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ABSTRACT

Dark matter in the form of compact objects with mass M, = 10 Mg can be constrained by its dynamical effects on wide binary
stars. Motivated by the recent interest in primordial black hole dark matter, we revisit the theoretical modelling involved in these
constraints. We improve on previous studies in several ways. Specifically, we (i) implement a physically motivated model for the
initial wide-binary semimajor axis distribution, (ii) include unbound binaries, and (iii) take into account the uncertainty in the
relationship between semimajor axis and observed angular separation. These effects all tend to increase the predicted number
of wide binaries (for a given compact object population). Therefore, the constraints on the halo fraction in compact objects,
Jeo» are significantly weakened. For the wide binary sample used in the most recent calculation of the constraints, we find the
fraction of halo dark matter in compact objects is f, < 1 for M, &~ 300 Mg, tightening with increasing M., to fo, < 0.26 for

Meo > 1000 M.

Key words: binaries: general — Galaxy: halo —dark matter.

1 INTRODUCTION

There is strong evidence from cosmological and astronomical ob-
servations that & 85 per cent of the matter in the Universe is in
the form of cold, non-baryonic dark matter (DM), see e.g. Bertone,
Hooper & Silk (2005) for a review. Traditionally the most popular
DM candidates have been new elementary particles, such as weakly
interacting massive particles or axions. However, the discovery of
gravitational waves from mergers of tens of solar mass black holes
by LIGO-Virgo (Abbott et al. 2016) has led to a surge of interest in
primordial black holes (PBHs) as a DM candidate (Bird et al. 2016;
Carr, Kuhnel & Sandstad 2016; Sasaki et al. 2016). PBHs are black
holes that may form in the early Universe, for instance from the
collapse of large density perturbations (Zel’dovich & Novikov 1967;
Hawking 1971).

There are various constraints on the abundance of PBHs with
mass Mpgy 2> 1 Mg from gravitational microlensing (Diego et al.
2018; Zumalacarregui & Seljak 2018; Blaineau et al. 2022; Esteban-
Gutiérrez et al. 2022), gravitational waves from mergers of bina-
ries (Sasaki et al. 2016; Ali-Haimoud, Kovetz & Kamionkowski
2017), their dynamical effects on stars in wide binaries (Yoo,
Chaname & Gould 2004; Quinn et al. 2009; Monroy-Rodriguez &
Allen 2014) and in dwarf galaxies (Brandt 2016), and the radiation
emitted due to accretion of gas onto PBHs (Ricotti, Ostriker &
Mack 2008; Gaggero et al. 2017). For reviews, with extensive
reference lists, see e.g. Carr & Kuhnel (2020) and Green & Kavanagh
(2021). The increased interest in PBH DM motivates a careful
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reanalysis of these constraints. For instance, the constraints from
the temperature anisotropies in the cosmic microwave background,
due to the effects of PBHs on the recombination history of the
Universe, have been found to be significantly weaker than previ-
ously thought (Ali-Haimoud & Kamionkowski 2017; Poulin et al.
2017).

In this paper, we focus on the constraints on multisolar mass
compact objects in the halo of the Milky Way (MW) from their
dynamical effects on wide binary stars. While this is motivated by
the recent interest in PBHs as a DM candidate, these constraints apply
to any compact object DM. Close encounters between binary stars
and massive compact objects increase the energies and semimajor
axes of the binaries, and potentially disrupt some of the binaries.
Observations of the semimajor axis distribution of wide binaries
in the MW can, therefore, potentially constrain the abundance of
compact objects. For perturbers with mass M, > 10* M, the closest
encounter dominates, while for lighter perturbers it is necessary
to take into account the cumulative diffusive effects of multiple
interactions (Bahcall, Hut & Tremaine 1985; Binney & Tremaine
2008).

