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Abstract. We present a derivation of a manifestly symmetric form of the stress-energy-
momentum using the mathematical tools of exterior algebra and exterior calculus, bypassing the
standard symmetrizations of the canonical tensor. In a generalized flat space-time with arbitrary
time and space dimensions, the tensor is found by evaluating the invariance of the action to
infinitesimal space-time translations, using Lagrangian densities that are linear combinations
of dot products of multivector fields. An interesting coordinate-free expression is provided for
the divergence of the tensor, in terms of the interior and exterior derivatives of the multivector
fields that form the Lagrangian density. A generalized Leibniz rule, applied to the variation of
action, allows to obtain a conservation law for the derived stress-energy-momentum tensor. We
finally show an application to the generalized theory of electromagnetism.

1. Introduction

The stress-energy-momentum (SEM) tensor, a symmetric rank-2 tensor whose divergence is
related to the conservation laws in isolated systems, is an important mathematical object in
field theories that describes the flux of energy and momentum across regions of space-time [IJ.
Despite tensor symmetry is a relevant property in many physical contexts [2] —for instance it
is needed in the context of general relativity to describe the coupling with gravity—, the usual
derivations of the energy-momentum tensor such as the popular canonical procedure to get the
tensor, may lead to a not necessarily symmetric and not necessarily gauge-independent tensor.

In the context of field theories, it is rather common to find the so called canonical stress-
energy tensor, which is obtained by means of the Noether’s theorem as a conserved current
from the invariance of the action with respect to infinitesimal space-time translations [1], [3]
Sect. 3.2], [4, Sect. 2.5]. However, the canonical tensor is not symmetric by definition, and
requires symmetrization using, e. g. the Belinfante-Rosenfeld procedure [1l 5], [4, Sect. 2.5]. An
alternative method that directly leads to a symmetric stress-energy-momentum tensor builds
on the invariance of the action to variations in the Einstein-Hilbert space-time metric [1l [5]. In
parallel, the study of generalized SEM tensors using the formalism of fiber bundles is a fertile
area of research in mathematical physics [6, [7].

Using the tools provided by exterior algebra, briefly described in Sec. [2] together with the
problem setup, we derive the symmetric stress-energy-momentum tensor with a rather direct
method that is valid for a generic grade r of the multivector field, and arbitrary n space and
k time dimensions in Sec. [3| The conservation laws for the SEM tensor and the appearance in
electromagnetism are discussed in Sec. [4] and finally Sec. [5| concludes the paper.
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2. Mathematical setup

We consider the tools of exterior calculus, allowing to combine the simplicity and intuitiveness of
standard vector calculus with the power of tools as tensors and differential forms, as motivated
in [§]. In a (k,n)-space-time, where k is the number of time coordinates and n is the number of
space coordinates, we consider two multivector fields, or r-vector fields, a and b, respectively

a= Y arey, (1)
1€,

b= Z b[e], (2)

1€,

whose basis is defined by means of the exterior product, also known as wedge product A, as
er=e, Ne, N---Nej,, (3)

and where Z, is the family of permuted ordered lists of r indexes. For two given ordered lists
and J, we have two multivector basis elements of grades, respectively, || and |.J|, satisfying the
relation e; A ey = o(1,J)e, s, ), where o(l,J) is the signature if the permutation sorting the
elements of I and J and e,(; ;) denotes the resulting sorting list.

We consider a Lagrangian density £ given by the linear combination of dot products between
r-graded multivector fields a and b with coefficients va p, as

L= vap(a-b), (4)
a,b

where the dot product between two multivectors e; and ey is defined for case |I| = |J| =7, as
er-ey = Ay = NiyjiNigjy -+ Dij ()

where A;; is the metric diagonal tensor giving +1 when both i-th and j-th coordinates coincide
and they are spatial, giving —1 when both are the same time coordinates, and zero otherwise.
The dot product - is defined for two multivectors of the same grade. In exterior algebra, we
also have the interior product between multivectors of different grade. The left-interior product
is defined as
erte;=Apo(J\I,Iens, (6)

where the new basis e j\; is a vector of grade |J| — |I| and it includes the indexes of J excluding
those in common with I, for I C J. As we defined the left interior product, we can also
write the right interior product, denoted by L, which can be found by means of the relation
ejLer=erL EJ(—1)|I|(|J‘_‘I‘) [8, Sec. 2.2].

