We have presented a real-space finite-difference method for both the four-
component (3+1)D and the two-component (2+1)D Dirac equation. In both
cases, the scheme is capable of handling general time-dependent electro-
magnetic potential and mass terms. Stability is proven for this general case
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and an exactly conserved functional is identified. It can be interpreted as a
probability density.

The proposed schemes share and combine several decisive advantages
over previous methods. Most importantly, the fermion doubling problem is
avoided by staggering the spinor components symmetrically both in space
and time. The strictly monotonic dispersion relation features a single Dirac
cone. The scheme is second order accurate and, because it is explicit, shows
an optimal linear scaling behavior. It lends itself to a convenient introduc-
tion of absorbing boundary conditions via boundary regions with imagi-
nary scalar potential contributions, following a strategy discussed elsewhere
[26]. Furthermore, this scheme which we have developed explicitly for one,
two, and three spatial dimensions can be extended to higher dimensions.

The code readily is parallelized. This can be achieved, for example, by
dividing the problem into spatial sub-domains, each computed on one CPU
and communicating only the boundary grid-points. Although Maxwell’s
equations have a different structure, the method presented here for the Dirac
equation has much in common with the finite difference time domain (FDTD)
method. Today it is applied with great success in computational electro-
magnetics [21, 22]. This close relationship also allows for the use of tools,
initially developed for the FDTD time domain method, like the perfectly
matched layer (PML), in its various variants, acting as an absorbing (open)
boundary for finite-domain simulations [23, 24].

Since the presented schemes allow for the incorporation of the full elec-
tromagnetic four-vector potential, self-consistent dynamics (e.g., self-energy
corrections) mediated by the electromagnetic interaction is readily achieved
by solving the electromagnetic potential equations in parallel. This allows
the utilization of all of the advantages associated with the present approach
and eliminates the need for the discretization of non-linear extensions of
the Dirac equation. On the other hand, the present method may prove to
be useful also for the discretization of such nonlinear Dirac equations, in
particular, where nonlinearities arise from other types of interaction [39].

In summary, the combination of these favorable properties makes this
approach highly suitable for the numerical treatment of Dirac fermion dy-
namics in space- and time-dependent external fields. As such, it should be
useful to a variety of fields in physics, ranging from elementary particle,
atomic, molecular, to condensed matter and astro-physics.
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12.6 APPENDIX A: Stability condition for the (3+1)D
leap-frog staggered-grid scheme

In this appendix we show that the stability condition for the (3+1)D scheme
is r ≤ 1/

√
3. We use Eq. 12.27

E =
∑
j

|Aj|2 + |Bj+( 1
2
,0, 1

2
)|2 + |Cj+(0,0, 1

2
)|2 + |Dj+( 1

2
,0,0)|2 (12.67)

− 1√
3
<
[(
Cj+(0,0, 1

2
) − Cj−(0,0, 1

2
) +Dj+( 1

2
,0,0) −Dj−( 1

2
,0,0)

− iDj+(0, 1
2
,0) + iDj−(0, 1

2
,0), Aj

)]
(12.68)

− 1√
3
<
[(
−Dj+( 1

2
,0,1) +Dj+( 1

2
,0,0) + Cj+(1,0, 1

2
) − Cj+(0,0, 1

2
)

+ iCj+( 1
2
, 1
2
, 1
2

) − iCj+( 1
2
,− 1

2
, 1
2

), Bj+( 1
2
,0, 1

2
)

)]
, (12.69)

with j ∈ Z3 ∪ (Z+ 1/2)2 × Z in the sum.

Proof. Let us define the auxiliary quantity

Ẽ : =
1

2

∑
j

∣∣∣∣Cj+(0,0, 1
2

) +Dj+( 1
2
,0,0) − iDj+(0, 1

2
,0)√

3
− Aj

∣∣∣∣2 (12.70)

+
1

2

∑
j

∣∣∣∣Cj−(0,0, 1
2

) +Dj−( 1
2
,0,0) − iDj−(0, 1

2
,0)√

3
+ Aj

∣∣∣∣2
+

1

2

∑
j

∣∣∣∣Dj+( 1
2
,0,1) − Cj+(1,0, 1

2
) − iCj+( 1

2
, 1
2
, 1
2

)√
3

+Bj+( 1
2
,0, 1

2
)

