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Abstract

It has been proposed that the low energy effective action of the theory of
strings and branes possesses a large symmetry described by the Kac-Moody alge-
bra F11. The non-linear realisation of this algebra and its vector representation
determines the fields and coordinates of the theory, as well as the equations that
describe their dynamics. In order to construct the generators of Ej; algebra it
is split into representations of its GL(d) x Ej;_g4 subalgebra. Here d is an in-
teger that determines the dimension of the corresponding FE7; theory. The low
levels of the non-linear realisation contain the set of equations of the supergravity
theory in corresponding space-time dimension, while the higher levels introduce
an infinite number of fields that are connected to the supergravity ones via a
chain of duality relations, as well as standalone fields that have no counterparts
in standard supergravity theory.

In this thesis we derive the set of commutators of Fq; algebra and its vector
representation up to a certain level in five and ten-dimensional cases. We use
the non-linear realisation approach to construct the generalised vielbein and the
Cartan forms of the Fq; theory in four, five, ten and eleven dimensions.

We then build a set of F1 invariant equations in five and eleven-dimensional
theories from the non-linear realisation of F1;. The low level equations, when
appropriately truncated, are shown to perfectly reproduce the dynamics of the
standard supergravity theories in corresponding dimensions. The dynamics of
certain higher level fields are considered, including the dual graviton field and an
eleven-dimensional field that, when reduced to ten dimensions, gives rise to the
Romans mass term in type IIA theory.

Lastly, we describe the non-linear realisation of very extended A; algebra,
called Af++, together with its commutators, Cartan forms and generalised viel-

bein.



Contents
1 Overview 6
1.1 Maximal supergravities and their exceptional symmetries . . . . . . . . 6
1.2 Kac-Moody algebras . . . . . .. .. .. 8
1.2.1 The l; representation . . . . . . . . ... ... L. 10
1.3 Non-linear realisations . . . . . . .. ... ... ... . 11
1.3.1 Non-linear realisation of G x [y over H . . . . . . . . . .. ... 11
1.3.2  Gravity as a non-linear realisation of IGL(d) . . . .. ... .. 15
1.4 FEy, algebra and its non-linear realisation . . . . . . .. ... ... ... 16
2 FEj, algebra in 5D and 10D Type IIB theories 20
2.1 8D o 20
2.2 10D ..o 26

3 Non-linear realisation, generalized vielbein and [.(E;;) transforma-

tions in different dimensions 33
3.1 11D . 33
3.1.1 Cartan forms . . . . .. .. 33
3.1.2  Generalised vielbein . . . . .. ... 0oL 38
3.2 10D TypellIB . . . . o . . oo 41
3.2.1 Cartan forms . . . . ... 41
3.2.2  Generalised vielbein . . . . . ... L0000 42
3.3 5D Lo 45
3.3.1 Cartan forms . . . . .. ... 45
3.3.2 Generalized vielbein . . . . .. ..o 48
3.4 4D ..o 49
3.4.1 Cartan forms . . . . ... 49

3.4.2 Generalised vielbein . . . . . . . ... 51



4 Non-linear realisation and equations of motion
4.1 Non-linear realisation of Fy; in 11D . . . . . . . . . . . ... . ... ..
4.1.1 3 — 6 duality relation and the second order equations for 3 and
6 forms . ...
4.1.2  Gravity - dual duality relation and the second order equations for
the graviton and the dual graviton fields . . . . ... ... ...
4.1.3 Level 4 equations of the Ej; theory. Modulo transformations.

54
o4

o8

68

Eleven-dimensional origin of the mass term in Romans supergravity. 75

4.2 Non-linear realisation of £y in 5D . . . . . . . . . ... ... ..

5 Non-linear realisation of the A" algebra
51 Afttalgebra . . ...
5.2 Cartan forms . . . . ...

5.3 Generalised vielbein . . . . . .. ..o
6 Conclusions
A Fy, algebra in 11D
B FEi; algebra in 4D

C Author’s publication list

82

87
87
90
92

94

97

105

110



List of Figures

O o0 N O Ot ks W N

e e e e e
Tt = W NN = O

Enlarged Dynkin Diagram D* for the [; representation . . . . . .. .. 11
Dynkin diagram of Ey; . . . . . . . .o 17
Ey algebra in d dimensions . . . . . ... .o 17
FEyy algebra in 5 dimensions . . . . . ... 20
Type ITA Ej; algebra in 10 dimensions . . . . . . . . . ... ... ... 26
Type IIB Ej; algebra in 10 dimensions . . . . . . . . . . .. ... ... 26
Eyy algebra in 11 dimensions . . . . . . . . . .. .. L. 33
FEyy algebra in 4 dimensions . . . . . . ... 50
3 — 6 duality, vector and gravity equations . . . . . . .. ... .. ... 55
11D Eqyqy multiplet . . . . . . ..o 56
Vector sector of the Ey; multiplet . . . . . . ... ... ... ... ... 58
Gravity sector of the Fy; multiplet . . . . . .. .. ... ... ... .. 68
Two commutative diagrams of the Ej; multiplet . . . . . . . .. .. .. 75
Level 4 sector of the Ey; multiplet . . . . . . . . ... ... ... .... 76
The vector duality chain . . . . . . .. .. ... ... 7

List of Tables

Decompositions of the Ey; algebra . . . . . . .. .. .. ... ... 18



1 Overview

1.1 Maximal supergravities and their exceptional symmetries

It is believed that all superstring theories are different manifestations of a single theory,
called the M theory. M theory, however, has no dynamical description of its own and
relies on the existence of supergravity theories that provide the low energy limit descrip-
tion for it. In particular, the unique eleven-dimensional supergravity [1] and maximally
supersymmetric ten-dimensional supergravity theories, which are the ITA [2, 3, 4] and
IIB [5, 6, 7] supergravities, describe the low-energy limit of the M theory, type ITA and
type IIB string theories respectively. An important feature of supergravity theories is
the occurence of coset space symmetries that determine the way the scalars enter these
theories [8, 9]. In particular, four-dimensional maximal supergravity possesses an F;
symmetry [10, 11]. Similarly, three and two-dimensional maximal supergravities possess

Es [12] and Fy [13, 14] symmetries respectively. Scalars of type IIB supergravity belong

¢ SLE.R)

50(2) [5]. These symmetries, usually referred to as exceptional

to the coset space o

symmetries, and the corresponding coset spaces are given in the following table

Dimension | Exceptional symmetry group | Coset space
10D ITA O(1,1) —
10D 1IB SL(2) o

9D GL(2) 6
8D SL(2) x SL (3) St
7D SL(5) 0
6D SO (5, 5) IO TS
5D Eg ﬁ@)
4D Er %
3D Eg %

The coset construction was later extended [15] to include the gauge fields of the su-



pergravity theories into a coset of an algebra, whose generators carried no space-time in-
dexes and involved both commutators and anticommutators. Using a different approach
it was then shown [16] that the entire bosonic sector of eleven and ten-dimensional ITA
supergravity could be formulated as a non-linear realisation of an infinite-dimensional
algebra. This led to a proposition [17] that that the low energy effective action of the
theory of strings and branes possesses a large symmetry described by the Kac-Moody
algebra Fq;. This theory can be formulated as a non-linear realisation, in which all the
fields form a coset space of a certain subalgebra in the E7; algebra. It was subsequently
proposed [18] that in order to incorporate the generalised space-time of this theory one
should also introduce generators transforming in the [; fundamental representation of
E11. Both the fields and the coordinates of the theory emerge from the non-linear real-
isation of the semidirect product of E; with its [; representation, denoted as F1q X [;.

Theories in different dimensions emerge from the different possible decompositions
of Fi1 into the subalgebras that correspond to deleting different nodes from the FEj;
Dynkin diagram [19, 20, 21, 22, 23, 24]. The fields at low levels of these decompositions
are those of the maximal supergravity theories in corresponding dimension and the
lowest level coordinates are just the coordinates of the usual space-time. The higher
levels of the theory involve an infinite number of fields, some of which are connected
by infinite chains of duality relations, while others are standalone fields that could
potentially describe new physical phenomena. The dynamics of these fields are entirely
determined by the symmetries of the non-linear realisation.

This thesis is based on the series of works in which we investigate the properties of
the non-linear realisation of E4; by building the generalised vielbein of the theory [25],
investigating the connection to exceptional field theories [26] and, finally, constructing
the dynamics of the Ej; theory in eleven and five dimensions [27, 28, 29] and showing
that at the low levels they are identical to ones of the corresponding supergravity
theories.

We will start by giving a brief introduction to Kac-Moody algebras, their repre-

sentations and the non-linear realisations. We will then discuss a particular non-linear



realisation that leads to the d-dimensional pure gravity theory under certain conditions.
This specific example will illustrate how E7; manages to incorporate the description of
gravity into its non-linear realisation. In the second chapter we will construct the
commutation relations of the Ei; algebra and its [; representation in five and ten di-
mensional case. In Chapter 3 we will build the non-linear realisation of Fi; X [; in
eleven, ten and five and dimensional cases. This leads to the main part of this work,
Chapter 4, in which we investigate the dynamics of the eleven and five-dimensional
non-linear realisation of Ej; X [; and show that it includes the description of the cor-
responding maximal supergravity fields at low levels. In the last chapter of the thesis
we will construct the non-linear realisation of the very extended A; algebra, denoted as
A{Tt. At low levels this model contains a description of pure four-dimensional gravity,

supplemented with the dual graviton field [30].

1.2 Kac-Moody algebras

A Kac-Moody algebra is a Lie algebra (usually infinite dimensional) that is characterised
by a generalised Cartan matrix, that is a 7 x r matrix A = {a;;} with integer entries

that has the following properties

1. For diagonal elements a;; = 2.

2. For non-diagonal elements a;; < 0.

3. a;; =0 <= a; =0.

4. A can be written as D S, where D is diagonal and S is symmetric.

A Kac-Moody algebra ¢ is then defined by the following set of relations

[Haa Hb] = Oa [Eaa Fb] = (Sab Haa

[Ha, Ey) = Aap B, [Ha, Fy) = — Ay Fy, (1.2.1)
as well as the Serre relation

ad (E,)' ™" B, = ad (F,)" " F, = 0. (1.2.2)



The Cartan matrix can be used to construct the Dynkin diagram, which is uniquely
determined by the algebra. It also affects the dimension of the Kac-Moody algebra in

the following way

1. If symmetrised Cartan matrix S is positive definite Vv # 0 : v, Sepvp > 0, the

algebra is a finite-dimensional semi-simple Lie algebra. In this case det A > 0.

2. If symmetrised Cartan matrix S is semi-definite Vv # 0 : v, S v, > 0 with

exactly one zero eigenvalue, the algebra is an affine Lie algebra. In this case

det A = 0.

3. In all other cases we are dealing with a general Kac-Moody algebra.

Very little is known about the general Kac-Moody algebras, even a list of the generators
is impossible to construct for algebras of this class. Therefore, in order to be able to
develop a workable approach to studying them we will only consider a certain subclass
of Kac-Moody algebras, called Lorentzian algebras. These are the Kac-Moody algebras
whose Dynkin diagram contains at least one node whose deletion yields a Dynkin dia-
gram with connected components of finite type except for at most one of affine type.
In other words, their Cartan matrix possesses at most one negative eigenvalue. The
Dynkin diagram with one node removed is referred to as reduced Dynkin diagram.
Lorentzian algebras can be studied by decomposing their generators into represen-
tations of their subalgebras that correspond to the reduced Dynkin diagram (see, for
instance, Chapter 16.3 of [32]). All of the generators then become parametrised with
an integer parameter m, called level. This parameter indicates how many times the
Chevalley generators that correspond to the deleted node enter the generator in ques-
tion. Level m = 0 generators form the adjoint representation of the reduced subalgebra.
Positive level generators correspond to the rising generator F,, while negative level ones
— to F}, where index r labels the deleted node. The exact representation content of the
algebra on any given level is uniquely determined by the choice of the deleted node. It
can be found by either theoretical analysis, or using a specialised program like SimpLie

31).
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1.2.1 The [; representation

The representations of the Kac-Moody algebras can be studied using the same technique
as the one that we used in the previous section to study the algebra itself (see, for
instance, Chapter 16.6 of [32]). In order to construct the fundamental representation
associated with node e of a Lorentzian algebra g we first construct an enlarged Dynkin
diagram D* by adding a new node, called x, connected by a single line to the node e
in the original Dynkin diagram D. We can decompose the adjoint representation of
the enlarged algebra ¢g* in terms of the original algebra g by deleting node * and using
the techniques above. That is, we can introduce a new level parameter m* associated
with the added node. At level m* = 0 we find the adjoint representation of g. It
can be shown, that at level m* = 1 of the decomposition we find the fundamental
representation of g, associated with node e. In this thesis we will be mainly interested
in the fundamental representation, associated with the leftmost node of the Dynkin
diagram, called the [; representation. Unlike the adjoint representation, discussed in
the previous section, the [; representation is a highest weight representation. This
implies that the level parameter for it takes only non-negative values m > 0. The
importance of this representation comes from the fact that it contains the translation
generators associated with the algebra g. As we will see later in Chapter 2, at level
m = 0 of this representation we find the regular space-time translation generators P,,
while the higher levels m > 0 are associated with the translations of the generalised
coordinates, which will be introduced below.

We will illustrate the procedure outlined above with the following diagram
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D

Figure 1: Enlarged Dynkin Diagram D* for the [; representation

1.3 Non-linear realisations

The theory of non-linear realisations has been historically used to describe effective
theories with spontaneously broken symmetry [33, 34]. In this section we will briefly
discuss the structure and the symmetries of the non-linear realisation. We will then
illustrate how d-dimensional pure gravity theory is related to the non-linear realisation
of GL (d) with the local subgroup SO (d). This is an important example that lays

groundwork for implementing the non-linear realisation approach for the E;; theory.

1.3.1 Non-linear realisation of G x [; over H

An arbitrary group element of G x [; can be parametrised in the following way

A e
9=9r98, gL=¢" ", gp= H eta(@ % (1.3.1)
ReeG

Here R are the generators of G, while L, is the set of generators of the vector (I;)

representation of G. They obey the following general commutation relations
(R, R%] = f*2, RY, [R*, La)=—(D%)," Ls. (1.3.2)

Matrices (D%) , ® = D (R%) , ® form the [; representation of G. The coefficients A, play

the role of the fields in the resulting theory, while 2 are the generalised coordinates
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that these fields depend on. The group element from equation (1.3.1) forms a non-linear

realisation when subject to the following transformations

e Rigid (global) G x [y transformations

g—>909, 9o € Gxl, (1.3.3)

e Local H transformations

g—gh, heH. (1.3.4)

The equations of motion that describe the dynamics of the fields from equation (1.3.1)
are invariant under the rigid and local transformations defined above. The role of the
local transformations subgroup H (tangent group) is usually played by the Cartan invo-
lution subalgebra of G, called I, (G). It is defined as the subalgebra of G that is invariant
under the Cartan involution, which acts on the Chevalley generators (H,, F, Fy) of

G in the following way
I.(Hy)=-H,, I.(E,)=—F, I.(F,)=—E,. (1.3.5)

A noteworthy example of this structure is the Cartan involution subalgebra of G'L (d),
which happens to be the Lorentz algebra in the same dimension: I, (GL (d)) = SO (d).
We will later use this fact to illustrate how the d-dimensional pure gravity is related to
the non-linear realisation of IGL (d).

In order to construct the dynamics of the non-linear realisation one has to consider

the Cartan form, which satisfies the Maurer—Cartan equation.
V=g ldg, dV+VAV=0. (1.3.6)

where g is the group element from equation (1.3.1). The Cartan form is invariant under

the rigid transformations and transforms as follows under the local ones
V—h 'Vh+hdh (1.3.7)
The Cartan form can be split into the adjoint and the [; parts.

V=V, +Vp=da" (En" La+ GuoRY) =da" En® (La+Gaoa R, (1.38)
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where comma in Gy, separates the [, index II from the adjoint index o. G1 o can also
be written as a differential form: G, = dz"' Gy .. Fn? is the generalised vielbein of

the theory, which is determined by the following relation
EHA LA :ggl LHgE (139)

The generalised vielbein can be also expressed through the (D<), ” matrices from

equation (1.3.2).
A

Eg? = (H eAaD“> (1.3.10)

n
This object will be calculated for the E; theory in various dimensions in Chapter 3.

G 4, are the Cartan forms that generalise the field strengths of the fields of the theory.
The latter fact can be justified by observing that at the linearised level G4 o = 04 A,.
Knowing the generalised vielbein one can construct the most general expression for the

Cartan forms
— [Vp, La]l = d2" Gr,o (D), L = — [95'dgr, L]
= — 95" d (98 Lagy') g = Ea”dEs” L, (1.3.11)
and so
G a” =Gna (D*)," = (E'0nE) " (1.3.12)

The adjoint part of the Cartan form can be further split into the coset and the subal-
gebra parts
Ve=P+Q, PeG/H, Q€cH. (1.3.13)

The benefit of this decomposition is that under the local transformations the coset part

transforms homogeneously, while the subalgebra part — as a connection.
P—h 'Ph,
Q—h 'Qh+h 'dh. (1.3.14)

The transformation law of the general vielbein under the transformations from equations

(1.3.3, 1.3.4) is determined by the following equation

En® — D (g0)g * EA® D (h) 5, (1.3.15)
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where D matrices were defined in (1.3.2). From this equation one can observe that the
generalised vielbein transforms on its upper, “flat”, index under the local transforma-
tions, and on its lower, “world”, index under the rigid transformations as well as the
general coordinate transformations. This makes this object a natural generalisation
of the regular vierbein from general relativity. Using equations (1.3.12, 1.3.15) one
can derive the most general transformation law of the Cartan forms under the local

transformations.

Gap” — D(h"), "D ("), "Gp " D(h)°

+D(h™"), "D (h™"), " Ep"0uD (h)°. (1.3.16)

Lastly, we will describe how the general coordinate and gauge transformations can be
generalised for the non-linear realisation of G. The generalised vielbein transforms as

follows [35]
Es” 6,En” = (D%); = (Da)z © 0o A” + A® E4” 0g Ex”. (1.3.17)

Here index « is lowered with the Killing metric, defined as a scalar product on the
algebra g = (Rg, Ré). It is straightforward to calculate using the invariance property;,
(re, [R2, R)) = ([Re, R R2).

These transformations take a rather simple form when reduced to the flat indexes
and linearised. One finds

gAa = (Do), 7 95 A (1.3.18)

Parameter A belongs to the [; representation of G. In the E}; case this transformation
law simultaneously encodes both the general coordinate transformations of the regular
space-time vielbein e,%, as well as the gauge transformations of the vector fields. Hence
we will later refer to it as “gauge transformations”. Note that the construction of
the non-linear realisation does not imply that the dynamics of the system have to be
invariant under these transformations, however, we will later discover that the FEq;

symmetry automatically imposes the gauge invariance.
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1.3.2 Gravity as a non-linear realisation of /GL (d)

We are now going to show how the pure gravity in d dimensions is related to the
non-linear realisation of IGL (d). This connection was first established in [36] for the
four-dimensional case and later generalised for d dimensions in [16]. In this section we
are going to follow the narrative of Chapter 13.2 from [32]. IGL (d) algebra consists of
translation generators P, and GL (d) generators K%, The commutators of this algebra
are

(K%, K| =0, K% — 0] K%, [K%, P.] =—02P,. (1.3.19)
For the local subalgebra we are going to choose the Cartan involution subalgebra of
GL (d), which is generated by the following set of generators J,, = K% — K°,. One
can easily recognise these as the generators of SO (d). Alternatively, one could choose
Jab = Nae K% — Mpe K€4, which would result in the tangent group SO (1, d — 1). The
first choice leads to the Euclidean gravity, while the second one — to the Minkowski
gravity. For simplicity, we are going to stick with the Fuclidean case. The coset

generator orthogonal to Jy, is Ty, = K% + K°,. The group element can be written as
g =" Tagha" @K (1.3.20)

The Cartan form is given by
V=dat e, (Py+ Q" K') = dz'e,” <Pa + % Sa.ve The + % Qa, be ch> . (1.3.21)

where Q, ,° = e,” (e”'0, €), “ is split, according to equation (1.3.13), into its coset and
subalgebra parts: Sq pe = Qo (be), Qa,bc = o, b~ €4 is the vielbein of the theory. The
most general form of the action that is second order in derivatives and is invariant under

the tangent group transformations of equation (1.3.4) is
S = [ d'a dete (d Dy Sus + da DaSin + i S S
+ d4 Sa, e Sb,ac + ds Sa,be Sa,be + Ao Sa, ab Sb, cc + A7 Sa,vb S, cc> , (1.3.22)
where the covariant derivative is defined as follows

Da Sb7 cd — aa Sb, cd + Qa, be Se, cd + Qa, ce Sa, ed + Qa, de Sa, ce- (1323>
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As was mentioned before, the subalgebra part of the Cartan form @), ;° plays the role
of the connection, due to the fact that it transforms inhomogeneously under the local
subalgebra transformations. This action is generally not diffeomorphism invariant. Re-
quiring that it is invariant under the general coordinate transformations results in spe-
cific values of coefficients d;: (dy, ds, ds, dy, ds, dg, d7) = (— %, %, — %, %, -1 %, — i)

With these values of the coefficients the action then takes the familiar form
S = /dd:v dete R, (1.3.24)

where R is the Ricci scalar built from the metric tensor g,, = ¢,%¢,%. To summarise,
we’d like to point out that the non-linear realisation of /G L (d) does include the descrip-
tion of gravity, but the local symmetry of the non-linear realisation is not sufficient to
fix the lagrangian uniquely. One has to impose additional symmetries in order to derive
the well-known R /g action. Alternatively, one can consider a simultaneous non-linear
realisation of /GL (d) and the conformal group [36], which also fixes the lagrangian
uniquely.

As we will see later, the situation is drastically different in the Fq; case. The Eq;
symmetry is infinitely richer than the finite GL (d) group. Consequently, the Fy; theory
is capable of predicting the correct set of supergravity equations without requiring any
additional symmetries to be imposed. This means that the gauge (and diffemomorpism)
invariance of the E; theory is actually an emerging property that follows from the local

1. (Fy1) symmetry of the non-linear realisation.

1.4 FE4; algebra and its non-linear realisation

The Ej; is a Lorentzian Kac-Moody algebra of rank 11 that belongs to E series. The
Dynkin diagram of this algebra is
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OB~ O—E—9—

Figure 2: Dynkin diagram of Fy,

As is the case with all Kac-Moody algebras the full listing of the generators and their
commutators is unknown. The generators can be classified with respect to the level
parameter that correspond to deletion of one of the nodes from the diagram. The
choice of the deleted node plays an important role in the E;; model, as it determines
the dimension of the resulting theory. In the general case, deleting node d from the

diagram results in the GL (d) x Ey;_4 subalgebra.

Figure 3: Eq; algebra in d dimensions
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More specifically, all the decompositions of the Ey; algebra that result in the general-
isations of the maximal supergravity theories in different dimensions are given in the

following table.

Dimension | Deleted node Level 0 subalgebra I. (Level 0 subalgebra)

11D 11 GL(11) SO (11)

10D TIA 10 0 (10, 10) SO (10) x SO (10)

10D 1IB 9 GL(10) x SL(2) SO (10) x SO (2)
oD 9, 11 GL(9) x GL (2) SO (9) x SO (2)
8D 8 GL(8)x SL(2)x SL(3) | SO (8)x SO (2)x SO (3)
7D 7 GL(7)x SL(5) SO (7) x SO (5)
6D 6 GL(6) x SO (5, 5) SO (6) x SO (5) x SO (5)
5D 5 GL (5) x Eg SO (5) x USp (8)
4D 4 GL(4) x By SO (4) x SU (8)
3D 3 GL(3) x Eq SO (3) x SO (16)

Table 1: Decompositions of the 7, algebra

The subalgebras colored in red describe the symmetry of the space-time coordinates. As
was shown in Section 1.3.2, the non-linear realisation of these GL (d) algebras produces
the equations for the gravitational sector of the supergravity theories. Consequently,
they are usually referred to as the “gravity line”. The blue colored algebras, on the
other hand, represent the internal symmetries of the theory. As one can see they
match perfectly the exceptional symmetry groups, given earlier in the introduction.
In Chapter 2 we will present the commutation relations of Fy; algebra for different
space-time dimensions. They were constructed by first finding the representations that
the generators belong to on each level, then assuming the most general commutation
relations between them and, finally, implementing the Jacobi identity in order to fix all
the free coefficients.

