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Abstract We give a full list of known N = 1 supersymmetric quantum
field theories related by the Seiberg electric-magnetic duality conjectures for
SU(N),SP(2N) and G2 gauge groups. Many of the presented dualities are new,
not considered earlier in the literature. For all these theories we construct super-
conformal indices and express them in terms of elliptic hypergeometric integrals.
This gives a systematic extension of the related Römelsberger and Dolan-Osborn
results. Equality of indices in dual theories leads to various identities for elliptic
hypergeometric integrals. About half of them were proven earlier, and another half
represents new challenging conjectures. In particular, we conjecture a dozen new
elliptic beta integrals on root systems extending the univariate elliptic beta integral
discovered by the first author.
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1 Introduction

The main goal of this work consists in merging two fields of recent active re-
search in mathematical physics—the Seiberg duality in supersymmetric field the-
ories (75; 76) and the theory of elliptic hypergeometric functions (85). Seiberg
duality is an electric-magnetic duality of certain four dimensional quantum field
theories with the symmetry group Gst ×G×F , where the superconformal group
Gst = SU(2,2|1) describes properties of the space-time, G is a local gauge invari-
ance group, and F is a global symmetry flavor group. Conjecturally, such theories
are equivalent to each other at their infrared fixed points, existence of which fol-
lows from a deeply nontrivial nonperturbative dynamics (47; 79).

The simplest topological characteristics of supersymmetric theories is the Wit-
ten index (99). Its highly nontrivial superconformal generalization was proposed
recently by Römelsberger (72; 73) (for N = 1 theories) and Kinney et al (49)
(for extended supersymmetric theories). These superconformal indices describe
the structure of BPS states protected by one supercharge and its conjugate. They
can be considered as a kind of partition functions in the corresponding Hilbert
space. Starting from early work (80; 95), it is known that such partition functions
are described by matrix integrals over the classical groups. The central conjec-
ture of Römelsberger (73) claims the equality of superconformal indices in the
Seiberg dual theories. In an interesting work (26), Dolan and Osborn have found
an explicit form of these indices for a number of theories and discovered that they
coincide with particular examples of the elliptic hypergeometric integrals (89).
This identification allowed them to prove Römelsberger’s conjecture for several
dualities either on the basis of known exact computability of these integrals or
from the existence of non-trivial symmetry transformations for them.

The general notion of elliptic hypergeometric integrals was introduced by the
first author in (81; 83). First example of such integrals discovered in (81) has



Elliptic Hypergeometry of Supersymmetric Dualities 3

formed a new class of exactly computable integrals of hypergeometric type called
elliptic beta integrals. Such a name was chosen because these integrals can be
considered as a top level generalization of the well-known Euler beta integral (1):

∫ 1

0
xα−1(1− x)β−1dx =

Γ (α)Γ (β )
Γ (α +β )

, Reα, Reβ > 0, (1.1)

where Γ (x) is the Euler gamma function. Elliptic hypergeometric functions gener-
alize known plain hypergeometric functions and their q-analogues (1). Moreover,
their properties have clarified the origins of many old notions of the hypergeomet-
ric world (82). Limits of the elliptic hypergeometric integrals (or of the elliptic
hypergeometric series hidden behind them) matched with the elliptic curve degen-
erations brought to light new types of q-hypergeometric functions as well (66; 67)
(see also (10)).

In the present work (which was initiated in August 2008 after the first au-
thor has known (26)), we extend systematically the Römelsberger and Dolan-
Osborn results. More precisely, we present a full list of known N = 1 super-
conformal field theories related by the duality conjecture for simple gauge groups
G = SU(N),SP(2N),G2. For all of them we express superconformal indices in
terms of the elliptic hypergeometric integrals. Using Seiberg dualities established
earlier in the literature (see references below) we come to a large number of iden-
tities for elliptic hypergeometric integrals. About half of them were proven earlier,
which yields a justification of the corresponding dualities. A part of the emerging
relations for indices was described in (26), and we prove equalities of supercon-
formal indices for many other dualities. Another half of the constructed identities
represents new challenging conjectures requiring rigorous mathematical proof. We
give indications how some of them can be proved with the help of hypergeometric
techniques.

Remarkably, from known relations for elliptic hypergeometric integrals we
find many new dualities not considered earlier in the literature. Thus we describe
both new elliptic hypergeometric identities and new N = 1 supersymmetric the-
ories obeying an electric-magnetic duality. In particular, we conjecture more than
ten new elliptic beta integrals on root systems, which extend the univariate elliptic
beta integral of (81).

Analyzing the general structure of all relations for integrals in this paper, we
formulate two universal conjectures. Namely, we argue that for the existence of a
non-trivial identity for an elliptic hypergeometric integral it is necessary to have a
so-called totally elliptic hypergeometric term (82; 86; 90). The second conjecture
claims that the same total ellipticity (and related modular invariance) is responsi-
ble for the validity of
’t Hooft anomaly matching conditions (40), which are fulfilled for all our dual-
ities (the old and new ones).

A detailed consideration of the multiple duality phenomenon for the G =
SP(2N) gauge group case and a brief announcement of other results of this work
were given in paper (91). Our results were reported also at the IVth Sakharov
Conference on Physics (Lebedev Institute, Moscow, May 2009), Conformal Field
Theory Workshop (Landau Institute, Chernogolovka, June 2009), XVIth Interna-
tional Congress on Mathematical Physics (Prague, August 2009), and about ten



4 V. P. Spiridonov, G. S. Vartanov

seminars at different institutes. We thank the organizers of these meetings and
seminars for invitations and kind hospitality.

2 General Structure of the Elliptic Hypergeometric Integrals

We start our consideration from the description of the general structure of elliptic
hypergeometric integrals. For any x ∈ C and a base p ∈ C, |p| < 1, we define the
infinite product

(x; p)∞ =
∞

∏
j=0

(1− xp j).

Then the theta function is defined as

θ(x; p) = (x; p)∞(px−1; p)∞,

where x ∈ C∗. This function obeys the symmetry properties

θ(x−1; p) = θ(px; p) =−x−1
θ(x; p)

and the addition law

θ(xw±1,yz±1; p)−θ(xz±1,yw±1; p) = yw−1
θ(xy±1,wz±1; p),

where x,y,w,z ∈ C∗ and we use the convention

θ(x1, . . . ,xk; p) := θ(x1; p) . . .θ(xk; p), θ(tx±1; p) := θ(tx, tx−1; p).

The Jacobi triple product identity for the standard theta series yields

θ(x; p) =
1

(p; p)∞
∑
n∈Z

pn(n−1)/2(−x)n.

For arbitrary q ∈ C and n ∈ Z, we introduce the elliptic shifted factorials

θ(x; p;q)n :=

{
∏

n−1
j=0 θ(xq j; p), for n > 0,

∏
−n
j=1 θ(xq− j; p)−1, for n < 0,

with the normalization θ(x; p;q)0 = 1. For p = 0 we have θ(x;0) = 1− x and

θ(x;0;q)n = (x;q)n = (1− x)(1−qx) · · ·(1−qn−1x),

the standard q-Pochhammer symbol (1).
For arbitrary m ∈ Z, we have the quasiperiodicity relations

θ(pmx; p) = (−x)−m p−
m(m−1)

2 θ(x; p),

θ(pmx; p;q)k = (−x)−mkq−
mk(k−1)

2 p−
km(m−1)

2 θ(x; p;q)k,

θ(x; p; pmq)k = (−x)−
mk(k−1)

2 q−
mk(k−1)(2k−1)

6 p−
mk(k−1)

4 ( m(2k−1)
3 −1)

θ(x; p;q)k.
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We relate bases p,q and r with three complex numbers ω1,2,3 ∈ C in the fol-
lowing way:

q = e2πi ω1
ω2 , p = e2πi ω3

ω2 , r = e2πi ω3
ω1 .

Their “τ →−1/τ” modular transformed partners are

q̃ = e−2πi ω2
ω1 , p̃ = e−2πi ω2

ω3 , r̃ = e−2πi ω1
ω3 .

Modular parameters τ1 = ω1/ω2,τ2 = ω3/ω2,τ3 = ω3/ω1 define three elliptic
curves constrained by the condition τ3 = τ2/τ1.

Elliptic gamma functions are defined as appropriate meromorphic solutions of
the following finite difference equation:

f (u+ω1) = θ(e2πiu/ω2 ; p) f (u), u ∈ C. (2.1)

Its particular solution, called the standard elliptic gamma function, has the form

f (u) = Γ (e2πiu/ω2 ; p,q), Γ (z; p,q) =
∞

∏
j,k=0

1− z−1 p j+1qk+1

1− zp jqk , (2.2)

where |q|, |p| < 1,z ∈ C∗ (note that the equation itself does not demand |q| <
1). For incommensurate ω1,2,3, it can be defined uniquely as the meromorphic
solution of (2.1) satisfying simultaneously two more equations:

f (u+ω2) = f (u), f (u+ω3) = θ(e2πiu/ω2 ;q) f (u)

and the normalization condition f (∑3
k=1 ωk/2) = 1.

The modified elliptic gamma function has the form

G(u;ω) = Γ (e2πi u
ω2 ; p,q)Γ (re−2πi u

ω1 ; q̃,r). (2.3)

It defines the unique simultaneous solution of Eq. (2.1) and two other equations:

f (u+ω2) = θ(e2πiu/ω1 ;r) f (u), f (u+ω3) =
θ(e2πi u

ω2 ;q)

θ(e−2πi u
ω1 ; q̃)

f (u)

with the same normalization condition f (∑3
k=1 ωk/2) = 1. Here the third equation

can be simplified using the modular transformation for theta functions

θ(e−2πi u
ω1 ; q̃) = eπiB2,2(u|ω1,ω2)

θ(e2πi u
ω2 ;q), (2.4)

where

B2,2(u|ω1,ω2) =
1

ω1ω2

(
u2− (ω1 +ω2)u+

ω2
1 +ω2

2
6

+
ω1ω2

2

)
is the second Bernoulli polynomial. These statements are based on the Jacobi the-
orem stating that if a meromorphic ϕ(u) satisfies the system of equations

ϕ(u+ω1) = ϕ(u+ω2) = ϕ(u+ω3) = ϕ(u)
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for ω1,2,3 ∈ C linearly independent over Z, then ϕ(u) = const. The restricted val-
ues of bases pn = qm,n,m∈Z (or, equivalently, rn = q̃m or r̃n = p̃m) may be called
the torsion points, since the Jacobi theorem fails for them.

The function

G(u;ω) = e−
πi
3 B3,3(u|ω)

Γ (e−2πi u
ω3 ; r̃, p̃), (2.5)

where |p̃|, |r̃|< 1 and

B3,3(u|ω1,ω2,ω3) =
1

ω1ω2ω3

(
u3− 3u2

2

3

∑
k=1

ωk

+
u
2

(
3

∑
k=1

ω
2
k +3 ∑

1≤ j<k≤3
ω jωk

)
− 1

4

(
3

∑
k=1

ωk

)
∑

1≤ j<k≤3
ω jωk

)

is the third Bernoulli polynomial, satisfies the same three equations and normaliza-
tion as function (2.3). Hence they coincide, and this fact yields one of the SL(3;Z)-
group modular transformation laws for the elliptic gamma function. From the ex-
pression (2.5) it is easy to see that G(u;ω) is a meromorphic function of u for
ω1/ω2 > 0, i.e. when |q| = 1. The region |q| > 1 is similar to |q| < 1, it can be
reached by a symmetry transformation.

The theory of generalized gamma functions was built by Barnes (2). Implicitly,
the function Γ (z; p,q) appeared in the free energy per site of Baxter’s eight vertex
model (3) (see also (96) and (28)) – exactly in the form which will be used below
in the superconformal indices context. A systematic investigation of its properties
was launched by Ruijsenaars in (74). Its SL(3,Z)-group transformation proper-
ties were described in (28). The modified (“unit circle”) elliptic gamma function
G(u;ω) was introduced in (83) (see also (21)). Both elliptic gamma functions are
directly related to the Barnes multiple gamma function of the third order (31; 83).

In terms of the Γ (z; p,q)-function one can write

θ(x; p;q)n =
Γ (xqn; p,q)
Γ (x; p,q)

.

The short-hand conventions

Γ (t1, . . . , tk; p,q) := Γ (t1; p,q) · · ·Γ (tk; p,q),

Γ (tz±1; p,q) := Γ (tz; p,q)Γ (tz−1; p,q), Γ (z±2; p,q) := Γ (z2; p,q)Γ (z−2; p,q)

are used below. The simplest properties of Γ (z; p,q) are:

• the symmetry Γ (z; p,q) = Γ (z;q, p),
• the finite difference equations of the first order

Γ (qz; p,q) = θ(z; p)Γ (z; p,q), Γ (pz; p,q) = θ(z;q)Γ (z; p,q),

• the reflection equation

Γ (z; p,q)Γ (pq/z; p,q) = 1,
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• the duplication formula

Γ (z2; p,q) = Γ (z,−z,q1/2z,−q1/2z, p1/2z,−p1/2z,(pq)1/2z,−(pq)1/2z; p,q),

• the limiting relations

lim
p→0

Γ (z; p,q) =
1

(z;q)∞

, lim
z→1

(1− z)Γ (z; p,q) =
1

(p; p)∞(q;q)∞

.

Definition 1 (82; 90). A meromorphic function f (x1, . . . , xn; p) of n variables
x j ∈C∗, which together with p ∈C compose all indeterminates of this function, is
called totally p-elliptic if

f (px1, . . . ,xn; p) = · · ·= f (x1, . . . , pxn; p) = f (x1, . . . ,xn; p),

and if its divisor forms a nontrivial manifold of the maximal possible dimension.

Note that here positions of zeros and poles of elliptic functions are considered
as indeterminates (i.e., they are not fixed in advance).

Consider n-dimensional integrals

I(y1, . . . ,ym) =
∫

x∈D
∆(x1, . . . ,xn;y1, . . . ,ym)

n

∏
j=1

dx j

x j
,

where D ⊂ Cn is some domain of integration and ∆(x1, . . . ,xn;y1, . . . ,ym) is a
meromorphic function of x j and yk, where yk denote the “external” parameters.

Definition 2 (83). The integral I(y1, . . . ,ym; p,q) is called the elliptic hypergeo-
metric integral if there are two distinguished complex parameters p and q such
that I’s kernel ∆(x1, . . . ,xn;y1, . . . ,ym; p,q) satisfies the following system of linear
first order q-difference equations in the integration variables x j:

∆(. . .qx j . . . ;y1, . . . ,ym; p,q)
∆(x1, . . . ,xn;y1, . . . ,ym; p,q)

= h j(x1, . . . ,xn;y1, . . . ,ym;q; p),

where h j are some p-elliptic functions of the variables x j,

h j(. . . pxi . . . ;y1, . . . ,ym;q; p) = h j(x1, . . . ,xn;y1, . . . ,ym;q; p).

The kernel ∆ is called then the elliptic hypergeometric term, and the functions
h j(x1, . . . ,xn;y1, . . . ,ym;q; p)—the q-certificates.

This definition is not the most general possible one of such kind, but it is suffi-
cient for the purposes of the present paper. The elliptic hypergeometric series can
be introduced as sums of residues of particular sequences of poles of the elliptic
hypergeometric integral kernels (19) and, because of the convergence difficulties,
they are less general than the integrals. In the one-dimensional case, n = 1, the
structure of admissible elliptic hypergeometric terms ∆ can be described explic-
itly. Indeed, any meromorphic p-elliptic function f (px) = f (x) can be written in
the form

fp(x) = z
N

∏
k=1

θ(tkx; p)
θ(wkx; p)

,
N

∏
k=1

tk =
N

∏
k=1

wk,
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where z, t1, . . . , tN ,w1, . . . ,wN are arbitrary complex parameters. The positive in-
teger N is called the order of the elliptic function, and the linear constraint on
parameters – the balancing condition. From the identity

z =
θ(zx, px; p)
θ(pzx,x; p)

we see that z is not a distinguished parameter – it can be obtained from tk and wk
by appropriate reduction without spoiling the balancing condition. Therefore we
set z = 1.

Now, for |q|< 1, the general solution of the equation ∆(qx) = fp(x)∆(x) is

∆(x) = ϕ(x)
N

∏
k=1

Γ (tkx; p,q)
Γ (wkx; p,q)

, ϕ(x) =
M

∏
k=1

θ(akx;q)
θ(bkx;q)

,
M

∏
k=1

ak =
M

∏
k=1

bk,

where ϕ(qx) = ϕ(x) is an arbitrary q-elliptic function. However, since

ϕ(x) =
M

∏
k=1

Γ (pakx,bkx; p,q)
Γ (akx, pbkx; p,q)

,

one can obtain ϕ(x) from ratios of Γ -functions after replacing N by N + 2M and
appropriate specification of the original parameters tk and wk with the balancing
condition preserved. Therefore we can drop the ϕ(x) function and find that the
general elliptic hypergeometric term for n = 1 has the form:

∆(x; t1, . . . , tN ,w1, . . . ,wN ; p,q) =
N

∏
k=1

Γ (tkx; p,q)
Γ (wkx; p,q)

,
N

∏
k=1

tk
wk

= 1.

This function is symmetric in p and q, i.e. we can repeat the above considerations
with these parameters permuted. Then, for incommensurate p and q (i.e., when
p j 6= qk, j,k ∈ Z), the equations

∆(qx) = fp(x)∆(x), ∆(px) = fq(x)∆(x)

determine ∆(x) uniquely up to a multiplicative constant.
For |q|> 1,

∆(x; t1, . . . , tN ,w1, . . . ,wN ; p,q) =
N

∏
k=1

Γ (q−1wkx; p,q−1)
Γ (q−1tkx; p,q−1)

,
N

∏
k=1

tk
wk

= 1.

For |q| = 1, the requirement of meromorphicity in x is too strong. To define inte-
grals in this case one has to use the modified elliptic gamma function G(u;ω), or
modular transformations, which we skip for brevity.

In analogy with the series case considered in (82), it is natural to extend the
notion of total ellipticity to elliptic hypergeometric terms entering integrals (83).
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Definition 3 An elliptic hypergeometric integral

I(y1, . . . ,ym; p,q) =
∫

x∈D
∆(x1, . . . ,xn;y1, . . . ,ym; p,q)

n

∏
j=1

dx j

x j

is called totally elliptic if all its kernel’s q-certificates h j(x1, . . . ,xn;y1, . . . ,ym;q; p),
j = 1, . . . ,n+m, are totally elliptic functions, i.e. they are p-elliptic in all variables
x1, . . . ,xn,y1, . . . ,ym and q. In particular,

h j(x1, . . . ,xn;y1, . . . ,ym; pq; p) = h j(x1, . . . ,xn;y1, . . . ,ym;q; p).

Theorem 1 (Rains, Spiridonov, 2004). Given Zn →Z maps ε(m(a)) = ε(m(a)
1 , . . . ,

m(a)
n ),a = 1, . . . ,M, with finite support, define the meromorphic function

∆(x1, . . . ,xn; p,q) =
M

∏
a=1

Γ (xm(a)
1

1 x
m(a)

2
2 . . .xm(a)

n
n ; p,q)ε(m(a)). (2.6)

Suppose ∆ is a totally elliptic hypergeometric term, i.e. its q-certificates are p-
elliptic functions of q and x1, . . . ,xn. Then these certificates are also modular in-
variant.

The proof is elementary. The q-certificates have the explicit form

hi(x;q; p) =
∆(. . .qxi . . . ; p,q)
∆(x1, . . . ,xn; p,q)

=
M

∏
a=1

θ(xm(a)
; p;q)ε(m(a))

m(a)
i

.

The conditions for hi to be elliptic in x j yield the constraints

M

∑
a=1

ε(m(a))m(a)
i m(a)

j m(a)
k = 0, (2.7)

M

∑
a=1

ε(m(a))m(a)
i m(a)

j = 0 (2.8)

for 1 ≤ i, j,k ≤ n. The conditions of ellipticity in q add one more constraint

M

∑
a=1

ε(m(a))m(a)
i = 0. (2.9)

The latter equation guarantees that hi has an equal number of theta functions in its
numerator and denominator. The modular invariance of hi follows then automati-
cally from the transformation property (2.4). Such a direct relation between total
ellipticity and modularity was conjectured to be true in general in (82).

The simplest known nontrivial totally elliptic hypergeometric term corre-
sponds to n = 6, M = 29 and has the form (86)

∆(x; t1, . . . , t5; p,q) =
∏

5
j=1 Γ (t jx±1, t−1

j ∏
5
i=1 ti; p,q)

Γ (x±2,∏5
i=1 ti x±1; p,q)∏1≤i< j≤5 Γ (tit j; p,q)

.
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Theorem 2 (81). Elliptic beta integral. For |p|, |q|, |t j| < 1, |∏5
j=1 t j| < |pq|, one

has
(p; p)∞(q;q)∞

4πi

∫
T

∆(x; t1, . . . , t5; p,q)
dx
x

= 1, (2.10)

where T is the unit circle with positive orientation.

The Euler beta integral evaluation formula (1.1) lies at the bottom of this
identity. On the corresponding degeneration road one finds many interesting in-
tegrals, including the Rahman and Askey-Wilson q-beta integrals (1). Formula
(2.10) served as an entry ticket to the large class of new exactly computable in-
tegrals discussed in (19; 20; 21; 65; 83; 93), which is essentially extended by the
conjectures presented in this paper. In (83; 85; 87) the elliptic beta integral was
generalized to an elliptic analogue of the Gauss hypergeometric function obey-
ing many classical properties. For a survey of this function and its generalizations
to higher order elliptic hypergeometric functions and multiple integrals on root
systems, see (89).

Two totally elliptic hypergeometric terms associated with the elliptic beta inte-
grals of type I on root systems BCn (20) and An (83) were constructed in (86). One
more similar example for the root system An was built in (93). Some time ago,
using the combination of techniques introduced in (86) and (69), the first author
has further generalized the former two terms to an arbitrary number of parameters
(90). For instance, define the kernel

∆n(z, t; p,q) = ∏
1≤i< j≤n

1
Γ (z±1

i z±1
j ; p,q)

n

∏
j=1

∏
2n+2m+4
i=1 Γ (tiz±1

j ; p,q)

Γ (z±2
j ; p,q)

and the type I BCn-elliptic hypergeometric integral:

I(m)
n (t1, . . . , t2n+2m+4) =

(p; p)n
∞(q;q)n

∞

2nn!(2πi)n

∫
Tn

∆n(z, t; p,q)
n

∏
j=1

dz j

z j
,

where |t j|< 1 and ∏
2n+2m+4
j=1 t j = (pq)m+1.

Theorem 3 (65). For |pq|1/2 < |t j|< 1, the integrals I(m)
n satisfy the relation

I(m)
n (t1, . . . , t2n+2m+4) = ∏

1≤r<s≤2n+2m+4
Γ (trts; p,q) I(n)

m

(√
pq

t1
, . . . ,

√
pq

t2n+2m+4

)
.

(2.11)

This is an elliptic analogue of the symmetry transformation for some plain
hypergeometric integrals established by Dixon in (23).