∣∣∣∣2
+

1

2

∑
j

∣∣∣∣Dj+( 1
2
,0,0) − Cj+(0,0, 1

2
) − iCj+( 1

2
,− 1

2
, 1
2

)√
3

−Bj+( 1
2
,0, 1

2
)

∣∣∣∣2
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Ẽ =
∑
j

|Aj|2 + |Bj+( 1
2
,0, 1

2
)|2 + |Cj+(0,0, 1

2
)|2 + |Dj+( 1

2
,0,0)|2 (12.71)

+
1

2
√

3

∑
j

[
−
(
Cj+(0,0, 1

2
) +Dj+( 1

2
,0,0) − iDj+(0, 1

2
,0)

)
A∗j

−
(
Cj+(0,0, 1

2
) +Dj+( 1

2
,0,0) − iDj+(0, 1

2
,0)

)∗
Aj

+
(
Cj−(0,0, 1

2
) +Dj−( 1

2
,0,0) − iDj−(0, 1
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since the last and the penultimate sum vanish because they are telescopic
sums: In both sums the first (resp. second) term with j = (0, 0, 0) cancels the
forth (resp. third) term with j = (1

2
, 1

2
, 0). In the antepenultimate sum there

occurs direct cancelation in two pairs of terms (involving Cj+(0,0, 1
2

)D
∗
j+( 1

2
,0,0)

and C∗
j+(0,0, 1

2
)
Dj+( 1

2
,0,0)) and the remaining terms are again telescopic sums.

Using 1
4
‖a1 + a2‖2 ≤ 1

4

(
‖a1 + b‖ + ‖a2 − b‖

)2 ≤ 1
2
‖a1 + b‖2 + 1

2
‖a2 − b‖2

gives

‖(C̃, D̃)‖2 :=
∑
j

∣∣∣∣Cj+(0,0, 1
2

) +Dj+( 1
2
,0,0) − iDj+(0, 1

2
,0)

2
√

3

+
Cj−(0,0, 1

2
) +Dj−( 1

2
,0,0) − iDj−(0, 1

2
,0)

2
√

3

∣∣∣∣2
+
∑
j

∣∣∣∣Dj+( 1
2
,0,1) − Cj+(1,0, 1

2
) − iCj+( 1

2
, 1
2
, 1
2

)

2
√

3

+
Dj+( 1

2
,0,0) − Cj+(0,0, 1

2
) − iCj+( 1

2
,− 1

2
, 1
2

)

2
√

3

∣∣∣∣2
≤ Ẽ = E . (12.73)

The symmetry of the scheme and of E w.r.t. (C,D) and (A,B) yields also:
‖(C̃, D̃)‖2 ≤ Ẽ = E.
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Chapter 13

SUMMARY AND OUTLOOK

13.1 Summary

After a brief introduction to the short history of topological matter, the
Dirac equation was introduced and its emergence in solid state systems was
shown. The history of 3D topological insulators and their promises for fu-
ture device applications were discussed.

A pedagogical introduction to finite-difference modeling and to trans-
parent boundary conditions was given using the prototypical case of a sim-
ple (1+1)D advection equation. Various finite difference schemes for the
(1+1)D Dirac equation were shown and their properties were discussed.
The numerical treatment of the Dirac equation, using finite-difference meth-
ods, suffers from the fermion doubling problem. This issue was solved by
developing a new algorithm which uses a special staggering of the spinor
components in space and time. The scheme is dispersion preserving for
the massless case and has very good dispersive properties for a finite mass.
A functional which is conserved by the scheme was identified. Stability,
for arbitrary space and time dependent mass and potential terms, could be
proven.

Perfect absorbing, so-called discrete transparent, boundary conditions
were derived. For their derivation, the infinite domain was divided in a
computational domain and the exterior domains. In the latter, constant
mass and potential terms were assumed. By application of the finite differ-
ence scheme and then using the Z-transform in the discrete time variable a
constant coefficient difference equation was obtained. The latter was solved
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exactly on the exterior domains. Transparent boundary conditions were ob-
tained by allowing only solutions which vanish at infinity.

The scheme was extended to (2+1) in two different ways. The first one
preserves the exact m = 0 properties of the dispersion relation along the co-
ordinate axes, but shows a second cone at the corner of the "Brillouin" zone.
The second scheme, which was also extended to the full four spinor com-
ponent (3+1)D Dirac equation, shows a single Dirac cone. The fermion dou-
bling problem could also be avoided for this general case. As for the (1+1)D
scheme a conserved functional could be identified and stability, for arbi-
trary space and time dependent mass and potential terms, could be proven.
The electromagnetic vector potential was introduced in a gauge-invariant
fashion in the (1+1)D, the (2+1)D and the (3+1)D scheme.

