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Abstract

It has been proposed that the low energy e↵ective action of the theory of

strings and branes possesses a large symmetry described by the Kac-Moody alge-

bra E
11

. The non-linear realisation of this algebra and its vector representation

determines the fields and coordinates of the theory, as well as the equations that

describe their dynamics. In order to construct the generators of E
11

algebra it

is split into representations of its GL(d) ⇥ E
11�d subalgebra. Here d is an in-

teger that determines the dimension of the corresponding E
11

theory. The low

levels of the non-linear realisation contain the set of equations of the supergravity

theory in corresponding space-time dimension, while the higher levels introduce

an infinite number of fields that are connected to the supergravity ones via a

chain of duality relations, as well as standalone fields that have no counterparts

in standard supergravity theory.

In this thesis we derive the set of commutators of E
11

algebra and its vector

representation up to a certain level in five and ten-dimensional cases. We use

the non-linear realisation approach to construct the generalised vielbein and the

Cartan forms of the E
11

theory in four, five, ten and eleven dimensions.

We then build a set of E
11

invariant equations in five and eleven-dimensional

theories from the non-linear realisation of E
11

. The low level equations, when

appropriately truncated, are shown to perfectly reproduce the dynamics of the

standard supergravity theories in corresponding dimensions. The dynamics of

certain higher level fields are considered, including the dual graviton field and an

eleven-dimensional field that, when reduced to ten dimensions, gives rise to the

Romans mass term in type IIA theory.

Lastly, we describe the non-linear realisation of very extended A
1

algebra,

called A+++

1

, together with its commutators, Cartan forms and generalised viel-

bein.
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1 Overview

1.1 Maximal supergravities and their exceptional symmetries

It is believed that all superstring theories are di↵erent manifestations of a single theory,

called the M theory. M theory, however, has no dynamical description of its own and

relies on the existence of supergravity theories that provide the low energy limit descrip-

tion for it. In particular, the unique eleven-dimensional supergravity [1] and maximally

supersymmetric ten-dimensional supergravity theories, which are the IIA [2, 3, 4] and

IIB [5, 6, 7] supergravities, describe the low-energy limit of the M theory, type IIA and

type IIB string theories respectively. An important feature of supergravity theories is

the occurence of coset space symmetries that determine the way the scalars enter these

theories [8, 9]. In particular, four-dimensional maximal supergravity possesses an E
7

symmetry [10, 11]. Similarly, three and two-dimensional maximal supergravities possess

E
8

[12] and E
9

[13, 14] symmetries respectively. Scalars of type IIB supergravity belong

to the coset space of SL(2, )

SO(2)

[5]. These symmetries, usually referred to as exceptional

symmetries, and the corresponding coset spaces are given in the following table

Dimension Exceptional symmetry group Coset space

10D IIA O (1, 1) —

10D IIB SL (2) SL(2)
SO(2)

9D GL (2) GL(2)
SO(2)

8D SL (2)⇥ SL (3) SL(2)⇥SL(3)
SO(2)⇥SO(3)

7D SL (5) SL(5)
SO(5)

6D SO (5, 5) SO(5, 5)
SO(5)⇥SO(5)

5D E
6

E6
USp(8)

4D E
7

E7
SU(8)

3D E
8

E8
SO(16)

The coset construction was later extended [15] to include the gauge fields of the su-
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pergravity theories into a coset of an algebra, whose generators carried no space-time in-

dexes and involved both commutators and anticommutators. Using a di↵erent approach

it was then shown [16] that the entire bosonic sector of eleven and ten-dimensional IIA

supergravity could be formulated as a non-linear realisation of an infinite-dimensional

algebra. This led to a proposition [17] that that the low energy e↵ective action of the

theory of strings and branes possesses a large symmetry described by the Kac-Moody

algebra E
11

. This theory can be formulated as a non-linear realisation, in which all the

fields form a coset space of a certain subalgebra in the E
11

algebra. It was subsequently

proposed [18] that in order to incorporate the generalised space-time of this theory one

should also introduce generators transforming in the l
1

fundamental representation of

E
11

. Both the fields and the coordinates of the theory emerge from the non-linear real-

isation of the semidirect product of E
11

with its l
1

representation, denoted as E
11

n l
1

.

Theories in di↵erent dimensions emerge from the di↵erent possible decompositions

of E
11

into the subalgebras that correspond to deleting di↵erent nodes from the E
11

Dynkin diagram [19, 20, 21, 22, 23, 24]. The fields at low levels of these decompositions

are those of the maximal supergravity theories in corresponding dimension and the

lowest level coordinates are just the coordinates of the usual space-time. The higher

levels of the theory involve an infinite number of fields, some of which are connected

by infinite chains of duality relations, while others are standalone fields that could

potentially describe new physical phenomena. The dynamics of these fields are entirely

determined by the symmetries of the non-linear realisation.

This thesis is based on the series of works in which we investigate the properties of

the non-linear realisation of E
11

by building the generalised vielbein of the theory [25],

investigating the connection to exceptional field theories [26] and, finally, constructing

the dynamics of the E
11

theory in eleven and five dimensions [27, 28, 29] and showing

that at the low levels they are identical to ones of the corresponding supergravity

theories.

We will start by giving a brief introduction to Kac-Moody algebras, their repre-

sentations and the non-linear realisations. We will then discuss a particular non-linear
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realisation that leads to the d-dimensional pure gravity theory under certain conditions.

This specific example will illustrate how E
11

manages to incorporate the description of

gravity into its non-linear realisation. In the second chapter we will construct the

commutation relations of the E
11

algebra and its l
1

representation in five and ten di-

mensional case. In Chapter 3 we will build the non-linear realisation of E
11

n l
1

in

eleven, ten and five and dimensional cases. This leads to the main part of this work,

Chapter 4, in which we investigate the dynamics of the eleven and five-dimensional

non-linear realisation of E
11

n l
1

and show that it includes the description of the cor-

responding maximal supergravity fields at low levels. In the last chapter of the thesis

we will construct the non-linear realisation of the very extended A
1

algebra, denoted as

A+++

1

. At low levels this model contains a description of pure four-dimensional gravity,

supplemented with the dual graviton field [30].

1.2 Kac-Moody algebras

AKac-Moody algebra is a Lie algebra (usually infinite dimensional) that is characterised

by a generalised Cartan matrix, that is a r ⇥ r matrix A = {aij} with integer entries

that has the following properties

1. For diagonal elements aii = 2.

2. For non-diagonal elements aij  0.

3. aij = 0 () aji = 0.

4. A can be written as DS, where D is diagonal and S is symmetric.

A Kac-Moody algebra g is then defined by the following set of relations

[Ha, Hb] = 0, [Ea, Fb] = �ab Ha,

[Ha, Eb] = Aab Eb, [Ha, Fb] = �Aab Fb, (1.2.1)

as well as the Serre relation

ad (Ea)
1�Aab Eb = ad (Fa)

1�Aab Fb = 0. (1.2.2)
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The Cartan matrix can be used to construct the Dynkin diagram, which is uniquely

determined by the algebra. It also a↵ects the dimension of the Kac-Moody algebra in

the following way

1. If symmetrised Cartan matrix S is positive definite 8 v 6= 0 : va Sab vb > 0, the

algebra is a finite-dimensional semi-simple Lie algebra. In this case detA > 0.

2. If symmetrised Cartan matrix S is semi-definite 8 v 6= 0 : va Sab vb � 0 with

exactly one zero eigenvalue, the algebra is an a�ne Lie algebra. In this case

detA = 0.

3. In all other cases we are dealing with a general Kac-Moody algebra.

Very little is known about the general Kac-Moody algebras, even a list of the generators

is impossible to construct for algebras of this class. Therefore, in order to be able to

develop a workable approach to studying them we will only consider a certain subclass

of Kac-Moody algebras, called Lorentzian algebras. These are the Kac-Moody algebras

whose Dynkin diagram contains at least one node whose deletion yields a Dynkin dia-

gram with connected components of finite type except for at most one of a�ne type.

In other words, their Cartan matrix possesses at most one negative eigenvalue. The

Dynkin diagram with one node removed is referred to as reduced Dynkin diagram.

Lorentzian algebras can be studied by decomposing their generators into represen-

tations of their subalgebras that correspond to the reduced Dynkin diagram (see, for

instance, Chapter 16.3 of [32]). All of the generators then become parametrised with

an integer parameter m, called level. This parameter indicates how many times the

Chevalley generators that correspond to the deleted node enter the generator in ques-

tion. Level m = 0 generators form the adjoint representation of the reduced subalgebra.

Positive level generators correspond to the rising generator Er, while negative level ones

— to Fr, where index r labels the deleted node. The exact representation content of the

algebra on any given level is uniquely determined by the choice of the deleted node. It

can be found by either theoretical analysis, or using a specialised program like SimpLie

[31].
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1.2.1 The l
1

representation

The representations of the Kac-Moody algebras can be studied using the same technique

as the one that we used in the previous section to study the algebra itself (see, for

instance, Chapter 16.6 of [32]). In order to construct the fundamental representation

associated with node e of a Lorentzian algebra g we first construct an enlarged Dynkin

diagram D? by adding a new node, called ?, connected by a single line to the node e

in the original Dynkin diagram D. We can decompose the adjoint representation of

the enlarged algebra g? in terms of the original algebra g by deleting node ? and using

the techniques above. That is, we can introduce a new level parameter m? associated

with the added node. At level m? = 0 we find the adjoint representation of g. It

can be shown, that at level m? = 1 of the decomposition we find the fundamental

representation of g, associated with node e. In this thesis we will be mainly interested

in the fundamental representation, associated with the leftmost node of the Dynkin

diagram, called the l
1

representation. Unlike the adjoint representation, discussed in

the previous section, the l
1

representation is a highest weight representation. This

implies that the level parameter for it takes only non-negative values m � 0. The

importance of this representation comes from the fact that it contains the translation

generators associated with the algebra g. As we will see later in Chapter 2, at level

m = 0 of this representation we find the regular space-time translation generators Pa,

while the higher levels m > 0 are associated with the translations of the generalised

coordinates, which will be introduced below.

We will illustrate the procedure outlined above with the following diagram
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? 1

D

Figure 1: Enlarged Dynkin Diagram D? for the l
1

representation

1.3 Non-linear realisations

The theory of non-linear realisations has been historically used to describe e↵ective

theories with spontaneously broken symmetry [33, 34]. In this section we will briefly

discuss the structure and the symmetries of the non-linear realisation. We will then

illustrate how d-dimensional pure gravity theory is related to the non-linear realisation

of GL (d) with the local subgroup SO (d). This is an important example that lays

groundwork for implementing the non-linear realisation approach for the E
11

theory.

1.3.1 Non-linear realisation of Gn l
1

over H

An arbitrary group element of Gn l
1

can be parametrised in the following way

g = gL gE, gL = ex
A LA , gE =

Y

R↵2G

eA↵(x)R↵
. (1.3.1)

Here R↵ are the generators of G, while LA is the set of generators of the vector (l
1

)

representation of G. They obey the following general commutation relations

⇥

R↵, R�
⇤

= f↵�
� R

�, [R↵, LA] = � (D↵)A
B LB. (1.3.2)

Matrices (D↵)A
B = D (R↵)A

B form the l
1

representation of G. The coe�cients A↵ play

the role of the fields in the resulting theory, while xA are the generalised coordinates
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that these fields depend on. The group element from equation (1.3.1) forms a non-linear

realisation when subject to the following transformations

• Rigid (global) Gn l
1

transformations

g �! g
0

g, g
0

2 Gn l
1

, (1.3.3)

• Local H transformations

g �! g h, h 2 H. (1.3.4)

The equations of motion that describe the dynamics of the fields from equation (1.3.1)

are invariant under the rigid and local transformations defined above. The role of the

local transformations subgroup H (tangent group) is usually played by the Cartan invo-

lution subalgebra ofG, called Ic (G). It is defined as the subalgebra ofG that is invariant

under the Cartan involution, which acts on the Chevalley generators (H↵, E↵, F↵) of

G in the following way

Ic (H↵) = �H↵, Ic (E↵) = �F↵, Ic (F↵) = �E↵. (1.3.5)

A noteworthy example of this structure is the Cartan involution subalgebra of GL (d),

which happens to be the Lorentz algebra in the same dimension: Ic (GL (d)) = SO (d).

We will later use this fact to illustrate how the d-dimensional pure gravity is related to

the non-linear realisation of IGL (d).

In order to construct the dynamics of the non-linear realisation one has to consider

the Cartan form, which satisfies the Maurer–Cartan equation.

V = g� 1 dg, dV + V ^ V = 0. (1.3.6)

where g is the group element from equation (1.3.1). The Cartan form is invariant under

the rigid transformations and transforms as follows under the local ones

V �! h� 1 V h+ h� 1 dh. (1.3.7)

The Cartan form can be split into the adjoint and the l
1

parts.

V = VL + VE = dx⇧

�

E
⇧

A LA +G
⇧,↵ R

↵
�

= dx⇧ E
⇧

A (LA +GA,↵ R
↵) , (1.3.8)
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where comma in G
⇧,↵ separates the l

1

index ⇧ from the adjoint index ↵. G
⇧,↵ can also

be written as a di↵erential form: G↵ = dx⇧ G
⇧,↵. E

⇧

A is the generalised vielbein of

the theory, which is determined by the following relation

E
⇧

A LA = g�1

E L
⇧

gE. (1.3.9)

The generalised vielbein can be also expressed through the (D↵)A
B matrices from

equation (1.3.2).

E
⇧

A =

 

Y

↵

eA↵ D↵

! A

⇧ .

(1.3.10)

This object will be calculated for the E
11

theory in various dimensions in Chapter 3.

GA,↵ are the Cartan forms that generalise the field strengths of the fields of the theory.

The latter fact can be justified by observing that at the linearised level GA,↵ = @A A↵.

Knowing the generalised vielbein one can construct the most general expression for the

Cartan forms

� [VE, LA] = dx⇧ G
⇧,↵ (D↵)A

B LB = �
⇥

g�1

E dgE, LA

⇤

= � g�1

E d
�

gE LA g�1

E

�

gE = EA
⌃ dE

⌃

B LB, (1.3.11)

and so

G
⇧, A

B = G
⇧,↵ (D↵)A

B =
�

E�1 @
⇧

E
�

A
B. (1.3.12)

The adjoint part of the Cartan form can be further split into the coset and the subal-

gebra parts

VE = P +Q, P 2 G/H, Q 2 H. (1.3.13)

The benefit of this decomposition is that under the local transformations the coset part

transforms homogeneously, while the subalgebra part — as a connection.

P �! h� 1 P h,

Q �! h� 1 Qh+ h� 1 dh. (1.3.14)

The transformation law of the general vielbein under the transformations from equations

(1.3.3, 1.3.4) is determined by the following equation

E
⇧

A �! D (g
0

)
⇧

⇤ E
⇤

B D (h)B
A, (1.3.15)



14

where D matrices were defined in (1.3.2). From this equation one can observe that the

generalised vielbein transforms on its upper, “flat”, index under the local transforma-

tions, and on its lower, “world”, index under the rigid transformations as well as the

general coordinate transformations. This makes this object a natural generalisation

of the regular vierbein from general relativity. Using equations (1.3.12, 1.3.15) one

can derive the most general transformation law of the Cartan forms under the local

transformations.

GA,B
C �! D

�

h�1

�

A
D D

�

h�1

�

B
E GD,E

F D (h)F
C

+D
�

h�1

�

A
D D

�

h�1

�

B
E ED

⇧ @
⇧

D (h)E
C . (1.3.16)

Lastly, we will describe how the general coordinate and gauge transformations can be

generalised for the non-linear realisation of G. The generalised vielbein transforms as

follows [35]

EA
⌃ �gE⇧

A = (D↵)
⇧

⌅ (D↵)
⌅

⇥ @
⇥

⇤⌃ + ⇤⇥ EA
⌃ @

⇥

E
⇧

A. (1.3.17)

Here index ↵ is lowered with the Killing metric, defined as a scalar product on the

algebra g↵� =
�

R↵, R�
�

. It is straightforward to calculate using the invariance property,
�

R↵,
⇥

R�, R�
⇤�

=
�⇥

R↵, R�
⇤

, R�
�

.

These transformations take a rather simple form when reduced to the flat indexes

and linearised. One finds

�gA↵ = (D↵)A
B @B ⇤A. (1.3.18)

Parameter ⇤⇧ belongs to the l
1

representation of G. In the E
11

case this transformation

law simultaneously encodes both the general coordinate transformations of the regular

space-time vielbein eµa, as well as the gauge transformations of the vector fields. Hence

we will later refer to it as “gauge transformations”. Note that the construction of

the non-linear realisation does not imply that the dynamics of the system have to be

invariant under these transformations, however, we will later discover that the E
11

symmetry automatically imposes the gauge invariance.
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1.3.2 Gravity as a non-linear realisation of IGL (d)

We are now going to show how the pure gravity in d dimensions is related to the

non-linear realisation of IGL (d). This connection was first established in [36] for the

four-dimensional case and later generalised for d dimensions in [16]. In this section we

are going to follow the narrative of Chapter 13.2 from [32]. IGL (d) algebra consists of

translation generators Pa and GL (d) generators Ka
b. The commutators of this algebra

are

[Ka
b, K

c
d] = �cb K

a
d � �ad K

c
b, [Ka

b, Pc] = ��ac Pb. (1.3.19)

For the local subalgebra we are going to choose the Cartan involution subalgebra of

GL (d), which is generated by the following set of generators Jab = Ka
b � Kb

a. One

can easily recognise these as the generators of SO (d). Alternatively, one could choose

Jab = ⌘ac Kc
b � ⌘bc Kc

a, which would result in the tangent group SO (1, d� 1). The

first choice leads to the Euclidean gravity, while the second one — to the Minkowski

gravity. For simplicity, we are going to stick with the Euclidean case. The coset

generator orthogonal to Jab is Tab = Ka
b +Kb

a. The group element can be written as

g = ex
a Pa eha

b
(x)Ka

b . (1.3.20)

The Cartan form is given by

V = dxµ eµ
a
�

Pa + ⌦a, b
c Kb

c

�

= dxµ eµ
a

✓

Pa +
1

2
Sa, bc Tbc +

1

2
Qa, bc Jbc

◆

, (1.3.21)

where ⌦a, b
c = eaµ (e� 1@µ e)b

c is split, according to equation (1.3.13), into its coset and

subalgebra parts: Sa, bc = ⌦a, (bc), Qa, bc = ⌦a, [bc]. eµa is the vielbein of the theory. The

most general form of the action that is second order in derivatives and is invariant under

the tangent group transformations of equation (1.3.4) is

S =

Z

ddx det e
⇣

d
1

Da Sa, bb + d
2

Da Sb, ab + d
3

Sa, ac Sb, bc

+ d
4

Sa, bc Sb, ac + d
5

Sa, bc Sa, bc + d
6

Sa, ab Sb, cc + d
7

Sa, bb Sa, cc

⌘

, (1.3.22)

where the covariant derivative is defined as follows

Da Sb, cd = @a Sb, cd +Qa, be Se, cd +Qa, ce Sa, ed +Qa, de Sa, ce. (1.3.23)
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As was mentioned before, the subalgebra part of the Cartan form Qa, b
c plays the role

of the connection, due to the fact that it transforms inhomogeneously under the local

subalgebra transformations. This action is generally not di↵eomorphism invariant. Re-

quiring that it is invariant under the general coordinate transformations results in spe-

cific values of coe�cients di: (d1, d2, d3, d4, d5, d6, d7) =
�

� 1

2

, 1

2

, � 1

2

, 1

2

, � 1

4

, 1

2

, � 1

4

�

.

With these values of the coe�cients the action then takes the familiar form

S =

Z

ddx det eR, (1.3.24)

where R is the Ricci scalar built from the metric tensor gµ⌫ = eµa e⌫a. To summarise,

we’d like to point out that the non-linear realisation of IGL (d) does include the descrip-

tion of gravity, but the local symmetry of the non-linear realisation is not su�cient to

fix the lagrangian uniquely. One has to impose additional symmetries in order to derive

the well-known R
p
g action. Alternatively, one can consider a simultaneous non-linear

realisation of IGL (d) and the conformal group [36], which also fixes the lagrangian

uniquely.

As we will see later, the situation is drastically di↵erent in the E
11

case. The E
11

symmetry is infinitely richer than the finite GL (d) group. Consequently, the E
11

theory

is capable of predicting the correct set of supergravity equations without requiring any

additional symmetries to be imposed. This means that the gauge (and di↵emomorpism)

invariance of the E
11

theory is actually an emerging property that follows from the local

Ic (E11

) symmetry of the non-linear realisation.

1.4 E11 algebra and its non-linear realisation

The E
11

is a Lorentzian Kac-Moody algebra of rank 11 that belongs to E series. The

Dynkin diagram of this algebra is
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1 2 3 4 5 6 7 8 9 10

11

Figure 2: Dynkin diagram of E
11

As is the case with all Kac-Moody algebras the full listing of the generators and their

commutators is unknown. The generators can be classified with respect to the level

parameter that correspond to deletion of one of the nodes from the diagram. The

choice of the deleted node plays an important role in the E
11

model, as it determines

the dimension of the resulting theory. In the general case, deleting node d from the

diagram results in the GL (d)⇥ E
11�d subalgebra.

1 2 d -1 d

d+1

8

9

10

11

GL (d)

E
11�d

Figure 3: E
11

algebra in d dimensions
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More specifically, all the decompositions of the E
11

algebra that result in the general-

isations of the maximal supergravity theories in di↵erent dimensions are given in the

following table.

Dimension Deleted node Level 0 subalgebra Ic (Level 0 subalgebra)

11D 11 GL (11) SO (11)

10D IIA 10 O (10, 10) SO (10)⇥ SO (10)

10D IIB 9 GL (10)⇥ SL (2) SO (10)⇥ SO (2)

9D 9, 11 GL (9)⇥GL (2) SO (9)⇥ SO (2)

8D 8 GL (8)⇥ SL (2)⇥ SL (3) SO (8)⇥ SO (2)⇥ SO (3)

7D 7 GL (7)⇥ SL (5) SO (7)⇥ SO (5)

6D 6 GL (6)⇥ SO (5, 5) SO (6)⇥ SO (5)⇥ SO (5)

5D 5 GL (5)⇥ E
6

SO (5)⇥ USp (8)

4D 4 GL (4)⇥ E
7

SO (4)⇥ SU (8)

3D 3 GL (3)⇥ E
8

SO (3)⇥ SO (16)

Table 1: Decompositions of the E
11

algebra

The subalgebras colored in red describe the symmetry of the space-time coordinates. As

was shown in Section 1.3.2, the non-linear realisation of these GL (d) algebras produces

the equations for the gravitational sector of the supergravity theories. Consequently,

they are usually referred to as the “gravity line”. The blue colored algebras, on the

other hand, represent the internal symmetries of the theory. As one can see they

match perfectly the exceptional symmetry groups, given earlier in the introduction.

In Chapter 2 we will present the commutation relations of E
11

algebra for di↵erent

space-time dimensions. They were constructed by first finding the representations that

the generators belong to on each level, then assuming the most general commutation

relations between them and, finally, implementing the Jacobi identity in order to fix all

the free coe�cients.

The non-linear realisation of E
11

is conjectured to be the low energy limit of the
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theory of strings and branes. As such, it has to contain all maximal supergravity the-

ories and their exceptional symmetry groups. In Chapter 4 we will illustrate how the

low levels of the five and eleven-dimensional non-linear realisations of E
11

produce the

field content and the dynamics of maximal supergravity theories in the corresponding

dimensions. The higher levels of the decomposition contain an infinite number of fields,

some of which are related to the supergravity ones by infinite chains of duality rela-

tions, while others are standalone fields, some of which could describe new physical

phenomena.

Ic (E11

) is an infinite-dimensional algebra, whose generators have the following form:

E↵ � F↵. Therefore, each generator of this algebra is a combination of a level m

generator of E
11

with the corresponding level �m generator. We will refer to the

resulting combination as level m generator of Ic (E11

). This implies that the E
11

theory

possesses an infinite number of local invariances defined in equation (1.3.7) and classified

by level parameter m = 0, 1, ... . On level 0 these symmetry simply ensures the Lorentz

covariance of the equations of the theory. Level 1 transformations, on the other hand,

play the key role in the E
11

model, as they transform equations of the theory into each

other and, therefore, determine the structure of the E
11

multiplet that describes the

dynamics of the fields. Higher level transformations can be obtained as compositions

of level 1 transformations. Unlike the IGL (d) model from Section 1.3.2, E
11

theory

does not admit a description in terms of the lagrangian. In order to find the dynamics

of the fields one has to construct the equations of motion directly from the non-linear

realisation. These equations transform into each other under the local transformations

and, therefore, form a multiplet of Ic (E11

). The power of E
11

symmetry ensures that

selecting one of the equations as a starting point allows one to reconstruct the whole

multiplet by repeatedly applying the local transformations and demanding their closure.

We will also see that the resulting theory will exhibit the gauge invariance, despite

the fact gauge transformations are not encoded into the structure of the non-linear

realisation. This method will be implemented for five and eleven-dimensional cases in

Chapter 4.
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2 E11 algebra in 5D and 10D Type IIB theories

2.1 5D

The E
11

algebra in five dimensions can be obtained by deleting node 5 from the Dynkin

diagram [21] as shown in Figure 4.