Theorem 4 (90). The ratio

ρ(z,y; t; p,q) = ∏
1≤r<s≤2n+2m+4

Γ (trts; p,q)−1 ∆n(z; t; p,q)
∆m(y/

√
pq;

√
pq/t; p,q)

is the totally elliptic hypergeometric term. That is all ratios ρ(. . . ,qv,. . .)/ρ(. . . ,v, . . .)
for v ∈ {z1, . . . ,zn,y1, . . . ,ym, t1, . . . , t2n+2m+4} are p-elliptic functions of all vari-
ables zi,yk, tl , and q.
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The term ρ(z,y; t; p,q) contains elliptic gamma functions with non-removable
integer powers of pq in the argument. Therefore the ansatz (2.6) does not cover all
interesting totally elliptic hypergeometric terms. As we shall show below, there
are also examples of terms depending on fractional powers of pq. For them the
total ellipticity condition is slightly modified: it is necessary to consider dila-
tions of the parameter q by appropriate powers of p. Introducing the variable
x0 = (pq)1/K , K = 1,2, . . . and adding to the arguments of elliptic gamma func-

tions in (2.6) the multipliers x
m(a)

0
0 , it is not difficult to find the general form of

constraints on integers m(a)
j and ε(m(a)) guaranteeing total ellipticity (with special

pK-ellipticity condition for the variable q). However, these constraints look essen-
tially less beautiful than the Diophantine equations described above. Moreover, at
the moment it is not clear which part of the modular transformation group survives
because of the presence of fractional parts of modular variables in the arguments
of respective elliptic functions-certificates.

In the present work, we have checked that all nontrivial relations for elliptic
hypergeometric integrals described below define totally elliptic hypergeometric
terms through the ratios of the corresponding integral kernels. Namely, this prop-
erty was verified for the equalities of superconformal indices in
• the initial Seiberg duality (4.6) and (4.7); SP-groups duality (5.1) and (5.2);

(90)
• multiple dualities for SP(2N) gauge group (6.1), (6.2), (6.3) and (6.4);
• new duality for SP(2N) group (7.1) and (7.2);
• multiple duality for SU(2N) gauge group (8.1), (8.2), (8.3) and (8.4);
• KS type dualities for unitary groups (9.2) and (9.3) (see Appendix D for a

detailed consideration of this case); (9.5) and (9.6); (9.8) and (9.9); (9.10)
and (9.11); (9.13) and (9.14); (9.16) and (9.17); (9.19) and (9.20); (9.22) and
(9.23);

• KS type dualities for symplectic groups (10.2) and (10.3); (10.5) and (10.6);
(10.8) and (10.9); (10.11) and (10.12);

• confinement for SU(N) group theories (12.1) and (12.2); (12.3) and (12.4);
(12.5) and (12.6); (12.7) and (12.8); (12.9) and (12.10); (12.19) and (12.20);
(12.21) and (12.22); (12.25) and (12.26); (12.27) and (12.28); (12.29) and
(12.30); (12.31) and (12.32);

• confinement for SP(2N) group theories (12.33) and (12.34); (12.35) and
(12.36); (12.37) and (12.38);

• dualities for the G2 gauge group (13.1) and (13.2); (13.3) and (13.4).
Our auxiliary file with the details of these verifications is bigger than the

present paper. During this work we have found a number of mistakes in the de-
scription of hypercharges of the fields in some original papers. On the basis of this
large amount of computations, we put forward the following conjecture.

Conjecture The condition of total ellipticity for the elliptic hypergeometric terms
is necessary for the existence of the exact integration formulas for elliptic beta
integrals or of the nontrivial Weyl group symmetry transformations for the elliptic
hypergeometric integrals.

It is known that behind each elliptic hypergeometric integral there is a ter-
minating elliptic hypergeometric series appearing from the residue calculus for
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restricted values of parameters (19). The above conjecture has a natural meaning
in terms of such series—it simply demands that the summation or transformation
identities for them involve ratios of Jacobi forms with appropriate quasiperiodic-
ity and modularity properties in the sense of Eichler and Zagier (27). Already this
fact is sufficient (when there are no fractional powers of pq) for the confirmation
of the series identities to rather high powers of small logq expansions (19).

For a given elliptic hypergeometric integral there may exist more than one
totally elliptic hypergeometric term. For the terms associated with elliptic beta in-
tegrals discussed in (86; 93) there existed a complementary difference equation
with the totally elliptic function coefficients. During our work we have found ex-
amples of fake terms which do not lead to identities (or fake anomaly matching
conditions without real duality). Therefore analysis of the sufficiency condition
for existence of nontrivial identities looks much more neat – it should address
the non-uniqueness questions and the list of additional admissible technical tools.
Sometimes the ratio of a given elliptic hypergeometric integral kernel to itself
with different integration variables yields the totally elliptic hypergeometric term.
It may happen that for a fixed set of parameters, it is sufficient to have totally el-
liptic hypergeometric terms of a more complicated nature than the latter one, and
then at least one of them will lead to a nontrivial relation between integrals.

3 Superconformal Index

3.1 N = 1 superconformal algebra

In 4 dimensional space-time the conformal algebra SO(4,2) is formed by the gen-
erators of translations Pa, special conformal transformations Ka,SO(3,1) Lorentz
group rotations, Mab = −Mba, and the dilations H. The commutation relations
have the form (25)

[Mab,Pc] = i(ηacPb−ηbcPa), [Mab,Kc] = i(ηacKb−ηbcKa),
[Mab,Mcd ] = i(ηacMbd −ηbcMad −ηadMbc +ηbdMac), (3.1)

[H,Pa] = Pa, [H,Ka] =−Ka, [Ka,Pb] =−2iMab−2ηabH,

where ηab = diag(−1,1,1,1) and all indices take values a = 0,1,2,3. In terms of
the matrix

MAB =

 Mab − 1
2 (Pa−Ka) − 1

2 (Pa +Ka)
1
2 (Pb−Kb) 0 iH
1
2 (Pb +Kb) −iH 0

 , (3.2)

where A,B = 0, . . . ,5, relations (3.1) are rewritten in the simpler form (25)

[MAB,MCD] = i(ηACMBD−ηBCMAD−ηADMBC +ηBDMAC) (3.3)

with ηAB = diag(−1,1,1,1,1,−1).
In the spinorial basis one defines

Pαα̇ = (σa)αα̇ Pa, Kα̇α = (σa)α̇α Ka,

Mβ

α =− i
4
(σa

σ
b)β

α Mab, Mα̇

β̇
=− i

4
(σa

σ
b)α̇

β̇
Mab,

(3.4)
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where α, α̇,β , β̇ = 1,2,

σ
a = (I,σ i), σ

a = (I,−σ
i),

and σ i are the usual Pauli matrices

σ
1 =

(
0 1
1 0

)
, σ

2 =
(

0 −i
i 0

)
, σ

3 =
(

1 0
0 −1

)
. (3.5)

Using the standard angular momentum generators, we set

M β

α =
(

J3 J+
J− −J3

)
, Mα̇

β̇
=
(

J3 J+
J− −J3

)
,

with [J3,J±] =±J±, [J+,J−] = 2J3 and similar relations for J±,J3. Then the tensor
Mab is expressed through these operators as

Mab =


0 i

2 (J+ + J−− J+− J−) 1
2 (J+ + J−− J+− J−) i(J3 − J3)

− i
2 (J+ + J−− J+− J−) 0 −(J3 + J3) i

2 (J+ + J+− J−− J−)

− 1
2 (J+ + J−− J+− J−) (J3 + J3) 0 − 1

2 (J+ + J− + J+ + J−)

−i(J3 − J3) − i
2 (J+ + J+− J−− J−) 1

2 (J+ + J− + J+ + J−) 0

 .

The conformal algebra (3.1) can be rewritten now as

[M β

α ,M δ
γ ] = δ

β

γ M δ
α −δ δ

α M β

γ , [Mα̇

β̇
,Mγ̇

δ̇
] = δ

γ̇

β̇
Mα̇

δ̇
−δ α̇

δ̇
Mγ̇

β̇
,

[M β

α ,P
γδ̇

] = δ
β

γ P
αδ̇
− 1

2
δ

β

α P
γδ̇

, [Mα̇

β̇
,P

γδ̇
] =−δ α̇

δ̇
P

γβ̇
+

1
2

δ α̇

β̇
P

γδ̇
,

[M β

α ,K γ̇δ ] =−δ δ
α K γ̇β +

1
2

δ
β

α K γ̇δ , [Mα̇

β̇
,K γ̇δ ] = δ

γ̇

β̇
Kα̇δ − 1

2
δ α̇

β̇
K γ̇δ ,

[M β

α ,H] = 0, [Mα̇

β̇
,H] = 0,

[H,P
αβ̇

] = P
αβ̇

, [H,Kα̇β ] =−Kα̇β ,

(3.6)

[P
αβ̇

,K γ̇δ ] = 4
(

δ
γ̇

β̇
Mδ

α −δ
δ
α Mγ̇

β̇
+δ

γ̇

β̇
δ

δ
α H
)

.

SO(4,2) (or SU(2,2)) algebra can be extended by adding supercharges Qα ,Qα̇

and their superconformal partners Sα ,Sα̇ . Supercharges satisfy the anticommuta-
tor relations (25; 97)

{Qα ,Qα̇}= 2Pαα̇ , {Qα ,Qβ}= {Qα̇ ,Q
β̇
}= 0, (3.7)

while their superconformal partners obey

{Sα̇
,Sα}= 2Kα̇α , {Sα̇

,Sβ̇}= {Sα ,Sβ}= 0. (3.8)

The cross-anti-commutators of Qα and Sα have the form

{Qα ,Sα̇}= 0, {Sα ,Qα̇}= 0, (3.9)

while

{Qα ,Sβ}= 4
(

M β

α +
1
2

δ
β

α H +
3
4

δ
β

α R
)

,

{Sα̇
,Q

β̇
}= 4

(
Mα̇

β̇
− 1

2
δ

α̇

β̇
H +

3
4

δ
α̇

β̇
R
)

,

(3.10)

where R is the R-charge generating U(1)R-symmetry group.
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The bosonic and fermionic generators cross-commute as

[M β

α ,Qγ ] = δ
β

γ Qα − 1
2 δ

β

α Qγ , [M β

α ,Qγ̇ ] = 0,

[6pt][Mβ

α ,Sγ ] = −δ
γ

α Sβ + 1
2 δ

β

α Sγ , [M β

α ,Sγ̇ ] = 0,

[Mα̇

β ,Qγ ] = 0, [Mα̇

β̇
,Qγ̇ ] = −δ α̇

γ̇
Q

β̇
+ 1

2 δ α̇

β̇
Qγ̇ ,

[Mα̇

β ,Sγ ] = 0, [Mα̇

β̇
,Sγ̇ ] = δ

γ̇

β̇
Sα̇ − 1

2 δ α̇

β̇
Sγ̇

,

[P
αβ̇

,Sγ ] = δ
γ

α Q
β̇
, [P

αβ̇
,Sγ̇ ] = δ

γ̇

β̇
Qα ,

[Kα̇β ,Qγ ] = δ
β

γ Sα̇
, [Kα̇β ,Qγ̇ ] = δ α̇

γ̇
Sβ ,

[H,Qα ] = 1
2 Qα , [H,Qα̇ ] = 1

2 Qα̇ ,

[H,Sα ] = − 1
2 Sα , [H,Sα̇ ] = − 1

2 Sα̇
.

(3.11)

The R-charge commutes with all bosonic generators and has non-trivial commu-
tators only with the supercharges and their superconformal partners

[R,Qα ] = −Qα , [R,Qα̇ ] = Qα̇ ,

[R,Sα ] = Sα , [R,Sα̇ ] = −Sα̇
.

(3.12)

To simplify the shape of the N = 1 superconformal algebra one introduces the
notations

M B
A =

M β

α + 1
2 δ

β

α H 1
2 P

αβ̇

1
2 Kα̇β Mα̇

β̇
− 1

2 δ α̇

β̇
H

 , QA =
(

Qα

Sα̇

)
, Q

B
=
(

Sβ Q
β̇

)
.

(3.13)

Then the (anti)commutators (3.6), (3.7), (3.8), (3.9), (3.11), (3.12) combine to (26)

[M B
A ,M D

C ] = δ
B
C M D

A −δ
D
A M B

C ,

[M B
A ,QC ] = δ

B
C QA − 1

4
δ

B
A QC , [M B

A ,Q
C

] =−δ
C
A Q

B
+

1
4

δ
B
A Q

C
,

[R,QA ] =−QA, [R,Q
B

] = Q
B

,

{QA ,Q
B}= 4M B

A +3δ
B
A R, {QA ,QB}= 0, {QA

,Q
B}= 0,

(3.14)

where

δ
B
A =

(
δ

β

α 0
0 δ α̇

β̇

)
.
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3.2 The index

Suppose an operator Q and its Hermitian conjugate Q† satisfy the relations

{Q,Q}= 0, {Q†,Q†}= 0, {Q,Q†}= 2H, (3.15)

where H is the Hamiltonian (= P0) of a taken system. This is a universal situa-
tion valid down to the non-relativistic quantum mechanics. The Witten index (99)
defined as Tr(−1)F tells (under certain conditions) whether the supersymmetry is
broken spontaneously or not. By definition the operator (−1)F is

(−1)F = exp(2πiJz), {Q,(−1)F}= 0, (3.16)

where in the spinorial basis Jz =−J3−J3. It distinguishes bosonic states |b〉 from
the fermionic ones | f 〉,

(−1)F|b〉= |b〉, (−1)F| f 〉=−| f 〉.

Because of the cancellation of contributions of states with positive energies to
Tr(−1)F, this trace formally can be evaluated using the zero-energy states

Tr(−1)F = nE=0
b −nE=0

f , (3.17)

where nE=0
b and nE=0

f are the numbers of bosonic and fermionic ground states.
Therefore, if Tr(−1)F 6= 0, supersymmetry is not broken. However, because of
the presence of infinitely many states, one needs a regulator commuting with Q
(to save cancellations). Then the regularized Witten index is defined as

IW = Tr((−1)Fe−βH), (3.18)

and formally it does not depend on the parameter β .
As to N = 1 superconformal theories, there are different possibilities to real-

ize relation (3.15), due to the superconformal operators Sα ,Sα̇ . Namely, one picks
a generator Q with its adjoint Q†, such that

{Q,Q†}= 2H , (3.19)

where H does not coincide with the Hamiltonian. Then one can consider the
subspace of the Hilbert space composed of the BPS states |ψ〉 annihilated by
H ,H |ψ〉 = 0, and define the Witten index IW = Tr((−1)Fe−βH ). However,
the space of such states |ψ〉 is infinite dimensional and one has to introduce other
regulators, which leads to a nontrivial generalization of the index itself.

For SU(2,2|1) group, there are four non-trivial choices for supercharges
Q,Q†, which can be used for constructing the superconformal index:

{Q1,S1} = 2
(

H +2J3 +
3
2

R
)

; {Q2,S2}= 2
(

H−2J3 +
3
2

R
)

;

{Q1,−S1} = 2
(

H−2J3−
3
2

R
)

; {Q2,−S2}= 2
(

H +2J3−
3
2

R
)

.

(3.20)
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The generators commuting with the corresponding pairs of supercharges are

Mα̇

β̇
,H +

1
2

R,P2α̇ ,Kα̇2; Mα̇

β̇
,H +

1
2

R,P1α̇ ,Kα̇1;

M β

α ,H− 1
2

R,Pα2,K2α ; M β

α ,H− 1
2

R,Pα1,K1α ,

respectively, see (3.14). Let us stick to the choice

Q = Q1, Q† =−S1
, H = H−2J3−

3
2

R.

Composing the matrix (26)

M B
A =

(
M β

α + 1
2 δ

β

α R Pα

P
β −R + 1

2H

)
, (3.21)

where Pα = 1
2 Pα2,P

β
= 1

2 K2β , and

R = H− 1
2

R

we come to the SU(2,1) Lie algebra with the relations

[M B
A ,M D

C ] = δ
B
C M D

A −δ
D
A M B

C . (3.22)

To regularize the trace over the infinite dimensional space of zero modes of
H , we use all operators commuting between themselves and with the distin-
guished supercharges Q and Q†. In our case one additional regulator is tR for
some arbitrary complex variable t restricted as |t| < 1 to ensure damping. Since
M β

α commute with Q1 and S1, there is one more regulator x2J3 , |x|< 1, resolving
the degeneracy ensured by M β

α . Finally, one defines (72; 73)

ind(t,x) = Tr(−1)Fx2J3tRe−βH . (3.23)

This index explicitly depends on the chemical potentials x and t, different from
the variable β .

In the presence of internal symmetries, one can introduce more regulators to
resolve the degeneracies. For U(1)k global symmetry group, one introduces chem-
ical potentials µ j, j = 1, . . . ,k, and extends the superconformal index as

ind(t,x,µ j) = Tr(−1)Fx2J3tRe∑
k
j=1 µ jq j , (3.24)

where q j is the generator of jthU(1)-group. For a non-abelian local gauge invari-
ance group G with the maximal torus generators Ga, a = 1, . . . , rank G, and a
flavor group F with the maximal torus generators Fj, j = 1, . . . , rank F , the index
reads

ind(t,x,z,y) = Tr
(
(−1)Fx2J3tRe∑

rank G
a=1 gaGa

e∑
rank F
j=1 f jF j)

, (3.25)
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where ga and f j are the chemical potentials for groups G and F respectively.
We assume that the global abelian groups enter the flavor group contributions
in (3.25). From the representation theory it is known that Tr exp(∑rank G

i=1 giGi) =
χG(z) is the character of the corresponding representation of the gauge group G,
where z is the set of complex eigenvalues of matrices realizing G. The same is
valid for the flavor group F : Tr exp(∑rank M

j=1 f jF j) = χF(y) is the character of the
representations forming the space of free field states, and y is the set of complex
eigenvalues of matrices realizing F .

Since all physical observables are gauge invariant, one is interested in the index
for gauge singlet operators. Therefore formula (3.25) is averaged over the gauge
group, which yields the matrix integral

I(t,x,y) =
∫

G
dµ(g)Tr

(
(−1)Fx2J3tRe∑

rank G
a=1 gaGa

e∑
rank F
j=1 f jF j)

, (3.26)

where dµ(g) is the G-invariant matrix group measure. This is the superconformal
index – the key object for our purposes. By construction, it has the meaning of a
particular combination of SU(2,2|1)×G×F group characters naturally restricted
to the space of BPS states and integrated over the gauge group.

3.3 Calculation of the index

Explicit computation of the superconformal index for N = 1 theories was per-
formed by Römelsberger (73). According to his prescription one should first com-
pute the trace in index (3.25) over the single particle states, which yields the for-
mula

i(t,x,z,y) =
2t2− t(x+ x−1)

(1− tx)(1− tx−1)
χad j(z)

+∑
j

t2r j χRF , j(y)χRG, j(z)− t2−2r j χR̄F , j(y)χR̄G, j(z)
(1− tx)(1− tx−1)

, (3.27)

where the first term represents contribution of the gauge fields belonging to
the adjoint representation of the group G, and the sum over j corresponds to
the chiral matter superfields ϕ j transforming as the gauge group representations
RG, j and non-abelian flavor symmetry group representations RF, j. The functions
χad j(z),χRF , j(y) and χRG, j(z) are the corresponding characters – their explicit
forms for major classical groups are described in Appendix A.

In the original Römelsberger formula the denominators are written as 1−
tχSU(2), f (γ) + t2, where χSU(2), f (γ) is the character for the fundamental repre-
sentation of the SU(2) subgroup in (3.22). Parametrizing it by the eigenvalue x,
one comes to (3.27).

The U(1)R-group contribution to (3.27) is described by the terms t2R j and
t2−2R j resulting from a chiral scalar field with the R-charge 2R j and the fermion
partner of the conjugate anti-chiral fields whose R-charge is−2R j. In the presence
of additional global U(1)-groups the variables r j have the form

r j = R j +
k

∑
l=1

q jl µl ,



18 V. P. Spiridonov, G. S. Vartanov

where 2R j is the R-charge of the jth chiral superfield, q jl are the normalized hy-
percharges of the jth matter superfield for lth U(1)-group and 2µl is the chemical
potential for the latter group.

To obtain the full superconformal index, this single particle states index is
inserted into the “plethystic” exponential with the subsequent averaging over the
gauge group:

I(t,x,y) =
∫

G
dµ(g) exp

(
∞

∑
n=1

1
n

i(tn,xn,zn,yn)

)
. (3.28)

Similar objects appeared in computation of partition functions of different statis-
tical mechanics models and quantum field theories, see, e.g., (3; 4; 24; 29; 49; 57;
58; 80; 95).

Clearly there are two qualitatively different contributions to superconformal
indices – from the matter fields and the gauge fields. The generic form of a matter
field single particle states contribution to i(t,x,z,y) in the presence of some global
U(1) symmetry group is

iS(t,x,y) =
t2Ry− t2−2Ry−1

(1− tx)(1− tx−1)
, (3.29)

where t,x are the same variables as in (3.27) and y = t2µ is the chemical potential
for the U(1) group. It is convenient to introduce new parametrization

p = tx, q = tx−1, w = t2Ry, (3.30)

where p and q are (in general, complex) parameters satisfying the constraints
|q|, |p|<1. As a result, we can write

iS(p,q,w) =
w− pqw−1

(1− p)(1−q)
.

Then the described index building algorithm yields (cf. (3))

exp

(
∞

∑
n=1

1
n

iS(pn,qn,wn)

)
=

∞

∏
j,k=0

1−w−1 p j+1qk+1

1−w p j qk =: Γ (w; p,q). (3.31)

This result corresponds to formula (69) in (73) after the identifications w := tqu, p := ty,
q := ty−1. However, the fact that this index coincides with the elliptic gamma func-
tion was recognized only by Dolan and Osborn in (26).

For the gauge field part one can set

iV (p,q,z) =
2t2− t(x+ x−1)

(1− tx)(1− tx−1)
χad j(z) =

(
− p

1− p
− q

1−q

)
χad j(z).

(3.32)
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For the SU(2) group one has χad j(z) = z2 + z−2 + 1. Substituting pieces of this
expression in the corresponding places of the index, we obtain the following char-
acteristic building blocks

exp

(
∞

∑
n=1

1
n

(
− pn

1− pn −
qn

1−qn

)
(z2n + z−2n)

)
=

θ(z2; p)θ(z2;q)
(1− z2)2

=
1

(1− z2)(1− z−2)Γ (z±2; p,q)
and

exp

(
∞

∑
n=1

1
n

(
− pn

1− pn −
qn

1−qn

))
= (p; p)∞(q;q)∞.

Similar expressions are found for field contributions for the higher rank gauge
groups.

4 Seiberg Duality for Unitary Gauge Groups

First we consider the usual N = 1 supersymmetric quantum chromodynamics
(SQCD) as an electric theory with the internal symmetry groups (76)

G = SU(N), F = SU(N f )×SU(N f )×U(1)B,

where U(1)B is generated by the baryon number charge (the U(1)R group enters
the superconformal group). This supersymmetric version of QCD has two chiral
scalar multiplets Q and Q̃ belonging to the fundamental f and anti-fundamental
f̄ representations of SU(N) respectively, each carrying a baryon number, and the
vector multiplet V in the adjoint representation of G. The field content of the
electric theory is collected in the following table:

Field SU(N) SU(N f ) SU(N f ) U(1)B U(1)R

Q f f 1 qB = 1 2RQ = Ñ/N f
Q̃ f̄ 1 f̄ q̃B =−1 2RQ̃ = Ñ/N f
V adj 1 1 0 2RV = 1

Here qB, q̃B denote the baryonic charge and RQ,RQ̃,RV are half R-charges of
the fields.

The dual magnetic theory has the symmetry groups

G = SU(Ñ), F = SU(N f )×SU(N f )×U(1)B,

where Ñ = N f −N. Its field content is fixed in the table below

Field SU(Ñ) SU(N f ) SU(N f ) U(1)B U(1)R

q f f̄ 1 q′B = N/Ñ 2Rq = N/N f
q̃ f̄ 1 f q̃′B =−N/Ñ 2Rq̃ = N/N f
M 1 f f̄ 0 2RM = 2Ñ/N f
Ṽ adj 1 1 0 2RV = 1

This duality is supposed to work only in the conformal window 3N/2 < N f <
3N, following from the demand that both dual theories are asymptotically free in
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the one-loop approximation. The one-loop beta function for the gauge coupling is
given by

βg =− g3

16π2

(
11
3

T (adj)− 2
3

T (F)− 1
3

T (S)
)

,

where T (F) is the sum of Casimir coefficients T (r) (see Appendix C for more de-
tails) over all fermions, T (S) is the similar sum over all scalars and T (adj) is T (r)
for the adjoint representation. For a summary of this and two loop renormalization
group results, see (56).