The (3+1)D Dirac scheme should be useful to a variety of fields, ranging
form elementary particle, atomic, molecular to condensed matter and astro
physics. For example it should allow for an efficient numerical simulation
of the wave-packet dynamics of electrons in strong laser fields.

Using the (2+1)D scheme, the dynamics of Dirac fermion wave packets
on the topological insulator surface was demonstrated under the influence
of a variety of elementary mass and potential textures. Among them are the
Klein step, Landau orbits, mass vortices, and domain-wall fermions. At the
boundary an absorbing layer with imaginary potential was used.

The splitting behavior of Dirac fermion wave packets at domain-wall in-
tersections was investigated. A parameter study, varying for example the
angle of intersection, the localization length of the domain-wall fermion,
and the width of the domain-wall was performed. We can conclude that for
the splitting ratio depends strongly on the angle of intersection. For non-
rectangular intersections the ratio of the localization length to the domain-
wall with is the dominant quantity. When the domain-wall width is small
compared to the confinement width of the wave packet, the outgoing chan-
nel at the acute angle is favored. This is due to tunneling because of spatial
overlap. Otherwise the channel lying at the obtuse angle is preferred.

Finally, this spin polarized, dissipation-less, one-way propagating chan-
nels, together with beam-splitters, were proposed to build complex elec-
tronic networks. Exploiting these principles a electric-gate controlled fermion
interferometer device was proposed and its working principle was shown
numerically.



253

13.2 Outlook

The aim of this last section is to inspire future work by giving an outlook
of what possibly can be done, using the numerical scheme and the ideas
developed in this thesis.

The explicit single cone discretization scheme for the (2+1)D Dirac equa-
tion can be used within a dynamical potential and mass background. The
dynamics of the latter can be solved self-consistently in parallel, using e.g.
the Poisson and Landau-Lifschitz-Gilbert equation [1].

Mixed state physics can be described by an extension of the coherent
wave packet approach to a stochastic wave packet, density matrix or Greens
function formalism [2, 3, 4].

The perfect open boundary conditions (transparent boundary conditions)
derived for the (1+1)D scheme [5], can (in principle) also be derived for the
(2+1)D and (3+1)D system, but one must balance between costs and bene-
fits. The perfectly matched layer, as used successfully in the FDTD method,
could be an alternative way to improve the absorbing boundary conditions
[6, 7].

The effective model, for the surface states on the topological insulator,
and the numerical code can be extended in order to represent the energy
dispersion relation away from the Dirac point more realistically, as for ex-
ample to take into account hexagonal warping [8].

In combination with a discretization of the Bogoliubov-de-Gennes equa-
tion, topological insulator/superconductor heterostructures can be investi-
gated, including novel fermion to Majorana splitting devices [9].

Finally, the (3+1)D Dirac scheme should be useful to a variety of fields,
ranging from elementary particle, atomic, molecular to condensed matter
and astrophysics. In particular, an efficient numerical simulation of the
wave packet dynamics of electrons in strong laser fields would be a po-
tential application [10].
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Chapter A

APPENDIX

A.1 Order of accuracy of the leap-frog staggered-
grid scheme

In this appendix the order of accuracy of the leap-frog staggered-grid scheme
for the Dirac equation in (1+1D) CHAPTER 8 is shown. Therefore, a Taylor
expansion at the points in the center of the space and time finite difference
approximation is applied. Then, rewriting the indices for the scheme Eq.:
(8.23) (first for the fist half-step) gives:

1

∆t

(
u
n+1/2
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j
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and

vnj±1/2 = vnj ± (ux)
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j
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inserted in Eq.: (A.1) gives:

1
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(A.4)

Reshaping, to have the continuum expression of the first row of the Dirac
equation gives the error terms on the right hand side:

ut+(m−V )u+vx = −∆t2

24
uttt−

i(m− V )∆t2

8
utt−

∆x2

24
vxxx + (higher orders) .

(A.5)

One can carry out the same procedure for the second half-step and obeys:

vt−(m+V )v+ux = −∆t2

24
vttt+

i(m+ V )∆t2

8
vtt−

∆x2

24
uxxx + (higher orders) .

