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Abstract.

Quantum computers can be used to simulate the evolution of quantum systems via the
discretization of this evolution into unitary gate sequences. While Trotter-Suzuki (TS)
methods stand as the most prevalent approach for quantum simulation, their effectiveness is
contingent upon the sparsity of the Hamiltonian system. This is due to the precision and
gate complexity of the TS method being dependent on the number of terms within the
Hamiltonian. Despite attempts to mitigate this dependence through the random
permutation of terms within TS methods, scalability issues persist. To address this,
Campbell introduced the qDRIFT algorithm, leveraging random compilation to alleviate the
reliance on the Hamiltonian’s term count. However, the initial implementation of this
algorithm necessitated the involvement of classical computing resources for gate set
compilation. Our study presents two novel quantum circuit implementations of the qDRIFT
algorithm, eliminating the need for classical computing resources. We employ the Linear
Combination of Unitaries (LCU) approach and the Quantum Forking (QF) procedure to
construct efficient circuits to implement the qDRIFT algorithm. Furthermore, we conduct a
comparative analysis of the gate complexities between our proposed circuits and TS
methods, identifying the scenarios in which our circuits exhibit superior performance.

1 Introduction
The idea that Quantum computers can be used to simulate the dynamics of other quantum systems was
proposed by Feynman and Manin independently [1, 2]. The idea was that quantum computers could
provide a computational advantage over classical computers in simulating these systems to help us
better understand physical systems. Digital quantum computation relies on breaking down a
computation into a sequence of discrete single and two-qubit gates [3]. Therefore, if we want to simulate
the dynamics of quantum systems, which are described by continuous unitary evolution, we need to be
able to approximate this continuous unitary evolution as a discrete sequence of quantum gates. This
procedure is called quantum simulation [4]. The standard way to approximate the dynamics is by the
Trotter-Suzuki (TS) product formulas [5, 6, 7], which break down the unitary evolution into a sequence
of simpler unitaries that are generated by decomposing the Hamiltonian of the system in a specific
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manner. Although there are many novel methods [8, 9, 10, 11, 12], to do quantum simulation TS
product formulas are still found to be a good method both empirically [13] and theoretically [11].
However, some Hamiltonians, such as electronic structure Hamiltonians, contain a large number of
terms. This presents a problem for TS product formulas as the gate count scales poorly for
Hamiltonians with many terms. Therefore, a simulation method without this scaling problem would
have many significant applications. In [10], the authors develop a simulation algorithm that implements
TS product formulas with randomly permuted terms. This greatly improved the gate counts and the
dependence on the number of terms in the Hamiltonian. However, it was still a problem for systems
with a larger number of terms in the Hamiltonian because the gate count depended on the number of
terms. Campbell [14] developed a quantum simulation algorithm that uses random compilation to build
a gate set that will simulate the dynamics up to a given precision, with the gate count not dependent
on the number of terms in the Hamiltonian. This was a big improvement over TS product formulas as
we were no longer restricted to simulating systems with only sparse interactions to have a good gate
count. The algorithm was called the qDRIFT algorithm [14]. With this algorithm, one can better
simulate electronic struct Hamiltonians and other problems with Hamiltonians with many terms, such
as three-dimensional Jaynes-Cummings-Hubbard Model [15]. One of the problems that the qDRIFT
algorithm has, is that it relies on classical random sampling to perform the compilation of the gate set.
This may be a problem for some quantum algorithms where quantum simulation must be performed as
a sub-routine, and accessing a classical computer is impossible. Therefore, designing an efficient
quantum circuit implementation for the qDRIFT algorithm is important, so we do not require classical
sampling. In this work we prose the use of the Linear Combinations of Unitaries (LCU) approach [9]
and Quantum Forking (QF) [16], to implement the qDRIFT algorithm without classical sampling. We
shall construct the circuits to implement qDRIFT and analyse their gate complexities. We demonstrate
that the gate complexities for both approaches scale linearly in the number of terms in the Hamiltonian,
which is better than higher-order TS, which has quadratic scaling in the large order limit. We shall also
discuss how considering the cost of the classical sampling leads to the algorithm in [14] having the same
scaling as the circuit implementations done in this work. This will show that these circuit
implementations are as efficient as the algorithm in [14]. The rest of this article is outlined as follows.
In section 2, we shall discuss some preliminaries, outline the problem of Hamiltonian simulation, and
discuss the details of the TS product formula method for simulation. Section 3, will outline the qDRIFT
protocol from [14], and we outline how qDRIFT approximates continuous unitary evolution. In section
4 we present our quantum circuit implementations for the qDRIFT algorithm for both the LCU and QF
approach and we compute the gate complexities. Section 5 compares the gate complexities of our circuit
implementations with TS product formulas, and we illustrate the performance by plotting the gate
complexities. Lastly, in section 6 we make some concluding remarks and outline some open problems.