The non-linear realisation of Fj; is conjectured to be the low energy limit of the
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theory of strings and branes. As such, it has to contain all maximal supergravity the-
ories and their exceptional symmetry groups. In Chapter 4 we will illustrate how the
low levels of the five and eleven-dimensional non-linear realisations of F1; produce the
field content and the dynamics of maximal supergravity theories in the corresponding
dimensions. The higher levels of the decomposition contain an infinite number of fields,
some of which are related to the supergravity ones by infinite chains of duality rela-
tions, while others are standalone fields, some of which could describe new physical
phenomena.

I. (E11) is an infinite-dimensional algebra, whose generators have the following form:
E, — FI,. Therefore, each generator of this algebra is a combination of a level m
generator of Fj; with the corresponding level —m generator. We will refer to the
resulting combination as level m generator of I. (£7;). This implies that the £y theory
possesses an infinite number of local invariances defined in equation (1.3.7) and classified
by level parameter m = 0, 1, ... . On level 0 these symmetry simply ensures the Lorentz
covariance of the equations of the theory. Level 1 transformations, on the other hand,
play the key role in the E;; model, as they transform equations of the theory into each
other and, therefore, determine the structure of the Ej; multiplet that describes the
dynamics of the fields. Higher level transformations can be obtained as compositions
of level 1 transformations. Unlike the /GL (d) model from Section 1.3.2, Ej; theory
does not admit a description in terms of the lagrangian. In order to find the dynamics
of the fields one has to construct the equations of motion directly from the non-linear
realisation. These equations transform into each other under the local transformations
and, therefore, form a multiplet of I.(E1;). The power of Ej; symmetry ensures that
selecting one of the equations as a starting point allows one to reconstruct the whole
multiplet by repeatedly applying the local transformations and demanding their closure.
We will also see that the resulting theory will exhibit the gauge invariance, despite
the fact gauge transformations are not encoded into the structure of the non-linear
realisation. This method will be implemented for five and eleven-dimensional cases in

Chapter 4.
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2 Fy; algebra in 5D and 10D Type IIB theories

2.1 5D

The FEj; algebra in five dimensions can be obtained by deleting node 5 from the Dynkin

diagram [21] as shown in Figure 4.

o -

Figure 4: F4; algebra in 5 dimensions

The Ej; algebra is then decomposed into representations of its GL (5) x Eg subalgebra.
To describe the Eg part of the algebra we are going to further decompose it in terms
of its Cartan involution subalgebra USp(8). These notations were proposed in [37]
and are extremely useful for the implementation of Cartan involution transformations.

78 generators of Fg are split into 36 adjoint representation of USp (8) and its 42
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representation. They correspond to the following tensors
Ro12 R4 (2.1.1)

Here Greek indexes («, 3, 7, ...) range from 1 to 8. Generator R*'*? is symmetric, while
Ro1-94 is antisymmetric and USp (8)-traceless: Qg, 5, RP172192 = (), where Qu,0, =
Qaras) is the invariant USp (8) metric. It will later be used to raise and lower USp (8)
indexes: T, = Qo 77, T* = Q¥ Tp, Q7 Q.5 = 5. The generators of £y up to level 3

are
Level Generators
0 K%, R*%2 R
1 Rexa2
-1 Roaias
2 Ra1a2 102
—2 Ramz alag
3 Ramz,b7 ‘[tgawza:socwcz7 R1azas a1...aq
-3 Rala27 by Ra1a2a3 a2 Ra1a2a3 Qai...04
where Latin indexes (a, b, ¢, ... = 1, ..., 5) label the GL (5) representations. Gen-

erators R*2, R“%2% N2 and Ry asas01a0 ar€ symmetric in ajoe, while others are
antisymmetric in Greek indexes. All the generators with antisymmetric Greek indexes
are USp (8)-traceless. Level 3 generator R*%:" obeys Rt — Rigias,5) = 0. The

generators of the [; representation are

Level Generators
0 P,
1 VAR
2 A
3 Zeb  gmemoe:  gaor.o
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Here Z*1%2%1%2 ig symmetric in ajas. We now give the Fy; algebra when written in
terms of the above generators. The commutators of the Fy; generators with the GL(4)

generators K%, are

(K%, K] = 6y K% — 63 K%, (K%, R =0, [K%, R*"™] =0,
(K%, RE*1%2] = 65 R, (K%, Reayas] = — 0¢ Ryayas:

[K%, R1e2192] = 2 (5[,?1 Rlalazlaraz (K%, Rajayaros) = —2 (5[21 Rjpag] arass
(K%, Ree2ssee2] = 3.6y Rlelazes] @102) (R0 R i6,] = — 3 0(a, Ribjazas) (@1a2);

[Kaba Ra1a2a3a1...a4] — 35[;1 R\a|a2a3]a1...o¢4’ [Kab’ Ralazag Oél---OC4] - 35[‘21 R|b|a2a3]a1...a47

[Kab; Ramz,t:] — 25[;1 Rla\az},c + (5§ Ramg,a? [Kab; Ralaz,C] = — 25[‘;1 R|b|a2},c — 5? R(llag,b'
(2.1.2)

The commutators of the Ej; generators with Eg generators are determined by the

representation of USp (8) that this generator belongs to. With R“1*? we have

[Ra1a2, R5152] -9 Q(cn(ﬁl R()Q)/J)Q)7 [Roz1a27 RBI..-,BAL] = 4Q(a1[ﬁ1 Ra2)525354]7
[Ra1a2, Raﬁlﬁz} =2Q(lA Ra(m)ﬂ?], [Rala2> Ra5152] =200 5[(;? Raﬁ?h’
[Rawz?, Ro1a2 ,3132] =92 Q(O‘l['gl Rz a2)52]7 [RO“OQ’ Ramz ,3152] =2 Q(aﬂ 5[2?) RalaQ Palv:
[RaloQ’ Ralag,b} — 07 [ROQOCQ’ Ra1a2,b] = 07

[RalOQ, Ro1aza3 5152} — 9 a1(B1 Rarazas 042)52)7

[Ral(m, Ramzas 5152] =2Q( 5(%21) Ra1a2a3 Ba)vs

[Ramz’ Ralazagﬁl""&l} = 4 Q@B Raiazas a2)B2Baba]

[ROQOQ, Ra1a2a3 /31...54] = 4Q(a1’y 5[(;?) Ra1a2a3 P23 Bal -
(2.1.3)

For R**4 we find
[Ra1---a4 R’Bl"ﬂ‘*} _ 1 Q[ouag 9[6162 [QLELES Roc4]54] _ g Q[a1[61 Q@22 ()ashs Rad&d
b 2 3 )

[ROq---cm7 Ralﬁﬁﬂ — Qlerez Qas(br pacalfe] | lenlBr azfe] paasadl

_ 1951& Q[Oélaz Raasad _ l Q[Ollom Qa3a4] Raﬁ1ﬂ2,

1 12
[R4 Rypp) = — (Q[O‘M Qs ggiel 4 leabn goznal sgogl
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1

a1 a3 1 a1 o o
B E Q[ 10 4 531;2 + Z 951,32 Q[ 12 Q shn Q 4}72]) Ra'YI’YQ’

[Ra1...a4, RM1a2 61,32] _ <Q[a1a2 Qeslf1 Raiaz aa)Bs] + Qlealpr Qazpe] paraz azad

_ 195152 Q[oqaz RMa2 azoy) i Q[oqocz Qa3a4} RMa2 ﬁ162>

4 12

[R°4) Ryl 150) = (Q[amz Oosm 5;;1]7522] + Qlealn a2 5;3;‘4]

182
. i Q[alag Qa3a4] SN2 + 1 0 Q[alaz Qas[’n Qoé4]72}> R
12 Bifa T g BB a1a2 ¥1792

[Ral-uaz; Rmazas 51-~ﬂ4] — 19[041042 QlB182 (asfs paiazas a]Ba]
’ 2

g Q[al[ﬂl QOéQ/BQ Qasﬁs RMazas a4]Ba)
3 )

o o 1 (63 a0 « 2 a1t o7
[R Tt Ra1a2a3 51-.-64] = 5[ (295 Q) h 95253 Ra1a2a3 Baly + § 5[ Bty L b Rala2a3 Balvys

9 A (818285
[Ral...oq, Ra1a2,b] — 07
[Ral.“m;, Ralag,b] — 0 (214)

Note that level 2 and 3 generators R*®'*? and R*%®1*2 helong to the same USp (8)
representation 27, but different Eg representations 27 and 27. Consequently, they
transform identically under R*'*2, but differently under R*'*¢. [; generators Z*1?
and Z**1°2 have the same property. The commutation relations of the positive level

E1; generators are given by
[Raalag Rbﬁlﬂg] _ 4Q[o¢1[51 Rabaz],ﬁz} . 19ﬂ1ﬂ2 Rabogozg . 19‘11&2 Rabﬂlﬁz
Y 2 2 3

[Raalaz Rblbzﬁ1ﬂ2] — 4 QlealBr pabibzaz]fa] | pabiby arazfifa
)

+2 (ml[ﬁl Qo] émlaz QW?) RNz e, (2.1.5)
The commutators of negative-level E; generators are

1 1
[Raa1a27 Rbﬁﬂz} = 49[041[51 RabO@]BQ] - 5 Q5152 Rabalaz - 5 Qalaz Rab61627

[RaalfJfQ? Rb1b2 5152} = 49[041[51 Rable a2]B2] + Rablbz arazfife

1

+2 (Qal[ﬁl QaQﬂz} - g Qoo Qﬁlﬁz) Rble,a' (2‘1'6>
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The commutators between the positive and negative level generators of E1; up to level

4 with level £1 generator are given by

[Raala27 Rbﬂlﬂz] = 451(11 6[[211 952}7 Ra2h +12 61? Q51’71 Q62’)’2 Reresme

Q102 1 a1 a 1 a (&
+ 2 (66162 + g Q 1a2 Qﬁ162> (K b — §5b K C) ;
[Raa1a27 Rbb2 5152} - _ 85[[51 QO@]W 5[51 RU21 B2y _ 162 Qal'Yl Qag'yz 5[51 Rb21me

+ Qa1a2 5[b1 Rb2] ﬁlﬁQa
[R*1°%, Ry ] = — 8015 Q1 68, Ry sty — Uy Q7 Q2 68 Riyjooy
+ Q2 0, Riy) ,6s
[Raa1a27 Rb1b2b3 5152:| — 6Q[a1'y 6(06521] 5[21 Rb2b3} 132)'77

[Raala2: Rb1b2b3 5152] =06 Q[aw 5(02321] 5[21 RbeB] Ba)v>

[Raa1a2> RU10203 ,31---54} = 36 (5[/31,32 §lor Rb2bs]Bsfal | ()[B152 Q[aw 573 slor pb2bs] Baly

araz Ya az] Y a

+ i Qala2 Qo182 5[51 Rb2b3]5354]
1
_ E Q[ﬁlﬁz Qﬁsﬁd Qawl Qaz'yz 5[51 szbg] 7172)7

(RS2, Ry o) = 36 (05157 0 Boat) o) + Qs 87 03 06, Rossy
- % Q%1% Qg g, Oy, Ribg] Bapa]
_ % Uy Vil X Q68 o).
[Raarass B = Qaygy Qagpy (0 B2 — 5 RMI2)

[Re™192 Ry ] = 1B (o2pa (52 Riby 8185 — 5[‘; Rb1b2]6162) , (2.1.7)

The Cartan involution acts on the generators of Ey; as follows
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Generator 1. (Generator) Generator 1. (Generator)
KCLb _ Kba Ra1a2 a102 _ Qalﬁl Qazﬁz Ra1a2 5152
Ro1a2 Rz Ralag,b Ralag,b
R4 — Rx--04 Ra1a2a3 @10z — Qb Qa2p2 Ra1a2a3 516
Reaiaz — Qa1b1 a202 RaﬁlBQ RMmazaz ar..aq | Qa1fr Qazfe Qashfs ()aabs Ra1a2a3 b

We now give the commutators between the generators of F;; and those of the [; repre-
sentation up to level 2. The commutation relations between the later and the generators
of GL (5) are given by

[Kabv PC]:_(SSPI)_’_%(SZ?PC) [Kaby ZalaQ]:%(Sl()lZalan (218)
[Kab’ anlaz] — 55 Zaaiaz + %5;}1 anlag’ o

while with the generators of Fg we have

[R*1°2 P,] = 0, [Rozlozz7 Zﬁm’z} — 9 Qlailh Zaz)b’z]’
[Rozlozg’ Za6162] — 29(01[51 211062)52]7 [Ro‘l'“‘“, Pa] — 07
|:RCVl~--C¥47 ZB152] = Qlaaz Qaslby Foalhz] | )lenlbr (yaefa] Fosad]

1
4
[RO””'O“‘, ZU«BI/BQ] _ <Q[a1a2 Oslbr Faca]pe] + Olaa[Br azpa] Faazad

9/31/3’2 Q[alaz Za3044] _ i Q[ala2 QOé3Oé4] Zﬁlﬂz
12 ’

_ ;195152 Q[Oq(m Za0¢3oc4] _ 1_12 Q[Oqaz Qa3a4} Za5162>. (2‘1‘9)

Commutators with the level rising generators are

[RaalaZ’ Pb] — 51(71 ZalaQ, [Ralag OélOéQ’ Pb] — _25[;11 Zaz}alozz’ (2 . 10)
[Raaum? 25162} — 49[061[51 Zaaz]ﬁﬂ _ %Qﬁlﬁ2 Zaaiay %Qaw@ zafifz o
Commutators with the negative level generators are
Raovan P =0, Ruasan: Z9%] =2 (60352 + 10,10, Q%) Py,

Roayass 2'0%) = 46, (Q[m 0% 281 4 1 Q0 Z0P2 = LOPB QL Qe Zw) :
Rayas arans Zbﬁlﬁz] =4 (56162 +éQa1a2 Qmﬁz) 5[1;1 P,

Q1o

[
[

(2.1.11)
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2.2 10D

In order to construct the ten-dimensional theory from the E7; algebra one has to delete
a node from the Dynkin diagram in such a way that after the deletion the diagram still
contains a sequence of nine connected nodes, which will lead to the ten-dimensional
gravity. There are two different ways to do this [19, 38]: deleting node 10 and deleting
node 9. Deleting node 10 results in Type ITA theory.

QQQQQQQIQC

O (10, 10)

Figure 5: Type IIA Ej; algebra in 10 dimensions

Deleting node 9, on the other hand, yields Type IIB theory with an internal symmetry
group SL (2, R).

SL(2, R)

| |
G L (10)

Figure 6: Type IIB Ej; algebra in 10 dimensions
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Type I1B algebra was first partially constructed in [19] and later expanded in [38]. Here

we give the complete set of commutators for this algebra up to level 4. The commutators

of By X 1y, decomposed into representations of GL (10) x SL (2, R) subalgebra are

Level Generators
0 K%, Rag
1 Ra1e2
-1 RS .,
2 Ral...a4
- 2 Ral...a4
3 Rg{l...a()‘
-3 Rgl...aﬁ
4 RZE“CIB, Ral...a7,c
—4 Rglﬁ_,_aga Ral...a7,c
Here Latin indexes (a, b, ¢, ... =1, ..., 10) label the GL (10) representations, while the
Greek indexes (a, 3, 7, ... = 1, 2) correspond to the spinor representation of SL (2).

All the generators with two Greek indexes are symmetric in them, e.g. R.p = Rga.

Level 4 generator obeys Rloa-ar.d — Ryq,..ar,q = 0. The generators of [; representation

are
Level Generators
0 P,
1 VA
2 Z(ll a2a3
3 28195
4 Zal...a7’ Zzzl‘..ag,b’ ZZE“M

where Zlo1-a6,¢ — Zjay...a6,¢ = 0 and ng@;“‘” is symmetric in  and #. The commutators
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with the SL(10) generators K¢, are

(K%, K] = 6¢ K — 64 K%, [K%, Rag) =0,

(K, Rue2) = 26, Ry, (K%, Ry 0,] = =200, By

(K%, Ro-01] = 48y Rleloaasadl - [ Ry, o] = =408 Rpjasasaa);

(K, R%-] = 65[;1 |0((1‘0‘2.“a6]7 [K“ RY . aﬁ} _ _65a |Cl¥9|a2 ]’ (2.2.1)

K, Re™] = 80" Ry [Ko, Relo ] = =800, R, o

ab7 Ral.“amc] — 76[511 R|a\a2..‘a7],c + 60 Ral.“a%a’
ab? Ral.“(n, ] 76[(11 R‘b‘ag a7 5 Ral a7, b

==

The commutators of the Ey; generators with the SL (2) generators R,z are

[Rag, Rys| = 0, €8)y Ros + 0, €p)6 R

[Rap, R312] =00, €5, R5"™,  [Rags Ria,] = =00, 86 R0y

[Raﬁv R 4] =0, [R R aj.. a4] =0,

[Rag, R2+%] =60 ey, By, [Rag, RY, as) = = 00,85 By e (2.2.2)
[Rozb’a Ral...a7,b:| = 07 [Raﬁa Ral...a7,b] = 07

[Rag, R?ﬂls 8] = 5 o €8y Rgg a8 4 (S(Q €B) 5Ra;”'a8,

[Rag, Ry} o) = =00, €810 B oy — 00 810 By _as-

The commutators of the positive level Ej; generators with each other are given by

[RglllQ’ Rg3a4] = — Eap Ral...a4’ [RZWQ, R(lg‘..ag] — 4Rgl'“a6,
[RngQ’ Raﬁg‘..as] - _ Rilﬂ...as — €48 Ralag[ag...cw,ag]’ [Ral...a47 Ra5...as] — %Ra1...a4[a5a6a7,as].
(2.2.3)
For negative level generators we have
[Rg1a27 Ra3a4] = _€a6 Ral-~~a47 |:R31QQ7 Ra3~--a6i| = 4R31 .ag?
[Rgmg? Raﬁr, ag} Rg? .as - 8a6 Ralaz[ag...a7,a8}7 [Rlllmau Ra5~~.l18] = %Ral...a4[a5a6a7,a8]~
(2.2.4)

To find the commutators between positive and negative level generators we need to
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utilize the Jacobi identities. These commutators up to level 3 are given by

-Rglaa’ Rbﬁlb2i| =4 55 5[[211 Ka2]b2} - % 55 5;)1111;122 Kdd -2 6;)111;22 EB’Y Roﬂv
(R4, Ry ] = 1203175 K% — 96 5[[5111?221;3 Ky,

Ree, R | = 27008 0 Bl — 5207 gt K0y — 4503150 77 R

[RywvRhmM]:“_12&w5££;RiMP [R%M’RMMM}::_125W§%£§R?Mh
[ b1b
Re, R | = 0800 Bugg, [Re BY ] = 105 000 R,

[Re-as, By ] = 9005 0t Rty [Rayay, REY] = 9000} 70 R,
(2.2.5)

The commutators of level F4 generators with level 4+1 ones are

R, B | = 5600 e Y

[bl ) b3...b8] ) [Ra

aiaz’

bi.bg] o s[bib2 pbs...bs]
Rﬁg 8:| — 56 5(ﬁ 50‘}0; R,YS) 8 9

(R, Ry, ) = — 252205 0002 RE 1+ 2526030000 R

[b1b2 3.
[Re,,, Rb-¥1b] = — 252208 sltibe pha-brlb | 959 gas slhaba pha-trt]
(2.2.6)
with levels 4-2:
|:R[11...a4’ Rbalﬁbg] - 0, |:Ra1...(1,47 Rlc)vlﬂbs} = 07
[RO-94, Ry, e p) = — 1260 83 Rypgprgp + 1260 35704 Ry, (2.2.7)

[Rayayy BY721] = = 12604703 RPY6Y7P 41260 64) 7 ay RUb,
with levels £3:

at...a B e o
[RO} % Rf:..bs] = 126094 Ofpy b szbs}’ [RG:ao

[Rer=%, Ry,_py o) = 1890205 05100 R, — 1890 20 610 Ry,
(R, oy RY-070] = 189027 60rie R — 189022 64t mas R,

ay...ag’

bi..bg] __ a s[b1.-be b7bs]
Ry =12600( 0a)ag B},

(2.2.8)

and, finally, the commutators of level £4 generators between themselves are

[R“l"'“S Rfj%g] = — 20160 815 557 Kos, ) + 2520 61022 gy Ky

ajlaz Qo2 Q1o

+ 5040 871505 (7! &7 Ry,



30

[R™7% Ry, ] = — 113408507 K, + 11340 60147 K% + 11340 0,307 Ky
+ 11340 05757 6y K% — 11340 67 K,
— 7938005 e K7y 4 79380 0t K7y
+ 79380 0500 K Ty ) — 90720 317 Ky,

[Rglénzﬁ, Rbl...b%b} = 0, [Rozﬁ

ai...ag’

RUIm = 0. (2.2.9)

The action of the Cartan involution on the adjoint generators is given by

Generator | I, (Generator)
Kab - Kba
Rog Eay €85 Rys

Ro | - Ry,
Ra1...a4 Ral.“a4
R | =Ry,
Reva,® Rel e
Ral...a7,b Ral...a7,b

We now consider the commutators of the E; generators with those of the l; represen-
tation. The commutators of the [; representation generators with the level 0 SL(11)

generators K%, are given by

K%, P]=—062P,+ 3 6; P, (K, Z8) = 0 Z8 + 5 05 Z¢,
a. Zalazas] _ 35[;1 7 lalazas] + %(5;)1 lemzas’
ab) Zal...as] — 55[{;11 ZLCL‘(IQ...C%] + % 61? Zgl._,aE,?

«

=

[
[
[

=

(2.2.10)
[Kab7 Zzg.xw] = 7(5[51 Z|aaﬁ|a2...a7] 4 %5;71 Zg}j...cw?

ab, Zal.“a7] — 75[1:11 Z|a\a2...a7] + % 5;)1 Zal...cw7
Kab, Zal...ag,c] — 65[;1 Z|a\a2...a6],c T 65 701...06, @ + % 6;)1 701...06,C

=

[
[
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The commutators with the SL (2) generators R,z are

Ross P1=0. [Rup, 22) = 68,20, 2.
[Ra/g, Za1a2a3] =0, [RQ/B’ nyllm%} — (5(604 E8)y Zgl...%’
[ 0B Za1...a7] — ()7 [RQB, Zal'”%’b} _ O,

[Rag, Z,%'“‘W} — 5(‘; €8)y Z;l(ls...m + 5((; £8)5 Z’(;,é...a7'

(2.2.11)

The commutators with level one Fy; generators can be taken as

[Rila27 Pa] — 5[31 Zg2]’ [R31a27 ng] = —¢€ap Za1a2a37 [Rg{laz’ Za3a4a5] — Zgl...ag.’
[Rgla27 Zgg..ﬂw] _ Zglﬁ...aq - saﬁ Zal...a7 . Eocﬂ ZU«IU«Q[CLS-ua&U«ﬂ‘
(2.2.12)

The commutators with other positive-level generators can be found using the Jacobi

identities to be given by

[Ral...a47 P] — 26[(11 Za2a3a4] {Ral...a4’ ng] - _ Zal...as
[Rélj .ag P] 35(11 a2 a6]7 [Rglﬂmas,Pa] _5@1 a2 ag]
[Ral...cw,b7 Pa} — _ 3522a1...a7 + 35([117 Zal"'a7] + 3_(1) 5([1a12a2‘..a7],b, (2213)
[Ral...a4, Za5a6a7] — QZal...a'r _|_ § Zal...a4[a5a6,a7}

b

[Rco?m%vzgq — _%Zgg..m_i_ 5aBZal a7+ 5aﬂZal -ag, a7

The commutators with level —1 E}; generators are given by

[RS..,, Pa] =0, (RS, 2] = — 48388, P,
(RS, Zbh2bs] = — Gef glorbe Zbal (R, Zgl.“b5j| — 2069 slorbe babas]
(RS, Z00] = 4208, aias 205", (RS, Z0%7] = =3P 841as 27",
(RS0, 20000 = = 15027 5ilaz 257" + 150227 datas 25",
(2.2.14)
while the commutators with level —2 generators are
[Ra..as FPal =0, [Ray.asr 23] =0,
(Ray. 0y, Z00205] = 4861020255 Pyt [Ray .oy, Z0005] = 12060004 2091, (2.215)
[Rar..ar Zaa ] =0, [Ray. .y, Z007] = — 120 65224 Zbsbobr]
[Ray 0y, 2000 = — 1800 650 Zsbelb 4 1800 81y 7ot Zbsbot],
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with level —3 generators

[Rgl---aﬁ’ P} 0, [Rgl .ag? ZZ} =0,
[Rglmaﬁ’ Zb1b2b } [Rg1 .ae’ Zb1...b5} = —360 5% 6[211 1315 Paa}
(RS, agr Zhvad] = — 126088, 601705 Z37), [Re, g 2017] = 2707 60105 77,
(R, o Z00000] = 9009 ghi-bs 78 — 90028 54t 0s 21,
(2.2.16)
and, finally, with level —4 generators

[Ra1o2,, P =0, [Raiez,. Zg) =0, [Raioa,, Zh%] =0,

[Rglla%,g? Zb1 b5} — 0 [RgllaZS’ Zbl...bq — O7 [Rgllazg’ Zbl...bg } O

[Ra1...a7,a> Pa] = 07 [Ral...a7,aa Zb:| = 0 [Ral...a7,aa Zb1b2b3] O

[Ray.aras 25" =0, [Ray.ar,ar Z0507] =0, (2.2.17)

[Rerea,, Z8507] = — 20160652 527 P,

[Rayaz,ar Z717] = 432060107 P, — 43206277 Py,

[Rar.ar.ar Z0095:0] = — 75600 0 5[’;11 ¥ Py + 75600 52’[); b0 P
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3 Non-linear realisation, generalized vielbein and

I. (F4;) transformations in different dimensions

3.1 11D

In this chapter we will construct the non-linear realisation of E7; algebra in eleven, ten
type IIB, five and four dimensions. This includes the exact expressions for the Cartan
forms (1.3.8) and the generalised vielbein (1.3.9), as well as their transformations under
the local I.(E;) transformations (1.3.7). Later in Chapter 4 this will allow us to
combine them into the set of equations that is closed under said transformations and,

therefore, describes the dynamics of the non-linear realisation.