The exterior and interior products define the exterior and interior derivatives of a multivector
field a as @ A a and 8 _1 a, where 9 is the derivative operator given by

8=> Ajde;, (7)
i€T

and 7 is the set of integers from 0 to k +n — 1.
The Lagrangian density in and the derivative operator play an important part in the
rest of the paper. We start by defining the generalized action in terms of the Lagrangian density.
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3. The symmetric stress-energy-momentum tensor
Let us consider the generalized action of the system Sy as the integral over the whole space-time
of the Lagrangian density in , that is

Ssys = /de-mx ( Z Ya,b (a : b))a (8)

a,ble

where R is a suitable integration domain where fields decay fast enough and that its boundary
OR is arbitrary small. We next apply the principle of stationary action. We start by shifting
the origin of coordinates by an infinitesimal perturbation vector € and we denote by {e} and
{€’} respectively the original and shifted basis elements. As proved in [9] Sec. 3.3], we are able
to find that, in general, the r-vector field a transforms under infinitesimal translation as

a'=a—G] xa, 9)

where G is a matrix having rows and columns indexed by couples of r-tuples and components
G ;. We write such matrix in terms of the the tensor product w;; = e;®e; [, Sec. 2.4], namely

Gl= > Giywij, (10)
1,JET,
After some calculations as in [9], Sec. 3.3], we obtain the explicit expression

GL=) Ay

1€,

(Z &-a) Wi+ Z 0 (Liesj) 0ie5 Wi (k) | (11)

icl KeT, 1:e(i,K)=1j¢K

where I;.,; corresponds to the list of indexes where the index 7 in [ is replaced by j. For r = 0,
we have G{ = 0, as there is only one option for I = J, the empty set ). In other words, 1 =1,
as in classical field theory the scalar field is not affected by space-time translations. Similarly,
for the vector case 7 = 1, the matrix is given by G} = O ®e€, e. g, 8 = (1 -9 ®e€) x 9,
and therefore G; g = Gij = Ay;0;ej. It is then easy to identify the cases Gg and Gi. with the
classical scalar and vector transformations, respectively. To obtain the transformation @, we
consider that a vector basis element transforms as

ei=e;x(1+0®e), (12)

where 1 is the square identity matrix, defined for a general grade r, 1, = 1ez, Arrwr g, the
operation X is defined by means fo the basis elements as e; x w; , = A;jey, and the matrix d®e
represents the Jacobian-partial derivative matrix. In general, the transformation in (12) may
also be written as €], =) ;i Ti,j€j for some 7; ; = d;; + Oje;. The transformation (12} is extended
to multivector basis elements as the exterior product of transformations, namely

e = egl A e;2 RN eg-r (13)

It can be shown that the transformation can be written in terms of the determinant of a
matrix 7rgs, that is

e'I: Z det T7g 5 €7, (14)
JeTL,
where
Tivgr -+ Titge
TI®J = : :
7—7;,,,7]'1 o e T’ir-7j7'
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To evaluate , we keep terms not exceeding the first derivative of €, and we note that, for
each list I, we need only to consider J such that I = J or [[ N J| = s — 1, in order to remove
unneeded terms. Thus, for I = J, we have that det 7yq; = 1+, ; 0s¢4, while for [INJ| =s5—1
we obtain det 777 = O'(I“_)j) O;e; as the weights in the transformation .

Now, we consider the action of the single term

Sab = / d**x (a-b), (15)
R
and we write its transformed action as
Surry = / Ay (al - b), (16)
where the differential follows the transformation law d*"x’ = d’“‘”x(l + 0 - €) and the

multivector fields a and b transform according to @ We evaluate the variation
5Sa~b = Sa’-b’ - Sa-b7 (17)

which, substituting the relations for the transformation, can be written

5Sa = /Rd’“”xw-e) (a-b) - /Rd’””x (G xa)-b) - /Rd'“*"x (a-(GIxb)), (18)

having replaced R’ by R, since we assumed that the difference between the integration regions
R’ and R lies far from the origin, coupled with the rapid decay of the fields.
The properties of exterior algebra and calculus imply that can be expressed as