2 Preliminaries
The state space of a d-dimensional quantum system is the d-dimensional Hilbert space H ∼= Cd. The
system’s state can be described by a d-dimensional unit vector |ψ⟩ ∈ H , called a state vector. This
state is time-dependent when we are in the Schrödinger picture i.e. |ψ(t)⟩ is the state of the system at
some time t ≥ 0. The dynamics of our quantum system is governed by the Schrödinger equation,

i
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ , (1)

where H = H† is the Hamiltonian of the system, which can be represented as a d× d matrix for finite
dimensional systems and we use natural units where ℏ = 1. Formally, one solves the Schrödinger
equation for the initial state |ψ(t = 0)⟩ = |ψ(0)⟩,

|ψ(t)⟩ = e−iHt |ψ(0)⟩ . (2)

The operator exp(−iHt) is unitary and called the time evolution operator. We will usually write
U(t) = exp(−iHt) so that we have,

|ψ(t)⟩ = U(t) |ψ(0)⟩ , (3)

where the fact that U(t) is unitary implies U(t)†U(t) = 1 = U(t)U(t)†. One can equivalently describe
our quantum system and its evolution in the language of density operators and quantum channels. This
will be useful later on for our description of the qDRIFT protocol (see Section 3). In this description,
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the state of our system is described by a density operator ρ ∈ B(H ), with B(H ) being the space of
bounded linear operators acting on the Hilbert space H . Since our system is d-dimensional, the density
operator ρ is represented by a d× d matrix, which we call a density matrix. The term density operator
and density matrix are used interchangeably for finite-dimensional systems. The density matrix ρ is a
Hermitian and positive matrix that has a trace of 1 i.e.

ρ = ρ†, ρ ≥ 0, tr(ρ) = 1. (4)

The density matrix can also be time-dependent, i.e. ρ(t) is the state of the system at some time t ≥ 0.
Then, the dynamics of the system are governed by the Schrödinger equation, for the density matrix,

∂

∂t
ρ(t) = −i [H, ρ(t)] = H (ρ(t)) , (5)

where H (∗) = −i[H, ∗] is called a superoperator (because it is an operator that acts on other operators)
and H is again the Hamiltonian of the system. The formal solution of this equation is,

ρ(t) = e−iHtρ(0)eiHt = U(t)ρ(0)U(t)†, (6)

which describes the evolution of the system by the unitary operator U(t). This tells us that if we can
compute U(t), we can fully describe the dynamics of our system. However, this is highly non-trivial as
computing exponentials of operators is computationally hard. This leads us to the problem of quantum
simulation, which we shall discuss formally. Consider the Hamiltonian H with the following
decomposition,

H =

M∑
j=1

hjHj , (7)

where hj ∈ R and each Hj is Hermitian operator with the same dimensions as H and it is normalised so
that ∥Hj∥ = 1, for j = 1, ...,M . Where ∥·∥ denotes the operator norm, which is equal to the largest
singular value of an operator. One should note that we can always choose Hj so that the weighting hj
are all positive and real numbers, and we can bound the norm of the Hamiltonian as follows,

∥H∥ =

∥∥∥∥∥
M∑
j=1

hjHj

∥∥∥∥∥ ≤
M∑
j=1

hj∥Hj∥ ≤
M∑
j=1

hj , (8)

this bound will be important throughout this text so we define for convenience λ =
∑M

j=1 hj . The

decomposition of the Hamiltonian H should be chosen so that for each Hj the unitary exp(−iHjτ) can
be easily implemented on a quantum computer for any τ ∈ R. In quantum simulation, the goal then is
to find an approximation of exp(−iHt) into a sequence of gates exp(−iHjτ) up to some desired
precision ϵ > 0. We use the number of unitaries exp(−iHjτ) to quantify the cost of the quantum
computation. We aim to minimise the number of unitaries used in the approximation. A common way
to approximate exp(−iHt) is to use a Trotter-Suzuki (TS) product formula [5, 6, 7]. The TS product
formula uses products of unitaries exp(−iHjτ) to approximate exp(−iHt) up to any desired precision.
Here we summarise briefly how TS product formulas can be used. First, we consider a simulation time
t ≥ 0, and we divide the time interval from 0 to t into r segments, i.e. t/r. Then, define the first-order
TS product formula as,

S1(τ) :=

M∏
j=1

e−iHjτ , (9)

where τ ∈ R and this formula approximates exp(−iHτ) up to first order. Then if we consider S1(t/r)
r

then this will approximate exp(−iHt) in the large r limit i.e.

e−iHt ≈ S1(t/r)
r =

(
M∏
j=1

e−iHjt/r

)r

. (10)
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Since we want to approximate exp(−iHt) up to some desired precision ϵ > 0 we usually need to show,∥∥e−iHt − S1(t/r)
r
∥∥ ≤ ϵ. (11)

In [5], the precision to which the first order TS product formula approximates exp(−iHt) is calculated
and it is shown that,

∥∥e−iHt − S1(t/r)
r
∥∥ = O

(
(MΛt)2

r

)
(12)

where Λ = maxj hj . From this one can determine upper bound on the number of segments r given a
precision ϵ as,

r = O

(
(MΛt)2

ϵ

)
. (13)

Figure 1: (a) The quantum circuit that implements the first order TS product formula S1(t/r)
r to an

initial state |ψ(0)⟩ with the output state |ψ̃(0)⟩ which approximates the state |ψ(t)⟩ to a precision ϵ. (b)
This circuit shows how we can express S1(t/r) in terms of the the exponentials exp(−iHjt/r).

