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Abstract. We present a derivation of a manifestly symmetric form of the stress-energy-
momentum using the mathematical tools of exterior algebra and exterior calculus, bypassing the
standard symmetrizations of the canonical tensor. In a generalized flat space-time with arbitrary
time and space dimensions, the tensor is found by evaluating the invariance of the action to
infinitesimal space-time translations, using Lagrangian densities that are linear combinations
of dot products of multivector fields. An interesting coordinate-free expression is provided for
the divergence of the tensor, in terms of the interior and exterior derivatives of the multivector
fields that form the Lagrangian density. A generalized Leibniz rule, applied to the variation of
action, allows to obtain a conservation law for the derived stress-energy-momentum tensor. We
finally show an application to the generalized theory of electromagnetism.

1. Introduction
The stress-energy-momentum (SEM) tensor, a symmetric rank-2 tensor whose divergence is
related to the conservation laws in isolated systems, is an important mathematical object in
field theories that describes the flux of energy and momentum across regions of space-time [1].
Despite tensor symmetry is a relevant property in many physical contexts [2] —for instance it
is needed in the context of general relativity to describe the coupling with gravity—, the usual
derivations of the energy-momentum tensor such as the popular canonical procedure to get the
tensor, may lead to a not necessarily symmetric and not necessarily gauge-independent tensor.

In the context of field theories, it is rather common to find the so called canonical stress-
energy tensor, which is obtained by means of the Noether’s theorem as a conserved current
from the invariance of the action with respect to infinitesimal space-time translations [1], [3,
Sect. 3.2], [4, Sect. 2.5]. However, the canonical tensor is not symmetric by definition, and
requires symmetrization using, e. g. the Belinfante-Rosenfeld procedure [1, 5], [4, Sect. 2.5]. An
alternative method that directly leads to a symmetric stress-energy-momentum tensor builds
on the invariance of the action to variations in the Einstein-Hilbert space-time metric [1, 5]. In
parallel, the study of generalized SEM tensors using the formalism of fiber bundles is a fertile
area of research in mathematical physics [6, 7].

Using the tools provided by exterior algebra, briefly described in Sec. 2 together with the
problem setup, we derive the symmetric stress-energy-momentum tensor with a rather direct
method that is valid for a generic grade r of the multivector field, and arbitrary n space and
k time dimensions in Sec. 3. The conservation laws for the SEM tensor and the appearance in
electromagnetism are discussed in Sec. 4, and finally Sec. 5 concludes the paper.



IC-MSQUARE 2021
Journal of Physics: Conference Series 2090 (2021) 012050

IOP Publishing
doi:10.1088/1742-6596/2090/1/012050

2

2. Mathematical setup
We consider the tools of exterior calculus, allowing to combine the simplicity and intuitiveness of
standard vector calculus with the power of tools as tensors and differential forms, as motivated
in [8]. In a (k, n)-space-time, where k is the number of time coordinates and n is the number of
space coordinates, we consider two multivector fields, or r-vector fields, a and b, respectively

a =
∑
I∈Ir

aIeI , (1)

b =
∑
I∈Ir

bIeI , (2)

whose basis is defined by means of the exterior product, also known as wedge product ∧, as

eI = ei1 ∧ ei2 ∧ · · · ∧ eir , (3)

and where Ir is the family of permuted ordered lists of r indexes. For two given ordered lists I
and J , we have two multivector basis elements of grades, respectively, |I| and |J |, satisfying the
relation eI ∧ eJ = σ(I, J)eε(I,J), where σ(I, J) is the signature if the permutation sorting the
elements of I and J and eε(I,J) denotes the resulting sorting list.

We consider a Lagrangian density L given by the linear combination of dot products between
r-graded multivector fields a and b with coefficients γa,b, as

L =
∑
a,b

γa,b (a · b), (4)

where the dot product between two multivectors eI and eJ is defined for case |I| = |J | = r, as

eI · eJ = ∆IJ = ∆i1j1∆i2j2 . . .∆irjr , (5)

where ∆ij is the metric diagonal tensor giving +1 when both i-th and j-th coordinates coincide
and they are spatial, giving −1 when both are the same time coordinates, and zero otherwise.

The dot product · is defined for two multivectors of the same grade. In exterior algebra, we
also have the interior product between multivectors of different grade. The left-interior product
is defined as

eI eJ = ∆IIσ(J \ I, I)eJ\I , (6)

where the new basis eJ\I is a vector of grade |J | − |I| and it includes the indexes of J excluding
those in common with I, for I ⊆ J . As we defined the left interior product, we can also
write the right interior product, denoted by , which can be found by means of the relation
eJ eI = eI eJ(−1)|I|(|J |−|I|) [8, Sec. 2.2].