3.1.1 Cartan forms

The eleven-dimensional theory is obtained by deleting node 11 from the Dynkin diagram
[17, 18].

QQQQQQQIQC

GL(11)

Figure 7: Fj, algebra in 11 dimensions

The FEj; algebra is then decomposed into its GL (11) subalgebra. The generators of

this algebra up to level 4 in this decomposition are given by
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Level Generators
0 K%
1 Ra1a2a3
- 1 Ra1a2a3
2 Ral...a(;
- 2 Ra1...a6
3 Ral...ag,b
- 3 Ral...ag,b
aj...ag9,b1bab ai...aig, b1b ai...a11,b
4 R 1 9, 0102 3’ R 1 10,01 2’ R 1 11
- 4 Ra1...a9,b1b2b37 Ra1...a10,b1b27 Ral...all,b

All the blocks of indexes separated by commas are fully antisymmetric, with an excep-

b1b2 biba]

tion of the level 4 generator R ~%10:%1%2 which is symmetric in byby: R 101

Ra,. a1, [b1bs) = 0. All the generators with several blocks of indexes obey the following

GL (11) irreducibility constraints
R[al...ag,b} — R[al...ag,bl]bgbg _ R[al...alo,bl]bz =0

R[al...ag,b] = R[al...ag,bﬂbgbg = R[alu.(llo,bl}bQ = 0. (311)

The generators of the [; representation are given by the following table

Level Generators
0 P,
1 Z/a1az
2 Za1...a5
ai...a ai...a7,b
3 Zl 87 Zl 7
ai...ag,bibabs ai...ag,bibs Aal...ag,blbg a1...a10,b ai...a10,b ai...ail
4 |z . Z 7 L Zgmet, gaeeet g

Generator Z%-40:01%2 jg antisymmetric in by by, while Z91-910:9182 js symmetric in them:
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Zo-ar0, (bib2) — () Za1--a10.(b1b2] — (). The lower index on Z&l)"'aw’b implies that it comes
with the multiplicity 2. All the generators obey the corresponding G'L (11) irreducibility
constraints, similar to the ones given in equation (3.1.1).

The algebra of these generators was found up to level 3 in [17] and extended up to
level 4 in [39]. The reader can find the full set of commutators up to level 4 in Appendix
A. The construction of the non-linear realisation starts from the group element g €
E11 x 1y which is subject to the transformations g — gogh where gy € E1q X [1 is a rigid
transformation and h € I, (E1) is a local transformation. The group element g = g1, gg
from equation (1.3.1) truncated by level 4 can be parametrised as follows
Ra1--ag,b1bbs A

o eRal‘“all’bA b eRal'”alo’blb2A

gE aj...aiq, aj...aig, byba e aj...ag, bybgbg
. ehafluﬂgbealmH‘g‘b eA‘ll-'-a(i RA1---a6 eAa1a2a3 Ra1a2a3 ehab Kab _ eAgRg,

g = €% Fo gFaray 2172 oo 201705 oy oy 20108 20y ag,p 20100
) exa1~-<a8ablb2b3 zai...ag, bybabs emal.“ag,blbz Zai...ag, byby efayuag,blbg Zai...ag, byby
,exéll).“alo,b 2111)”@10’1) exii)malo,b 2121)4..4110,1; e%ar.a1y VA e:p“‘ LA. (3.1.2>

We used the local I.. (Eq;) invariance to eliminate the negative level generators from the
group element ggp. This is equivalent to fixing the gauge for the higher level 1. (Ej;)

transformations. x4

are the generalised coordinates of the theory. On level 0 we find the
regular space-time coordinates x®, while the higher levels contain the coordinates that
parametrise the extended space-time. Historically, the realisation that strings could
wrap around circles lead to the introduction of additional momenta associated with the
wrapping. This corresponds to an additional set of space-time coordinates, which make
the SO(D, D) T-duality symmetry of string theory manifest [40, 41, 42, 43, 44]. This
approach gave rise to theories like double field theory [45, 46, 47].

The adjoint part of the Cartan form Vg defined in equation (1.3.8) is given by
VE = Gab Kab + Ga1a2a3 Rara2as + Gal...as Rt-6 + Ga1...a3,b Ral'”ag’b

ai...ag, b1bab ai...a10,b1b ai...a11,b
+ Gal...ag,blbzbg, R0, 010208 + Ga1...a10,b1b2 R 10,152 + Gal...alth ot ;

Vi, = da" En” La, (3.1.3)
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where Epr? is the generalised vielbein defined in equation (1.3.9). It will be calculated
up to level 3 in the next section. The Cartan forms expressed through fields are given
by

Gl = (e’1 de)a b

Garasas = €423 dA

a1a2a3 K123
o H1p6 _
Gay.ag = €as...aq (dAm---ue A[muzug dAlMMsus]) )

Galmas,b = e (dhmu#s,y - A[Mlmm dAM4#5H6 A,ums]V +3 A[Ml---l%‘ dA/MMs]V

ai...ag,b
+ A[mmus dAu4/t5u6 AMMSV} -3 A[ulmue dA#?,usl/])a (3-1-4)
where e,% = (eh)ua, e = (e* h)a“ and

Hr

Ml fbn 125} Hn H1...p7,V M1 v H1 1724 v
e =eal. e =e Con] €~ €lay - Car’ €] - (3.1.5)

aj...an *“an] ai...ar,b lar ="

These definitions will carry over to the other sections. We also give the linearised level

4 Cartan forms. They are given by

Gay.ag,bibobs = AAay a9 bibobss  Gay.aro bibs = AAar aro,b1bes  Gayoann,b = dAay an,b-
(3.1.6)
The parameter of the level 1 local I, (Ey;) transformations of equation (1.3.4) is given

by
h=1— Agjapas S“%%,  where S§%192% = Rua20s _ paibi pasba pasbs pp (- (3.1.7)
Under these transformations the Cartan form of equation (3.1.3) transforms as follows
dVe =[S Agiagas, VE] — 9% dN oy agas- (3.1.8)

Written in terms of the Cartan forms of equations (3.1.4, 3.1.6) these transformations

take the following form

5Gab = 18 Aclch Gclcza -2 53 AClCQCB GC10203?
5Ga1a2a3 = 60 Ga1a2a3blb2b3 Ab1b2b3 -3 Gc[al A‘C‘aza?’} B dAa1a2a3

= 60 Ga1a2a361b2b3 Ab1b2b3 - 6 G(C[(h) Acagag}a
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6Gay..a5 = 2 Nayasas Gasasas) — 336 Goybabsfor...as, ag) A",
0Gay..as,b = — 3 Glay..as Daraslp T 3 Glay...as Narast]

— 440 (Gay...ager, caesp + Glay.anlper, eseslas)) A3

— 120 (Gay...aseres, csp + Glay...arlberea, eslag)) A2

— 110 (Ga1~~ascwzc3,b + G[a1...a7|bclcgcg,|a8]) Aerees (3.1.9)
where we have taken into account the gauge fixing condition that we introduced in
equation (3.1.2). Since the group element and the Cartan form do not contain any
negative level generators, we have to ensure that they are not produced by the trans-

formation from equation (3.1.8). We can do that by making parameter A®1%2% obey

the following constraint
AN — 3 Gyl APlazas] = ), (3.1.10)

This allows us to get rid of the dA*1??% term in the variation of Gy, 4,4, from equation
(3.1.9). One can also notice that this equation has another important implication. It

ensures that parameter A#1#2#3 with the curved indexes is a world constant.

AHIH283 — o H1H2143 AaumaB7 dAFIP2H3 — (), (3'1'11>

aiazas

We will also give the transformation law of the level 4 Cartan forms

7
5Ga1...a9,b1b2b3 — é A[ble[al GGQ...ag],bg,] + 2 A[bl[amg Gag-..ag}b2,b3]
7
+ 6 A[alazas Ga4~--a9][b1b2,b3] +
24 24
5Ga1...a1o,b1b2 = - G[al...a7(b1,b2) Aasagalo] T G[‘“'“ag’(bl Abg)agalo] T
11 11
0Gay.an,b = A[a1a2a3 Ga4-..a11],b + (38.1.12)

where + ... indicates the presence of level 5 terms, which we haven’t considered.

The Cartan forms, discussed above, were forms written as G, = dz" Gy ,. Al-
though the Cartan forms when written in form notation are invariant under the rigid
transformations of equation g — gog, once written as Gp, they are no longer in-

variant. We can remedy this by taking the first index to be a tangent index, that is,
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Gaoa=F A1 G, which is inert under the rigid £, transformations, but transforms
under the local I.(Ej;) transformations. Using equation (1.3.15) one finds that the
Cartan forms, when referred to the tangent space, transform on their /; index up to

level 1 in coordinates as follows
0Gae=—3G"2 Ny e, 0G0 = 6A" 2P Gy + . (3.1.13)

where + ... refers to the level 2 terms that we have neglected.

3.1.2 Generalised vielbein

In this section we will construct the eleven-dimensional general vielbein up to level 3

in coordinates. According to equation (1.3.10) we have

En? = (e e? et eAO)H A (3.1.14)

where

_ b _ :
AO — h(z Dab; Al — Aalagag Da1a2a37

(3.1.15)
AQ - Aal...GLG DalmaG) A3 = Aal...ag,b Da1...a8,b'

The level zero matrix is given by the expression

dr- Ay - L = = [h"K®, da® Po+ diteye, 29 + dive, ey 29

+ dxcl...z:g Z/C1--C8 + dxCl...C7,CZCL“C7’Ci|- (3116>

Using the commutators from appendix A.1, we find

ha? 0 0 0 0
0 26" hay™ 0 0 0
Ao=|[ 0 0 — 5O By 0 0 —% he 1,
0 . 0 80 ha™ 0
0 0 0 0 — fbrbrd

ai...az,c

(3.1.17)
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where kb1-b7.d

ai...az,c

= Tod8 0 b

matrix results in

e = (dete)”

-

(o L + Oyt h.t — 5[a1 o hc] Exponentiating this
et 0 0 0
0 esz 0 0
0 0 e 0 0 . (3.1.18)
0 0 0 e 0
0 0 0 0 el

The combinations of vielbeins used in this formula were defined in (3.1.5). We now

compute A; in a similar way by considering

d.??'.Al'L:—

[Aalagag Ra1a2(13’ dz* P.+ dxch Zee 4 diﬂq...q, 7C1C5

ey ey 29 4 dey eq, e Z9C], (3.1.19)

from which we conclude, using the commutators of appendix A.1, that

0 —3Aus, 0 0 0
0 0 — 012 Ay 0 0
Ar=10 0 0 — Oy by Abbrbs] = O Avgbels + 0, 57 Abgbrty
0 0 0 0 0
0 0 0 0 0
(3.1.20)
Proceeding in a similar way we find that
0 0 3Auw,. b 0 0
00 0 Oprte Abs.bs) Oprte Abs..brlp — Oprs Abg..brt)
A=100 0 0 0 . (3.1.21)
00 0 0 0
0 0 0 0 0
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and
0 0 0 34 000 —3Aapibilb+ 5 Aafpr.. b7, 0]
0 0O 0 0
As=10 0 0 0 0 (3.1.22)
0 00 0 0
0 0O 0 0

To compute the generalised vielbein we just need to evaluate the matrix expression of

equation (3.1.14). We find that

a c c c c
eu eu ac|a1a2 eu ac|a1...a5 eu ac\al...ag eu ac\al...a7,b
0 e H1p2 e Bip2 gcica H1p2 [Qcic2 pip2 [C1C2
ai1a c1C2 ai...as c1C2 ai...ag c1C2 a1.4.a7,b
A ,% C1...c
= B pls H1ee b5 A/CLe-oC5 B1ee s A/ CLeC5
EH (det 6) 0 0 6a1...a5 ecl...C5 Y ai...as 661...05 Y aj...a7,b )
B8
0 0 0 etk 0
0 0 0 0 ety
(3.1.23)

where the symbols in the first line of this matrix are given by

s = = 3 Aumass Oulor s = 3 Auarg + 3 Atores Ausasas
Oty = Aar- s — 3 Al Avgaras)
4 4
Qafar..ar b = 3 Adjay..ar,b) T 3 Aafar...as Aagart] — 3 Adjar..ar),b
— 3 Adfar...as Aagarls — % Adfaras Aasasas Aagarlbs (3.1.24)
the symbols in the second line are given by
B a5 = = O, Augasas): B2 g = 02 Ay a)s
5b¢lzlf..a7,b - 5[2111;22 Aa3---a7]b + % 5[1;11222 Aasasas A%W]b - 5[2111;22 Aaa---a7b]> (3.1.25)
and, finally, the symbols in the third line are given by
’szlzl.'%zg == 5[211..'.'.1755 Aasawz&b Vb;;.'?z7,b = 5[211'.'.'.%5 Aasaﬂ?] - 5[211'....255 Aasaﬂb' (3-1-26)
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3.2 10D Type 1IB

3.2.1 Cartan forms

The level 4 group element in ten-dimensional type IIB case can be parametrised in the

following way

g1, = exp (:c“ P, 4+ 25 Z8 + oy 0905 2% + 24 Z/01-as

ai...as “a

af ai...ar ai...a ay...ag,b\ _ _zAL
+ X Z B +xa1...a7 Z ! 7 +xa1...a6,bZ ! ¢ ) =€ A7

ai...ar “a

g = €Xp (hab Kab) exXp (waﬁ Raﬂ) €Xp (Aa1...a7,b Kal...a7,b> eXp (Agf..ag Rgllﬁ.“%)

X exp (AO‘ R‘O?“'“G) exp <Aa1_,a4 R‘“"'“‘*) exp (AO‘ Rgla2> =M (321)

aj...ag aiaz

Once again, we used the local 1. (Fy;) invariance to eliminate the negative level gener-
ators from the group element. The notations used here were defined in Section 2.2.

The Cartan form is given by

Vg = Gab Kab + Gaﬁ Raﬁ + G- ngz + Ga1...a4 RA1-a4

aiaz

+ Gy ag Ra "+ Gaary R 4+ GRP o RO,
V= da" En® Ly, (3.2.2)

The parameter of the level 1 local I. (E;) transformations of equation (1.3.4) has the

following form

h=1-A%, .54, where S¥% = RU® —pnbpehpe . (3.2.3)

ajaza

Under these transformations the Cartan form of equation (3.1.3) transforms as follows

SV = [S4% A% V] — 50192 dA? (3.2.4)

ai1az’ aijaz’

The condition that these transformations should not create negative level terms in the

Cartan form is equivalent to

dAZe? — 2 AP Gl 4o g A2 GPT =0 or  dARM? =0, (3.2.5)
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Where dot on « indicates that it is a world index, rather than a flat one. Up to level 4

in fields these transformations give

0G," = 4NX GS, — %53 NG G, 0G = —2elhl e GO
0GS 0y = — 208 1 Gag® + €8y AL o, G — 126 AU G ppayay — dAS,,
= —4A% " Gpfag)) — 126 AG” Goitgaray + €7 Mooy G+ P AL, Gy,
5Gancas = = a5 Nosan Oy = 2 AL G (3.2.6)
0GG, as = 400, Gas...ag) — 252 e AZIbQ Ghibs[ar...a5,a5) + D0 A%”’Q G?ﬁyzal.._%,
OGS 0y = = Ny GO OGS ey = = Cap Naras Gayarp + 0 Aaras Gy _art
The Cartan forms transform as follows on their /; index
0Gae=—NAGGh,, 3G, =—4APGyot .., (3.2.7)

where + ... refers to the level 2 terms that we have neglected.

3.2.2 Generalised vielbein

In this section we are going to calculate the generalised vielbein using its definition
from equation (1.3.9) rather than the matrix method we used in the previous section.
In this approach the generalised vielbein is computed by conjugating the [; generators
with the Ej; group element. Using the algebra from Section 2.3 we can perform this

conjugation for the D = 10 case. Conjugation with level 0 group element gives

e’ Raﬁe—ha”K“b{Pw Zh, 2, Z 2R, 2 Z“l"'“6’”}eh“bKabe‘Paﬁ Rap
12 ’

aiazas

_1
— (det e) 2 {e“a Pa; eau gaﬂ 257 e H1B243 Za1a2(l3’ ea/il.:d'f gdﬂ Zg1...a57

[ %8e 2} 3182 aj...ay ai...ag,b

w17 . B1B2 rzai..ar 1. b7 7701 ...Q7 H1---[46,V r7aq...a6,b
eal...a7 g Z 76 Z 76 Z 3 (328)

where g% = (eaww')dﬁ and gdlﬁf_gf" = g[fll...gdff. The coordinate vielbein e,*, its

inverse and their combinations were defined in equation (3.1.5) of the previous section.
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In the above equation and what follows we denote world, rather than tangent, SL (2)
indices with a dot, that is &, £, .... Conjugating with positive level generators can be
obtained by Taylor-expanding the exponents and truncating the series by level 4. For

level one Ej; generator we have

b1 bo b1b2

— A%, R 5 A%, R
e byby e {Pm ngl7 Za1a2a3’ Zgl---aa}e bybg “t T —

aal “aza3 aay ““agasz “asas

1 1
- {Pa - Agb Zg + 5 €ap A AP pmazaz _ 6 €ap A AP AY Z;Ll...a5

1 1
+ — €us A“ Aﬁ AX A2 gai.ar — €05 E0n A% AB A° A)\ Zal‘..(lg,b’

24 aay ““agaz “taqas “ tagar “araz 60 aa; ““agasz “tagas “ ragb

1
Zgl — €ap Aﬂ Za1a20a3 + 5 Eap A,B A Z,L;1...a5

aza3 agas “tasas

1 1
— —¢Cap AIB AM A2 ga.ar g — €08 Eo AB A° A)\ Zal...af,-,b7

6 az2a3 “tagas ‘tagay Foraz 15 azas * “aqas ““agh
1 1 b
7414298 — Ag4a5 Zg1-..a5 + 5 Agi% Agsm Zgi&';w - 5 50‘5"434% Afab Z e )
2
Zo0 — AR 70T — eag AL 27T geagAf6bZ“1"'“6’b}> (3.2.9)

for level 2 generator:

— Ay, . v, RO1-ba ai aiazas Apy . v, ROV04

e~ “biba P, Z3', Z eb1--ba =
=P, —24A 7420 42 A Ay on 20007 — 2 4 A A
- a aalazas + aaiaza3 ‘1aq...ar - g aaiazaz ‘{lasasagh )

4
2t + Aug.oay 2%, 20 =2 Ay g 2 4 ¢ Ao Z“l'"“ﬁ’b}, (3.2.10)

for level 3 generator:

Y by...bg B by...bg
e~ Aby..vq g {pa’ 221}6%1‘.176 Ry —

aay...as “a as...a7 “a

3 1
— Pa —— L 70105 701 _AB 7a1...a1
{ 4 Yty gt

3 1
+ s Ay 2+ g s Ay 27 } (3.2.11)
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and, finally, for level 4 generators:

_A5152 Rbl -bg 5152 Rbl o o
e 8182 P e b1 -bg 51/32 = P + Aaé12 Zaiag , (3212)
_Ab b bRbl‘“b7’b Ab b bRbl‘“b7’b ai...ar 21 al...ag,b
e 1.7, Pa e“tb1-br, = Pa + 3Aa1...a7,a 7 _ 2_0 Aaal...ag,b 7 )

Using all these results we find, from equation (3.2.5), that the generalised vielbein is

given by
e e’ O‘dz €4° Qelarazas g‘u‘: C‘Zl el a ‘Zi 2 r €4 Aelay...ar €u° Oelay...ag,b
0 e 96" e 967 Blarazas 37‘@ a5 et ga” 55\5;327 e 967 By ar e 95" By ag b
0 0 (’al::f;él;‘ ec‘“;“‘“ A/{‘]{;(‘;H s e l:é“f;“ e 21‘ 2 e bk percaca ec)fé“czu‘ yereres,

En = (dete) ™ | 0 0 0 edtite gs” etk o XN e s g NGy e G Xy g |

0 0 0 0 B o,,’l‘(ff 0 0
0 0 0 0 0 el 0
00 0 0 0 0 ehtme”

(3.2.13)

The symbols in the first line of the above matrix are given by

1
aalg = — A Qglarazas = — 2 Aaarazas + 5 D) Cap Aa[a1 Aazas]
3 1
aa|31...a5 = - Z Agal...ag, + 2 Aa[a1a2a3 Ag4a5] E:,8’)/140, a1 Aa2a3A34a5

o2 gares +§Ago[;l A — Adarasas Agras Age

alay...ar aay.. 1...a5” “agary] asas” “agar)

1 « o
+ 5180 Ay Al A A

aza3z” “asas* “agar)’
3

Qajar..ar = 3 Aay.az,a 1
21 3. Ao A 130

42 2o Artrosos Ao Al — -

+ % Aufarasas Aasasagh] — %saﬁ e A% AP AT AN (32.14)

gaﬂ Ag[al.. A + 2 A a1a2a3 Aa4...a7]7

-as CL6CL7

Aﬁ

alay...as “ *agh]

Qglay...as,b — % aai...ag,b — 10 €ap A%

Aa[a1a2a3 Aa4a5a6]b
a2a3 aqas
in the second line are

a _
alarazaz T

1
= Can 00 AL AP

9 aza3 “ “agas)’

1 1
ﬁa\fhﬁz _ 1 5[21 5(0,[81 Af;.)..aﬂ _ 5[21 5(aﬁ1 Ay s Aﬁ2 - 5[21 AY AP AP

alai...az asar) 6 aza3 “aqas “ Tagar)’

a B alB . a
— Eaﬁ 6[(11 A Ba\al...c% —_— 55 5[(11 A(lQ...CL5] —|—

azasz)’
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o 3 5
alay...ar — 4 7 EaB 6[ A

az...ar]

— €ap 0, Aug.ay AL

agar)’

1 1 2
B
6g|a1...a6,b 20 oA SaB 5a Aa1 .ag 20 oA SaB 5[5 Aa1 .ag] + g €ap 6[((111 Aa2-~~a5 Aas}b

2 1
= = €ap O, Aus.as AL+ T Sas € Oy, AL s AT s Ao (3.2.15)
in the third line are
b1babs3|B _ _ sbibabz 4B b1b2bs|B1B2 1 bib2bs A1 B2
7 ay...as [a1a2a3 a4a5]’ ’)/ ay...ay 2 [a1a2a3 agas a6a7}7
b1bab

P ar = 20 Ay a)s (3.2.16)
b1b2b3 _ 4 b1b2b3 4 b1b2b3 1 5blb2b3 Ao Aﬁ

= = - g Eaﬁ [a1a2a3 asas a5]b’

v ai...ag,b — 5 [a1aza3 “*asasaclb T 5 [a1aza3 “ asasacb]

and, finally, in the fourth line are

b1...bs|aran . ay ¢by...bs az)
Xa lai...a7 5 5[(11 .as “Tagar]’
b1..4b5 _ bl b5 B
Xa lat...a7 — €ap 5[(11 .as “Tagar]’
b1...b5 . by.. b5 B b1.. b5 B
Xo a1 as b = 5[(“ s Al L+ Eap 5a1 s Aasb]' (3.2.17)

3.3 5D
3.3.1 Cartan forms

In this section the non-linear realisation of F;; in five dimensions will be constructed, in-
cluding the Cartan form, generalised vielbein and level 1 local I, (F4;) transformations.
Later in Section 4.2 we will use these results to find the dynamics of the five-dimensional
E4 theory.