Now to simulate exp(−iHt) using the first order TS product formula, we decompose the Hamiltonian H
into the form (7), we specify a precision ϵ > 0 and a simulation time t ≥ 0, then we compute the
number of segments r = ⌈(MΛt)2/ϵ⌉, where ⌈·⌉ is the ceiling function. Using r, we dived the time t into
r segments, i.e. t/r, then we constructed a quantum circuit that implements S1(t/r) as seen in Figure
1. When constructing any quantum circuit, one always wants to analyse the gate complexity of the
circuit. Here, we define the gate complexity as an upper bound on the number of sequential unitary
gate layers that act on the input register of our quantum computer, where a unitary gate layer is
defined as a collection of gates that can be implemented in parallel at the same step of our circuit. For
example, if we have a quantum computer with an input register of |0⟩ ⊗ |0⟩ and we apply U1 = X and
U2 = H ⊗H to this register, the circuit is shown in Figure 2, we see that in total there are three
quantum gates however there are only two gate layers being applied to the input register U1 and U2.

Figure 2: Quantum Circuit showing two gate layers U1 and U2, with a total of three single qubit gates.
This circuit illustrates our notion of gate complexity as we shall only count sequential gate layers and
not gates on individual registers.

We can then compute the gate complexity of the circuit by counting the number of exponentials
exp(−iHjt/r) that we need to implement, as these will be the sequential unitary gate layers applied to
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the register |ψ(0)⟩. We see that the gate complexity g is then M times the number of segments r, i.e.

g = O

(
M3(Λt)2

ϵ

)
. (14)

The output of the circuit is shown in Figure 1. (a) is some quantum state |ψ̃(t)⟩ which approximates
the state |ψ(t)⟩ up to a precision ϵ, this can easily be seen by using the properties of the norm,∥∥∥|ψ(t)⟩ − |ψ̃(t)⟩

∥∥∥ =
∥∥e−iHt |ψ(0)⟩ − S1(t/r)

r |ψ(0)⟩
∥∥, (15)

=
∥∥(e−iHt − S1(t/r)

r
)
|ψ(0)⟩

∥∥, (16)

≤
∥∥e−iHt − S1(t/r)

r
∥∥∥|ψ(0)⟩∥, (17)

=
∥∥e−iHt − S1(t/r)

r
∥∥, (18)

≤ ϵ. (19)

Now that we have seen how we can use the first order TS product formula to simulate the evolution of a
system with the Hamiltonian H up to a precision ϵ, the natural question is, can we simulate the
evolution with higher precision and an improved gate complexity?
In [6, 7], Suzuki systematically extended the product formulas so that they can be used to approximate
up to an arbitrarily large order, which increases the precision. The second-order product formula is
then defined as,

S2(τ) :=

M∏
j=1

e−iHj
τ
2

1∏
j′=M

e−iHj′
τ
2 , (20)

using this formula, we can recursively construct product formulas up to the 2k-th order as follows,

S2k(τ) := S2k−2(zkτ)
2S2k−2((1− 4zk)τ)S2k−2(zkτ)

2, (21)

where zk := 1/(4− 41/(2k−1)). This formula approximates e−iHt to an order of 2k, with an upper bound
on the precision of the approximation, which was found to be [5],

∥∥e−iHt − S2k(t/r)
r
∥∥ = O

(
(MΛt)2k+1

r2k

)
. (22)

The number of segments r can then be bounded as,

r = O

(
(MΛt)1+

1
2k

ϵ1/2k

)
. (23)

From this, the gate count is easily obtained and is shown to be bounded as,

g = O

(
M2+ 1

2k (Λt)1+
1
2k

ϵ1/2k

)
. (24)

From the gate count in (24), we see that as we increase the order by increasing k, the scaling
approaches O(M2Λt). However, the constant pre-factors become worse for higher orders, so in practice,
the optimal choice is usually fourth or sixth order. Now that we have reviewed the product formula
approach to quantum simulation, we observe that the dependence on M , the number of terms in H,
never improved below quadratic scaling. Therefore, TS product formulas are limited to systems
simulation with sparse interactions. In the next section, we discuss the qDRIFT protocol, which will
eliminate this dependence on M .
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3 Overview of The qDRIFT Protocol For Hamiltonian Simulation
The qDRIFT algorithm, as described in [14], constructs a gate sequence by selecting an exponential
exp(−iHjτ) from an identical distribution (i.i.d sampling). Where the probability pj , of selecting an
exponential exp(−iHjτ), is pj = hj/λ and it is dependent on the strength hj of each term in the
Hamiltonian. This quantum process is random, however built into the probabilities is a bias so that
with many repetitions the evolution stochastically drifts towards exp(−iHt). For this reason, the
algorithm is called qDRIFT. Since each exponential is sampled independently, the process is Markovian,
and we can consider the evolution as a result of a single random operation. A quantum channel can
then describe this evolution,

Eτ (ρ) =
M∑
j=1

pje
−iHjτρeiHjτ , (25)

which applies each unitary exp(−iHjτ) with a probability pj and for τ = tλ/N , with N being the
number of repetitions of the qDRIFT channel needed. From this point onwards, we will refer to the
channel Eτ as the qDRIFT channel. Theorem 1. will outline the how the qDRIFT channel
approximates the evolution exp(−iHt) and it will provide a bound on N .