The r j-charges of fields coming from U(1)R and U(1)B currents in the electric
theory are

rQ = RQ +qBx, rQ̃ = RQ̃ + q̃Bx,

where x is the U(1)B-group chemical potential. In the magnetic theory we set

rq = Rq +q′Bx, rq̃ = Rq̃ + q̃′Bx, rM = RM.

Then the single particle states index for the electric theory has the form

iE(p,q,z,s, t) =−
(

p
1− p

+
q

1−q

)
χSU(N),ad j(z)

+
1

(1− p)(1−q)

(
(pq)rQ χSU(N f ), f (s)χSU(N), f (z)−(pq)1−rQ χSU(N f ), f (s)χSU(N), f (z)

+(pq)rQ̃ χSU(N f ), f (t)χSU(N), f (z)− (pq)1−rQ̃ χSU(N f ), f (t)χSU(N), f (z)
)

. (4.1)

For the magnetic theory we have

iM(p,q,z,s, t) =−
(

p
1− p

+
q

1−q

)
χSU(Ñ),ad j(z)

+
1

(1− p)(1−q)

(
(pq)rq χSU(N f ), f (s)χSU(Ñ), f (z)− (pq)1−rq χSU(N f ), f (s)χSU(Ñ), f (z)

+(pq)rq̃ χSU(N f ), f (t)χSU(Ñ), f (z)− (pq)1−rq̃ χSU(N f ), f (t)χSU(Ñ), f (z)

+(pq)rM χSU(N f ), f (s)χSU(N f ), f (t)− (pq)1−rM χSU(N f ), f (s)χSU(N f ), f (t)
)

. (4.2)

The superconformal indices take the form (see the invariant measures in Ap-
pendix B)

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

×
∫

TN−1

∏
N f
i=1 ∏

N
j=1 Γ ((pq)rQsiz j,(pq)r̃Qt−1

i z−1
j ; p,q)

∏1≤i< j≤N Γ (ziz−1
j ,z−1

i z j; p,q)

N−1

∏
j=1

dz j

2πiz j
, (4.3)
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where ∏
N
j=1 z j = ∏

N f
i=1 si = ∏

N f
i=1 ti = 1, and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
∏

1≤i, j≤N f

Γ ((pq)rM sit−1
j ; p,q)

×
∫

TÑ−1

∏
N f
i=1 ∏

Ñ
j=1 Γ ((pq)rqs−1

i z j,(pq)rq̃tiz−1
j ; p,q)

∏1≤i< j≤Ñ Γ (ziz−1
j ,z−1

i z j; p,q)

Ñ−1

∏
j=1

dz j

2πiz j
, (4.4)

where ∏
Ñ
j=1 z j = 1. Let us renormalize the variables

si → (pq)−rQsi, t−1
i → (pq)−rQ̃t−1

i , i = 1, . . . ,N f . (4.5)

Then the superconformal indices are rewritten as the following elliptic hypergeo-
metric integrals:

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

×
∫

TN−1

∏
N f
i=1 ∏

N
j=1 Γ (siz j, t−1

i z−1
j ; p,q)

∏1≤i< j≤N Γ (ziz−1
j ,z−1

i z j; p,q)

N−1

∏
j=1

dz j

2πiz j
(4.6)

and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
∏

1≤i, j≤N f

Γ (sit−1
j ; p,q)

×
∫

TÑ−1

∏
N f
i=1 ∏

Ñ
j=1 Γ (S1/Ñs−1

i z j,T−1/Ñtiz−1
j ; p,q)

∏1≤i< j≤Ñ Γ (ziz−1
j ,z−1

i z j; p,q)

Ñ−1

∏
j=1

dz j

2πiz j
, (4.7)

where S = ∏
N f
i=1 si, T = ∏

N f
i=1 ti, and the balancing condition reads ST−1 =

(pq)N f−N .
As shown by Dolan and Osborn (26), the equality IE = IM coincides with the

An ↔ Am root systems symmetry transformation established by Rains (65). For
N = Ñ = 2 this identity is a simple consequence of the symmetry transformation
for an elliptic analogue of the Gauss hypergeometric function discovered earlier by
the first author in (83). Note that this equality of integrals is valid for any N f , while
the Seiberg duality is expected to exist only in the conformal window, where we
have appropriate R−charges yielding an anomaly free theory. One cannot extrap-
olate the duality outside this window except of the boundary points N f = 3N/2
and N f = 3N (we thank A. Schwimmer and S. Theisen for a discussion on this
point). However, this does not mean that for the electric theory outside the con-
formal window there cannot be different magnetic duals. We present a number of
such examples in a separate paper (92).

The needed equality between elliptic hypergeometric integrals is rigorous only
under certain constraints on the parameters. The kernels of the integrals are mero-
morphic functions of integration variables z j ∈ C∗. There are two qualitatively
different geometric sequences of poles of these kernels—some of them converge
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to zero z j = 0 and others go to infinity. So, the equality IE = IM with the inte-
gration contours T on both sides is true provided T separates these two types of
pole sequences. In the present situation this is guaranteed for |S|1/Ñ < |si| < 1
and 1 < |ti| < |T |1/Ñ . All the relations for superconformal indices described be-
low have similar constraints on the parameters, but we shall not describe them for
brevity, assuming that the separability conditions for pole sequences are satisfied
by the contour T.

5 Intriligator-Pouliot Duality for Symplectic Gauge Groups

The electric theory has the overall symmetry group

G = SP(2N), F = SU(2N f ),

and the following matter field content:
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SP(2N) SU(2N f ) U(1)R

Q f f 1− (N +1)/N f

In this and all other tables below we drop the vector superfields V (or Ṽ , ex-
cept for the confining theories where this field is absent), since they are always
described by the adjoint representation of G and singlets of F .

The dual magnetic theory constructed by Intriligator and Pouliot (43) has the
same flavor group and the gauge group G = SP(2Ñ), where Ñ = N f −N−2, with
the field content described in the table below:

SP(2Ñ) SU(2N f ) U(1)R

q f f̄ (N +1)/N f

M 1 TA 2(Ñ +1)/N f

The conformal window for this duality is 3(N +1)/2 < N f < 3(N +1).
For these theories we have the following indices (in the renormalized vari-

ables) (26):

IE =
(p; p)N

∞(q;q)N
∞

2NN!

∫
TN

∏
2N f
i=1 ∏

N
j=1 Γ (tiz±1

j ; p,q)

∏1≤i< j≤N Γ (z±1
i z±1

j ; p,q)∏
N
j=1 Γ (z±2

j ; p,q)

N

∏
j=1

dz j

2πiz j
,

(5.1)

and

IM =
(p; p)Ñ

∞(q;q)Ñ
∞

2ÑÑ!
∏

1≤i< j≤2N f

Γ (tit j; p,q)

×
∫

TÑ

∏
2N f
i=1 ∏

Ñ
j=1 Γ ((pq)1/2t−1

i z±1
j ; p,q)

∏1≤i< j≤Ñ Γ (z±1
i z±1

j ; p,q)∏
Ñ
j=1 Γ (z±2

j ; p,q)

Ñ

∏
j=1

dz j

2πiz j
, (5.2)

with the balancing condition ∏
2N f
i=1 ti = (pq)N f−N−1. For N = Ñ = 1, the equality

IE = IM is a consequence of the symmetry transformation established in (83). For
arbitrary ranks N, Ñ, the needed identity (2.11) was proven by Rains in (65). After
the degeneration to the rational integrals level, it reduces to the Dixon transforma-
tion formula (23).

6 Multiple Duality for SP(2N) Gauge Group

There exists a multiple duality phenomenon, when one electric theory has many
magnetic duals. In this section we describe theories with SP(2N) gauge group,
where multiple duality is ensured by W (E7), the Weyl group for the exceptional
root system E7. However, we skip the description of this group referring for details
to (91).

We take N = 1 SQCD electric theory with the symmetry groups G = SP(2N)
and F = SU(8)×U(1). This model has one chiral scalar multiplet Q belonging
to the fundamental representations of G and F , a vector multiplet V in the adjoint
representation, and the antisymmetric SP(2N)-tensor field X , see the table below:
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SP(2N) SU(8) U(1) U(1)R

Q f f −N−1
4

1
2

X TA 1 1 0

For N = 1, the field X is absent and the U(1)-group is completely decoupled. In
(91) we were giving in tables halves of the R-charges.

This electric theory and its particular magnetic dual (with N > 1) were con-
sidered in (18). However, as described in (91), there are other dual theories. In a
special section below we show that the ’t Hooft anomaly matching conditions are
fulfilled for all these new dualities.

The electric superconformal index is

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ ((pq)s; p,q)N−1

∫
TN ∏

1≤i< j≤N

Γ ((pq)sz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
8
i=1 Γ ((pq)rQyiz±1

j ; p,q)

Γ (z±2
j ; p,q)

dz j

2πiz j
, (6.1)

where rQ = RQ + eQs, rX = eX s, and 2RQ = 1/2 is the R-charge of the Q-field,
eQ = −(N − 1)/4 and eX = 1 are the U(1)-group hypercharges with s being its
chemical potential.

The first (new) class of magnetic theories has the symmetry groups

G = SP(2N), F = SU(4)×SU(4)×U(1)B×U(1).

Its field content is fixed in the table below:

SP(2N) SU(4) SU(4) U(1)B U(1) U(1)R

q f f 1 −1 −N−1
4

1
2

q̃ f 1 f 1 −N−1
4

1
2

Y TA 1 1 0 1 0
MJ 1 TA 1 2 2J−N+1

2 1
M̃J 1 1 TA −2 2J−N+1

2 1

In the tables of this section the capital index J takes values 0, . . . ,N−1, which is
not indicated for brevity. The superconformal index in this magnetic theory is

I(1)
M =

N−1

∏
J=0

∏
1≤i< j≤4

Γ ((pq)rMJ yiy j; p,q) ∏
5≤i< j≤8

Γ ((pq)
rM̃J yiy j; p,q)

×Γ ((pq)s; p,q)N−1 (p; p)N
∞(q;q)N

∞

2NN!

∫
TN ∏

1≤i< j≤N

Γ ((pq)sz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
4
i=1 Γ ((pq)rqv−2yiz±1

j ; p,q)∏
8
i=5 Γ ((pq)rq̃v2yiz±1

j ; p,q)

Γ (z±2
j ; p,q)

dz j

2πiz j
,

(6.2)



Elliptic Hypergeometry of Supersymmetric Dualities 25

where v = 4
√

y1y2y3y4 and

rq = Rq−
N−1

4
s, rq̃ = Rq̃−

N−1
4

s, rY = s,

rMJ = RMJ −
1
2
(N−1−2J)s, rM̃J

= RM̃J
− 1

2
(N−1−2J)s.

The second (new) class of dual magnetic theories has the same symmetries
as in the previous case, but different representation content as described in the
following table:

SP(2N) SU(4) SU(4) U(1)B U(1) U(1)R

q f f 1 1 −N−1
4

1
2

q̃ f 1 f −1 −N−1
4

1
2

Y TA 1 1 0 1 0
MJ 1 f f 0 2J−N+1

2 1

The index for this magnetic theory is given by

I(2)
M = Γ ((pq)s; p,q)N−1

N−1

∏
J=0

4

∏
i=1

8

∏
j=5

Γ ((pq)rMJ yiy j; p,q)

× (p; p)N
∞(q;q)N

∞

2NN!

∫
TN

∏
1≤i< j≤N

Γ ((pq)sz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
4
i=1 Γ ((pq)rq v2y−1

i z±1
j ; p,q)∏

8
i=5 Γ ((pq)rq̃ v−2y−1

i z±1
j ; p,q)

Γ (z±2
j ; p,q)

dz j

2πiz j
,

(6.3)

where

rq = rq̃ =
1
4
− N−1

4
s, rY = s, rMJ =

1
2
− 1

2
(N−1−2J)s.

Finally, the third type of magnetic theories, which was constructed originally
by Csáki, Skiba and Schmaltz in (18), has the symmetry groups G = SP(2N) and
F = SU(8)×U(1), and its fields content is

SP(2N) SU(8) U(1) U(1)R

q f f −N−1
4

1
2

Y TA 1 1 0
MJ 1 TA

2J−N+1
2 1

Corresponding magnetic superconformal index has the form

I(3)
M = Γ ((pq)rY ; p,q)N−1

N−1

∏
J=0

∏
1≤i< j≤8

Γ ((pq)rMJ yiy j; p,q)
(p; p)N

∞(q;q)N
∞

2NN!

×
∫

TN
∏

1≤i< j≤N

Γ ((pq)rY z±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

N

∏
j=1

∏
8
i=1 Γ ((pq)rq y−1

i z±1
j ; p,q)

Γ (z±2
j ; p,q)

dz j

2πiz j
,

(6.4)
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where

rq =
1− s(N−1)

4
, rY = s, rMJ = sJ +

1− s(N−1)
2

.

The SP(2) gauge group case can be obtained from the tables above by sub-
stituting N = 1 and deleting fields X in the electric theory and Y in the magnetic
theories, which decouple completely. The number of mesons in dual theories is
reduced as well. Equality of superconformal indices for N = 1 follows from the
results of (83), and the needed identities for elliptic hypergeometric integrals for
N > 1 were established in (65). As argued in (91), there should be in total 72 the-
ories dual to each other – this number equals to the dimension of the coset group
W (E7)/S8 responsible for the dualities (in this respect, see also (55)).

7 A New SP(2N)↔ SP(2M) Groups Duality

We take as the electric theory SQCD based on the symmetry groups

G = SP(2M), F = SU(4)×SP(2l1)×SP(2l2)×·· ·×SP(2lK)×U(1)

with the fields content fixed in the table below:
SP(2M) SU(4) SP(2l1) SP(2l2) . . . SP(2lK) U(1) U(1)R

W1 f f 1 1 . . . 1 −M−N−2
4 0

Q1 f 1 f 1 . . . 1 − n1
2 1

Q1 f 1 1 f . . . 1 − n2
2 1

. . .
QK f 1 1 1 . . . f − nK

2 1

X TA 1 1 1 . . . 1 1 0

where n1 6= n2 6= · · · 6= nK and ∑
K
i=1 lini = M +N.

The dual magnetic theory has G = SP(2N) and the same flavor group; the
fields content is described below:

SP(2N) SU(4) SP(2l1) SP(2l2) . . . SP(2lK) U(1) U(1)R

w1 f f 1 1 . . . 1 M−N+2
4 0

q1 f 1 f 1 . . . 1 − n1
2 1

q1 f 1 1 f . . . 1 − n2
2 1

. . .

qK f 1 1 1 . . . f − nK
2 1

N j 1 T A 1 1 . . . 1 j− M−N−2
2 0

M1,k1 1 f f 1 . . . 1 −M−N−2
4 − n1

2 + k1 1

M2,k2 1 f 1 f . . . 1 −M−N−2
4 − n2

2 + k2 1

. . .

MK,kK 1 f 1 1 . . . f −M−N−2
4 − nK

2 + kK 1

Y TA 1 1 1 . . . 1 1 0

where j = 0, . . . ,M−N − 1 and ki = 0, . . . ,ni − 1 for any i = 1, . . . ,K. Here we
assume that M ≥ N (for M = N the fields N j are absent).
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The superconformal indices have the form

IE =
(p; p)M

∞ (q;q)M
∞

2MM!
Γ (t; p,q)M−1

∫
TM ∏

1≤i< j≤M

Γ (tz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
M

∏
j=1

∏
4
k=1 Γ (tt−1

k z±1
j ; p,q)∏

K
r=1 ∏

lr
j=1 Γ (sr, jz±1

j ; p,q)

Γ (z±2
j ; p,q)∏

K
r=1 ∏

lr
j=1 Γ (tnr sr, jz±1

j ; p,q)

dz j

2πiz j
(7.1)

and

IM =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (t; p,q)N−1

M−N−1

∏
i=0

∏
1≤k<r≤4

Γ (t i+2t−1
k t−1

r ; p,q)

×
4

∏
r=1

K

∏
m=1

lm

∏
i=1

nm−1

∏
km=0

Γ (tkm+1t−1
r sm,i; p,q)

Γ (tkmtrsm,i; p,q)

∫
TN ∏

1≤i< j≤N

Γ (tz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
4
k=1 Γ (tkz±1

j ; p,q)∏
K
r=1 ∏

lr
j=1 Γ (sr, jz±1

j ; p,q)

Γ (z±2
j ; p,q)∏

K
r=1 ∏

lr
j=1 Γ (tnr sr, jz±1

j ; p,q)

dz j

2πiz j
, (7.2)

with the balancing condition ∏
4
r=1 tr = t2+M−N .

We have checked that the anomalies of these two theories match (see below),
which is a very strong indication that the theories are dual to each other. This
is another new duality that we have found. It has rather complicated structure
with the flavor group composed of an arbitrary number of simple group compo-
nents. The renormalization group analysis shows that the asymptotic freedom is
present on the electric side for M > ∑

K
i=1 li/2− 1 and on the magnetic side for

N > ∑
K
i=1 li/2−1.

The equality of elliptic hypergeometric integrals IE = IM , which gives another
argument supporting this duality, coincides with the Rains Conjecture 1 from (68)
(it was used as a starting point for the derivation of the described duality). As we
have known after the completion of this work, this conjecture is proven recently
by van de Bult (9).

8 Multiple Duality for SU(2N) Gauge Group

We describe now the multiple duality phenomenon for SU(2N) gauge group. The
overall flavor symmetry group of the theories is rather unusual. For N = 1, this
multiple duality coincides with that for SP(2) group, see (91). For N > 2, one has
F = SU(4)× SU(4)×U(1)1 ×U(1)2 ×U(1)B. For N = 2, the flavor subgroup
U(1)1 is replaced by SU(2). The field content of the electric theory for N > 2 is
shown in the table below:

SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)B U(1)R

Q f f 1 0 2N−2 1 1
2

Q̃ f 1 f 0 2N−2 −1 1
2

A TA 1 1 1 −4 0 0
A T A 1 1 −1 −4 0 0
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Corresponding superconformal index has the form

IE =
(p; p)2N−1

∞ (q;q)2N−1
∞

(2N)!

∫
T2N−1 ∏

1≤ j<k≤2N

Γ (Uz jzk,V z−1
j z−1

k ; p,q)

Γ (z−1
j zk,z jz−1

k ; p,q)

×
2N

∏
j=1

4

∏
k=1

Γ (skz j, tkz−1
j ; p,q)

2N−1

∏
j=1

dz j

2πiz j
, (8.1)

where ∏
2N
j=1 z j = 1 and the balancing condition reads (UV )2N−2ST = (pq)2 with

S = ∏
4
k=1 sk and T = ∏

4
k=1 tk. This is the two-parameter (higher order) extension

of the type II elliptic beta integral for the root system A2N−1 introduced by Spiri-
donov in (83).

For N ≥ 2, magnetic dual theories have the same gauge and global symmetry
groups. The first (new) dual theory has the field content described for N > 2 in the
table below:

SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)B U(1)R

q f f 1 0 2N−2 −1 1
2

q f 1 f 0 2N−2 1 1
2

a TA 1 1 1 −4 0 0
a T A 1 1 −1 −4 0 0

Hm 1 TA 1 −1 4N−8−8m 2 1
G 1 TA 1 N−1 0 2 1

Hm 1 1 TA 1 4N−8−8m −2 1
G 1 1 TA −N +1 0 −2 1

where m = 0, . . . ,N−2. This leads to the magnetic index

I(1)
M = ∏

1≤i< j≤4

[
Γ (UN−1sis j,V N−1tit j; p,q)

N−2

∏
m=0

Γ (V (UV )msis j,U(UV )mtit j;p,q)

]

×(p; p)2N−1
∞ (q;q)2N−1

∞

(2N)!

∫
T2N−1 ∏

1≤ j<k≤2N

Γ (V z jzk,Uz−1
j z−1

k ; p,q)

Γ (z−1
j zk,z jz−1

k ; p,q)

×
2N

∏
j=1

4

∏
k=1

Γ ( 4
√

T/Sskz j,
4
√

S/Ttkz−1
j ; p,q)

2N−1

∏
j=1

dz j

2πiz j
. (8.2)

Our second dual theory was found by Csáki et al in (17). Its field content for
N > 2 is described in the table below:

SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)B U(1)R

q f f 1 0 2N−2 1 1
2

q f 1 f 0 2N−2 −1 1
2

a TA 1 1 1 −4 0 0
a T A 1 1 −1 −4 0 0

Mk 1 f f 0 4N−4−8k 0 1
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where k = 0, . . . ,N−1. Its superconformal index has the form

I(2)
M =

(p; p)2N−1
∞ (q;q)2N−1

∞

(2N)!

N−1

∏
m=0

4

∏
k,l=1

Γ ((UV )msktl ; p,q)

×
∫

T2N−1 ∏
1≤ j<k≤2N

Γ (Uz jzk,V z−1
j z−1

k ; p,q)

Γ (z−1
j zk,z jz−1

k ; p,q)

×
2N

∏
j=1

4

∏
k=1

Γ (
√

Ss−1
k z j,

√
Tt−1

k z−1
j ; p,q)

2N−1

∏
j=1

dz j

2πiz j
. (8.3)
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Our third, again new, duality corresponds to the theory described below for
N > 2,

SU(2N) SU(4) SU(4) U(1)1 U(1)2 U(1)B U(1)R

q f f 1 0 2N−2 −1 1
2

q f 1 f 0 2N−2 1 1
2

a TA 1 1 1 −4 0 0
a T A 1 1 −1 −4 0 0

Mk 1 f f 0 4N−4−8k 0 1
Hm 1 TA 1 −1 4N−8−8m 2 1
G 1 TA 1 N−1 0 2 1

Hm 1 1 TA 1 4N−8−8m −2 1
G 1 1 TA −N +1 0 −2 1

where k = 0, . . . ,N−1, m = 0, . . . ,N−2. Its superconformal index reads

I(3)
M =

(p; p)2N−1
∞ (q;q)2N−1

∞

(2N)!

N−1

∏
m=0

4

∏
k,l=1

Γ ((UV )msktl ; p,q)

× ∏
1≤i< j≤4

[
Γ (UN−1sis j,V N−1tit j; p,q)

N−2

∏
m=0

Γ (V (UV )msis j,U(UV )mtit j; p,q)

]

×
∫

T2N−1 ∏
1≤ j<k≤2N

Γ (V z jzk,Uz−1
j z−1

k ; p,q)

Γ (z−1
j zk,z jz−1

k ; p,q)

2N

∏
j=1

4

∏
k=1

Γ ( 4√ST s−1
k z j,

4√STt−1
k z−1

j ;p,q)

×
2N−1

∏
j=1

dz j

2πiz j
. (8.4)

From the duality arguments for these field theories, we conjecture that IE =
I(1)
M = I(2)

M = I(3)
M under certain constraints on the integral parameters, which yield

new powerful elliptic hypergeometric integral identities. Instead of the W (E7)
Weyl group symmetry in parameters, existing for N = 1, only its subgroup of
reflection transformations consistent with the permutational S4 × S4 symmetry
group survives. Nevertheless, preliminary considerations indicate that these re-
lations should be provable by an appropriate analog of the method used in (65) for
proving W (E7)-identities for BCN-integrals of type II. We have checked that the
reduction from N f = 4 to N f = 3 realized by the constraint s4t4 = pq reduces su-
perconformal indices to Spiridonov’s A2N−1-elliptic beta integral (83), i.e. equality
of indices in this case is proven rigorously.