The exterior and interior products define the exterior and interior derivatives of a multivector
field a as ∂ ∧ a and ∂ a, where ∂ is the derivative operator given by

∂ =
∑
i∈I

∆ii∂iei, (7)

and I is the set of integers from 0 to k + n− 1.
The Lagrangian density in (4) and the derivative operator (7) play an important part in the

rest of the paper. We start by defining the generalized action in terms of the Lagrangian density.
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3. The symmetric stress-energy-momentum tensor
Let us consider the generalized action of the system Ssys as the integral over the whole space-time
of the Lagrangian density in (4), that is

Ssys =

∫
R
dk+nx

( ∑
a,b∈Ir

γa,b (a · b)

)
, (8)

where R is a suitable integration domain where fields decay fast enough and that its boundary
∂R is arbitrary small. We next apply the principle of stationary action. We start by shifting
the origin of coordinates by an infinitesimal perturbation vector εεε and we denote by {e} and
{e′} respectively the original and shifted basis elements. As proved in [9, Sec. 3.3], we are able
to find that, in general, the r-vector field a transforms under infinitesimal translation as

a′ = a−Gr
εεε × a, (9)

where Gr
εεε is a matrix having rows and columns indexed by couples of r-tuples and components

Gr
I,J . We write such matrix in terms of the the tensor product wij = ei⊗ej [9, Sec. 2.4], namely

Gr
εεε =

∑
I,J∈Ir

Gr
I,JwI,J , (10)

After some calculations as in [9, Sec. 3.3], we obtain the explicit expression

Gr
εεε =

∑
I∈Ir

∆II

[(∑
i∈I

∂iεi

)
wI,I +

∑
K∈Ir−1:ε(i,K)=I,j /∈K

σ
(
Ii↔j

)
∂iεj wI,ε(j,K)

]
, (11)

where Ii↔j corresponds to the list of indexes where the index i in I is replaced by j. For r = 0,
we have G0

εεε = 0, as there is only one option for I = J , the empty set Ø. In other words, 1′ = 1,
as in classical field theory the scalar field is not affected by space-time translations. Similarly,
for the vector case r = 1, the matrix is given by G1

εεε = ∂ ⊗ εεε, e. g., ∂ ′ = (1 − ∂ ⊗ εεε) × ∂,
and therefore G1

I,J = Gij = ∆ii∂iεj . It is then easy to identify the cases G0
εεε and G1

εεε with the

classical scalar and vector transformations, respectively. To obtain the transformation (9), we
consider that a vector basis element transforms as

e′i = ei × (1+ ∂ ⊗ εεε), (12)

where 1 is the square identity matrix, defined for a general grade r, 1r =
∑

I∈Ir ∆IIwI,I , the
operation × is defined by means fo the basis elements as ei×wj,ℓ = ∆ijeℓ, and the matrix ∂⊗εεε
represents the Jacobian-partial derivative matrix. In general, the transformation in (12) may
also be written as e′i =

∑
j τi,jej for some τi,j = δij + ∂iεj . The transformation (12) is extended

to multivector basis elements as the exterior product of transformations, namely

e′I = e′i1 ∧ e′i2 · · · ∧ e′ir (13)

It can be shown that the transformation (13) can be written in terms of the determinant of a
matrix τI⊗J , that is

e′I =
∑
J∈Ir

det τI⊗J eJ , (14)

where

τI⊗J =

τi1,j1 . . . τi1,jr
...

...
τir,j1 . . . τir,jr

 .
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To evaluate (14), we keep terms not exceeding the first derivative of εεε, and we note that, for
each list I, we need only to consider J such that I = J or |I ∩ J | = s − 1, in order to remove
unneeded terms. Thus, for I = J , we have that det τI⊗I = 1+

∑
i∈I ∂iεi, while for |I∩J | = s−1

we obtain det τI⊗J = σ
(
Ii↔j

)
∂iεj as the weights in the transformation (13).

Now, we consider the action of the single term

Sa·b =

∫
R
dk+nx (a · b), (15)

and we write its transformed action as

Sa′·b′ =

∫
R′

dk+nx′ (a′ · b′), (16)

where the differential follows the transformation law dk+nx′ = dk+nx
(
1 + ∂ · εεε) and the

multivector fields a and b transform according to (9). We evaluate the variation

δSa·b = Sa′·b′ − Sa·b, (17)

which, substituting the relations for the transformation, can be written

δSa·b =

∫
R
dk+nx(∂ · εεε) (a · b)−

∫
R
dk+nx

(
(Gr

εεε × a) · b
)
−
∫
R
dk+nx

(
a · (Gr

εεε × b)
)
, (18)

having replaced R′ by R, since we assumed that the difference between the integration regions
R′ and R lies far from the origin, coupled with the rapid decay of the fields.