Theorem 1. Given a Hamiltonian H for a quantum system in the form (7), the initial density matrix
of the system ρ(0) and a time t ≥ 0, the evolution of the system is described by the quantum channel,

Ut(ρ(0)) = e−iHtρ(0)eiHt, (26)

where ρ(t) = Ut(ρ(0)). Then, given a precision ϵ > 0 and N ∈ N. The diamond norm of the difference
between qDRIFT channel EN

τ in (25) and Ut can be bounded as,∥∥Ut − EN
τ

∥∥
⋄ ≤ ϵ. (27)

where,

ϵ = O

(
λ2t2

N

)
, N = O

(
λ2t2

ϵ

)
. (28)

Proof. To prove the bounds on the precision ϵ and the number of repetitions N we need to use the
diamond norm to compute how accurately the qDRIFT channel approximates Ut. The diamond norm
[17] is a superoperator norm defined on the space of quantum channels, and more information about it
can be found in Appendix A. Now, if we consider the diamond norm of the difference between EN

τ and
Ut, ∥∥Ut − EN

τ

∥∥
⋄ =

∥∥∥UN
t/N − EN

τ

∥∥∥
⋄
, (29)

≤ N
∥∥Ut/N − Eτ

∥∥
⋄, (30)

where in (30) we have used Lemma 3. from Appendix A. From (30) we see that it suffices to find a
bound on

∥∥Ut/N − Eτ
∥∥
⋄. We do this by making use of the Liouvillian representation of the quantum

channel so that for the unitary evolution Ut/N we can write,

Ut/n(ρ) = eHt/N (ρ) =

∞∑
l=0

tlHl(ρ)

l!N l
, (31)

where H(ρ) = −i[H, ρ], for any density matrix ρ. For the qDRIFT channel, we can also use this
representation,

Eτ (ρ) =
M∑
j=1

pje
Hjτ (ρ) =

M∑
j=1

hj
λ
eHjτ (ρ), (32)

where ρ is once again any density matrix and we have defined Hj(ρ) = −i[Hj , ρ]. We will use the
Liouville representation of the channels for the rest of this proof. Now consider the difference of the
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Taylor expansion of Ut/N and Eτ and observe that the zeroth and first-order terms cancel, leaving us
with the following remainder terms,

Ut/N − Eτ =

∞∑
l=2

tlHl

l!N l
−

M∑
j=1

hj
λ

∞∑
l=2

λltlHl
j

l!N l
. (33)

Now, to bound the diamond norm of the difference, we make use of the subadditive and
sub-multiplicative property of the diamond norm, and we find that,

∥∥Ut/N − Eτ
∥∥
⋄ ≤

∞∑
l=2

tl

l!N l
∥H∥l⋄ +

M∑
j=1

hj
λ

∞∑
l=2

λltl

l!N l
∥Hj∥l⋄. (34)

Now we observe that,

∥H∥⋄ ≤ 2∥H∥ ≤ 2λ, (35)

and we have that

∥Hj∥⋄ ≤ 2∥Hj∥ ≤ 2. (36)

Substituting into (34) yields,

∥∥Ut/N − Eτ
∥∥
⋄ ≤

∞∑
l=2

tl

l!N l
(2λ)l +

M∑
j=1

hj
λ

∞∑
l=2

λltl

l!N l
2l, (37)

= 2

∞∑
l=2

1

l!

(
2λt

N

)l

. (38)

The last equality uses the fact that
∑M

j=1 hj = λ, and it collects together the pair of equal summations.

Next, we use the exponential tail bound (see Lemma F.2. from the supplementary information of [13])
that states,

∞∑
n=2

xn

n!
≤ x2

2
ex, (39)

and we use x = 2λt/N so that,

∥∥Ut/N − Eτ
∥∥
⋄ ≤

(
2λt

N

)2

exp

(
2λt

N

)
≈
(
2λt

N

)2

, (40)

where the last approximation is very accurate in the large N limit. Using this bound and substituting
into (30) we have, ∥∥Ut − EN

τ

∥∥
⋄ ≤ (2λt)2

N
, (41)

which leads us to the bound on ϵ by choosing ϵ > 0 such that,

ϵ ≥ (2λt)2

N
, (42)

which implies that,

N ≥ (2λt)2

ϵ
. (43)

From this we can obtain the upper bound on ϵ and N as,

ϵ = O

(
λ2t2

N

)
, N = O

(
λ2t2

ϵ

)
, (44)

which completes the proof.
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Now that we have shown that the qDRIFT channel can approximate Ut up to a precision ϵ, then by the
definition of the diamond norm (see Appendix A) we observe that if we define ρ̃(t) = EN

τ (ρ(0)) as being
the state after applying the qDRIFT channel and ρ(t) = Ut(ρ(0)) by the state of the exact state of the
system at some time t then,

∥ρ(t)− ρ̃(t)∥1 =
∥∥Ut(ρ(0))− EN

τ (ρ(0))
∥∥
1
, (45)

≤
∥∥Ut − EN

τ

∥∥
⋄ ≤ ϵ, (46)

where ∥·∥1 is the trace norm. In [14], the author presents an algorithm for constructing a quantum
circuit to implement the qDRIFT protocol using classical sampling to construct a gate set. One can
refer to Fig. 1. of [14] for pseudocode that outlines how to use classical sampling to construct the
quantum circuit. The algorithm consists of two parts, the first part uses classical sampling to construct
a gate set which is a sequence of exponentials e−iHjτ . It does this by appending e−iHjτ , where each j is
sampled from the distribution pj , to an empty gate set and it repeats this process N times. The second
part of the algorithm applies the gate set to the initial state |ψ(0)⟩, which tells us that in this circuit,

there will be N gates. The output of this circuit will be the state |ψ̃(t)⟩, which approximates the exact
state |ψ(t)⟩ to a precision ϵ. This tells us that the qDRIFT protocol in [14], is a hybrid algorithm which
relies on a classical part. In the next section, we present a way to efficiently implement the qDRIFT
channel on a quantum computer without classical sampling using quantum forking. We will also show
how this is more efficient than standard approaches for implementing a random unitary channel [9].