1 2 3 4 5

6

7

8

9

10

11

GL (5)

E
6

Figure 4: E
11

algebra in 5 dimensions

The E
11

algebra is then decomposed into representations of its GL (5)⇥E
6

subalgebra.

To describe the E
6

part of the algebra we are going to further decompose it in terms

of its Cartan involution subalgebra USp (8). These notations were proposed in [37]

and are extremely useful for the implementation of Cartan involution transformations.

78 generators of E
6

are split into 36 adjoint representation of USp (8) and its 42
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representation. They correspond to the following tensors

R↵1↵2 , R↵1...↵4 . (2.1.1)

Here Greek indexes (↵, �, �, ...) range from 1 to 8. Generator R↵1↵2 is symmetric, while

R↵1...↵4 is antisymmetric and USp (8)-traceless: ⌦�1�2 R
�1�2↵1↵2 = 0, where ⌦↵1↵2 =

⌦
[↵1↵2] is the invariant USp (8) metric. It will later be used to raise and lower USp (8)

indexes: T↵ = ⌦↵� T �, T ↵ = ⌦↵� T�, ⌦↵� ⌦�� = �↵� . The generators of E11

up to level 3

are

Level Generators

0 Ka
b, R↵1↵2 , R↵1...↵4

1 Ra↵1↵2

� 1 Ra↵1↵2

2 Ra1a2 ↵1↵2

� 2 Ra1a2 ↵1↵2

3 Ra1a2, b, Ra1a2a3 ↵1↵2 , Ra1a2a3 ↵1...↵4

� 3 Ra1a2, b, Ra1a2a3 ↵1↵2 , Ra1a2a3 ↵1...↵4

where Latin indexes (a, b, c, ... = 1, ... , 5) label the GL (5) representations. Gen-

erators R↵1↵2 , Ra1a2a3 ↵1↵2 and Ra1a2a3 ↵1↵2 are symmetric in ↵
1

↵
2

, while others are

antisymmetric in Greek indexes. All the generators with antisymmetric Greek indexes

are USp (8)-traceless. Level 3 generator Ra1a2, b obeys R[a1a2, b] = R
[a1a2, b] = 0. The

generators of the l
1

representation are

Level Generators

0 Pa

1 Z↵1↵2

2 Za↵1↵2

3 Zab, Za1a2 ↵1↵2 , Za1a2 ↵1...↵4
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Here Za1a2 ↵1↵2 is symmetric in ↵
1

↵
2

. We now give the E
11

algebra when written in

terms of the above generators. The commutators of the E
11

generators with the GL(4)

generators Ka
b are

[Ka
b, K

c
d] = �cb K

a
d � �ad K

c
b, [Ka

b, R
↵1↵2 ] = 0, [Ka

b, R
↵1...↵4 ] = 0,

[Ka
b, R

c↵1↵2 ] = �cb R
a↵1↵2 , [Ka

b, Rc↵1↵2 ] = � �ac Rb↵1↵2 ,

[Ka
b, R

a1a2 ↵1↵2 ] = 2 �[a1b R|a|a2]↵1↵2 , [Ka
b, Ra1a2 ↵1↵2 ] = � 2 � a

[a1
R|b|a2]↵1↵2 ,

[Ka
b, R

a1a2a3 ↵1↵2 ] = 3 �[a1b R|a|a2a3] (↵1↵2), [Ka
b, Ra1a2a3 ↵1↵2 ] = � 3 � a

[a1
R|b|a2a3] (↵1↵2),

[Ka
b, R

a1a2a3 ↵1...↵4 ] = 3 �[a1b R|a|a2a3]↵1...↵4 , [Ka
b, Ra1a2a3 ↵1...↵4 ] = � 3 � a

[a1
R|b|a2a3]↵1...↵4 ,

[Ka
b, R

a1a2, c] = 2 �[a1b R|a|a2], c + �cb R
a1a2, a, [Ka

b, Ra1a2, c] = � 2 � a
[a1

R|b|a2], c � �ac Ra1a2, b.

(2.1.2)

The commutators of the E
11

generators with E
6

generators are determined by the

representation of USp (8) that this generator belongs to. With R↵1↵2 we have

⇥

R↵1↵2 , R�1�2
⇤

= 2⌦(↵1(�1 R↵2)�2),
⇥

R↵1↵2 , R�1...�4
⇤

= 4⌦(↵1[�1 R↵2)�2�3�4],
⇥

R↵1↵2 , Ra�1�2
⇤

= 2⌦(↵1[�1 Ra↵2)�2], [R↵1↵2 , Ra�1�2 ] = 2⌦(↵1� � ↵2)

[�1
Ra�2]�,

⇥

R↵1↵2 , Ra1a2 �1�2
⇤

= 2⌦(↵1[�1 Ra1a2 ↵2)�2], [R↵1↵2 , Ra1a2 �1�2 ] = 2⌦(↵1� � ↵2)

[�1
Ra1a2 �2]�,

⇥

R↵1↵2 , Ra1a2, b
⇤

= 0, [R↵1↵2 , Ra1a2, b] = 0,
⇥

R↵1↵2 , Ra1a2a3 �1�2
⇤

= 2⌦(↵1(�1 Ra1a2a3 ↵2)�2),

[R↵1↵2 , Ra1a2a3 �1�2 ] = 2⌦(↵1� � ↵2)

(�1
Ra1a2a3 �2)�,

⇥

R↵1↵2 , Ra1a2a3 �1...�4
⇤

= 4⌦(↵1[�1 Ra1a2a3 ↵2)�2�3�4],

[R↵1↵2 , Ra1a2a3 �1...�4 ] = 4⌦(↵1� � ↵2)

[�1
Ra1a2a3 �2�3�4]�.

(2.1.3)

For R↵1...↵4 we find

⇥

R↵1...↵4 , R�1...�4
⇤

=
1

2
⌦[↵1↵2 ⌦[�1�2 ⌦↵3�3 R↵4]�4] � 2

3
⌦[↵1[�1 ⌦↵2�2 ⌦↵3�3 R↵4]�4],

⇥

R↵1...↵4 , Ra�1�2
⇤

= ⌦[↵1↵2 ⌦↵3[�1 Ra↵4]�2] + ⌦[↵1[�1 ⌦↵2�2] Ra↵3↵4]

� 1

4
⌦�1�2 ⌦[↵1↵2 Ra↵3↵4] � 1

12
⌦[↵1↵2 ⌦↵3↵4] Ra�1�2 ,

[R↵1...↵4 , Ra�1�2 ] = �
⇣

⌦[↵1↵2 ⌦↵3[�1 �↵4]�2]
�1 �2

+ ⌦[↵1[�1 ⌦↵2�2] �↵3↵4]

�1�2
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� 1

12
⌦[↵1↵2 ⌦↵3↵4] ��1�2�1�2

+
1

4
⌦�1�2 ⌦

[↵1↵2 ⌦↵3[�1 ⌦↵4]�2]
⌘

Ra �1�2 ,

⇥

R↵1...↵4 , Ra1a2 �1�2
⇤

= �
⇣

⌦[↵1↵2 ⌦↵3[�1 Ra1a2 ↵4]�2] + ⌦[↵1[�1 ⌦↵2�2] Ra1a2 ↵3↵4]

� 1

4
⌦�1�2 ⌦[↵1↵2 Ra1a2 ↵3↵4] � 1

12
⌦[↵1↵2 ⌦↵3↵4] Ra1a2 �1�2

⌘

,

[R↵1...↵4 , Ra1a2 �1�2 ] =
⇣

⌦[↵1↵2 ⌦↵3[�1 �↵4]�2]
�1 �2

+ ⌦[↵1[�1 ⌦↵2�2] �↵3↵4]

�1�2

� 1

12
⌦[↵1↵2 ⌦↵3↵4] ��1�2�1�2

+
1

4
⌦�1�2 ⌦

[↵1↵2 ⌦↵3[�1 ⌦↵4]�2]
⌘

Ra1a2 �1�2 ,

⇥

R↵1...↵4 , Ra1a2a3 �1...�4
⇤

=
1

2
⌦[↵1↵2 ⌦[�1�2 ⌦↵3�3 Ra1a2a3 ↵4]�4]

� 2

3
⌦[↵1[�1 ⌦↵2�2 ⌦↵3�3 Ra1a2a3 ↵4]�4],

[R↵1...↵4 , Ra1a2a3 �1...�4 ] =
1

2
�[↵1

[�1
⌦↵2↵3 ⌦↵4]� ⌦�2�3 Ra1a2a3 �4]� +

2

3
�[↵1↵2↵3

[�1�2�3
⌦↵4]� Ra1a2a3 �4]�,

⇥

R↵1...↵4 , Ra1a2, b
⇤

= 0,

[R↵1...↵4 , Ra1a2, b] = 0. (2.1.4)

Note that level 2 and 3 generators Ra↵1↵2 and Ra1a2 ↵1↵2 belong to the same USp (8)

representation 27, but di↵erent E
6

representations 27 and 27. Consequently, they

transform identically under R↵1↵2 , but di↵erently under R↵1...↵4 . l
1

generators Z↵1↵2

and Za↵1↵2 have the same property. The commutation relations of the positive level

E
11

generators are given by

⇥

Ra↵1↵2 , Rb�1�2
⇤

= 4⌦[↵1[�1 Rab↵2]�2] � 1

2
⌦�1�2 Rab↵1↵2 � 1

2
⌦↵1↵2 Rab�1�2 ,

⇥

Ra↵1↵2 , Rb1b2 �1�2
⇤

= 4⌦[↵1[�1 Rab1b2 ↵2]�2] +Rab1b2 ↵1↵2�1�2

+ 2

✓

⌦↵1[�1 ⌦↵2�2] � 1

8
⌦↵1↵2 ⌦�1�2

◆

Rb1b2, a, (2.1.5)

The commutators of negative-level E
11

generators are

[Ra↵1↵2 , Rb�1�2 ] = 4⌦
[↵1[�1 Rab↵2]�2] �

1

2
⌦�1�2 Rab↵1↵2 �

1

2
⌦↵1↵2 Rab�1�2 ,

[Ra↵1↵2 , Rb1b2 �1�2 ] = 4⌦
[↵1[�1 Rab1b2 ↵2]�2] +Rab1b2 ↵1↵2�1�2

+ 2

✓

⌦↵1[�1 ⌦↵2�2] �
1

8
⌦↵1↵2 ⌦�1�2

◆

Rb1b2, a. (2.1.6)
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The commutators between the positive and negative level generators of E
11

up to level

4 with level ±1 generator are given by

[Ra↵1↵2 , Rb�1�2 ] = 4 �ab �
[↵1

[�1
⌦�2]� R

↵2]� + 12 �ab ⌦�1�1 ⌦�2�2 R
↵1↵2�1�2

+ 2

✓

�↵1↵2
�1�2

+
1

8
⌦↵1↵2 ⌦�1�2

◆ ✓

Ka
b �

1

3
�ab K

c
c

◆

,

⇥

Ra↵1↵2 , R
b1b2 �1�2

⇤

= � 8 �[�1

[↵1
⌦↵2]� �

[b1
a Rb2]�2]� � ⌦�1�2 ⌦↵1�1 ⌦↵2�2 �

[b1
a Rb2] �1�2

+ ⌦↵1↵2 �
[b1
a Rb2]�1�2 ,

[Ra↵1↵2 , Rb1b2 �1�2 ] = � 8 �[↵1

[�1
⌦↵2]� � a

[b1
Rb2]�2]� � ⌦�1�2 ⌦

↵1�1 ⌦↵2�2 � a
[b1

Rb2] �1�2

+ ⌦↵1↵2 � a
[b1

Rb2]�1�2 ,
⇥

Ra↵1↵2 , R
b1b2b3 �1�2

⇤

= 6⌦
[↵1� �

(�1

↵2]
�[b1a Rb2b3]�2)�,

[Ra↵1↵2 , Rb1b2b3 �1�2 ] = 6⌦[↵1� � ↵2]

(�1
� a
[b1

Rb2b3]�2)�,
⇥

Ra↵1↵2 , R
b1b2b3 �1...�4

⇤

= 36
⇣

�[�1�2
↵1↵2

�[b1a Rb2b3]�3�4] + ⌦[�1�2 ⌦
[↵1� �

�3

↵2]
�[b1a Rb2b3]�4]�

+
1

4
⌦↵1↵2 ⌦

[�1�2 �[b1a Rb2b3]�3�4]

� 1

12
⌦[�1�2 ⌦�3�4] ⌦↵1�1 ⌦↵2�2 �

[b1
a Rb2b3] �1�2

⌘

,

[Ra↵1↵2 , Rb1b2b3 �1...�4 ] = 36
⇣

� ↵1↵2
[�1�2

� a
[b1

Rb2b3]�3�4] + ⌦
[�1�2 ⌦

[↵1� �↵2]

�3
� a
[b1

Rb2b3]�4]�

+
1

4
⌦↵1↵2 ⌦

[�1�2 �
a
[b1

Rb2b3]�3�4]

� 1

12
⌦

[�1�2 ⌦�3�4] ⌦
↵1�1 ⌦↵2�2 � a

[b1
Rb2b3] �1�2

⌘

,

⇥

Ra↵1↵2 , R
b1b2, b

⇤

= ⌦↵1�1 ⌦↵2�2

�

�ba R
b1b2 �1�2 � �[ba R

b1b2]�1�2
�

,

[Ra↵1↵2 , Rb1b2, b] = ⌦↵1�1 ⌦↵2�2
�

�ab Rb1b2 �1�2 � � a
[b Rb1b2]�1�2

�

, (2.1.7)

The Cartan involution acts on the generators of E
11

as follows
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Generator Ic
�

Generator
�

Generator Ic
�

Generator
�

Ka
b �Kb

a Ra1a2 ↵1↵2 �⌦↵1�1 ⌦↵2�2 Ra1a2 �1�2

R↵1↵2 R↵1↵2 Ra1a2, b Ra1a2, b

R↵1...↵4 �R↵1...↵4 Ra1a2a3 ↵1↵2 �⌦↵1�1 ⌦↵2�2 Ra1a2a3 �1�2

Ra↵1↵2 �⌦↵1�1 ⌦↵2�2 Ra�1�2 Ra1a2a3 ↵1...↵4 ⌦↵1�1 ⌦↵2�2 ⌦↵3�3 ⌦↵4�4 Ra1a2a3 �1...�4

We now give the commutators between the generators of E
11

and those of the l
1

repre-

sentation up to level 2. The commutation relations between the later and the generators

of GL (5) are given by

[Ka
b, Pc] = � �ac Pb +

1

2

�ab Pc, [Ka
b, Z↵1↵2 ] = 1

2

�ab Z
↵1↵2 ,

[Ka
b, Zc↵1↵2 ] = �cb Z

a↵1↵2 + 1

2

�ab Z
c↵1↵2 ,

(2.1.8)

while with the generators of E
6

we have

[R↵1↵2 , Pa] = 0,
⇥

R↵1↵2 , Z�1�2
⇤

= 2⌦(↵1[�1 Z↵2)�2],
⇥

R↵1↵2 , Za�1�2
⇤

= 2⌦(↵1[�1 Za↵2)�2], [R↵1...↵4 , Pa] = 0,
⇥

R↵1...↵4 , Z�1�2
⇤

= ⌦[↵1↵2 ⌦↵3[�1 Z↵4]�2] + ⌦[↵1[�1 ⌦↵2�2] Z↵3↵4]

� 1

4
⌦�1�2 ⌦[↵1↵2 Z↵3↵4] � 1

12
⌦[↵1↵2 ⌦↵3↵4] Z�1�2 ,

⇥

R↵1...↵4 , Za�1�2
⇤

= �
⇣

⌦[↵1↵2 ⌦↵3[�1 Za↵4]�2] + ⌦[↵1[�1 ⌦↵2�2] Za↵3↵4]

� 1

4
⌦�1�2 ⌦[↵1↵2 Za↵3↵4] � 1

12
⌦[↵1↵2 ⌦↵3↵4] Za�1�2

⌘

. (2.1.9)

Commutators with the level rising generators are

[Ra↵1↵2 , Pb] = �ab Z
↵1↵2 , [Ra1a2 ↵1↵2 , Pb] = � 2 �[a1b Za2]↵1↵2 ,

⇥

Ra↵1↵2 , Z�1�2
⇤

= 4⌦[↵1[�1 Za↵2]�2] � 1

2

⌦�1�2 Za↵1↵2 � 1

2

⌦↵1↵2 Za�1�2 .
(2.1.10)

Commutators with the negative level generators are

[Ra↵1↵2 , Pb] = 0,
⇥

Ra↵1↵2 , Z
�1�2
⇤

= 2
�

��1�2
↵1↵2

+ 1

8

⌦↵1↵2 ⌦
�1�2
�

Pa,
⇥

Ra↵1↵2 , Z
b�1�2

⇤

= 4 �ba

⇣

⌦
[↵1� �

[�1

↵2]
Z�2]� + 1

8

⌦↵1↵2 Z
�1�2 � 1

8

⌦�1�2 ⌦↵1�1 ⌦↵2�2 Z
�1�2

⌘

,
⇥

Ra1a2 ↵1↵2 , Z
b�1�2

⇤

= 4
�

��1�2
↵1↵2

+ 1

8

⌦↵1↵2 ⌦
�1�2
�

� b
[a1

Pa2].

(2.1.11)
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2.2 10D

In order to construct the ten-dimensional theory from the E
11

algebra one has to delete

a node from the Dynkin diagram in such a way that after the deletion the diagram still

contains a sequence of nine connected nodes, which will lead to the ten-dimensional

gravity. There are two di↵erent ways to do this [19, 38]: deleting node 10 and deleting

node 9. Deleting node 10 results in Type IIA theory.

1 2 3 4 5 6 7 8 9 10

11

O (10, 10)

Figure 5: Type IIA E
11

algebra in 10 dimensions

Deleting node 9, on the other hand, yields Type IIB theory with an internal symmetry

group SL (2, ).

1 2 3 4 5 6 7 8 11

9

10

GL (10)

SL (2, )

Figure 6: Type IIB E
11

algebra in 10 dimensions
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Type IIB algebra was first partially constructed in [19] and later expanded in [38]. Here

we give the complete set of commutators for this algebra up to level 4. The commutators

of E
11

n l
1

, decomposed into representations of GL (10)⇥ SL (2, ) subalgebra are

Level Generators

0 Ka
b, R↵�

1 Ra1a2
↵

� 1 R↵
a1a2

2 Ra1...a4

� 2 Ra1...a4

3 Ra1...a6
↵

� 3 R↵
a1...a6

4 Ra1...a8
↵� , Ra1...a7, c

� 4 R↵�
a1...a8

, Ra1...a7, c

Here Latin indexes (a, b, c, ... = 1, ... , 10) label the GL (10) representations, while the

Greek indexes (↵, �, �, ... = 1, 2) correspond to the spinor representation of SL (2).

All the generators with two Greek indexes are symmetric in them, e.g. R↵� = R�↵.

Level 4 generator obeys R[a1...a7, c] = R
[a1...a7, c] = 0. The generators of l

1

representation

are

Level Generators

0 Pa

1 Za
↵

2 Za1a2a3

3 Za1...a5
↵

4 Za1...a7 , Za1...a6, b, Za1...a7
↵�

where Z [a1...a6, c] = Z
[a1...a6, c] = 0 and Za1...a7

↵� is symmetric in ↵ and �. The commutators
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with the SL(10) generators Ka
b are

[Ka
b, Kc

d] = �cb K
a
d � �ad K

c
b, [Ka

b, R↵�] = 0,

[Ka
b, Ra1a2

↵ ] = 2 �[a1b R|a|a2]
↵ ,

⇥

Ka
b, R↵

a1a2

⇤

= � 2 � a
[a1

R↵
|b|a2],

[Ka
b, Ra1...a4 ] = 4 �[a1b R|a|a2a3a4], [Ka

b, Ra1...a4 ] = � 4 � a
[a1

R|b|a2a3a4],

[Ka
b, Ra1...a6

↵ ] = 6 �[a1b R|a|a2...a6]
↵ ,

⇥

Ka
b, R↵

a1...a6

⇤

= � 6 � a
[a1

R↵
|b|a2...a6],

⇥

Ka
b, R

a1...a8
↵�

⇤

= 8 �[a1b R|a|a2...a8]
↵� ,

⇥

Ka
b, R↵�

a1...a8

⇤

= � 8 � a
[a1

R↵�
|b|a2...a8],

[Ka
b, Ra1...a7, c] = 7 �[a1b R|a|a2...a7], c + �cb R

a1...a7, a,

[Ka
b, Ra1...a7, c] = � 7 � a

[a1
R|b|a2...a7], c � �ac Ra1...a7, b.

(2.2.1)

The commutators of the E
11

generators with the SL (2) generators R↵� are

[R↵�, R��] = � �
(↵ "�)� R�� + � �

(↵ "�)� R��,
⇥

R↵�, Ra1a2
�

⇤

= � �
(↵ "�)� R

a1a2
� ,

⇥

R↵�, R�
a1a2

⇤

= � � �
(↵ "�)� R

�
a1a2

,

[R↵�, Ra1...a4 ] = 0, [R↵�, Ra1...a4 ] = 0,
⇥

R↵�, Ra1...a6
�

⇤

= � �
(↵ "�)� R

a1...a6
� ,

⇥

R↵�, R�
a1...a6

⇤

= � � �
(↵ "�)� R

�
a1...a6

,
⇥

R↵�, Ra1...a7, b
⇤

= 0, [R↵�, Ra1...a7, b] = 0,
⇥

R↵�, R
a1...a8
��

⇤

= � �
(↵ "�)� R

a1...a8
�� + � �

(↵ "�)� R
a1...a8
�� ,

⇥

R↵�, R��
a1...a8

⇤

= � � �
(↵ "�)� R

��
a1...a8

� � �
(↵ "�)� R

��
a1...a8

.

(2.2.2)

The commutators of the positive level E
11

generators with each other are given by

⇥

Ra1a2
↵ , Ra3a4

�

⇤

= � "↵� Ra1...a4 , [Ra1a2
↵ , Ra3...a6 ] = 4Ra1...a6

↵ ,
⇥

Ra1a2
↵ , Ra3...a8

�

⇤

= �Ra1...a8
↵� � "↵� Ra1a2[a3...a7, a8], [Ra1...a4 , Ra5...a8 ] = 8

3

Ra1...a4[a5a6a7, a8].

(2.2.3)

For negative level generators we have

⇥

R↵
a1a2

, R�
a3a4

⇤

= � "↵� Ra1...a4 ,
⇥

R↵
a1a2

, Ra3...a6

⇤

= 4R↵
a1...a6

,
⇥

R↵
a1a2

, R�
a3...a8

⇤

= �R↵�
a1...a8

� "↵� Ra1a2[a3...a7, a8], [Ra1...a4 , Ra5...a8 ] =
8

3

Ra1...a4[a5a6a7, a8].

(2.2.4)

To find the commutators between positive and negative level generators we need to
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utilize the Jacobi identities. These commutators up to level 3 are given by

h

Ra1a2
↵ , R�

b1b2

i

= 4 ��↵ �
[a1
[b1

Ka2]
b2] � 1

2

��↵ �
a1a2
b1b2

Kd
d � 2 �a1a2b1b2

"�� R↵�,

[Ra1...a4 , Rb1...b4 ] = 12 �a1...a4b1...b4
Kd

d � 96 �[a1a2a3
[b1b2b3

Ka4]
b4],

h

Ra1...a6
↵ , R�

b1...b6

i

= 270 ��↵ �
[a1...a5
[b1...b5

Ka6]
b6] � 135

4

��↵ �
a1...a6
b1...b6

Kd
d � 45 �a1...a6b1...b6

"�� R↵�,

[Ra1a2
↵ , Rb1...b4 ] = � 12 "↵� �

a1a2
[b1b2

R�
b3b4]

,
⇥

R↵
a1a2

, Rb1...b4
⇤

= � 12 "↵� �[b1b2a1a2 R
b3b4]
� ,

h

Ra1a2
↵ , R�

b1...b6

i

= 15

2

��↵ �
a1a2
[b1b2

Rb3...b6],
⇥

R↵
a1a2

, Rb1...b6
�

⇤

= 15

2

�↵� �
[b1b2
a1a2 R

b3...b6],
⇥

Ra1...a4 , R↵
b1...b6

⇤

= 90 � a1...a4
[b1...b4

R↵
b5b6]

,
⇥

Ra1...a4 , R
b1...b6
↵

⇤

= 90 �[b1...b4a1...a4 R
b5b6]
↵ .