For N = 2, superconformal indices are given by the same integrals. However,
in this case ∏1≤ j<k≤4 f (ziz j) = ∏1≤ j<k≤4 f (z−1

i z−1
j ) for arbitrary function f (x),

and the parameters U and V unify to a doublet, meaning that the fields A and Ā, a
and ā unify to fundamentals of the SU(2) group, which replaces the U(1)1 flavor
subgroup.

An interesting situation occurs in the limit V → 1 (or U → 1). Some of the
poles coming from the integrand factor Γ (V z−1

i z−1
j ; p,q) approach the integration

contour and it is necessary to deform T before taking this limit. A careful residue
calculus shows that in this limit the leading asymptotic contribution to all four su-
perconformal indices are given by the residues of the poles at z jzk =V → 1, j 6= k.
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As a result, N− 1 integrations are taken away, there remain only N-dimensional
integrals over, say, z2 j−1, j = 1, . . . ,N, variables. The latter integrals coincide ex-
actly with the indices of four theories appearing in multiple SP(2N)-duality de-
scribed above. Thus we have shown, that our multiple SU(2N)-dualities contain
SP(2N) dualities as special subcases. The first mathematical observation that the
type II hypergeometric identities for the BCN-root system can be obtained from
type II relations for both A2N−1 and A2N root systems has been done in (94),
where various new multiple 6ψ6 summation formulas on root systems have been
suggested. Here we extend this observation to the (expected) relations between
type II elliptic hypergeometric integrals. On the physical ground, such a relation
between the particular SU(4) and SP(4) gauge group dualities was observed in
(17). Note that the further limit U = 1 leads to the SU(2)N-gauge group theories
whose indices are given by N-th power of the indices of SP(2)-group models with
N f = 4 constructed in (91).

The attempts in (17) to construct an analogous duality for even rank gauge
groups SU(2N +1) have failed. We have succeeded in solving this problem; cor-
responding results together with the residue calculus details will be presented in a
separate paper.

9 Kutasov-Schwimmer Type Dualities for the Unitary Gauge Group

Now we pass to generalizations of the Seiberg dualities for unitary and symplectic
gauge groups G discovered by Kutasov and Schwimmer (KS) (51; 52) and studied
in detail in (53) and other papers. For brevity, we skip separate global symmetry
group descriptions since they can be read off easily from the field contents of
the theories given in the tables. The first column in the tables describes gauge
group representations for fields, while other columns, except of the very last one,
describe representations and hypercharges for subgroups of the flavor group F .
Also, we skip the detailed description of single particle state indices and write out
directly the integrals for the superconformal indices together with the balancing
condition, if there is any. In this section we describe such dualities for G = SU(N).

9.1 SU(N) gauge group with the adjoint matter field

The following electric-magnetic duality is described in (52). The field content of
the electric theory is

SU(N) SU(N f ) SU(N f ) U(1)B U(1)R

Q f f 1 1 2r = 1− 2N
(K+1)N f

Q̃ f 1 f -1 2r̃=1− 2N
(K+1)N f

X ad j 1 1 0 2s = 2
K+1

The magnetic theory ingredients are collected in the following table:
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SU(Ñ) SU(N f ) SU(N f ) U(1)B U(1)R

q f f 1 N/Ñ 2r′ = 1− 2Ñ
(K+1)N f

q̃ f 1 f −N/Ñ 2r̃′ = 1− 2Ñ
(K+1)N f

Y ad j 1 1 0 2s = 2
K+1

M j 1 f f 0 2rM j =2− 4N
(K+1)N f

+ 2( j−1)
K+1
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Here j = 1, . . . ,K and the dual gauge group dimension is

Ñ = KN f −N, K = 1,2, . . . , (9.1)

with the constraint N f > N/K.

Defining U = (pq)s = (pq)
1

K+1 , we find the following indices for these theo-
ries:

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U ; p,q)N−1

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
N f

∏
i=1

N

∏
j=1

Γ (siz j, t−1
i z−1

j ; p,q)
N−1

∏
j=1

dz j

2πiz j
, (9.2)

where ∏
N
j=1 z j = 1, the balancing condition reads U2NST−1 = (pq)N f with

S= ∏
N f
i=1 si, T = ∏

N f
i=1 ti, and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
Γ (U ; p,q)Ñ−1

K

∏
l=1

∏
1≤i, j≤N f

Γ (U l−1sit−1
j ; p,q)

×
∫

T Ñ−1 ∏
1≤i< j≤Ñ

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
N f

∏
i=1

Ñ

∏
j=1

Γ (U(ST )
K

2Ñ s−1
i z j,U(ST )−

K
2Ñ tiz−1

j ; p,q)
Ñ−1

∏
j=1

dz j

2πiz j
, (9.3)

where ∏
Ñ
j=1 z j = 1.

An important fact is that these theories contain matter fields in the adjoint
representation of the gauge group. The conjecture that IE = IM (under appropriate
contour separability constraints mentioned earlier) represents a new type of elliptic
hypergeometric identities, which was not met earlier (89). Therefore we describe
in Appendix D the total ellipticity property hidden behind this identity. In the large
N,N f limit (with fixed N/N f ) the equality of IE and IM was confirmed up to a few
terms of the corresponding expansion in (26) using the method of (24).

9.2 Two adjoint matter fields case

This duality was considered by Brodie and Strassler in (7; 8). The electric theory
is

SU(N) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

Q f f 1 0 1
N 1− N−2

N f (K+1)

Q̃ f 1 f 0 − 1
N 1− N−2

N f (K+1)

X ad j 1 1 0 0 2
K+1

Y TS 1 1 1 2
N

K
K+1

Ỹ T S 1 1 -1 − 2
N

K
K+1
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The magnetic theory has the following matter field content

SU(Ñ) SU(N f ) SU(N f ) U(1)B U(1)R

q f f 1 N
Ñ

1− Ñ
N f (K+1)

q̃ f 1 f −N
Ñ

1− Ñ
N f (K+1)

X ad j 1 1 0 2
K+1

Y ad j 1 1 0 K
K+1

MLJ 1 f f 0 2− 2N
N f (K+1) + 2L+KJ

K+1

Here K is odd, 0 ≤ L ≤ K−1,J = 0,1,2, and

Ñ = 3KN f −N. (9.4)

Corresponding electric superconformal index has the form

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U,U

K
2 ; p,q)N−1

×
∫

TN−1 ∏
1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j,UK/2ziz−1
j ,UK/2z−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
N f

∏
i=1

N

∏
j=1

Γ (siz j, t−1
i z−1

j ; p,q)
N−1

∏
j=1

dz j

2πiz j
, (9.5)

where ∏
N
j=1 z j = 1, U = (pq)

1
K+1 , and the balancing condition reads UNST−1 =

(pq)N f with S = ∏
N f
i=1 si, T = ∏

N f
i=1 ti. The magnetic index looks like

IM =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U,U

K
2 ; p,q)Ñ−1

K−1

∏
L=0

2

∏
J=0

N f

∏
i, j=1

Γ (UL+KJ/2sit−1
j ; p,q)

×
∫

TÑ−1 ∏
1≤i< j≤Ñ

Γ (Uziz−1
j ,Uz−1

i z j; p,q)Γ (UK/2ziz−1
j ,UK/2z−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
N f

∏
i=1

Ñ

∏
j=1

Γ (U
2−K

2 (ST )
3K
2Ñ s−1

i z j,U
2−K

2 (ST )−
3K
2Ñ tiz−1

j ; p,q)
Ñ−1

∏
j=1

dz j

2πiz j
, (9.6)

where ∏
Ñ
j=1 z j = 1. Again, the conjectured equality IE = IM is a new type of iden-

tities requiring a rigorous proof.
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9.3 Generalized KS type dualities

These dualities were considered in (42).

9.3.1 First pair of dual theories.

Electric theory:

SU(N) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

Q f f 1 0 1
N 2r = 1− N+2K

(K+1)N f

Q̃ f 1 f 0 − 1
N 2r = 1− N+2K

(K+1)N f

X TA 1 1 1 2
N 2s = 1

K+1

X̃ T A 1 1 -1 − 2
N 2s = 1

K+1

Magnetic theory:

SU(Ñ) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

q f f 1 K(N f−2)
Ñ

1
Ñ

2r′ = 1− Ñ+2K
(K+1)N f

q̃ f 1 f −K(N f−2)
Ñ

− 1
Ñ

2r′ = 1− Ñ+2K
(K+1)N f

Y TA 1 1 N−N f

Ñ
2
Ñ

2s = 1
K+1

Ỹ T A 1 1 −N−N f

Ñ
− 2

Ñ
2s = 1

K+1

M j 1 f f 0 0 Ñ−N+(2 j+1)N f
N f (K+1)

Pr 1 TA 1 -1 0 Ñ−N+(2r+2)N f
N f (K+1)

P̃r 1 1 TA 1 0 Ñ−N+(2r+2)N f
N f (K+1)

Here j = 0, . . . ,K,r = 0, . . . ,K−1, and

Ñ = (2K +1)N f −4K−N, K = 0,1,2, . . . . (9.7)

The electric index is

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz j,U−1(pq)
1

K+1 z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
N

∏
j=1

N f

∏
k=1

Γ (skz j, tkz−1
j ; p,q)

N−1

∏
j=1

dz j

2πiz j
, (9.8)

where ∏
N
j=1 z j = 1 and U is an arbitrary parameter. The magnetic index is
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IM =
K

∏
j=0

N f

∏
k,l=1

Γ ((pq)
j

K+1 sktl ; p,q)
K−1

∏
r=0

∏
1≤k<l≤N f

Γ (U−1(pq)
r+1
K+1 sksl ,U(pq)

r
K+1 tktl ; p,q)

× (p; p)Ñ−1
∞ (q;q)Ñ−1

∞

Ñ!

∫
TÑ−1

∏
1≤i< j≤Ñ

Γ (Ũziz j,Ũ−1(pq)
1

K+1 z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
Ñ

∏
j=1

N f

∏
k=1

Γ ((UŨ)
1
2 s−1

k z j,(UŨ)−
1
2 (pq)

1
K+1 t−1

k z−1
j ; p,q)

Ñ−1

∏
j=1

dz j

2πiz j
,

where ∏
Ñ
j=1 z j =1, the balancing condition looks as ST =(pq)N f−N+2K

K+1 with S =

∏
N f
j=1 s j, T = ∏

N f
j=1 t j, and Ũ = U

N−Nf
Ñ (ST−1)

1
Ñ (pq)

Ñ−N+Nf
2Ñ(K+1) .

9.3.2 Second pair of dual theories.

Electric theory:

SU(N) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

Q f f 1 0 1
N 2r = 1− N−2K

(K+1)N f

Q̃ f 1 f 0 − 1
N 2r = 1− N−2K

(K+1)N f

X TS 1 1 1 2
N 2s = 1

K+1

X̃ T S 1 1 −1 − 2
N 2s = 1

K+1

Magnetic theory:

SU(Ñ) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

q f f 1 K(N f +2)
Ñ

1
Ñ

2r′ = 1− Ñ−2K
(K+1)N f

q̃ f 1 f −K(N f +2)
Ñ

− 1
Ñ

2r′ = 1− Ñ−2K
(K+1)N f

Y TS 1 1 N−N f

Ñ
2
Ñ

2s = 1
K+1

Ỹ T S 1 1 −N−N f

Ñ
− 2

Ñ
2s = 1

K+1

M j 1 f f 0 0 Ñ−N+(2 j+1)N f
N f (K+1)

Pr 1 TS 1 −1 0 Ñ−N+(2r+2)N f
N f (K+1)

P̃r 1 1 TS 1 0 Ñ−N+(2r+2)N f
N f (K+1)

Here j = 0, . . . ,K,r = 0, . . . ,K−1, and

Ñ = (2K +1)N f +4K−N, K = 0,1,2, . . . . (9.9)
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The electric index is given by the integral

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz j,U−1(pq)
1

K+1 z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
N

∏
j=1

Γ (Uz2
j ,U

−1(pq)
1

K+1 z−2
j ; p,q)

N f

∏
k=1

Γ (skz j, tkz−1
j ; p,q)

N−1

∏
j=1

dz j

2πiz j
,

(9.10)

where ∏
N
j=1 z j = 1. The magnetic index is

IM =
K

∏
j=0

N f

∏
k,l=1

Γ ((pq)
j

K+1 sktl ; p,q)
K−1

∏
r=0

∏
1≤k<l≤N f

Γ (U−1(pq)
r+1
K+1 sksl ,

U(pq)
r

K+1 tktl ; p,q)

×
K−1

∏
r=0

N f

∏
k=1

Γ (U−1(pq)
r+1
K+1 s2

k ,U(pq)
r

K+1 t2
k ; p,q)

(p; p)Ñ−1
∞ (q;q)Ñ−1

∞

Ñ!

×
∫

TÑ−1 ∏
1≤i< j≤Ñ

Γ (Ũziz j,Ũ−1(pq)
1

K+1 z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
Ñ

∏
j=1

Γ (Ũz2
j ,Ũ

−1(pq)
1

K+1 z−2
j ; p,q)

×
Ñ

∏
j=1

N f

∏
k=1

Γ ((UŨ)
1
2 s−1

k z j,(UŨ)−
1
2 (pq)

1
K+1 t−1

k z−1
j ; p,q)

Ñ−1

∏
j=1

dz j

2πiz j
, (9.11)

where ∏
Ñ
j=1 z j = 1, the balancing condition reads ST = (pq)N f−N−2K

K+1 with S =

∏
N f
j=1 s j, T = ∏

N f
j=1 t j, and Ũ = U

N−Nf
Ñ (ST−1)

1
Ñ (pq)

Ñ−N+Nf
2Ñ(K+1) .

9.3.3 Third pair of dual theories.

In comparison with the dualities described in previous two subsections, this case
involves non-abelian flavor subgroups of different ranks.

The electric theory:

SU(N) SU(N f ) SU(N f −8) U(1) U(1)B U(1)R

Q f f 1 −(2K +1)+ 2(4K+3)
N f

1
N 2r = 1− N+2(4K+3)

2(K+1)N f

Q̃ f 1 f 2K +1+ 2(4K+3)
N f−8 − 1

N 2r̃ = 1− N−2(4K+3)
2(K+1)(N f−8)

X TA 1 1 1 2
N 2s = 1

2(K+1)

X̃ T S 1 1 −1 − 2
N 2s = 1

2(K+1)
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The magnetic theory:

SU(Ñ) SU(N f ) SU(N f −8) U(1) U(1)B U(1)R

q f f 1 2K +1− 2(4K+3)
Nf

1
Ñ

2r′ = 1− Ñ+2(4K+3)
2(K+1)Nf

q̃ f 1 f −2K−1− 2(4K+3)
Nf −8 − 1

Ñ
2r̃′ = 1− Ñ−2(4K+3)

2(K+1)(Nf −8)

Y TA 1 1 −1 2
Ñ

2s = 1
2(K+1)

Ỹ T S 1 1 1 − 2
Ñ

2s = 1
2(K+1)

MJ 1 f f
2(4K+3)(2Nf −8)

N f (Nf −8) 0 2(r + r̃)+ J
K+1

P2L 1 TS 1 −4K−3+ 4(4K+3)
Nf

0 4r + 4L+1
2(K+1)

P2M+1 1 TA 1 −4K−3+ 4(4K+3)
Nf

0 4r + 4M+3
2(K+1)

P̃2L 1 1 TA 4K +3+ 2(4K+3)
Nf −8 0 4r̃ + 4L+1

2(K+1)

P̃2M+1 1 1 TS 4K +3+ 2(4K+3)
Nf −8 0 4r̃ + 4M+3

2(K+1)

Here J = 0, . . . ,2K +1, L = 0, . . . ,K,M = 0, . . . ,K−1, and

Ñ = (4K +3)(N f −4)−N, K = 0,1,2, . . . . (9.12)

The electric index is

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz j,U−1(pq)
1

2(K+1) z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
N

∏
j=1

Γ (U−1(pq)
1

2(K+1) z−2
j ; p,q)

N f

∏
k=1

Γ (skz j; p,q)
N f−8

∏
l=1

Γ (tlz−1
j ; p,q)

×
N−1

∏
j=1

dz j

2πiz j
, (9.13)

with ∏
N
j=1 z j = 1 and the balancing condition STU−4 = (pq)N f−4− N+2

2(K+1) , where

S = ∏
N f
j=1 s j,T = ∏

N f−8
j=1 t j. The magnetic index is

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!

2K+1

∏
J=0

N f

∏
i=1

N f−8

∏
j=1

Γ ((pq)
J

2(K+1) sit j; p,q)

×
2K

∏
l=0

∏
1≤i< j≤N f

Γ ((pq)
l+1

2(K+1) U−1sis j; p,q)
K

∏
l=0

N f

∏
i=1

Γ ((pq)
2l+1

2(K+1) U−1s2
i ; p,q)

×
2K

∏
m=0

∏
1≤i< j≤N f−8

Γ ((pq)
m

2(K+1) Utit j; p,q)
K−1

∏
m=0

N f−8

∏
i=1

Γ ((pq)
2m+1

2(K+1) Ut2
i ; p,q)

×
∫

TÑ−1 ∏
1≤i< j≤Ñ

Γ (Ũziz j,Ũ−1(pq)
1

2(K+1) z−1
i z−1

j ; p,q)

Γ (z−1
i z j,ziz−1

j ; p,q)

×
Ñ

∏
j=1

[
Γ (Ũ−1(pq)

1
2(K+1) z−2

j ; p,q)×
N f

∏
k=1

Γ ((UŨ)
1
2 s−1

k z j; p,q)
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×
N f−8

∏
l=1

Γ ((UŨ)−
1
2 (pq)

1
2(K+1) t−1

l z−1
j ; p,q)

]
Ñ−1

∏
j=1

dz j

2πiz j
, (9.14)

where ∏
Ñ
j=1 z j = 1 and Ũ =

(
S2UN−N f

) 1
Ñ .

9.4 Adjoint, symmetric and conjugate symmetric tensor matter fields

This duality was constructed by Brodie and Strassler (8). The electric theory is
SU(N) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

Q f f 1 0 1
N 1− N−2

N f (K+1)

Q̃ f 1 f 0 − 1
N 1− N−2

N f (K+1)

X ad j 1 1 0 0 2
K+1

Y TS 1 1 1 2
N

K
K+1

Ỹ T S 1 1 -1 − 2
N

K
K+1

The magnetic theory is

SU(Ñ) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

q f f 1 KN f +2
Ñ

1
Ñ

1− Ñ−2
N f (K+1)

q̃ f 1 f −KN f +2
Ñ

− 1
Ñ

1− Ñ−2
N f (K+1)

X ad j 1 1 0 0 2
K+1

Y TS 1 1 N−KN f

Ñ
2
Ñ

K
K+1

Y T S 1 1 −N−KN f

Ñ
− 2

Ñ
K

K+1
NI 1 f f 0 0 2I

K+1 + 2K
K+1 +2−2 N−2

N f (K+1)

MI 1 f f 0 0 2I
K+1 +2−2 N−2

N f (K+1)

P2J+1 1 TA 1 -1 0 2 2J+1
K+1 + K

K+1 +2−2 N−2
N f (K+1)

P2J 1 TS 1 -1 0 2 2J
K+1 + K

K+1 +2−2 N−2
N f (K+1)

P̃2J+1 1 1 T A 1 0 2 2J+1
K+1 + K

K+1 +2−2 N−2
N f (K+1)

P̃2J 1 1 T S 1 0 2 2J
K+1 + K

K+1 +2−2 N−2
N f (K+1)

Here K is odd, I = 0,1, . . . ,K − 1,J = 0,1, . . . , K−1
2 , but there are no fields

PK , P̃K , and

Ñ = 3KN f +4−N. (9.15)

The indices are

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U ; p,q)N−1

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤N

Γ (UK/2XY ziz j,UK/2(XY )−1z−1
i z−1

j ; p,q)

×
N

∏
j=1

[
Γ (UK/2XY z2

j ,U
K/2(XY )−1z−2

j ; p,q)
N f

∏
i=1

Γ (siz j, t−1
i z−1

j ; p,q)

]
N−1

∏
j=1

dz j

2πiz j
,

(9.16)
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where U = (pq)
1

K+1 ,∏N
j=1 z j = 1, and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
Γ (U ; p,q)Ñ−1

K−1

∏
L=0

N f

∏
i, j=1

Γ (UL+Ksit−1
j ,ULsit−1

j ; p,q)

×
K−1

∏
J=0

∏
1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j,XYUJ+K/2t−1
i t−1

j ; p,q)

×
K−1

2

∏
J=0

N f

∏
i=1

Γ ((XY )−1U2J+ K
2 s2

i ,XYU2J+ K
2 t−2

i ; p,q)

×
∫

TÑ−1 ∏
1≤i< j≤Ñ

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤Ñ

Γ (UK/2X
N−KNf

Ñ Y
N
Ñ ziz j,UK/2(X

N−KNf
Ñ Y

N
Ñ )−1z−1

i z−1
j ; p,q)

×
Ñ

∏
j=1

[
Γ (UK/2X

N−KNf
Ñ Y

N
Ñ z2

j ,U
K/2(X

N−KNf
Ñ Y

N
Ñ )−1z−2

j ; p,q)

×
N f

∏
i=1

Γ (U
2−K

2 X
KNf +2

Ñ Y
3KNf +4

2Ñ s−1
i z j,U

2−K
2 X−

KNf +2

Ñ Y−
3KNf +4

2Ñ tiz−1
j ; p,q)

]

×
Ñ−1

∏
j=1

dz j

2πiz j
, (9.17)

where Y = (ST )1/N f , S = ∏
N f
i=1 si, T = ∏

N f
i=1 ti,X is an arbitrary chemical potential

associated with the U(1)-group, and the balancing condition reads UN−2ST−1 =
(pq)N f .