4 Quantum Circuit Implement For qDRIFT Channnel
This section presents two ways to implement the qDRIFT channel on a quantum computer. The first
way is a naive implementation that takes inspiration from the Linear Combination of Unitaries (LCU)
approach in [9]. The second implementation will use Quantum Forking (QF) [16] to construct an
efficient quantum circuit to implement the qDRIFT channel by applying each exponential in parallel. In
both cases we are assumed that we have already written the Hamiltonian H in the form (7), we are
given a time t ≥ 0, a precision ϵ > 0 and we have computed λ as well as N = ⌈λ2t2/ϵ⌉.

4.1 Implementation of qDRIFT Channel inspired by LCU Approach
We shall first construct a quantum circuit inspired by the LCU approach [9], that can implement the
qDRIFT channel EN

τ . We begin by constructing a circuit that impelments Eτ . This circuit is shown in
Figure 3. The first register in this circuit encodes the probabilities pj into the state

∑
j pj |j⟩, where

{|j⟩} are all orthonormal. The controlled gates shown in the circuit apply exp(−iHjτ) only when the
first register is in the state |j⟩ for j = 1, ...,M and they apply identity otherwise. The measurement and
discard operation at the end of the first register is the same as tracing out the first register. Lemma 1
will prove that the circuit correctly implements Eτ .

Figure 3: Quantum circuit for implementing a single step of the qDRIFT algorithm Eτ using the LCU
approach. The measurement and discard procedure is equivalent to tracing out the ancillary register
using the partial trace. The controlled-exp(−iHjτ) gates are applied only when the first register is in the
state |j⟩.

Lemma 1. The quantum circuit shown in Figure 3 implements the qDRIFT channel Eτ (|ψ(0)⟩⟨ψ(0)|)
for τ = tλ/N .
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Proof. We need to use the density matrix representation to analyse the circuit to prove this. The initial
density matrix of both registers in the circuit is in Figure 3. is,

M∑
j,j′=1

(√
pj
√
pj′ |j⟩⟨j′| ⊗ |ψ(0)⟩⟨ψ(0)|

)
. (47)

We can rewrite this initial density matrix by splitting the sum into two parts: the first part is terms
where j = j′ and the second part where j ̸= j′,

M∑
j=1

(pj |j⟩⟨j| ⊗ |ψ(0)⟩⟨ψ(0)|) +
M∑

j,j′=1

(√
pj
√
pj′ |j⟩⟨j′| ⊗ |ψ(0)⟩⟨ψ(0)|

)
. (48)

Since we will eventually trace out the first register we see that the second sum in (48) will become zero
as tr(|j⟩⟨j′|) = ⟨j|j′⟩ = 0 since {|j⟩}Mj=1 is are orthonormal. Therefore, we will ignore the second sum in
(48) and perform the rest of the operations in the circuit only to the first sum of (48). Next, we apply
exp(−iHjτ) to the second register only when the first register is in the state |j⟩,

M∑
j=1

pj |j⟩⟨j| ⊗ e−iHjτ |ψ(0)⟩⟨ψ(0)| eiHjτ . (49)

Lastly, we trace out the first register by performing the partial trace,

M∑
j=1

pjtr(|j⟩⟨j|)⊗ e−iHjτ |ψ(0)⟩⟨ψ(0)| eiHjτ =

M∑
j=1

pje
−iHjτ |ψ(0)⟩⟨ψ(0)| eiHjτ = Eτ (|ψ(0)⟩⟨ψ(0)|). (50)

Hence, we have shown the circuit in Figure 3. implements Eτ .

To implement EN
τ we need to repeat the circuit in Figure 3. N times, but after each time we measure

and discard, we need to reset the first register to
∑M

j=1

√
pj |j⟩. To determine the gate complexity of the

circuit, we must count the sequential operations in the circuit in Figure 3. There are M sequential
operations in the circuit. Because we repeat this N times, the number of sequential operations is NM .
Therefore if we denote the gate complexity for the LCU circuit by gLCU then,

gLCU = O(MN). (51)

One of the downsides to the LCU-inspired circuit implementation for the qDRIFT channel is that it
requires the implementation of controlled-exp(−iHjτ) gates, which in practice may be hard to
implement on a quantum computer. The QF approach to implementing the qDRIFT channel shall
circumvent this issue.