Bahcall et al. (1985) used wide binaries in the MW disc to constrain
the fraction of the local mass density in compact objects. Yoo et al.
(2004) then used a sample of 90 wide halo binaries compiled by
Chanamé & Gould (2004) to constrain the fraction of the MW halo in
compact objects. They found that compact objects with mass M., >
43 Mg could not make up all of the halo, and objects with mass M,
> 10° Mg were constrained to make up less than 20 per cent of the
halo, at 95 per cent confidence.

Quinn et al. (2009) highlighted that these constraints are very
sensitive to the widest binaries. They carried out radial velocity
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measurements of four of the widest binaries in the Chanamé &
Gould (2004) sample, and found that the second widest binary was
in fact not a binary, as the two stars have significantly different
radial velocities. Without this spurious binary, the mass above which
compact objects were excluded from making up all of the halo
increased to M., ~ 500 M. The radial velocities, along with the
proper motions, also allow the orbits of the binaries to be calculated.
The orbits found by Quinn et al. (2009) extend to radii (20-60) kpc.
In this case the average DM density the binaries experience is
significantly, (50-90) per cent, smaller than the local (i.e. at the solar
radius) DM density, which further weakens the constraint. Quinn
et al. (2009) concluded that the Chanamé & Gould (2004) sample
was too small to place meaningful constraints on the halo fraction of
compact objects.

Monroy-Rodriguez & Allen (2014) calculated constraints using
251 halo wide binaries from a catalogue compiled by Allen &
Monroy-Rodriguez (2014). 160 of these binaries had radial velocity
measurements, allowing their orbits to be calculated. Using the
binaries which spend the smallest fraction of their time in the Galactic
disc, they found that compact objects with M, = 5 Mg, are excluded
from making up all of the halo, and objects with mass M, 2> 10?> M,
make up less than 10 per cent, at 95 per cent confidence. Contrary
to Quinn et al. (2009), they found that the average DM densities
experienced by the wide binaries are not significantly different from
the local density.

In this paper, we revisit the modelling assumptions in these anal-
yses, refining several aspects. In particular, previous work assumed
that the initial binary semimajor axis distribution is log-flat or a power
law, while we use an initial distribution motivated by simulations
of the formation of wide binaries during the dissolution of large
star clusters (Kouwenhoven et al. 2010; Griffiths 2019). We also
include unbound binaries in our comparison with observations and
take into account the uncertainty in calculating the observed angular
separation of a binary from its semimajor axis. We outline our method
in Section 2, present and discuss our results in Section 3, and conclude
with a summary in Section 4.

2 METHOD

2.1 Binary sample

To illustrate the effects of theoretical modelling on the constraints,
we use the catalogue of halo wide binaries compiled from various
sources by Allen & Monroy-Rodriguez (2014). This catalogue was
used by Monroy-Rodriguez & Allen (2014) to calculate the most
recent wide binary constraints on the abundance of compact objects
(that are quoted in reviews of PBH DM e.g. Carr & Kuhnel 2020;
Green & Kavanagh 2021).

As discussed by Chanamé & Gould (2004), constructing a reliable
large catalogue of halo binaries, without selection biases, is non-
trivial. Halo binaries need to be distinguished from disc binaries and,
as emphasized by Quinn et al. (2009), radial velocity measurements
are required to eliminate chance associations. Coronado et al. (2018)
constructed a catalogue of halo binaries using sloan digital sky survey
data, however this sample only covers projected separations less than
~ 0.1 pc.

GAIA (Gaia Collaboration 2018) offers the possibility of construct-
ing a large, consistent catalogue of halo wide binaries. However at
this time there is no definitive sample of halo binaries (see e.g.
Oelkers, Stassun & Dhital 2017; Oh et al. 2017; Tian et al. 2020, for
work in this direction).
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2.2 Simulations

2.2.1 Interactions between perturbers and wide binaries

Our simulations of interactions between perturbers' and wide bina-
ries largely follow Yoo et al. (2004). We assume that all binaries
are composed of stars which each have mass 0.5 Mg and that the
distribution of the relative velocities of the binaries and perturbers,
f(Vre), is Maxwellian with dispersion oy = 220kms™!.