9.5 Adjoint, anti-symmetric and conjugate anti-symmetric tensor matter fields

This duality was considered in (8). The electric theory is

SU(N) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

Q f f 1 0 1
N 1− N+2

N f (K+1)

Q̃ f 1 f 0 − 1
N 1− N+2

N f (K+1)

X ad j 1 1 0 0 2
K+1

Y TA 1 1 1 2
N

K
K+1

Ỹ T A 1 1 −1 − 2
N

K
K+1

The magnetic theory is



Elliptic Hypergeometry of Supersymmetric Dualities 41

SU(Ñ) SU(N f ) SU(N f ) U(1) U(1)B U(1)R

q f f 1 KN f−2
Ñ

1
Ñ

1− Ñ+2
N f (K+1)

q̃ f 1 f −KN f−2
Ñ

− 1
Ñ

1− Ñ+2
N f (K+1)

X ad j 1 1 0 0 2
K+1

Y TA 1 1 N−KN f

Ñ
2
Ñ

K
K+1

Ỹ T A 1 1 −N−KN f

Ñ
− 2

Ñ
K

K+1

NI 1 f f 0 0 2I
K+1 + 2K

K+1 +2−2 N+2
N f (K+1)

MI 1 f f 0 0 2I
K+1 +2−2 N+2

N f (K+1)

P2J+1 1 TS 1 −1 0 2 2J+1
K+1 + K

K+1 +2−2 N+2
N f (K+1)

P2J 1 TA 1 −1 0 2 2J
K+1 + K

K+1 +2−2 N+2
N f (K+1)

P̃2J+1 1 1 T S 1 0 2 2J+1
K+1 + K

K+1 +2−2 N+2
N f (K+1)

P̃2J 1 1 T A 1 0 2 2J
K+1 + K

K+1 +2−2 N+2
N f (K+1)

Here K is odd, I = 0, . . . ,K−1,J = 0, . . . , K−1
2 , but there are no fields PK , P̃K ,

and

Ñ = 3KN f −4−N. (9.18)

The superconformal indices are

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U ; p,q)N−1

∫
TN−1 ∏

1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤N

Γ (UK/2XY ziz j,UK/2(XY )−1z−1
i z−1

j ; p,q)

×
N f

∏
i=1

N

∏
j=1

Γ (siz j, t−1
i z−1

j ; p,q)
N−1

∏
j=1

dz j

2πiz j
, (9.19)
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for U = (pq)
1

K+1 ,∏N
j=1 z j = 1, and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
Γ (U ; p,q)Ñ−1

K−1

∏
L=0

N f

∏
i, j=1

Γ (UL+Ksit−1
j ,ULsit−1

j ; p,q)

×
K−1

∏
J=0

∏
1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j,XYUJ+K/2t−1
i t−1

j ; p,q)

×
K−3

2

∏
J=0

N f

∏
i=1

Γ ((XY )−1U2J+1+ K
2 s2

i ,XYU2J+1+ K
2 t−2

i ; p,q)

×
∫

TÑ−1 ∏
1≤i< j≤Ñ

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤Ñ

Γ (UK/2X
N−KNf

Ñ Y
N
Ñ ziz j,UK/2(X

N−KNf
Ñ Y

N
Ñ )−1z−1

i z−1
j ; p,q)

×
N f

∏
i=1

Ñ

∏
j=1

Γ (U
2−K

2 X
KNf −2

Ñ Y
3KNf −4

2Ñ s−1
i z j,U

2−K
2 X−

KNf −2

Ñ Y−
3KNf −4

2Ñ tiz−1
j ; p,q)

×
Ñ−1

∏
j=1

dz j

2πiz j
, (9.20)

where ∏
Ñ
j=1 z j = 1,Y = (ST )1/N f , S = ∏

N f
i=1 si, T = ∏

N f
i=1 ti,X is an arbitrary pa-

rameter and the balancing condition reads UN+2ST−1 = (pq)N f .

9.6 Adjoint, anti-symmetric and conjugate symmetric tensor matter fields

This duality was discussed by Brodie in (8). The electric theory is

SU(N) SU(N f ) SU(N f −8) U(1) U(1)B U(1)R

Q f f 1 x1 = 6
N f
−1 1

N 2r1 = 1− N+6K
N f (K+1)

Q̃ f 1 f x2 = 6
N f−8 +1 − 1

N 2r2 = 1− N−6K
(N f−8)(K+1)

X ad j 1 1 0 0 2
K+1

Y TA 1 1 1 2
N

K
K+1

Ỹ T S 1 1 -1 − 2
N

K
K+1

In the original paper (8) there were misprints for the values of U(1)-group hyper-
charges which were corrected in (50). The magnetic theory is
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SU(Ñ) SU(N f ) SU(N f −8) U(1) U(1)B U(1)R

q f f 1 1− 6
N f

1
Ñ

1− Ñ+6K
N f (K+1)

q̃ f 1 f −1− 6
N f−8 − 1

Ñ
1− Ñ−6K

(N f−8)(K+1)

X ad j 1 1 0 0 2
K+1

Y TA 1 1 −1 2
Ñ

K
K+1

Ỹ T S 1 1 1 − 2
Ñ

K
K+1

NJ 1 f f x1 + x2 0 2J
K+1 + 2K

K+1 +2r1 +2r2

MJ 1 f f x1 + x2 0 2J
K+1 +2r1 +2r2

PJ 1 TS 1 2x1 −1 0 2J
K+1 + K

K+1 +2−2 Ñ+6K
N f (K+1)

P̃J 1 1 TA 2x2 +1 0 2J
K+1 + K

K+1 +2−2 Ñ−6K
(N f−8)(K+1)

Here J = 0,1, . . . ,K−1 and

Ñ = 3K(N f −4)−N. (9.21)

The superconformal indices are

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U ; p,q)N−1

∫
TN−1

∏
1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤N

Γ (UK/2XY ziz j,UK/2(XY )−1z−1
i z−1

j ; p,q)

×
N

∏
i=1

Γ (UK/2(XY )−1z−2
i ; p,q)

N

∏
j=1

N f

∏
i=1

Γ (siz j; p,q)
N f−8

∏
k=1

Γ (tkz−1
j ; p,q)

N−1

∏
j=1

dz j

2πiz j

(9.22)

for U = (pq)
1

K+1 ,∏N
j=1 z j = 1, and

IM =
(p; p)Ñ−1

∞ (q;q)Ñ−1
∞

Ñ!
Γ (U ; p,q)Ñ−1

K−1

∏
L=0

N f

∏
i=1

N f−8

∏
j=1

Γ (UL+Ksit j,ULsit j; p,q)

×
K−1

∏
J=0

∏
1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j; p,q) ∏
1≤i< j≤N f−8

Γ (XYUJ+K/2tit j; p,q)

×
K−1

∏
J=0

N f

∏
i=1

Γ ((XY )−1UJ+K/2s2
i ; p,q)

∫
TÑ−1

∏
1≤i< j≤Ñ

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

× ∏
1≤i< j≤Ñ

Γ (UK/2X−1Y
N
Ñ ziz j,UK/2XY− N

Ñ z−1
i z−1

j ; p,q)

×
Ñ

∏
i=1

Γ (UK/2XY− N
Ñ z−2

i ; p,q)
Ñ

∏
j=1

N f

∏
i=1

Γ (U
2−K

2 Y
3K(Nf −4)

2Ñ s−1
i z j; p,q)

×
Ñ

∏
j=1

N f−8

∏
k=1

Γ (U
2−K

2 Y−
3K(Nf −4)

2Ñ t−1
k z−1

j ; p,q)
Ñ−1

∏
j=1

dz j

2πiz j
,

where ∏
Ñ
j=1 z j = 1,Y =

(
ST−1X2N f−8(pq)

2(K−2)
K+1

) 1
Nf −4

, and the balancing condi-

tion reads UNX−4Y−4ST = (pq)N f−4 with S = ∏
N f
i=1 si, T = ∏

N f−8
i=1 ti.
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The equalities IE = IM for all the dualities described in this section require a
rigorous mathematical confirmation. For the moment we have only one justifying
argument coming from the total ellipticity condition associated with the kernels
of the corresponding pairs of integrals.

10 KS Type Dualities for Symplectic Gauge Groups

10.1 The anti-symmetric tensor matter field

For SP(2N) group the following electric-magnetic duality was discovered by In-
triligator in (41). The electric theory:

SP(2N) SU(2N f ) U(1)R

Q f f 2r = 1− 2(N+K)
(K+1)N f

X TA 1 2s = 2
K+1

The magnetic theory:

SP(2Ñ) SU(2N f ) U(1)R

q f f 2r̃ = 1− 2(Ñ+K)
(K+1)N f

Y TA 1 2s = 2
K+1

M j 1 TA 2r j = 2 K+ j
K+1 −4 Ñ+K

(K+1)N f

where j = 1, . . . ,K, and

Ñ = K(N f −2)−N, K = 1,2, . . . . (10.1)

Defining U = (pq)s = (pq)
1

K+1 , we find the following indices for these theories:

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (U ; p,q)N−1

∫
TN ∏

1≤i< j≤N

Γ (Uz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
2N f
i=1 Γ (siz±1

j ; p,q)

Γ (z±2
j ; p,q)

N

∏
j=1

dz j

2πiz j
(10.2)

and

IM =
(p; p)Ñ

∞(q;q)Ñ
∞

2ÑÑ!
Γ (U ; p,q)Ñ−1

K

∏
l=1

∏
1≤i< j≤2N f

Γ (U l−1sis j; p,q)

×
∫

TÑ ∏
1≤i< j≤Ñ

Γ (Uz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

Ñ

∏
j=1

∏
2N f
i=1 Γ (Us−1

i z±1
j ; p,q)

Γ (z±2
j ; p,q)

Ñ

∏
j=1

dz j

2πiz j
,

(10.3)

where the balancing condition reads U2(N+K)
∏

2N f
i=1 si = (pq)N f .
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10.2 Symmetric tensor matter field

Another electric-magnetic duality is described by Leigh and Strassler in (54). The
electric theory:

SP(2N) SU(2N f ) U(1)R

Q f f 2r = 1− N+1
(K+1)N f

X ad j = TS 1 2s = 1
K+1

The magnetic theory:

SP(2Ñ) SU(2N f ) U(1)R

q f f 2r̃ = 1− Ñ+1
(K+1)N f

Y ad j 1 2s = 1
K+1

M2 j , j = 0, . . . ,K 1 TA 2r2 j = 2− 2(N+1)−2 jN f
(K+1)N f

M2 j+1, j = 0, . . . ,K−1 1 TS 2r2 j+1 = 2− 2(N+1)−(2 j+1)N f
(K+1)N f

Here

Ñ = (2K +1)N f −N−2, K = 0,1,2, . . . . (10.4)

Defining U = (pq)s = (pq)
1

2(K+1) , we find the following superconformal indices:

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (U ; p,q)N

∫
TN ∏

1≤i< j≤N

Γ (Uz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

Γ (Uz±2
j ; p,q)

Γ (z±2
j ; p,q)

2N f

∏
i=1

N

∏
j=1

Γ (siz±1
j ; p,q)

N

∏
j=1

dz j

2πiz j
(10.5)

and

IM =
(p; p)Ñ

∞(q;q)Ñ
∞

2ÑÑ!
Γ (U ; p,q)Ñ

2K

∏
l=0

∏
1≤i< j≤2N f

Γ (U lsis j; p,q)

×
K−1

∏
l=0

2N f

∏
i=1

Γ (U2l+1s2
i ; p,q)

∫
TÑ ∏

1≤i< j≤Ñ

Γ (Uz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
Ñ

∏
j=1

Γ (Uz±2
j ; p,q)

Γ (z±2
j ; p,q)

2N f

∏
i=1

Ñ

∏
j=1

Γ (Us−1
i z±1

j ; p,q)
Ñ

∏
j=1

dz j

2πiz j
, (10.6)

where the balancing condition reads U2(N+1)
∏

2N f
i=1 si = (pq)N f .
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10.3 Two anti-symmetric tensor matter fields

This duality was investigated by Brodie and Strassler in (8). The electric theory:

SP(2N) SU(2N f ) U(1)R

Q f f 1− N+2K+1
(K+1)N f

X TA 1 2
K+1

Y TA 1 K
K+1

The magnetic theory:

SP(2Ñ) SU(2N f ) U(1)R

q f f 1− Ñ+2K+1
(K+1)N f

X̃ TA 1 2
K+1

Ỹ TA 1 K
K+1

MJ0, J = 0, . . . ,K−1 1 TA 2− N+2K+1
(K+1)N f

+ 2J
K+1

M2J 1, J = 0, . . . , K−1
2 1 TA 2− N+2K+1

(K+1)N f
+ 2(2J)

K+1 + K
K+1

M2J+1 1, J = 0, . . . , K−3
2 1 TS 2− N+2K+1

(K+1)N f
+ 2(2J+1)

K+1 + K
K+1

MJ2, J = 0, . . . ,K−1 1 TA 2− N+2K+1
(K+1)N f

+ 2J
K+1 + 2K

K+1

Here K is odd and

Ñ = 3KN f −4K−2−N. (10.7)

For these theories we have the following superconformal indices:

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (U,U

K
2 ; p,q)N−1

×
∫

TN ∏
1≤i< j≤N

Γ (Uz±1
i z±1

j ,U
K
2 z±1

i z±1
j ; p,q)

Γ (z±1
i z±1

j ; p,q)

2N f

∏
i=1

N

∏
j=1

Γ (siz±1
j ; p,q)

Γ (z±2
j ; p,q)

N

∏
j=1

dz j

2πiz j
,

(10.8)

where U = (pq)
1

K+1 , the balancing condition reads UN+2K+1
∏

2N f
i=1 si = (pq)N f ,

and

IM =
(p; p)Ñ

∞(q;q)Ñ
∞

2ÑÑ!
Γ (U,U

K
2 ; p,q)Ñ−1

×
K−1

∏
J=0

2

∏
L=0

∏
1≤i< j≤2N f

Γ (UJ+ KL
2 sis j; p,q)

K−3
2

∏
J=0

2N f

∏
j=1

Γ (U2J+1+ K
2 s2

j ; p,q)

×
∫

TÑ ∏
1≤i< j≤Ñ

Γ (Uz±1
i z±1

j ,U
K
2 z±1

i z±1
j ; p,q)

Γ (z±1
i z±1

j ; p,q)

2N f

∏
i=1

Ñ

∏
j=1

Γ (U1−K
2 s−1

i z±1
j ; p,q)

Γ (z±2
j ; p,q)

×
Ñ

∏
j=1

dz j

2πiz j
. (10.9)
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10.4 Symmetric and anti-symmetric tensor matter fields

This duality was found in (8). The electric theory:

SP(2N) SU(2N f ) U(1)R

Q f f 1− N+2K−1
(K+1)N f

X TA 1 2
K+1

Y TS 1 K
K+1

The magnetic theory:

SP(2Ñ) SU(2N f ) U(1)R

q f f 1− Ñ+2K−1
(K+1)N f

X̃ TA 1 2
K+1

Ỹ TS 1 K
K+1

MJ0, J = 0, . . . ,K−1 1 TA 2− N+2K+1
(K+1)N f

+ 2J
K+1

M2J 1, J = 0, . . . , K−1
2 1 TS 2− N+2K+1

(K+1)N f
+ 2(2J)

K+1 + K
K+1

M2J+1 1, J = 0, . . . , K−3
2 1 TA 2− N+2K+1

(K+1)N f
+ 2(2J+1)

K+1 + K
K+1

MJ2, J = 0, . . . ,K−1 1 TA 2− N+2K+1
(K+1)N f

+ 2J
K+1 + 2K

K+1

Here K is odd and

Ñ = 3KN f −4K +2−N. (10.10)

For these theories we have the following superconformal indices:

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (U ; p,q)N−1

Γ (U
K
2 ; p,q)N

×
∫

TN ∏
1≤i< j≤N

Γ (Uz±1
i z±1

j ,U
K
2 z±1

i z±1
j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

Γ (U
K
2 z±2

j ; p,q)∏
2N f
i=1 Γ (siz±1

j ; p,q)

Γ (z±2
j ; p,q)

N

∏
j=1

dz j

2πiz j
, (10.11)
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where U = (pq)
1

K+1 and the balancing condition reads UN+2K−1
∏

2N f
i=1 si = (pq)N f ,

and

IM =
(p; p)Ñ

∞(q;q)Ñ
∞

2ÑÑ!
Γ (U ; p,q)Ñ−1

Γ (U
K
2 ; p,q)Ñ

×
K−1

∏
J=0

2

∏
L=0

∏
1≤i< j≤2N f

Γ (UJ+ KL
2 sis j; p,q)

×
K−1

2

∏
J=0

2N f

∏
j=1

Γ (U2J+ K
2 s2

j ; p,q)
∫

TÑ ∏
1≤i< j≤Ñ

Γ (Uz±1
i z±1

j ,U
K
2 z±1

i z±1
j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
Ñ

∏
j=1

Γ (U
K
2 z±2

j ; p,q)∏
2N f
i=1 Γ (U1−K

2 s−1
i z±1

j ; p,q)

Γ (z±2
j ; p,q)

Ñ

∏
j=1

dz j

2πiz j
. (10.12)

The equalities IE = IM for all the dualities described in this section represent
new elliptic hypergeometric identities requiring a rigorous mathematical confir-
mation.

11 Some Other New Dualities

Let us denote

IAN (t,u; p,q) =
(p; p)N

∞(q;q)N
∞

(N +1)!

∫
TN

∏
N+1
i=1 ∏

N+3
r=1 Γ (trzi,urz−1

i ; p,q)

∏1≤i< j≤N+1 Γ (ziz−1
j ,z−1

i z j; p,q)

×
N

∏
j=1

dz j

2πiz j
(11.1)

with ∏
N+1
j=1 z j = 1 and the balancing condition ∏

N+3
i=1 tiui = (pq)2, and

IBCN (t; p,q) =
(p; p)N

∞(q;q)N
∞

2NN!

∫
TN

∏
N
i=1 ∏

2N+6
r=1 Γ (trz±1

i ; p,q)

∏1≤i< j≤N Γ (z±1
i z±1

j ; p,q)∏
N
j=1 Γ (z±2

j ; p,q)

×
N

∏
j=1

dz j

2πiz j
(11.2)

with the balancing condition ∏
2N+6
r=1 tr = (pq)2.

11.1 SU ↔ SP groups mixing duality

The first case electric gauge group is G = SU(N +1), but the dual gauge group is
of a different type G = SP(2N). The flavor symmetry group in both cases is F =
SU(N + 3)× SU(N + 3)×U(1)B. The field content of dual theories is described
in the tables below:
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SU(N +1) SU(N +3) SU(N +3) U(1)B U(1)R

Q1 f f 1 2 2
N+3

Q2 f 1 f −2 2
N+3

SP(2N) SU(N +3) SU(N +3) U(1)B U(1)R

q1 f f 1 −(N +1) 2
N+3

q2 f 1 f N +1 2
N+3

X1 1 T A 1 2(N +1) 2 N+1
N+3

X2 1 1 T A −2(N +1) 2 N+1
N+3

The superconformal indices are

IE = IAN (t1, . . . , tN+3,u1, . . . ,uN+3; p,q),

IM = ∏
1≤i< j≤N+3

Γ (T/tit j,U/uiu j; p,q)IBCN (. . .(U/T )1/4ti . . . ,

. . .(T/U)1/4ui . . . ; p,q), (11.3)

where T = ∏1≤i≤N+3 ti and U = ∏1≤i≤N+3 ui.
The equality IE = IM represents the mixed elliptic hypergeometric integrals

transformation proven in (65). We used this identity as a starting point for finding
the described new Seiberg-type pair of field theories.

11.2 SU ↔ SU groups mixing duality

Again, we use consequences of the mixed transformations derived in (65). Corre-
sponding dualities have the flavor symmetry groups

F = SU(K)×SU(N +2−K)×U(1)1×SU(K)×SU(N +2−K)×U(1)2

×U(1)B,

for arbitrary 0 < K < N + 2. The matter field content of the initial electric field
theory is given in the table

SU(N) SU(N +2) SU(N +2) U(1)B U(1)R
Q1 f f 1 1 2

N+2

Q2 f 1 f −1 2
N+2

In order to verify the ’t Hooft anomalies matching conditions for relevant fla-
vor symmetry subgroups, it is useful to rewrite the latter table as

SU(N) SU(K) SU(M) U(1)1 SU(K) SU(M) U(1)2 U(1)B U(1)R
q1 f f 1 M 1 1 0 1 2

N+2

q2 f 1 f −K 1 1 0 1 2
N+2

q3 f 1 1 0 f 1 M −1 2
N+2

q4 f 1 1 0 1 f −K −1 2
N+2

where M = N +2−K. The dual theory content is described in the following table:
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SU(N) SU(K) SU(M) U(1)1 SU(K) SU(M) U(1)2 U(1)B U(1)R

q1 f f 1 K(K−2)
N −K +M 1 1 MK

N 1−M 2
N+2

q2 f 1 f − K(K−2)
N 1 1 −MK

N 1−K 2
N+2

q3 f 1 1 MK
N f 1 K(K−2)

N −K +M M−1 2
N+2

q4 f 1 1 −MK
N 1 f − K(K−2)

N K−1 2
N+2

X1 1 f 1 M 1 f −K 0 4
N+2

X2 1 1 f −K f 1 M 0 4
N+2

Y1 1 f f K−M 1 1 0 N 2N
N+2

Y2 1 1 1 0 f f K−M −N 2N
N+2

The superconformal indices have the form

IE = IAN−1(t1, . . . , tN+2,u1, . . . ,uN+2; p,q),

IM = ∏
1≤r<K,K≤s≤N+2

Γ (trus, tsur,T/tstr,U/urus)IAN−1(t
′
1, . . . , t

′
N+2,

u′1, . . . ,u
′
N+2; p,q), (11.4)

where T = ∏
N+2
r=1 tr,U = ∏

N+2
r=1 ur,TK = ∏

K
r=1 tr,UK = ∏

K
r=1 ur, and

t ′r = (T/U)
N−K
2N (TK/UK)1/Nur, 1 ≤ r < K +1,

t ′r = (U/T )
K

2N (TK/UK)1/Ntr, K +1 ≤ r ≤ N +2,

u′r = (U/T )
N−K
2N (UK/TK)1/Ntr, 1 ≤ r < K +1,

u′r = (T/U)
K

2N (UK/TK)1/Nur, K +1 ≤ r ≤ N +2.

The equality IE = IM for K = 1 was suggested in (83) and the general relation
with the complete proof for arbitrary K is given in (65).

12 S-Confinement

Following (15; 16; 76), by s-confinement we mean smooth confinement without
chiral symmetry breaking and with a non-vanishing confining superpotential. The
theory is confined when its infrared physics can be described completely in terms
of gauge invariant composite fields and their interactions. This description has to
be valid everywhere in the moduli space of vacua. s-confinement requires also
that the theory dynamically generates a confining superpotential. Furthermore,
the phase without chiral symmetry breaking implies that the origin of the classical
moduli space serves also as a vacuum in the quantum theory. In this vacuum all
the global symmetries present in the ultraviolet regime remain unbroken. Finally,
the confining superpotential is a holomorphic function of the confined degrees of
freedom and couplings, which describe all interactions in the extreme infrared.
From the point of view of elliptic hypergeometric functions the s-confinement
means that the dual theory gauge group is trivial G = 1 (i.e., there is no vector
superfield Ṽ ) and the integrals describing superconformal indices are computable
exactly, defining highly non-trivial elliptic beta integrals (81).
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12.1 SU(N) gauge group

In this section we present known examples of the confining theories with the uni-
tary gauge group. For brevity we combine the electric and magnetic theories in
a single table separating them by the double line. The magnetic theory fields are
denoted using the conventions of (15).

12.1.1 SU(N) with (N +1)( f + f ).

(76):

SU(N) SU(N +1) SU(N +1) U(1) U(1)R
Q f f 1 1 1

N+1

Q̃ f 1 f −1 1
N+1

QQ̃ f f 0 2
N+1

QN f 1 N N
N+1

Q̃N 1 f −N N
N+1

The superconformal indices for these theories are equal to (after appropriate
renormalization of the parameters)

IE =
(p; p)N−1

∞ (q;q)N−1
∞

N!

∫
TN−1 ∏

1≤ j<k≤N

1
Γ (ziz−1

j ,z−1
i z j; p,q)

×
N

∏
j=1

N+1

∏
m=1

Γ (smz j, tmz−1
j ; p,q)

N−1

∏
j=1

dz j

2πiz j
, (12.1)

where ∏
N
j=1 z j = 1, and

IM =
N+1

∏
m=1

Γ (Ss−1
m ,Tt−1

m ; p,q)
N+1

∏
k,m=1

Γ (sktm; p,q), (12.2)

where S = ∏
N+1
m=1 sm,T = ∏

N+1
m=1 tm, with the balancing condition ST = pq.

The exact evaluation formula for the integral IE = IM was conjectured and par-
tially confirmed in (83). Its complete proofs are given in (65; 86). In the simplest
p → 0 limit it is reduced to one of the Gustafson integrals (35).