The general Ey; X [y group element can be written as g = g, gg, Where

A Ra162,b

gE — e a1a2a3 Q10t2 Ra1a2a3a1a2 +A

ajagag oay...ay R®*194293 *1---24 4 Aa1u2, b

. eAu1a2 ajag R®1%2 @122 eAacxlag R**122 eSOOquQ R*1%2 +‘Po¢1...a4 R*1--4 ehab Kab
Y

a [e5Ne% aolo
gr, = exp {:1: Po+ 2ai0, 27 4+ Toogay 277

ajaz ala ajaz aq...x ab
+xa1a2a1a2Z 1oz e +xa1a2a1...a4Z 1z 4 +xabZ }7 (331>
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The Cartan form is given by

_ b ra a Qs a1az o
VE — Ga K b+ Gaa1a2 R + Ga1a2 [e%¥e%) R
alaza3 a1« a1a2a3 af...Qu aijaz,b
+ Galagagoqag Rrazas oo + Galagagal..a4 R 203 e + Galag,bR ree )

Vi, = daeV Eq? Ly, (3.3.2)
The higher level Cartan forms can be determined by using the following relation

a o o2 a1a oo a1a2a3 &y (2
Ga a1an R + Ga1a2 a1 R ! + Ga1a2a3 a1a2 R

aja2a3 aj...Q ajaz,b
+ Galagag,al...a4 R * + Galag,bR 12

-1 a oo S a1a2 o1 ~ a1a9a3 o]0
=9 (Gamaz R*™ + Gayag ar0n B + Gayasag anan 1

¥ Gy g R0 4 Gy RO) g, (3.3.3)

where

9o = €xP (Payas B + ay..aq B*7) exp (k" K%), (3.3.4)

and

G#dﬂdz = dAMdldw

_ . 1 .
Gmuz Qi1ae — dAuluz Qi T 2 A[m [a1]5] dAuz] 0'42]’y - Z Qéadz A[ul Y172 dAMQ}Wl’YQ’

Guluzm Gide — dAuwzug nap — 4 A[m (119 dA/uus] 0'42)7
4
+-A

3 (w1 dayn Auz G272 dA,us,]’YWQ - g A[#l (6] Au271"72 dAus] \@)727

Guwzus Q1.0 — (dAuwa GQ...04 A[m Q1 ceo dAm#s] &i3cug

2 .
+ 3 Al drde Aps dals) @) aﬂ)
G"““Q’” - dAUIMvV —2 Alld1d2 dAmmdlm + 2 A[V Gy dA G162

fape]
4 & vy 4
+ 3 Avaray A 4™ dA,) " — 3

5
proj 42

A[lec'm Apy "Yéq dAm];YdQ- (3.3.5)

As in previous section, indexes with the dot on them refer to curved extended space-
time coordinates. “proj 42”7 implies that the corresponding Cartan form has to be

made irreducible with respect to ¢;...cy indexes.
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Level one I, (Fy;) transformation of the Cartan form is given by

Gaalay _ paaiay nab Qalﬁl Qazﬁz Rbﬁlﬁga

OV =[S Agajags V] — S dANy 00 (3.3.6)
The level one .. (E1) is restricted by the gauge choice in the following way
dAgarar = Gra Abamz — Gayas D™ = 2 Gy )y Naay)” = 0. (3.3.7)

This constraint ensures that the Cartan form doesn’t acquire negative level terms under
the I, (Ey;) transformation. The generalised vielbein transforms in the following way

under the I, (F4;) transformation:

SE® = —2 Fpyoy A*™1°2,
1

5Ea1a2 = F° Aaalaz — 4Ea 1]l Aaaz}fy _ 5 Qa1a2 Ea%ﬁ{? Aa'yl'yg7
1
0L ooy = 4 E[alh\ Aaaz]’y + 9 Qayan E’Y1’Y2 A2, (3.3.8)
Here we are using the form notation for the generalised vielbein: E4 = dz™ Eg#. This

corresponds to the following transformations of the Cartan forms with respect to their

[1 index.
5Ga,o - - Galag,o AanOQ’
a a 1 a
5Ga1a2,o =2 Ga,o A ajas 4Ga [a1]7], @ A 042]’y - E chag Ga'yl'yg,o A 7172,
1
0Gaaraz,e = 4 Glarly) e Naas)” + 92 Qaraz Grine,e A2 (3.3.9)

We now give the variations of the Cartan forms with respect to their adjoint index. For

level 0 Cartan forms we have

2
0G" = 2 Guanan A" = 300 Geayan A,

5Ga1a2 = —4 Ga (a1 |y Aaaz)’Y’ (3310)

5Ga1...o¢4 = 12 Ga a1 Aaa3a4] —12 Q[oaaQ Gaag\’y\ Aaom]’y - Q[oaaz Qasad Ga’yryz A2,
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Variation of the level 1 Cartan form is

0Gaomar = — Ga® Mparas +2Gloniy| Maas]” — Garasyins Ao
+ 8 Gaplary Mas)” + Qo Gabrins A7 = dAgaya,
= —2G Aba1a2 — 2 Gy anyige N
+ 8 Gapfar o] Aa)” + Qs Gabring A2, (3.3.11)

where we have used the gauge fixing condition (3.3.7). Lastly, variation of the level 2

Cartan form is

1
5Ga1a2 ooy — T 4 G[al [or || Aaz} 042]’y - 5 Qamz G[cu Y172 Aag]%’y2 - Gamz,b Abmaz

+ 6 Gayasbfor y| Nas)” — 36 Gayasbaranyine A772 (3.3.12)
3.3.2 GGeneralized vielbein

We will now build the generalised vielbein of the five-dimensional theory up to level 2

in coordinates. Conjugating the [; generators with the level 0 group element results in

e~ Parag B2 —pa;. oy RO — ha® K%, {P‘u7 Zd1d2’ AT }ehab K% gpajag B2 +pay . ay RO

o=

= (det 6)_ {eua Pa, fdld25152 Zﬂl'BQ, €a‘u fd1d25152 ZaﬁlﬂQ}, (3313)

where f41925 5 and f41925 5 are the solutions of the following equations
_1\a1a A
(FH) ™ s df 25,5, = 2051 G2, — G2,

)
(f_1> Y12 dfﬁlﬂ./251ﬁ2 =29

[[Ef G + G5, (3.3.14)

Conjugating with the level 1 group element gives

b b
e*Ag,gl@QR B1B82 {Pa7 Zalag}eAb5152 RYB1B2

= {Pa — Aupipy 202 42 Ay App, Z001P2

o 1
Zeie2 (4 6[[611 Abﬁﬂaz] - 5 Qe Ab,31,32> ZbﬁlBZ}' (3315>
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For the level 2 group element we have
e~ AbﬁlBQ RVP1P2 Pa eAbB1ﬁ2 RPP1P2 — Pa —+ 2 Aab, 5182 Zbﬁlﬁz. (3316)

Putting all these results together one finds

e’ — e Aparay €40 (2 Apa oo + 2 Abjos o] Aaa)”
4 Qs Apu Ad" )
En® = (det €>—% 0 fandz — foadey o (4 5[[51 Ag o™
3 Qe A 20 A, )
0 0 et f4192, 0,
(3.3.17)
3.4 4D

3.4.1 Cartan forms

The four dimensional theory is obtained by deleting node 4 from the Dynkin diagram
and decomposing the Ey; algebra into representations of GL (4) x E; [48]. However, it
is easier to work with SL (8) subalgebra of E7, instead of E7 itself. In this case all the
generators belong to representations of GL (4) x SL (8).

The generators of Ey; in four dimensions are

Level Generators
0 Kab’ }%IJ7 RI1..AI4
1 Rah[g’ }%alll2
—1 Rah[ga Fialll2

aiazl arazly... I - (ab
2 Rl paazhids [ (ab)

~

I
—2 Ra1a2 Js Ralazll...h’ K(ab)

Here capital Latin indexes (I, J, ... = 1, ..., 8) label the representations of SL (8). All
the generators with blocks of Latin indexes are antisymmetric in them. For the [y

representation we have
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Level Generators
0 P,
1 Zh1z AN
2 Za, ZaIJ, Za[l...f4

The algebra of these generators is given in Appendix B. The corresponding Dynkin

diagram is

Z@@

GL (4)

Figure 8: F4; algebra in 4 dimensions
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The parametrisation of an arbitrary level 2 group element is of the form

g = €xp (iL(ab) [A((ab)) exp (AalazJI Ralazlj) exp (Aalagh...h Ramgh...h) (341>
x exp (Aaps, R + A2 R ) exp (ha K%) exp (9! RY ) exp (.1, R,

gr = exXp (l’a Pa + o ZIII2 + $Il[2 Z]1[2 + -@a VA + l‘aj[ ZaIJ + LTal...I4 Zall"'14),
The corresponding Cartan form is

b I Iy...1 EWL I I
Ve =G K%+ Q" R 1+ Qp 1, R"" + Gupyp, R + G, R,
I arasJ aragly...I A -ab
+ Galag JR 14 I + Galagh...14 R 120t + GabK 5

Vi = da" En® L. (3.4.2)

The I. (F4;) transformations of the Cartan forms have been found and discussed in [48].

3.4.2 Generalised vielbein

We will now build the generalised vielbein of the five-dimensional theory up to level 2
in coordinates. Conjugating the [; generators with the level 0 generators K%, and R

gives the following

e~ ¢ IRy - heb K9y {P/“ ZI'II'Q’ Zfll'gv 7" Z“jj, Zuf1~--f4} et K oty RY;
= (det 6)_% {eua Paa f{lhl?fz ZJ1J2> fJIl;Z’ ZJ1J27 eau Zaa
e flic [10 275 1, et fj}'l'f.l.i ZaJl"'J4}a (3.4.3)
b R\ b gl o\ i e
where e, :(e )# ,fj:(ew') J-,fJ:(e 9"') J and

1.1 I I
6a'L1L‘1“a:" = €[a1m...€an}p’”, f }1Zn = f 1[J1...f ”Jn]. (344)

We place a dot on a SL(8) index to denote that it is a world index, rather than a

tangent one. Conjugation with R1/4 generator gives

— RI1--14 I a al aly...I Rl1-14
e Py {Pa: A 2’ Z11[27 7 , 7 7, A 4}69011MI4
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_ I J1J: I1 12| J1 J
= P, 8, 27 1 g 7,
J1J: J1J: a
ﬁ [11[22 ZJ1J2 +ﬁI1IQ\J1JQZ ! 27 Z ;
1 L r7aK 1 ady...J.
Yok LD+ g, L8

’Ylljl I4J4 ZaJ1...J4 + ,y[l-n[leL Z‘IKL}’ (345)

where the S-matrices that mix level 1 elements are defined as

/811[2 _ 1+1P+1P2+1P3 1112
ik 2 4! 6! I
1 1 1 1 Ll
Lix|hdy — _ = _Ji. 1 P P2 P3
8 51 ¢ ( tog P PP P . Ps...Js>
J3Jy
BLls| g, = = Pr.da <1 + = 3l P+ — =] P2 + = o P3 ) , (3.4.6)
LI
where
Ui = g e s Pt (3.4.7)

while the y-matrices, responsible for mixing of level 2 elements, are given by

1 1 1 Lo
Yokt = (1‘1‘5@4‘@@24‘&@34— ) » )

1 1.1y
7J1’4J4—<1+2R+4'R2 >J1 B

I 1 1 2 1 3 ! t 4 K 1 K
VoI dy = 1+ 5 Q+ 5 Q"+ ﬁ Q@+ ... g (5[J1 PIL|J2JsJs] — 6 (5L Ph..ds | >
! ! ! JIK

1.1y

2 34 J1o Ja K Ko K3
'R—i-?R ) gt B O p KoKl

1
yTa T (1 + o R+
3! Ji...Ja

12 5

(3.4.8)

where

1 1
I L _ I I Iy.. 0y J1J2J3L
Q JK = (ﬁ 5J Pry..Iy — 5 511 PJIlisly | € PJiJ2JsK

1 1
th;.l.ih — 811...I4K1K2K3J PK1KyKsl <i 5§ OJy.ds — § (5[{]1 g0|J|J2J3J4]) , (349)
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Conjugation with level 1 and level 2 elements is performed by Taylor-expanding the

exponents. The generalised vielbein is

b b J1J3 b b L b
e;l,a € Ap|Jy gz €u e € Qplg € Qplak Cu” Aplay...
Iy I K1 Ko 1112 K1Ks|J1J2 Illz K1K2 I Iy Ki1Ke L eIy Iz K1 K>
0 f K1 K> /J) Ji1J2 f K. 6 f ﬁ f K1K2 ﬁ aK f K1K» ! d aldy...Js
K1 K2 K1Ka pJiJa K1 K2 1K2 L (1 K2
1 0 [ Brikolng Bk 15502 Bryksla P52 B i 52 B ot
EHA = (det 6) 2 Iz iy 1K Ly [ his | fria |
0 0 0 et 0 0
I N . M L I N . M
0 0 0 0 e flu f ,-7 N~ e o Y i Y N
I..1 K4 L 1.1 Ki..K.
pu ol Iy 4 ol dy 4
0 0 0 0 e KK, K ed f R e VR

where the symbols in the first line of the matrix are given by

11 I 1
Oéa|]1[2 = - Aah[g; Qg 12 = _Aa ! 27
=—h ! 5 Alanr, Ay""
Qalp = — Nab) — 5 Alali Iz 41b] )

1
OéalbIJ == Aur” + = 5 A (ak1 Ap) K,

2
1 1 1
6

Qafpry..ly = = Aably..1y — B Aain 1, Avryry) + 1S €

and the second line by

nIila _ phl J1J2 I113|J1J2
/8 a — /8 J1J2 Aa - 5 ‘ AaJ1J27

6[1[2 /811]2 AKJ /BflfglKJA K1
aK1I,
1
L I112|J5J6 J7J8
B aJi... ﬁ [J1J2 AaJ3J4] - 24 B A
_ J1J2 J1J.
ﬁ[llz‘a - _ﬁ I 1> Aa.h]z + /811[2|J1J2 A ! 27
J __ KJ KJ
6[1[2|a1 - /8 I1 1> AaKI - /811]2‘[([ Aa )
1
JsJs  AJ7Js
Brblati..gs = ds B0 AT+ Brn| g ge Aadsia)-

24

I5 1 I71.
nods Aa 270 Ay T8,

(3.4.10)

(3.4.11)

(3.4.12)
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4 Non-linear realisation and equations of motion

4.1 Non-linear realisation of E;; in 11D

The dynamics of the non-linear realisation of E;; are described by a set of equations
that are invariant under both the rigid transformations and the local I, (F4;) symmetry.
Since the Cartan forms of equation (1.3.8) are invariant under the rigid transformations,
we only have to ensure that the equations we construct from them possess the local
I. (Fy1) invariance. On level 0 the I.(E;) algebra is isomorphic to SO (1, 10). This
symmetry ensures that the equations of motion are invariant under the local Lorentz
transformations. The higher level transformations, on the other hand, transform the
equations into each other. We are particularly interested in level 1 transformations that
were derived in Section 3.1.1. This symmetry ensures that the equations in the theory
form a multiplet under the local I, (F1;) transformations. We can express this in the

following general form

where E;, i =1, 2, ... , are the equations of motion in the multiplet. Equation (4.1.1)
ensures that all F; can be set to zero without breaking the I.(F;;) invariance. Thus,
the dynamics of the theory are described by the following set of equations: FE; = 0,
1t =1, 2, .... To illustrate this point we will present a segment of the multiplet that
consists of the following equations: three form - six form duality relation D,, ,,, second
order three form equation E, ,,q, and the Einstein equation E,,. The linearised versions

of these equations are

1
b1...b b
Dal...a4 = G[al,aga3a4] - 2 . 4' €a1‘..a4 ! 7 Gb1,b2...b77 Ea1a2a3 = a G[b,a1a2a3]7 Eab - Rab7

(4.1.2)
where R, is the Ricci tensor. The Cartan forms used in this equation were defined in
(3.1.4). The I.(E;) transformations of these equations are illustrated by the following

diagram
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E
i Da1...a4 — > Ealagag ¢ —~ ? Eab

Figure 9: 3 — 6 duality, vector and gravity equations

If one neglects other equations of the multiplet, under I.. (E};) transformations equations
E, 005 and Ey, transform into each other, while equation D, ,, is self-dual. E,, 4,44
can be obtained from it by applying a projector, denoted as 7, that eliminates the six
form. In the next two sections of this chapter we will derive all the equations presented
above and show that their variation closes at full non-linear level.

However, not all equations behave in this simple manner. As we will see later,
the scheme illustrated by equation (4.1.1) will require certain generalisations. More
specifically, some of the equations that involve higher level fields do not completely
close on the other equations of the multiplet. Instead, they produce an additional

“modulo” term [48, 49, 50] in the following way

In order to ensure the complete closure of these equations one has to apply additional
derivatives to them in order to eliminate the modulo term 8& from the variation. The
higher level the field is, the more derivatives it requires to eliminate the corresponding
modulo term. This mechanism explains why higher level fields in the F;; theory have
equations of motion with multiple derivatives.

We will later argue that the modulo term is determined by the generalised gauge
transformations, defined in equation (1.3.17). The gauge invariant equations do not
produce any modulo terms, while the ones that are not invariant produce the modulo
term that can be compensated by a gauge transformation with an appropriate param-
eter. This point will be illustrated in Section 4.1.3.

As Fy; theory contains an infinite set of fields and coordinates, we are only going

to work out the equations up to a certain level. Thus, we will truncate all the fields
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above level 4 and all the coordinates above level 1. The resulting set of equations and

connections between them is given in Figure 10.

Dal...au,blbg
1 Dal...a4 D@7b1b2 ¢
Dal...alo, b1bobs
h 4 h h 2
Ea1a2a3 Eab Ec1...c11,a,b1b2
2 —>
Eal...ag Eal...ag,b Eal...ag,blbgbg
h
3 Fcl...cn,alag,blbg
L 4
Number of
derivatives

Figure 10: 11D FE4; multiplet

The equations in blue hold exactly, while equations in red possess a modulo term. These
equations are classified with respect to the number of derivatives they have. Equations
with one derivative are denoted as D, with two derivatives — as F, and the one equation
with three derivatives we are considering — as F. The vertical arrows indicate the
projectors that allow us to construct higher order equations by applying derivatives to
lower order ones. The horizontal lines indicate the level 1 I.(Ej;) transformations. In
the next three sections we are going to go over the different sectors of this diagram in
detail, while deriving the equations listed in Figure 10 and calculating their variations.

Due to the power of the F7; symmetry we will be able to reconstruct the whole mul-
tiplet from a single equation by repeatedly applying the level 1 1. (E};) transformations
and projectors to it. Any of the equations can serve as this starting point, so we will try
picking the simplest one. To do so we are going to look for an equation that involves

the three form field A, 4,4, and is first order in derivatives. According to equation
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(3.1.9), under the I.(FEy;) transformations A, q,q, transforms into the six form A, 44,
and vice versa. This implies that they have to be connected by a duality relation that
transforms into itself under the I, (E;) transformations. The most general form of this
relation that is invariant under the local Lorentz transformations is the 3 — 6 duality

relation, mentioned above
_ bi...by
Da1-..a4 - G[a17a2a3a4] T CEay..ay Gbl,b2~--b7' (4'1'4>

Coefficient ¢ cannot be fixed by considering exclusively the local Lorentz invariance. In
the next section we will determine its value by imposing the level 1 I. (E;;) symmetry
and demanding that this equation transforms into itself. In the eleven-dimensional
supergravity theory the six form field is the magnetic dual of the three form field. One
can see that equation (4.1.4) mirrors the corresponding supergravity duality relation.

We only work up to and including level 1 in the coordinates. As we can see from
equation (3.1.13), the variation of the Cartan forms that involve the level 1 derivative
contains terms with level 0 derivatives. This implies that in order to ensure the level
0 closure of the variation we have to keep the level 1 [; terms in the equation that
we are varying. On the other hand, all the level 1 /; terms in the variation are
truncated out as we do not have enough accuracy to check their closure above level
0. This means that we have to consider two different versions of each equation in the
multiplet. We start with an equation of motion that has no higher level derivatives,
generically denoted as D, E or F. In order to close the variation of these equations we
then build the [;-extended versions of them, denoted as D, £ and F respectively, that
differ from their level 0 counterparts by addition of the most general level 1 [; term.
We then carry out the variation and demand their closure on the other equations in the
multiplet. This fixes the level 1 [; terms that we're adding.

In order to avoid overly complicated calculations we are often going to adopt the cor-
rect form of the level 1 derivative terms in the /;-extended equations from the beginning.
The reader has to keep in mind that these terms are actually uniquely determined

by the calculation itself.
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4.1.1 3 — 6 duality relation and the second order equations for 3 and 6

forms

The starting point of this calculation is the 3 — 6 duality relation D,  ,, from equation
(4.1.4). We will first consider its I. (E1;) variation and construct the first order gravity -
dual gravity relation D, 5,5, that arises from it, then we will build two projectors 7y,
that eliminate A, 4 OF A4, aya; from the equation and, therefore, produce two equations
Eq asas and Ey, 4., which describe the dynamics of the remaining field. Lastly, we will
consider the variation of these equations to find the second order equations for the

graviton E,;, (Einstein equation) and the dual graviton E,,  a. -

Ei11
Dal...all,blbg
1 D RN )
ai...aq 4 a,blbg 4
D(l,l...(,zm,b]l’)gbg
Ty, T2
N v 4
aia2a3 - ab E(:[...(f]],a.b]bg
2 Eq11
E11 \ E 1 bob-
Eal---a(i Eal...ag,b > lll...(lg),/)ll)zl),g
h
3 Fc]...c]l,alag.blbg
L 4

Figure 11: Vector sector of the F;; multiplet

According to the procedure described earlier, we have to add certain terms with
higher [; derivatives to equation (4.1.4) in order to ensure that its variation closes. The

equation with these terms added in, denoted now as D, takes the following form.

1
Dal...a4 - gal...a4 + Cgal...a,4b1mb7 gbl..‘b7 + 5 G[alag,a3a4]7 (415>
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where
15
gal...a4 = G[al,a2a3a4] + ? Gb1b27b1b2a1...a47
gal...a7 - G[al,ag...aﬂ + 28 Gblb%blbz[al...ag,aﬂ- (416>

The coefficients in these combinations are fixed uniquely during the calculation, but for
the sake of simplicity we will fix their values from the start. The E;; variations of these

objects are

5ga1...a4 =—6 G[al, (azlc]) Aca3a4] + 105 G[a1,a2a3a4b1b2b3] Ab1b2b37 (417)

5ga1.l.a7 = -2 G[al,a2a3a4 Aa5a6a7] + 168 (G[al,az...a7]b1b2,b3 + Gbl,b2b3[a1...a6,a7]) Ablbzbg-
Variation of equation (4.1.5) is given by

b1b2b b1...b
6Da1...a4 = 105 G[al,a2a3a4b1b2b3} A 17208 — 265(11..(14 Lo Gb1,b2b3b4 Ab5b667
b1...b cieac
+ 16866}11“&4 b (Gb1,b2mb78102,63 + G017020351~~-b67b7> A=

+ 3 (det e)% We, [aras Nagaa]- (4.1.8)
Here wy, 5, is the standard general relativity spin connection defined as
Watris = (det )72 (= Gy (boa) + G, (p10) + G o)) - (4.1.9)
When linearised it takes the following form:
Wa,biby = — Opy P(voa) + Oby Nvra) + Oa hipyby)- (4.1.10)
The terms in the first line of equation (4.1.8) can be recombined in the following way

b1b2b: by...b
105 G[a17a2a3a4b1bzb3] AP — 2 CEajy..a4 ter Gb17b2b3b4 Ab5b6b7

b1...b c...c
= - 205a1...a4 e (Gbl,bgbgb4 + Eby...by e Gcl,cg...67> Ab5b6b7° (4]-1]->

(2-4)%¢
The term in the brackets reproduces the original equation (4.1.4), given that the fol-

lowing condition is satisfied

c=+—01! (4.1.12)



60

We are going to pick the solution with the minus and investigate the properties of the
multiplet that arises from it. The solution with the plus can be processed in a similar
fashion.