When we compare simulated binary distributions with obser-
vations in Section 2.3 below, the initial binary semimajor axis
distribution is taken into account using a scattering matrix formalism,
as in Yoo et al. (2004). In our initial simulations, for simplicity and
following previous work, we use a semimajor distribution which
is log-flat between 10 and 103 au, and assume that the square of
the initial eccentricity is uniformly distributed between 0 and 1 (i.e.
thermal).

As in previous work (Yoo et al. 2004; Quinn et al. 2009; Monroy-
Rodriguez & Allen 2014), we do not include perturbations from giant
molecular clouds (GMCs) or the effects of Galactic tides. Due to their
low number density in the halo, the impact of GMCs on halo wide
binaries is expected to be small, and neglecting it is a conservative
assumption. Galactic tides are smaller for halo wide binaries than
for the disc binaries studied in Jiang & Tremaine (2010), and
likewise including their effects would act to tighten the constraints.
We have also assumed that the PBHs are smoothly distributed
and are not themselves in binaries. Some PBHs are expected to
form binaries in the early Universe (Nakamura et al. 1997; Ali-
Haimoud et al. 2017), and PBH clusters form not long after matter—
radiation equality (Afshordi, McDonald & Spergel 2003; Inman &
Ali-Haimoud 2019). The evolution of these clusters, and in particular
the disruption of PBH binaries within them, is a challenging problem
and the present day spatial distribution of PBHs within galaxies is
not yet understood in detail.

Unlike previous work on constraints on compact object DM from
halo binaries, we include unbound binaries in our comparison with
observed binaries. Yoo et al. (2004) argued that disrupted binaries
quickly diffuse to large separations, beyond those probed obser-
vationally. However, Jiang & Tremaine (2010) included unbound
systems in their study of the effects of perturbers on disc binaries
using diffusion equations. They found that the stars from unbound
binaries have small relative velocities, which would lead them to be
detected as binaries by surveys. Furthermore, they also found that
some unbound binaries can become rebound.

The rate at which encounters with impact parameter between b
and b + db and relative velocity between v, + dv, occur, C, is
given by

C= npvrelznb dbf(vrel) dvrels (1)
where n, = p/M, is the perturber number density and o and M,
are the perturber mass density and mass, respectively. We consider
perturber masses in the range 1 Mg < M, < 3 X 103 Mg, and fix p
to the standard value for the local DM density, 0.009 Mg pc™ (e.g.
de Salas & Widmark 2021), however the constraints can be straight
forwardly rescaled to other values of the local DM density.

We have found (see fig. 3.5 of Tyler 2022) that encounters which
cause a fractional change in the binary energy less than 0.1 per cent

'We are specifically interested in the case of PBH DM, however the
constraints apply to any compact object DM, and therefore we use these
terms, and ‘perturber’ interchangably.
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Figure 1. The final semimajor axis distribution of 10° binaries composed of stars with mass 0.5 Mg evolved for 10 Gyr in a population of perturbers with a
Maxwellian relative velocity distribution with dispersion op; = 220kms~!, mass density p = 0.009 Mg pc—> and masses 10 (orange lines), 100 (green), and
1000 Mg (red). The dot—dashed lines are for the full binary population (bound and unbound binaries), while the solid lines show only the binaries that remain
bound at all times. The initial log-flat binary semimajor axis distribution is shown by the black dotted line.

have a negligible (less than 0.1 per cent) effect on the semimajor
axis distribution, therefore we do not include these encounters in
our simulations. We calculate the number of interactions expected
within a time 7 = 10 Gyr, roughly equally to the age of the MW. For
each individual binary the actual number of encounters experienced
is drawn from a Poisson distribution and the impact parameter and
relative velocity of each encounter are found from the distributions
in equation (1).