(2.2.5)

The commutators of level ⌥4 generators with level ±1 ones are

h

Ra1a2
↵ , R��

b1...b8

i

= � 56 �(�↵ � a1a2
[b1b2

R�)
b3...b8]

,
⇥

R↵
a1a2

, Rb1...b8
��

⇤

= � 56 � ↵
(� �

[b1b2
a1a2 R

b3...b8]
�) ,

[Ra1a2
↵ , Rb1...b7, b] = � 252 "↵� �

a1a2
[b1b2

R�
b3...b7]b

+ 252 "↵� �
a1a2
[b1b2

R�
b3...b7b]

,
⇥

R↵
a1a2

, Rb1...b7, b
⇤

= � 252 "↵� �[b1b2a1a2 R
b3...b7]b
� + 252 "↵� �[b1b2a1a2 R

b3...b7b]
� ,

(2.2.6)

with levels ±2:
h

Ra1...a4 , R↵�
b1...b8

i

= 0,
⇥

Ra1...a4 , R
b1...b8
↵�

⇤

= 0,

[Ra1...a4 , Rb1...b7, b] = � 1260 � a1...a4
[b1...b4

Rb5b6b7]b + 1260 � a1...a4
[b1...b4

Rb5b6b7b],
⇥

Ra1...a4 , R
b1...b7, b

⇤

= � 1260 �[b1...b4a1...a4 R
b5b6b7]b + 1260 �[b1...b4a1...a4 R

b5b6b7b],

(2.2.7)

with levels ±3:
h

Ra1...a6
↵ , R��

b1...b8

i

= 1260 �(�↵ � a1...a6
[b1...b6

R�)
b7b8]

,
⇥

R↵
a1...a6

, Rb1...b8
��

⇤

= 1260 � ↵
(� �

[b1...b6
a1...a6 R

b7b8]
�) ,

[Ra1...a6
↵ , Rb1...b7, b] = 1890 "↵� �

a1...a6
[b1...b6

R�
b7]b

� 1890 "↵� �
a1...a6
[b1...b6

R�
b7b]

,
⇥

R↵
a1...a6

, Rb1...b7, b
⇤

= 1890 "↵� �[b1...b6a1...a6 R
b7]b
� � 1890 "↵� �[b1...b6a1...a6 R

b7b]
� ,

(2.2.8)

and, finally, the commutators of level ±4 generators between themselves are

h

Ra1...a8
↵1↵2

, R�1�2
b1...b8

i

= � 20160 �(�1�2)
↵1↵2

�[a1...a7
[b1...b7

Ka8]
b8] + 2520 �(�1�2)

↵1↵2
�a1...a8b1...b8

Kd
d

+ 5040 �a1...a8b1...b8
�(�1

(↵1
"�2)� R↵2)�,
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[Ra1...a7, a, Rb1...b7, b] = � 11340 �a1...a7b1...b7
Ka

b + 11340 �a1...a7
[b1...b7

Ka
b] + 11340 �[a1...a7b1...b7

Ka]
b

+ 11340 �a1...a7b1...b7
�ab K

d
d � 11340 �a1...a7ab1...b7b

Kd
d

� 79380 �ab �
[a1...a6
[b1...b6

Ka7]
b7] + 79380 �a[a1...a6

[bb1...b6
Ka7]

b7]

+ 79380 �[aa1...a6b[b1...b6
Ka7]

b7] � 90720 �[a1...a7
[b1...b7

Ka]
b],

⇥

Ra1...a8
↵� , Rb1...b7, b

⇤

= 0,
⇥

R↵�
a1...a8

, Rb1...b7, b
⇤

= 0. (2.2.9)

The action of the Cartan involution on the adjoint generators is given by

Generator Ic
�

Generator
�

Ka
b �Kb

a

R↵� "↵� "�� R��

Ra1a2
↵ �R↵

a1a2

Ra1...a4 Ra1...a4

Ra1...a6
↵ �R↵

a1...a6

Ra1...a8
↵1↵2

R↵1↵2
a1...a8

Ra1...a7, b Ra1...a7, b

We now consider the commutators of the E
11

generators with those of the l
1

represen-

tation. The commutators of the l
1

representation generators with the level 0 SL(11)

generators Ka
b are given by

[Ka
b, Pc] = � �ac Pb +

1

2

�ab Pc, [Ka
b, Zc

↵] = �cb Z
a
↵ + 1

2

�ab Z
c
↵,

[Ka
b, Za1a2a3 ] = 3 �[a1b Z |a|a2a3] + 1

2

�ab Z
a1a2a3 ,

[Ka
b, Za1...a5

↵ ] = 5 �[a1b Z |a|a2...a5]
↵ + 1

2

�ab Z
a1...a5
↵ ,

⇥

Ka
b, Z

a1...a7
↵�

⇤

= 7 �[a1b Z |a|a2...a7]
↵� + 1

2

�ab Z
a1...a7
↵� ,

[Ka
b, Za1...a7 ] = 7 �[a1b Z |a|a2...a7] + 1

2

�ab Z
a1...a7 ,

[Ka
b, Za1...a6, c] = 6 �[a1b Z |a|a2...a6], c + �cb Z

a1...a6, a + 1

2

�ab Z
a1...a6, c.

(2.2.10)
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The commutators with the SL (2) generators R↵� are

[R↵�, Pa] = 0,
⇥

R↵�, Za
�

⇤

= � �
(↵ "�)� Z

a
� ,

[R↵�, Za1a2a3 ] = 0,
⇥

R↵�, Za1...a5
�

⇤

= � �
(↵ "�)� Z

a1...a5
� ,

[R↵�, Za1...a7 ] = 0,
⇥

R↵�, Za1...a6, b
⇤

= 0,
⇥

R↵�, Z
a1...a7
��

⇤

= � �
(↵ "�)� Z

a1...a7
�� + � �

(↵ "�)� Z
a1...a7
�� .

(2.2.11)

The commutators with level one E
11

generators can be taken as

[Ra1a2
↵ , Pa] = �[a1a Za2]

↵ ,
⇥

Ra1a2
↵ , Za3

�

⇤

= � "↵� Za1a2a3 , [Ra1a2
↵ , Za3a4a5 ] = Za1...a5

↵ ,
⇥

Ra1a2
↵ , Za3...a7

�

⇤

= Za1...a7
↵� � "↵� Za1...a7 � "↵� Za1a2[a3...a6, a7].

(2.2.12)

The commutators with other positive-level generators can be found using the Jacobi

identities to be given by

[Ra1...a4 , Pa] = 2 �[a1a Za2a3a4], [Ra1...a4 , Za5
↵ ] = �Za1...a5

↵ ,

[Ra1...a6
↵ , Pa] =

3

4

�[a1a Za2...a6]
↵ ,

⇥

Ra1...a8
↵� , Pa

⇤

= � �[a1a Za2...a8]
↵� ,

⇥

Ra1...a7, b, Pa

⇤

= � 3 �baZ
a1...a7 + 3 �[ba Za1...a7] + 21

20

�[a1a Za2...a7], b,

[Ra1...a4 , Za5a6a7 ] = 2Za1...a7 + 3

5

Za1...a4[a5a6, a7],
⇥

Ra1...a6
↵ , Za7

�

⇤

= �1

4

Za1...a7
↵� + 3

4

"↵�Za1...a7 + 1

20

"↵�Za1...a6, a7 .

(2.2.13)

The commutators with level �1 E
11

generators are given by

⇥

R↵
a1a2

, Pa

⇤

= 0,
⇥

R↵
a1a2

, Zb
�

⇤

= � 4 �↵� �
b
[a1

Pa2],
⇥

R↵
a1a2

, Zb1b2b3
⇤

= � 6 "↵� �[b1b2a1a2 Z
b3]
� ,

⇥

R↵
a1a2

, Zb1...b5
�

⇤

= 20 �↵� �
[b1b2
a1a2 Z

b3b4b5],
⇥

R↵
a1a2

, Zb1...b7
↵1↵2

⇤

= 42 � ↵
(↵1

�[b1b2a1a2 Z
b3...b7]
↵2)

,
⇥

R↵
a1a2

, Zb1...b7
⇤

= � 3 "↵� �[b1b2a1a2 Z
b3...b7]
� ,

⇥

R↵
a1a2

, Zb1...b6, b
⇤

= � 150 "↵� �[b1b2a1a2 Z
b3...b6]b
� + 150 "↵� �[b1b2a1a2 Z

b3...b6b]
� ,

(2.2.14)

while the commutators with level �2 generators are

[Ra1...a4 , Pa] = 0,
⇥

Ra1...a4 , Z
b
�

⇤

= 0,
⇥

Ra1...a4 , Z
b1b2b3

⇤

= 48 �[b1b2b3a1a2a3 Pb4],
⇥

Ra1...a4 , Z
b1...b5
↵

⇤

= 120 �[b1...b4a1...a4 Z
b5]
↵ ,

⇥

Ra1...a4 , Z
b1...b7
↵1↵2

⇤

= 0,
⇥

Ra1...a4 , Z
b1...b7

⇤

= � 120 �[b1...b4a1...a4 Z
b5b6b7],

⇥

Ra1...a4 , Z
b1...b6, b

⇤

= � 1800 �[b1...b4a1...a4 Z
b5b6]b + 1800 �[b1...b4a1...a4 Z

b5b6b],

(2.2.15)
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with level �3 generators

⇥

R↵
a1...a6

, Pa

⇤

= 0,
⇥

R↵
a1...a6

, Zb
�

⇤

= 0,
⇥

R↵
a1...a6

, Zb1b2b3
⇤

= 0,
⇥

R↵
a1...a6

, Zb1...b5
�

⇤

= � 360 �↵� �
b1...b5
[a1...a5

Pa6],
⇥

R↵
a1...a6

, Zb1...b7
↵1↵2

⇤

= � 1260 � ↵
(↵1

�[b1...b6a1...a6 Z
b7]
↵2)

,
⇥

R↵
a1...a6

, Zb1...b7
⇤

= 270 "↵� �[b1...b6a1...a6 Z
b7]
� ,

⇥

R↵
a1...a6

, Zb1...b6, b
⇤

= 900 "↵� �b1...b6a1...a6
Zb

� � 900 "↵� �[b1...b6a1...a6 Z
b]
� ,

(2.2.16)

and, finally, with level �4 generators

⇥

R↵1↵2
a1...a8

, Pa

⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb
�

⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb1b2b3
⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb1...b5
�

⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb1...b7
⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb1...b6, b
⇤

= 0,

[Ra1...a7, a, Pa] = 0,
⇥

Ra1...a7, a, Z
b
�

⇤

= 0,
⇥

Ra1...a7, a, Z
b1b2b3

⇤

= 0,
⇥

Ra1...a7, a, Z
b1...b5
�

⇤

= 0,
⇥

Ra1...a7, a, Z
b1...b7
↵1↵2

⇤

= 0,
⇥

R↵1↵2
a1...a8

, Zb1...b7
�1�2

⇤

= � 20160 �(↵1↵2)

�1�2
� b1...b7
[a1...a7

Pa8],
⇥

Ra1...a7, a, Z
b1...b7

⇤

= 4320 �b1..b7a1...a7
Pa � 4320 � b1..b7

[a1...a7
Pa],

⇥

Ra1...a7, a, Z
b1...b6, b

⇤

= � 75600 �ba �
b1...b6
[a1...a6

Pa7] + 75600 �bb1...b6a[a1...a6
Pa7].

(2.2.17)
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3 Non-linear realisation, generalized vielbein and

Ic (E11) transformations in di↵erent dimensions

3.1 11D

In this chapter we will construct the non-linear realisation of E
11

algebra in eleven, ten

type IIB, five and four dimensions. This includes the exact expressions for the Cartan

forms (1.3.8) and the generalised vielbein (1.3.9), as well as their transformations under

the local Ic (E11

) transformations (1.3.7). Later in Chapter 4 this will allow us to

combine them into the set of equations that is closed under said transformations and,

therefore, describes the dynamics of the non-linear realisation.

3.1.1 Cartan forms

The eleven-dimensional theory is obtained by deleting node 11 from the Dynkin diagram

[17, 18].

1 2 3 4 5 6 7 8 9 10

11

GL (11)

Figure 7: E
11

algebra in 11 dimensions

The E
11

algebra is then decomposed into its GL (11) subalgebra. The generators of

this algebra up to level 4 in this decomposition are given by
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Level Generators

0 Ka
b

1 Ra1a2a3

� 1 Ra1a2a3

2 Ra1...a6

� 2 Ra1...a6

3 Ra1...a8, b

� 3 Ra1...a8, b

4 Ra1...a9, b1b2b3 , Ra1...a10, b1b2 , Ra1...a11, b

� 4 Ra1...a9, b1b2b3 , Ra1...a10, b1b2 , Ra1...a11, b

All the blocks of indexes separated by commas are fully antisymmetric, with an excep-

tion of the level 4 generator Ra1...a10, b1b2 , which is symmetric in b
1

b
2

: Ra1...a10, [b1b2] =

Ra1...a10, [b1b2] = 0. All the generators with several blocks of indexes obey the following

GL (11) irreducibility constraints

R[a1...a8, b] = R[a1...a9, b1]b2b3 = R[a1...a10, b1]b2 = 0,

R
[a1...a8, b] = R

[a1...a9, b1]b2b3 = R
[a1...a10, b1]b2 = 0. (3.1.1)

The generators of the l
1

representation are given by the following table

Level Generators

0 Pa

1 Za1a2

2 Za1...a5

3 Za1...a8 , Za1...a7, b

4 Za1...a8, b1b2b3 , Za1...a9, b1b2 , Ẑa1...a9, b1b2 , Za1...a10, b
(1)

, Za1...a10, b
(2)

, Za1...a11

Generator Za1...a10, b1b2 is antisymmetric in b
1

b
2

, while Ẑa1...a10, b1b2 is symmetric in them:
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Za1...a10, (b1b2) = 0, Ẑa1...a10, [b1b2] = 0. The lower index on Za1...a10, b
(i) implies that it comes

with the multiplicity 2. All the generators obey the corresponding GL (11) irreducibility

constraints, similar to the ones given in equation (3.1.1).

The algebra of these generators was found up to level 3 in [17] and extended up to

level 4 in [39]. The reader can find the full set of commutators up to level 4 in Appendix

A. The construction of the non-linear realisation starts from the group element g 2

E
11

n l
1

which is subject to the transformations g ! g
0

gh where g
0

2 E
11

n l
1

is a rigid

transformation and h 2 Ic (E11

) is a local transformation. The group element g = gL gE

from equation (1.3.1) truncated by level 4 can be parametrised as follows

gE = eR
a1...a11, b Aa1...a11, b eR

a1...a10, b1b2 Aa1...a10, b1b2 eR
a1...a9, b1b2b3 Aa1...a9, b1b2b3

· eha1...a8, b
Ra1...a8, b eAa1...a6 Ra1...a6 eAa1a2a3 Ra1a2a3 eha

b Ka
b = eA↵ R↵

,

gL = ex
a Pa exa1a2 Za1a2 exa1...a5 Za1...a5 exa1...a8 Za1...a8 exa1...a7, b

Za1...a7, b

· exa1...a8, b1b2b3
Za1...a8, b1b2b3 exa1...a9, b1b2

Za1...a9, b1b2 ex̂a1...a9, b1b2
ˆZa1...a9, b1b2

· ex
(1)
a1...a10, b

Z
a1...a10, b
(1) ex

(2)
a1...a10, b

Z
a1...a10, b
(2) exa1...a11 Za1...a11 = ex

A LA . (3.1.2)

We used the local Ic (E11

) invariance to eliminate the negative level generators from the

group element gE. This is equivalent to fixing the gauge for the higher level Ic (E11

)

transformations. xA are the generalised coordinates of the theory. On level 0 we find the

regular space-time coordinates xa, while the higher levels contain the coordinates that

parametrise the extended space-time. Historically, the realisation that strings could

wrap around circles lead to the introduction of additional momenta associated with the

wrapping. This corresponds to an additional set of space-time coordinates, which make

the SO(D, D) T-duality symmetry of string theory manifest [40, 41, 42, 43, 44]. This

approach gave rise to theories like double field theory [45, 46, 47].

The adjoint part of the Cartan form VE defined in equation (1.3.8) is given by

VE = Ga
b Ka

b +Ga1a2a3 R
a1a2a3 +Ga1...a6 R

a1...a6 +Ga1...a8, b R
a1...a8, b

+Ga1...a9, b1b2b3 R
a1...a9, b1b2b3 +Ga1...a10, b1b2 R

a1...a10, b1b2 +Ga1...a11, b R
a1...a11, b,

VL = dx⇧ E
⇧

A LA, (3.1.3)
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where E
⇧

A is the generalised vielbein defined in equation (1.3.9). It will be calculated

up to level 3 in the next section. The Cartan forms expressed through fields are given

by

Ga
b =

�

e�1 de
�

a
b,

Ga1a2a3 = e µ1µ2µ3
a1a2a3

dAµ1µ2µ3 ,

Ga1...a6 = e µ1...µ6
a1...a6

�

dAµ1...µ6 � A
[µ1µ2µ3 dAµ4µ5µ6]

�

,

Ga1...a8, b = e µ1...µ8, ⌫
a1...a8, b

�

dhµ1...µ8, ⌫ � A
[µ1µ2µ3 dAµ4µ5µ6 Aµ7µ8]⌫ + 3A

[µ1...µ6 dAµ7µ8]⌫

+ A
[µ1µ2µ3 dAµ4µ5µ6 Aµ7µ8⌫] � 3A

[µ1...µ6 dAµ7µ8⌫]

�

, (3.1.4)

where eµa =
�

eh
�

µ
a, eaµ =

�

e�h
�

a
µ and

e µ1...µn
a1...an

= e µ1

[a1
... e µn

an]
, e µ1...µ7, ⌫

a1...a7, b
= e µ1

[a1
... e µ7

a7]
e ⌫
b � e µ1

[a1
... e µ7

a7
e ⌫
b] . (3.1.5)

These definitions will carry over to the other sections. We also give the linearised level

4 Cartan forms. They are given by

Ga1...a9, b1b2b3 = dAa1...a9, b1b2b3 , Ga1...a10, b1b2 = dAa1...a10, b1b2 , Ga1...a11, b = dAa1...a11, b.

(3.1.6)

The parameter of the level 1 local Ic (E11

) transformations of equation (1.3.4) is given

by

h = 1� ⇤a1a2a3 S
a1a2a3 , where Sa1a2a3 = Ra1a2a3 � ⌘a1b1 ⌘a2b2 ⌘a3b3 Rb1b2b3 . (3.1.7)

Under these transformations the Cartan form of equation (3.1.3) transforms as follows

� VE = [Sa1a2a3 ⇤a1a2a3 ,VE]� Sa1a2a3 d⇤a1a2a3 . (3.1.8)

Written in terms of the Cartan forms of equations (3.1.4, 3.1.6) these transformations

take the following form

�Ga
b = 18⇤c1c2b Gc1c2a � 2 �ba ⇤

c1c2c3 Gc1c2c3 ,

�Ga1a2a3 = 60Ga1a2a3b1b2b3 ⇤
b1b2b3 � 3Gc

[a1 ⇤|c|a2a3] � d⇤a1a2a3

= 60Ga1a2a3b1b2b3 ⇤
b1b2b3 � 6G

(c[a1) ⇤
c
a2a3],
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�Ga1...a6 = 2⇤
[a1a2a3 Ga4a5a6] � 336Gb1b2b3[a1...a5, a6] ⇤

b1b2b3 ,

�Ga1...a8, b = � 3G
[a1...a6 ⇤a7a8]b + 3G

[a1...a6 ⇤a7a8b]

� 440
�

Ga1...a8c1, c2c3b +G
[a1...a7|bc1, c2c3|a8]

�

⇤c1c2c3

� 120
�

Ga1...a8c1c2, c3b +G
[a1...a7|bc1c2, c3|a8]

�

⇤c1c2c3

� 110
�

Ga1...a8c1c2c3, b +G
[a1...a7|bc1c2c3, |a8]

�

⇤c1c2c3 , (3.1.9)

where we have taken into account the gauge fixing condition that we introduced in

equation (3.1.2). Since the group element and the Cartan form do not contain any

negative level generators, we have to ensure that they are not produced by the trans-

formation from equation (3.1.8). We can do that by making parameter ⇤a1a2a3 obey

the following constraint

d⇤a1a2a3 � 3Gb
[a1| ⇤b|a2a3] = 0. (3.1.10)

This allows us to get rid of the d⇤a1a2a3 term in the variation of Ga1a2a3 from equation

(3.1.9). One can also notice that this equation has another important implication. It

ensures that parameter ⇤µ1µ2µ3 with the curved indexes is a world constant.

⇤µ1µ2µ3 = e µ1µ2µ3
a1a2a3

⇤a1a2a3 , d⇤µ1µ2µ3 = 0. (3.1.11)

We will also give the transformation law of the level 4 Cartan forms

�Ga1...a9, b1b2b3 =
7

8
⇤

[b1b2[a1 Ga2...a9], b3] + 2⇤
[b1[a1a2 Ga3...a9]b2, b3]

+
7

6
⇤

[a1a2a3 Ga4...a9][b1b2, b3] + ... ,

�Ga1...a10, b1b2 =
24

11
G

[a1...a7(b1, b2) ⇤a8a9a10] �
24

11
G

[a1...a8, (b1 ⇤b2)a9a10] + ... ,

�Ga1...a11, b = ⇤
[a1a2a3 Ga4...a11], b + ... , (3.1.12)

where + ... indicates the presence of level 5 terms, which we haven’t considered.

The Cartan forms, discussed above, were forms written as G↵ = dx⇧ G
⇧,↵. Al-

though the Cartan forms when written in form notation are invariant under the rigid

transformations of equation g ! g
0

g, once written as G
⇧,↵ they are no longer in-

variant. We can remedy this by taking the first index to be a tangent index, that is,
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GA,↵ = EA
⇧ G

⇧,↵ which is inert under the rigid E
11

transformations, but transforms

under the local Ic(E11

) transformations. Using equation (1.3.15) one finds that the

Cartan forms, when referred to the tangent space, transform on their l
1

index up to

level 1 in coordinates as follows

�Ga, • = � 3Gb1b2,
• ⇤b1b2a, �Ga1a2,

• = 6⇤a1a2b Gb, • + ... , (3.1.13)

where + ... refers to the level 2 terms that we have neglected.

3.1.2 Generalised vielbein

In this section we will construct the eleven-dimensional general vielbein up to level 3

in coordinates. According to equation (1.3.10) we have

E
⇧

A =
�

eA3 eA2 eA1 eA0
�

⇧

A, (3.1.14)

where

A
0

= ha
b Da

b, A
1

= Aa1a2a3 D
a1a2a3 ,

A
2

= Aa1...a6 D
a1...a6 , A

3

= Aa1...a8, b D
a1...a8, b.

(3.1.15)

The level zero matrix is given by the expression

dx · A
0

· L = �
⇥

ha
bKa

b, dx
c Pc + dxc1c2 Z

c1c2 + dxc1... c5 Z
c1...c5

+ dxc1...c8 Z
c1...c8 + dxc1...c7, c Z

c1...c7, c
⇤

. (3.1.16)

Using the commutators from appendix A.1, we find

A
0

=

0

B

B

B

B

B

B

B

B

B

@

ha
b 0 0 0 0

0 �2�[b1
[a1

ha2]
b2] 0 0 0

0 0 � 5 �[b1...b4
[a1...a4

ha5]
b5] 0 0

0 0 0 � 8 �[b1...b7
[a1...a7

ha8]
b8] 0

0 0 0 0 � kb1...b7, d
a1...a7, c

1

C

C

C

C

C

C

C

C

C

A

� 1

2
hc

c ,

(3.1.17)
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where kb1...b7, d
a1...a7, c

= 7 �dc �
[b1...b6
[a1...a6

ha7]
b7] + �a1...a7b1...b7

hc
d � 8 �[a1...a7

[b1...b7
hc]

d]. Exponentiating this

matrix results in

eA0 = (det e)�
1
2

0

B

B

B

B

B

B

B

B

B

@

eµa 0 0 0

0 e µ1µ2
a1a2

0 0 0

0 0 e µ1...µ5
a1...a5

0 0

0 0 0 e µ1...µ8
a1...a8

0

0 0 0 0 e µ1...µ7, ⌫
a1...a7, b

1

C

C

C

C

C

C

C

C

C

A

. (3.1.18)

The combinations of vielbeins used in this formula were defined in (3.1.5). We now

compute A
1

in a similar way by considering

dx · A
1

· L = �
⇥

Aa1a2a3 R
a1a2a3 , dxc Pc + dxc1c2 Z

c1c2 + dxc1... c5 Z
c1...c5

+ dxc1...c8 Z
c1...c8 + dxc1...c7, c Z

c1...c7, c
⇤

, (3.1.19)

from which we conclude, using the commutators of appendix A.1, that

A
1

=

0

B

B

B

B

B

B

B

B

B

@

0 � 3Aab1b2 0 0 0

0 0 � � a1a2
[b1b2

Ab3b4b5] 0 0

0 0 0 � � a1...a5
[b1...b5

Ab6b7b8] � � a1...a5
[b1...b5

Ab6b7]b + � a1...a5
[b1...b5

Ab6b7b]

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

.