4.2 Implementation of qDRIFT Channel By Quantum Forking
We use QF [16], to construct a quantum circuit that will implement EN

τ . The circuit that will
implement Eτ is shown in Figure 4, where the first register in this circuit encodes the probabilities pk
into the state

∑
k pk |k⟩, where {|k⟩} are all orthonormal. The second register is the initial state of the

system |ψ(0)⟩ and the remaining registers are all ’junk states’ with the same dimension as |ψ(0)⟩. They
are called ’junk states’ as they do not affect the outcome of the circuit and can be any state that is easy
to prepare. The controlled-SWAP gates in the circuit work by applying the swap between |ψ(0)⟩ and
the state |ϕk−1⟩ when the first register is in the state |k⟩. Here again the measurement and discard step
at the end is equivalent to tracing out all other registers besides the register corresponding to the
system’s state. Lemma 2. will show that the circuit implements Eτ .

Lemma 2. The circuit in Figure 4 implements the qDRIFT channel Eτ (|ψ(0)⟩⟨ψ(0)|) for τ = tλ/N .
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Figure 4: This quantum circuit implements a single step of the qDRIFT algorithm Eτ . The j-th controlled-
SWAP gate is applied when the first register is in the state |j⟩. The measurement and discard procedures
correspond to tracing out the ancillary systems. The states |ϕl⟩ for l = 1, ...,M − 1 can be in any easy to
prepare state.

Proof. Once again, we make use of the density matrix representation to analyse this circuit. The initial
density matrix can be written in the following way,

M∑
k=1

pk |k⟩⟨k| ⊗ |ψ(0)⟩⟨ψ(0)| ⊗ |ϕ1⟩⟨ϕ1| ⊗ ...⊗ |ϕM−1⟩⟨ϕM−1|+

(52)

M∑
k,k′=1

√
pk
√
pk′ |k⟩⟨k′| ⊗ |ψ(0)⟩⟨ψ(0)| ⊗ |ϕ1⟩⟨ϕ1| ⊗ ...⊗ |ϕM−1⟩⟨ϕM−1| .

Since we trace out the first register at the end we observe that the second term of the sum will be zero,
therefore for the rest of the proof we only apply operations to the first term in (52). For the next step
we need to apply the controlled-SWAP operations. This gives the following density matrix,

p1 |1⟩⟨1| ⊗ |ψ(0)⟩⟨ψ(0)| ⊗ |ϕ1⟩⟨ϕ1| ⊗ ...⊗ |ϕM−1⟩⟨ϕM−1|+
p2 |2⟩⟨2| ⊗ |ϕ1⟩⟨ϕ1| ⊗ |ψ(0)⟩⟨ψ(0)| ⊗ ...⊗ |ϕM−1⟩⟨ϕM−1|+
... (53)

+ pM |M⟩⟨M | ⊗ |ϕM−1⟩⟨ϕM−1| ⊗ |ϕ1⟩⟨ϕ1| ⊗ ...⊗ |ψ(0)⟩⟨ψ(0)| . (54)

We can then apply in parallel all of the exponentials exp(−iHkτ) to the respective register. To make
this easier, we define a map Vj(ρ) = e−iHjτρeiHj yielding,

p1 |1⟩⟨1| ⊗ V1(|ψ(0)⟩⟨ψ(0)|)⊗ V2(|ϕ1⟩⟨ϕ1|)⊗ ...⊗ VM (|ϕM−1⟩⟨ϕM−1|)+
p2 |2⟩⟨2| ⊗ V1(|ϕ1⟩⟨ϕ1|)⊗ V2(|ψ(0)⟩⟨ψ(0)|)⊗ ...⊗ VM (|ϕM−1⟩⟨ϕM−1|)+
... (55)

+ pM |M⟩⟨M | ⊗ V1(|ϕM−1⟩⟨ϕM−1|)⊗ V2(|ϕ1⟩⟨ϕ1|)⊗ ...⊗ VM (|ψ(0)⟩⟨ψ(0)|). (56)
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Then we perform the controlled-SWAPs once more, which yields,

p1 |1⟩⟨1| ⊗ V1(|ψ(0)⟩⟨ψ(0)|)⊗ V2(|ϕ1⟩⟨ϕ1|)⊗ ...⊗ VM (|ϕM−1⟩⟨ϕM−1|)+
p2 |2⟩⟨2| ⊗ V2(|ψ(0)⟩⟨ψ(0)|)⊗ V1(|ϕ1⟩⟨ϕ1|)⊗ ...⊗ VM (|ϕM−1⟩⟨ϕM−1|)+
... (57)

+ pM |M⟩⟨M | ⊗ VM (|ψ(0)⟩⟨ψ(0)|)⊗ V2(|ϕ1⟩⟨ϕ1|)⊗ ...⊗ V1(|ϕM−1⟩⟨ϕM−1|). (58)

Now, we trace out all the ancillary registers by performing the partial trace,

p1tr(|1⟩⟨1|)⊗ V1(|ψ(0)⟩⟨ψ(0)|)⊗ tr(V2(|ϕ1⟩⟨ϕ1|))⊗ ...⊗ tr(VM (|ϕM−1⟩⟨ϕM−1|))+
p2tr(|2⟩⟨2|)⊗ V2(|ψ(0)⟩⟨ψ(0)|)⊗ tr(V1(|ϕ1⟩⟨ϕ1|))⊗ ...⊗ tr(VM (|ϕM−1⟩⟨ϕM−1|))+
... (59)