(A.6)

This shows that the scheme converges to the continuum limit of the Dirac
equation and is second order in its approximation of its time and space
derivatives and its approximation of the mass and potential term. We can
conclude, it has overall second order accuracy. But it is remarkable that for
the case m = 0, V = 0 we have ut = −vx and vt = −ux, therefor with the
choice ∆t = ∆x cancellation of all error terms in Eq.: (A.5) and (A.6) occurs:

ut + (m− V )u+ vx = 0 and vt − (m+ V )v + ux = 0 (A.7)

This implies that for this case the numerical solution is identical to the an-
alytical solution. The cancellation will also happen approximately for m,V
small, and/or ∆ small, leading to a effectively small coefficients of the error
terms.
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A.2 Matlab code for the (1+1)D single Dirac cone
staggered-grid leap-frog scheme with TBC’s

1

2 clear all
3 close all
4

5 %====================================================
6 % INITIALIZATION
7 %====================================================
8

9 % fundamental constants [in SI units]
10 h_planck = 1; %6.6260693e-34;
11 q_el = 1; %1.60217653e-19; %elementary charge
12 hbar = 1; %h_planck/(2*pi);
13 %material parameters
14 vf = 1; %6.2e5; %Fermi velocity
15

16 % ----- geometry -----
17 Lx = 40; %in normalized units
18

19 % ----- grid -----
20 Nx = 400;% # of grid points in x
21 Nt = 400; % # of time steps
22 dx = Lx/Nx; %step size
23 dt = 1*dx/vf; %CFL-condition dx ≥ vf dt for stability
24 Lt = Nt*dt;
25 xgrid = 1:Nx;
26

27 %--------------------------------------------------------------
28 % initialization of potential, mass gap in eV
29

30 %potential
31 VV = 2;
32 Vpot(1:Nx) = VV;
33 %mass gap
34 m_M = 1;
35 mgap(1:Nx) = m_M;
36

37 %--------------------------------------------------
38 % initial condition
39 %--------------------------------------------------
40

41 umat(1:Nt,1:Nx) = 0;
42 vmat(1:Nt,1:Nx) = 0;
43 psimat(1:Nt,1:Nx)=0;
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44

45 %gaussian wave packet
46

47 Ex = 10; % energy of wavepacket
48 pd = 1; %direction of propagation
49

50 disp(' ')
51 disp(sprintf('%s %0.5g %s %0.5g %s',...
52 'energy center of wavepacket (Ex,Ey): (',Ex,') normalized units' ))
53

54 kx0 = Ex*q_el/(hbar*vf); %wavevector E = hbar*vf*k for massless Dirac
55

56 x0 = floor(0.5*Nx);% in units of dx,dy, wave packet at center
57 bx = 0.05*Nx; %half width of Gaussian
58

59 disp(sprintf('%s %0.5g %s %0.5g %s',...
60 'k-center of wave packet kx = ('...
61 ,kx0/(pi/dx)*100,') % of half Brillouin zone (BZ) (pi/dx)'))
62 disp(sprintf('%s %0.5g %s %0.5g %s',...
63 'Half Gaussian width real space bx = ('...
64 ,bx*dx,') normalized units'))
65 disp(sprintf('%s %0.5g %s %0.5g %s',...
66 'Half Gaussian width in k-space dkx = (',...
67 1/(bx*dx)/(pi/dx)*100,') % of half BZ'))
68

69 %Gaussian wavepacket at x0, y0; width/2 = bx, by; momentum = kx0, ky0
70 umat(1,:) = 1/sqrt(2)*exp(-(xgrid-x0).^2./(2*bx^2)+i*(xgrid-x0)*dx*kx0);
71 if pd>0
72 vmat(1,:) = kx0/(Ex+mgap(x0))*pd*umat(1,:);
73 else
74 for k = 1:Nx-1
75 vmat(1,k) = kx0/(Ex-mgap(x0))*pd*umat(1,k+1);
76 end
77 end
78 norm0 = sum(abs(umat(1,:)).^2+abs(vmat(1,:)).^2); %L2 norm of psi0
79 umat(1,:) = umat(1,:)/norm0;
80 vmat(1,:) = vmat(1,:)/norm0;
81 norm0 = sum(abs(umat(1,:)).^2+abs(vmat(1,:)).^2); %norm is 1 at start
82 %----------------------------------------
83