(3.1.20)

Proceeding in a similar way we find that

A
2

=

0

B

B

B

B

B

B

B

B

B

@

0 0 3Aab1...b5 0 0

0 0 0 � a1a2
[b1b2

Ab3...b8] � a1a2
[b1b2

Ab3...b7]b � � a1a2
[b1b2

Ab3...b7b]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

, (3.1.21)
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and

A
3

=

0

B

B

B

B

B

B

B

B

B

@

0 0 0 3

2

Ab1...b8, a � 4

3

Aa[b1...b7], b +
4

3

Aa[b1...b7, b]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

. (3.1.22)

To compute the generalised vielbein we just need to evaluate the matrix expression of

equation (3.1.14). We find that

E
⇧

A = (det e)�
1
2

0

B

B

B

B

B

B

B

B

B

@

eµa eµc ↵c|a1a2 eµc ↵c|a1...a5 eµc ↵c|a1...a8 eµc ↵c|a1...a7, b

0 e µ1µ2
a1a2

e µ1µ2
c1c2

�c1c2
a1...a5

e µ1µ2
c1c2

�c1c2
a1...a8

e µ1µ2
c1c2

�c1c2
a1...a7, b

0 0 e µ1...µ5
a1...a5

e µ1...µ5
c1...c5

�c1...c5
a1...a8

e µ1...µ5
c1...c5

�c1...c5
a1...a7, b

0 0 0 e µ1...µ8
a1...a8

0

0 0 0 0 e µ1...µ7,⌫
a1...a7, b

1

C

C

C

C

C

C

C

C

C

A

,

(3.1.23)

where the symbols in the first line of this matrix are given by

↵a|a1a2 = � 3Aaa1a2 , ↵a|a1...a5 = 3Aaa1...a5 +
3

2
Aa[a1a2 Aa3a4a5],

↵a|a1...a8 =
3

2
Aa1...a8, a � 3Aa[a1...a5 Aa6a7a8],

↵a|a1...a7, b =
4

3
Aa[a1...a7, b] + 3Aa[a1...a5 Aa6a7b] �

4

3
Aa[a1...a7], b

� 3Aa[a1...a5 Aa6a7]b �
1

2
Aa[a1a2 Aa3a4a5 Aa6a7]b, (3.1.24)

the symbols in the second line are given by

�b1b2
a1...a5

= � � b1b2
[a1a2

Aa3a4a5], �b1b2
a1...a8

= � b1b2
[a1a2

Aa3...a8],

�b1b2
a1...a7, b

= � b1b2
[a1a2

Aa3...a7]b +
1

2
� b1b2
[a1a2

Aa3a4a5 Aa6a7]b � � b1b2
[a1a2

Aa3...a7b], (3.1.25)

and, finally, the symbols in the third line are given by

�b1...b5
a1...a8

= � � b1...b5
[a1...a5

Aa6a7a8], �b1...b5
a1...a7, b

= � b1...b5
[a1...a5

Aa6a7b] � � b1...b5
[a1...a5

Aa6a7]b. (3.1.26)
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3.2 10D Type IIB

3.2.1 Cartan forms

The level 4 group element in ten-dimensional type IIB case can be parametrised in the

following way

gL = exp
⇣

xa Pa + x↵
a Z

a
↵ + xa1a2a3 Z

a1a2a3 + x↵
a1...a5

Za1...a5
↵

+ x↵�
a1...a7

Za1...a7
↵� + xa1...a7 Z

a1...a7 + xa1...a6, b Z
a1...a6, b

⌘

= ex
A LA ,

gE = exp
⇣

ha
b Ka

b

⌘

exp
⇣

'↵� R↵�

⌘

exp
⇣

Aa1...a7, b K
a1...a7, b

⌘

exp
⇣

A↵�
a1...a8

Ra1...a8
↵�

⌘

⇥ exp
⇣

A↵
a1...a6

Ra1...a6
↵

⌘

exp
⇣

Aa1...a4 R
a1...a4

⌘

exp
⇣

A↵
a1a2

Ra1a2
↵

⌘

= eA↵ R↵
, (3.2.1)

Once again, we used the local Ic (E11

) invariance to eliminate the negative level gener-

ators from the group element. The notations used here were defined in Section 2.2.

The Cartan form is given by

VE = Ga
b Ka

b +G↵� R↵� +G↵
a1a2

Ra1a2
↵ +Ga1...a4 R

a1...a4

+G↵
a1...a6

Ra1...a6
↵ +Ga1...a7, b R

a1...a7, b +G↵�
a1...a8

Ra1...a8
↵� ,

VL = dx⇧ E
⇧

A LA, (3.2.2)

The parameter of the level 1 local Ic (E11

) transformations of equation (1.3.4) has the

following form

h = 1� ⇤↵
a1a2a

Sa1a2
↵ , where Sa1a2

↵ = Ra1a2
↵ � ⌘a1b1 ⌘a2b2 R↵

b1b2b3
. (3.2.3)

Under these transformations the Cartan form of equation (3.1.3) transforms as follows

�VE =
⇥

Sa1a2
↵ ⇤↵

a1a2
,VE

⇤

� Sa1a2
↵ d⇤↵

a1a2
. (3.2.4)

The condition that these transformations should not create negative level terms in the

Cartan form is equivalent to

d⇤a1a2
↵ � 2⇤[a1|b|

↵ Gb
a2] + "↵� ⇤

a1a2
� G�� = 0 or d⇤µ1µ2

↵̇ = 0, (3.2.5)
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Where dot on ↵ indicates that it is a world index, rather than a flat one. Up to level 4

in fields these transformations give

�Ga
b = 4⇤bc

↵ G↵
ac �

1

2
�ba ⇤

c1c2
↵ G↵

c1c2
, �G↵� = � 2 "(↵|�| ⇤c1c2

� G�)
c1c2

,

�G↵
a1a2

= � 2⇤↵
[a1|b| Ga2]

b + "�� ⇤
�
a1a2

G�↵ � 12 "↵� ⇤b1b2
� Gb1b2a1a2 � d⇤↵

a1a2

= � 4⇤↵
[a1

b G
(|b|a2]) � 12 "↵� ⇤b1b2

� Gb1b2a1a2 + "�� ⇤
�
a1a2

G�↵ + "↵� ⇤�
a1a2

G�� ,

�Ga1...a4 = � "↵� ⇤
↵
[a1a2

G�
a2a3]

� 15

2
⇤b1b2

↵ G↵
b1b2a1...a4

, (3.2.6)

�G↵
a1...a6

= 4⇤↵
[a1a2

Ga3...a6] � 252 "↵� ⇤b1b2
� Gb1b2[a1...a5, a6] + 56⇤b1b2

� G↵�
b1b2a1...a6

,

�G↵�
a1...a8

= � ⇤(↵
a1a2

G�)
a3...a8]

, �G↵
a1...a7, b

= � "↵� ⇤a1a2 Ga3...a7]b + "↵� ⇤a1a2 Ga3...a7b].

The Cartan forms transform as follows on their l
1

index

�Ga, • = �⇤↵
ab G

b
↵, •, �Ga

↵, • = � 4⇤ab
↵ Gb, • + ... , (3.2.7)

where + ... refers to the level 2 terms that we have neglected.

3.2.2 Generalised vielbein

In this section we are going to calculate the generalised vielbein using its definition

from equation (1.3.9) rather than the matrix method we used in the previous section.

In this approach the generalised vielbein is computed by conjugating the l
1

generators

with the E
11

group element. Using the algebra from Section 2.3 we can perform this

conjugation for the D = 10 case. Conjugation with level 0 group element gives

e�'↵� R↵�e�ha
b Ka

b

(

Pµ, Z
µ
↵̇ , Z

µ1µ2µ3 , Zµ1...µ5
↵̇ , Zµ1...µ7

↵̇1↵̇2
, Zµ1...µ7 , Zµ1...µ6, ⌫

)

eha
b Ka

be'
↵� R↵�

= (det e)�
1
2

(

eµ
a Pa, ea

µ g↵̇
� Za

� , e
µ1µ2µ3

a1a2a3
Za1a2a3 , e µ1...µ5

a1...a5
g↵̇

� Za1...a5
� ,

e µ1...µ7
a1...a7

g �1�2
↵̇1↵̇2

Za1...a7
�1�2

, e µ1...µ7
a1...a7

Za1...a7 , e µ1...µ6, ⌫
a1...a6, b

Za1...a6, b

)

, (3.2.8)

where g↵̇� =
�

e"•�'
�•�

↵̇
� and g �1...�n

↵̇1...↵̇n
= g �1

[↵̇1
...g �n

↵̇n]
. The coordinate vielbein eµa, its

inverse and their combinations were defined in equation (3.1.5) of the previous section.
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In the above equation and what follows we denote world, rather than tangent, SL (2)

indices with a dot, that is ↵̇, �̇, ... . Conjugating with positive level generators can be

obtained by Taylor-expanding the exponents and truncating the series by level 4. For

level one E
11

generator we have

e�A↵
b1b2

R
b1b2
↵

(

Pa, Z
a1
↵ , Za1a2a3 , Za1...a5

↵

)

eA
↵
b1b2

R
b1b2
↵ =

=

(

Pa � A↵
ab Z

b
↵ +

1

2
"↵� A

↵
aa1

A�
a2a3

Za1a2a3 � 1

6
"↵� A

↵
aa1

A�
a2a3

A�
a4a5

Za1...a5
�

+
1

24
"↵� A

↵
aa1

A�
a2a3

A↵1
a4a5

A↵2
a6a7

Za1...a7
↵1↵2

� 1

60
"↵� "�� A

↵
aa1

A�
a2a3

A�
a4a5

A�
a6b

Za1...a6, b,

Za1
↵ � "↵� A

�
a2a3

Za1a2a3 +
1

2
"↵� A

�
a2a3

A�
a4a5

Za1...a5
�

� 1

6
"↵� A

�
a2a3

A↵1
a4a5

A↵2
a6a7

Za1...a7
↵1↵2

+
1

15
"↵� "�� A

�
a2a3

A�
a4a5

A�
a6b

Za1...a6, b,

Za1a2a3 � A↵
a4a5

Za1...a5
↵ +

1

2
A↵1

a4a5
A↵2

a6a7
Za1...a7

↵1↵2
� 1

5
"↵�A

↵
a4a5

A�
a6b

Za1...a6, b,

Za1...a5
↵ � A�

a6a7
Za1...a7

↵� � "↵�A
�
a6a7

Za1...a7 +
2

5
"↵�A

�
a6b

Za1...a6, b

)

, (3.2.9)

for level 2 generator:

e�Ab1...b4
Rb1...b4

(

Pa, Z
a1
↵ , Za1a2a3

)

eAb1...b4
Rb1...b4 =

=

(

Pa � 2Aaa1a2a3 Z
a1a2a3 + 2Aaa1a2a3 Aa4...a7 Z

a1...a7 � 4

5
Aaa1a2a3 Aa4a5a6b Z

a1...a6, b,

Za1
↵ + Aa2...a5 Z

a1...a5
↵ , Za1a2a3 � 2Aa4...a7 Z

a1...a7 +
4

5
Aa4a5a6b Z

a1...a6, b

)

, (3.2.10)

for level 3 generator:

e�A�
b1...b6

R
b1...b6
�

n

Pa, Z
a1
↵

o

eA
�
b1...b6

R
b1...b6
� =

=

(

Pa �
3

4
A↵

aa1...a5
Za1...a5

↵ , Za1
↵ +

1

4
A�

a2...a7
Za1...a7

↵� +

+
3

4
"↵� A

�
a2...a7

Za1...a7 +
1

20
"↵� A

�
a2...a7

Za2...a7, a1

)

, (3.2.11)
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and, finally, for level 4 generators:

e�A
�1�2
b1...b8

R
b1...b8
�1�2 Pa e

A
�1�2
b1...b8

R
b1...b8
�1�2 = Pa + A↵1↵2

aa1...a7
Za1...a7

↵1↵2
, (3.2.12)

e�Ab1...b7, b
Rb1...b7, b Pa e

Ab1...b7, b
Rb1...b7, b = Pa + 3Aa1...a7, a Z

a1...a7 � 21

20
Aaa1...a6,b Z

a1...a6, b.

Using all these results we find, from equation (3.2.5), that the generalised vielbein is

given by

E
⇧

A = (det e)�
1
2

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

eµa eµc ↵
�

c|a eµc ↵c|a1a2a3 eµc ↵
�

c|a1...a5 eµc ↵
�1�2

c|a1...a7 eµc ↵c|a1...a7 eµc ↵c|a1...a6, b

0 eaµ g↵̇� ecµ g↵̇� �c
�|a1a2a3 ecµ g↵̇� �

c|�
�|a1...a5 ecµ g↵̇� �

c|�1�2

�|a1...a7 ecµ g↵̇� �c
�|a1...a7 ecµ g↵̇� �c

�|a1...a6, b

0 0 e µ1µ2µ3
a1a2a3

e µ1µ2µ3
c1c2c3

�c1c2c3|�
a1...a5 e µ1µ2µ3

c1c2c3
�c1c2c3|�1�2

a1...a7 e µ1µ2µ3
c1c2c3

�c1c2c3
a1...a7 e µ1µ2µ3

c1c2c3
�c1c2c3

a1...a6, b

0 0 0 e µ1...µ5
a1...a5

g↵̇� e µ1...µ5
c1...c5

g↵̇� �
c1...c5|�1�2

� |a1...a7 e µ1...µ5
c1...c5

g↵̇� �c1...c5
� |a1...a7 e µ1...µ5

c1...c5
g↵̇� �c1...c5

� |a1...a6, b

0 0 0 0 e µ1...µ7
a1...a7

g �1�2
↵̇1↵̇2

0 0

0 0 0 0 0 e µ1...µ7
a1...a7

0

0 0 0 0 0 0 e µ1...µ6, ⌫
a1...a6, b

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

(3.2.13)

The symbols in the first line of the above matrix are given by

↵ ↵
a|b = � A↵

ab, ↵a|a1a2a3 = � 2Aaa1a2a3 +
1

2
"↵� A

↵
a[a1

A�
a2a3]

,

↵ ↵
a|a1...a5 = � 3

4
A↵

aa1...a5
+ 2Aa[a1a2a3 A

↵
a4a5]

� 1

6
"��A

�
a[a1

A�
a2a3

A↵
a4a5]

,

↵ ↵1↵2
a|a1...a7 = A↵1↵2

aa1...a7
+

3

4
A(↵1

a[a1...a5
A↵2)

a6a7]
� Aa[a1a2a3A

↵1
a4a5

A↵2
a6a7]

+
1

24
"��A

�
a[a1

A�
a2a3

A↵1
a4a5

A↵2
a6a7]

,

↵a|a1...a7 = 3Aa1...a7, a +
3

4
"↵� A

↵
a[a1...a5

A�
a6a7]

+ 2Aa[a1a2a3 Aa4...a7],

↵a|a1...a6, b = � 21

20
Aaa1...a6, b �

3

10
"↵� A

↵
a[a1...a5

A�
a6]b

+
3

10
"↵� A

↵
a[a1...a5

A�
a6b]

+
2

5
"↵� Aa[a1a2a3 A

↵
a[a4a5

A�
a6]b

� 4

5
Aa[a1a2a3 Aa4a5a6]b

+
4

5
Aa[a1a2a3 Aa4a5a6b] �

1

60
"↵� "�� A

↵
a[a1

A�
a2a3

A�
a4a5

A�
a6]b

, (3.2.14)

in the second line are

�a
↵|a1a2a3 = � "↵� �

a
[a1

A�
a2a3]

, �a|�
↵|a1...a5 = ��↵ �

a
[a1

Aa2...a5] +
1

2
"↵� �

a
[a1

A�
a2a3

A�
a4a5]

,

�a|�1�2

↵|a1...a7 =
1

4
� a
[a1

�(�1
↵ A�2)

a2...a7]
� � a

[a1
�(�1
↵ Aa2...a5 A

�2)

a6a7]
� 1

6
"↵� �

a
[a1

A�
a2a3

A�1
a4a5

A�2

a6a7]
,
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�a
↵|a1...a7 =

3

4
"↵� �

a
[a1

A�
a2...a7]

� "↵� �
a
[a1

Aa2...a5 A
�
a6a7]

,

�a
↵|a1...a6, b =

1

20
"↵� �

a
b A

�
a1...a6

� 1

20
"↵� �

a
[b A

�
a1...a6]

+
2

5
"↵� �

a
[a1

Aa2...a5 A
�
a6]b

� 2

5
"↵� �

a
[a1

Aa2...a5 A
�
a6b]

+
1

15
"↵� "�� �

a
[a1

A�
a2a3

A�
a4a5

A�
a6]b

, (3.2.15)

in the third line are

�b1b2b3|�
a1...a5

= � � b1b2b3
[a1a2a3

A�
a4a5]

, �b1b2b3|�1�2
a1...a7

=
1

2
� b1b2b3
[a1a2a3

A�1
a4a5

A�2

a6a7]
,

�b1b2b3
a1...a7 = �2 � b1b2b3

[a1a2a3
Aa4...a7], (3.2.16)

�b1b2b3
a1...a6, b =

4

5
� b1b2b3
[a1a2a3

Aa4a5a6]b �
4

5
� b1b2b3
[a1a2a3

Aa4a5a6b] �
1

5
"↵� �

b1b2b3
[a1a2a3

A↵
a4a5

A�
a6]b

,

and, finally, in the fourth line are

�b1...b5|↵1↵2

↵ |a1...a7 = � �(↵1
↵ � b1...b5

[a1...a5
A↵2)

a6a7]
,

�b1...b5
↵ |a1...a7 = �"↵� �

b1...b5
[a1...a5

A�
a6a7]

,

�b1...b5
↵ |a1...a6, b = � "↵� �

b1...b5
[a1...a5

A�
a6]b

+ "↵� �
b1...b5
[a1...a5

A�
a6b]

. (3.2.17)

3.3 5D

3.3.1 Cartan forms

In this section the non-linear realisation of E
11

in five dimensions will be constructed, in-

cluding the Cartan form, generalised vielbein and level 1 local Ic (E11

) transformations.

Later in Section 4.2 we will use these results to find the dynamics of the five-dimensional

E
11

theory.

The general E
11

n l
1

group element can be written as g = gL gE, where

gE = eAa1a2a3 ↵1↵2 Ra1a2a3 ↵1↵2
+Aa1a2a3 ↵1...↵4 Ra1a2a3 ↵1...↵4

+Aa1a2, b
Ra1a2, b

· eAa1a2 ↵1↵2 Ra1a2 ↵1↵2 eAa↵1↵2 Ra↵1↵2 e'↵1↵2 R↵1↵2
+'↵1...↵4 R↵1...↵4 eha

b Ka
b ,

gL = exp
n

xa Pa + x↵1↵2 Z
↵1↵2 + xa↵1↵2 Z

a↵1↵2

+ xa1a2 ↵1↵2 Z
a1a2 ↵1↵2 + xa1a2 ↵1...↵4 Z

a1a2 ↵1...↵4 + xab Z
ab
o

, (3.3.1)
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The Cartan form is given by

VE = Ga
b Ka

b +Ga↵1↵2 R
a↵1↵2 +Ga1a2 ↵1↵2 R

a1a2 ↵1↵2

+Ga1a2a3 ↵1↵2 R
a1a2a3 ↵1↵2 +Ga1a2a3 ↵1...↵4 R

a1a2a3 ↵1...↵4 +Ga1a2, b R
a1a2, b,

VL = dx⇧ E
⇧

A LA, (3.3.2)

The higher level Cartan forms can be determined by using the following relation

Ga↵1↵2 R
a↵1↵2 +Ga1a2 ↵1↵2 R

a1a2 ↵1↵2 +Ga1a2a3 ↵1↵2 R
a1a2a3 ↵1↵2

+Ga1a2a3↵1...↵4 R
a1a2a3 ↵1...↵4 +Ga1a2, b R

a1a2, b

= g�1

0

⇣

Ḡa↵1↵2 R
a↵1↵2 + Ḡa1a2 ↵1↵2 R

a1a2 ↵1↵2 + Ḡa1a2a3 ↵1↵2 R
a1a2a3 ↵1↵2

+ Ḡa1a2a3 ↵1...↵4 R
a1a2a3 ↵1...↵4 + Ḡa1a2, b R

a1a2, b
⌘

g
0

, (3.3.3)

where

g
0

= exp ('↵1↵2 R
↵1↵2 + '↵1...↵4 R

↵1...↵4) exp
�

ha
b Ka

b

�

, (3.3.4)

and

Ḡµ ↵̇1↵̇2 = dAµ ↵̇1↵̇2 ,

Ḡµ1µ2 ↵̇1↵̇2 = dAµ1µ2 ↵̇1↵̇2 � 2A
[µ1 [↵̇1|�̇| dAµ2] ↵̇2]

�̇ � 1

4
⌦↵̇1↵̇2 A[µ1 �̇1�̇2 dAµ2]

�̇1�̇2 ,

Ḡµ1µ2µ3 ↵̇1↵̇2 = dAµ1µ2µ3 ↵̇1↵̇2 � 4A
[µ1 (↵̇1|�̇| dAµ2µ3] ↵̇2)

�̇

+
4

3
A

[µ1 ↵̇1�̇1 Aµ2 ↵̇2�̇2 dAµ3]
�̇1�̇2 � 4

3
A

[µ1 (↵̇1|�̇1 Aµ2
�̇1

�̇2 dAµ3] |↵̇2)
�̇2 ,

Ḡµ1µ2µ3 ↵̇1...↵̇4 =
⇣

dAµ1µ2µ3 ↵̇1...↵̇4 � A
[µ1 ↵̇1↵̇2 dAµ2µ3] ↵̇3↵̇4

+
2

3
A

[µ1 ↵̇1↵̇2 Aµ2 ↵̇3|�̇| dAµ3] ↵̇4
�̇
⌘

proj 42
,

Ḡµ1µ2, ⌫ = dAµ1µ2, ⌫ � 2A⌫ ↵̇1↵̇2 dAµ1µ2
↵̇1↵̇2 + 2A

[⌫ ↵̇1↵̇2 dAµ1µ2]
↵̇1↵̇2

+
4

3
A⌫ ↵̇1↵̇2 A[µ1 �̇

↵̇1 dAµ2]
�̇↵̇2 � 4

3
A

[⌫ ↵̇1↵̇2 Aµ1 �̇
↵̇1 dAµ2]

�̇↵̇2 . (3.3.5)

As in previous section, indexes with the dot on them refer to curved extended space-

time coordinates. “proj 42” implies that the corresponding Cartan form has to be

made irreducible with respect to ↵̇
1

...↵̇
4

indexes.
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Level one Ic (E11

) transformation of the Cartan form is given by

Sa↵1↵2 = Ra↵1↵2 � ⌘ab ⌦↵1�1 ⌦↵2�2 Rb�1�2 ,

�V = [Sa↵1↵2 ⇤a↵1↵2 , V ]� Sa↵1↵2 d⇤a↵1↵2 . (3.3.6)

The level one Ic (E11

) is restricted by the gauge choice in the following way

d⇤a↵1↵2 �Gba ⇤
b
↵1↵2 �G↵1...↵4 ⇤a

↵3↵4 � 2G
[↵1|�| ⇤a↵2]

� = 0. (3.3.7)

This constraint ensures that the Cartan form doesn’t acquire negative level terms under

the Ic (E11

) transformation. The generalised vielbein transforms in the following way

under the Ic (E11

) transformation:

�Ea = � 2E↵1↵2 ⇤
a↵1↵2 ,

�E↵1↵2 = Ea ⇤a↵1↵2 � 4Ea [↵1|�| ⇤
a
↵2]

� � 1

2
⌦↵1↵2 Ea �1�2 ⇤

a �1�2 ,

�Ea↵1↵2 = 4E
[↵1|�| ⇤a↵2]

� +
1

2
⌦↵1↵2 E�1�2 ⇤a

�1�2 . (3.3.8)

Here we are using the form notation for the generalised vielbein: EA = dx⇧ E
⇧

A. This

corresponds to the following transformations of the Cartan forms with respect to their

l
1

index.

�Ga, • = �G↵1↵2, • ⇤a
↵1↵2 ,

�G↵1↵2, • = 2Ga, • ⇤
a
↵1↵2 � 4Ga [↵1|�|, • ⇤

a
↵2]

� � 1

2
⌦↵1↵2 Ga �1�2, • ⇤

a �1�2 ,

�Ga↵1↵2, • = 4G
[↵1|�|, • ⇤a↵2]

� +
1

2
⌦↵1↵2 G�1�2, • ⇤a

�1�2 . (3.3.9)

We now give the variations of the Cartan forms with respect to their adjoint index. For

level 0 Cartan forms we have

�Ga
b = 2Ga↵1↵2 ⇤

b↵1↵2 � 2

3
�ba Gc↵1↵2 ⇤

c↵1↵2 ,

�G↵1↵2 = � 4Ga (↵1|�| ⇤
a
↵2)

�, (3.3.10)

�G↵1...↵4 = 12Ga [↵1↵2 ⇤
a
↵3↵4] � 12⌦

[↵1↵2 Ga↵3|�| ⇤
a
↵4]

� � ⌦
[↵1↵2 ⌦↵3↵4] Ga �1�2 ⇤

a �1�2 .
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Variation of the level 1 Cartan form is

�Ga↵1↵2 = �Ga
b ⇤b↵1↵2 + 2G

[↵1|�| ⇤a↵2]
� �G↵1↵2�1�2 ⇤a

�1�2

+ 8Gab [↵1|�| ⇤
b
↵2]

� + ⌦↵1↵2 Gab �1�2 ⇤
b �1�2 � d⇤a↵1↵2

= � 2G
(ab) ⇤

b
↵1↵2 � 2G↵1↵2�1�2 ⇤a

�1�2

+ 8Gab [↵1|�| ⇤
b
↵2]

� + ⌦↵1↵2 Gab �1�2 ⇤
b �1�2 , (3.3.11)

where we have used the gauge fixing condition (3.3.7). Lastly, variation of the level 2

Cartan form is

�Ga1a2 ↵1↵2 = � 4G
[a1 [↵1|�| ⇤a2]↵2]

� � 1

2
⌦↵1↵2 G[a1 �1�2 ⇤a2]

�1�2 �Ga1a2, b ⇤
b
↵1↵2

+ 6Ga1a2b [↵1|�| ⇤
b
↵2]

� � 36Ga1a2b↵1↵2�1�2 ⇤
b �1�2 . (3.3.12)

3.3.2 Generalized vielbein

We will now build the generalised vielbein of the five-dimensional theory up to level 2

in coordinates. Conjugating the l
1

generators with the level 0 group element results in

e�'↵1↵2 R↵1↵2�'↵1...↵4 R↵1...↵4e�ha
b Ka

b

(

Pµ, Z
↵̇1↵̇2 , Zµ ↵̇1↵̇2

)

eha
b Ka

be'↵1↵2 R↵1↵2
+'↵1...↵4 R↵1...↵4

= (det e)�
1
2

(

eµ
a Pa, f

↵̇1↵̇2
�1�2 Z

�1�2 , ea
µ f̂ ↵̇1↵̇2

�1�2 Z
a�1�2

)

, (3.3.13)

where f ↵̇1↵̇2
�1�2 and f̂ ↵̇1↵̇2

�1�2 are the solutions of the following equations

�

f�1

�↵1↵2
�̇1�̇2 df

�̇1�̇2
�1�2 = 2 �[↵1

[�1
G↵2]

�2] �G↵1↵2
�1�2 ,

⇣

f̂�1

⌘↵1↵2

�̇1�̇2 df̂
�̇1�̇2

�1�2 = 2 �[↵1

[�1
G↵2]

�2] +G↵1↵2
�1�2 . (3.3.14)

Conjugating with the level 1 group element gives

e�Ab �1�2
Rb �1�2

(

Pa, Z
↵1↵2

)

eAb �1�2
Rb �1�2

=

(

Pa � Aa�1�2 Z
�1�2 + 2Aa�1� Ab�2

� Zb�1�2 ,

Z↵1↵2 �
✓

4 �[↵1

[�1
Ab�2]

↵2] � 1

2
⌦↵1↵2 Ab�1�2

◆

Zb�1�2

)

. (3.3.15)
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For the level 2 group element we have

e�Ab �1�2
Rb �1�2 Pa e

Ab �1�2
Rb �1�2 = Pa + 2Aab,�1�2 Z

b�1�2 . (3.3.16)

Putting all these results together one finds

E
⇧

A = (det e)�
1
2

0

B

B

B

B

B

B

B

B

B

B

@

eµa � eµb Ab↵1↵2 eµb
⇣

2Aba,↵1↵2 + 2Ab [↵1|�| Aa↵2]
�

+1

4

⌦↵1↵2 Ab �1�2 Aa
�1�2

⌘

0 f ↵̇1↵̇2
↵1↵2 � f ↵̇1↵̇2

�1�2

⇣

4 �[�1

[↵1
Aa↵2]

�2]

+1

2

⌦↵1↵2 Aa
�1�2 � 1

2

⌦�1�2 Aa↵1↵2

⌘

0 0 eaµ f̂ ↵̇1↵̇2
↵1↵2

1

C

C

C

C

C

C

C

C

C

C

A

.