The relative velocity between the perturber and binary is always
much larger than the orbital velocities of the binary stars. Therefore,
the stars can be treated as stationary during an encounter and the
impulse approximation used to calculate its effect (e.g. Binney &
Tremaine 2008). The positions of the stars are unperturbed, while
the changes in their velocities are perpendicular to the trajectory of
the perturber and given by

2GM, b;
Av; = T
Vethi b;

@

where b; is the impact parameter to star i.

Binaries are evolved in time between encounters. For bound
binaries the time between encounters is much longer than the period
of the binary, so we do this by taking a random value for the
mean anomaly between 0 and 27 and converting this (via Kepler’s
equation) to a future true anomaly. The hyperbolic orbits of unbound
binaries are not periodic, so in this case we evolve the binary’s
eccentric anomaly forwards in time exactly. The position and velocity
vectors of the two stars before each encounter are calculated from
their semimajor axis, eccentricity and orbital phase (true anomaly).

Fig. 1 shows the final semimajor axis distribution for simulations
with a log-flat initial binary semimajor axis distribution and per-
turbers with density p = 0.009 M pc—> and masses M, = 10, 102,
and 10° M. It shows both the full binary population (dot-dashed
lines) and also just the binaries which remain bound throughout the
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whole simulation (solid lines), i.e. the result that would be obtained
by discarding unbound binaries. We see that for M, = 10*> and
10° Mg, (green and red lines, respectively) the two distribution differ
significantly for a > 10* au, and hence discarding unbound binaries
significantly underestimates the abundance of the widest observed
apparent binaries. As mentioned previously, Jiang & Tremaine
(2010) find that disrupted binaries in the Galactic disc have very
small relative velocities. For perturbers larger than ~1 M, however,
the increase in relative velocity due to encounters is more significant
(equation A2 Yoo et al. 2004). We note that our results for binaries
that remain bound throughout are in good agreement with previous
work by Yoo et al. (2004) and Monroy-Rodriguez & Allen (2014).

The large abundance of unbound wide binaries for M, = 10° M, is
likely due to the low number density of perturbers, which decreases
with increasing perturber mass (for constant perturber mass density).
Even though encounters with M, = 10* M, are more likely to break
the binaries, multiple encounters are required to give the binaries
sufficient relative velocity to drift apart within the time-scale of the
simulation. This may also explain why for M, = 10 M, there are
very few unbound binaries; these binaries have experienced a large
number of encounters giving them sufficient relative velocity to drift
far apart by the end of the simulation.

2.2.2 Orbits of binaries

It is useful to calculate the orbits of the wide binaries within the MW
potential for two reasons. First, each binary experiences an orbit-
dependent time-varying DM density. This can be taken into account
by finding the time-averaged DM density along each binary orbit,
and scaling the constraint on the perturber density by the mean time-
averaged DM density divided by the value of the local DM density
(Quinn et al. 2009). Secondly, binaries will experience perturbations
from stars when passing through the Galactic disc, and hence binaries
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Figure 2. The probability distribution of the time-averaged DM density calculated along the orbits of 160 binaries from Allen & Monroy-Rodriguez (2014)
that it is possible to calculate orbits. The orange vertical line shows the DM density at the solar radius, 0.00754 Mg pc 2.

that spend the smallest fraction of their orbits within the Galactic disc
are more powerful for constraining perturbers in the halo. Monroy-
Rodriguez & Allen (2014) classified the binaries as ‘most halo-like’
according to the fraction of time their orbit spends within the disc
(Jz] < 500pc).