If one neglects the level 0 and level 3 terms in the variation, which as we will later
see combine into gravity - dual gravity relation, one finds that the variation of Dy, 4,
closes on itself

1

5Da1_”a4 = I Sal._.a4b1"'b7 Dbl...b4 Ab5b5b7 =+ ... s (4113)

where ... refers to the neglected level 0 and level 3 terms. This justifies the statement
made in the introduction to this chapter that the 3—6 duality relation is self-dual under
1. (Eqp) transformations in the absence of gravity.

We will now process the remaining terms in equation (4.1.8). By using the 8, 1
irreducibility of Gy, . 4, » and performing several manipulations with € one can rewrite

the terms in the second line of this equation in the following way

7
b1...b ci1eac:
5 €ay..a4 b (Gb1,b2mb78102,63 + G017020351~~-b67b7> A=
3
_ b1...bg c
- Zg[alaﬂ thbz.--bg,cA lagzaa]- (4114)
: _ 1
Here we picked ¢ = — 7.

Combining all the results together we find the following expressions for the 3 — 6

duality equation D,, ., and its [;-extended version Dy, q,-

1
D,y = G[a1,a2a3a4] T oA 5@1---a4b1mb7 Gbl,bz...b7>
1 1
Dal...a4 = ga1...a4 - n 6(11..,0,4blmb7 gbl...b7 + 5 G[alag,a3a4]‘ (4115>
Its variation is given by
1
5Da1...a4 = E 5(11...(14blmb7 Db1...b4 Ab5b6b7 +3 DC, [a1a2 Aca3a4]> (4116>

where we have introduced a new duality relation that connects the graviton field h,°
with the dual graviton Ay, . s

1
wa, bi1ba — Z 8b1b201~--09 Gcl,cz...CQ,a- (4117)

N

l)a7 biby — (det 6)
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Dg bp, s the first equation in the F;; multiplet that cannot be set to zero exactly.
Instead it is satisfied modulo the local Lorentz transformations. This subtle point will
be later explained in Section 4.1.2. Under the local I. (F4;) transformations equation
(4.1.16) varies into itself and produces a new duality relation. This variation only closes

for the particular value of the coefficient given in equation (4.1.12).

Foazas — (77'1 D>a1a2a3 — p 010203 ay <(det 6)% DV“W?“?’) ) (4118)

H1p2 43

2 _1
Fat-as — (71_2 D)&l...(lG — ﬁ eu?::ﬁg gH1-H6VO1...04 ay ((det e) 213 Da1...a4) X

These projectors take an exceptionally simple form in the linearised case. We have

Ea1a2a3 = (ﬂ-l D)a1a2a3 = ab Dbalagaga
2
Ea1~~~a6 = <7T2 D)al.‘.ag = ﬁ galn-G«GbCL“C4= ab -Dcl,“c4- (4119)

Note that from now on we will always lower the indexes when working with linearised
equations, as their positioning doesn’t make any difference in this case. Applying the

non-linear projectors we find the following:

1
aiaza 5 b,ai1aza ajazaszbi...b
B = (dete)? e ), G293l 4 —— gm0t Gy ) Glog, bbrbs)

24!
+ 1 Gb c G[b, airazaz] 3Gb [a1] G[b, clagas]] G bc (;1[1)7 aia2as]
9 ,C ,C c, )
[Fat--as — (det 6)% ebu au G[b,al...ag]

+ % Gb, Cc G[b, ai...as] 6 Gb,c[al‘ G[b, clag...as]] Gc, bc G[b, (11.‘.046]7 (4120>
while their linearised counterparts give
Ea1a2a3 = 81) G[b,alagag}a Eal,..aﬁ = ab G[b, ai...agl* (4121)

We can now see a general pattern that emerges in the Ej; theory. We have the du-
ality relation (4.1.15) that relates the six form A,, 4, to the three form A, 4y4,. This
equation is then projected in two different ways, each of them giving us a second order
equation that describes a single field. Note that even after the second order equations

(4.1.20, 4.1.21) are derived, one cannot simply exclude the original duality equation
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(4.1.15) from the multiplet. There are two reasons for this. First, duality relation
(4.1.15) ensures that equations (4.1.20) describe the same physical degrees of freedom.
Removing it would effectively double the number of fields. Second, it is impossible to
close the F;; multiplet without the duality relations, since, as we will see later, some
of the equations vary into them. This includes both the other first order dualities as
well as the second and even third order equations that will be found later on.

In the final part of this section we are going to find the variations of the second order
equations (4.1.20). We will start with the non-linear F* 2% equation. We are going to
perform the procedure of [;-extension of this equation step by step. We will start by
varying the unextended equation E%2% from (4.1.20). It contains two different Cartan
forms: G,” and Gy, a,a5- We'll start by explicitly performing the variation with respect

to G,°. Using equation (3.1.9) we get
aiasas 1 I [b, a1a2a3] 1 aiaczasb...bg
OFE = (dete)?z e, 0, 0G"™ + ks Gy babsbs 0G5, bbrbs
1 b ] la1] 5 alb, clazasl] b ]
+ 5 Gb’ CC 5G[ ,a1a2a3 _ 3 Gb7c al 5G ,Cla2a3 _ GC7 bC 5G ,a1a2a3

+ 24 Abrbabs G[& bibabs] G[C7a1a2a3] — 108 Abrb2[a] G[bl,bzclcz} G[01,02|a2asﬂ

+ 54 Abibala] Gloy. byerca Glers e2lazas]] (4.1.22)

1
Here we did not vary the pre-factor (dete)? e,* in the derivative term in equation

E“%2% from (4.1.20). The reason for this is explained in the following short calculation
5 <(det e)? e, d), G“”mml) = 6 (B, 0, Glbma2]) (4.1.23)

=SBy 0, Gl 29s] 4 By 9), 5Glbarazas]

1

= — 3 Apeye, 092 Gl 19293] 1 (dete)? ¢t 0, 6GI m19293],

whre 4" is the inverse generalised vielbein, whose transformations were given in equa-
tion (3.1.13). The first term in the last line contains a derivative with respect to the
level 1 coordinate, and, therefore, can be dropped out in our truncation.

One can see that the last term in equation (4.1.22) has a derivative (index by in
Gy byere,) contracted with A. This implies that it can be cancelled by adding an ap-

propriate [; term to the left hand side. Another useful observation is that all the terms
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that involve the variation of Gy, 4,4, can be rewritten in a compact way. This can be
achieved by replacing the flat indexes with the world ones in §GI»919293] from the first

term and pulling the resulting vielbeins through the derivative. We get

5<E’a1a2a3 -9 Gb[aﬂ,bCIC2 G[C1,Cz|a2a3]]> = 0% 5 ((det 6)% 5G[V7 umzua])

H1H2/43

1
+ I €a1a2a3b1...bs Gbl,bgbgb4 5Gb5,b6b7bg (4124)

+ 24 Abib2bs G[Q bibabs] G[C’ ajazaz] _ 108 Abibzlai] G[bthClcQ] G[81762|a2a3]]'

We will now process the term from the second line of equation (4.1.24). We have

4' 1 5(11(12113!71---178 Gbl

,babsby 5Gb57b6b7b8 - - Z
35 ajazaszbi...bg G G A0162C3
+ =€ b1, babzby T [bs, bgbrbgcicacs]

8
15

8

1 I\
ajagasby...b ¢
g1a2a301...08 Gb1 ,b2b3by Gb57(b6‘cl) brbs

ajagasby...b cieac
grazastlms Gb17b2b3b4 G0170203b5---b8 A,

(4.1.25)

The term in the third line is also an {; term and can be cancelled in the variation. In
the second line we are going to replace the six form Gy, psbrbgerescy) With the three form

using the duality relation (4.1.15). Rewriting it in terms of the six form we get

2
G[a1,a2...a7] = ﬁ 6a1---a7blub4 (Dbl...b4 - Gbl,b2b3b4) . (4'1'26>

Equation (4.1.25) becomes

1 5

aiazaszby...b aiazazbi...b cic2,
Z ghiaaasii-os Gbl,b2b3b4 5Gb57b6b768 + 5<16 ghaafanLs Gb17b2b3b4 G C1C2b5---bs>
- lgalagagbl...bg

C
- = 4 Gbl,b2b3b4 Gb57(b6\6\) A b7bs

— 210 G, by, DIV A99283] L 910 Gy, g ypap, G0 020308 A1a2as], (4.1.27)

The second term in the last line of equation (4.1.27) can be further processed by ex-
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panding the antisymmetrisation. This gives the following

1 )
aiazaszby...b aiazaszbi...b cic2,
E grtaasn Gb1762b3b4 5Gb5,b6b7bs + 5<E grifaten e Gbl7b2b3b4 G 0102175.--178)
1

ajazaszbi...b c by...b ajasa
= e Gy, bobabs G, (volel) A brbs — 210 Gl pgpgp, D104 A19299]

— 2 Ab1b2b3 G[c, b1babs] G[Q aiazas] + 108 Able[aﬂ G[bl,bgclc2] G[C1762|a2a3]]

— 72 Ab[alaQ G[b, crcacs) G[a3]7010263] + 6 A% G[c1,czcsc4} G[017C26364]' (4128)

Two of the new terms cancel precisely with the corresponding ones from equation

(4.1.24). Combining equations (4.1.24) and (4.1.28) we get

5
b bi...b
5<Ea1a2a3 9G [all’bclcg Glers e2lazas]] G garazazbi...bs Gbl,b2b3b4 G616270102b5mb8>

= g 419293 81, <(det 6)% 5G[V”u1“2'u3]) — 210 Gbl,b2b3b4 D[bl"'b4 Aa1a2a3]

T T pap2ps

3 a . .
+ 5 <_ 48 G[b, cieaces) GHGII,CICQ%] + 4 5[1, ! G[c1,czcsc4} G[01,020504]> A|b|a2a5]

1
— Z 8a1a2a3b1“'b8 Gbl,b2b3b4 Gb& (bs]c)) Acb7b8. (4129)

Lastly, we will now process the remaining term. Taking the variation we find

15 1
e 010203 &/ <(det 6)% 5G[V,u1u2u3}> + K} (7 e 10203 ay ((det €>§ G01a270102w1u2u3) >

H1p2p3 H1p2 3

= 3¢, ((det ¢) wo ! — (dete)? G, Wl') Aclwans]

H1p2p3

4 105 ¢ 9208 9 <(det 6)% GV mip2p3010203] A010203> . (4130>

H1p2 3

As per usual, we have extracted an [y term. wq p,5, has been defined in (4.1.9). In order
to process the term in the last line we're going to use equation (4.1.26) again. After

some calculations we find

105 e 219203 ay ((det 6)% G[V»H1ﬂ2ﬂ3010203] Ao’10’20’3)

12 L3

1 1
__ T~ ,a1a2a3 _J1U2[3010203VA1... 4 -3 P1P2P3
- 24 e/LLLLng € aV ((det e) 2 D)\1~~~)\4 gUlPl g02p2 gUSPS) A

1
+ 1 gara2asbi..bs Gbl,bgbgb4 Gb5, (bslc|) Acb7b8. (4.1.31)

Note that Ay, 4,0, cannot be taken out of the derivative, as only A?17273 with its indexes

up is a constant. The final step is to process the remaining term from equation equation
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(4.1.30). By extracting two more /; terms one finds

3¢ @0203 9 ((det €) WJ,[VM — (det e)% Gm[wu) Alolkzps]

H1p2 43

1 1 1
+45 (_ e 110205 9 <(det e)? G[Vm,uzm]) + =192 9ok (et ¢) wmuzuza))

9 TH1M2p3 4 Hip2p3

3
= 5 6511:225;’ @V ((det 6) wmvul) A\TH213

3
=3 (dete) (Rb[‘“‘ —e ey’ 0, w,,}‘“‘c) Ablazas] (4.1.32)

where R,’ is the Ricci tensor, defined as a contraction of the Riemann curvature.
ab ab ab a cb a cb a v ab
R," =0,w," —0,w, " +w, " cw,” —w, " w,”, R, =e"R,". (4.1.33)

One of the [; terms in equation (4.1.32) contains a derivative with respect to the level 1
coordinate 0°1%2 that is separate from G. In order to process the variation of this kind
of terms on has to first rewrite them as a sum of terms that have the following form

J1 (Giangent) E*2 10 fo (Grangent). After that one takes the variation of these terms

5 (fl (Gtangent) Eala%n aH f2 (Gtangent)) - fl (Gtangent) 6 Aa1a2b EbH aH f2 (Gtangent)
+ higher [; terms, (4.1.34)

and, finally, groups them back together into one term. The result of this procedure

gives the following simple recipe for taking the variation of these terms
§(.0mrz ) — 6AMRY Y, (4.1.35)

The second term in the brackets in the last line of equation (4.1.32) also happens to be

an [, term of this kind. Putting all the variations together we find

3
sEme = 2 By AM] — 210 Gl g DI A (4.1.36)

1 1
16203 14243010203V A1...\q -3 P1P2P3
+ —24 GMMM e azx ((det e) 2 D)\1~--)\4 Go1p1 Goapa gdspa) A )

where E,° is the Einstein equation that has the following form

E, = (dete) R, — 48 Gl cyepes) G2 + 460 Gy peges) G126, (4.1.37)
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The last two terms in this equation reproduce the correct expression for the stress-
energy tensor of the three form in eleven dimensions. We can now group all the [y

terms to construct the [;-extended three form equation. The result is

)
£Ma203 _ [ra1a2a3 __ () Gb[all’bclcg Gler, e2lazas]] G ga1azazbi...bs Gloy. babsba G cyenbs.. b

1 1 15 1
+ 5 eﬂ&f:;ﬁ; ., ((det e)é G[Vm,uw:ﬂ) + ? e:f;;ﬁ; 9, <(det 6)% G0102,01U2W1M2M3>
+ ;leuafjjﬁ; 07" ((dete) wy 12H2) + i (dete) e,” 1412 ¢y, %3l (4.1.38)

Equations (4.1.20) were obtained from equation (4.1.15) by applying the 7 projectors
from equation (4.1.18). This implies that the [; terms in equation (4.1.38) should also
be obtainable by the same procedure. However, instead of projecting the [; terms we
have independently applied the procedure of [;-extension to it. We did that because
the projectors from equation (4.1.18) are only defined on level 0. In order to match the
[; terms in equations (4.1.15) and (4.1.38) one has to introduce the l; extended versions
of 7 projectors.

This calculation simplifies a lot in the linear case. The linearised vector equation is

given by
15 b ycics
€a1a2a3 - Ea1a2a3 + ? a G ‘cicobaiasas (4139)
+ 79" Glaraz, (aalt) + 5 s Gag, (@alt) — 7 o Gagasl,b -

It is important to point out that the [; terms of the following form 9, 0" ... can
be neglected in the limit that we are working in, as their level 0 variations vanish:
§(0,0M...) = 6 A"*9,0, ... = 0. The [; terms in equation (4.1.39) can be obtained
by by linearising the /; terms from equation (4.1.38) and throwing out all the terms of
this kind. The variation of equation (4.1.39) is given by

3
0Earavas = 105 B, ayasbibaby N2 + 5 Pl A g (4.1.40)

One can see that in the linear case the variation of equation (4.1.38) closes on the other
second order equations and doesn’t require having the first order equations in the mul-

tiplet. The non-linear variation of equation (4.1.38), however, cannot be closed without
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the first order equations. This is the first example of a second order equation that has
the first order dualities in its variation. Later we will see that E7j; multiplet contains
equations, whose variation contains the first order equations even at the linearised level.

The linearised variation of the six form equation of motion from (4.1.20) under the
1. (F41) transformations is given by

8

0, g = - Aarasas Basasag) — 1728 Eay - agbibe, by A7, (4.1.41)

where we used the following expression for the [; extension of this equation

Eayoag = Fay.ag + ; Oar Gasas, asasas) — 24 07 Glay as...agleresd,” +24 07 G 4y crlar a5, ag)s

(4.1.42)
and we introduced a new second order equation, that describes the dynamics of the
dual graviton

1 1
Eal...ag,b = - Z a[c G[c, ai...agl,b] — — Z a[c a[c Aal...ag],b}' (4143>

One can show that this equation obeys the same G L (11) irreducibility condition as the
Aq,y.as,p field itself. In order to do that we manually expand the antisymmetrisations

in equation (4.1.43) to get

1 1
Eal...ag,b = - i 82 Aal...ag,b + § ab a[al Aag...ag]c,c
1 1
200, Auyane = 5 0 Oy A (4.1.44)

We can now see that
1 2 1 c
E[a1...a8,b] = - E a A[al...ag,b] + § a[b a(ll Aaz...ag]c, (4145>
5 1
- % 0 a[c Aal...ag,b] - i 62 A[al...ag,b] = 07
where we used the following identity
a[b Aal...ag],c -8 a[al Aag...as\d,b] =10 a[b Aal...ag,c] + 0. A[a1...ag,b]‘ (4146>

This implies that Ej,, a4 = 0 and, therefore, equation (4.1.43) belongs to the irre-
ducible 1760 representation of GL (11).
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4.1.2 Gravity - dual duality relation and the second order equations for

the graviton and the dual graviton fields

We are going to start this section by examining how the gravity - dual gravity relation
Dg b, is affected by the modulo transformations mentioned before. We will then
proceed to find its variation and show that it closes on the previously derived vector
duality relation D,, ,, from equation (4.1.15), as well as two new level 4 equations
Do, . a11,b1b, a0 Da, a1, 516005 We will later build two new projectors 6; and 603, one of
which will give us the Einstein equation (4.1.37), previously obtained from the variation
of the second order three form equation Fy, 4,q,, while the other — the second order dual
graviton equation (4.1.43), found before by varying the second order six form equation
E,, .- We will then take the variations of these two equations to find that they are
closing on the previously found equations from the vector sector and produce two new
second order level 4 equations Fq, a9, 61005 a0 Ee, c11 a0, b15,- Lastly, we will discuss two
of the commutative diagrams that arise in the F;; multiplet. All the calculations in
this section will be done at the linearised level, except for the variation of the Einstein

equation which will be done both linearly and non-linearly.

Da ...a11,b1b
1 D " E11 D Ei1 1 11,0102
ai...aq |¥ a b1b2
Se~al Dal...alo.bﬂ)gbg
..... 91, 92 ’
e $ Ty \L
E11 ~
EGIGQGS Eab Eal...ag,blbgbg €-- Ea1~--(19,b1b2b3
2 Eq1
E11 E11
Vi \
Ea1~--a6 < Eal...ag,b ? EC1...(111,(1,blb2
b
3 ET],..(%]],(I,](I,Q,[)]Z)Q

Figure 12: Gravity sector of the E;; multiplet
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We recall that the local Lorentz transformations were not used to fix our choice of
group element of equation (3.1.2) and as such they are still an explicit symmetry. These
transform the spin connection of equation (4.1.17) by an inhomogeneous term. At the
linearised level we have dwq, p,p, = Oq Ab1b2 + ..., where + ... indicates the homogeneous
part of the variation. As a result equation (4.1.17) is not invariant under the local
Lorentz transformations and we should consider it as being valid only modulo said

transformations. In other words, instead of setting it to zero directly, we find that
Daa blb2 = 0 <:'> Da7 b1b2 - aa Ab1b2 - 07 (4147)

where we have introduced a new notation = which means that the equation is equal to
zero up to a certain transformation. This strategy was first advocated in [49]. This new
approach poses a difficulty when it comes to the interpretation of equation (4.1.16).
It contains two different equations (Dg,. ., and Dy p,p,). The first one is satisfied
exactly (D, ., = 0), while the second one — modulo local Lorentz transformations
(Da.pp, =0). In order to preserve the consistency of this equation we can make the

following adjustment

1 A
5Da1...a4 = Z 5a1...a4blmb7 Dbl...b4 Ab5b6b7 + 3 (Dc, [ataz — 80 A[a1a2> Aca3a4]' (4148>

By moving A into the variation we get

1

1 A c
’ <Da1---a4 + 5 a[alaz Aa3a4]) B E Eal"'a‘lblmb? Dbl.-.b4 Ab5b6b7 +3 DC, [a1a2 A azas)- (4149>

As one can see, we were able to compensate for the modulo invariance of equation Dy, s,
by adding an extra [; term to equation D,, ,,. As we are truncating all the derivatives
with respect to higher level coordinates, this change doesn’t affect the dynamics of
the fields, while ensuring that the variation of D, ,, is consistent with the modulo
transformations of Dy p,p,-

Modulo equations like (4.1.17) also acquire the modulo terms in their own variations.

We will now illustrate this by taking the variation of the linearised equation (4.1.17).
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First we extend this equation by the necessary [; terms. We get

1
5 1
Da7b1b2 = (det 6)2 Qa,b1b2 1 ‘C:b1bzc1 @ Gq,cg...cg,a
55 (1 rYdida, 1 ~dids,
- gbleCl 0 |:? (§ G 142 c1...cg,didaa + g G 142 c1...cea, d1d2€9)
1 dids, 1 dids,
+ ]-0 (§ G 182 c1...cody, d2a + 8 G 12 Cl...cgadl,dgcg)

55 (1 vdida, 1 ~vdida,
+ y (§ GHez didacy...co,a + 3 Gz d1d2a01...08,09) :| )

(4.1.50)

where we have introduced the [;-extended spin-connection 2, 4,,-

D=

1
(det 6)2 Qa,blbg = (det 6) Wa,blbg_BGCa,blbgc“‘G Gc[bl,bg]ac+2 na[b1 G0102,b2}0162' (4151)

Its variation is given by

1
1) <(det 6)2 Qa,b1b2) = — 36 A9, G[bthClCQ] + 72 A1 b1 G[bz}’aq@]

- 167](1[121 Acrees G[bg],c16203]- (4152)

The variation of equation (4.1.50) is

5Da, biby = — 36 AaC1c2 Db1b20162 . 877a[b1 Dbz}qc203 Acieaes
55 55
o 7 5d1~~-d10[b1 Abz]qc2 Dd1‘..d1o,a01cz - 1_8 Taby €b2}d1"'d10 Acrexes Dd1~~~d10,CICQC3
3 -
+ Z Z_:all...du AlnbgC Ddl...du,ac + 8a Ab1b27 (4153)

where we have introduced a new 3 — 9, 3 duality equation, as well as an equation that

describes the dynamics of the A, 4,0,5:5, field

144

. C
Dal-‘.alo,b1b2b3 - G[al,a2ma10},b1b2b3 - 5. 11! €ay...a19 G[C,blb2b3]7

Dal...an, biby — G[al, az...a11],b1ba - (4154)

Both these equations are also subject to the modulo transformations. They will be
investigated in the next section. The 11, 1 field was eliminated by the [; corrections
and didn’t appear in the final variation. As we will see later this is a general pattern

that indicates that this field is non-dynamical.
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The modulo term of equation (4.1.53) 0, Ay, is given by

95

A ci...c
(% Ab1b2 = — Ehyby 19 C"Ya,7 c1...C6 AC7CgCg + % Ga, c1...co,d1dads

R Ad1d2d3
12

5%5)
+ g Ga,d1d2d301...cg,09 Ad1d2d3 . (4155)

We were able to account for the modulo transformations of equation (4.1.17) both in
its variation and in the variation of the 3 — 6 duality equation (4.1.15). The general
form of the modulo transformations will be discussed later in Section 4.1.3.