(3.3.17)

3.4 4D

3.4.1 Cartan forms

The four dimensional theory is obtained by deleting node 4 from the Dynkin diagram

and decomposing the E
11

algebra into representations of GL (4)⇥E
7

[48]. However, it

is easier to work with SL (8) subalgebra of E
7

, instead of E
7

itself. In this case all the

generators belong to representations of GL (4)⇥ SL (8).

The generators of E
11

in four dimensions are

Level Generators

0 Ka
b, RI

J , RI1...I4

1 RaI1I2 , Ra
I1I2

� 1 RaI1I2 , Ra
I1I2

2 Ra1a2I
J , Ra1a2I1...I4 , K̂(ab)

� 2 Ra1a2
I
J , Ra1a2I1...I4 , K̂

(ab)

Here capital Latin indexes (I, J, ... = 1, ... , 8) label the representations of SL (8). All

the generators with blocks of Latin indexes are antisymmetric in them. For the l
1

representation we have
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Level Generators

0 Pa

1 ZI1I2 , ZI1I2

2 Za, ZaI
J , ZaI1...I4

The algebra of these generators is given in Appendix B. The corresponding Dynkin

diagram is

1 2 3 4

5

6

7

8

9

10

11

GL (4)

E
7

Figure 8: E
11

algebra in 4 dimensions
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The parametrisation of an arbitrary level 2 group element is of the form

gE = exp
⇣

ĥ
(ab) K̂

(ab)
⌘

exp
�

Aa1a2
J
I R

a1a2I
J

�

exp
�

Aa1a2I1...I4 R
a1a2I1...I4

�

(3.4.1)

⇥ exp
�

AaI1I2 R
aI1I2 + Aa

I1I2 Ra
I1I2

�

exp
�

ha
b Ka

b

�

exp
�

'I
J R

I
J

�

exp
�

'I1...I4 R
I1...I4

�

,

gL = exp
�

xa Pa + xI1I2 Z
I1I2 + xI1I2 ZI1I2 + x̂a Z

a + xa
J
I Z

aI
J + xaI1...I4 Z

aI1...I4
�

,

The corresponding Cartan form is

VE = Ga
b Ka

b + ⌦I
J R

J
I + ⌦I1...I4 R

I1...I4 +GaI1I2 R
aI1I2 +Ga

I1I2 Ra
I1I2

+Ga1a2
I
J R

a1a2J
I +Ga1a2I1...I4 R

a1a2I1...I4 + Ĝab K̂
ab,

VL = dx⇧ E
⇧

A LA. (3.4.2)

The Ic (E11

) transformations of the Cartan forms have been found and discussed in [48].

3.4.2 Generalised vielbein

We will now build the generalised vielbein of the five-dimensional theory up to level 2

in coordinates. Conjugating the l
1

generators with the level 0 generators Ka
b and RI

J

gives the following

e�'I
J RI

J e�ha
b Ka

b

n

Pµ, Z
˙I1 ˙I2 , Z

˙I1 ˙I2
, Zµ, Zµ ˙I

˙J , Z
µ ˙I1... ˙I4

o

eha
b Ka

b e'
I
J RI

J

= (det e)�
1
2

n

eµ
a Pa, f

˙I1 ˙I2
J1J2

ZJ1J2 , fJ1J2
˙I1 ˙I2

, ZJ1J2 , ea
µ Za,

ea
µ f

˙I
K fL

J Z
aK

L, ea
µ f

˙I1... ˙I4
J1...J4

ZaJ1...J4
o

, (3.4.3)

where eµb =
�

eh
�

µ
b, f I

˙J =
�

e'
••
�I

˙J , f
˙I
J =

�

e�'••
�

˙I
J and

e µ1...µn
a1...an

= e
[a1

µ1 ...ean]
µn , f

˙I1... ˙In
J1...Jn

= f
˙I1
[J1 ...f

˙In
Jn]. (3.4.4)

We place a dot on a SL(8) index to denote that it is a world index, rather than a

tangent one. Conjugation with RI1...I4 generator gives

e�'I1...I4 RI1...I4
n

Pa, Z
I1I2 , ZI1I2 , Z

a, ZaI
J , Z

aI1...I4
o

e'I1...I4 RI1...I4
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=
n

Pa, �
I1I2
J1J2

ZJ1J2 + �I1I2|J1J2 ZJ1J2 ,

�J1J2
I1I2

ZJ1J2 + �I1I2|J1J2 Z
J1J2 , Za,

�I
J |K

L ZaK
L + �I

J |J1...J4 Z
aJ1...J4 ,

�I1...I4
J1...J4

ZaJ1...J4 + �I1...I4
K

L ZaK
L

o

, (3.4.5)

where the �-matrices that mix level 1 elements are defined as

�I1I2
J1J2

=

✓

1 +
1

2
P +

1

4!
P 2 +

1

6!
P 3 + ...

◆I1I2

J1J2

,

�I1I2|J1J2 = � 1

24
"J1...J8

✓

1 +
1

3!
P +

1

5!
P 2 +

1

7!
P 3 + ...

◆I1I2

J3J4

'J5...J8 ,

�I1I2|J1J2 = �'J1...J4

✓

1 +
1

3!
P +

1

5!
P 2 +

1

7!
P 3 + ...

◆J3J4

I1I2

, (3.4.6)

where

P I1I2
J1J2

=
1

24
"I1...I8 'I3...I6 'I7I8J1J2 , (3.4.7)

while the �-matrices, responsible for mixing of level 2 elements, are given by

�I
J |K

L =

✓

1 +
1

2
Q+

1

4!
Q2 +

1

6!
Q3 + ...

◆I L

J |K
,

�I1...I4
J1...J4

=

✓

1 +
1

2
R +

1

4!
R2 + ...

◆I1...I4

J1...J4

,

�I
J |J1...J4 =

✓

1 +
1

3!
Q+

1

5!
Q2 +

1

7!
Q3 + ...

◆I L

J |K

✓

4

3
�K
[J1

'|L|J2J3J4] �
1

6
�KL 'J1...J4

◆

,

�I1...I4
I
J = � 1

12

✓

1 +
1

3!
R +

1

5!
R2 +

1

7!
R3 + ...

◆I1...I4

J1...J4

"J1...J4K1K2K3J 'K1K2K3I .

(3.4.8)

where

QI
J |K

L =

✓

1

72
�IJ 'I1...I4 �

1

9
�II1 'JI2I3I4

◆

"I1...I4J1J2J3L 'J1J2J3K ,

RI1...I4
J1...J4

= "I1...I4K1K2K3J 'K1K2K3I

✓

1

72
�IJ 'J1...J4 �

1

9
� I
[J1

'|J |J2J3J4]

◆

, (3.4.9)
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Conjugation with level 1 and level 2 elements is performed by Taylor-expanding the

exponents. The generalised vielbein is

E
⇧

A = (det e)�
1
2

0

B

B

B

B

B

B

B

B

B

B

B

B

@

eµa eµb ↵b|J1J2 eµb ↵b
J1J2 eµb ↵b|a eµb ↵b|aK

L eµb ↵b|aJ1...J4

0 f
˙I1 ˙I2
K1K2

�K1K2
J1J2

f
˙I1 ˙I2
K1K2

�K1K2|J1J2 f
˙I1 ˙I2
K1K2

�K1K2
a f

˙I1 ˙I2
K1K2

�K1K2
aK

L f
˙I1 ˙I2
K1K2

�K1K2
aJ1...J4

0 fK1K2
˙I1 ˙I2

�K1K2|J1J2 fK1K2
˙I1 ˙I2

�J1J2
K1K2

fK1K2
˙I1 ˙I2

�K1K2|a fK1K2
˙I1 ˙I2

�K1K2|aK
L fK1K2

˙I1 ˙I2
�K1K2|aJ1...J4

0 0 0 eaµ 0 0

0 0 0 0 eaµ f
˙I
M fN

˙J �
M

N |K
L eµa f

˙I
M fN

˙J �
M

N |J1...J4

0 0 0 0 eaµ f
˙I1... ˙I4
K1...K4

�K1...K4
K

L eaµ f
˙I1... ˙I4
K1...K4

�K1...K4
J1...J4

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

(3.4.10)

where the symbols in the first line of the matrix are given by

↵a|I1I2 = �AaI1I2 , ↵a
I1I2 = �Aa

I1I2 ,

↵a|b = � ĥ
(ab) �

1

2
A

[aI1I2 Ab]
I1I2 ,

↵a|bI
J =

1

2
AabI

J +
1

2
A

(aKI Ab)
KJ ,

↵a|bI1...I4 =
1

6
AabI1...I4 �

1

2
Aa[I1I2 AbI3I4] +

1

48
"I1...I8 Aa

I5I6 Ab
I7I8 , (3.4.11)

and the second line by

�I1I2
a = �I1I2

J1J2
AJ1J2

a � �I1I2|J1J2 AaJ1J2 ,

�I1I2
aI

J = � �I1I2
KI A

KJ
a � �I1I2|KJ AaKI ,

�I1I2
aJ1...J4

= �I1I2
[J1J2

AaJ3J4] �
1

24
"J1...J8 �

I1I2|J5J6 AJ7J8
a ,

�I1I2|a = � �J1J2
I1I2

AaJ1J2 + �I1I2|J1J2 A
J1J2
a ,

�I1I2|aI
J = � �KJ

I1I2
AaKI � �I1I2|KI A

KJ
a ,

�I1I2|aJ1...J4 = � 1

24
"J1...J8 �

J5J6
I1I2

AJ7J8
a + �I1I2|[J1J2 AaJ3J4]. (3.4.12)
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4 Non-linear realisation and equations of motion

4.1 Non-linear realisation of E11 in 11D

The dynamics of the non-linear realisation of E
11

are described by a set of equations

that are invariant under both the rigid transformations and the local Ic (E11

) symmetry.

Since the Cartan forms of equation (1.3.8) are invariant under the rigid transformations,

we only have to ensure that the equations we construct from them possess the local

Ic (E11

) invariance. On level 0 the Ic (E11

) algebra is isomorphic to SO (1, 10). This

symmetry ensures that the equations of motion are invariant under the local Lorentz

transformations. The higher level transformations, on the other hand, transform the

equations into each other. We are particularly interested in level 1 transformations that

were derived in Section 3.1.1. This symmetry ensures that the equations in the theory

form a multiplet under the local Ic (E11

) transformations. We can express this in the

following general form

�Ei = ⇤ij Ej, (4.1.1)

where Ei, i = 1, 2, ... , are the equations of motion in the multiplet. Equation (4.1.1)

ensures that all Ei can be set to zero without breaking the Ic (E11

) invariance. Thus,

the dynamics of the theory are described by the following set of equations: Ei = 0,

i = 1, 2, ... . To illustrate this point we will present a segment of the multiplet that

consists of the following equations: three form - six form duality relation Da1...a4 , second

order three form equation Ea1a2a3 and the Einstein equation Eab. The linearised versions

of these equations are

Da1...a4 = G
[a1, a2a3a4] �

1

2 · 4! "a1...a4
b1...b7 Gb1, b2...b7 , Ea1a2a3 = @b G

[b, a1a2a3], Eab = Rab,

(4.1.2)

where Rab is the Ricci tensor. The Cartan forms used in this equation were defined in

(3.1.4). The Ic (E11

) transformations of these equations are illustrated by the following

diagram
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Da1...a4 Ea1a2a3 EabE11
E11⇡1

Figure 9: 3 � 6 duality, vector and gravity equations

If one neglects other equations of the multiplet, under Ic (E11

) transformations equations

Ea1a2a3 and Eab transform into each other, while equation Da1...a4 is self-dual. Ea1a2a3

can be obtained from it by applying a projector, denoted as ⇡
1

, that eliminates the six

form. In the next two sections of this chapter we will derive all the equations presented

above and show that their variation closes at full non-linear level.

However, not all equations behave in this simple manner. As we will see later,

the scheme illustrated by equation (4.1.1) will require certain generalisations. More

specifically, some of the equations that involve higher level fields do not completely

close on the other equations of the multiplet. Instead, they produce an additional

“modulo” term [48, 49, 50] in the following way

�Ei = ⇤ij Ej + @⇤̃i. (4.1.3)

In order to ensure the complete closure of these equations one has to apply additional

derivatives to them in order to eliminate the modulo term @⇤̃i from the variation. The

higher level the field is, the more derivatives it requires to eliminate the corresponding

modulo term. This mechanism explains why higher level fields in the E
11

theory have

equations of motion with multiple derivatives.

We will later argue that the modulo term is determined by the generalised gauge

transformations, defined in equation (1.3.17). The gauge invariant equations do not

produce any modulo terms, while the ones that are not invariant produce the modulo

term that can be compensated by a gauge transformation with an appropriate param-

eter. This point will be illustrated in Section 4.1.3.

As E
11

theory contains an infinite set of fields and coordinates, we are only going

to work out the equations up to a certain level. Thus, we will truncate all the fields
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above level 4 and all the coordinates above level 1. The resulting set of equations and

connections between them is given in Figure 10.

Number of
derivatives

1

2

3

Da1...a4

Ea1a2a3

Ea1...a6

Da, b1b2

Eab

Ea1...a8, b

Da1...a11, b1b2

Da1...a10, b1b2b3

Ec1...c11, a, b1b2

Ea1...a9, b1b2b3

Fc1...c11, a1a2, b1b2

Figure 10: 11D E
11

multiplet

The equations in blue hold exactly, while equations in red possess a modulo term. These

equations are classified with respect to the number of derivatives they have. Equations

with one derivative are denoted asD, with two derivatives — as E, and the one equation

with three derivatives we are considering — as F . The vertical arrows indicate the

projectors that allow us to construct higher order equations by applying derivatives to

lower order ones. The horizontal lines indicate the level 1 Ic (E11

) transformations. In

the next three sections we are going to go over the di↵erent sectors of this diagram in

detail, while deriving the equations listed in Figure 10 and calculating their variations.

Due to the power of the E
11

symmetry we will be able to reconstruct the whole mul-

tiplet from a single equation by repeatedly applying the level 1 Ic (E11

) transformations

and projectors to it. Any of the equations can serve as this starting point, so we will try

picking the simplest one. To do so we are going to look for an equation that involves

the three form field Aa1a2a3 and is first order in derivatives. According to equation
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(3.1.9), under the Ic (E11

) transformations Aa1a2a3 transforms into the six form Aa1...a6 ,

and vice versa. This implies that they have to be connected by a duality relation that

transforms into itself under the Ic (E11

) transformations. The most general form of this

relation that is invariant under the local Lorentz transformations is the 3 � 6 duality

relation, mentioned above

Da1...a4 = G
[a1, a2a3a4] + c "a1...a4

b1...b7 Gb1, b2...b7 . (4.1.4)

Coe�cient c cannot be fixed by considering exclusively the local Lorentz invariance. In

the next section we will determine its value by imposing the level 1 Ic (E11

) symmetry

and demanding that this equation transforms into itself. In the eleven-dimensional

supergravity theory the six form field is the magnetic dual of the three form field. One

can see that equation (4.1.4) mirrors the corresponding supergravity duality relation.

We only work up to and including level 1 in the coordinates. As we can see from

equation (3.1.13), the variation of the Cartan forms that involve the level 1 derivative

contains terms with level 0 derivatives. This implies that in order to ensure the level

0 closure of the variation we have to keep the level 1 l
1

terms in the equation that

we are varying. On the other hand, all the level 1 l
1

terms in the variation are

truncated out as we do not have enough accuracy to check their closure above level

0. This means that we have to consider two di↵erent versions of each equation in the

multiplet. We start with an equation of motion that has no higher level derivatives,

generically denoted as D, E or F . In order to close the variation of these equations we

then build the l
1

-extended versions of them, denoted as D, E and F respectively, that

di↵er from their level 0 counterparts by addition of the most general level 1 l
1

term.

We then carry out the variation and demand their closure on the other equations in the

multiplet. This fixes the level 1 l
1

terms that we’re adding.

In order to avoid overly complicated calculations we are often going to adopt the cor-

rect form of the level 1 derivative terms in the l
1

-extended equations from the beginning.

The reader has to keep in mind that these terms are actually uniquely determined

by the calculation itself.
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4.1.1 3 � 6 duality relation and the second order equations for 3 and 6

forms

The starting point of this calculation is the 3 � 6 duality relation Da1...a4 from equation

(4.1.4). We will first consider its Ic (E11

) variation and construct the first order gravity -

dual gravity relation Da, b1b2 that arises from it, then we will build two projectors ⇡
1

, ⇡
2

that eliminate Aa1...a6 or Aa1a2a3 from the equation and, therefore, produce two equations

Ea1a2a3 and Ea1...a6 , which describe the dynamics of the remaining field. Lastly, we will

consider the variation of these equations to find the second order equations for the

graviton Eab (Einstein equation) and the dual graviton Ea1...a8, b.

1

2

3

Da1...a4

Ea1a2a3

Ea1...a6

Da, b1b2

Eab

Ea1...a8, b

Da1...a11, b1b2

Da1...a10, b1b2b3

Ec1...c11, a, b1b2

Ea1...a9, b1b2b3

Fc1...c11, a1a2, b1b2

E11

E11

E11

E11

E11

⇡1, ⇡2

Figure 11: Vector sector of the E
11

multiplet

According to the procedure described earlier, we have to add certain terms with

higher l
1

derivatives to equation (4.1.4) in order to ensure that its variation closes. The

equation with these terms added in, denoted now as D, takes the following form.

Da1...a4 = Ga1...a4 + c "a1...a4
b1...b7 Gb1...b7 +

1

2
G

[a1a2, a3a4], (4.1.5)
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where

Ga1...a4 = G
[a1, a2a3a4] +

15

2
Gb1b2,

b1b2a1...a4 ,

Ga1...a7 = G
[a1, a2...a7] + 28Gb1b2,

b1b2[a1...a6, a7]. (4.1.6)

The coe�cients in these combinations are fixed uniquely during the calculation, but for

the sake of simplicity we will fix their values from the start. The E
11

variations of these

objects are

�Ga1...a4 = � 6G
[a1, (a2|c|) ⇤

c
a3a4] + 105G

[a1, a2a3a4b1b2b3] ⇤
b1b2b3 , (4.1.7)

�Ga1...a7 = � 2G
[a1, a2a3a4 ⇤a5a6a7] + 168

�

G
[a1, a2...a7]b1b2, b3 +Gb1, b2b3[a1...a6, a7]

�

⇤b1b2b3 .

Variation of equation (4.1.5) is given by

�Da1...a4 = 105G
[a1, a2a3a4b1b2b3] ⇤

b1b2b3 � 2 c "a1..a4
b1...b7 Gb1, b2b3b4 ⇤b5b6b7

+ 168 c "a1..a4
b1...b7 (Gb1, b2...b7c1c2, c3 +Gc1, c2c3b1...b6, b7) ⇤

c1c2c3

+ 3 (det e)
1
2 !c, [a1a2 ⇤

c
a3a4]. (4.1.8)

Here !a, b1b2 is the standard general relativity spin connection defined as

!a, b1b2 = (det e)�
1
2
�

�Gb1, (b2a) +Gb2, (b1a) +Ga, [b1b2]

�

. (4.1.9)

When linearised it takes the following form:

!a, b1b2 = � @b1 h(b2a) + @b2 h(b1a) + @a h[b1b2]. (4.1.10)

The terms in the first line of equation (4.1.8) can be recombined in the following way

105G
[a1, a2a3a4b1b2b3] ⇤

b1b2b3 � 2 c "a1..a4
b1...b7 Gb1, b2b3b4 ⇤b5b6b7

= � 2 c "a1...a4
b1...b7

✓

Gb1, b2b3b4 +
1

(2 · 4!)2 c
"b1...b4

c1...c7 Gc1, c2...c7

◆

⇤b5b6b7 . (4.1.11)

The term in the brackets reproduces the original equation (4.1.4), given that the fol-

lowing condition is satisfied

c = ± 1

2 · 4! . (4.1.12)
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We are going to pick the solution with the minus and investigate the properties of the

multiplet that arises from it. The solution with the plus can be processed in a similar

fashion.

If one neglects the level 0 and level 3 terms in the variation, which as we will later

see combine into gravity - dual gravity relation, one finds that the variation of Da1...a4

closes on itself

�Da1...a4 =
1

4!
"a1...a4

b1...b7 Db1...b4 ⇤b5b6b7 + ... , (4.1.13)

where ... refers to the neglected level 0 and level 3 terms. This justifies the statement

made in the introduction to this chapter that the 3�6 duality relation is self-dual under

Ic (E11

) transformations in the absence of gravity.

We will now process the remaining terms in equation (4.1.8). By using the 8, 1

irreducibility of Ga1...a8, b and performing several manipulations with " one can rewrite

the terms in the second line of this equation in the following way

� 7

2
"a1..a4

b1...b7 (Gb1, b2...b7c1c2, c3 +Gc1, c2c3b1...b6, b7) ⇤
c1c2c3

= � 3

4
"
[a1a2|

b1...b9 Gb1, b2...b9, c ⇤
c
|a3a4]. (4.1.14)

Here we picked c = � 1

2·4! .

Combining all the results together we find the following expressions for the 3 � 6

duality equation Da1...a4 and its l
1

-extended version Da1...a4 .

Da1...a4 = G
[a1, a2a3a4] �

1

2 · 4! "a1...a4
b1...b7 Gb1, b2...b7 ,

Da1...a4 = Ga1...a4 �
1

2 · 4! "a1...a4
b1...b7 Gb1...b7 +

1

2
G

[a1a2, a3a4]. (4.1.15)

Its variation is given by

�Da1...a4 =
1

4!
"a1...a4

b1...b7 Db1...b4 ⇤b5b6b7 + 3Dc, [a1a2 ⇤
c
a3a4], (4.1.16)

where we have introduced a new duality relation that connects the graviton field ha
b

with the dual graviton Aa1...a8, b:

Da, b1b2 = (det e)
1
2 !a, b1b2 �

1

4
"b1b2

c1...c9 Gc1, c2...c9, a. (4.1.17)
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Da, b1b2 is the first equation in the E
11

multiplet that cannot be set to zero exactly.

Instead it is satisfied modulo the local Lorentz transformations. This subtle point will

be later explained in Section 4.1.2. Under the local Ic (E11

) transformations equation

(4.1.16) varies into itself and produces a new duality relation. This variation only closes

for the particular value of the coe�cient given in equation (4.1.12).

Ea1a2a3 = (⇡
1

D)a1a2a3 = e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 D⌫µ1µ2µ3

⌘

, (4.1.18)

Ea1...a6 = (⇡
2

D)a1...a6 =
2

7!
e a1...a6
µ1...µ6

"µ1...µ6⌫�1...�4 @⌫
⇣

(det e)�
1
2 D�1...�4

⌘

.