We calculated the binary orbits for the 160 binaries in the Allen &
Monroy-Rodriguez (2014) catalogue > which has sufficient data to do
this using the GALPY PYTHON package (Bovy 2015). For each binary
we use the most recent data from the SIMBAD data base (Wenger
et al. 2000), usually from GAIA DR2 (Gaia Collaboration 2018).
We used the MWPotential2014 model in GALPY, which has
a Navarro-Frenk—White density profile (Navarro, Frenk & White
1997) for the MW halo, along with potentials for the disc and bulge.
While this model is not intended to be the best current model of the
MW, its parameters are similar to those obtained from, e.g. fits to
rotation curve data (Eilers et al. 2019), and it is sufficiently accurate
for our purpose. We find the mean time-averaged DM density for the
160 binaries is ~ 40 per cent larger than the DM density at the solar
radius. Quinn et al. (2009) found substantially smaller time-averaged
DM densities for the widest binaries that they studied. However,
like Monroy-Rodriguez & Allen (2014), we find that the orbit for
NLTT10536 reaches a maximum z value of around 5 kpc, whereas
the orbit calculated by Quinn et al. (2009) extended to z &~ 40kpc.
Also, using the most recent determination of its distance, proper
motion, and radial velocity, we find an orbit for NLTT16394 which
is confined to smaller values of z and R than previously found (Quinn
et al. 2009; Monroy-Rodriguez & Allen 2014)

The probability density of the time-averaged DM densities for the
160 binaries it is possible to calculate orbits for is shown in Fig. 2.
The distribution of time-averaged DM densities experienced by the
binaries is not too wide (full width at half maximum 0.007 Mg, pc~3).
This suggests that simply scaling the constraint on the perturber

2Online data from https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/790/158.

density by the mean time-averaged DM density should capture the
effect of the varying DM density experienced by the binaries.

2.3 Comparison with observations

2.3.1 Initial semimajor axis distribution

A model is required for the initial semimajor axis separation distribu-
tion from which the current distribution has evolved. Unfortunately,
it is extremely unclear what that initial distribution should be.
Previous work on wide binary disruption (Weinberg, Shapiro &
Wasserman 1987; Yoo et al. 2004; Quinn et al. 2009; Jiang &
Tremaine 2010; Monroy-Rodriguez & Allen 2014) used a power law
distribution, oc a=®, which is the simplest generalization of Opik’s
Law, a log-flat distribution. It is not at all obvious that this simple
distribution is a good model for the initial wide binary semimajor
axis distribution (see also Tian et al. 2020).

Binary semimajor axis distributions usually seem to follow a
roughly log-normal distribution with a peak at tens to hundreds
of au depending on the primary mass (see e.g. Raghavan et al.
2010; Duchéne & Kraus 2013; Ward-Duong et al. 2015). The
best understood sample of binary separations are local field G
dwarfs (Raghavan et al. 2010) which have a log-normal separation
distribution which peaks at ~30 au, with a variance of 1.5 in the log
(so roughly two thirds of systems lie between 1 and 1000 au).

Local field G dwarfs have a few percent of very wide binaries
beyond 10* au, which is usually modelled as the exponential tail of the
G dwarf log-normal. However, it is not clear that this is a good way of
modelling the wide binary tail. The formation mechanism(s) of very
wide binaries, with semimajor axis > 10* au, are not understood. The
peaks of binary distributions (at tens to hundreds of au) are thought
to arise from core and/or disc fragmentation during star formation
(see Goodwin et al. 2007; Duchéne & Kraus 2013; Reipurth et al.
2014). However, systems with separations >10* au are much wider
than the size of star forming cores and so it is uncertain how they
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arise. The most likely mechanism suggested so far is ‘soft capture’
(Kouwenhoven et al. 2010; Moeckel & Bate 2010; Moeckel & Clarke
2011), where a wide binary is formed by the chance proximity of
two stars with low relative velocities during the dissolution of a star
cluster or star forming region.

Simulations of soft capture show that the rate is low, but that
very wide binaries can be formed. Griffiths (2019) carried out
simulations of the dissolution of clusters with different levels of
(fractal) substructure in the initial star cluster (c.f. Kouwenhoven
et al. 2010). From their simulations we find that a power-law
distribution is a good fit to the wide binaries formed via soft capture
(see e.g. their fig. 5.7), with the slope decreasing from o = 0.9 to
0.7 as the level of substructure decreases. This could well appear
like an exponential tail in the broader distribution of separations (as
current data is too poor to show any features of different formation
mechanisms).