Next we are going to define two projectors 6y, 0, similar to ones defined in (4.1.18),
which will allow us to obtain the second order equations for the graviton and dual

graviton fields. At the linearised level they have the following form

ES=(0,D),"=0,D." —0.Dy" = 0y w.” — 0. w," = R, (4.1.56)

1
ai...ag,b = 2.9! €ay...a8

1
Eal...ag,b = (02 D) cdrdz a[b Dc],d1d2 = - Z a[c G[c, ai...ag],b]

The non-linear form of these projectors hasn’t been investigated.
Now we will consider the variations of the non-linear second order gravity equation

(4.1.37). The [; extension of this equation has the following form.

gL = (dete) Ry’ — 48 Gly crepes) G2 + 468 Gy cpegey G120
— 360 GdldQ,dldzamm G- ereacs] _ 360 GdldQ,dldzbc1CQC3 G[a, exrcs]
600, G ey ey G0 =12 Gy 00, G 4 3Gy, G
— 6 (dete) e, ™y, |(dete)” 3 G“1”2’|0102M]

— (det 6)% We, bc GdldQ’dldQ(z -3 (det €>% Wq, bc Gdldz’dldQC, (4157)

where R, is the [;-extended Ricci tensor, obtained by taking the standard definition

(4.1.33) and replacing wg p,5, With its [j-extended counterpart €2, 5,5, from equation

(4.1.51).
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The variation of equation (4.1.57) is

5€ab = —36 Eaclcz AbCICQ — 36 Ebclm AaCIC2 +38 52 AT ECICQCS

_ 28(10 erdydad G[b,clczcg] Dearcr Ad1d2d3
1...crdidads

bey...crdidad
- 26 Lot aaas G[a, 010263] DC4...C7 Ad1d2d3

1
4 g 52 8c1...csdld2ds Gc1,020304 DC5”'08 Ad1d2d3' (4158)

When linearised, equation (4.1.57) and its variation take the following form

(c;ab = Rap +6 o G[cl,CQab}a

0Ew = —36 Egcyey M — 36 Ebeyey Ao 4 80ap A B ey - (4.1.59)

This equation has non-trivial symmetry properties. Unextended Einstein equation
(4.1.37) with its second index lowered E,, = my. E,° is clearly symmetric in ab. This
follows from the corresponding property of the Ricci tensor. On the other hand, the
extended version of the Ricci tensor R, no longer possesses the ab symmetry. However,
it turns out that this symmetry is explicitly restored by the additional [; terms, intro-
duced in equation (4.1.57). Although the full non-linear proof is quite complicated, this

can be easily shown at the linearised level. We have

gab — Rab +6 o G[cl,czab]
- Rab -3 a(a GClC%b)clcQ +6 0 G* (a,b)cice

— Ny O G g+ 60, G . (4.1.60)

The last term in this equation is antisymmetric, but it also is of the form 9, 0¥ ..., and,
therefore, according to the argument given in the previous section, can be dismissed.
The rest of the terms are symmetric. This shows that the [; terms added to equation
(4.1.57) possess the same ab symmetry as the level 0 part of the equation.

We will now find the variation of the linearised equation (4.1.43) for the dual
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graviton field A,, 44 5. Carrying out the [;-extension procedure we find

7 c
gal..,ag,b = Eal...ag,b - E Mlblay 0 a2 G[|c|,a3...ag]]
55 ... 10
+ E a 162 (20 G[d, a1...a801],02bd + 3 G[cl7 al,..agb},clcgd

d d,
+ Gb,a1...agd,clcg - G dal...ag,c1cgb>

5
d, -+ @ d
86102 G lCl 1owe ,C b G C1al---a8bv c2

8
) c1C2 d d
- § 9, (G[a1,a2...a3]bcld, c2 Gb, aj...agcrd, co )
99 ..
+ ﬁ a 1 <Gd76102da1...a8,b - Gd’clcgdb[al...amag]
1 9
+ g Gd,c102ba1...a8,d - g C;’b7 clczal...agd,d> . (4161>
The variation of this equation is given by
7 c
5ga1,..a8,b = - Z Mblay Eag...a6|c\ A arasg)
~ 1 -~
+ 275 <Eda1‘..a861,d6263b - § Ed(ll‘..agb, d618203> A610263
165
+ ? (ad G[d, al.‘.agclcz},c‘o,b - ab G[d,al...agclcg},@,d
2 d cieacs
- § acl G[CQ,al...agbd},@, ) A s (4162)

where we have introduced the second order 3 — 9, 3 duality equation

36

5. 11_| €ay...a10 ac G[b17b2b3b4]- (4163)

Ea1---a107bl---b4 = a[b1 G[ahaz.--alo},bzbgbd -

The variation of 8, 1 equation, given in equation (4.1.62), doesn’t contain equation
(4.1.63) directly, but rather its combination with 3 — 6 duality equation (4.1.15) that

forms the alternative 6 — 9, 3 duality, defined as follows

5 36
E]‘ll---‘llmblmb4 = Ea1...a1o,blmb4 + 5-11! 5a1...alocac Db
3 C
- a[bl G[al’a%-ﬂlo}begbd + % 0 G[al,az.“m 52;@(;1‘0]124
21
+ 595 9 Gle fo1--a6) 00t v (4.1.64)
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As one can see from the variation (4.1.62), equation (4.1.63) enters it in a contracted

form.

bibobs cb1babs
Eal.‘.(lg, - Ecal...ag,

36
5. 11! Eal...agclcg

= O Gy ™ o Gleanl - (4.1.65)

This is the real dynamical equation that belongs to the £7; multiplet and describes the
dynamics of the A, . 40, 16005 field. The three form can be fully eliminated from equation
(4.1.63) by tracing it on four indexes. The resulting equation contains exclusively the

Cartan form of the Ay, 49, bybop, field.
Eb1-~-b4a1~-»a6,blmb4 =" G[bl,b2b3b4a1...a6},b2b3b4' (4166>

Further analysing equation (4.1.61) and its variation (4.1.62) one can notice that the
contribution of the 11, 1 field A,, . 4,,,» has been completely eliminated by the [y correc-
tions. This implies that there is no equation that describes the dynamics of this field
in the Fy; multiplet, i.e. it is non-dynamical.

The last field that we have to process is the 10, 2 field Aq,. 40,55, From equation
(4.1.62) one can conclude that the dynamics of this field are described by the following

equation

2
ad G[d, ai...aglcica], e3lb — ab G[d,al...ag[clcQ],C3]d — § 8[(:1 G[Czl,al.--asbd},ka]d = 0. (4167)

One, however, can show that this equation is equivalent to a much simpler one
Ecl...cu,a,blbg = 07 Where Ecl...C11,a,b1b2 = - 28[1)1 G[Cl,CQ..Acll],bQ]a- (4168)

This is the second order equation that describes the dynamics of the Ay, 4,0 6,6, field.
Unlike all the other second order equations we considered before this equation is subject
to modulo transformations. The exact form of these transformations will be discussed

in the next section. Using this equation we can rewrite the variation from equation
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(4.1.62) in the following way

7 c
5ga1...ag,b = - Z Mbay Eag.,.a6|c\ A aras)
A 1 -
+ 275 (Edal...ascl,dcgc;gb - § Edal...asb, dc162(33> ACICQCS
165 1
+ ? (Edal...asclcg,03,db - § E|dc1a1...agb7 d, CQC3> Acrees, (4169>

All the second order equations we obtained so far were derived in two independent ways:
first, by projecting the corresponding first order equations and second, by taking the
variations of the other second order equations. This fact gives rise to an internal consis-

tency check of the Fy; multiplet that can be illustrated by the following commutative

diagrams
Eqq E11
L N L AN
Dal...a4 A [4 Da,blbg Dal...a4 A 4 Da,b1b2
T 61 ™2 02
h 4 h 4 h 4 h
E1q E11
Vi \ yl N
Ea1a2<13 N 4 Eab Ea1...a6 < ? Eal...ag,b

Figure 13: Two commutative diagrams of the Fy; multiplet

We have shown that the first diagram commutes non-linearly, except for the projector
0y, which is only known at the linear level. The second diagram has been shown to

commute linearly.

4.1.3 Level 4 equations of the £;; theory. Modulo transformations. Eleven-

dimensional origin of the mass term in Romans supergravity.

We will start this section by discussing the variations of the first order level 4 equa-
tions Do, .10, bibebs @A Day . a1y b6y found previously in equation (4.1.54). We will then
construct a set of projectors oy, oo that transform these equations into their second

order counterparts Fq, a,0.5,..5, from equation (4.1.63) and E,, 4,6, ¢, ffom equation
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(4.1.68). The variation of E,, a6 c1eo 1S then considered. It is shown to contain a
modulo term, which forces us to define another projector p in order to obtain a third
order equation Fy, q,, b1bs,cic, that doesn’t produce any modulo terms in its variation.
We will finish this section by discussing the general properties of the modulo transfor-

mations and the connection of A, 4,55, field to Romans supergravity.

Dal...au,blbg

Ei11

4 Dal...alo, bl...bﬁ

£
1 D(I,]...(.I,fl < Da,blbg

DCL1 ...a10,b1b2b3

g1, 02
l Eq1q

Ea, .. a0, b1bobs

h 4

1, Vi
E(llag(l;g N

A 2

h 2
S]
Q
)
S

Ec1...c11,a,blbg

E ¢
ai...ag |

P

v

3 Fcl...cn,alag,blbg

Figure 14: Level 4 sector of the E;; multiplet

The biggest difficulty we are going to encounter when varying equation Dq, a0, b1bobs
and its second order counterpart E,,  4,.5:..6, 15 that there is a new duality relation in
their variations. The Ej; theory predicts an infinite number of fields, some of which
are connected by infinite chains of dualities. Two of these chains are known and were
proposed in [51]. The vector duality chain, pictured in Figure 15, starts with the
3 — 6 duality equation (4.1.15). It links certain fields on levels 3n + 1 and 3n + 2 for
n = 0,1, 2, ... . The gravity chain, which starts with gravity - dual gravity relation
(4.1.17), links certain fields on levels 3n and 3n + 3 forn =0, 1, 2, ... .
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o 1 2 3 4 5 6 3n 3n+1 3n+2 Level

Ag, ...9,3 A9, ...9,6
e —f ] e
6—9,3 n n
Ds3_g Dy, 3-9,6 U

Figure 15: The vector duality chain

Some of the dualities presented in Figure 15 have been discussed earlier: Dj ¢ is
the original vector - dual vector relation (4.1.15), while Dg_g 3 can be obtained as a
composition of the 3 — 6 duality from equation (4.1.15) with the 3 — 9, 3 duality from
equation (4.1.54). As the variation of equation (4.1.63) contains both the terms on level
2 and level 5 we are expecting it to close on the 6 — 9, 6 duality relation Dg_g ¢, which
can be obtained from Figure 15 as a composition of Dg_g 3 and Dy 3_g ¢. This equation

has the following form

Da1~~~alovbl~~~b6 = G[ahaz.-alo},blmbe + pgal.--amc G[Cv by...be] - (4'1'7())

As we are truncating all the fields on level 5 and higher, we are unable to determine
the value of the coefficient p or to show that the variation actually closes. Equation
Doy .11, b1b, from (4.1.54) also has level 5 equations in its variations. These equations,
however, do not belong to any duality chains and, therefore, do not contain any terms
on level 4 and lower. This implies that according to our truncation procedure they
can simply be removed from the variation. Equation D, 4.5, can then be varied

precisely. [;-extension of this equation results in the following

20
Dcl...cu,alag = G[cl,cz...clﬂ,alaz + m 561...611 Gd(al’(a2)d)’

60

5D51,..511,ala2 - m c

Cc1...C11 D(a1|,d1dz A‘ag)dldQ - 601-~-C11 a(al Aa2), (4171)

where D, 4,5, is the gravity - dual gravity relation (4.1.17) and (4, Aq,) is the modulo
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term given by

" 60
anha) = = 77777y

1
<G(“17 |d1d2| Aa2)d1d2 T 20 c

Dot G s az) Ndgdrodn
(4.1.72)
As we stated before, appearance of the modulo term in the variation implies that the
exact equation that describes the dynamics of the fields is higher order in derivatives.
Therefore, we will now define two projectors that act on the first order level 4 equations
in order to obtain the second order ones, previously obtained from the variation of the

second order dual graviton equation (4.1.61). Projectors oy and oy acts on the first

order level 4 equations (4.1.54) in the following way

Eal'"alovbl"-b4 = (0-1 D)al...a1o,b1...b4 = a[bl| Dal---al(b ‘b2b3b4} (4]‘7'?))

36 .
= a[171 G[al,ag.“alo],bzl)gbd - m €ai...a1p ac G[bl,b2b3b4]>

Ewal..‘au,b7 cica — (02 D)al...all,b, c1c2 = - 2 a[(21| Da1~..a11,|02}b = - 2 a[cl G[al,az...all],cﬂb-
The first projector gives us equation (4.1.63), while the second one reconstructs the

second order 10, 2 equation (4.1.68). We will now vary equation (4.1.68) to see whether

projector oy eliminates the modulo term or not. [;-extension procedure results in

20

501...c1l,a, biby — — 2 a[bl G[Cl,CQ‘..Cll],bQ]a - m 801...C11 (ada G[bl,(bz}d) - ad[bl Gbg],(ad)) .
(4.1.74)
The variation of this equation is then given by
60 d1d2 dldg
6501...011,a, biby — m Eeq...o1n a[bl\ (D|b2},d1d2 Aa + l)a7 dids A|b2] )
+ Ecl...cll aa, a[bl Abﬂ, (4175)

where 9, Op, ]\bg] is the modulo term given by

60

% 0N = = 374y

1
aa (G([IH7 |dida| Abz]d1d2 + 2_0 gdl---dll G[bl, |d1...dg|, ba] Adgdlodu)
(4.1.76)
The fact that the second order equation still retains the modulo term implies that one

has to apply another derivative to it. Hence we define projector p that acts on the
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second order equation (4.1.68) in the following way

Fay..a11,b1bs,cre0 = (/) E)alu.(lll,b]‘b270162 = a[bl E|al-~a11\,b2],c102

= 20, 9ey Diyay...antl,calbe) = 201 Ore; Glay, az.ana], cala) - (4.1.77)

The [1-extension procedure gives the following result

60
5~7:cl...cl1,a1a2,blb2 - - m 561...611 8[0,1| a[b1| (D|a2],d1d2 A|b2}d1d2 + D|b2],d1d2 A‘az}dldz) )
(4.1.78)
where
fcl-~~cll7ala2yblb2 = 26[al a[b1 G[C1,C2---C11],b2}a2} (4179>
20
_ 111 €ey...c11 (ad[bl 8b2] G[CLI, (az]d) + ad[al aaz] G[bl, (bz]d)) .

As one can see, p has eliminated the modulo term. This means that the dynamics of
the 10, 2 field are described by an exact equation that is third order in derivatives. One

can also construct the contructed version of this equation, namely
Fcl--.cn,ab = Fq...cn,ad7 bd- (418())

The dynamical implications of these equations will be discussed at the end of this
section.

We will now investigate the general properties of the modulo transformations and
their dynamical implications. The clearest sign that an equation is subject to modulo
transformations is it acquiring additional A term in its variation. A prime example of
this would be equation (4.1.53). In [51] it was proposed that this happens due to the
fact that these equations are not invariant under the gauge transformations, defined
in equation (1.3.17). Under this assumption, the modulo transformation works as a
compensation mechanism for the gauge transformation. Applying projectors to these
equations eliminates the gauge degrees of freedom and makes the equations exact. As
we do not have a way to prove this general statement, we will illustrate it at the

linearised level using the particular set of equations that we've just derived. The set
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of gauge parameters that belong to the [; multiplet is

a
A ) Aalaga Aal...asa Aal...aga Aal...a7,b7 (4181>
~—~ ~—— —— -
Level 0 Level 1 Level 2 Level 3
A 1) (2)
Aalmas,blbzbs? Aalmag, b1b2 > Aa1~~-a97blb27 Aal...alo,w Aal...aw,b7 Aalman'
~ TV
Level 4

These parameters mirror the set of the [; generators given in Section 3.1. We will
start by finding the gauge transformations laws of all the fields in the multiplet using

equation (1.3.18). Up to some renormalisations of A’s we have

5ghab = aa Aba 5gAa1a2a3 - a[al Aa2a3]7 5gAa1...a6 = a[m A(lQ...ClG]?

6gAa1...ag,b =0 ...agl,b + ab Aal...ag - a[al Aag...ag}ba

[a1 Aa2
9
5gAa1...a9,b1b2b3 - a[al Aaz...a9]7b1b2b3 + a[bl A|a1...a9|,b2b3} + ? a[al Aag...ag}[bl,bzbg]y

10

5gAa1...a10,b1b2 = a[al Aag...alo],blbg + a(bl A|a1...a10|,b2) - ﬁ a[al Aag...alo}(bl,bzﬁ
1 Aa2

6gAa1...a11,b = a[a ..ai1],b + ab Aal...all- (4182>

Here we truncated all the terms with the higher level derivatives. We used the equations
of Appendix A in order to calculate (Dy) , ”. We also combined Aéll)maw’b and Ag)...aw,b
into Ag, . ay,b, as their contributions are proportional to each other. Note that the
normalisations of Ay, 4,5 are different in the last two lines. This is not going to affect
the result of the calculation, as none of the equations contain A,, 4,5

A very important pattern emerges from equation (4.1.82): all the fields with one
block of indexes have a single gauge parameter in their transformations, while the fields
with two blocks — two. The number of gauge parameters is always equal to the number
of blocks of indexes that the field has. This also implies that we will need to consider
an increasing number of derivatives to construct the gauge invariant objects out of

these fields. We will now illustrate this point by applying the gauge transformations of

equation (4.1.82) to all the equations in the multiplet. For the first order equations we
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have

5gDa1...a4 = 07 5gDa, biby — — %aa Eblbzqmcg 801 ACQ...CQ - 8a [\blbzv
(sgDal...au),blebg = a[bl a[al Aag‘..alo],bgbgb (418?))
5gDa1...a11,b1b2 - a(bl a[al Aag...an},bg) = - gal..‘an a(bl Ab2)7

where we have simplified two of the equations by rewriting them using the following
parameters: ]\alaz = — ieala;l'“c" Oy Aey. e and A, = % e Oy Aoy 011, a- Equation
(4.1.83) confirms earlier statement that 3 —6 duality equation D,, ,, is gauge invariant
and, therefore, doesn’t produce a modulo term in its variation. The remaining four
equations are subject to modulo transformations. Transformation of the gravity - dual
gravity duality relation Dy s, is consistent with the modulo term found previously
in equation (4.1.55), while transformation of Dy, 4y, 66, IS consistent with equation
(4.1.72). Applying projectors to the first order equations gives us the second order

equations and eliminates the majority of the modulo terms.

59Ea1a2a3 = (7T1 59D)a1a2a3
8,Ewm = (616,D)_, =0, OgBa; . as,b = (020,D)
5gEa1...a10,b1...b4 = (01 6QD) = 07

ai...aip,br...bs
5gEa1...a11,b, cie2 — (02 59D>

=0, 0gEa,..a6 = (m204D) =0,

aj...ag

aj...ag, b = 07
(4.1.84)

= &ay...a11 ab 8[01 ]\cz]‘

ay...a11,b,cica
The modulo terms are eliminated by the projectors in all cases, except for the 10, 2
equation E,, a1, b cieo- 1t's gauge transformation matches the result found in equation

4.1.76). Applying projector p to Eq, a1 b cie, TeSUltS in
y g .] p 1 11,9, C1C2

5gFa1...a11,b1b2,clcz - (l) 69D)a1...a11,b1b2,01cg = 0. (4185)

Consequently, the contracted version of this equation (4.1.80) Fy, a1, 5.6, 1S also gauge
invariant. Transformations (4.1.83, 4.1.84, 4.1.85) imply that the 10, 2 equation
e De, . er1,a1a, transforms like a symmetrised gravity field 4, 4,), equation

N Bl e abibs — like the spin connection wg p,p,, equation e F. 0 06, bib
— like the Riemann tensor R q, 56, and, finally, equation 1" F, .| 4100 — like

the Ricci tensor R, q,-
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We now consider the consequences of the field equation (4.1.77) for the field A, 410, 5160+
which essentially states that the analogue of the Riemann tensor vanishes. We recall
that if the Riemann tensor vanishes then one can find a coordinate system in which the
space-time is flat. Applying this to our setting we can conclude that there is a gauge
in which

G[a1,a2---a11]7b1b2 =M Eqy..a11 Mb1ba> (4186>

where m is a parameter. This makes it clear that equation (4.1.77) implies that
Aqy a1, 0ib, fleld carries no degrees of freedom. Even though we have a field equa-
tion with three derivatives Fp; ensures that there are no additional degrees of freedom
coming from this level 4 field.

We now consider the dimensional reduction to ten dimensions, that is, to the ITA
theory. We find the eleven-dimensional field Ag, . 4,0.5:5, gives rise to the following ten-
A

dimensional fields A, Aay..ay and Ag, 4., where a, b = 1, ..., 10.

ap...a10,b1b27 ai...a10,b’

In listing these fields we have taken into account the irreducibility condition of the
Au, a0, b1b, field. From equation (4.1.86) we see from that the field A;, s, obeys the
equation

Fdl...&lo - m, 5&1...(2107 (4187)

where Fy, 4, = O, Aay..ay9) and m' = % m.

Type IIA supergravity with cosmological term is known as Romans theory [52].
Equation (4.1.87) implies that dimensional reduction of the A, 4., 6,5, field to ten
dimensions produces a cosmological term and, therefore, has to contain Romans super-
gravity. The proposition that the A,, 4, 66, field is related to Romans supergravity

was first made in [53].

4.2 Non-linear realisation of E;; in 5D

To illustrate the point that the non-linear realisation of E4; provides a description for
theories in all dimensions up to eleven we will construct it in five-dimensional case.

We will build the first order vector duality equation, analogues to the 3 — 6 duality
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equation (4.1.15) in elven-dimensional theory. We will then vary it to derive other
duality relations in the multiplet and apply a projector to it to obtain the second order
equation for the vector field. Finally, we will vary this second order equation to show
that, like in eleven dimensions, its variation conteins the Einstein equation. In this
section we are using the commutators from Section 2.1 and the Cartan forms from
Section 3.3.

Vector duality equation is uniquely fixed by Lorentz and Usp (8) invariances. It
establishes a connection between level 1 A,,,q, field and level 2 A, 4, a,q, fleld. It has

the following form

b1zt Gb1,bzb3 arag- (421>

ajaz alag

1
DV = G[a1,a2]a1a2 :l: 5 6(11(12

Like in elven-dimensional case, the coefficient between the terms is fixed by the condition
of closure under the I, (E4;) transformations. Here, however, we did not make a choice
of sign in the duality relation. In order to find the variation of this equation one has to
apply the I. (E;;) transformations found in equations (3.3.9, 3.3.10, 3.3.11, 3.3.12) and

perform the [;-extension. We get

Dl‘l/liw aras galaQ o + %5a1a2b1b2b3 gb1b2ba o + % GO&10427 laraz2]s (422>
where
1
Garasaras = G[m,az]alaz +2 G[aw,alaz az]7 + Z Qorar lewmaz 71729
ga1a2a3 ajaz — G[a1,a2a3]a1a2 - G[mlv,alazas \012]’y +6 G%W’amzag ara2y1ve” (4'2-3)

Under the local I.(Fy;) transformations this equation transforms as

1
14 _ asaqas Vv ¥ - asaqas Vv Y12
5Da1a2 aioe T + 2 €ayas Da3a4 [ary Alls as] + 4 Qa1a2 €ayas Da3a4 Y12 Aas
_ ) Y172 bi..ba NS 5
2 D[a1 a10271Y2 Aaﬂ T2 Elas] Db1-v.b4 [on |y A‘GZ} |az]

+ DY 410y Naras- (4.2.4)
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S NS . . .
where D7 ., and D7 . . . are the scalar equations which are given by
S _ by...by
Daal...a4 - Ga, Qa1...04 :F 6€a Gb1,b2b3b4 a1...0e4)
A g B
Dal...a4 artas G[al,a2a3a4} ar1ag) (425)

and Dg b, 1S the gravity - dual gravity relation similar to the eleven-dimensional one

introduced in equation (4.1.17). It is given by

1
C1C2C:
Wa, biby T § Eb1by 1 G01,0203,a' (426>

N[

Wa, byb, Was defined in (4.1.9). The variation of the vector duality relation (4.2.4) contains
two equations that describe the dynamics of the scalar fields in the theory. These
equations did not appear in previous sections, as eleven-dimensional theory has no
scalar fields.