These projectors take an exceptionally simple form in the linearised case. We have

Ea1a2a3 = (⇡
1

D)a1a2a3 = @b Dba1a2a3 ,

Ea1...a6 = (⇡
2

D)a1...a6 =
2

7!
"a1...a6

bc1...c4 @b Dc1...c4 . (4.1.19)

Note that from now on we will always lower the indexes when working with linearised

equations, as their positioning doesn’t make any di↵erence in this case. Applying the

non-linear projectors we find the following:

Ea1a2a3 = (det e)
1
2 eb

µ @µ G
[b, a1a2a3] +

1

2 · 4! "
a1a2a3b1...b8 G

[b1, b2b3b4] G[b5, b6b7b8]

+
1

2
Gb, c

c G[b, a1a2a3] � 3Gb, c
[a1| G[b, c|a2a3]] �Gc, b

c G[b, a1a2a3],

Ea1...a6 = (det e)
1
2 eb

µ @µ G
[b, a1...a6]

+
1

2
Gb, c

c G[b, a1...a6] � 6Gb, c
[a1| G[b, c|a2...a6]] �Gc, b

c G[b, a1...a6], (4.1.20)

while their linearised counterparts give

Ea1a2a3 = @b G[b, a1a2a3], Ea1...a6 = @b G[b, a1...a6]. (4.1.21)

We can now see a general pattern that emerges in the E
11

theory. We have the du-

ality relation (4.1.15) that relates the six form Aa1...a6 to the three form Aa1a2a3 . This

equation is then projected in two di↵erent ways, each of them giving us a second order

equation that describes a single field. Note that even after the second order equations

(4.1.20, 4.1.21) are derived, one cannot simply exclude the original duality equation



62

(4.1.15) from the multiplet. There are two reasons for this. First, duality relation

(4.1.15) ensures that equations (4.1.20) describe the same physical degrees of freedom.

Removing it would e↵ectively double the number of fields. Second, it is impossible to

close the E
11

multiplet without the duality relations, since, as we will see later, some

of the equations vary into them. This includes both the other first order dualities as

well as the second and even third order equations that will be found later on.

In the final part of this section we are going to find the variations of the second order

equations (4.1.20). We will start with the non-linear Ea1a2a3 equation. We are going to

perform the procedure of l
1

-extension of this equation step by step. We will start by

varying the unextended equation Ea1a2a3 from (4.1.20). It contains two di↵erent Cartan

forms: Ga
b and Ga1a2a3 . We’ll start by explicitly performing the variation with respect

to Ga
b. Using equation (3.1.9) we get

�Ea1a2a3 = (det e)
1
2 eb

µ @µ �G
[b, a1a2a3] +

1

4!
"a1a2a3b1...b8 Gb1, b2b3b4 �Gb5, b6b7b8

+
1

2
Gb, c

c �G[b, a1a2a3] � 3Gb, c
[a1| �G[b, c|a2a3]] �Gc, b

c �G[b, a1a2a3]

+ 24⇤b1b2b3 G
[c, b1b2b3] G

[c, a1a2a3] � 108⇤b1b2[a1| G
[b1, b2c1c2] G

[c1, c2|a2a3]]

+ 54⇤b1b2[a1| Gb1, b2c1c2 G
[c1, c2|a2a3]]. (4.1.22)

Here we did not vary the pre-factor (det e)
1
2 ebµ in the derivative term in equation

Ea1a2a3 from (4.1.20). The reason for this is explained in the following short calculation

�
⇣

(det e)
1
2 eb

µ @µ G
[b, a1a2a3]

⌘

= �
�

Eb
µ @µ G

[b, a1a2a3]
�

(4.1.23)

= �Eb
µ @µ G

[b, a1a2a3] + Eb
µ @µ �G

[b, a1a2a3]

= � 3⇤bc1c2 @
c1c2 G[b, a1a2a3] + (det e)

1
2 eb

µ @µ �G
[b, a1a2a3],

whre EA
⇧ is the inverse generalised vielbein, whose transformations were given in equa-

tion (3.1.13). The first term in the last line contains a derivative with respect to the

level 1 coordinate, and, therefore, can be dropped out in our truncation.

One can see that the last term in equation (4.1.22) has a derivative (index b
1

in

Gb1, b2c1c2) contracted with ⇤. This implies that it can be cancelled by adding an ap-

propriate l
1

term to the left hand side. Another useful observation is that all the terms
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that involve the variation of Ga1a2a3 can be rewritten in a compact way. This can be

achieved by replacing the flat indexes with the world ones in �G[b, a1a2a3] from the first

term and pulling the resulting vielbeins through the derivative. We get

�
⇣

Ea1a2a3 � 9Gb[a1|,
bc1c2 G

[c1, c2|a2a3]]
⌘

= e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 �G[⌫, µ1µ2µ3]

⌘

+
1

4!
"a1a2a3b1...b8 Gb1, b2b3b4 �Gb5, b6b7b8 (4.1.24)

+ 24⇤b1b2b3 G
[c, b1b2b3] G

[c, a1a2a3] � 108⇤b1b2[a1| G
[b1, b2c1c2] G

[c1, c2|a2a3]].

We will now process the term from the second line of equation (4.1.24). We have

1

4!
"a1a2a3b1...b8 Gb1, b2b3b4 �Gb5, b6b7b8 = � 1

4
"a1a2a3b1...b8 Gb1, b2b3b4 Gb5, (b6|c|) ⇤

c
b7b8

+
35

8
"a1a2a3b1...b8 Gb1, b2b3b4 G[b5, b6b7b8c1c2c3] ⇤

c1c2c3

� 15

8
"a1a2a3b1...b8 Gb1, b2b3b4 Gc1, c2c3b5...b8 ⇤

c1c2c3 .

(4.1.25)

The term in the third line is also an l
1

term and can be cancelled in the variation. In

the second line we are going to replace the six form G
[b5, b6b7b8c1c2c3] with the three form

using the duality relation (4.1.15). Rewriting it in terms of the six form we get

G
[a1, a2...a7] =

2

7!
"a1...a7

b1...b4 (Db1...b4 �Gb1, b2b3b4) . (4.1.26)

Equation (4.1.25) becomes

1

4!
"a1a2a3b1...b8 Gb1, b2b3b4 �Gb5, b6b7b8 + �

⇣ 5

16
"a1a2a3b1...b8 Gb1, b2b3b4 G

c1c2,
c1c2b5...b8

⌘

= � 1

4
"a1a2a3b1...b8 Gb1, b2b3b4 Gb5, (b6|c|) ⇤

c
b7b8

� 210Gb1, b2b3b4 D
[b1...b4 ⇤a1a2a3] + 210Gb1, b2b3b4 G

[b1, b2b3b4 ⇤a1a2a3]. (4.1.27)

The second term in the last line of equation (4.1.27) can be further processed by ex-
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panding the antisymmetrisation. This gives the following

1

4!
"a1a2a3b1...b8 Gb1, b2b3b4 �Gb5, b6b7b8 + �

⇣ 5

16
"a1a2a3b1...b8 Gb1, b2b3b4 G

c1c2,
c1c2b5...b8

⌘

= � 1

4
"a1a2a3b1...b8 Gb1, b2b3b4 Gb5, (b6|c|) ⇤

c
b7b8 � 210Gb1, b2b3b4 D

[b1...b4 ⇤a1a2a3]

� 24⇤b1b2b3 G
[c, b1b2b3] G

[c, a1a2a3] + 108⇤b1b2[a1| G
[b1, b2c1c2] G

[c1, c2|a2a3]]

� 72⇤b[a1a2 G
[b, c1c2c3] G

[a3], c1c2c3] + 6⇤a1a2a3 G
[c1, c2c3c4] G

[c1, c2c3c4]. (4.1.28)

Two of the new terms cancel precisely with the corresponding ones from equation

(4.1.24). Combining equations (4.1.24) and (4.1.28) we get

�
⇣

Ea1a2a3 � 9Gb[a1|,
bc1c2 G

[c1, c2|a2a3]] +
5

16
"a1a2a3b1...b8 Gb1, b2b3b4 G

c1c2,
c1c2b5...b8

⌘

= e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 �G[⌫, µ1µ2µ3]

⌘

� 210Gb1, b2b3b4 D
[b1...b4 ⇤a1a2a3]

+
3

2

⇣

� 48G
[b, c1c2c3] G

[[a1|, c1c2c3] + 4 �[a1|b G
[c1, c2c3c4] G

[c1, c2c3c4]
⌘

⇤|b|a2a3]

� 1

4
"a1a2a3b1...b8 Gb1, b2b3b4 Gb5, (b6|c|) ⇤

c
b7b8 . (4.1.29)

Lastly, we will now process the remaining term. Taking the variation we find

e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 �G[⌫, µ1µ2µ3]

⌘

+ �
⇣15

2
e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G�1�2,

�1�2
⌫µ1µ2µ3

⌘⌘

= 3 e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e) !�,
[⌫µ1| � (det e)

1
2 G�,

[⌫µ1|
⌘

⇤�|µ2µ3]

+ 105 e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G[⌫, µ1µ2µ3�1�2�3] ⇤�1�2�3

⌘

. (4.1.30)

As per usual, we have extracted an l
1

term. !a, b1b2 has been defined in (4.1.9). In order

to process the term in the last line we’re going to use equation (4.1.26) again. After

some calculations we find

105 e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G[⌫, µ1µ2µ3�1�2�3] ⇤�1�2�3

⌘

=
1

24
e a1a2a3
µ1µ2µ3

"µ1µ2µ3�1�2�3⌫�1...�4 @⌫
⇣

(det e)�
1
2 D�1...�4 g�1⇢1 g�2⇢2 g�3⇢3

⌘

⇤⇢1⇢2⇢3

+
1

4
"a1a2a3b1...b8 Gb1, b2b3b4 Gb5, (b6|c|) ⇤

c
b7b8 . (4.1.31)

Note that ⇤�1�2�3 cannot be taken out of the derivative, as only ⇤�1�2�3 with its indexes

up is a constant. The final step is to process the remaining term from equation equation
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(4.1.30). By extracting two more l
1

terms one finds

3 e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e) !�,
[⌫µ1 � (det e)

1
2 G�,

[⌫µ1

⌘

⇤|�|µ2µ3]

+ �

✓

1

2
e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G[⌫µ1, µ2µ3]

⌘

+
1

4
e a1a2a3
µ1µ2µ3

@�µ1 ((det e) !�,
µ2µ3)

◆

=
3

2
e a1a2a3
µ1µ2µ3

@⌫ ((det e) !�,
⌫µ1) ⇤�µ2µ3

=
3

2
(det e)

�

Rb
[a1| � ec

⌫ eb
� @� !⌫,

[a1|c
�

⇤b|a2a3], (4.1.32)

where Ra
b is the Ricci tensor, defined as a contraction of the Riemann curvature.

Rµ⌫,
ab = @µ !⌫,

ab � @⌫ !µ,
ab + !µ,

a
c !⌫,

cb � !⌫,
a
c !µ,

cb, Rµ
a = eb

⌫ Rµ⌫,
ab. (4.1.33)

One of the l
1

terms in equation (4.1.32) contains a derivative with respect to the level 1

coordinate @a1a2 , that is separate from G. In order to process the variation of this kind

of terms on has to first rewrite them as a sum of terms that have the following form

f
1

(G
tangent

) Ea1a2,⇧ @
⇧

f
2

(G
tangent

). After that one takes the variation of these terms

�
�

f
1

(G
tangent

) Ea1a2,⇧ @
⇧

f
2

(G
tangent

)
�

= f
1

(G
tangent

) 6⇤a1a2b Eb
⇧ @

⇧

f
2

(G
tangent

)

+ higher l
1

terms, (4.1.34)

and, finally, groups them back together into one term. The result of this procedure

gives the following simple recipe for taking the variation of these terms

� (... @µ1µ2 ...) �! ... 6⇤µ1µ2⌫ @⌫ ... . (4.1.35)

The second term in the brackets in the last line of equation (4.1.32) also happens to be

an l
1

term of this kind. Putting all the variations together we find

�Ea1a2a3 =
3

2
Eb

[a1 ⇤|b|a2a3] � 210G
[b1, b2b3b4] D

[b1...b4 ⇤a1a2a3] (4.1.36)

+
1

24
e a1a2a3
µ1µ2µ3

"µ1µ2µ3�1�2�3⌫�1...�4 @⌫
⇣

(det e)�
1
2 D�1...�4 g�1⇢1 g�2⇢2 g�3⇢3

⌘

⇤⇢1⇢2⇢3 ,

where Ea
b is the Einstein equation that has the following form

Ea
b = (det e)Ra

b � 48G
[a, c1c2c3] G

[b, c1c2c3] + 4 �ba G[c1, c2c3c4] G
[c1, c2c3c4]. (4.1.37)
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The last two terms in this equation reproduce the correct expression for the stress-

energy tensor of the three form in eleven dimensions. We can now group all the l
1

terms to construct the l
1

-extended three form equation. The result is

Ea1a2a3 = Ea1a2a3 � 9Gb[a1|,
bc1c2 G

[c1, c2|a2a3]] +
5

16
"a1a2a3b1...b8 Gb1, b2b3b4 G

c1c2,
c1c2b5...b8

+
1

2
e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G[⌫µ1, µ2µ3]

⌘

+
15

2
e a1a2a3
µ1µ2µ3

@⌫
⇣

(det e)
1
2 G�1�2,

�1�2
⌫µ1µ2µ3

⌘

+
1

4
e a1a2a3
µ1µ2µ3

@�µ1 ((det e) !�,
µ2µ3) +

1

4
(det e) eb

⌫ @[a1a2 !⌫,
a3]b. (4.1.38)

Equations (4.1.20) were obtained from equation (4.1.15) by applying the ⇡ projectors

from equation (4.1.18). This implies that the l
1

terms in equation (4.1.38) should also

be obtainable by the same procedure. However, instead of projecting the l
1

terms we

have independently applied the procedure of l
1

-extension to it. We did that because

the projectors from equation (4.1.18) are only defined on level 0. In order to match the

l
1

terms in equations (4.1.15) and (4.1.38) one has to introduce the l
1

extended versions

of ⇡ projectors.

This calculation simplifies a lot in the linear case. The linearised vector equation is

given by

Ea1a2a3 = Ea1a2a3 +
15

2
@b Gc1c2,

c1c2ba1a2a3 (4.1.39)

+
1

4
@b G

[a1a2, (a3]b) +
1

2
@
[a1 G

b
a2, (a3]b) �

1

4
@
[a1 Ga2a3], b

b.

It is important to point out that the l
1

terms of the following form @µ @µ⌫ ... can

be neglected in the limit that we are working in, as their level 0 variations vanish:

� (@µ @µ⌫ ...) = 6⇤µ⌫� @µ @� ... = 0. The l
1

terms in equation (4.1.39) can be obtained

by by linearising the l
1

terms from equation (4.1.38) and throwing out all the terms of

this kind. The variation of equation (4.1.39) is given by

�Ea1a2a3 = 105Ea1a2a3b1b2b3 ⇤
b1b2b3 +

3

2
Eb[a1 ⇤

b
a2a3]. (4.1.40)

One can see that in the linear case the variation of equation (4.1.38) closes on the other

second order equations and doesn’t require having the first order equations in the mul-

tiplet. The non-linear variation of equation (4.1.38), however, cannot be closed without
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the first order equations. This is the first example of a second order equation that has

the first order dualities in its variation. Later we will see that E
11

multiplet contains

equations, whose variation contains the first order equations even at the linearised level.

The linearised variation of the six form equation of motion from (4.1.20) under the

Ic (E11

) transformations is given by

�Ea1...a6 =
8

7
⇤

[a1a2a3 Ea4a5a6] � 1728Ea1...a6b1b2, b3 ⇤
b1b2b3 , (4.1.41)

where we used the following expression for the l
1

extension of this equation

Ea1...a6 = Ea1...a6 +
1

7
@
[a1 Ga2a3, a4a5a6]�24 @c1c2 G

[a1, a2...a6]c1c2d,
d+24 @c1c2 Gd,

dc1c2[a1...a5, a6],

(4.1.42)

and we introduced a new second order equation, that describes the dynamics of the

dual graviton

Ea1...a8, b = � 1

4
@
[c G[c, a1...a8], b] = � 1

4
@
[c @[c Aa1...a8], b]. (4.1.43)

One can show that this equation obeys the same GL (11) irreducibility condition as the

Aa1...a8, b field itself. In order to do that we manually expand the antisymmetrisations

in equation (4.1.43) to get

Ea1...a8, b = � 1

72
@2 Aa1...a8, b +

1

9
@b @[a1 Aa2...a8]c,

c

+
1

72
@c @b Aa1...a8, c �

1

9
@c @

[a1 Aa2...a8]c, b. (4.1.44)

We can now see that

E
[a1...a8, b] = � 1

72
@2 A

[a1...a8, b] +
1

9
@
[b @a1 Aa2...a8]c,

c (4.1.45)

� 5

36
@c @

[c Aa1...a8, b] �
1

72
@2 A

[a1...a8, b] = 0,

where we used the following identity

@
[b Aa1...a8], c � 8 @

[a1 Aa2...a8|c|, b] = 10 @
[b Aa1...a8, c] + @c A[a1...a8, b]. (4.1.46)

This implies that E
[a1...a8, b] = 0 and, therefore, equation (4.1.43) belongs to the irre-

ducible 1760 representation of GL (11).
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4.1.2 Gravity - dual duality relation and the second order equations for

the graviton and the dual graviton fields

We are going to start this section by examining how the gravity - dual gravity relation

Da, b1b2 is a↵ected by the modulo transformations mentioned before. We will then

proceed to find its variation and show that it closes on the previously derived vector

duality relation Da1...a4 from equation (4.1.15), as well as two new level 4 equations

Da1...a11, b1b2 and Da1...a10, b1b2b3 . We will later build two new projectors ✓
1

and ✓
2

, one of

which will give us the Einstein equation (4.1.37), previously obtained from the variation

of the second order three form equation Ea1a2a3 , while the other — the second order dual

graviton equation (4.1.43), found before by varying the second order six form equation

Ea1...a6 . We will then take the variations of these two equations to find that they are

closing on the previously found equations from the vector sector and produce two new

second order level 4 equations Ea1...a9, b1b2b3 and Ec1...c11, a, b1b2 . Lastly, we will discuss two

of the commutative diagrams that arise in the E
11

multiplet. All the calculations in

this section will be done at the linearised level, except for the variation of the Einstein

equation which will be done both linearly and non-linearly.

1

2

3

Da1...a4

Ea1a2a3

Ea1...a6

Da, b1b2

Eab

Ea1...a8, b

Da1...a11, b1b2

Da1...a10, b1b2b3

Êa1...a9, b1b2b3
Ea1...a9, b1b2b3

Ec1...c11, a, b1b2

Fc1...c11, a1a2, b1b2

E11 E11

E11

E11

E11 E11

✓1, ✓2

Figure 12: Gravity sector of the E
11

multiplet
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We recall that the local Lorentz transformations were not used to fix our choice of

group element of equation (3.1.2) and as such they are still an explicit symmetry. These

transform the spin connection of equation (4.1.17) by an inhomogeneous term. At the

linearised level we have �!a, b1b2 = @a ⇤̂b1b2 + ... , where + ... indicates the homogeneous

part of the variation. As a result equation (4.1.17) is not invariant under the local

Lorentz transformations and we should consider it as being valid only modulo said

transformations. In other words, instead of setting it to zero directly, we find that

Da, b1b2 =̇ 0 () Da, b1b2 � @a ⇤̂b1b2 = 0, (4.1.47)

where we have introduced a new notation =̇ which means that the equation is equal to

zero up to a certain transformation. This strategy was first advocated in [49]. This new

approach poses a di�culty when it comes to the interpretation of equation (4.1.16).

It contains two di↵erent equations (Da1...a4 and Da, b1b2). The first one is satisfied

exactly (Da1...a4 = 0), while the second one — modulo local Lorentz transformations

(Da, b1b2 =̇ 0). In order to preserve the consistency of this equation we can make the

following adjustment

�Da1...a4 =
1

4!
"a1...a4

b1...b7 Db1...b4 ⇤b5b6b7 + 3
⇣

Dc, [a1a2 � @c ⇤̂[a1a2

⌘

⇤c
a3a4]. (4.1.48)

By moving ⇤̂ into the variation we get

�

✓

Da1...a4 +
1

2
@
[a1a2 ⇤̂a3a4]

◆

=
1

4!
"a1...a4

b1...b7 Db1...b4 ⇤b5b6b7 + 3Dc, [a1a2 ⇤
c
a3a4]. (4.1.49)

As one can see, we were able to compensate for the modulo invariance of equationDa, b1b2

by adding an extra l
1

term to equation Da1...a4 . As we are truncating all the derivatives

with respect to higher level coordinates, this change doesn’t a↵ect the dynamics of

the fields, while ensuring that the variation of Da1...a4 is consistent with the modulo

transformations of Da, b1b2 .

Modulo equations like (4.1.17) also acquire the modulo terms in their own variations.

We will now illustrate this by taking the variation of the linearised equation (4.1.17).
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First we extend this equation by the necessary l
1

terms. We get

Da, b1b2 = (det e)
1
2 ⌦a, b1b2 � 1

4

"b1b2
c1...c9 Gc1, c2...c9, a

� "b1b2
c1...c9

h

55

3

�

1

9

Gd1d2,
c1...c9, d1d2a +

1

8

Gd1d2,
c1...c8a, d1d2c9

�

+10
�

1

9

Gd1d2,
c1...c9d1, d2a +

1

8

Gd1d2,
c1...c8ad1, d2c9

�

+ 55

4

�

1

9

Gd1d2,
d1d2c1...c9, a +

1

8

Gd1d2,
d1d2ac1...c8, c9

�

i

,

(4.1.50)

where we have introduced the l
1

-extended spin-connection ⌦a, b1b2 .

(det e)
1
2 ⌦a, b1b2 = (det e)

1
2 !a, b1b2�3Gc

a, b1b2c+6Gc
[b1, b2]ac+2 ⌘a[b1 G

c1c2,
b2]c1c2 . (4.1.51)

Its variation is given by

�
⇣

(det e)
1
2 ⌦a, b1b2

⌘

= � 36⇤c1c2
a G[b1, b2c1c2] + 72⇤c1c2

[b1 G[b2], ac1c2]

� 16 ⌘a[b1 ⇤
c1c2c3 G

[b2], c1c2c3]. (4.1.52)

The variation of equation (4.1.50) is

�Da, b1b2 = � 36⇤a
c1c2 Db1b2c1c2 � 8 ⌘a[b1 Db2]c1c2c3 ⇤

c1c2c3

� 55

2
"d1...d10

[b1 ⇤b2]
c1c2 Dd1...d10, ac1c2 �

55

18
⌘a[b1 "b2]

d1...d10 ⇤c1c2c3 Dd1...d10, c1c2c3

+
3

4
"d1...d11 ⇤b1b2

c Dd1...d11, ac + @a ⇤̃b1b2 , (4.1.53)

where we have introduced a new 3� 9, 3 duality equation, as well as an equation that

describes the dynamics of the Aa1...a10, b1b2 field

Da1...a10, b1b2b3 = G
[a1, a2...a10], b1b2b3 �

144

5 · 11! "a1...a10
c G

[c, b1b2b3],

Da1...a11, b1b2 = G
[a1, a2...a11], b1b2 . (4.1.54)

Both these equations are also subject to the modulo transformations. They will be

investigated in the next section. The 11, 1 field was eliminated by the l
1

corrections

and didn’t appear in the final variation. As we will see later this is a general pattern

that indicates that this field is non-dynamical.
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The modulo term of equation (4.1.53) @a ⇤̃b1b2 is given by

@a ⇤̃b1b2 = � "b1b2
c1...c9

"

1

12
Ga, c1...c6 ⇤c7c8c9 +

55

36
Ga, c1...c9, d1d2d3 ⇤

d1d2d3

+
55

8
Ga, d1d2d3c1...c8, c9 ⇤

d1d2d3

#

. (4.1.55)

We were able to account for the modulo transformations of equation (4.1.17) both in

its variation and in the variation of the 3 � 6 duality equation (4.1.15). The general

form of the modulo transformations will be discussed later in Section 4.1.3.

Next we are going to define two projectors ✓
1

, ✓
2

, similar to ones defined in (4.1.18),

which will allow us to obtain the second order equations for the graviton and dual

graviton fields. At the linearised level they have the following form

Ea
b = (✓

1

D)a
b = @a Dc,

bc � @c Da,
bc = @a !c,

bc � @c !a,
bc = Ra

b, (4.1.56)

Ea1...a8, b = (✓
2

D)a1...a8, b =
1

2 · 9! "a1...a8
cd1d2 @

[b Dc], d1d2 = � 1

4
@
[c G[c, a1...a8], b].

The non-linear form of these projectors hasn’t been investigated.

Now we will consider the variations of the non-linear second order gravity equation

(4.1.37). The l
1

extension of this equation has the following form.