84

85 %====================================================
86 % COEFFICIENTS FOR THE TBCs
87 %====================================================
88

89 s(1:Nt) = 0;
90 alpha = 1/4*(mgap(Nx)^2-Vpot(Nx)^2)*dx^2 + dx^2/dt^2 ...
91 - (i*Vpot(Nx)*dx^2/dt);
92 beta = 1/2*(mgap(Nx)^2-Vpot(Nx)^2)*dx^2 - 2*dx^2/dt^2;
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93 gamma = 1/4*(mgap(Nx)^2-Vpot(Nx)^2)*dx^2 + dx^2/dt^2 ...
94 + (i*Vpot(Nx)*dx^2/dt);
95 s(2) = 1/alpha;
96 s(3) = -(beta+2)/alpha^2;
97 s(4) = (beta^2 + 4* beta + 5 - alpha*gamma)/alpha^3;
98 s(5) = -(beta+2)/alpha^4 *(beta^2 + 4*beta + 7 - 2*alpha*gamma);
99 for n = 6:Nt

100 s(n) = -1/(n*alpha^2)*((2*n-3)*alpha*(beta+2)*s(n-1)...
101 + (n-3)*(beta^2+4*beta+2*alpha*gamma)*s(n-2)...
102 + (2*n-9)*(beta+2)*gamma*s(n-3) + (n-6)*gamma^2*s(n-4));
103 end
104

105

106 %====================================================
107 % ITERATIVE SOLUTION CORE PROGRAMM
108 %====================================================
109

110 c1 = dt*q_el/(2*hbar); %dimless parameters q_el[J]= 1 eV
111 c2 = vf*dt/dx;
112

113 phip = (mgap+Vpot)*i*c1; % phip = phi+
114 phim = (mgap-Vpot)*i*c1; % phim = phi-
115

116 AA = (1-phim)./(1+phim); %matrix coefficients for iterative solution
117 BB = c2./(1+phim);
118 CC = (1+phip)./(1-phip);
119 DD = c2./(1-phip);
120

121 norm(1) = 1;
122

123 %---------------------------------------------------------------------
124 % start iteration
125 tic
126 for k = 1:Nt-1
127 %next step for u
128 v = vmat(k,:);
129 % shifted v-matrices
130 v_r = circshift(v,[0,1]); % shift one column to the right
131 v_r(1) = 0;
132 % calculate u(t+dt)
133 umat(k+1,:) = AA.*umat(k,:)+BB.*(-v+v_r);
134 %right TBC
135 for n = 0:k %right
136 if n == 0
137 umat(k+1,Nx) = s(k-n+1)*umat(n+1,Nx-1);
138 else
139 umat(k+1,Nx) = umat(k+1,Nx) + s(k-n+1)*umat(n+1,Nx-1);
140 end
141 end
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142 u = umat(k+1,:);
143 % shifted u-matrices
144 u_l = circshift(u,[0,-1]); % shift to the left
145 u_l(Nx) = 0;
146 %calculate v(t+dt)
147 vmat(k+1,:) = CC.*vmat(k,:)+DD.*(-u_l+u);
148 %left TBC
149 for n = 0:k %left
150 if n == 0
151 vmat(k+1,1) = s(k-n+1)*vmat(n+1,2);
152 else
153 vmat(k+1,1) = vmat(k+1,1) + s(k-n+1)*vmat(n+1,2);
154 end
155 end
156 %calculate norm with conserved functional
157 if k == 1
158 psimat(k,:)=abs(umat(k,:)).^2+abs(vmat(k,:)).^2+real(...
159 (circshift(umat(k,:),[0,-1])-umat(k,:)).*conj(vmat(k,:)));
160 norm0 = sum(psimat(k,:));
161 else
162 psimat(k,:)=abs(umat(k,:)).^2+abs(vmat(k,:)).^2+real(...
163 (circshift(umat(k,:),[0,-1])-umat(k,:)).*conj(vmat(k,:)));
164 norm(k)=sum(psimat(k,:))/norm0;
165 end
166 end
167

168 psi = abs(umat/dx).^2+abs(vmat/dx).^2; % probability of wave function
169 reu = real(umat/dx); % calculate real-part of u component
170 imu = imag(umat/dx); % of wave function to reveal phase information
171 absu = abs(umat/dx);
172 rev = real(vmat/dx);
173 absv = abs(umat/dx);
174