How many wide binaries we would expect is another unknown.
The fraction of wide binaries in the local field G dwarf population
is a few percent (depending on exactly where one draws the line
for wide binaries, see e.g. Tokovinin & Lépine 2012). However, the
local field population should have been processed to some degree by
other field stars in exactly the same way a PBH population would
process the halo binaries. Therefore, this provides a lower limit on
wide binary production in what are now Galactic disc field stars. If
we assume soft capture as the mechanism then we would not expect
a metallicity-dependence on the primordial wide binary fraction.?

Therefore, as well as considering a pure power law for the
initial binary semimajor axis distribution (motivated by our fits to
simulations of soft capture), we also study an initial distribution
where in addition primordial binaries make up a variable fraction, 1
— A, of the total population between ap, = 30 and 2 x 10* au. We
assume that the primordial binaries have a log-normal distribution
with mean ¢ = 100 au and log width ¢ = 1.5 (which is closer to the
local pre-main sequence binary population than the local field, see
Duchéne & Kraus 2013).

2.3.2 Binary separations

The observed separation of a system is the angular separation,
which depends on its semimajor axis, eccentricity, phase, inclination,
orientation, and distance. From a single observation of a separation
on the sky it is impossible to determine the true semimajor axis
in anything other than a purely statistical way. Yoo et al. (2004)
calculated a theoretical angular separation distribution by convolving
the projected separation distribution of their simulated binaries with
their assumed (inverse) distance distribution. Monroy-Rodriguez &
Allen (2014) instead compared the semimajor axis distribution of
simulated and observed binaries, using a statistical relationship
between semimajor axis and angular separation to estimate the
observed semimajor axes.

The problem with using a statistical relationship between the
instantaneous separation and the semimajor axis is that it only holds
for a ‘typical’ binary. On average, the semimajor axis of a binary
is slightly larger than the observed separation (how much larger
depends on the assumed eccentricity distribution). However, some
binaries (high eccentricity systems at apastron, oriented such that we
see the 3D separation in 2D) will be observed with a separation of

3El-Badry & Rix (2019) find a very slight excess of metal rich field wide,
(5000-50 000) au, binary systems over metal poor systems, but the two are
very similar.
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approximately twice the semimajor axis. Such systems are rare, but
will tend to fall at the widest extreme of the distribution. Therefore, at
the widest end of the distribution this would tend to over-estimate the
semimajor axes. For this reason we compare the projected separations
of our theoretical distribution with the observed distribution, by
randomizing the viewing angles, rather than attempting to turn the
observed separation distribution into a semimajor axis distribution.

To calculate the predicted separation distribution for a given
initial semimajor axis distribution, we use the same scattering
matrix formalism as Yoo et al. (2004). Since each binary evolves
independently, then the expected number of binaries with projected
separation r;, P(rj, M, p), is given by

P(rj, My, p) x a; S;;(My, p)q(a;), 3

where g(a), is the probability density of the initial semimajor axis
distribution and the scattering matrix, S;;(Mp, p), is the number of
simulated binaries with initial semimajor axis in the i-th logarithmi-
cally spaced bin centred at g; that have final projected separation r; for
a simulation with perturber mass M, and DM density p. The factor
of a; appears because our semimajor axis bins are logarithmically
spaced.

2.3.3 Statistical analysis

Previous work has used likelihood analysis (Yoo et al. 2004) or the
Kolmogorov—Smirnov (K-S) test (Monroy-Rodriguez & Allen 2014)
to compare simulated and observed binary distributions. Both of
these methods have drawbacks for this analysis. Likelihood analysis
doesn’t provide information about how good a fit the best fit is,
while the K-S test is less sensitive to differences in the extremes
of distributions, which is suboptimal as the widest binaries are most
affected by perturbers. The classical x? test is not valid if the number
of samples in any bin is small, which is the case for the widest
binaries. We, therefore, use a modified version of the x? test, which
provides p values, is valid for small sample sizes, and is equally
sensitive to deviations across the whole range of the distributions.