Eab = (det e) Ra
b � 48G

[a, c1c2c3] G
[b, c1c2c3] + 4 �ba G[c1, c2c3c4] G

[c1, c2c3c4]

� 360Gd1d2,
d1d2ac1c2c3 G

[b, c1c2c3] � 360Gd1d2,
d1d2

bc1c2c3 G
[a, c1c2c3]

+ 60 �ba G
d1d2

, d1d2c1...c4 G
[c1, c2c3c4] � 12Gc1c2, ac3 G

[b, c1c2c3] + 3Gc1c2, d
d G

[a,
bc1c2]

� 6 (det e) ea
� ebµ @

[µ|

h

(det e)�
1
2 G�1�2,

|�1�2�]

i

� (det e)
1
2 !c, b

c Gd1d2,
d1d2a � 3 (det e)

1
2 !a, b

c Gd1d2,
d1d2c, (4.1.57)

where Ra
b is the l

1

-extended Ricci tensor, obtained by taking the standard definition

(4.1.33) and replacing !a, b1b2 with its l
1

-extended counterpart ⌦a, b1b2 from equation

(4.1.51).
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The variation of equation (4.1.57) is

�Eab = � 36Eac1c2 ⇤
bc1c2 � 36Ebc1c2 ⇤ac1c2 + 8 �ba ⇤

c1c2c3 Ec1c2c3

� 2 "ac1...c7d1d2d3 G
[b, c1c2c3] Dc4...c7 ⇤d1d2d3

� 2 "bc1...c7d1d2d3 G
[a, c1c2c3] Dc4...c7 ⇤d1d2d3

+
1

3
�ba "

c1...c8d1d2d3 Gc1, c2c3c4 Dc5...c8 ⇤d1d2d3 . (4.1.58)

When linearised, equation (4.1.57) and its variation take the following form

Eab = Rab + 6 @c1c2 G
[c1, c2ab],

�Eab = �36Eac1c2 ⇤b
c1c2 � 36Ebc1c2 ⇤a

c1c2 + 8 ⌘ab ⇤
c1c2c3 Ec1c2c3 . (4.1.59)

This equation has non-trivial symmetry properties. Unextended Einstein equation

(4.1.37) with its second index lowered Eab = ⌘bc Ea
c is clearly symmetric in ab. This

follows from the corresponding property of the Ricci tensor. On the other hand, the

extended version of the Ricci tensor Rab no longer possesses the ab symmetry. However,

it turns out that this symmetry is explicitly restored by the additional l
1

terms, intro-

duced in equation (4.1.57). Although the full non-linear proof is quite complicated, this

can be easily shown at the linearised level. We have

Eab = Rab + 6 @c1c2 G
[c1, c2ab]

= Rab � 3 @
(a G

c1c2,
b)c1c2 + 6 @c1 Gc2

(a, b)c1c2

� ⌘ab @
d Gc1c2,

c1c2d + 6 @c1 G
c1c2,

c2ab. (4.1.60)

The last term in this equation is antisymmetric, but it also is of the form @µ @µ⌫ ... , and,

therefore, according to the argument given in the previous section, can be dismissed.

The rest of the terms are symmetric. This shows that the l
1

terms added to equation

(4.1.57) possess the same ab symmetry as the level 0 part of the equation.

We will now find the variation of the linearised equation (4.1.43) for the dual
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graviton field Aa1...a8, b. Carrying out the l
1

-extension procedure we find

Ea1...a8, b = Ea1...a8, b �
7

72
⌘b[a1 @

c
a2 G[|c|, a3...a8]]

+
55

48
@c1c2

⇣

20G
[d, a1...a8c1], c2b

d +
10

3
G

[d, a1...a8b], c1c2
d

+Gb, a1...a8d, c1c2
d �Gd,

da1...a8, c1c2b

⌘

+
5

8
@c1c2

✓

Gd,
dc1a1...a8, c2b +

1

9
Gd,

c1a1...a8b, c2d

◆

� 5

9
@c1c2

⇣

G
[a1, a2...a8]bc1d, c2

d �Gb, a1...a8c1d, c2
d
⌘

+
55

72
@c1c2

⇣

Gd,
c1c2da1...a8, b �Gd,

c1c2db[a1...a7, a8]

+
1

8
Gd,

c1c2ba1...a8, d �
9

8
Gb, c1c2a1...a8d,

d
⌘

. (4.1.61)

The variation of this equation is given by

�Ea1...a8, b = � 7

4
⌘b[a1 Ea2...a6|c| ⇤

c
a7a8]

+ 275
⇣

Êd
a1...a8c1, dc2c3b �

1

9
Êd

a1...a8b, dc1c2c3

⌘

⇤c1c2c3

+
165

8

⇣

@d G
[d, a1...a8c1c2], c3b � @b G[d, a1...a8c1c2], c3

d

� 2

9
@c1 G[c2, a1...a8bd], c3

d
⌘

⇤c1c2c3 , (4.1.62)

where we have introduced the second order 3� 9, 3 duality equation

Ea1...a10, b1...b4 = @
[b1 G[a1, a2...a10], b2b3b4] �

36

5 · 11! "a1...a10
c @c G[b1, b2b3b4]. (4.1.63)

The variation of 8, 1 equation, given in equation (4.1.62), doesn’t contain equation

(4.1.63) directly, but rather its combination with 3 � 6 duality equation (4.1.15) that

forms the alternative 6� 9, 3 duality, defined as follows

Êa1...a10,
b1...b4 = Ea1...a10,

b1...b4 +
36

5 · 11! "a1...a10
c @c D

b1...b4

= @[b1 G
[a1, a2...a10]

b2b3b4] +
3

55
@c G

[a1, a2...a7 �
b1 . . . b4
a8a9a10]c

+
21

220
@c G

[c, [a1...a6] �
b1... b4
a7...a10]

, (4.1.64)
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As one can see from the variation (4.1.62), equation (4.1.63) enters it in a contracted

form.

Ea1...a9,
b1b2b3 = Eca1...a9,

cb1b2b3

= @[c G
[c, a1...a9],

b1b2b3] � 36

5 · 11! "a1...a9c1c2 @
c1 G[c2, b1b2b3]. (4.1.65)

This is the real dynamical equation that belongs to the E
11

multiplet and describes the

dynamics of the Aa1...a9, b1b2b3 field. The three form can be fully eliminated from equation

(4.1.63) by tracing it on four indexes. The resulting equation contains exclusively the

Cartan form of the Aa1...a9, b1b2b3 field.

Eb1...b4a1...a6,
b1...b4 = @b1 G

[b1, b2b3b4a1...a6],
b2b3b4 . (4.1.66)

Further analysing equation (4.1.61) and its variation (4.1.62) one can notice that the

contribution of the 11, 1 field Aa1...a11, b has been completely eliminated by the l
1

correc-

tions. This implies that there is no equation that describes the dynamics of this field

in the E
11

multiplet, i.e. it is non-dynamical.

The last field that we have to process is the 10, 2 field Aa1...a10, b1b2 . From equation

(4.1.62) one can conclude that the dynamics of this field are described by the following

equation

@d G
[d, a1...a8[c1c2], c3]b � @b G[d, a1...a8[c1c2], c3]

d � 2

9
@
[c1 G[c2|, a1...a8bd], |c3]

d =̇ 0. (4.1.67)

One, however, can show that this equation is equivalent to a much simpler one

Ec1...c11, a, b1b2 =̇ 0, where Ec1...c11, a, b1b2 = � 2 @
[b1 G[c1, c2...c11], b2]a. (4.1.68)

This is the second order equation that describes the dynamics of the Aa1...a10, b1b2 field.

Unlike all the other second order equations we considered before this equation is subject

to modulo transformations. The exact form of these transformations will be discussed

in the next section. Using this equation we can rewrite the variation from equation
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(4.1.62) in the following way

�Ea1...a8, b = � 7

4
⌘b[a1 Ea2...a6|c| ⇤

c
a7a8]

+ 275
⇣

Êd
a1...a8c1, dc2c3b �

1

9
Êd

a1...a8b, dc1c2c3

⌘

⇤c1c2c3

+
165

8

✓

Ed
a1...a8c1c2, c3, db �

1

9
Ed

c1a1...a8b, d, c2c3

◆

⇤c1c2c3 . (4.1.69)

All the second order equations we obtained so far were derived in two independent ways:

first, by projecting the corresponding first order equations and second, by taking the

variations of the other second order equations. This fact gives rise to an internal consis-

tency check of the E
11

multiplet that can be illustrated by the following commutative

diagrams

Da1...a4

Ea1a2a3

Da, b1b2

Eab

Da1...a4

Ea1...a6

Da, b1b2

Ea1...a8, b

E11

E11

⇡1 ✓1

E11

E11

⇡2 ✓2

Figure 13: Two commutative diagrams of the E
11

multiplet

We have shown that the first diagram commutes non-linearly, except for the projector

✓
1

, which is only known at the linear level. The second diagram has been shown to

commute linearly.

4.1.3 Level 4 equations of the E
11

theory. Modulo transformations. Eleven-

dimensional origin of the mass term in Romans supergravity.

We will start this section by discussing the variations of the first order level 4 equa-

tions Da1...a10, b1b2b3 and Da1...a11, b1b2 , found previously in equation (4.1.54). We will then

construct a set of projectors �
1

, �
2

that transform these equations into their second

order counterparts Ea1...a10, b1...b4 from equation (4.1.63) and Ea1...a11, b, c1c2 from equation
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(4.1.68). The variation of Ea1...a11, b, c1c2 is then considered. It is shown to contain a

modulo term, which forces us to define another projector ⇢ in order to obtain a third

order equation Fa1...a11, b1b2, c1c2 that doesn’t produce any modulo terms in its variation.

We will finish this section by discussing the general properties of the modulo transfor-

mations and the connection of Aa1...a10, b1b2 field to Romans supergravity.

1

2

3

Da1...a4

Ea1a2a3

Ea1...a6

Da, b1b2

Eab

Ea1...a8, b

Da1...a11, b1b2

Da1...a10, b1b2b3

Ea1...a9, b1b2b3

Ec1...c11, a, b1b2

Fc1...c11, a1a2, b1b2

Da1...a10, b1...b6
E11 E11

E11
E11

E11

�1, �2

⇢

Figure 14: Level 4 sector of the E
11

multiplet

The biggest di�culty we are going to encounter when varying equation Da1...a10, b1b2b3

and its second order counterpart Ea1...a10, b1...b4 is that there is a new duality relation in

their variations. The E
11

theory predicts an infinite number of fields, some of which

are connected by infinite chains of dualities. Two of these chains are known and were

proposed in [51]. The vector duality chain, pictured in Figure 15, starts with the

3 � 6 duality equation (4.1.15). It links certain fields on levels 3n + 1 and 3n + 2 for

n = 0, 1, 2, ... . The gravity chain, which starts with gravity - dual gravity relation

(4.1.17), links certain fields on levels 3n and 3n+ 3 for n = 0, 1, 2, ... .
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Level0 1 2 3 4 5 6 3n 3n+1 3n+2

A3 A6 A9, 3 A9, 6 .....

A9, ... 9
| {z }

n

, 3 A9, ... 9
| {z }

n

, 6

D3�6

D6�9, 3

D9, 3�9, 6

Figure 15: The vector duality chain

Some of the dualities presented in Figure 15 have been discussed earlier: D
3�6

is

the original vector - dual vector relation (4.1.15), while D
6�9, 3 can be obtained as a

composition of the 3� 6 duality from equation (4.1.15) with the 3� 9, 3 duality from

equation (4.1.54). As the variation of equation (4.1.63) contains both the terms on level

2 and level 5 we are expecting it to close on the 6� 9, 6 duality relation D
6�9, 6, which

can be obtained from Figure 15 as a composition of D
6�9, 3 and D

9, 3�9, 6. This equation

has the following form

Da1...a10, b1...b6 = G
[a1, a2...a10], b1...b6 + p "a1...a10

c G
[c, b1...b6]. (4.1.70)

As we are truncating all the fields on level 5 and higher, we are unable to determine

the value of the coe�cient p or to show that the variation actually closes. Equation

Da1...a11, b1b2 from (4.1.54) also has level 5 equations in its variations. These equations,

however, do not belong to any duality chains and, therefore, do not contain any terms

on level 4 and lower. This implies that according to our truncation procedure they

can simply be removed from the variation. Equation Da1...a11, b1b2 can then be varied

precisely. l
1

-extension of this equation results in the following

Dc1...c11, a1a2 = G
[c1, c2...c11], a1a2 +

20

11 · 11! "c1...c11 G
d
(a1, (a2)d),

�Dc1...c11, a1a2 = � 60

11 · 11! "c1...c11 D(a1|, d1d2 ⇤|a2)
d1d2 � "c1...c11 @(a1 ⇤̃a2), (4.1.71)

where Da, b1b2 is the gravity - dual gravity relation (4.1.17) and @
(a1 ⇤̃a2) is the modulo
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term given by

@
(a1⇤̃a2) = � 60

11 · 11!

✓

G
(a1, |d1d2| ⇤a2)

d1d2 +
1

20
"d1...d11 G

(a1, |d1...d8|, a2) ⇤d9d10d11

◆

.

(4.1.72)

As we stated before, appearance of the modulo term in the variation implies that the

exact equation that describes the dynamics of the fields is higher order in derivatives.

Therefore, we will now define two projectors that act on the first order level 4 equations

in order to obtain the second order ones, previously obtained from the variation of the

second order dual graviton equation (4.1.61). Projectors �
1

and �
2

acts on the first

order level 4 equations (4.1.54) in the following way

Ea1...a10, b1...b4 = (�
1

D)a1...a10, b1...b4 = @
[b1| Da1...a10, |b2b3b4] (4.1.73)

= @
[b1 G[a1, a2...a10], b2b3b4] �

36

5 · 11! "a1...a10
c @c G[b1, b2b3b4],

Ea1...a11, b, c1c2 = (�
2

D)a1...a11, b, c1c2 = � 2 @
[c1| Da1...a11, |c2]b = � 2 @

[c1 G[a1, a2...a11], c2]b.

The first projector gives us equation (4.1.63), while the second one reconstructs the

second order 10, 2 equation (4.1.68). We will now vary equation (4.1.68) to see whether

projector �
2

eliminates the modulo term or not. l
1

-extension procedure results in

Ec1...c11, a, b1b2 = � 2 @
[b1 G[c1, c2...c11], b2]a �

20

11 · 11! "c1...c11
�

@d
a G[b1, (b2]d) � @d

[b1 Gb2], (ad)

�

.

(4.1.74)

The variation of this equation is then given by

�Ec1...c11, a, b1b2 =
60

11 · 11! "c1...c11 @[b1|
�

D|b2], d1d2 ⇤a
d1d2 +Da, d1d2 ⇤|b2]

d1d2
�

+ "c1...c11 @a @[b1 ⇤̃b2], (4.1.75)

where @a @[b1 ⇤̃b2] is the modulo term given by

@a @[b1⇤̃b2] = � 60

11 · 11! @a
✓

G
[b1, |d1d2| ⇤b2]

d1d2 +
1

20
"d1...d11 G

[b1, |d1...d8|, b2] ⇤d9d10d11

◆

.

(4.1.76)

The fact that the second order equation still retains the modulo term implies that one

has to apply another derivative to it. Hence we define projector ⇢ that acts on the
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second order equation (4.1.68) in the following way

Fa1...a11, b1b2, c1c2 = (⇢E)a1...a11, b1b2, c1c2 = � @
[b1 E|a1...a11|, b2], c1c2

= 2 @
[b1 @[c1 D|a1...a11|, c2]b2] = 2 @

[b1 @[c1 G[a1, a2...a11], c2]b2]. (4.1.77)

The l
1

-extension procedure gives the following result

�Fc1...c11, a1a2, b1b2 = � 60

11 · 11! "c1...c11 @[a1| @[b1|
�

D|a2], d1d2 ⇤|b2]
d1d2 +D|b2], d1d2 ⇤|a2]

d1d2
�

,

(4.1.78)

where

Fc1...c11, a1a2, b1b2 = 2 @
[a1 @[b1 G[c1, c2...c11], b2]a2] (4.1.79)

� 20

11 · 11! "c1...c11
�

@d
[b1 @b2] G[a1, (a2]d) + @d

[a1 @a2] G[b1, (b2]d)

�

.

As one can see, ⇢ has eliminated the modulo term. This means that the dynamics of

the 10, 2 field are described by an exact equation that is third order in derivatives. One

can also construct the contructed version of this equation, namely

Fc1...c11, ab = Fc1...c11, ad, b
d. (4.1.80)

The dynamical implications of these equations will be discussed at the end of this

section.

We will now investigate the general properties of the modulo transformations and

their dynamical implications. The clearest sign that an equation is subject to modulo

transformations is it acquiring additional @⇤̃ term in its variation. A prime example of

this would be equation (4.1.53). In [51] it was proposed that this happens due to the

fact that these equations are not invariant under the gauge transformations, defined

in equation (1.3.17). Under this assumption, the modulo transformation works as a

compensation mechanism for the gauge transformation. Applying projectors to these

equations eliminates the gauge degrees of freedom and makes the equations exact. As

we do not have a way to prove this general statement, we will illustrate it at the

linearised level using the particular set of equations that we’ve just derived. The set



80

of gauge parameters that belong to the l
1

multiplet is

⇤a

|{z}

Level 0

, ⇤a1a2
| {z }

Level 1

, ⇤a1...a5
| {z }

Level 2

, ⇤a1...a8 , ⇤a1...a7, b,
| {z }

Level 3

(4.1.81)

⇤a1...a8, b1b2b3 , ⇤a1...a9, b1b2 , ⇤̂a1...a9, b1b2 , ⇤(1)

a1...a10, b
, ⇤(2)

a1...a10, b
, ⇤a1...a11 .

| {z }

Level 4

These parameters mirror the set of the l
1

generators given in Section 3.1. We will

start by finding the gauge transformations laws of all the fields in the multiplet using

equation (1.3.18). Up to some renormalisations of ⇤’s we have

�gha
b = @a ⇤

b, �gAa1a2a3 = @
[a1 ⇤a2a3], �gAa1...a6 = @

[a1 ⇤a2...a6],

�gAa1...a8, b = @
[a1 ⇤a2...a8], b + @b ⇤a1...a8 � @

[a1 ⇤a2...a8]b,

�gAa1...a9, b1b2b3 = @
[a1 ⇤a2...a9], b1b2b3 + @

[b1 ⇤|a1...a9|, b2b3] +
9

7
@
[a1 ⇤a2...a9][b1, b2b3],

�gAa1...a10, b1b2 = @
[a1 ⇤̂a2...a10], b1b2 + @

(b1 ⇤|a1...a10|, b2) �
10

11
@
[a1 ⇤a2...a10](b1, b2),

�gAa1...a11, b = @
[a1 ⇤a2...a11], b + @b ⇤a1...a11 . (4.1.82)

Here we truncated all the terms with the higher level derivatives. We used the equations

of Appendix A in order to calculate (D↵)A
B. We also combined ⇤(1)

a1...a10, b
and ⇤(2)

a1...a10, b

into ⇤a1...a10, b, as their contributions are proportional to each other. Note that the

normalisations of ⇤a1...a10, b are di↵erent in the last two lines. This is not going to a↵ect

the result of the calculation, as none of the equations contain Aa1...a11, b.

A very important pattern emerges from equation (4.1.82): all the fields with one

block of indexes have a single gauge parameter in their transformations, while the fields

with two blocks — two. The number of gauge parameters is always equal to the number

of blocks of indexes that the field has. This also implies that we will need to consider

an increasing number of derivatives to construct the gauge invariant objects out of

these fields. We will now illustrate this point by applying the gauge transformations of

equation (4.1.82) to all the equations in the multiplet. For the first order equations we
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have

�gDa1...a4 = 0, �gDa, b1b2 = � 1

4

@a "b1b2
c1...c9 @c1 ⇤c2...c9 = @a ⇤̃b1b2 ,

�gDa1...a10, b1b2b3 = @
[b1 @[a1 ⇤a2...a10], b2b3],

�gDa1...a11, b1b2 = @
(b1 @[a1 ⇤a2...a11], b2) = � "a1...a11 @(b1 ⇤̃b2),

(4.1.83)

where we have simplified two of the equations by rewriting them using the following

parameters: ⇤̃a1a2 = � 1

4

"a1a2
c1...c9 @c1 ⇤c2...c9 and ⇤̃a =

1

11!

"c1...c11 @c1 ⇤c2...c11, a. Equation

(4.1.83) confirms earlier statement that 3�6 duality equation Da1...a4 is gauge invariant

and, therefore, doesn’t produce a modulo term in its variation. The remaining four

equations are subject to modulo transformations. Transformation of the gravity - dual

gravity duality relation Da, b1b2 is consistent with the modulo term found previously

in equation (4.1.55), while transformation of Da1...a11, b1b2 is consistent with equation

(4.1.72). Applying projectors to the first order equations gives us the second order

equations and eliminates the majority of the modulo terms.

�gEa1a2a3 = (⇡
1

�gD)a1a2a3 = 0, �gEa1...a6 = (⇡
2

�gD)a1...a6 = 0,

�gEab = (✓
1

�gD)ab = 0, �gEa1...a8, b = (✓
2

�gD)a1...a8, b = 0,

�gEa1...a10, b1...b4 = (�
1

�gD)a1...a10, b1...b4 = 0,

�gEa1...a11, b, c1c2 = (�
2

�gD)a1...a11, b, c1c2 = "a1...a11 @b @[c1 ⇤̃c2].

(4.1.84)

The modulo terms are eliminated by the projectors in all cases, except for the 10, 2

equation Ea1...a11, b, c1c2 . It’s gauge transformation matches the result found in equation

(4.1.76). Applying projector ⇢ to Ea1...a11, b, c1c2 results in

�gFa1...a11, b1b2, c1c2 = (⇢ �gD)a1...a11, b1b2, c1c2 = 0. (4.1.85)

Consequently, the contracted version of this equation (4.1.80) Fa1...a11, b1b2 is also gauge

invariant. Transformations (4.1.83, 4.1.84, 4.1.85) imply that the 10, 2 equation

"c1...c11 Dc1...c11, a1a2 transforms like a symmetrised gravity field h
(a1a2), equation

"c1...c11 Ec1...c11, a, b1b2 — like the spin connection !a, b1b2 , equation "c1...c11 Fc1...c11, a1a2, b1b2

— like the Riemann tensor Ra1a2, b1b2 and, finally, equation "c1...c11 Fc1...c11, a1a2 — like

the Ricci tensor Ra1a2 .
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We now consider the consequences of the field equation (4.1.77) for the fieldAa1...a10, b1b2 ,

which essentially states that the analogue of the Riemann tensor vanishes. We recall

that if the Riemann tensor vanishes then one can find a coordinate system in which the

space-time is flat. Applying this to our setting we can conclude that there is a gauge

in which

G
[a1, a2...a11], b1b2 = m "a1...a11 ⌘b1b2 , (4.1.86)

where m is a parameter. This makes it clear that equation (4.1.77) implies that

Aa1...a10, b1b2 field carries no degrees of freedom. Even though we have a field equa-

tion with three derivatives E
11

ensures that there are no additional degrees of freedom

coming from this level 4 field.

We now consider the dimensional reduction to ten dimensions, that is, to the IIA

theory. We find the eleven-dimensional field Aa1...a10, b1b2 gives rise to the following ten-

dimensional fields Aâ1...â10,ˆb1ˆb2
, Aâ1...â10,ˆb

, Aâ1...â10 and Aâ1...â9 , where â, b̂ = 1, ... , 10.

In listing these fields we have taken into account the irreducibility condition of the

Aa1...a10, b1b2 field. From equation (4.1.86) we see from that the field Aâ1...â9 obeys the

equation

Fâ1...â10 = m0 "â1...â10 , (4.1.87)

where Fâ1...â10 = @
[â1 Aâ2...â10] and m0 = 11

10

m.

Type IIA supergravity with cosmological term is known as Romans theory [52].

Equation (4.1.87) implies that dimensional reduction of the Aa1...a10, b1b2 field to ten

dimensions produces a cosmological term and, therefore, has to contain Romans super-

gravity. The proposition that the Aa1...a10, b1b2 field is related to Romans supergravity

was first made in [53].

4.2 Non-linear realisation of E11 in 5D

To illustrate the point that the non-linear realisation of E
11

provides a description for

theories in all dimensions up to eleven we will construct it in five-dimensional case.

We will build the first order vector duality equation, analogues to the 3 � 6 duality
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equation (4.1.15) in elven-dimensional theory. We will then vary it to derive other

duality relations in the multiplet and apply a projector to it to obtain the second order

equation for the vector field. Finally, we will vary this second order equation to show

that, like in eleven dimensions, its variation conteins the Einstein equation. In this

section we are using the commutators from Section 2.1 and the Cartan forms from

Section 3.3.