175 %===================================
176 % output
177 %===================================
178

179 fig1=figure(1);
180 %nulll= zeros(1,Nx);
181 set(0,'DefaultAxesLineStyleOrder','-|:|-.|-.','DefaultAxesColorOrder',...
182 [0 0 1])
183 ah1=axes;
184 for k=1:Nt-1
185 p1=plot(xgrid,3000*psimat(k,:)+Ex,xgrid,20*reu(k,:)+Ex,...
186 xgrid,Vpot-mgap,xgrid,Vpot+mgap,'LineWidth',1);
187 ylim([-1*abs(Ex) 2*abs(Ex)+10])
188 xlabel('x_j')
189 ylabel(['E, ','Re(u), ', '|\psi(x_j)|^2'])
190 text(180,-5,['|\psi(',int2str(k),')|^2 = ',num2str(norm(k))])
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191 set(ah1,'FontSize',12);
192 getframe(fig1);
193 end
194

195 tgrid = 2:Nt-1;
196 figure %plot norm of wave packet
197 ah4=axes;
198 p3=semilogy(tgrid,norm(2:Nt-1)/max(max(norm)));
199 set(gca,'ylim',[0,1]);
200 set(ah4,'FontSize',12);
201 xlabel('timestep n')
202 ylabel('||\psi||^2')
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A.3 Matlab code for the (2+1)D single Dirac cone
staggered-grid leap-frog scheme

1

2 clear all
3 close all
4

5 %====================================================
6 % INITIALIZATION
7 %====================================================
8

9 %--------------------------------------------------
10 % initialization fundamental constants and grid
11 %--------------------------------------------------
12

13 % fundamental constants [in SI units]
14 h_planck = 6.6260693e-34;
15 q_el = 1.60217653e-19; % elementary charge
16 hbar = h_planck/(2*pi);
17 % material parameters
18 vf = 6.2e5; % [m/s] Fermi velocity
19

20 % ----- geometry -----
21 Lx = 500e-9; % [m];
22 Ly = 500e-9; % [m];
23

24 % ----- grid -----
25 Nx = 500;% # of grid points in x
26 Ny = 500;
27 Nt = 200; % # of time steps
28 dx = Lx/Nx; %[nm/step] step size (dx=dy is recommended)
29 dy = Ly/Ny; % butcode is general, also for dy not equal dx
30 %CFL-condition sqrt(2)*vf*dt ≤ dx,dy for stability
31 dt = 0.999/sqrt(2)*min([dx/vf,dy/vf]);
32 Lt = Nt*dt;
33 xgrid = 1:Nx; ygrid = 1:Ny;
34 [X,Y] = meshgrid(xgrid,ygrid);
35

36 % ----- potential and mass landscape-----
37 V(1:Ny,1:Nx) = 0;
38 mx(1:Ny,1:Nx) = 0; % [ev]
39 my(1:Ny,1:Nx) = 0; % [eV]
40 mz(1:Ny,1:Nx) = 0.1; % [eV]
41

42 % + imaginary potential as absorbing layer
43 Vimag = 0.5*i; % [eV]
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44 layer_width = 5;
45 cutoff = 0.05;
46 Vimat(1:Ny,1:Nx) = + Vimag./(1+exp(-(X-Nx)/layer_width))...
47 + Vimag./(1+exp(+(X)/layer_width))...
48 + Vimag./(1+exp(-(Y-Ny)/layer_width))...
49 + Vimag./(1+exp(+(Y)/layer_width));
50 Vimat(1:Ny,1:Nx) = Vimat(1:Ny,1:Nx) - cutoff*Vimag;
51 Vimat(imag(Vimat)≤0)=0;
52 V = V+Vimat;
53

54 %--------------------------------------------------
55 % initial condition
56 %--------------------------------------------------
57

58 %gaussian wave packet
59

60 Ex = 0.2; % [eV] "energy" of wavepacket
61 Ey = 0;
62

63 kx0 = Ex*q_el/(hbar*vf); % wavevector E = hbar*vf*k for massless Dirac
64 ky0 = Ey*q_el/(hbar*vf);
65

66 x0 = floor(0.2*Nx);% center of wave packet
67 y0 = floor(0.5*Ny);
68 bx = 20/(dx*10^9); % [nm] half width of Gaussian in x-direction
69 by = 20/(dy*10^9); % [nm] half width of Gaussian in y-direction
70