The modified ¥? statistic (Lucy 2000), is rescaled so that its
variance is fixed to be equal to twice its mean, and hence the standard
translation of x 2 values into p values is valid, even for small samples.
The Y? statistic is defined as

2 2v 2
Vi=vy /o e (x*—v), 4)
where n; is the expected number of binaries in the i-th bin. The
number of degrees of freedom, v, is equal to the number of bins
minus the number of fitted parameters plus one as the n;’s have been
normalized to match the total observed number of binaries. The x?
statistic is given, as usual, by

(N; —n;)?
=y )
i i

where N; is the number of observed binaries in the i-th bin and the
sum is over all bins with non-zero N;.

3 RESULTS AND DISCUSSION

We calculate the Y? statistic as a function of perturber mass, M, and
density, p, the fraction of the binaries that have power-law semimajor
axis distribution initially, A, and the slope of the power law, «. For
each M, and p combination we find the minimum value of Y?,
Y2 (M,, p). We first check that the best fit is a sufficiently good
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Figure 3. The best-fitting final projected separation distribution (green line) compared with the observed separation distribution (blue crosses). The corresponding
initial distribution (orange line), which has parameters o = 1.26 and A = 1.00 is also shown. The best-fitting perturber mass and density are M, = 30 M and

p =0.012 Mg pc3, respectively.

fit by comparing the global minimum value of ¥* and Y2, , with the
number of degrees of freedom, v. Here we have two fitted parameters
(A and «) and seven bins, so v =7 — (2 4+ 1) = 4. The global best
fithasa =1.26,A =1, M, =30Mpg, and p = 0.012M pc*3. It has
Y2, < 3andhence is indeed a good fit to the data. Fig. 3 compares the
best fit projected separation distribution with the observed separation
distribution, and also shows the corresponding initial separation
distribution.

Next, we calculate constraints on M, and p by finding the pairs of
values for which
AY* (M, p) = Y2 (M,, p) — Y2, = inverse (1 —cdf(p)),  (6)
where p = 0.05 for 20 constraints, and cdf is the cumulative
distribution function of the x 2 distribution with 2 degrees of freedom,
since we are now finding constraints on two parameters (M, and p).
We do this for both A = 1, i.e. a pure power law distribution for the
initial binary distribution, and 0 < A < 1, i.e. allowing a varying
fraction of the distribution to be log-normal. Finally, as discussed in
Section 2.2.2, we rescale our constraints by a factor of 0.71 to take
into account the average DM density experienced by the binaries
along their orbits.

Our constraints on the perturber mass, M,, and density, p, are
shown in Fig. 4. We compare our (very similar) 20" constraints for
A =1 (orange line) and 0 < A < 1 (blue line) with the Monroy-
Rodriguez & Allen (2014) constraints from their 100 and 25 ‘most
halo like’ binary samples (green solid and dashed lines, respectively).
For values of M, larger than those plotted, the Monroy-Rodriguez &
Allen (2014) constraints are expected to be roughly constant.

We tested the validity of comparing 25 observed binaries with our
simulations and found that randomly choosing groups of 25 binaries
resulted in constraints that varied significantly. This is due to the
large stochasticity in the distribution of observed angular separations
from a semimajor axis distribution when the number of binaries is
small. This suggests that a much larger sample of halo wide binaries

is required to provide any meaningful constraints. Therefore, we only
present our constraints calculated using the full sample of binaries
to avoid this stochasticity. Fig. 7 of Monroy-Rodriguez & Allen
(2014) indicates that they were able to calculate reliable constraints
from small sub-populations of binaries. This difference is likely to
be because they compare ‘virtual’ binaries, constructed from 500-
10000 simulated binaries, with the semimajor axis of observed
binaries calculated by assuming there is a one-to-one relationship
between projected separation and semimajor axis. This assumption
is an oversimplification that does not take into account the varied
phases and orientations of the observed binaries.