As in the elven-dimensional case the gravity - dual gravity relation is subject to
modulo transformations. One can obtain an exact second order equation that describes
gravity by applying a projector to it. In order to build this equation we will first
construct the second order vector equation and then apply the I.(E;;) variation to it.

The second order vector and scalar equations are given by

1

Eoan = gm‘l am <(det e)? G[’“’“Q]alaz> + Glbamre Gy, s — 2 Glb-al 51| Gy, aﬂv

-1 _acy...c 1
+ (dete) g (Gcma o1 |v] Gege a2]ﬂy + < Qavas Gey,ermime GC3,C471V2) )

8
(4.2.7)
and
3 a
Eal--~a4 = a,u ((det 6)2 Gua1ma4> + 4 (Ga,v[oq G 7’Yoz20430¢4}
+ 3 G[chcz]"hﬁz G[C1,C2}5152 f7ﬂ2 [a1az f§162a3a4]>proj 4z’ (4.2.8)

where “proj 42”7 implies that the expression in the brackets has to be made irreducible
with respect to a;...as indexes. We observe that these are precisely the vector and

scalar equations of five-dimensional maximal supergravity.
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We now vary the vector equation of equation (4.2.7) under the local I.(E};) trans-
formations of equation to find that we recover the scalar equation of motion (4.2.8) as

well as the gravity equation which occurs as the coefficient of A? . The results of this

long and subtle calculation that involves several Usp(8) identities is the equation
2
Eab = (det 6) Rab —4 G[a, daias Glb-leraz + g 52 G[cl,CQ] onas Glev ezl onas
- Ga,al...a4 vaf"l'"‘im7 (429)

where R, is the Ricci tensor. At the linearised level this calculation gives the following

result
¢ 1 Y172 1 c 1 c
5(10(10(2 = a G[c,a]oqag - 5 8 Ga,alaz'ylyQ + 5 aalag G 7(ca) - 5 aCYlCYQ GCL,C 9
0Euanas = Roa A2 o, — Eayasyins N7, (4.2.10)

where Ry, = 0, we v — O: W, . The linearised variation of the Einstein equation closes
back on the vector equation. In order to see this we first perform the [; extension

procedure. It gives the following

Eap = Rap + 012 G[a7 barar = Ry, — 012 G(a, b) arass (4.2.11)
where
c c 2 Q1o
Rab = 6(1 Qc,b - ac Qa,b ) Qa, biby — Wa, biby + § Nalby G 7b2}041042~ (4212)

The variation of this equation is
4
0w = —2Fuaia, M™ ™ — 2 Epoya, Na™ ™ + 3 Tlab Eeoja, N2, (4.2.13)

The linearised variation of the scalar equation (4.2.8) likewise closes on the vector

equation. We have
5041.“014 =0 Gc,al...a4 -6 a[alag GC7ca3a4] +6 Q[alag aag\'y\ Gc’ca‘ﬂ’y
1 c
+ 5 Q[alaz Qastm] R ey1v2)

55()51“.&4 =24F, [0z Aaa3a4} — 24 Q[aw@ Eaa3|,y| Aamﬂ

=2 Q00105 Qasas] Eaying A2 (4.2.14)
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One can see that the five dimensional F;; theory also leads to a set of equations closed
under the local I.(F7;) transformations. At low levels these equations mirror the dy-

namics of the corresponding supergravity theory.
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5 Non-linear realisation of the A7 ™" algebra

The basic properties of the F4; theory can be illustrated using a simple example of the
very extended A; algebra, denoted as Af . It is proposed [30] this model contains
a description of pure four-dimensional gravity, supplemented with the dual graviton
field . It might prove useful for studying this duality relation independently of the
other duality relations that appear in more general F;; case. We will construct the
commutation relations of this algebra and its [; representation up to level 2 in fields

and coordinates and use them to build the non-linear realisation of this algebra.

5.1 A{"" algebra

A{T algebra has the following Dynkin diagram

@ @ @O

| |
GL (4)

which corresponds to the Cartan matrix

2 -1 0 0
-1 2 -1 0

A= . (5.1.1)
0 -1 2 -2
0 0 -2 2

Deleting node four from the diagram given in Figure 5.1 results in a four dimensional
theory that includes the pure four-dimensional gravity, supplemented with the dual
graviton field that can be found on level 1 of the decomposition. The list of generators

up to level 2 is given by
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Level | Generators

0 Ke,
1 R
1 | Ru

2 Ra102; b1b2

-2 Ra1a27b1b2

where the generators obey the conditions R*% = R(®192) R, . — Rl(a1a,) and Ro192: 0102 —
Rlarezlibibz — parez.(bibe) Ry = Rigiay) babs = Raras, (bibs)- O top of that, level 2

generator obeys the irreducibility constraint
R[a1a2, bilba _ R[alaz,b1]b2 = 0. (512)

We will now give the algebra formed by these generators. Taking the commutators with

K%, one finds

Ky, K4 = 05 K® — 69 K©),
[K(zb’ Ra1a2] _ 25%11 R|a‘a2)’ [Kab’ Ra1a2] = — 2(5&1 R\b|a2)7
[‘[(al77 Ralag,blbg] _ 25[1;11| Ra\ag],b1b2 + 26(bbl| ‘l[{cutlz,tﬂbz)7

[Kab? R“l“?» b1b2] =—2 6[Z1| Rb‘aﬂ,blbg - 25(%1| R (513>

araz,blb2)"

The level 2 (—2) two commutators must appear from the following commutators of

level 1 (— 1) generators
[}%amg7 Rble} — Ra1b1,a2b2 +Ra2b2,a1b17 [Ra1a27 Rble] — Ralb17a2b2 +Ra2b2,a1b1~ (514)

The normalisation of the level 2 (—2) generators is fixed by these relations. The reader
may verify that the right-hand side of these commutators do indeed have the sym-
metries of the generators which occur in the left-hand side using the constraints on

the generators given in equation (5.1.2). The commutators between the positive and
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negative level generators are given by
[R™% | Ry,p,) = 200 K,y — 041 K<,
[Ralag,blbg, Rcm] _ 5(31261;22) Rubr 5(31261321) Raib2 _ 5(311:21) Razb2 _ 5(311322) Razb
[Rayaz, babss B2 =022 Ragpy + 00252 Ravby — 0052 Raghy = 00 32) Ragpy - (5.1.5)
The relation of the above generators to the Chevalley generators of A7+ is given by
Hy =K' - K%, Hy=K%-K%, H;=K%-K",
Hy=-K'Y— K’ — K5+ K",
By =K'y, E,=K?%, FE3=K°, E; =R"
Fi =K%, F=K3 Fy=K'% F,=Ru. (5.1.6)
One can verify that the satisfy the defining relations
[Ho, Eb) = Ao Eb,  [Ea, Fy] = 0ap Hay,  [Ha, Fy] = — Aup Fy. (5.1.7)

were Agp is the Cartan matrix of A7+ given in equation (5.1.1). The Cartan involution

acts on the generators of A" as follows

Generator | I, (Generator)
K — Kb,
Ra,a, _ Rmaz
R™a2, b1b2 Ralag, bib

The reader may verify that it leaves invariant the above commutators. The [; repre-

sentation generators up to level two are given by

Level Generators
0 P,
1 VA
2 Za1a2a37 Zalag,b
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where 710203 — z(mazas) - zaraz,b — glawazl,b and zlaetl — (0 Their commutators with
the level 0 generator K¢, are given by
1
(K%, P|=—02 P+ 3 oy P,
1
(K%, Z¢] =6, Z° + 3 AN
1
[Kal” lellIQllS] _ 352111 Z\a|aga3) + 5 6;)1 Zmaze3
“ 1
(K, Z4%¢] = 24l" glalale 4 5o zaraza | 5 0 Zmene. (5.1.8)
The commutators of the level one Af ™ generators with the [; generators can be chosen

to be of the form

[RM92 P) = §lo1 792) [Ruez | ZV] = zmesb 4 ghlanes), (5.1.9)

Using the Jacobi identities, the commutator of P, with the level 2 generator of A7+

is found to be

3

|:Ra1a2,b1b27 PC:| —_ _5[0111 Z(l2]b1b2 + %5[00«1 ZQQ](blbe) _ Zg(cbﬂ Za1a27|b2)‘ (5110)

The commutators with level-lowering generators are given by

[Ralam Pb] =0, [Ralazv Zb} = 25(21 Pa2)7
c 8 c [b1
[Rusas, 2079 =200 2%, [Raay, 27 = = 0000 2% (5111

The very first relation reflects the fact that the [; representation is a lowest weight

representation.

5.2 Cartan forms

Having constructed the A"t x [; algebra up to level two we can build its non-linear

realisation. The group element g = g7, gg can, up to level two, be written in the form

gr = exp (xa P‘l + Ya z° + Lajazas Z01as + Lajas,b Za1a2,b)7

JE = exp (Aal%blbz R“l"?’blb?) exp (Aab R“b) exp (hab Kab), (5.2.1)
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The Cartan form is

Vi = Gab K% + Gayay R + Guayag. br, Ralag,ble,

Vi =da" En® Ly, (5.2.2)
where

G.b = (e! de)ab, Gajay = e(g‘iyﬁ) dA, s
Gala27b1b2 = eaﬁyzu 6(5:213) (dAM1u2,V1V2 - Aull/l dA/an)' (523>
Local level 1 I, (A{*") transformation is parametrised by
h=1—A4a 5", where §% = R"" — n‘“bl n“2b2 Ry, b, (5.2.4)
Under these transformations the Cartan form transforms as follows

SV = [SU92 Ngyay, Vi] — S dA g,y (5.2.5)

As per usual, we have chosen a gauge in which the group element (5.2.1) is free from
the negative level generators. Parameter A, ,, is then restricted in order not to break
this gauge choice. We have

dNayay — QA(alb Glplas) = 0. (5.2.6)
For the transformations of the Cartan forms we have

6G" = 2AY Gy — L A2 G,
0Garay = — 2Ma," Gaglo — 4G ay1), anyp A" — dAgya,
= — 40," Glagp) = 4 Glarjpn anjpn A,
0Garas,bibs = 2 Nay vy Gaslpo) + -+ (5.2.7)
where + ... corresponds to the level 3 field term that we’re not considering. Bar is used

to distinguish between level 1 and level 0 Cartan forms.

With respect to their [; index the Cartan forms transform in the following way
0Gae = Ay GP, 0G% =2APGh o+ ... (5.2.8)

Here + ... corresponds to the level 2 [; term. Hat indicates that the [; index corresponds

to the level 1 generalised coordinate vy,.
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5.3 Generalised vielbein

We will use the definition of equation (1.3.9) which involves conjugating the [; generators

with gp using the above algebra. Conjugation with level 0
exp (_ hab Kab) {P/“ Zﬂ’ ZHI#%US’ ZHLLLQ,I/} exp (hab Kab)

(araza3) aiaz,b

= (det 6)_% {eua P, et 7%, ¢ (m1p2ps3) Zomazas o Hakzv Zmag,b}7 (5.3.1)

where vielbein e,” and its combinations were defined in equation (3.1.5). Conjugating
with positive level generators can be obtained by Taylor-expanding the exponents and

truncating the series by level 2. For the Ey; level one generators we have
exp (— Ap, b, Rble) {Pa, Z“} exp (Ab1b2 Rble)
= {Pa — A 2"+ % Aqpy Apypy 207" + % Aqpy Apye 20,
20— Ay, 202 A, Zablv’w}. (5.3.2)
while for the level 2 generator:

exXp (Aa1a27b1b2 Ra1a2,b1b2) Pa exp (Aa1a2,blb2 Ralag,blbz)

= Pa + Aab17b2b3 Zb1b2b3 + Ab1b2,ac Zb1b2jc~ (533>

Combining these results together we find that the generalised vielbein up to level two

is given by
a c c c
€u eu ac|a eu ac|a1a2a3 eu ac\alag,b
_1 ea'u ec# ﬂcalagag ec“ Bcalag, b
Ex® = (dete)™ 2 , (5.3.4)
O 0 e (n1p2ps) 0
(a1a2a3)
H1p2,V
0 0 0 €aray. b

where the symbols in the first line are given by
Qglp = — Aaln
1
aa|a1a2a3 - Aa(al,agag) + 5 Aa(al Aagag)a

1
Uglaraz, b = Aalag,ab + 5 Aa[a1 Aaz}bu (535>
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while the symbols in the second line are given by

ﬁaa1a2a3 = - 6(?11 Aazag)’ /BaaIGQ:b = 5[((111 Aa2]b'

(5.3.6)
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6 Conclusions

We have studied the non-linear realisation of the Ey; algebra and its vector represen-
tation. The set of generators of this algebra and their commutators has been found in
ten-dimensional case up to level 4, which corresponds to its decomposition into repre-
sentations of GL (10) x SL (2), and in five-dimensional case up to level 3, decomposed
into representations of GL (5) x Es. We have then constructed the non-linear realisa-
tion in eleven, then and five dimensions, as well as for the A" algebra. This included
the generalised vielben, the Cartan forms and their transformations under the local
symmetry group of the non-linear realisation. The generalised vielbein was also found
in four dimensions.

In eleven dimensions the non-linear realisation of Eq; X [; has been studied in detail
up to level 4 in fields. One finds a set of Fy; invariant equations that are first order in
derivatives and transform into each other under the local transformations of the non-
linear realisation. The majority of these equations are duality relations that involve
two different fields, except for one standalone equation that involves a single level
4 field Aq,. a10,010,- One then finds that these equations only hold modulo certain
transformations, with an exception of the 3 — 6 duality relation D, ,, that holds
exactly. The modulo transformations have been shown to be related to the gauge
transformations of the FEj; fields. One then introduces a set of projectors that acts
on the first order equations in such a way that modulo terms are eliminated from the
variation. This leads us to a system of the second order equations that is likewise closed
under the local transformations. The resulting system is shown to contain the set of
equations of eleven-dimensional supergravity theory. An exception to this is the second
order equations that describes the dynamics of the level 4 field Ay, 4,0 616,, Which is
still subject to modulo transformations, even after being projected. This forces us to
apply another projector to it, which leads to a third order equation for this field. The
solution of this equation indicates that the A, 4,0 615, field is non-dynamical, and,

therefore, doesn’t create any new degrees of freedom in the theory. Its dimensional
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reduction to ten dimensions is shown to generate the cosmological term that matches
the one found in Romans supergravity. Likewise, all the other level 4 fields are shown
to have no dynamical degrees of freedom, as they either drop out from the variations
or are dual to the lower level fields. This fact supports the proposition that the only
dynamical degrees of freedom in the Fj; are the ones of the supergravity theory. A
similar calculation has been performed in the five-dimensional case. The multiplet has
been shown to have the similar structure to the eleven-dimensional one.

In carrying out this calculation we began from the Ei; algebra and its vector rep-
resentation [; and constructed the dynamics of the non-linear realisation at low levels
with only one other assumption was that the local subgroup in the non-linear realisa-
tion is the Cartan involution invariant subgroup I, (FE;). The bosonic sectors of the
maximal supergravity theories follow from this construction, at low levels, in a unique
way and, therefore, one can even say that they are encoded in the F;; Dynkin diagram.
This result strongly supports the proposition that the low-energy limit of the theory of
strings and branes possesses the Fj; symmetry.

There is a number of directions in which the results obtained in case of the eleven-

dimensional non-linear realisation can be taken. The most interesting of them are

e Constructing the non-linear version dual of the dual graviton equation E,, 4.5
(4.1.43). In order to do so one has to close the non-linear variation of E% %
equation from (4.1.20). Another way to obtain it is to construct the non-linear
versions of 0y, 05 projectors from equation (4.1.56). Matching the results of these
calculations will ensure that both commutative diagrams from Figure 13 are sat-

isfied at the non-linear level.
e Understanding the modulo transformations at the non-linear level.

e Investigating the higher level duality relations like equation (4.1.70) and demon-
strating the closure of the variations of Dy, a0, b160bs a0 Eq, . g, b1bobs; from equa-

tions (4.1.54, 4.1.65).
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e Considering the multiplet up to level 5 in fields and testing the hypothesis that

the higher level E1; fields do not contain any extra degrees of freedom.

e Matching the [; terms in the first and second order equations by ensuring that

the projectors that we have defined act correctly on the [; part of the equations.
One can also consider a number of directions in different dimensions.

e Testing the equations of the five-dimensional theory in the non-linear case. Apart
from the non-linear variation of the second order vector equation found in Sec-
tion 4.2 one can consider variations of the second order scalar F,, ., and gravity
equations E,° (4.2.8, 4.2.9), as well as the first order gravity - dual gravity rela-
tion ngle and scalar equation D, q,. q,(4.2.6, 4.2.5). One could also build the

projectors that connect them and investigate the modulo terms in their variations.

e Building the first order graviton - dual graviton equation in the Af ™ case. Unlike
the F4; case, in which this equation varies into the vector duality relation, in the
AT case it must be self-dual under the I, (AI”LJ“) transformations. Thus, it

might provide some new insights into the dynamics of the dual graviton field.

e Finally, one could build the dynamics of the non-linear realisation of Ej; in dif-

ferent important cases, like 4D, 10D type ITA or 10D type IIB.
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Appendixes

A FEj; algebra in 11D

In this appendix we give the Ej; X, [; algebra decomposed into representations of
GL (11). Tt has previously been constructed up to level 3 in [17] and then finalised in
Chapter 16.7 of [32]. Here we give all the commutators of the generators up to level
4. This is a result of a joint work with Nikolay Gromov and Peter West that is yet to
appear [39]. The commutators of the Fy; generators with the generators of K%, are
(K%, K| =08, K% — 03 K,
(K, R®%) = 38, Rl (K%, Royasas] = = 308, Ripjasas).
(K%, RU--95] = 5840 Rleloz=asl [} R, o] =502 Rpyas..as)s
(K%, Ru-s] = 85[5” Rldloz-asl - [ge, R 868 Riay..as)
(K, Ro1-am¢] = 75[;11 Rlalaz-arle 4 ge parara,
(K%, Ray..az,cl = = T0g, Ribjas...ar),c — Of Ray..az,b;
(K, Ruwancicaca] — 95[;1 Rlalaz...asl, crczcs 35£c1| Ro1-as,alezcs),
[K%; Ray...a9,c100es] = = 90(a; Bjbjas...ag), creacs — 3 01ty Ray...ag, blescs]
[K®,, Ro-ameie] — 10 5[;1 Rlolaz.awl,crex | 25£C1| Ra1...a10,a|cg)’
(K%, Ray...a10,c1e2] = = 1005, Ripjas...aro],eres — 20(e Rayaro, blea)s
K%, Ror-o1:¢] = 11 6 Rlalaz-anle | ge parana,

[Kabv Raln-all,c] =—11 5[?11 R|b\a2---a11],c - 5? Ral-nall,b' (A1>

The positive level commutators are given by

[Ralagag’ RCL4CL5(16] — 2Ra1...a67 |:_Ral(12(137 Rbl...b6:| — 6Ra1a2a3[b1.“b5,b6]’
[Ralazag Rbl...bs,c] _ §Rb1...bg[a1,a2a3]c . lel...bgc,alagag
’ 2 6
+ Rbl...bg[a1a2,a3]c + Ralagagbl...bg,c . %Rbl...bgc[alag,a3}7

|:_R(11..‘CL67 Rbl‘..ba] — 5Ra1...a6[b1...b5,b6} + 4Ral‘..(l6[b1bgb3,b4b5be]’ (A2>
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while the negative level ones are

[Rcuagaga Ra4a5a6] = 2Ra1...a6> [Ra1a2a37 Rbl...bg] = 6Ra1a2a3[b1..,b5,b6]7

3 1

[Ralagagu }%ln...bg7 c] -

5 Rbl...bs[al,agag]c - 6 -Rln...bgc7 aiaszas

1
+ Rbl...bg[alag,ag]c + Ra1a2a3b1...bg,c - g Rbl...bgc[alaz,ag]v

[Ray..a6s Boy..b6) = D Ray.aglbr...bs, bs] + 4 Ray...a[bibsbs, babsbs] s (A.3)

The commutators between the positive and negative level generators up to level 3 are

given by

[Ra1a2a3’ Rb1b2b3] = 18 5[[;11;22 Ka3]b3] — 2(5311;221;;3 Kaa7

[R™92% Ry, 4] = 60 Oprbaby. Ltbabsbols [Raragass B =60 §lbrbabs - pbabsbel

aijazasz

(RO, Ry g, 0] = 11205757 Ry o — 112 03,1375/ Boy _bs);

[Rarazags R0 = 112001020 gha-bslb 19 glbibalbl pbs...bs]

ai1azas aia2a3
[R™% Ry, g = — 1080 85 Koy ) 4+ 120 67100 K*,
[Ras oy BP0 = = 3360 5! qp R — 3360 8,50 R,

(R0, Ruyoo o] = — 3360 07750 Rurvy — 3360 05130 Rogorve)

ai...ag,C 16 ’ 7' aj...ag c c [al...a7 ag]
[R ) Rblmb&d] = T <6bl...b8 K d + 85d 5[b1...b7 K bg]

[a1 cas...a7|c| 1-a ai ... a c [a1...a7]c| 7-as]
+ T O T Ky O gl K b 00, K
— G0 Ky 4 0l et K ), (A4)

The level 4 commutators with lower level ones are

|:R Rbl...b97616203:| — 189 5[clcz[b1 sz...bg},c;ﬂ +432 5[c1[b1b2 Rbg,..bg]CQ,c;;]
a1a2a3 s

aiaz as ai a2a3

+ 252 §lbrbebs pba-bollerca, es]

ala2a3

[Rtllllza?,? Rbl...b9,016263} - 189 5[Zi222[213 Rbg...bg],C3] + 432 6[((2 [ng; Rb3...b9}02,63]

+ 25200 52" Ry bglferca, eals
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[R Rbl~~-597010203}
ai...agr

[Ral.“%v Rb1---b97C1C2C3]

ci[b1...b be...bg]cac cicafby...b bs...bg]c
= 3T o, Rl — a5 g ghel gy Rl

. [b1...b b7...bg]c1cacs
4. 715bo Rr-toleserss

3.7 5(2[5.1” bs Rbﬁ boleaes] T 157! 5a102- l.u. b4 Rb5 -boles]

[e1

—4- 7‘(5&1 a Rb7 .bolcicacsy

b...bo, ay gas.. 06\016203| [er geacs]lar...a6 paraga
[Rarcan,ar R eses] = 5671 (o gper-eeleesgal porosasl gl gl 4o prases]

[R5, Ryt xeaea] = 56+ T (858 0% orin) Raasan) — 0 00hu

[Ralazas 5 Rblmblo’ 0162} =

al1a2a. S
[R s, Rb1---b1070162] -

[Ra1...a67 Rbl---b107clc2:| =0,

200 gpeasy gkl 4 g gl prolol
— 8l gl evless) — gl gpzlerer, sl

bs
Ramsag]

(11 ag.. a6|clcgcg\ 6263][(11...0,6

+ 2 5 51)1 o bS RC5 asag + 6[(11 5b1 a b8 R0203 a9]

a1 Yas.. .arfeien as...aglct

b b ...
o 5[01 6[(111 .ag Ttagleacs] T 2 5[61 6021[0,1 a7 b Rasdg]cg])v
425 5[21122(1631 Rbs .b1o], c2) — 180 5[}171122233 Rb4 .b1o]( 61,02)
405

2 5[;2;22(‘031 Rb3~~-blo]702) 180 5[211222;33 Rb4-..b10}(cl,02)7

[Ra1...a67 Rbl...blo,(clcg)} = O,

[Ralmag’ch Rb1~~b10,0102:| — 4 . 7 ((5(C1 6?)21 .(11 a7 Ragagam] + 5(11 6&2 a8 C; RCQ)agalo]

[R5, Ry ]

b1...
[Ralazaga R™

a
[Ramz 37 Rb1

[Ral...aev Rblm
I:R(ll...[lﬁ, Rbl.
[Ra1...a8,d7 Rblm

(R, Ry,

bu,c} —

...bll,c] =

511,0} —_ _

..b11,c] -

(711,Cj| _

..b11, cj| =

5(01 5(11’2 as](01 Ragaw}@))
1 - - ’

Cl Cc2 [a1 .ar al az.. ag] Cc1

=47 <5 5b1 : Rasagalo] + 5 O s Rey)agas]

6 C1 5;21 .ag s Ra9a10 02 )
495 5[b1b2b3 Rb4 bi1], e

4 aiazas

495

ailazas
4 6[b152b3 Rb4...b11]7 (3]

11 i 7 5[bl‘-~b6 Rb7...b11]c
...ag

...ag
[b1...b6 Rb7...b11]cv
by...bs]d

.- ag Ragaloalﬂ . 52 5[;1--;18 Ragalotllﬂ) :
1...bg

¢ “lar ... as ¢ “ai...ag

11!
" <§[b1 6b2...b8]d Ragaloall] . 6d 5b1 .bg Ra9a10a11]> ) (A5)
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The level 4 commutators with level — 4 ones are

ai...a9,C1C2C ai...a cic C 877'2 cilai...a agle c:
[R Pt 37 Rbl...b97d1d2d3] = —786-7! 51711...1799 6[[did22 K 3(]i3] - 140 [1211[. .1. b99 6[d€i]dz K 3(]i3}
129 - 7'2 cicacs slai..a ag] 3- 7'2 laraz[c1 ¢cacslas...a ag)
- 280 5d1d22d33 6[b11...b88 K gbg] + 5 5d1;2ilgl 5[{)? 3. .3. bz K gbg]
93 - 7'2 [ai[cica ¢c3lasz...a ag] 3- 7‘2 la1aza3 caa...agllcic c3)
- 35 dlldzzli32 (5[;; 2 . b: K gbg] - 5 5d11d22d33 5[; 9 .1b§ K 3b9]
24 - 7'2 [c1]araz 5(13...(19]02 3] _ 111 - 7'2 [a1...as 5ag][clcg Kc;,}
35 di dods [b1 ... bg bg] 280 [bl...bg dy daods bg]

[a1...ag[c1 ¢cac3] 1-ag] [a1...a7[cica ¢cs3la ag)
— 1674 - TV gl gl joo) 4864 - 71 gl erleyer gl el
27 - 712

360 - T Oyt K7+

[cicz[ar caz...aglc3] 1-p
5d1d2d3 5b1 ... by K Do

55 11! [ far lelas.are —oa 1
[Ral...au,c’ Rbl,..bn,d] — (5[dl 5‘ | 2...410 K 11]

16 b1 ... b1o bl 1_5
B 5. 7‘2 5(5102) lai...a9 KGJO] _ 1_1' (5(11-.-(110 5(61 KCQ)

14 didz Tlbi.bo b1o] 94 “bi-bio “(d da)’

5; 5[@1...(110 Kall] )

[b1...b1o b11]

ai...a10,C1C2 =
[R 9 Rbl...blo,dldQ] -

5.7!12 [a1 ¢|(c1]az...a10] 1.-c2) (c102) car...0
- 84 5(d1 g bll 2 bll(()) K 2d2) +230- 7! 5d11d22 6b11‘..b1100 Kpp
100 TG 33 K,

ai...aip,c1c2 _ b1...bg,d1d2ad3] __
[R 2, Rb1---b97d1d2d3] - [Ra1---a10701627 R ! } =0,
ai...a10, C1C2 _ b1..b11,d] __
[R 9 Rb1...b11,d] - |:Ra1.4.a10,01627 R j| - 07

[Ral..‘ag,qczcg’ Rb1‘..b11,d] = [Rm...ag,qczcsa Rb1...b11,d} = 0. (A6>

We will now list the commutators of the [; representation. The commutators of the [;

representation generators with those of GL (11) are given by

(K% P)= =8Py S8 P
(K%, Z0192] = 241 Zlale2] 4 % 8y Zmaz,
K%y, Z0-03) — 56l Zlalaz.os] %5;; Zar-as,
K%y, Z0-05) — g5l Zlalaz-os] . %55 Zar-os.