71 kabs = sqrt(kx0^2+ky0^2);
72 %four-quadrant inverse tangent y/x = tan(phi)
73 phi = atan2(sign(kx0)*kx0/kabs,ky0/kabs);
74

75 umat(1:Ny,1:Nx) = 0; %upper component of the spinor
76 vmat(1:Ny,1:Nx) = 0; %lower component of the spinor
77 %Gaussian initial:
78 umat = 1/sqrt(2)*exp(-(X-x0).^2./(2*bx^2)+i*(X-x0)*dx*kx0).*...
79 exp(-(Y-y0).^2./(2*by^2)+i*(Y-y0)*dy*ky0);
80 vmat = umat(:,:)*exp(i*phi);
81

82 %upper comonent for t_{n-1/2} and lower component for for t_n
83 uv(1:Ny,1:Nx) = 0; %can be stored in one common array
84 uv(1:2:end,1:2:end) = umat(1:2:end,1:2:end);
85 uv(2:2:end,2:2:end) = umat(2:2:end,2:2:end);
86 uv(1:2:end,2:2:end) = vmat(1:2:end,2:2:end);
87 uv(2:2:end,1:2:end) = vmat(2:2:end,1:2:end);
88

89

90 %====================================================
91 % ITERATIVE SOLUTION CORE PROGRAMM
92 %====================================================
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93

94 c1 = dt*q_el/hbar; %dimless parameters
95 c2 = vf*dt/dx;
96

97 mp = i*(mz+V)*c1;
98 mm = i*(mz-V)*c1;
99

100 %matrix coefficients for iterative solution
101 AA = (1-mm)./(1+mm);
102 BB = c2./(1+mm);
103 CC = (1+mp)./(1-mp);
104 DD = c2./(1-mp);
105 BBMx = mx/2*c1./(1+mm);
106 DDMx = mx/2*c1./(1-mp);
107 BBMy = my/2*c1./(1+mm);
108 DDMy = my/2*c1./(1-mp);
109

110

111 fig1=figure(1);
112 winsize = get(fig1,'Position');
113 set(fig1,'NextPlot','replacechildren');
114 ah = axes;
115 reu(1:Ny,1:Nx)=0;
116 psi2(1:Ny,1:Nx)=0;
117 correction(1:Ny,1:Nx)=0;
118 for k = 1:Nt-1
119

120 uv_r = circshift(uv,[0,-1]); % shift one column to the right
121 uv_l = circshift(uv,[0,1]); % shift to the left
122 uv_u = circshift(uv,[1,0]); % shift up
123 uv_d = circshift(uv,[-1,0]); % shift one row down
124

125 % calculate u(t+dt)
126 uv(1:2:end,1:2:end) = AA(1:2:end,1:2:end)...
127 .*uv(1:2:end,1:2:end)+BB(1:2:end,1:2:end)...
128 .*(uv_u(1:2:end,1:2:end)-uv_d(1:2:end,1:2:end)...
129 +i*(uv_r(1:2:end,1:2:end)-uv_l(1:2:end,1:2:end)))...
130 +i*BBMx(1:2:end,1:2:end).*(uv_u(1:2:end,1:2:end)...
131 +uv_d(1:2:end,1:2:end))-BBMy(1:2:end,1:2:end)...
132 .*(uv_r(1:2:end,1:2:end)+uv_l(1:2:end,1:2:end));
133 uv(2:2:end,2:2:end) = AA(2:2:end,2:2:end).*uv(2:2:end,2:2:end)...
134 +BB(2:2:end,2:2:end).*(uv_u(2:2:end,2:2:end)...
135 -uv_d(2:2:end,2:2:end)+i*(uv_r(2:2:end,2:2:end)...
136 -uv_l(2:2:end,2:2:end)))+i*BBMx(1:2:end,1:2:end)...
137 .*(uv_u(2:2:end,2:2:end)+uv_d(2:2:end,2:2:end))...
138 -BBMy(2:2:end,2:2:end).*(uv_r(2:2:end,2:2:end)...
139 +uv_l(2:2:end,2:2:end));
140

141 uv_r = circshift(uv,[0,-1]); % shift one column to the right
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142 uv_l = circshift(uv,[0,1]); % shift to the left
143 uv_u = circshift(uv,[1,0]); % shift up
144 uv_d = circshift(uv,[-1,0]); % shift one row down
145