12.1.2 SU(2N) with TA +2N f +4 f .

The theory with G = SU(2N) gauge group and flavor group F = SU(2N)×
SU(4)×U(1)1 ×U(1)2 was found to be confining in (62; 64). The field content
of both theories is described in the table below:
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SU(2N) SU(2N) SU(4) U(1)1 U(1)2 U(1)R
Q f 1 f −2N −2N +2 1

2
Q̃ f f 1 4 −2N +2 0
A TA 1 1 0 2N +4 0

QQ̃ f f 4−2N −4N +4 1
2

AQ̃2 TA 1 8 −2N +8 0
AN 1 1 0 2N2 +4N 0

AN−1Q2 1 TA −4N 2N2−2N 1
AN−1Q4 1 1 −8N 2N2−8N 2

Q̃2N 1 1 8N −4N2 +4N 0

We come to the following integrals describing the superconformal indices:

IE =
(p; p)2N−1

∞ (q;q)2N−1
∞

(2N)!

∫
T2N−1 ∏

1≤ j<k≤2N

Γ (tziz j; p,q)
Γ (ziz−1

j ,z−1
i z j; p,q)

×
2N

∏
j=1

2N

∏
k=1

Γ (tkz−1
j ; p,q)

4

∏
i=1

Γ (siz j; p,q)
2N−1

∏
j=1

dz j

2πiz j
, (12.3)

with ∏
2N
j=1 z j = 1, and

IM = ∏
1≤ j<k≤2N

Γ (tt jtk; p,q)
2N

∏
k=1

4

∏
i=1

Γ (tksi; p,q)
Γ (tN ,T ; p,q)
Γ (tNT ; p,q)

× ∏
1≤i<m≤4

Γ (t
2N−2

2 sism; p,q), (12.4)

with the balancing condition t2N−2ST = pq, where S = ∏
4
i=1 si,T = ∏

2N
j=1 t j.

Equality IE = IM defines the elliptic beta integral introduced in (83). It repre-
sents an elliptic extension of the Gustafson-Rakha q-beta integral for odd number
of integration variables (38).

12.1.3 SU(2N +1) with TA +(2N +1) f +4 f .

These dual models were considered in (62; 64):
SU(2N +1) SU(2N +1) SU(4) U(1)1 U(1)2 U(1)R

Q f 1 f −2N−1 −2N +1 1
2

Q̃ f f 1 4 −2N +1 0
A TA 1 1 0 2N +5 0

QQ̃ f f 3−2N −4N +2 1
2

AQ̃2 TA 1 8 −2N +7 0
ANQ 1 f −2N−1 2N2 +3N +1 1

2
AN−1Q3 1 f −6N−3 2N2−3N−2 3

2
Q̃2N+1 1 1 8N +4 −4N2 +1 0

The indices have the form

IE =
(p; p)2N

∞ (q;q)2N
∞

(2N +1)!

∫
T2N ∏

1≤ j<k≤2N+1

Γ (tziz j; p,q)
Γ (ziz−1

j ,z−1
i z j; p,q)

×
2N+1

∏
j=1

2N+1

∏
k=1

Γ (tkz−1
j ; p,q)

4

∏
i=1

Γ (siz j; p,q)
2N

∏
j=1

dz j

2πiz j
, (12.5)
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with ∏
2N+1
j=1 z j = 1, and

IM = ∏
1≤ j<k≤2N+1

Γ (tt jtk; p,q)
2N+1

∏
k=1

4

∏
i=1

Γ (tksi; p,q)Γ (T ; p,q)
4

∏
i=1

Γ (tNsi; p,q)
Γ (tNT si; p,q)

,

(12.6)

where the balancing condition reads t2N−1ST = pq and T = ∏
2N+1
k=1 tk,S = ∏

4
k=1 sk.

The equality IE = IM was also suggested in (83) as an elliptic extension of the
Gustafson-Rakha q-beta integral with an even number of integrations (38).

12.1.4 SU(2N +1) with TA +T A +3 f +3 f .

Models (16):

SU(2N +1) SU(3) SU(3) U(1)1 U(1)2 U(1)B U(1)R
Q f f 1 0 2N−1 1 1

3
Q̃ f 1 f 0 2N−1 −1 1

3
A TA 1 1 1 −3 0 0
Ã T A 1 1 −1 −3 0 0

Q(AÃ)kQ̃ f f 0 4N−2−6k 0 2
3

Ã(AÃ)kQ2 TA 1 −1 4N−5−6k 2 2
3

A(AÃ)kQ̃2 1 TA 1 4N−5−6k −2 2
3

ANQ f 1 N −N−1 1 1
3

ÃNQ̃ 1 f −N −N−1 −1 1
3

AN−1Q3 1 1 N−1 3N 3 1
ÃN−1Q̃3 1 1 −N +1 3N −3 1
(AÃ)m 1 1 0 −6m 0 0

where k = 0, . . . ,N−1 and m = 1, . . . ,N.
The superconformal indices are written as

IE =
(p; p)2N

∞ (q;q)2N
∞

(2N +1)!

∫
T2N ∏

1≤i< j≤2N+1

Γ (Uziz j,V z−1
i z−1

j ; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
3

∏
i=1

2N+1

∏
j=1

Γ (siz j, tiz−1
j ; p,q)

2N

∏
j=1

dz j

2πiz j
, (12.7)

where ∏
2N+1
j=1 z j = 1, and

IM =
3

∏
i=1

Γ (UNsi,V Nti; p,q)Γ (UN−1s1s2s3,V N−1t1t2t3; p,q)
N

∏
j=1

Γ ((UV ) j; p,q)

×
N−1

∏
j=0

[
3

∏
i,k=1

Γ ((UV ) jsitk; p,q) ∏
1≤i<k≤3

Γ (V (UV ) jsisk,U(UV ) jtitk; p,q)

]
,

(12.8)

where the balancing condition reads (UV )2N−1
∏

3
i=1 siti = pq.

The equality IE = IM was derived by Spiridonov in (83) by purely algebraic
means as a consequence of other elliptic beta integrals. In the simplest p→ 0 limit
it reduces to Gustafson’s q-beta integral for the root system A2N (37).
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12.1.5 SU(2N) with TA +T A +3 f +3 f .

For N > 2 the models have the form (16):

SU(2N) SU(3) SU(3) U(1)1 U(1)2 U(1)B U(1)R
Q f f 1 0 2N−2 1 1

3

Q̃ f 1 f 0 2N−2 −1 1
3

A TA 1 1 1 −3 0 0
Ã T A 1 1 −1 −3 0 0

Q(AÃ)kQ̃ f f 0 4N−4−6k 0 2
3

Ã(AÃ)mQ2 TA 1 −1 4N−7−6m 2 2
3

A(AÃ)mQ̃2 1 TA 1 4N−7−6m −2 2
3

AN 1 1 N −3N 0 0
ÃN 1 1 −N −3N 0 0

AN−1Q2 TA 1 N−1 N−1 2 2
3

ÃN−1Q̃2 1 TA −N +1 N−1 -2 2
3

(AÃ)n 1 1 0 −6n 0 0

where k = 0, . . . ,N−1,m = 0, . . . ,N−2 and n = 1, . . . ,N−1. For N = 2 the flavor
group is enlarged to F = SU(3)×SU(3)×SU(2)×U(1)2×U(1)B, and the fields
A, Ã unify to the SU(2)-group doublet.

The expressions for the superconformal indices are

IE =
(p; p)2N−1

∞ (q;q)2N−1
∞

(2N)!

∫
T2N−1 ∏

1≤i< j≤2N

Γ (Uziz j,V z−1
i z−1

j ; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
2N

∏
j=1

3

∏
i=1

Γ (siz j, tiz−1
j ; p,q)

2N−1

∏
j=1

dz j

2πiz j
, (12.9)

with ∏
2N
j=1 z j = 1, and

IM = Γ (UN ,V N ; p,q) ∏
1≤i<k≤3

Γ (UN−1sisk,V N−1titk; p,q)

×
N

∏
j=1

3

∏
i,k=1

Γ ((UV ) j−1sitk; p,q)
N−1

∏
j=1

Γ ((UV ) j; p,q)

×
N−2

∏
j=0

∏
1≤i<k≤3

Γ (V (UV ) jsisk,U(UV ) jtitk; p,q), (12.10)

where the balancing condition reads (UV )2N−2
∏

3
i=1 siti = pq. The equality IE =

IM was also derived in (83) as a consequence of some other elliptic beta integrals.
In the simplest p → 0 limit, it reduces to one of Gustafson’s integrals for the root
system A2N−1 (37). Similar to the case of non-confining N f = 4 dualities described
earlier, a careful examination of the limit V → 1 (or U → 1) shows that the equality
of superconformal indices in this case reduces to the equality of SP(2N)-group
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confining duality indices discussed in (91). This means that the elliptic Selberg
integral introduced in (19) (see integral (12.35) and its evaluation (12.36) below)
is a limiting case of Spiridonov’s An-elliptic beta integral. This result could have
been expected since the computation of the latter integral in (83) used the elliptic
Selberg integral.

12.1.6 SU(KN f −1) with N f f +N f f +1ad j.

Taking N = KN f − 1 in (9.1)
(or, Ñ = 1), we find the s-confining dual theory discussed in (14). The field con-
tent of these theories is easily found from the tables given in Sec. 9.1. Namely, in
the electric theory one should fix N as described; on the magnetic side one should
keep all the mesons and baryons and set Ñ = 1 in the gauge group part. Therefore
for this case the superconformal index for the electric theory is given by (9.2), and
the magnetic superconformal index takes the form

IM =
K

∏
l=1

∏
1≤i, j≤N f

Γ (U l−1sit−1
j ; p,q)

N f

∏
i=1

Γ (U(ST )
K
2 s−1

i ,U(ST )−
K
2 ti; p,q),

(12.11)

where U = (pq)
1

K+1 ,S = ∏
N f
j=1 s j,T = ∏

N f
j=1 t j, and the balancing condition reads

U2KN f−2ST−1 = (pq)N f .
For K = 1 one obtains the known AN-root systems integral of type I from

Sect. 12.1.1. The conjecture IE = IM for K >1 represents a new elliptic beta inte-
gral requiring rigorous mathematical justification.

12.1.7 SU(3KN f −1) with N f f +N f f +2ad j.

If we set N = 3KN f − 1 in (9.4), then we obtain the s-confinement discussed in
(50). The superconformal index for the electric theory is given by (9.5), and the
magnetic superconformal index takes the form

IM =
K−1

∏
L=0

2

∏
J=0

Γ (UL+KJ/2sit−1
j ; p,q)

×
N f

∏
i=1

Γ (U
2−K

2 (ST )
3K
2Ñ s−1

i ,U
2−K

2 (ST )−
3K
2Ñ ti; p,q), (12.12)

where U = (pq)
1

K+1 ,S = ∏
N f
j=1 s j,T = ∏

N f
j=1 t j, and the balancing condition reads

UNST−1 = (pq)N f . The equality IE = IM is a new conjectural elliptic beta integral.

12.1.8 SU((2K +1)N f −4K−1) with N f f +N f f +2TA.

If we set N =(2K +1)N f −4K−1 in (9.7), we obtain the s-confinement discussed
by Klein in (50). The electric superconformal index is given by (9.8), and the
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magnetic superconformal index takes the form

IM =
K

∏
j=0

N f

∏
k,l=1

Γ ((pq)
j

K+1 sktl ; p,q)
N f

∏
k=1

Γ ((UŨ)
1
2 s−1

k ,(UŨ)−
1
2 (pq)

1
K+1 t−1

k ; p,q)

×
K−1

∏
r=0

∏
1≤k<l≤N f

Γ (U−1(pq)
r+1
K+1 sksl ,U(pq)

r
K+1 tktl ; p,q), (12.13)

where U is an arbitrary parameter, Ũ = U2KN f−4K−1ST−1(pq)
1−KNf +2K

K+1 ,S =

∏
N f
j=1 s j,T = ∏

N f
j=1 t j, and the balancing condition reads ST = (pq)N f−N+2K

K+1 .
For K = 0 the parameter U drops out, and one obtains the integral discussed in

Sect. 12.1.1. The general K > 0 conjecture IE = IM represents another new elliptic
beta integral.

12.1.9 SU((2K +1)N f +4K−1) with N f f +N f f +2TS.

If we set N = (2K + 1)N f + 4K − 1 in (9.9), we obtain again the s-confinement
(50). Corresponding electric superconformal index is given by (9.10), and the
magnetic superconformal index takes the form

IM = Γ (Ũ ,Ũ−1(pq)
1

K+1 ; p,q)
K

∏
j=0

N f

∏
k,l=1

Γ ((pq)
j

K+1 sktl ; p,q)

×
K−1

∏
r=0

∏
1≤k<l≤N f

Γ (U−1(pq)
r+1
K+1 sksl ,U(pq)

r
K+1 tktl ; p,q)

×
N f

∏
k=1

[
K−1

∏
r=0

Γ (U−1(pq)
r+1
K+1 s2

k ,U(pq)
r

K+1 t2
k ; p,q)Γ ((UŨ)

1
2 s−1

k ,

(UŨ)−
1
2 (pq)

1
K+1 t−1

k ; p,q)

]
, (12.14)

where Ũ = U2KN f +4K−1ST−1(pq)
1−KNf −2K

K+1 ,S = ∏
N f
j=1 s j,T = ∏

N f
j=1 t j, and the bal-

ancing condition reads ST = (pq)N f−N−2K
K+1 .

Presently the conjecture IE = IM is confirmed only for K = 0, which reduces
again to the integral of Sect. 12.1.1.

12.1.10 SU((4K +3)(N f −4)−1) with N f f +(N f −8) f +TA +TS.

If we take N = (4K +3)(N f −4)−1 in (9.12), we obtain the s-confinement (50).
Corresponding electric superconformal index is given by (9.13), and the magnetic
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superconformal index takes the form

IM =
2K+1

∏
J=0

N f

∏
i=1

N f−8

∏
j=1

Γ ((pq)
J

2(K+1) sit j; p,q)

×
2K

∏
l=0

∏
1≤i< j≤N f

Γ ((pq)
l+1

2(K+1) U−1sis j; p,q)
K

∏
l=0

N f

∏
i=1

Γ ((pq)
2l+1

2(K+1) U−1s2
i ; p,q)

×
2K

∏
m=0

∏
1≤i< j≤N f−8

Γ ((pq)
m

2(K+1) Utit j; p,q)
K−1

∏
m=0

N f−8

∏
i=1

Γ ((pq)
2m+1

2(K+1) Ut2
i ; p,q)

×Γ (Ũ−1(pq)
1

2(K+1) ; p,q)
N f

∏
k=1

Γ ((UŨ)
1
2 s−1

k ; p,q)

×
N f−8

∏
l=1

Γ ((UŨ)−
1
2 (pq)

1
2(K+1) t−1

l ; p,q), (12.15)

where Ũ =
(
S2UN−N f

) 1
Ñ and the balancing condition reads

U−4
N f

∏
j=1

s jt j = (pq)N f−4−
(4K+3)(Nf −4)+1

2(K+1) .

The equality IE = IM represents another conjectural new elliptic beta integral.

12.1.11 SU(3KN f +3) with N f f +N f f +ad j +TS +T S.

If we take N = 3KN f + 3 for K-odd in (9.15), we obtain again the s-confinement
(50). The corresponding electric superconformal index is given by (9.16), and the
magnetic superconformal index is

IM =
K−1

∏
L=0

N f

∏
i, j=1

Γ (UL+Ksit−1
j ,ULsit−1

j ; p,q)Γ (U
K
2 XN−KN f Y N ,

U
K
2 (XN−KN f Y N)−1; p,q)

×
K−1

∏
J=0

∏
1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j,XYUJ+K/2t−1
i t−1

j ; p,q)

×
K−1

2

∏
J=0

N f

∏
i=1

Γ ((XY )−1U2J+K/2s2
i ,XYU2J+K/2t−2

i ; p,q)

×
N f

∏
i=1

Γ (U
2−K

2 XKN f +2Y
3KNf +4

2 s−1
i ,U

2−K
2 X−(KN f +2)Y−

3KNf +4
2 ti; p,q),

(12.16)

where U = (pq)
1

K+1 ,Y = (ST )1/N f ,S = ∏
N f
i=1 si, T = ∏

N f
i=1 ti,X is an arbitrary pa-

rameter, and the balancing condition reads UN−2ST−1 = (pq)N f . Again, the proof
of the general equality IE = IM is absent.
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12.1.12 SU(3KN f −5) with N f f +N f f +ad j +TA +T A.

If we take N = 3KN f −5 for K-odd in (9.18), we obtain the s-confinement (50).
The corresponding electric superconformal index is given by (9.19), and the mag-
netic superconformal index takes the form

IM =
K−1

∏
L=0

N f

∏
i, j=1

Γ (UL+Ksit−1
j ,ULsit−1

j ; p,q)

×
K−1

∏
J=0

∏
1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j,XYUJ+K/2t−1
i t−1

j ; p,q)

×
K−3

2

∏
J=0

N f

∏
i=1

Γ ((XY )−1U2J+1+K/2s2
i ,XYU2J+1+K/2t−2

i ; p,q)

×
N f

∏
i=1

Γ (U
2−K

2 XKN f−2Y
3KNf −4

2 s−1
i ,U

2−K
2 X−(KN f−2)Y−

3KNf −4
2 ti; p,q),

(12.17)

where U = (pq)
1

K+1 ,Y = (ST )1/N f ,S = ∏
N f
i=1 si,T = ∏

N f
i=1 ti,X is an arbitrary pa-

rameter, and the balancing condition reads UN−2ST−1 = (pq)N f . No proof of the
equality IE = IM is known at present.

12.1.13 SU(N) with N f f +(N f −8) f +ad j +TA +T S.

If we set N = 3K(N f − 4)− 1 in (9.21), we obtain the s-confinement (50). The
corresponding electric superconformal index is given by (9.22), and

IM =
K−1

∏
L=0

N f

∏
i=1

[
N f−8

∏
j=1

Γ (UL+Ksit j,ULsit j; p,q)Γ ((XY )−1UL+K/2s2
i ; p,q)

]

×
K−1

∏
J=0

[
∏

1≤i< j≤N f

Γ ((XY )−1UJ+K/2sis j; p,q) ∏
1≤i< j≤N f−8

Γ (XYUJ+K/2tit j; p,q)

]

×
N f

∏
i=1

Γ (U
2−K

2 Y
3K(Nf −4)

2 s−1
i ; p,q)

N f−8

∏
k=1

Γ (U
2−K

2 Y−
3K(Nf −4)

2 t−1
k ; p,q)

×Γ (UK/2(XY N)−1; p,q), (12.18)

where U = (pq)
1

K+1 , the balancing condition reads UNX−4Y−4ST = (pq)N f−4

with S = ∏
N f
i=1 si, T = ∏

N f−8
i=1 ti, and

Y = X2
(

ST−1(pq)
2(K−2)

K+1

) 1
Nf −4

.

Equality of indices defines another unproven elliptic beta integral evaluation.
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12.1.14 New confining duality.

Let us take the electric and magnetic N = 1 superconformal field theories de-
scribed by the tables below:

SU(N +1) SP(2N) SU(N +3) U(1) U(1)R
Q1 f 1 f 1 0
Q2 f f 1 −N+3

2 1
X T A 1 1 N +3 0

q1 = QN+1
1 1 T A N +1 0

q2 = Q1Q2 f f −N+1
2 1

The dynamically generated superpotential in this case is Wdyn ∝ QN+1
1 (Q1Q2)2.

The indices read

IE =
(p; p)N

∞(q;q)N
∞

(N +1)!

∫
TN ∏

1≤i< j≤N+1

Γ (Sz−1
i z−1

j ; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
N+1

∏
j=1

∏
N
k=1 Γ (tkz j; p,q)∏

N+3
m=1 Γ (smz−1

j ; p,q)

∏
N
k=1 Γ (Stkz−1

j ; p,q)

N

∏
j=1

dz j

2πiz j
, (12.19)

where ∏
N+1
j=1 = 1, and

IM =
N

∏
k=1

N+3

∏
m=1

Γ (tksm; p,q)
Γ (Stks−1

m ; p,q) ∏
1≤l<m≤N+3

Γ (Ss−1
l s−1

m ; p,q) (12.20)

with the balancing condition S = ∏
N+3
m=1 sm.

The elliptic beta integral described by the equality IE = IM was discovered
by the first author and Warnaar in (93). Here it defines a new pair of N = 1 su-
persymmetric quantum field theories dual to each other, which was not considered
earlier in the literature. Moreover, it gives a counterexample to the classification of
s-confining theories in (15). Conjecturally, there exists a symmetry transformation
for a higher order generalization of IE depending on the bigger number of param-
eters. Correspondingly, there should exist a more complicated Seiberg duality as
well.
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12.2 Exceptional cases for unitary gauge groups

12.2.1 SU(6) with 4 f +4 f .

The following pair of models was constructed in (16):

SU(6) SU(4) SU(4) U(1)1 U(1)2 U(1)R
Q f f 1 1 3 1
Q̃ f 1 f −1 3 1
A T3A 1 1 0 −4 −1

M0 = QQ̃ f f 0 6 2
M2 = QA2Q̃ f f 0 −2 0
B1 = AQ3 f 1 3 5 2
B̃1 = AQ̃3 1 f −3 5 2
B3 = A3Q3 f 1 3 −3 0
B̃3 = A3Q̃3 1 f −3 −3 0

T = A4 1 1 0 −16 −4

Their superconformal indices read

IE =
(p; p)5

∞(q;q)5
∞

6!

∫
T5

∏1≤i< j<k≤6 Γ (Uziz jzk; p,q)

∏1≤i< j≤6 Γ (ziz−1
j ,z−1

i z j; p,q)

×
6

∏
j=1

4

∏
k=1

Γ (skz j, tkz−1
j ; p,q)

5

∏
j=1

dz j

2πiz j
, (12.21)

where ∏
6
j=1 z j = 1, and

IM = Γ (U4; p,q)
4

∏
k,l=1

Γ (sktl ,U2sktl ; p,q)

×
4

∏
k=1

Γ (SUs−1
k ,SU3s−1

k ,TUt−1
k ,TU3t−1

k ; p,q) (12.22)

with S = ∏
4
k=1 sk, T = ∏

4
k=1 tk, and the balancing condition STU6 = pq.

There is actually a lift of this duality to interacting magnetic theories found in
(17). The theory is self-dual and is based on the SU(6) gauge group and the flavor
symmetry group is

F = SU(6)×SU(6)×U(1)1×U(1)1.

The matter content of the dual theories is given in the following tables: the electric
theory

SU(6) SU(6) SU(6) U(1)1 U(1)2 U(1)R
Q f f 1 1 1 1

2
Q f 1 f −1 1 1

2
A T3A 1 1 0 −2 0

and the magnetic theory
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SU(6) SU(6) SU(6) U(1)1 U(1)2 U(1)R
q f f 1 1 1 1

2
q f 1 f −1 1 1

2
a T3A 1 1 0 −2 0

M0 1 f f 0 2 1
M2 1 f f 0 −2 1

The electric superconformal index is

IE =
(p; p)5

∞(q;q)5
∞

6!

∫
T5

∏1≤i< j<k≤6 Γ (Uziz jzk; p,q)

∏1≤i< j≤6 Γ (ziz−1
j ,z−1

i z j; p,q)

×
6

∏
i=1

6

∏
j=1

Γ (siz j, tiz−1
j ; p,q)

5

∏
j=1

dz j

2πiz j
, (12.23)

and the magnetic index is

IM =
(p; p)5

∞(q;q)5
∞

6!

6

∏
i, j=1

Γ (sit j,U2sit j; p,q)

×
∫

T5

∏1≤i< j<k≤6 Γ (Uziz jzk; p,q)

∏1≤i< j≤6 Γ (ziz−1
j ,z−1

i z j; p,q)

6

∏
i=1

6

∏
j=1

Γ (
3
√

S
si

z j,
3
√

T
ti

z−1
j ; p,q)

×
5

∏
j=1

dz j

2πiz j
, (12.24)

where S = ∏
6
i=1, T = ∏

6
j=1 t j, and the balancing condition reads STU6 = (pq)3.