+ pM tr(|M⟩⟨M |)⊗ VM (|ψ(0)⟩⟨ψ(0)|)⊗ tr(V2(|ϕ1⟩⟨ϕ1|))⊗ ...⊗ tr(V1(|ϕM−1⟩⟨ϕM−1|)). (60)

We observe that Vj is a unitary transformation and therefore preserves the trace of |ψ(0)⟩⟨ψ(0)|, which
implies that tr(Vj(|ϕl⟩⟨ϕl|) = 1 for all j and l. We also observe that tr(|k⟩⟨k|) = ⟨k|k⟩ = 1. Hence, the
final density matrix is,

M∑
j=1

pjVj(|ψ(0)⟩⟨ψ(0)|) =
M∑
j=1

pje
−iHjτ |ψ(0)⟩⟨ψ(0)| eiHjτ = Eτ (|ψ(0)⟩⟨ψ(0)|). (61)

Therefore, the circuit completes the proof and implements Eτ .

To be able to implement EτN , we need to repeat the circuit in Figure 4 N times, but after each time we 
measure and discard, we need to reset each ancillary register to their initial state. To obtain the gate 
complexity for this circuit, we need to count the sequential operations in the circuit. We observe that there 
are 2(M − 1) controlled-SWAP operations and 1 unitary gate layer, which applies in parallel the unitary 
exp(−iH1τ) ⊗ ... ⊗ exp(−iHM τ). So, the total number of gate layers is 2M − 1. Since we repeat this 
circuit N times, the total number of sequential gate layers is 2MN − N . Then if the gate complexity is 
denoted by gQF we see that,

gQF = O(MN). (62)

Here we see that the gate complexity of this circuit has the same scaling as the LCU approach, however
it circumvents the need to implement controlled-exp(−iHjτ) gates by applying all the exponentials in
parallel. This is possible as the exponentials exp(−iHjτ) are, by design, easy to implement on a
quantum computer. Although the gate complexities for both circuits have the same scaling in practice,
the QF circuit may be more costly to implement due to the number of controlled-SWAPS needed,
however, the simplicity of not needing to implement controlled-exp(−iHjτ) gates and the parallel
application of exponentials makes this additional cost worthwhile.

5 Comparison Of Gate Complexities
Now that we have presented the qDRIFT protocol and the circuit implementations for it, we can
compare the gate complexities with TS product formulas.
Table 1 summarises the gate complexities for the TS product formulas for first, second, fourth and
2k-th orders as well as the gate complexities for the qDRIFT circuit implementation and the hybrid
qDRIFT algorithm in [14], with classical sampling. We observe that for the circuit implementations of
the qDRIFT channel both the LCU approach and QF approach scale as O(MN). Using the bound on
N in Theorem 1. we have that the gate complexity for the qDRIFT circuit implementation is,

O(MN) = O

(
Mλ2t2

ϵ

)
. (63)

The circuit implementation of qDRIFT contains a linear factor of M in the complexity. In comparison
the the hybrid qDRIFT algorithm in [14], that uses classical sampling, the gate complexity is just
O(λ2t2/ϵ). Although the gate complexity in this case does not depend explicitly on M , the full
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Table 1: This table shows the gate complexities for various orders of TS formulas, the qDRIFT circuit
implementations, and the hybrid qDRIFT algorithm.

Algorithm Gate Complexity

First order Trotter-Suzuki O
(
M3(Λt)2/ϵ

)
Second order Trotter-Suzuki O

(
M5/2(Λt)3/2/ϵ1/2

)
Fourth Order Trotter-Suzuki O

(
M9/4(Λt)5/4/ϵ1/4

)
Higher Order Trotter-Suzuki O

(
M2+ 1

2k (Λt)1+
1
2k /ϵ1/2k

)
qDRIFT Circuit Implementation O(Mλ2t2/ϵ)

qDRIFT with Classical Sampling O(λ2t2/ϵ)

algorithm in [14], will also scale as O(MN) as the classical sampling procedure used will scale as O(M)
[18]. However, for most practical purposes, this scaling is negligible, so we shall not consider the
computational cost of sampling when talking about the hybrid qDRIFT algorithm.
Although the qDRIFT algorithms scale better in terms of their dependence on M , they do scale
quadratically in time, which means that for longer times, we expect the higher-order TS product
formulas to outperform the qDRIFT circuit implementation. To see this we have used the parameters
from the molecular simulations in [14], to illustrate the performance of the qDRIFT circuit
implementation. In Figure 5, we plot the log of the gate counts for first-order TS, second-order TS,
fourth-order TS, qDRIFT circuit and qDRIFT hybrid for two sets of parameters taken from [14]. We
see in Figure 5 (a) that both the qDRIFT circuit and qDRIFT hybrid have a better gate complexity
than first and second-order TS. However, for fourth-order TS, we see that for t > 1244 s, the gate
complexity is better than the qDRIFT circuit because of the quadratic scaling in time. Therefore, the
qDRIFT circuit is better for shorter times in this regard. In Figure 5 (b) we observe a similar behaviour
for the first and second order TS in comparison to both qDRIFT algorithms but for the fourth order TS
it outperforms qDRIFT circuit for t > 32 as λ is much larger in this case and its quadratic scaling gives
us a poor gate complexity. Therefore we see that the qDRIFT circuit implementations perform a lot
better for shorter times.
To see for what values of M the qDRIFT circuit will perform better than TS, we plot the gate
complexities of all the simulation methods and fix t while varying M ; figure 6 shows two plots for two
sets of parameters with varying number of terms M . In Figure 6 (a), we see that for M > 363673, the
qDRIFT circuit has better gate complexity than the fourth-order TS. We also observe that both
qDRIFT implementations scale better than first and second-order TS. In Figure 6 (b) we observe
similar behaviour for the gate complexities, however the qDRIFT circuit will only perform better than
fourth order TS when M > 848485 this is because t = 1000 s and we know the quadratic scaling in t
gives poor gate complexities for qDRIFT circuit. It is obvious that for fixed t and varying M hybrid
qDRIFT will not change as it does not depend on M . Overall, we observe that the qDRIFT hybrid is
still the best-performing in terms of gate complexity. However, if we need to implement qDRIFT
directly on a quantum computer without a classical sub-routine, then it will work best for shorter times
and a large number of terms.