Our constraint is significantly weaker than that from Monroy-
Rodriguez & Allen (2014). We find f., < 1 for M, ~ 300 Mg,
tightening with increasing M, to f., < 0.26 for M;, 2 1000 My. An
obvious question is "why are our constraints so much weaker than
those of Monroy-Rodriguez & Allen (2014)?". To restate the obvious
—compact objects destroy wide binaries, and the wider the binary, the
more susceptible to destruction it is. Therefore, the constraints on the
allowed compact object density are extremely sensitive to the number
of very wide binaries, and the exact values of the semimajor axes.
We include two effects that Monroy-Rodriguez & Allen (2014) did
not, both of which act to increase the number of very wide binaries
predicted for any particular initial semimajor axis distribution and
perturber population. Consequently, the abundance of perturbers
required to reduce the abundance of the widest binaries below that
which we observe is larger.

First, we do not discard unbound binaries. This means there are
systems with wide separations which, from a single observation,
would be indistinguishable from a (very weakly) bound ‘true’ binary.
This increases the number of very wide systems that could potentially
be observed.

Secondly, by projecting our theoretical distribution into observed
separations we correctly allow for systems to be observed where the
separation is significantly larger than the semimajor axis (up to a
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Figure 4. Two sigma constraints on the perturber density, p, as a function of the perturber mass, Mp. The orange and blue lines show our constraints for
A =1 (initial binary semimajor axis distribution is a pure power law) and 0 < A < 1 (allowing a varying fraction of the initial distribution to be log-normal),
respectively. The dotted and solid green lines are the Monroy-Rodriguez & Allen (2014) constraints for their 25 and 100 most halo like binaries, respectively.

factor of two for bound binaries, and greater than two for unbound
systems). Such systems are rare, but by definition fall at the widest
extreme of the distribution which is what sets the constraints.

The inclusion of unbound binaries in the final distribution con-
tributes the most to weakening the constraints. Fig. 1 shows that at
the largest semimajor axis, the total number of binaries is at least
one magnitude larger than the number of bound binaries for M, >
100 Mg. The next largest contribution is from the initial semimajor
axis distribution. For perturber masses M, > 1000 M, the fraction
of DM that could consist of compact objects (Fig. 4) increases from
0.1 to 0.3 when comparing a variable distribution (0 < A < 1) with
a power-law distribution (A = 1). Comparing projected separations,
and therefore taking into account the large apastron distance of wide
binaries, is likely to have had a relatively small effect on the final
constraints. While the number of binaries at the largest separations,
which are most susceptible to this effect, are the most important for
calculating constraints, the increase in binary separation due to this
effect is approximately a factor of 2 in most cases.

4 SUMMARY

We have revisited the theoretical modelling involved in placing
constraints on the fraction of the MW halo in compact objects
from the dynamical effects on the semimajor axis distribution of
wide binary stars. We have improved on previous work in several
ways. We have used a physically motivated model for the initial
binary semimajor axis, taken into account the uncertainty in relating
semimajor axis to observed angular separation, and retained unbound
binaries. We compare simulated binary separations with observations
using the ¥? statistic (Lucy 2000). This retains the advantages of the
x? statistic, namely it allows the goodness of fit of the best fit to be
checked and (unlike the K-S test) is sensitive to deviations at the
extremes of the distributions.

MNRAS 524, 3052-3059 (2023)

We find that with these improvements the constraints obtained
using the Allen & Monroy-Rodriguez (2014) wide binary sample
are significantly weakened. We find f,, < 1 for M., ~ 300 Mg,
tightening with increasing M, to fo, < 0.26 for M., 2 1000 Mg,
whereas Monroy-Rodriguez & Allen (2014) found f, < 1 for
M, ~ 10 Mg, tightening with increasing M., to fo, < 0.1 for M, P
100 M. It is, therefore, crucial that these modelling improvements
are implemented when calculating constraints on compact objects
using future improved catalogues of halo wide-binaries.
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