1
(K, Z0007¢] = 7(51[;11 Zlalaz-arl,e 4 AL 5 §& Zoome
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[Kab; Zal...ag,blbgbg} _ 8(5£a1 Z\a|a2...a8},b1b2b3 + 36([,b1 Z|a1...a8,a\bzbg] + %5;}1 Zal...as,blbgbg,

[Kal” Z&l‘..ag,b1b2j| _ 951[;11 Z\a|a2...a9},b1b2 + 251[)b1 Z\al.l.ag,a|b2} + % 5(()1 Za1..4a9,b1b2’

|:Kab, Zal...ag,blbz_ — 95([)“1 Z\a|a2...a9},b1b2 + z(slgbl Z\a1...a9,a|b2) + %(5? ZAal...ag,ble,
a ai..ao,c| _ [a1 ~lalaz...a10],c ¢ r701...010,0 1 a r701...010,C
K%, 2050 | = 1000 2 O 2 8 2,
a ai...a10,c| - a1 ~7lalaz...a10], ¢ ¢ r7a1...a10,a 1 a r7a1...a10,C
[, 2| =106 2l O 2G5 O 2y,
3
[Fe7y, Zovmn] = 5z, (A7)

The commutators of the level 1 generator of F; with [; generators are given by

[Ra1a2a3’ Pa] — 35[;11 Zagag}’ [Ra1a2a3’ Za4a5] _ Zal...as’

[Rawza:s’ Zbl---b5:| — gbibsarazas +Zb1---b5[a1a2,a3]’

4
Fimagag7 Zbl...bg — Zalagagbl...bg + Zalagag[bl...b5,b6b7bg]
[ ) 15
20

= Za1a2a3[bl...b67b7bg} _ Za1a203[b1-~-b77b8]
63 (2) ’

|:Ra1(l2[l3 Zblmb%C} _ Zalagagc[bl...b4,b5b6b7] +1Zc[bl...b5[a1a2,a3}b6b7]
)

+ Za1a2agc[b1...b5,b6b7] . §Zc[b1...b6[a1a2,a3]b7]

7
_ Zc[bl..,bg[alag,ag]b7]
B Zzzll)aga3c[b1...b6,b7] B gZ(cf)l.‘.bﬂalag,ag]' (AS)
Level 2 generator gives
[Ral---d67 Pa] _ 35[;11 Zag...a(;]’
[Ral..‘aa Zblbg} - _ Za1...a6b1b2 _'_lzal...ag[bl,bg]
) 3 )
4
RM--as Zbl...b5 _ Zal...a6b1...b5 s Zal...as[b1b2b3,b4b5],
[Rvete, 20 189
_ 4_0 al...aﬁ[b1b2b37b4b5}
441
55 ai...aglbi...bs, b 5 ay...aglby...ba, b
_%2(11) 6[b1...ba 5]_|_1_62(21) 6[b1...ba 5}‘ (AQ)
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For level 3 generator we have

[Ra1...ag,c’ Pa] _ _ %5; 7a1...as + %5({31 Zag...ag]c + % 51[7a1 Zag...ag},c’
16 4 4
RM--as;¢ Zb1b2 - 7 bibaclai...as, asaras) = Zblbg[al...a7,ag]c
[ ’ } 135 * 63
+ E Zblbgc[al...ag,cwag} . E Zb1b2[a1...a7,ag}c
189 189
1 bibaclai...ar, as] 1 bibsaj...as, c
+ 13 %0 ~ 20
1 bibaclai...ar,as] 1 bibsai...as, ¢
Finally, level 4 generators give
3 121 33
ai...aii,c _ _ 2 scrai..a 121 flar paz..an],e 99 glay rpaz..a1],c
Rt B = =5 0,20+ g 0 2 610 %o
[Ral...am,clcg P] — ?6[&1 Zag...ag(cl,CQ)alo]
y La 7%
11 5)
(c \al...a10|,cz) o [a a2---al()](01702)
" 2016 %" 2y 1008+ 40)

_u sler glaraole2) | ki glar 7a2-awl(er, c2)

32 ¢ @ 16 ¢ 7@ ;

l[a1 r7as...ag], crcacs
otz ’

aj...a9,C1C2C3 _
[Rer-as-ereses | P =

105
2 3
+ ﬁ 5[51 Z'al“‘a9|70203] + 4_9 5[(;11 Zaz...ag][cl,qc:;]‘ (All)

The commutators with the level —1 generator are

[Ra1a2a37 Pa] = O, [Ra1a2a37 Zblbﬂ _ 65[b1b2 Pa

ajas * @3]
[Rauzzag; Zb1..‘b5 = 60 5b1b263 Zb4b5], [Ralagaga Zbl"'bs} — 49 5b1b2b3 Zb4,..b8}7

aiasas aranas
% 6[1711)2‘0' ijb?] + % 5[b1b2b3 Zbg_,,bﬂc’

4 919203 4 aaza3

]
[Ramza:s? Zblmb%C} -
[Rayagay, 200 0128] = — 9455020 zbi-bs 9835 glhilarca gealba-be],

ajaza3 aiasas

— 2835 5[b1b2[cl ZcQC3]b3'“b8] + §[b1b2b3 Zb4--~b8]C1C2C3

aia2a3 aijazas
cieafb ba...bg], c biba[c cac3)b3...b7, b
+ 6075 ol 2049 442525 itz Zew

114175 §lbrbaba Zlercacalba...br, bl

aiaza3

@ 5(01[b1b2 Zbg...b9]102) + @ 5[b1b2b3 Zb4~-~b9}(01702)

11 G10203 11 aiazas )

[Rayazag, 200102 =
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[Raragas, 27742 ] = — 2646 05208 20" — 2646 51,120 2001
— 5292 §ler[ab2 zba-boleal 964 glorbabs Zzlerealba. by, bo]
+ 756 glerlbibe Zba-bol ]
(B 207 = = =l 20
1819100 glbatall Zbs ol _ 1819100 sty bl
[Ralazag, ng) o, } = — 100 §lorbabs 7bs.-bui]
S ol govetd 20 gttt gl
[Rayazag, 2001 = 120 60102bs Zba-bnl, (A.12)

For the level — 2 generator we have

[Ray. a, P = 0, [Ray.ag, 2] =0,

[ ai...ag> Zbl s 3605b1 b Po]7 [Rauzzaga Zbl-“bS} 25205b1 .be Zb7b8]

[a1 .as ag...ae

ai...ag
5-10! 15- 10!
32

[Ray.ags Z007¢] = 5670 601-Pslel Zbebrl _ 5670 glbr--bo Zbrle,
ay...ae) a ... ag
)= %

[R Zb1 .bg, cicacs 5010203[b1b2b3 Zb6...b8] .
ay...ag . .

5[clcg[b1...b4 Zbg...bg]c:,}
. . 6

+ 15 - 10! glelbrbs 7bebrbsleacs] 5-10! T slbrbe brbs] crezes
32 al ... Q 32 ai...as
[R Zbl.,.bg,clcg] — 63 - 7! 6clcg[b1...b4 Zb5...b9] i 63 - 7! 6[1)1 .bg Zb7b8bg]c102
Qaij...ae) 2 ar ... a 2 ai...ag
c1[by...b bg...bo]c:
+63 - 71 glerlbr-bs 7bo-bolea],
|:Ra1...a67 Z(bll) o, - 31?1 7_' 5[31122 Zb7'“b10]c + —31?1 v (5[6?1()5'2' Zb6mb10]
1 5.7 5 7!
by...b1o,c| __ b1...b b7...b1gle [b1...b5|c bg...b
| Rovags 20350 | = 2 gl 27 ole . 22 gl el et
|:Ra1~~~f167 ZAbl.“meICQ - 07 [Rtu...aaa Zblmbll} 5040 6[311 26 Zb7 bll] (A13>

Next, we have the commutators with level — 3 generator.

[Ray.as,as Pa) = 0, [Ray.ag,a Z"%] =0,  [Ray.ag,a0 2"%] =0,

(R a,ar Z7%] = — 6720682 Py — 6720 5bl~ @jpg],
Lbrce 21- 7 21 7 by . b
[Ral...ag,d; Zb1 b7, } - _ far...ar ag] — 6[(11 a7\dg|P8]’
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21 - 10! 21-10! .
(Rovvas, o 200000 ) = = S 80 0oy 2] — 2= 6 oy 200
+ 2 gl ot 7o) - 2L gt 7
21 10 5[b1 6172 bg][C1 ZCQCg] + 21 10 6[01 56263“171...1)6 Zb7b8}
8 a; . . . asg )
- 126 - 10! 126 - 10!
b1...bg, c1cC o (e1 geo)[by...b bgb. c b1...b bolc
|:Ra1...a8,d7 Zb1.bg, c1 2] - _ = 5d1 503)[.?. b7 7 o] _ = 5 1 5[& bz 0]c2)
126 - 10! [b1 ¢by...bg(c c2)b
- g o 2,
[Ra1...a87d7 Zbl---b970102} = 493 9' 5[51 52ib7|612§| Zb8b9] 493 9 6[61 562][121 .b7 stbg]
_ 493 9' 5[01 5[511 gi Zb9]c2} _ 49 . 9 5[51 52?178[;; ZCQ]bg}’
7 10! 7‘ 10!
by...b ,C 1een 1 b1 ... b 1
[Ral..,as,d, Zo ] = — ol 2 g otz
13- 10! 13 10!
by...bio,c| __ b1...b boby b boby
[Ra1...ag,d> Z(Q) 0 ] - 54 5d 6[111 aiZ ’ O] 54 5[(11 5a2 ag];Z ’ 0]
[Ray..as,a; 27" = 0. (A.14)

The commutators with level —4 generator Ry, a9, cicoc5s ar€ given by

[Ral...ag,qczcsa Pa] =

[Ral..,ag, C1C2C3) Zbl"'b5:|

by...b7, ¢
I:Ral...ag,(}lCQCE}? Z

]
[Ral...a97010203’ Zéjll) e d}
| =

b1...bg,d1d2
[Ral..,a9,01C2037 Z

[Ral...ag,0102037

b1...b
[Ra1...a9,0102037 Z ! 11]

=0,

Zbl...bs7 dledd] —

07 [Ral...ag,clcgcga Zble] = 07
|:Ra1...a970162037 Zbl--~bsi| - O?
[Ral .ag, c1¢2C3 ) Zbl'..b97d1d2] = 07
b1...b10,d
[Ral .ag, C1C2C3 9 Z(Ql) 10 :| - 0
071 9 did bi...b 18910 did by . b
5[01022 \a11 ;9|P3] 16 5[01022 C;][al “: as)
— 378 9'5d1d2 R &
(l1 01 6203](12 .ag 0‘9]
—189-9l6d2 6 - e 2 P
[a1az Yas...ag][c1ca © €3]
189-100 40 &
- T 5[01 6121 a; 119} ’ Pc‘ﬂ
%(52%)’3 st Py — glitatn gha-blidsds p
+ 38 6 Py = 35Ul g Pm)
— 0. (A.15)
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Taking commutators with level —4 generator R,,. 4,0, ¢, One finds

[Ral...a10701027 Pa] - O, [Ralu-alO,ClCQa Zb1b2j| — 07
[Ral...alo,qCQ? Zbl---bs] = 07 |:Ra1...a10701027 Zbl.“bs] 0

by...br,c] __ by...bg, d1d
[Ral-..awycwzv Zo ] - 07 [‘Ral---a10751027 Zorn 2}

[ 2] = S (st ’?.1 P + 26“;1 ).
s 245 = TG (St o, P+ 08280, 0 P
5[211' agbcllo oy P a10]>
R angenes 2050 = 20 (8000 68, Py 0t 5001
O 08 Pa )
[Ray..arg, cress 27 DR8] =0, [Ray gy, erens 270" = 0. (A.16)

Finally, commutators with level —4 generator R,, 4, » are

[Ral...au,m Pa] = O7 Ra1...a11,c; Zb1b2] = O,

. Zbl...bg} — O,

..a11,

[
|:Ra1...a11,ca Zblmb5:| =0, [Ral
[

[Ral,__alhc, Zb1...b7,cj| — 0’ Ral...all,c; Zbl---b91d1d2j| — 0’

[R Zbl...bg,dldz- —0 [R Zbl..,bg,dldgdg} —0
a1...a11,C» ) al...a11,C» Y
. 105 - 10!
by...b1o,d ba...b1old
|:Ra1...a11,07 Z(ll) 1 ] = - T <5g 5[1:111 1;1100 Pall - 6[b15[a21 ..1.05]110 Pau]) )
1 5-10!
by...b1o,d bo...b1o]d
R comer 20570 = = 25 (9000700, Py = 00672720 Py
[Rayary, e 2001 = 180 - 716001 P, (A.17)

B FE4; algebra in 4D

In this appendix we give the Ej; X, [; algebra decomposed into representations of
GL(4) x SL(8). The set of generators of this algebra was given in Section 3.4 up
to level 2. This algebra was previously constructed in [48, 54]. We will first give
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the commutation relations of level 0 generators with the rest of Fj; algebra. The

commutation relations of any generator with K¢, are

[K%, K )] = &, K"q — 0q K%, [K%, R'j] =0, [K%, R""] =0,
[Kab7 RCII[2] = 61? Rah[27 [Kalh Rchfz] = 5; Rahfza

[Kaln RCIlfg] == _53 Rbllfzy [K(Zb’ R011[2:| - _63 RbIIIQa

|:Kab7 chi| — 2 6(bc K‘G/'d)? |:Kab7 chi| = — 2 5((2 K‘b'd)?

[K%, R ;] = 25[1;“ Rlale2ll | (K%, Rajay's] = — 20y, Ripjas)’ 1,

[Kaba Ralaﬂlnjél] - 25[1?1 R|a‘a2]h..j4’ [Kabv Ra1a211...14] - 25 R|b\a2 y..14- (B1>
The commutators with SL (8) generator R!; are given by

L _51 RKJa

[RIJ, RK

[ Rh qy [11 R 2Isla) 5§ R

RI Ra1112 9 5[11 RI2] _ 51 Ra1112

[
[R'y, R, 7 Rin) +t1 5 R'n1,,
[

I
R ;, Ranr,| = Rajgm) + — 5 Raunt,,
I
_ 25[ 1 |1\12] 5§ RahIQ,
I (ab
[RJ,K>: [RJ,K)]:(),
aras K o K a aol I aras K
[ R12L_J 1a2 _5LR12J7
K K
|: Js a1a2 L| — J (zlagK L — 5 Ra1a2 J>
[R Ralazh 4 [11 Ra1a2\1|1213]4] 5] Ralagll...l4
277 ’
1

3
| =
| -
|
|

[R5, B,
}
|
|
|
| =

|:R J a1a211 Ay - 45 a1a2|J\1213[4] + 5 6§ Ra1a2[1...[47 (B2>
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The commutators with the other F; generators R'/* generators are given by

|:R11 Ay RJl Jy 11 dy[J1J2J3|L| RJ4]

[1 Ay Jy...Ja RaJ J
3J49

5‘[]11;2 Ra]314]
1J2

Iy...14 a
R , R 10,

5[§1§2 R ]3]4]
1J2

[
[
[R"" Ry,
[

11 Ay Jy.. J4R]J
aJ3Jas

46[11 Ra1a2‘[|]2[3[4 + 5] Rala2[1 I4

[Rll Ay Ra1a2[J

Il I4J1J2J3[R 51 Iq.. I4J1...J4R

arazJy...Jqs

Ih...1 I
|:R et Ralag J a1a2J1J2J3J+ 48

11 I4[J1J2J3‘L| Ra1a2J4]

[Rh Ay Ra1a2J1 Jy

]
] =
]
]
RIv1 RN
]
]
]
] =

[111213 1,
Ra1a2 ]J4]7

Iy...14
[R Ra1a2J1 .Ja [J1J2J3

[Rll...u’ 7 abi| ~0, [Rh“'l‘*, k(ab)] —0. (B.3)
The commutators of the positive level one Ej; generators with each other are given by

[RGIIIQ, Rb[3[4] - _192 }%(11)[1...[47

1
[RahIQ’ RbISLI] = 5 €N dyJr...Js Rab]l""]‘*’

The equivalent commutators for the negative level Ey; generators are

[Rah[za Rb[3]4] = —12 Rabh...Lp

1
I Isly I IgJy.J
[Ra"%, Ry = S et Ry s

[Raris By"72) = 461" Ry + 20737 Ka). (B.5)
The commutators between the level 1 and —1 Ey; generators are given by

Il I Ip..I J1.J.
[Ra VR 4} =—12 5{?R b [RZ[Q, Rb1314] = 51? En.ydy.dy BT

2
(R, Ryg,p,) = 2600 KO+ 467 610 K75, — 63 60T K<,

[R5, By"72) = — 20012 K+ 407 67 K7 1) + 03 6752 K., (B.6)
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The commutators with the level 2 and level —1 Fy; generators are given by

[R™;, Rery1,] = — 461 5[Ile]|Jug] + = 5[ 5 R,
[Rabl 1112 a5[11 RUIIE] 5[3 5§ Rb]]1[27

(5[1112 Rb]1314]

ably...1. I51 I i a pb
[R voda g Isls 1- 85[R]I7Iga

- (S(G Rb Ii12)

]
] =
[R*1 14 Ry, 5]
]
]

(K, Ren,

[Kab R 1112] - (5(a Rb)JlJQ'
Finally, the commutators of level — 2 with the level 1 En generators are
[ R011[2 11 R ]‘I|12 _|_ 5 (SI Rb]IIIQ,

1
8, O, Rjain) — 5[2 85 Ryn,,

|: ab J’ Rllfg

[R I..14 . R° Ty 50 5L[IflrjzzR 1314}

| =
|
|
(R, RT]
}
J=-

_ I .Ig sc

= 10, R g
[Kab7 R nLily| — 11127
[ Rch[g _ c 1112

The Cartan involution preserves the above commutators and is given by

Generator | I, (Generator)
K% - K?,
R, — R/,

Rh...[4 _ *Rll...hl
Rohl> — Ran 1
Rahlg RahIg
Ra1a2IJ - RalagJI

Ralagllr..h Ralagll...l4
[A(ab _ Aab

(B.7)

(B.8)
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Where *RII~--I4 — % 511..‘14(]1...(]4 RJl..AJ4'
We now give the action of F;; on the [; representation generators. The commutation

relations with level 0 generators of Fy; are given by
1
(K%, P.] =—02P, + 3 oy P,
1 1
[Kat” Zhb} — 5 5g Zhb, [Kab7 Z11[2] — 5 6[(]1 ZI1127

1 1
(K%, 2] = 65 2% + 500 2, [K%, 2] = 67 2 + 5 65 27,

(56, Z° ] = gy Ze0et 4 2 Lo zetnets [R'), P.] =0,

Il Z|I|12 _ 6] ZIIIQ

[ ZIlI2
|:R J> Z]1[2 _25[[1 ZlJ'IQ + 5 211[27
(R, 2°

|
]
] =
|
(R, 200 0]
|
|
J]
] =

’ [R]J, ZaK } _ 6?]( ZaIL _5i Z(ZKJ,

I1 Za|1|12 d4) 5§ Zah..,l47

) [Rll Ay ZJIJQ] = 2_14511.“14(]1““]4 ZJ3J47

6[51(1122 ZI3I4 |:R11...I4 Zaj| — O

[Rfl 14’ Pa

[Rll Ay ZJ1J2

|:R11 14 Za[ Il ZCL|I|IQI3I4]_'_ 5[ ZaIl 14

Y

|:R11 Ay ZaJ1 .J4 Jl J4[11[2I3‘K| ZaI4] (Bg)

The commutators with the Fy; level 1 generators are given by

[Ralllz’ Pb] _ 5g lelz’

[Rnp, B =6, Zn1,,
[Ralllg ZJ1J2] — _ZahIngJz
[Rahlza ZJIJQ] = 5[[}]1 ZaJ2 Io] + 5;;[? Za
[Rall[27 ZJ1J2] — 5[:?1 ZaI2]J2] - 5{]11{722 Za7

1
(RL1ys Zng) = 21 €Nl JoKy . Ky A (B.10)
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The commutators with the Fy; level 2 generators are given by

(K@), p,| = gl 2,

[Rael ) P] = — %5[51 zeM

1

[Ra1a21'1...f4 P} — _ Zgla e dy (B.11)
9 a 6 a : ’

The commutators with the E; level —1 generators are

[Ran1,, ] =0, [Rar, 1y, ZJlJﬂ =200 P,

[Raitas Ziss] = 0, (RO, Py =

(R, Z77] =0, (R, ZM} =262 P,

[Ranr, 2°] = =268 Zn 1, [Ranry, 2" ) = — 8650, Z1y)s,

[Ranz,, Z0774) = 1280 6732 2790 [R,1T2, Z2%) = — 288 2172, (B.12)
(R, 2% 5] = 86b o' Z7), [RT2, Z071] = 253 ghehls 7y
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