6 Conclusion
In this work, we construct two efficient quantum circuit implementations for the qDRIFT algorithm.
One implementation used the LCU [9] approach to construct the circuit, while the other used the QF
procedure [16]. Both of these circuits had a gate complexity of O(MN), which scales better than both
TS [5] and randomised TS [10] in the number of terms of the Hamiltonian. While the LCU approach
requires no controlled-SWAP gates, it does require controlled-exp(−iHjτ) gates, which may be costly to
implement on the quantum computer. The QF approach, while needing many controlled-SWAP gates,
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Figure 5: Here we plot the log of the gate complexities with varying time for various orders of TS
formulas, the qDRIFT circuit implementations and the hybrid qDRIFT algorithm and various values of
Λ, λ and M . (a) We see that the qDRIFT hybrid outperforms all other algorithms, and the qDRIFT
circuit outperforms first and second-order TS with the fourth-order performing better only for a long
time. (b) the qDRIFT circuit does not outperform fourth-order TS due to the quadratic scaling on time
and λ.

only has to implement exp(−iHjτ), which we can do easily on a quantum computer by design.
Therefore, the QF implementation may be a better choice if we can implement exp(−iHjτ) easily on a
quantum computer. However, if controlled-SWAP gates are more costly to implement on the quantum
computer, then the LCU approach will be a better choice. As an open problem one can consider
deriving bounds on the gate complexities for our circuit implementations that take into account the
decomposition of the exponentials exp(−iHjτ) into single qubit and two qubit gates using the
Solovay-Kiteav theorem [3]. This can provide better insight into which circuit one should use based on
the type of elementary gates one can implement on a quantum computer.
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A Information about the Diamond Norm for Quantum Channels
In this section we will introduce the diamond norm and its properties. In the main text we used the
operator norm, denoted by ∥·∥, to analyse the TS product formulas. However, when we analyse the
qDRIFT protocol we require a way to compute the error in the approximation of a quantum channel.
This means that we need a norm that can be used on the space of channels (or superoperators). To do
this we use the diamond norm [17] and it is defined for a superoperator T as follows,

∥T∥⋄ := sup
ρ;∥ρ∥1=1

∥(T ⊗ 1)(ρ)∥1, (64)

where ρ is any density matrix, 1 is identity map that acts on the same size space as T and ∥·∥1 is the
trace norm of an operator and is defined as,

∥A∥1 := tr(
√
A†A). (65)
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Figure 6: Here we plot the log of the gate complexities with a varying number of terms M , for various
orders of TS formulas, the qDRIFT circuit implementations and the hybrid qDRIFT algorithm and
various values of Λ, λ and t. (a) We see here that for M > 363637, the qDRIFT circuit outperforms
fourth-order TS, and for all values of M , it outperforms first and second-order TS. (b) Due to the
quadratic scaling on time and t = 1000, the qDRIFT circuit only outperforms fourth order TS when
M > 848485. In both plots, we see that hybrid qDRIFT does not change as it does not depend explicitly
on M .

The trace norm of an operator is also a sum of all the singular values. The diamond norm is a good
choice of norm because it takes into account entanglement with a reference system [?], where as other
superoperator norms such as 1 → 1 Schatten norms do not. Given two superoperators T and V , the two
properties of the diamond norm we use are:

1. The triangle inequality (sub-additivity): ∥T + V ∥⋄ ≤ ∥T∥⋄ + ∥V ∥⋄.

2. Sub-multiplicativity: ∥TV ∥⋄ ≤ ∥T∥⋄∥V ∥⋄ and consequently ∥Tn∥⋄ ≤ ∥T∥n⋄ for n ∈ N.

THe following Lemma will outline a very important property of the diamond norm, it will allow us to
break up the evolutions into small steps and bound the difference by the number steps times the norm
of the difference of the evolutions for a small time step,

Lemma 3. Given two quantum channels T and V and some n ∈ N we have,

∥Tn − V n∥⋄ ≤ n∥T − V ∥⋄. (66)

One should note that if the superoperator T is a quantum channel then ∥T∥⋄ = 1. From the definition
of the diamond norm it follows that if we have two quantum channels T and V that are applied to a
density matrix ρ then,

∥T (ρ)− V (ρ)∥1 ≤ ∥T − V ∥⋄. (67)

This inequality is very important as it allows us to bound the distance between two quantum states i.e.
density matrices, by their respective channels.
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