12.2.2 SU(5) with 3TA +3 f

Models (16):

SU(5) SU(3) SU(3) U(1) U(1)R
Q f 1 f −3 2

3

A TA f 1 1 0

AQ2 f f −5 4
3

A3Q TAS f 0 2
3

A5 TS 1 5 0

Indices:

IE =
(p; p)4

∞(q;q)4
∞

5!

∫
T4 ∏

1≤i< j≤5

∏
3
k=1 Γ (skziz j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

5

∏
j=1

3

∏
k=1

Γ (tkz−1
j ; p,q)

×
4

∏
j=1

dz j

2πiz j
, (12.25)
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with ∏
5
j=1 z j = 1, and

IM =
3

∏
k,l=1

Γ (T skt−1
l ; p,q) ∏

1≤ j<k≤3
Γ (Ss jsk; p,q)

×
3

∏
j=1

Γ (Ss2
j ; p,q)

3

∏
k, j,l=1;k 6= j

Γ (s2
ks jtl ; p,q)

3

∏
l=1

Γ (Stl ; p,q)2, (12.26)

where S = ∏
3
k=1 sk, T = ∏

3
k=1 tk, and the balancing condition reads S3T = pq.

12.2.3 SU(5) with 2TA +4 f +2 f .

Models (16):

SU(5) SU(2) SU(4) SU(2) U(1)1 U(1)2 U(1)R
Q f 1 1 f −2 1 1

3
Q̃ f 1 f 1 1 1 1

3
A TA f 1 1 0 −1 0

QQ̃ 1 f f −1 2 2
3

AQ̃2 f TA 1 2 1 2
3

A2Q TS 1 f −2 −1 1
3

A3Q̃ f f 1 1 −2 1
3

A2Q2Q̃ 1 f 1 −3 1 1

Indices:

IE =
(p; p)4

∞(q;q)4
∞

5!

∫
T4 ∏

1≤i< j≤5

∏
2
k=1 Γ (skziz j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

×
5

∏
j=1

4

∏
k=1

Γ (tkz−1
j ,ukz j; p,q)

4

∏
j=1

dz j

2πiz j
, (12.27)

with ∏
5
j=1 z j = 1, and

IM =
4

∏
k=1

Γ (SUtk; p,q)
4

∏
k=1

2

∏
l=1

Γ (tkul ,Stksl ; p,q)
2

∏
k=1

Γ (Suk; p,q)

×
2

∏
k,l=1

Γ (s2
l uk; p,q)

2

∏
k=1

∏
1≤l<m≤4

Γ (sktltm; p,q), (12.28)

where the balancing condition reads S3TU = pq and S = ∏
2
k=1 sk, T = ∏

4
k=1 tk, U =

u1u2.

12.2.4 SU(6) with 2TA + f +5 f .

Models (16):
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SU(6) SU(2) SU(5) U(1)1 U(1)2 U(1)R
Q f 1 1 −5 −4 0
Q̃ f 1 f 1 −4 0
A TA f 1 0 3 1

4

QQ̃ 1 f −4 −8 0
AQ̃2 f TA 2 −5 1

4
A3 T3S 1 0 9 3

4
A3QQ̃ f f −4 1 3

4
A4Q̃2 1 TA 2 4 1

Indices:

IE =
(p; p)5

∞(q;q)5
∞

6!

∫
T5 ∏

1≤i< j≤6

Γ (Uziz j; p,q)
Γ (ziz−1

j ,z−1
i z j; p,q)

×
2

∏
l=1

∏
1≤ j<k≤6

Γ (slz jzk; p,q)
6

∏
j=1

5

∏
k=1

Γ (tkz−1
j ; p,q)

5

∏
j=1

dz j

2πiz j
, (12.29)

with ∏
6
i=1 zi = 1, and

IM =
5

∏
k

Γ (Utk; p,q)
2

∏
k=1

5

∏
j=1

Γ (SUskt j; p,q)
2

∏
k=1

∏
1≤ j<l≤5

Γ (skt jtl ; p,q) (12.30)

× ∏
1≤ j<k≤5

Γ (S2t jtk; p,q)
2

∏
j=1

Γ (s3
j ,Ss j; p,q),

where the balancing condition reads S4TU = pq and S = ∏
2
k=1 sk, T = ∏

5
k=1 tk.

12.2.5 SU(7) with 2TA +6 f .

Models (16):
SU(7) SU(2) SU(6) U(1) U(1)R

Q f 1 f −5 1
3

A TA f 1 3 0

AQ2 f TA −7 2
3

A4Q TS f 7 1
3

Indices:

IE =
(p; p)6

∞(q;q)6
∞

7!

∫
T6 ∏

1≤i< j≤7

1
Γ (ziz−1

j ,z−1
i z j; p,q)

×
2

∏
k=1

∏
1≤i< j≤7

Γ (skziz j; p,q)
6

∏
k=1

7

∏
j=1

Γ (tkz−1
j ; p,q)

6

∏
j=1

dz j

2πiz j
, (12.31)

with ∏
7
i=1 zi = 1, and

IM =
6

∏
k=1

Γ (S2tk; p,q)
6

∏
k=1

2

∏
l=1

Γ (Ss2
l tk; p,q)

2

∏
k=1

∏
1≤l<m≤6

Γ (sktltm; p,q),

(12.32)
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where the balancing condition reads S5T = pq and S = ∏
2
k=1 sk, T = ∏

6
k=1 tk.

All the equalities of superconformal indices of dual theories, IE = IM , de-
scribed in this section represent new elliptic beta integrals requiring a rigorous
proof (the parameter values are assumed to guarantee that only sequences of poles
of the integrands converging to zero are located inside the contour T).

12.3 Symplectic gauge group

12.3.1 SP(2N) with (2N +4) f .

Models (43):
SP(2N) SU(2N +4) U(1)R

Q f f 2r = 1
N+2

Q2 TA 2r = 2
N+2

Indices:

IE =
(p; p)N

∞(q;q)N
∞

2NN!

∫
TN ∏

1≤i< j≤N

1
Γ (z±1

i z±1
j ; p,q)

×
N

∏
j=1

∏
2N+4
m=1 Γ (tmz±1

j ; p,q)

Γ (z±2
j ; p,q)

dz j

2πiz j
(12.33)

and

IM = ∏
1≤m<s≤2N+4

Γ (tmts; p,q), (12.34)

where the balancing condition reads ∏
2N+4
m=1 tm = pq.

The equality IE = IM was introduced and partially justified by van Diejen and
the first author in (19) and completely proven in (65) and (83). Its simplest p → 0
limit yields one of the Gustafson q-beta integrals (35).

12.3.2 SP(2N) with 6 f and TA.

This duality was considered in (12; 18). The flavor symmetry group is F =
SU(6)×U(1) and the field content is

SP(2N) SU(6) U(1) U(1)R
Q f f N−1 2r = 1

3
A TA 1 −3 0

Ak 1 −3k 0
QAmQ TA 2(N−1)−3m 2

3

where k = 2, . . . ,N and m = 0, . . . ,N−1.
The electric superconformal index is given by the integral

IE =
(p; p)N

∞(q;q)N
∞

2NN!
Γ (t; p,q)N−1

∫
TN ∏

1≤i< j≤N

Γ (tz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
N

∏
j=1

∏
6
m=1 Γ (tmz±1

j ; p,q)

Γ (z±2
j ; p,q)

N

∏
j=1

dz j

2πiz j
, (12.35)



Elliptic Hypergeometry of Supersymmetric Dualities 65

and the magnetic index is

IM =
N

∏
j=2

Γ (t j; p,q)
N

∏
j=1

∏
1≤m<s≤6

Γ (t j−1tmts; p,q), (12.36)

where the balancing condition reads t2N−2
∏

6
m=1 tm = pq.

The equality IE = IM coincides with the elliptic Selberg integral suggested
by van Diejen and the first author in (19) and proven in (20) as a consequence
of the BCn-elliptic beta integral of type I (its direct proof is given also in (65)).
The Selberg integral plays a fundamental role in mathematics and mathematical
physics because of a large number of applications (30). Note that this exactly
computable integral gives a confirmation of the KS duality for the special values
of parameters N f = 3,K = N.

12.3.3 SP(2M)+4 f +2M f +TA.

This new confining duality is obtained from the results of Sect. 7 by formal setting
N = 0. The models are described in the table:

SP(2M) SU(4) SP(2l1) SP(2l2) . . . SP(2lK) U(1) U(1)R
W1 f f 1 1 . . . 1 −M−2

4 0
Q1 f 1 f 1 . . . 1 − n1

2 1
Q1 f 1 1 f . . . 1 − n2

2 1
. . .
QK f 1 1 1 . . . f − nK

2 1
X TA 1 1 1 . . . 1 1 0

W 2
1 X j T A 1 1 . . . 1 j− M−2

2 0
W1Q1Xk1 f f 1 . . . 1 −M−2

4 − n1
2 + k1 1

W1Q2Xk2 f 1 f . . . 1 −M−2
4 − n2

2 + k2 1
. . .

W1QKXkK f 1 1 . . . f −M−2
4 − nK

2 + kK 1

where j = 0, . . . ,M−1,ki = 0, . . . ,ni−1 for any i = 1, . . . ,K,n1 6= n2 6= . . . 6= nK
and ∑

K
i=1 lini = M.

The superconformal indices have the form

IE =
(p; p)M

∞ (q;q)M
∞

2MM!
Γ (t; p,q)M−1

∫
TM ∏

1≤i< j≤M

Γ (tz±1
i z±1

j ; p,q)

Γ (z±1
i z±1

j ; p,q)

×
M

∏
j=1

∏
4
k=1 Γ (tt−1

k z±1
j ; p,q)∏

K
r=1 ∏

lr
m=1 Γ (sr,mz±1

j ; p,q)

Γ (z±2
j ; p,q)∏

K
r=1 ∏

lr
m=1 Γ (tnr sr,mz±1

j ; p,q)

dz j

2πiz j

(12.37)

and

IM =
M−1

∏
i=0

∏
1≤k<r≤4

Γ (t i+2t−1
k t−1

r ; p,q)
4

∏
k=1

K

∏
r=1

lr

∏
i=1

nr−1

∏
km=0

Γ (tkm+1t−1
k sr,i; p,q)

Γ (tkmtksr,i; p,q)
,

(12.38)
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where the balancing condition is ∏
4
r=1 tr = t2+M . The equality IE = IM was conjec-

tured in (68) and proven in (9). This duality gives another example of s-confining
theories missed in (15).

12.3.4 SP(2K(N f −2)) with N f f +TA.

This duality was considered in (14; 50). From (10.1) we see that the choice N =
K(N f − 2) yields Ñ = 0, and the theory is s-confining. The field content of the
electric and magnetic theories is easily found from the tables given in Sect. 10.1.
For brevity we skip the electric superconformal index given by (10.2), and present
directly the magnetic index

IM = Γ (U ; p,q)−1
K

∏
l=1

∏
1≤i< j≤2N f

Γ (U l−1sis j; p,q), (12.39)

where U = (pq)
1

K+1 and the balancing condition reads U2KN f−2K
∏

2N f
i=1 si =

(pq)N f . The conjecture IE = IM represents a new elliptic beta integral. For K = 1
it reduces to the proven relation of Sect. 12.3.1.

12.3.5 SP(2(N f −2+2KN f )) with N f f +TS.

Looking at (10.4) and fixing N = N f −2+2KN f , we obtain the s-confining the-
ory which was considered in (14; 50). The corresponding electric superconformal
index is given by (10.5), and the magnetic index takes the form

IM =
K

∏
l=0

∏
1≤i< j≤2N f

Γ (U lsis j; p,q)

×
K−1

∏
l=0

∏
1≤i< j≤2N f

Γ (U (2l+1)/2sis j; p,q)
2N f

∏
i=1

Γ (U (2l+1)/2s±2
i ; p,q),

(12.40)

where U =(pq)
1

K+1 and the balancing condition reads U2N f−2+4KN f ∏
2N f
i=1 si=(pq)N f .

The conjecture IE = IM represents a new elliptic beta integral.

12.3.6 SP(2(3KN f −4K−2)) with N f f +2TA.

Looking at (10.7) and fixing N = 3KN f − 4K − 2 for odd K, we obtain the s-
confining theory which was considered in (50). The corresponding electric super-
conformal index is given by (10.8), and the magnetic index takes the form

IM = Γ (U,U
K
2 ; p,q)−1

K−1

∏
J=0

2

∏
L=0

∏
1≤i< j≤2N f

Γ (UJ+ KL
2 sis j; p,q)

×
K−1

2

∏
J=0

2N f

∏
j=1

Γ (U2J+1+ K
2 s2

j ; p,q), (12.41)
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where U = (pq)
1

K+1 and the balancing condition reads U3KN f−2K−1
∏

2N f
i=1 si =

(pq)N f . Rigorous justification of the expected equality IE = IM is absent at the
moment.

12.3.7 SP(2(3KN f −4K +2)) with N f f +TS +TA.

Looking at (10.10) and fixing N = 3KN f − 4K + 2 for K odd, we obtain the s-
confining theory which was considered in (50). The corresponding electric super-
conformal index is given by (10.11), and the magnetic index has the form

IM = Γ (U ; p,q)−1
K−1

∏
J=0

2

∏
L=0

∏
1≤i< j≤2N f

Γ (UJ+ KL
2 sis j; p,q)

K−1
2

∏
J=0

×
2N f

∏
j=1

Γ (U2J+ K
2 s2

j ; p,q), (12.42)

where U =(pq)
1

K+1 and the balancing condition reads U3KN f−2K+1
∏

2N f
i=1 si =(pq)N f .

The conjectural equality IE = IM is our last new elliptic beta integral for classical
root systems.

13 Exceptional G2 Group

G2 with 5 flavors. This s-confining duality was discussed in (33; 60). The electric
theory with the gauge group G2 and its magnetic dual are described in the table
below

G2 SU(5) U(1)R
Q 7 f 2r = 1

5

Q2 TS
2
5

Q3 T A
3
5

Q4 f 4
5

The superconformal indices are

IE =
(p; p)2

∞(q;q)2
∞

223

5

∏
m=1

Γ (tm; p,q)
∫

T2

∏
3
k=1 ∏

5
m=1 Γ (tmz±1

k ; p,q)

∏1≤ j<k≤3 Γ (z±1
j z±1

k ; p,q)

2

∏
j=1

dz j

2πiz j
,

(13.1)

where z1z2z3 = 1, |tm|< 1, and

IM =
5

∏
m=1

Γ (t2
m; p,q)

Γ ((pq)1/2tm; p,q) ∏
1≤l<m≤5

Γ (tltm; p,q)
Γ ((pq)1/2tltm; p,q)

(13.2)

with the balancing condition ∏
5
m=1 tm = (pq)1/2.

The conjecture IE = IM describes the first elliptic beta integral for exceptional
root systems (it was mentioned in (91) and proposed also earlier by M. Ito). Sub-
stituting t5 = (pq)1/2/(t1t2t3t4) in (13.1) and (13.2), and taking the limit p → 0,
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one obtains the four parameter q-beta integral on the G2 root system derived in
(36).

G2 with 5 < N f < 12 flavors. This duality was discovered by Pouliot in (61). The
electric theory has gauge group G2, but its magnetic dual has SU(N f − 3) gauge
group. Their field content is presented in the tables below.

The electric theory (the vector superfield V is omitted):

G2 SU(N f ) U(1)R
Q 7 f 2r = 1− 4

N f

and the magnetic theory (the vector superfield Ṽ is omitted):

SU(N f −3) SU(N f ) U(1)R
q f f 2rq = 3

N f
(1− 1

N f−3 )
q0 f 1 2rq0 = 1− 1

N f−3

s TS 1 2rs = 2
N f−3

M 1 TS 2rM = 2− 8
N f

Corresponding superconformal indices are described by the integrals

IE =
(p; p)2

∞(q;q)2
∞

223

N f

∏
m=1

Γ (tm; p,q)
∫

T2

∏
3
k=1 ∏

N f
m=1 Γ (tmz±1

k ; p,q)

∏1≤ j<k≤3 Γ (z±1
j z±1

k ; p,q)

2

∏
k=1

dzk

2πizk
,

(13.3)

where z1z2z3 = 1, and

IM =
(p; p)

N f−4
∞ (q;q)

N f−4
∞

(N f −3)! ∏
1≤ j<k≤N f

Γ (t jtk; p,q)
N f

∏
j=1

Γ (t2
j ; p,q)

×
∫

TNf −4 ∏
1≤ j<k≤N f−3

Γ ((pq)rsz jzk; p,q)
Γ (z−1

j zk,z jz−1
k ; p,q)

N f−3

∏
j=1

Γ ((pq)rsz2
j ; p,q)

×
N f−3

∏
j=1

Γ ((pq)(1−rs)/2z−1
j ; p,q)

N f

∏
k=1

Γ ((pq)(1−rs)/2t−1
k z−1

j ; p,q)
N f−4

∏
j=1

dz j

2πiz j
,

(13.4)

where ∏
N f−3
j=1 z j = 1, and the balancing condition reads ∏

N f
m=1 tm = (pq)(N f−4)/2.

The equality IE = IM represents a new symmetry transformation formula for gen-
eral elliptic hypergeometric integrals on the G2 root system. Independently, it was
also considered earlier by F. A. Dolan.

For N f = 5 the integral IM takes the form

IM =
(p; p)∞(q;q)∞

2 ∏
1≤ j<k≤5

Γ (t jtk; p,q)
5

∏
j=1

Γ (t2
j ; p,q)

×
∫

T

Γ ((pq)1/4z±1
j ; p,q)∏

5
k=1 Γ ((pq)1/4t−1

k z±1
j ; p,q)

Γ (z±2; p,q)
dz

2πiz
. (13.5)
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Using the univariate elliptic beta integral, one can compute this IM and find
the index coinciding with (13.2). As to the general G2-transformation IE = IM ,
it should be a consequence of the original SU(3)-gauge group Seiberg duality.
Indeed, let us take N = 3 and set t−1

i = si in the electric index (4.6). Then, if we
impose the constraint sN f = pq, we obtain the G2-group electric index (13.3) with
N f and ti replaced by N f −1 and si, respectively. Therefore it is expected that the
G2-magnetic index can be obtained after appropriate restrictions on IM in (4.7). A
difficulty lies in computing the limit sN f → pq, since it leads to a diverging integral
multiplied by a vanishing coefficient. This limit is currently under investigation.

14 ’t Hooft Anomaly Matching Conditions

In this section we describe the standard ’t Hooft anomaly matching conditions
(40; 97) for some of the new dualities. Needed Casimir operators for unitary and
symplectic groups can be found in Appendix C. There exist also the discrete
anomalies matching conditions (14), but we skipped their consideration in the
present work.

Multiple SP(2N) duality. Let us begin with the multiple duality for SP(2N) gauge
group found in (91) and discussed in Sect. 6. Coincidence of the anomalies is
checked for the smaller flavor groups of dual theories. The subgroup SU(4)×
SU(4)×U(1)B ×U(1)×U(1)R of the electric theory has the following triangle
anomaly coefficients:

SU(4)3
L 2N, SU(4)2

L×U(1)R −2N2 +1

SU(4)2
L×U(1)

3N2−2N−1
2

, SU(4)2
L×U(1)B 2N

U(1)2
B×U(1) −4N(N−1), U(1)2

B×U(1)R 0 (14.1)

U(1)2×U(1)B 0, U(1)2×U(1)R − N3−1
2

U(1)R −(2N2 +7N +1), U(1)3
R − (2N2 +N +1).

We have verified that all three dual magnetic theories have the same anomaly
coefficients. Also it is easy to check that the real anomaly is equal to zero in the
electric and magnetic theories. Explicitly, for the electric theory one has: 2N +2−
1
2 8− (2N−2) = 0.

SP↔ SP groups duality. Here we discuss the duality of Sec. 7. In the electric the-
ory, anomaly coefficients for SU(4)×SP(2l1)×SP(2l2)× . . .×SP(2lK)×U(1)×
U(1)R global symmetry group have the values

SU(4)3 −2M, SU(4)2×U(1) − 1
2

M(M−N−2)

SP(2li)2×U(1) −Mni, SU(4)2×U(1)R −2M

SP(2li)2×U(1)R 0, U(1)R 1−6M

U(1)3
R 1−6M

U(1)2×U(1)R
1
2
(
−M3 +2NM2−MN2−4MN−2M +2

)
(14.2)
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coinciding with the coefficients in the magnetic theory. Computation of the real
gauge anomaly coefficient yields: −4− (2M−2)+2M +2 = 0.

Multiple SU(2N) duality. The electric theory of Sec. 8 has the following anomaly
coefficients for SU(4)×SU(4)×U(1)1×U(1)2×U(1)B×U(1)R global symme-
try group:

SU(4)3 2N, SU(4)2×U(1)1 0

SU(4)2×U(1)B 2N, SU(4)2×U(1)2 4N(N−1)

SU(4)2×U(1)R −N, U(1)2
1×U(1)B 0

U(1)2
1×U(1)2 −8N(2N−1), U(1)2

1×U(1)R −2N(2N−1)

U(1)2
B×U(1)1 0, U(1)2

B×U(1)2 32N(2N−1)

U(1)2
B×U(1)R −8N, U(1)2

2×U(1)1 0

U(1)2
2×U(1)B 0, U(1)2

2×U(1)R −32N(N−1)2

U(1)R −8N +4N2−1, U(1)3
R −2N +4N2−1

(14.3)

which coincide with the anomaly coefficients in all three dual magnetic theories.
Calculation of the real gauge anomaly yields: − 1

2 8−2(2N−2)+4N = 0.

New confining duality. The electric theory of Sec. 12.1.14 has the following
anomaly coefficients for SP(2N)× SU(N + 3)×U(1)1 ×U(1)2 ×U(1)R global
symmetry group

SU(N +3)3 N +1, U(1)3
R − 1

2
(N +2)(N +3)

SU(N +3)2×U(1)R −(N +1), SP(2N)2×U(1) − (N +1)(N +3)
2

SU(N +3)2×U(1) N +1,

U(1)2×U(1)R −1
2
(N +1)2(N +2)(N +3)

U(1)R −1
2
(N +2)(N +3), SP(2N)2×U(1)R 0 (14.4)

and the same picture holds for the magnetic partner. Calculation of the real gauge
anomaly yields: −(N +3)− (N−1)+2(N +1) = 0.

SU ↔ SP groups duality. The anomaly matching for the common global group
SU(N +3)×SU(N +3)×U(1)B×U(1)R of the duality described in Sect. 11.1 is
checked and yields:

SU(N +3)3
L N +1, SU(N +3)2

L×U(1)R − (N +1)2

N +3
SU(N +3)2

L×U(1)B 2(N +1), U(1)2
B×U(1)R −8(N +1)2

U(1)R −(N2 +2N +2), U(1)3
R

N4−9N2−10N +2
(N +3)2 .

(14.5)
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SU ↔ SU groups duality. Here we consider the dualities of Sect. 11.2. The
anomaly matching is checked for the global group SU(K)L × SU(N + 3−K)L ×
U(1)1×SU(K)R×SU(N +3−K)R×U(1)2×U(1)B×U(1)R yielding

SU(K)3
L N +1, SU(K)2

L×U(1)R − (N +1)2

N +3
SU(K)2

L×U(1)B (N +1), SU(K)2
L×U(1)1 (N +1)(N +3−K)

U(1)2
B×U(1)1 0, U(1)2

B×U(1)R −2(N +1)2

U(1)2
1×U(1)B (N +1)(N +3)K(N +3−K)

U(1)2
1×U(1)R −(N +1)2K(N +3−K) (14.6)

U(1)R −(N2 +2N +2) U(1)3
R − N4−9N2−10N +2

(N +3)2 .