5San = [ "X (@@ e) Tan, (19)
R

where T,.p, is a tensor given by
Tab=(-1)(a®b+anb), (20)

in terms of two special tensorial operations, ® and @, respectively defined as

1<J
a®db= Z(Aiiei Na)-(bAejAj;)wij. (22)
1<j

For completeness, we can also write the components of (20]), which are

Ti?'b—Az‘z( > Axkarbg— Y AKKaKbK>7 (23)

KeTs:igK KeT,:ieK

Tf}'b = — Z Ao (e(i, K)icss) (ae(,10)be(, 1) T be(i, 1) Ge(j,K) ) - (24)
KEIs—l:i,j¢K

Finally, from linearity in , we find that the SEM tensor is given by

Tos= »_ YapTab. (25)
a,bEIr
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The identity between and is established thanks to the relation
(0%¢€)- Tap = (8-€) (a-b) — (GL x a) - b—a- (G x b), (26)

which can be proved simply by expanding the left hand side and the right hand side.
It is worth noting that the tensor product w;; is not necessarily symmetric, in fact (21
and are not separately, but they are when summed, since is symmetric, as can be

manifestly deduced by and . We next discuss a conservation law for the SEM tensor
and an application to electromagnetism.

4. Conservation law for energy-momentum and generalized electromagnetism
We finally study the change of action integral as the flux of the tensor across a slice of space-
time [10, Sec. 4.3]. We apply the generalized Leibniz rule [9, Eq. (120)]

9-eaT)=e-(0aT)+(0®e)-T, (27)

in order to write the action variation into
5Sup = — / A% (8 1 Ta) - ¢, (28)
R

removing the total derivative term because of boundary conditions. We also provide an
interesting coordinate-free expression of the divergence of the tensor T,y in , that
corresponds to the interior derivative in exterior calculus, in terms of the interior d_1 and
exterior A derivatives, given by

O1Tap=a1(0Ab)+ba(8Na)—aL (0ab)—bL (0a).

Under the assumption that space-time translations are a symmetry of the system and having
selected fields that decay sufficiently fast at the boundary of the region R, then we have that
0Sap = 0 and, as a consequence, the divergence of the SEM tensor of the system vanishes
because of linearity, namely

0 _1 Tsys = Z ’Ya,ba—l Tap =0. (29)
a,bEZr

We have hence obtained a conservation law for the derived stress-energy-momentum tensor.
As an example, we consider the free Lagrangian density for generalized electromagnetism [11],
which for any k, n, given the generalized Maxwell field F, with grade r, written

1
Efree—gem = _iF - F. (30)

This single term Lagrangian density of type , where a = b = F, leads to the SEM tensor

1
Tfree-gem = —i(F ©F+F0OF), (31)

and, as we have seen in (23|) and (24)), we can write on- and off-diagonal components as

Tee-gem -1)"
Tlfl g :< 2) A“< Z F?A][— Z F[2A11> (32)

IeZ, el I€Z, ¢l

free-gem : ;
T; gem — Z o(L,i)o(j, L) Fir L Fj+LALL, (33)

LET,_14,j#L
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according to [I0] and to the stress-energy tensor for standard electromagnetism with bivectors,
or the Faraday tensor, which can be simply recovered by setting r = 2, k = 1, n = 3, [11]
Sect. 12.10], [12, Sect. 33]. In generalized electromagnetism, the symmetric structure of the
tensor is found using the Maxwell equations

dIF =1, (34)
ONF =0, (35)

where J is a (r — 1)-multivectorial source. We identify the generalized Lorentz force density
f =J 1 F, which using and , we write as

f=0@aF)F+ (ONF)LF. (36)

The right-hand side of corresponds to the divergence of a symmetric tensor Ttyee-gem i ,
that is a conservation law of electromagnetism [10], Sec. A.2]

6_‘ Tfree_gem “I‘ f == 0 (37)

5. Conclusions

For a Lagrangian density expressed as dot product between multivector fields, we provided an
exterior-algebraic derivation of the symmetric stress-energy-momentum tensor, considering a
closed physical system and imposing the invariance of the action to infinitesimal space-time
translations. Our method to obtain the stress-energy-momentum tensor and its divergence
is suited not only for free field theories, but also for interaction phenomena mathematically
accommodated by the dot product a - b, which is something not so common to find in classical
field theories. The physical interpretation of the terms due to interaction, including their gauge
invariance and possible connection to the tensor of the matter fields, will be object of further
investigations, as the derivation of the stress-energy-momentum tensor for other interesting
models of mathematical physics is left as a future work.
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