The properties of exterior algebra and calculus imply that (17) can be expressed as

δSa·b =

∫
R
dk+nx (∂ ⊗ εεε) ·Ta·b, (19)

where Ta·b is a tensor given by

Ta·b = (−1)r
(
a⊙ b+ a ? b

)
, (20)

in terms of two special tensorial operations, ⊙ and ?, respectively defined as

a⊙ b =
∑
i≤j

(∆iiei a) · (b ej∆jj)wij , (21)

a ? b =
∑
i≤j

(∆iiei ∧ a) · (b ∧ ej∆jj)wij . (22)

For completeness, we can also write the components of (20), which are

T a·b
ii = ∆ii

( ∑
K∈Is:i/∈K

∆KKaKbK −
∑

K∈Is:i∈K
∆KKaKbK

)
, (23)

T a·b
ij = −

∑
K∈Is−1:i,j /∈K

∆KKσ
(
ε(i,K)i↔j

)(
aε(i,K)bε(j,K) + bε(i,K)aε(j,K)

)
. (24)

Finally, from linearity in (8), we find that the SEM tensor is given by

Tsys =
∑

a,b∈Ir

γa,bTa·b. (25)
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The identity between (18) and (19) is established thanks to the relation

(∂ ⊗ εεε) ·Ta·b = (∂ · εεε) (a · b)− (Gr
εεε × a) · b− a · (Gr

εεε × b), (26)

which can be proved simply by expanding the left hand side and the right hand side.
It is worth noting that the tensor product wij is not necessarily symmetric, in fact (21)

and (22) are not separately, but they are when summed, since (20) is symmetric, as can be
manifestly deduced by (23) and (24). We next discuss a conservation law for the SEM tensor
and an application to electromagnetism.

4. Conservation law for energy-momentum and generalized electromagnetism
We finally study the change of action integral as the flux of the tensor across a slice of space-
time [10, Sec. 4.3]. We apply the generalized Leibniz rule [9, Eq. (120)]

∂ · (εεε T) = εεε · (∂ T) + (∂ ⊗ εεε) ·T, (27)

in order to write the action variation (19) into

δSa·b = −
∫
R
dk+nx (∂ Ta·b) · εεε, (28)

removing the total derivative term because of boundary conditions. We also provide an
interesting coordinate-free expression of the divergence of the tensor Ta·b in (20), that
corresponds to the interior derivative in exterior calculus, in terms of the interior ∂ and
exterior ∂∧ derivatives, given by

∂ Ta·b = a (∂ ∧ b) + b (∂ ∧ a)− a (∂ b)− b (∂ a).

Under the assumption that space-time translations are a symmetry of the system and having
selected fields that decay sufficiently fast at the boundary of the region R, then we have that
δSa·b = 0 and, as a consequence, the divergence of the SEM tensor of the system vanishes
because of linearity, namely

∂ Tsys =
∑

a,b∈Ir

γa,b∂ Ta·b = 0. (29)

We have hence obtained a conservation law for the derived stress-energy-momentum tensor.
As an example, we consider the free Lagrangian density for generalized electromagnetism [11],

which for any k, n, given the generalized Maxwell field F, with grade r, written

Lfree-gem = −1

2
F · F. (30)

This single term Lagrangian density of type (4), where a = b = F, leads to the SEM tensor

Tfree-gem = −1

2

(
F⊙ F+ F ? F

)
, (31)

and, as we have seen in (23) and (24), we can write on- and off-diagonal components as

T free-gem
ii =

(−1)r

2
∆ii

( ∑
I∈Ir:i∈I

F 2
I ∆II −

∑
I∈Ir:i/∈I

F 2
I ∆II

)
(32)

T free-gem
ij = −

∑
L∈Ir−1:i,j ̸=L

σ(L, i)σ(j, L)Fi+LFj+L∆LL, (33)
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according to [10] and to the stress-energy tensor for standard electromagnetism with bivectors,
or the Faraday tensor, which can be simply recovered by setting r = 2, k = 1, n = 3, [11,
Sect. 12.10], [12, Sect. 33]. In generalized electromagnetism, the symmetric structure of the
tensor (31) is found using the Maxwell equations

∂ F = J, (34)

∂ ∧ F = 0, (35)

where J is a (r − 1)-multivectorial source. We identify the generalized Lorentz force density
f = J F, which using (34) and (35), we write as

f = (∂ F) F+ (∂ ∧ F) F. (36)

The right-hand side of (36) corresponds to the divergence of a symmetric tensor Tfree-gem in (31),
that is a conservation law of electromagnetism [10, Sec. A.2]

∂ Tfree-gem + f = 0. (37)

5. Conclusions
For a Lagrangian density expressed as dot product between multivector fields, we provided an
exterior-algebraic derivation of the symmetric stress-energy-momentum tensor, considering a
closed physical system and imposing the invariance of the action to infinitesimal space-time
translations. Our method to obtain the stress-energy-momentum tensor and its divergence
is suited not only for free field theories, but also for interaction phenomena mathematically
accommodated by the dot product a · b, which is something not so common to find in classical
field theories. The physical interpretation of the terms due to interaction, including their gauge
invariance and possible connection to the tensor of the matter fields, will be object of further
investigations, as the derivation of the stress-energy-momentum tensor for other interesting
models of mathematical physics is left as a future work.
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