Computation of the real gauge anomaly yields: −2(N +1)+2(N +1) = 0.
Comparing the ’t Hooft anomaly matching conditions for all dualities de-

scribed in this paper and the analysis of total ellipticity of the elliptic hyperge-
ometric terms lying behind the equalities of superconformal indices, we come to
the following conjecture.

Conjecture The condition of total ellipticity for an elliptic hypergeometric term
is necessary and sufficient for validity of the ’t Hooft anomaly matching condi-
tions for dual superconformal field theories whose superconformal indices are
determined by this term.

For proving this hypothesis it is necessary to use the formal mathematical
definition of anomalies as cocycles of the gauge groups (see, e.g., (71)). For dual
theories we have two, in general different, gauge groups. Therefore the anomaly
matching condition looks like an equality of Chern classes of dual theories, and
the conditions of total ellipticity—as a condition of vanishing of the combined
Chern classes. This problem deserves a separate detailed discussion.

15 Conclusion

To summarize our results, on the mathematical side we have conjectured many
new symmetry transformations for elliptic hypergeometric integrals or exact eval-
uation formulas. On the physical side, we have found many new Seiberg dualities.
Sections 6, 7, 8, and 11 contain new electric-magnetic dualities for N = 1 SYM
theories based on unitary and symplectic gauge groups with specific matter con-
tent. Sections 12.1.14 and 12.3.3 contain new examples of S-confining theories
derived from known identities for elliptic hypergeometric integrals.

It should be clear that this paper does not contain a description of all known
dual superconformal field theories. We have limited ourselves only to simple
gauge groups G = SU(N),SP(2N), and G2. First, there are other simple groups
G = SO(N),F4,E6,E7,E8 consideration of which we have skipped. The situation
with the dualities for the exceptional groups (22; 48; 70) is not clear in general
(except of the G2-cases described above) due to the complexity of the invari-
ants of these groups (11; 63). There are very many dualities involving orthogonal



72 V. P. Spiridonov, G. S. Vartanov

groups SO(N). Originally we hoped to tackle them as well, but their amount is
very big, and it was decided to consider them separately. It is known that many
group-theoretical objects for the SO(N) groups can be obtained as reductions of
the SP(2N)-group constructions. Some of such reductions were considered by
Dolan and Osborn at the level of superconformal indices (26). However, there are
many dualities that they did not analyze. Many elliptic hypergeometric integrals
for the BN (i.e., SO(2N + 1) groups) and DN (i.e., SO(2N) groups) root systems
can be obtained by special restriction of the BCN-integrals (cf. the forms of the
corresponding invariant measures given in Appendix B). However, it is not clear
at the moment whether superconformal indices of all known SO(N)-group the-
ories and their duals can be obtained in this way. There are also other types of
reduction of the indices and dualities, e.g., those leading to dualities outside the
conformal windows (92).

Second, we have deliberately skipped consideration of the superconformal in-
dices for extended N > 1 supersymmetric field theories (6; 49). The best known
examples correspond to the Seiberg-Witten N = 2 theories (77; 78). Consider the
following electric and magnetic theories

SO(3) SU(3) U(1)R
Q f f 2

3

SO(4) SU(3) U(1)R
q f f 1

3
M 1 TS

4
3

As discussed by Intriligator and Seiberg (44; 45; 46) (see also (32)), the SO(3)
Seiberg duality electric model becomes the SU(2) group N = 4 super-Yang-Mills
theory in the infrared region after introducing the tree level superpotential Wtree ∝

detQ. Superconformal indices have the form

IE =
(p; p)∞(q;q)∞

2

3

∏
j=1

Γ ((pq)1/3s j; p,q)
∫

T

∏
3
j=1 Γ ((pq)1/3s jz±1; p,q)

Γ (z±1; p,q)
dz

2πiz
,

(15.1)

where ∏
3
j=1 s j = 1, and

IM =
(p; p)2

∞(q;q)2
∞

4 ∏
1≤i< j≤3

Γ ((pq)
2
3 sis j; p,q)

3

∏
i=1

Γ ((pq)
2
3 s2

i ; p,q)

×
∫

T2

∏
2
j=1 ∏

3
i=1 Γ ((pq)1/6s−1

i z±1
j ; p,q)

Γ (z±1
1 z±1

2 ; p,q)

2

∏
j=1

dz j

2πiz j
. (15.2)

By a change of integration variables y1 =
√

z1z2, y2 =
√

z1/z2 in IM , one of the
integrations can be taken explicitly with the help of univariate elliptic beta inte-
gral, which shows that (15.2) is equal to (15.1). This equality can be obtained
as a reduction of the BCN-relations as well (26). We suppose therefore that it is
necessary to consider first all possible SP(2N)-group identities for integrals and
then try to reduce them to the relations for superconformal indices of extended
supersymmetric dual theories with SO(N) gauge groups.

Third, we skipped the quiver gauge group cases, when there is more than one
simple gauge group (which corresponds also to the deconfinement phenomenon
(5)). Is is expected that equalities of the superconformal indices for them are mere
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consequences of the so-called Bailey-type chains (forming a tree) of symmetry
transformations for integrals discovered by the first author in (84) and extended
in (93) to root systems. Within this context, the duality transformation acquires a
simple meaning of the integral transform whose properties resemble the classical
Fourier transformation, see (93).

Let us list some other possible applications of our results. Counting of the
gauge invariant operators for a number of supersymmetric gauge theories was
considered in detail in (34; 39). It is not difficult to see that the corresponding
generating functions are obtained from our superconformal indices by taking the
limits p,q → 0. To take the simplest possible limit p → 0 one needs first to get
rid of the balancing conditions by multiplying a number of parameters by integer
powers of p and applying the reflection formula for the elliptic gamma function,
see (89). However, in the present work we have a much larger list of theories where
this gauge invariant operators counting technique is applicable (in particular, this
concerns the theories described in Sects. 7, 8, 9.2–9.6, 10.2–10.4, 11–13). The
limit p→ 0 in all these theories leads to q-hypergeometric functions, the meaning
of which is not clarified yet from the superconformal index point of view. The
subsequent limit q → 0 can be replaced by q → 1 yielding the plain hypergeo-
metric functions, which also should have thus some topological meaning in gauge
field theories. Similar clarification is needed for the situations when the elliptic
hypergeometric integrals are reduced to terminating elliptic hypergeometric series
by some special choices of the parameters, or for the relations between integrals
with different powers of p and q.

In (83; 88), the first author has constructed univariate biorthognal functions
associated with the elliptic beta integral. Naturally, it was conjectured there that
some multivariable biorthogonal functions exist for all known elliptic beta inte-
grals (which serve as the orthogonality measures). The first family of such func-
tions was constructed by Rains in (65; 66). As a consequence of our work, the
expected number of similar families of multivariable biorthogonal functions has
now increased essentially.

In (85; 87), it was shown that some of the BCN elliptic hypergeometric inte-
grals can be associated with the relativistic Calogero-Sutherland type models. It
was conjectured there that other models of such type can be built out of all other
existing elliptic beta integrals and their appropriate generalizations. Because we
have now the interpretation of the elliptic hypergeometric integrals as supercon-
formal indices of supersymmetric field theories, we come to the natural conjec-
ture that behind each N = 1 superconformal field theory there is a Calogero-
Sutherland type model for which these integrals serve either as the topological
indices or the wave functions normalizations, respectively. We would like to men-
tion in this context the known appearance of the usual elliptic Calogero-Sutherland
models within the N = 2 Seiberg-Witten theories (59).

The group-theoretical interpretation of the elliptic hypergeometric integrals
discussed in (73; 26; 91) and the present paper opens possibilities for general
structural theorems on the integrals themselves. It may play a key role in the
classification of such integrals on root systems. In particular, it naturally leads
to the conjecture that there exist infinitely (countably) many dualities and re-
lated elliptic hypergeometric integral identities. All the problems mentioned above
deserve detailed investigation either in relation to supersymmetric dualities or
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on plain mathematical grounds. As to the proofs of many new hypergeomet-
ric identities conjectured in this paper, we refer to known methods described in
(19; 20; 65; 69; 81; 83; 84; 93) (or indicated above in some cases) which are
available for their treatment. We plan to consider them case by case depending on
their tractability.
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Appendix A. Characters of Representations of Classical Groups

Here we present general results for characters of the Lie group representations
used in the paper. For the SU(N) group representations, the characters, depending
on x = (x1, . . . ,xN) subject to the constraint ∏

N
i=1 xi = 1, are the well known Schur

polynomials

sλ (x) = s(λ1,...,λN)(x) =
det
[
x

λ j+N− j
i

]
det
[
xN− j

i

] , (A.1)

where λ is the partition ordered so that λ1 ≥ λ2 ≥ ·· · ≥ λN . They obey the prop-
erty s(λ1,...,λN)(x) = s(λ1+c,...,λN+c)(x), where c ∈ Z. Therefore one can assume that
λN = 0 without loss of generality.

Let us list explicitly the simplest characters. The fundamental and antifunda-
mental representations:

χSU(N), f (x) = s(1,0,...,0)(x) =
N

∑
i=1

xi, χSU(N), f = s(1,...,1,0)(x) = χSU(N), f (x
−1).

The adjoint representation:

χSU(N),ad j(x) = s(2,1,...,1,0)(x) = ∑
1≤i, j≤N

xix−1
j −1.

The absolutely anti-symmetric tensor representation of rank two:

χSU(N),TA
(x) = s(1,1,0,...,0)(x) = ∑

1≤i< j≤N
xix j, χSU(N),T A

= χSU(N),TA
(x−1).
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The symmetric representation:

χSU(N),TS
(x)=s(2,0,...,0)(x) = ∑

1≤i< j≤N
xix j+

N

∑
i=1

x2
i , χSU(N),T S

(x)

= χSU(N),TS
(x−1).

The absolutely anti-symmetric tensor representation of rank three:

χSU(N),T3A
(x) = s(1,1,1,0,...,0)(x) = ∑

1≤i< j<k≤N
xix jxk.

The absolutely symmetric tensor representation of rank three:

χSU(N),T3S
(x) = s(3,0,...,0)(x) = ∑

1≤i< j<k≤N
xix jxk +

N

∑
i, j=1,i6= j

x2
i x j +

N

∑
i=1

x3
i .

In the mixed case, we have

χSU(N),TAS
(x) = s(2,1,0,...,0)(x) = 2 ∑

1≤i< j<k≤N
xix jxk +

N

∑
i, j=1;i6= j

x2
i x j.

The Weyl characters for SP(2N) group are given by the determinant

s̃(λ1,...,λN)(x) =
det
[
x

λ j+N− j+1
i − x

−λ j−N+ j−1
i

]
det
[
xN− j+1

i − x−N+ j−1
i

] , (A.2)

with λ1 ≥ λ2 ≥ ·· · ≥ λN ≥ 0. For the fundamental and antifundamental represen-
tations

χSP(2N), f (x) = χSP(2N), f (x) = s̃(1,0,...,0)(x) =
N

∑
i=1

(xi + x−1
i ),

For the adjoint representation

χSP(2N),ad j(x) = s̃(2,0,...,0)(x)

= ∑
1≤i< j≤N

(xix j + xix−1
j + x−1

i x j + x−1
i x−1

j )+
N

∑
i=1

(x2
i + x−2

i )+N.

For the absolutely anti-symmetric representation

χSP(2N),TA
(x) = s̃(1,1,0,...,0)(x) = ∑

1≤i< j≤N
(xix j + xix−1

j + x−1
i x j + x−1

i x−1
j )+N−1.

As to the exceptional group G2, its fundamental representation has the character

χ(z1,z2,z3) = 1+
3

∑
i=1

(
zi + z−1

i
)
,

where z1z2z3 = 1. The character for the adjoint representation of G2 group is

χ(z1,z2,z3) = 2+ ∑
1≤i< j≤3

(
ziz j + z−1

i z j + ziz−1
j + z−1

i z−1
j

)
.
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Appendix B. Invariant Matrix Group Measures

Here we describe the invariant measures for integrals over classical Lie groups
and the exceptional group G2. Such a measure for the unitary group SU(N) with
any symmetric function f (z), where z = (z1, . . . ,zN), ∏

N
j=1 z j = 1, has the form

∫
SU(N)

f (z)dµ(z) =
1

N!

∫
TN−1

∆(z)∆(z−1) f (z)
N−1

∏
j=1

dz j

2πiz j
, (B.1)

where ∆(z) is the Vandermonde determinant

∆(z) = ∏
1≤i< j≤N

(zi− z j).

The invariant measure for the symplectic group SP(2N) with any symmetric func-
tion f (z), z = (z1, . . . ,zN), has the form∫

SP(2N)
f (z)dµ(z) =

(−1)N

2NN!

∫
TN

N

∏
j=1

(z j − z−1
j )2

∆(z+ z−1)2 f (z)
N

∏
j=1

dz j

2πiz j
.

(B.2)

For the invariant measures over the orthogonal group SO(N) and any symmetric
function f (z), z = (z1, . . . ,zN), one has to distinguish the cases of odd and even
N: ∫

SO(2N)
f (z)dµ(z) =

1
2N−1N!

∫
TN

∆(z+ z−1)2 f (z)
N

∏
j=1

dz j

2πiz j
, (B.3)

and∫
SO(2N+1)

f (z)dµ(z)=
(−1)N

2NN!

∫
TN

N

∏
j=1

(
z

1
2
j − z

− 1
2

j

)2

∆(z+ z−1)2 f (z)
N

∏
j=1

dz j

2πiz j
.

(B.4)

The invariant measure for the exceptional group G2 and any symmetric function
f (z), z = (z1,z2,z3), where z1z2z3 = 1, has the form∫

G2

f (z)dµ(z) =
1

223

∫
T2

∆(z+ z−1)2 f (z)
2

∏
j=1

dz j

2πiz j
. (B.5)

Appendix C. Relevant Casimir Operators

Commutators of the generators T a,a = 1, . . . ,dim G, of some classical Lie group
G are defined with the help of structure constants f abc[

T a,T b
]

= i f abcT c. (C.1)
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It is straightforward to obtain the Casimir operators (97)

∑
a,l

(T a
r )m

l (T a
r )l

n = C2(r)δ m
n , ∑

n,m
(T a

r )m
n (T b

r )n
m = T (r)δ ab, (C.2)

where r is some irreducible representation. These Casimir operators and the di-
mension of the representation d(r) are connected through the adjoint representa-
tion adj,

d(r)C2(r) = d(adj)T (r). (C.3)

For checking the ’t Hooft anomaly matching conditions we need the triple Casimir
operator which comes from the trace

Aabc = Tr[T a{T b,T c}]. (C.4)

Then it is convenient to define the operator A(r) relative to the fundamental rep-
resentation

Aabc(r) = A(r)Aabc, (C.5)

where Aabc = Tr[T a
F {T b

F ,T c
F}] and T a

F are the generators in the fundamental rep-
resentation.

In the tables below we give the dimensions d(r), the Casimir operators 2T (r),
and A(r) for the unitary group and the dimensions d(r), the Casimir operators
T (r) for symplectic and G2 groups. Note that in the verification of the anomaly
matchings for unitary groups we use 2T (r).

SU(N) group:

Irrep r d(r) 2T (r) A(r)
f N 1 1

adj N2−1 2N 0
TA

1
2 N(N−1) N−2 N−4

TS
1
2 N(N +1) N +2 N +4

T3A
1
6 N(N−1)(N−2) 1

2 (N−3)(N−2) 1
2 (N−6)(N−3)

T3S
1
6 N(N +1)(N +2) 1

2 (N +3)(N +2) 1
2 (N +6)(N +3)

TAS
1
3 N(N−1)(N +1) N2−3 N2−9

SP(2N) group:
Irrep r d(r) T(r)

f 2N 1
adj = TS N(2N +1) 2N +2

TA N(2N−1)−1 2N−2

G2 group:
Irrep r d(r) T(r)

f 7 2
adj 14 8

Appendix D. Total Ellipticity for the KS Duality Indices

In order to illustrate the work hidden behind our conjectures, we briefly describe in
this Appendix verification of the total ellipticity for the transformation identity for
elliptic hypergeometric integrals associated with the Kutasov-Schwimmer duality
from Sect. 9.1.
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First, we change the integration variables z in (9.3) to z = U−1(ST )−
K

2Ñ y and
assume that the contours of integration in y-variables can be deformed back to T
without crossing the poles. Then the equality of integrals (9.2) and (9.3) is rewrit-
ten in the following form:

κN

∫
TN−1

∆E(z, t,s)
N−1

∏
j=1

dz j

2πiz j
= κÑ

∫
TÑ−1

∆M(y, t,s)
Ñ−1

∏
j=1

dy j

2πiy j
, (D.1)

where Ñ = KN f −N and

κN =
(p; p)N−1

∞ (q;q)N−1
∞

N!
Γ (U ; p,q)N−1

with U = (pq)
1

K+1 . The kernels of the elliptic hypergeometric integrals are

∆E(z, t,s) = ∏
1≤i< j≤N

Γ (Uziz−1
j ,Uz−1

i z j; p,q)

Γ (ziz−1
j ,z−1

i z j; p,q)

N f

∏
i=1

N

∏
j=1

Γ (siz j, t−1
i z−1

j ; p,q),

∆M(y, t,s) =
K

∏
l=1

N f

∏
i, j=1

Γ (U l−1sit−1
j ; p,q) ∏

1≤i< j≤Ñ

Γ (Uyiy−1
j ,Uy−1

i y j; p,q)

Γ (yiy−1
j ,y−1

i y j; p,q)

×
N f

∏
i=1

Ñ

∏
j=1

Γ (s−1
i y j,U2tiy−1

j ; p,q), (D.2)

where ∏
N
i=1 zi = 1,∏Ñ

i=1 yi = U Ñ+NK(pq)−
1
2 N f KSK , and U2NST−1 = (pq)N f .

Theorem 5 The function

ρ(z,y, t,s) =
∆E(z, t,s)
∆M(y, t,s)

is a totally elliptic hypergeometric term.

Ellipticity of the z-variables q-certificates. As described in Sect. 2, we should con-
sider the ratios

hz
a(z,y, t,s,q) =

ρ(z,y, t,s)|za→qza,zN→q−1zN

ρ(z,y, t,s)

=
N−1

∏
j=1, j 6=a

θ(Uzaz−1
j ,Uz jz−1

N ,q−1z−1
a z j,q−1z−1

j zN ; p)

θ(Uq−1z−1
a z j,Uq−1z−1

j zN ,zaz−1
j ,z jz−1

N ; p)

×
θ(Uqzaz−1

N ,Uzaz−1
N ,q−2z−1

a zN ,q−1z−1
a zN ; p)

θ(Uq−1z−1
a zN ,Uq−2z−1

a zN ,qzaz−1
N ,zaz−1

N ; p)

×
N f

∏
i=1

θ(siza; p)
θ(q−1sizN ; p)

θ(t−1
i z−1

N ; p)
θ(q−1t−1

i z−1
a ; p)

, (D.3)
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where a = 1, . . . ,N−1, and check that these are totally elliptic functions. Indeed,
hz

a(z,y, t,s,q) functions are automatically invariant under the transformations 1)
sb → psb,sN f → p−1sN f , 2) tb → ptb, tN f → p−1tN f , 3) yb → pyb,yÑ → p−1yÑ .
Whereas the invariance with respect to the substitutions 4) zc → pzc,zN → p−1zN
for c 6= a or 5) za → pza,zN → p−1zN uses the balancing condition. Similarly, one
checks the invariance with respect to the mixed transformations sb → psb, tc → ptc
and yd → pKyd .

The most complicated part of the work consists in establishing ellipticity in
the variable q. The difficulty comes from the presence of fractional powers of q
entering (D.3) through the variable U . Because of that one should scale q by such
a power of p that there will be a match with the period of the elliptic functions
hz

a(z,y, t,s,q). Simultaneously, we should preserve the balancing condition and
all other constraints on the parameters we have. This is reached by the following
transformation of the parameters

6) q → pK+1q, t−1
N f

→ p(K+1)N f−2Nt−1
N f

, yÑ → pÑ+NK−N f K(K+1)/2yÑ ,

(D.4)

which leads to U → pU , as required. It is a matter of a neat computation (at
the intermediate steps there appears a very cumbersome expression) to show that
hz

a(z,y, t,s,q) do not change under these substitutions.

Ellipticity of the y-variables q-certificates. Now we consider the ratios

hy
a(z,y, t,s,q) =

ρ(z,y, t,s)|ya→qya,yÑ→q−1yÑ

ρ(z,y, t,s)

=
Ñ−1

∏
j=1, j 6=a

θ(Uq−1y−1
a y j,Uq−1y−1

j yÑ ,yay−1
j ,y jy−1

Ñ
; p)

θ(Uyay−1
j ,Uy jy−1

Ñ
,q−1y−1

a y j,q−1y−1
j yÑ ; p)

×
θ(Uq−1y−1

a yÑ ,Uq−2y−1
a yÑ ,qyay−1

Ñ
,yay−1

Ñ
; p)

θ(Uqyay−1
Ñ

,Uyay−1
Ñ

,q−2y−1
a yÑ ,q−1y−1

a yÑ ; p)

×
N f

∏
i=1

θ(q−1s−1
i yÑ ; p)

θ(s−1
i ya; p)

θ(U2q−1tiy−1
a ; p)

θ(U2tiy−1
Ñ

; p)
, (D.5)

where a = 1, . . . , Ñ − 1. Again, these are the totally elliptic functions. They are
automatically invariant under the transformations 1) sb → psb,sN f → p−1sN f , 2)
tb → ptb, tN f → p−1tN f , 3) zb → pzb,zN → p−1zN . The invariance with respect to
the substitutions 4) yb → pyb,yÑ → p−1yÑ ,b 6= a, or 5) ya → pya,yÑ → p−1yÑ
uses the balancing condition. The most difficult part is the verification of the in-
variance with respect to the transformations

6) q → pK+1q, U → pU, t−1
N f

→ p(K+1)N f−2Nt−1
N f

,

yÑ → pÑ+NK−N f K(K+1)/2yÑ .
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Ellipticity of the t-parameters q-certificates. Now we need to investigate the func-
tions

ht
a(z,y, t,s,q) =

ρ(z,y, t,s)|ta→qta,tNf →q−1tNf

ρ(z,y, t,s)

=
K

∏
l=1

N f

∏
i=1

θ(U l−1q−1sit−1
a ; p)

θ(U l−1sit−1
N f

; p)

N

∏
j=1

θ(t−1
N f

z−1
j ; p)

θ(q−1t−1
a z−1

j ; p)

×
Ñ

∏
i=1

θ(U2q−1tN f y−1
j ; p)

θ(U2tay−1
j ; p)

, (D.6)

where a = 1, . . . ,N f − 1, and show that they are totally elliptic. Again, invari-
ance under 1) yb → pyb,yÑ → p−1yÑ , 2) sb → psb,sN f → p−1sN f , and 3) zb →
pzb,zN → p−1zN transformations is automatic. The balancing condition is needed
for symmetries 4) tc → ptc, tN f → p−1tN f ,c 6= a, and 5) ta → pta, tN f → p−1tN f
Computations during the verification of invariance under the transformations

6) q → pK+1q, U → pU, t−1
N f−1 → p(K+1)N f−2Nt−1

N f−1,

yÑ → pÑ+NK−N f K(K+1)/2yÑ

are very lengthy and require a lot of attention to reach the needed statement. Con-
sideration of the s-parameters certificates is equivalent to the t-variables case be-
cause of the symmetries of the initial integral kernels.
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17. C. Csáki M. Schmaltz W. Skiba J. Terning (1997) Selfdual N = 1
SUSY gauge theories Phys. Rev. D 56 1228 – 1238
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