146 % calculate v(t+dt)
147 uv(1:2:end,2:2:end) = CC(1:2:end,2:2:end).*uv(1:2:end,2:2:end)...
148 +DD(1:2:end,2:2:end).*(uv_u(1:2:end,2:2:end)...
149 -uv_d(1:2:end,2:2:end)-i*(uv_r(1:2:end,2:2:end)...
150 -uv_l(1:2:end,2:2:end)))+i*DDMx(1:2:end,2:2:end)...
151 .*(uv_u(1:2:end,2:2:end)...
152 +uv_d(1:2:end,2:2:end))+DDMy(1:2:end,2:2:end)...
153 .*(uv_r(1:2:end,2:2:end)+uv_l(1:2:end,2:2:end));
154 uv(2:2:end,1:2:end) = CC(2:2:end,1:2:end).*uv(2:2:end,1:2:end)...
155 +DD(2:2:end,1:2:end).*(uv_u(2:2:end,1:2:end)...
156 -uv_d(2:2:end,1:2:end)-i*(uv_r(2:2:end,1:2:end)...
157 -uv_l(2:2:end,1:2:end)))+i*DDMx(2:2:end,1:2:end)...
158 .*(uv_u(2:2:end,1:2:end)+uv_d(2:2:end,1:2:end))...
159 +DDMy(2:2:end,1:2:end).*(uv_r(2:2:end,1:2:end)...
160 +uv_l(2:2:end,1:2:end));
161

162 uv_r = circshift(uv,[0,-1]); % shift one column to the right
163 uv_l = circshift(uv,[0,1]); % shift to the left
164 uv_u = circshift(uv,[1,0]); % shift up
165 uv_d = circshift(uv,[-1,0]); % shift one row down
166

167 % norm (conserved functional)
168 psi2(1:2:end,1:2:end) = abs(uv(1:2:end,1:2:end)).^2; % |u|^2
169 psi2(2:2:end,2:2:end) = abs(uv(2:2:end,2:2:end)).^2; % |u|^2
170 psi2(1:2:end,2:2:end) = abs(uv(1:2:end,2:2:end)).^2; % |v|^2
171 psi2(2:2:end,1:2:end) = abs(uv(2:2:end,1:2:end)).^2; % |v|^2
172 correction(1:2:end,1:2:end)=-vf*dt/dx*imag(conj(uv(1:2:end,1:2:end))...
173 .* (uv_r(1:2:end,1:2:end) - uv_l(1:2:end,1:2:end)))...
174 + vf*dt/dx*real(conj(uv(1:2:end,1:2:end))...
175 .*(uv_u(1:2:end,1:2:end)-uv_d(1:2:end,1:2:end)));
176 correction(2:2:end,2:2:end)=-vf*dt/dx*imag(conj(uv(2:2:end,2:2:end))...
177 .* (uv_r(2:2:end,2:2:end) - uv_l(2:2:end,2:2:end)))...
178 + vf*dt/dx*real(conj(uv(2:2:end,2:2:end))...
179 .*(uv_u(2:2:end,2:2:end)-uv_d(2:2:end,2:2:end)));
180 normmath=psi2 + correction;
181 normmat=(normmath+circshift(normmath,[1,0]))/2;
182 % real-part of u component of wave function to reveal phase information
183 reu(1:2:end,1:2:end) = real(uv(1:2:end,1:2:end));
184 reu(2:2:end,2:2:end) = real(uv(2:2:end,2:2:end));
185 reu(1:2:end,2:2:end) = real(uv(1:2:end,1:2:end));
186 reu(2:2:end,1:2:end) = real(uv(2:2:end,2:2:end));
187

188 if k == 1
189 norm0=sum(sum(normmat));
190 end
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191 norm(k)=sum(sum(normmat))/norm0;
192 surf(ah,X,Y,(reu+max(max(reu)))/2,'EdgeColor','none'...
193 ,'FaceAlpha','flat','AlphaData',normmat);
194 set(ah,'XLim', [0,Nx],'YLim', [0,Ny],'ZLim', [-1,1]);
195 view(0, 90);
196 axis square
197 %title(['norm = ',num2str(sum(sum(norm(k))))])
198 getframe(fig1,winsize);
199 end
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