Vector duality equation is uniquely fixed by Lorentz and Usp (8) invariances. It

establishes a connection between level 1 Aa↵1↵2 field and level 2 Aa1a2 ↵1↵2 field. It has

the following form

DV
a1a2 ↵1↵2

= G
[a1, a2]↵1↵2 ±

1

2
"a1a2

b1b2b3 Gb1, b2b3 ↵1↵2 . (4.2.1)

Like in elven-dimensional case, the coe�cient between the terms is fixed by the condition

of closure under the Ic (E11

) transformations. Here, however, we did not make a choice

of sign in the duality relation. In order to find the variation of this equation one has to

apply the Ic (E11

) transformations found in equations (3.3.9, 3.3.10, 3.3.11, 3.3.12) and

perform the l
1

-extension. We get

DV
a1a2 ↵1↵2

= Ga1a2 ↵1↵2 ±
1

2
"a1a2

b1b2b3 Gb1b2b3 ↵1↵2 +
1

2
G↵1↵2, [a1a2], (4.2.2)

where

Ga1a2 ↵1↵2 = G
[a1, a2]↵1↵2 + 2G

[↵1�, a1a2 ↵2]
� +

1

4
⌦↵1↵2 G

�1�2
,a1a2 �1�2 ,

Ga1a2a3 ↵1↵2 = G
[a1, a2a3]↵1↵2 �G

[↵1|�, a1a2a3 |↵2]
� + 6G�1�2,

a1a2a3 ↵1↵2�1�2 . (4.2.3)

Under the local Ic(E11

) transformations this equation transforms as

�DV
a1a2 ↵1↵2

= ⌥ 2 "a1a2
a3a4a5 DV

a3a4 [↵1�
⇤a5 ↵2]

� ⌥ 1

4
⌦↵1↵2 "a1a2

a3a4a5 DV
a3a4 �1�2

⇤a5
�1�2

� 2DS
[a1 ↵1↵2�1�2

⇤a2]
�1�2 ⌥ 2 "

[a1|
b1...b4 D̂S

b1...b4 [↵1|� ⇤|a2] |↵2]
�

+DG
b, a1a2

⇤b
↵1↵2 . (4.2.4)
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where DS
a↵1...↵4

and D̂S
a1...a4 ↵1↵2

are the scalar equations which are given by

DS
a↵1...↵4

= Ga,↵1...↵4 ⌥ 6 "a
b1...b4 Gb1, b2b3b4 ↵1...↵4 ,

D̂S
a1...a4 ↵1↵2

= G
[a1, a2a3a4]↵1↵2 , (4.2.5)

and DG
a, b1b2

is the gravity - dual gravity relation similar to the eleven-dimensional one

introduced in equation (4.1.17). It is given by

DG
a, b1b2

= (det e)
1
2 !a, b1b2 ⌥

1

2
"b1b2

c1c2c3 Gc1, c2c3, a. (4.2.6)

!a, b1b2 was defined in (4.1.9). The variation of the vector duality relation (4.2.4) contains

two equations that describe the dynamics of the scalar fields in the theory. These

equations did not appear in previous sections, as eleven-dimensional theory has no

scalar fields.

As in the elven-dimensional case the gravity - dual gravity relation is subject to

modulo transformations. One can obtain an exact second order equation that describes

gravity by applying a projector to it. In order to build this equation we will first

construct the second order vector equation and then apply the Ic (E11

) variation to it.

The second order vector and scalar equations are given by

Ea
↵1↵2 = eµ2

a @µ1

⇣

(det e)
1
2 G[µ1, µ2]

↵1↵2

⌘

+G[b, a] �1�2 Gb, �1�2↵1↵2 � 2G[b, a]
[�1|�| Gb,↵2]

�

± (det e)�1 "ac1...c4
✓

Gc1, c2 [↵1|�| Gc3, c4 ↵2]
� +

1

8
⌦↵1↵2 Gc1, c2�1�2 Gc3, c4

�1�2

◆

,

(4.2.7)

and

E↵1...↵4 = @µ
⇣

(det e)
1
2 Gµ

↵1...↵4

⌘

+ 4
⇣

Ga, �[↵1 G
a, �

↵2↵3↵4]

+ 3G
[c1, c2]�̇1�̇2 G

[c1, c2]
˙�1 ˙�2

f �̇1�̇2
[↵1↵2 f

˙�1 ˙�2
↵3↵4]

⌘

proj 42
, (4.2.8)

where “proj 42” implies that the expression in the brackets has to be made irreducible

with respect to ↵
1

...↵
4

indexes. We observe that these are precisely the vector and

scalar equations of five-dimensional maximal supergravity.
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We now vary the vector equation of equation (4.2.7) under the local Ic(E11

) trans-

formations of equation to find that we recover the scalar equation of motion (4.2.8) as

well as the gravity equation which occurs as the coe�cient of ⇤b
↵1↵2

. The results of this

long and subtle calculation that involves several Usp(8) identities is the equation

Ea
b = (det e) Ra

b � 4G
[a, c]↵1↵2 G

[b, c]↵1↵2 +
2

3
�ba G[c1, c2]↵1↵2 G

[c1, c2]↵1↵2

�Ga,↵1...↵4 G
b,↵1...↵4 , (4.2.9)

where Rab is the Ricci tensor. At the linearised level this calculation gives the following

result

Ea↵1↵2 = @c G
[c, a]↵1↵2 �

1

2
@�1�2 Ga,↵1↵2�1�2 +

1

2
@↵1↵2 G

c,
(ca) �

1

2
@↵1↵2 Ga, c

c,

�Ea↵1↵2 = Rba ⇤
b
↵1↵2

� E↵1↵2�1�2 ⇤a
�1�2 , (4.2.10)

where Rab = @a !c, b
c � @c !a, b

c. The linearised variation of the Einstein equation closes

back on the vector equation. In order to see this we first perform the l
1

extension

procedure. It gives the following

Eab = Rab + @↵1↵2 G
[a, b]↵1↵2 = Rab � @↵1↵2 G

(a, b)↵1↵2 , (4.2.11)

where

Rab = @a ⌦c, b
c � @c ⌦a, b

c, ⌦a, b1b2 = !a, b1b2 +
2

3
⌘a[b1 G

↵1↵2,
b2]↵1↵2 . (4.2.12)

The variation of this equation is

�Eab = � 2Ea↵1↵2 ⇤b
↵1↵2 � 2Eb↵1↵2 ⇤a

↵1↵2 +
4

3
⌘ab Ec↵1↵2 ⇤

c↵1↵2 . (4.2.13)

The linearised variation of the scalar equation (4.2.8) likewise closes on the vector

equation. We have

E↵1...↵4 = @c Gc,↵1...↵4 � 6 @
[↵1↵2 G

c,
c↵3↵4] + 6⌦

[↵1↵2 @↵3|�| G
c,
c↵4]

�

+
1

2
⌦

[↵1↵2 ⌦↵3↵4] @
�1�2 Gc,

c �1�2 ,

�E↵1...↵4 = 24Ea [↵1↵2 ⇤
a
↵3↵4] � 24⌦

[↵1↵2 Ea↵3|�| ⇤
a
↵4]

�

� 2⌦
[↵1↵2 ⌦↵3↵4] Ea �1�2 ⇤

a �1�2 . (4.2.14)
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One can see that the five dimensional E
11

theory also leads to a set of equations closed

under the local Ic (E11

) transformations. At low levels these equations mirror the dy-

namics of the corresponding supergravity theory.
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5 Non-linear realisation of the A+++
1 algebra

The basic properties of the E
11

theory can be illustrated using a simple example of the

very extended A
1

algebra, denoted as A+++

1

. It is proposed [30] this model contains

a description of pure four-dimensional gravity, supplemented with the dual graviton

field . It might prove useful for studying this duality relation independently of the

other duality relations that appear in more general E
11

case. We will construct the

commutation relations of this algebra and its l
1

representation up to level 2 in fields

and coordinates and use them to build the non-linear realisation of this algebra.

5.1 A+++
1 algebra

A+++

1

algebra has the following Dynkin diagram

1 2 3 4

GL (4)

which corresponds to the Cartan matrix

A =

0

B

B

B

B

B

B

@

2 �1 0 0

�1 2 �1 0

0 �1 2 �2

0 0 �2 2

1

C

C

C

C

C

C

A

. (5.1.1)

Deleting node four from the diagram given in Figure 5.1 results in a four dimensional

theory that includes the pure four-dimensional gravity, supplemented with the dual

graviton field that can be found on level 1 of the decomposition. The list of generators

up to level 2 is given by
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Level Generators

0 Ka
b

1 Ra1a2

� 1 Ra1a2

2 Ra1a2, b1b2

� 2 Ra1a2, b1b2

where the generators obey the conditionsRa1a2 = R(a1a2), Ra1a2 = R
(a1a2) andRa1a2, b1b2 =

R[a1a2], b1b2 = Ra1a2, (b1b2), Ra1a2, b1b2 = R
[a1a2], b1b2 = Ra1a2, (b1b2). On top of that, level 2

generator obeys the irreducibility constraint

R[a1a2, b1]b2 = R
[a1a2, b1]b2 = 0. (5.1.2)

We will now give the algebra formed by these generators. Taking the commutators with

Ka
b one finds

[Ka
b, K

c
d] = �cb K

a
d � �ad K

c
b,

[Ka
b, R

a1a2 ] = 2 �(a1b R|a|a2), [Ka
b, Ra1a2 ] = � 2 � a

(a1
R|b|a2),

⇥

Ka
b, R

a1a2, b1b2
⇤

= 2 �[a1|b Ra|a2], b1b2 + 2 �(b1|b Ra1a2, a|b2),

[Ka
b, Ra1a2, b1b2 ] = � 2 � a

[a1| Rb|a2], b1b2 � 2 � a
(b1| Ra1a2, b|b2). (5.1.3)

The level 2 (� 2) two commutators must appear from the following commutators of

level 1 (� 1) generators

⇥

Ra1a2 , Rb1b2
⇤

= Ra1b1, a2b2 +Ra2b2, a1b1 , [Ra1a2 , Rb1b2 ] = Ra1b1, a2b2 +Ra2b2, a1b1 . (5.1.4)

The normalisation of the level 2 (�2) generators is fixed by these relations. The reader

may verify that the right-hand side of these commutators do indeed have the sym-

metries of the generators which occur in the left-hand side using the constraints on

the generators given in equation (5.1.2). The commutators between the positive and
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negative level generators are given by

[Ra1a2 , Rb1b2 ] = 2 �(a1
(b1

Ka2)
b2) � �(a1a2)b1b2

Kc
c,

⇥

Ra1a2, b1b2 , Rc1c2

⇤

= �(a2b2)c1c2
Ra1b1 + �(a2b1)c1c2

Ra1b2 � �(a1b1)c1c2
Ra2b2 � �(a1b2)c1c2

Ra2b1 ,

[Ra1a2, b1b2 , R
c1c2 ] = � c1c2

(a2b2)
Ra1b1 + � c1c2

(a2b1)
Ra1b2 � � c1c2

(a1b1)
Ra2b2 � � c1c2

(a1b2)
Ra2b1 . (5.1.5)

The relation of the above generators to the Chevalley generators of A+++

1

is given by

H
1

= K1

1

�K2

2

, H
2

= K2

2

�K3

3

, H
3

= K3

3

�K4

4

,

H
4

= �K1

1

�K2

2

�K3

3

+K4

4

,

E
1

= K1

2

, E
2

= K2

3

, E
3

= K3

4

, E
4

= R44,

F
1

= K2

1

, F
2

= K3

2

, F
3

= K4

3

, F
4

= R
44

. (5.1.6)

One can verify that the satisfy the defining relations

[Ha, Eb] = Aab Eb, [Ea, Fb] = �ab Ha, [Ha, Fb] = �Aab Fb. (5.1.7)

were Aab is the Cartan matrix of A+++

1

given in equation (5.1.1). The Cartan involution

acts on the generators of A+++

1

as follows

Generator Ic
�

Generator
�

Ka
b �Kb

a

Ra1a2 �Ra1a2

Ra1a2, b1b2 Ra1a2, b1b2

The reader may verify that it leaves invariant the above commutators. The l
1

repre-

sentation generators up to level two are given by

Level Generators

0 Pa

1 Za

2 Za1a2a3 , Za1a2, b
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where Za1a2a3 = Z(a1a2a3), Za1a2, b = Z [a1a2], b and Z [a1a2, b] = 0. Their commutators with

the level 0 generator Ka
b are given by

[Ka
b, Pc] = � �ac Pb +

1

2
�ab Pc,

[Ka
b, Z

c] = �cb Z
a +

1

2
�ab Z

c,

[Ka
b, Z

a1a2a3 ] = 3 �(a1b Z |a|a2a3) +
1

2
�ab Z

a1a2a3 ,

[Ka
b, Z

a1a2, c] = 2 �[a1b Z |a|a2], c + �cb Z
a1a2, a +

1

2
�ab Z

a1a2, c. (5.1.8)

The commutators of the level one A+++

1

generators with the l
1

generators can be chosen

to be of the form

[Ra1a2 , Pc] = �(a1c Za2),
⇥

Ra1a2 , Zb
⇤

= Za1a2b + Zb(a1, a2). (5.1.9)

Using the Jacobi identities, the commutator of Pa with the level 2 generator of A+++

1

is found to be

⇥

Ra1a2, b1b2 , Pc

⇤

= � �[a1c Za2]b1b2 +
1

2
�[a1c Za2](b1, b2) � 3

4
�(b1|c Za1a2, |b2). (5.1.10)

The commutators with level-lowering generators are given by

[Ra1a2 , Pb] = 0,
⇥

Ra1a2 , Z
b
⇤

= 2 � b
(a1

Pa2),

⇥

Ra1a2 , Z
b1b2b3

⇤

= 2 �(b1b2a1a2
Zb3),

⇥

Ra1a2 , Z
b1b2, c

⇤

= � 8

3
� c [b1
(a1a2)

Zb2]. (5.1.11)

The very first relation reflects the fact that the l
1

representation is a lowest weight

representation.

5.2 Cartan forms

Having constructed the A+++

1

n l
1

algebra up to level two we can build its non-linear

realisation. The group element g = gL gE can, up to level two, be written in the form

gL = exp
�

xa Pa + ya Z
a + xa1a2a3 Z

a1a2a3 + xa1a2, b Z
a1a2, b

�

,

gE = exp
�

Aa1a2, b1b2 R
a1a2, b1b2

�

exp
�

Aab R
ab
�

exp
�

ha
b Ka

b

�

, (5.2.1)
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The Cartan form is

VE = Ga
b Ka

b +Ga1a2 R
a1a2 +Ga1a2, b1b2 R

a1a2, b1b2 ,

VL = dx⇧ E
⇧

A LA, (5.2.2)

where

Ga
b =

�

e�1 de
�

a
b, Ga1a2 = e (µ1µ2)

(a1a2)
dAµ1µ2 ,

Ga1a2, b1b2 = e µ1µ2
a1a2

e (⌫1⌫2)
(b1b2)

⇣

dAµ1µ2, ⌫1⌫2 � Aµ1⌫1 dAµ2⌫2

⌘

. (5.2.3)

Local level 1 Ic
�

A+++

1

�

transformation is parametrised by

h = 1� ⇤a1a2 S
a1a2 , where Sa1a2 = Ra1a2 � ⌘a1b1 ⌘a2b2 Rb1b2 . (5.2.4)

Under these transformations the Cartan form transforms as follows

�VE = [Sa1a2 ⇤a1a2 ,VE]� Sa1a2 d⇤a1a2 . (5.2.5)

As per usual, we have chosen a gauge in which the group element (5.2.1) is free from

the negative level generators. Parameter ⇤a1a2 is then restricted in order not to break

this gauge choice. We have

d⇤a1a2 � 2⇤
(a1

b G|b|a2) = 0. (5.2.6)

For the transformations of the Cartan forms we have

�Ga
b = 2⇤cb Ḡca � �ba ⇤

c1c2 Ḡc1c2 ,

�Ḡa1a2 = � 2⇤
(a1

b Ga2)b � 4G
(a1|b1|, a2)b2 ⇤

b1b2 � d⇤a1a2

= � 4⇤
(a1

b G
(a2)b) � 4G

(a1|b1|, a2)b2 ⇤
b1b2 ,

�Ga1a2, b1b2 = 2⇤
[a1(b1 Ga2]b2) + ... , (5.2.7)

where + ... corresponds to the level 3 field term that we’re not considering. Bar is used

to distinguish between level 1 and level 0 Cartan forms.

With respect to their l
1

index the Cartan forms transform in the following way

�Ga, • = �⇤ab Ĝ
b,
•, �Ĝa,

• = 2⇤ab Gb, • + ... . (5.2.8)

Here + ... corresponds to the level 2 l
1

term. Hat indicates that the l
1

index corresponds

to the level 1 generalised coordinate ya.



92

5.3 Generalised vielbein

We will use the definition of equation (1.3.9) which involves conjugating the l
1

generators

with gE using the above algebra. Conjugation with level 0

exp
�

�ha
b Ka

b

�

n

Pµ, Z
µ, Zµ1µ2µ3 , Zµ1µ2, ⌫

o

exp
�

ha
b Ka

b

�

= (det e)�
1
2

n

eµ
a Pa, ea

µ Za, e (µ1µ2µ3)

(a1a2a3)
Za1a2a3 , e µ1µ2, ⌫

a1a2, b
Za1a2, b

o

, (5.3.1)

where vielbein eab and its combinations were defined in equation (3.1.5). Conjugating

with positive level generators can be obtained by Taylor-expanding the exponents and

truncating the series by level 2. For the E
11

level one generators we have

exp
�

�Ab1b2 R
b1b2
�

n

Pa, Z
a
o

exp
�

Ab1b2 R
b1b2
�

=
n

Pa � Aab Z
b +

1

2
Aab1 Ab2b3 Z

b1b2b3 +
1

2
Aab1 Ab2c Z

b1b2, c,

Za � Ab1b2 Z
ab1b2 � Ab1b2 Z

ab1, b2
o

. (5.3.2)

while for the level 2 generator:

exp
�

Aa1a2, b1b2 R
a1a2, b1b2

�

Pa exp
�

Aa1a2, b1b2 R
a1a2, b1b2

�

= Pa + Aab1, b2b3 Z
b1b2b3 + Ab1b2, ac Z

b1b2, c. (5.3.3)

Combining these results together we find that the generalised vielbein up to level two

is given by

E
⇧

A = (det e)�
1
2

0

B

B

B

B

B

B

@

eµa eµc ↵c|a eµc ↵c|a1a2a3 eµc ↵c|a1a2, b

0 eaµ ecµ �c
a1a2a3 ecµ �c

a1a2, b

0 0 e (µ1µ2µ3)

(a1a2a3)
0

0 0 0 e µ1µ2, ⌫
a1a2, b

1

C

C

C

C

C

C

A

, (5.3.4)

where the symbols in the first line are given by

↵a|b = �Aab,

↵a|a1a2a3 = Aa(a1, a2a3) +
1

2
Aa(a1 Aa2a3),

↵a|a1a2, b = Aa1a2, ab +
1

2
Aa[a1 Aa2]b, (5.3.5)
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while the symbols in the second line are given by

�a
a1a2a3 = � � a

(a1
Aa2a3)

, �a
a1a2, b = � � a

[a1
Aa2]b. (5.3.6)
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6 Conclusions

We have studied the non-linear realisation of the E
11

algebra and its vector represen-

tation. The set of generators of this algebra and their commutators has been found in

ten-dimensional case up to level 4, which corresponds to its decomposition into repre-

sentations of GL (10)⇥ SL (2), and in five-dimensional case up to level 3, decomposed

into representations of GL (5) ⇥ E
6

. We have then constructed the non-linear realisa-

tion in eleven, then and five dimensions, as well as for the A+++

1

algebra. This included

the generalised vielben, the Cartan forms and their transformations under the local

symmetry group of the non-linear realisation. The generalised vielbein was also found

in four dimensions.

In eleven dimensions the non-linear realisation of E
11

n l
1

has been studied in detail

up to level 4 in fields. One finds a set of E
11

invariant equations that are first order in

derivatives and transform into each other under the local transformations of the non-

linear realisation. The majority of these equations are duality relations that involve

two di↵erent fields, except for one standalone equation that involves a single level

4 field Aa1...a10, b1b2 . One then finds that these equations only hold modulo certain

transformations, with an exception of the 3 � 6 duality relation Da1...a4 that holds

exactly. The modulo transformations have been shown to be related to the gauge

transformations of the E
11

fields. One then introduces a set of projectors that acts

on the first order equations in such a way that modulo terms are eliminated from the

variation. This leads us to a system of the second order equations that is likewise closed

under the local transformations. The resulting system is shown to contain the set of

equations of eleven-dimensional supergravity theory. An exception to this is the second

order equations that describes the dynamics of the level 4 field Aa1...a10, b1b2 , which is

still subject to modulo transformations, even after being projected. This forces us to

apply another projector to it, which leads to a third order equation for this field. The

solution of this equation indicates that the Aa1...a10, b1b2 field is non-dynamical, and,

therefore, doesn’t create any new degrees of freedom in the theory. Its dimensional
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reduction to ten dimensions is shown to generate the cosmological term that matches

the one found in Romans supergravity. Likewise, all the other level 4 fields are shown

to have no dynamical degrees of freedom, as they either drop out from the variations

or are dual to the lower level fields. This fact supports the proposition that the only

dynamical degrees of freedom in the E
11

are the ones of the supergravity theory. A

similar calculation has been performed in the five-dimensional case. The multiplet has

been shown to have the similar structure to the eleven-dimensional one.

In carrying out this calculation we began from the E
11

algebra and its vector rep-

resentation l
1

and constructed the dynamics of the non-linear realisation at low levels

with only one other assumption was that the local subgroup in the non-linear realisa-

tion is the Cartan involution invariant subgroup Ic (E11

). The bosonic sectors of the

maximal supergravity theories follow from this construction, at low levels, in a unique

way and, therefore, one can even say that they are encoded in the E
11

Dynkin diagram.

This result strongly supports the proposition that the low-energy limit of the theory of

strings and branes possesses the E
11

symmetry.

There is a number of directions in which the results obtained in case of the eleven-

dimensional non-linear realisation can be taken. The most interesting of them are

• Constructing the non-linear version dual of the dual graviton equation Ea1...a8, b

(4.1.43). In order to do so one has to close the non-linear variation of Ea1...a6

equation from (4.1.20). Another way to obtain it is to construct the non-linear

versions of ✓
1

, ✓
2

projectors from equation (4.1.56). Matching the results of these

calculations will ensure that both commutative diagrams from Figure 13 are sat-

isfied at the non-linear level.

• Understanding the modulo transformations at the non-linear level.

• Investigating the higher level duality relations like equation (4.1.70) and demon-

strating the closure of the variations of Da1...a10, b1b2b3 and Ea1...a9, b1b2b3 from equa-

tions (4.1.54, 4.1.65).
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• Considering the multiplet up to level 5 in fields and testing the hypothesis that

the higher level E
11

fields do not contain any extra degrees of freedom.

• Matching the l
1

terms in the first and second order equations by ensuring that

the projectors that we have defined act correctly on the l
1

part of the equations.

One can also consider a number of directions in di↵erent dimensions.

• Testing the equations of the five-dimensional theory in the non-linear case. Apart

from the non-linear variation of the second order vector equation found in Sec-

tion 4.2 one can consider variations of the second order scalar E↵1...↵4 and gravity

equations Ea
b (4.2.8, 4.2.9), as well as the first order gravity - dual gravity rela-

tion DG
a, b1b2

and scalar equation Da↵1...↵4(4.2.6, 4.2.5). One could also build the

projectors that connect them and investigate the modulo terms in their variations.

• Building the first order graviton - dual graviton equation in the A+++

1

case. Unlike

the E
11

case, in which this equation varies into the vector duality relation, in the

A+++

1

case it must be self-dual under the Ic
�

A+++

1

�

transformations. Thus, it

might provide some new insights into the dynamics of the dual graviton field.

• Finally, one could build the dynamics of the non-linear realisation of E
11

in dif-

ferent important cases, like 4D, 10D type IIA or 10D type IIB.
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Appendixes

A E11 algebra in 11D

In this appendix we give the E
11

ns l1 algebra decomposed into representations of

GL (11). It has previously been constructed up to level 3 in [17] and then finalised in

Chapter 16.7 of [32]. Here we give all the commutators of the generators up to level

4. This is a result of a joint work with Nikolay Gromov and Peter West that is yet to

appear [39]. The commutators of the E
11

generators with the generators of Ka
b are

[Ka
b, K

c
d] = �cb K

a
d � �ad K

c
b,

[Ka
b, R

a1a2a3 ] = 3 �[a1b R|a|a2a3], [Ka
b, Ra1a2a3 ] = � 3 � a

[a1
R|b|a2a3],

[Ka
b, R

a1...a5 ] = 5 �[a1b R|a|a2...a5], [Ka
b, Ra1...a5 ] = � 5 � a

[a1
R|b|a2...a5],

[Ka
b, R

a1...a8 ] = 8 �[a1b R|a|a2...a8], [Ka
b, Ra1...a8 ] = � 8 � a

[a1
R|b|a2...a8],

[Ka
b, R

a1...a7, c] = 7 �[a1b R|a|a2...a7], c + �cb R
a1...a7, a,

[Ka
b, Ra1...a7, c] = � 7 � a

[a1
R|b|a2...a7], c � �ac Ra1...a7, b,

[Ka
b, R

a1...a9, c1c2c3 ] = 9 �[a1b R|a|a2...a9], c1c2c3 + 3 �[c1|b Ra1...a9, a|c2c3],

[Ka
b, Ra1...a9, c1c2c3 ] = � 9 � a

[a1
R|b|a2...a9], c1c2c3 � 3 �a

[c1| Ra1...a9, b|c2c3],

[Ka
b, R

a1...a10, c1c2 ] = 10 �[a1b R|a|a2...a10], c1c2 + 2 �(c1|b Ra1...a10, a|c2
�

,

[Ka
b, Ra1...a10, c1c2 ] = � 10 � a

[a1
R|b|a2...a10], c1c2 � 2 �a

(c1| Ra1...a10, b|c2),

[Ka
b, R

a1...a11, c] = 11 �[a1b R|a|a2...a11], c + �cb R
a1...a11, a,

[Ka
b, Ra1...a11, c] = � 11 � a

[a1
R|b|a2...a11], c � �ac Ra1...a11, b. (A.1)

The positive level commutators are given by

[Ra1a2a3 , Ra4a5a6 ] = 2Ra1...a6 ,
⇥

Ra1a2a3 , Rb1...b6
⇤

= 6Ra1a2a3[b1...b5, b6],

⇥

Ra1a2a3 , Rb1...b8, c
⇤

=
3

2
Rb1...b8[a1, a2a3]c � 1

6
Rb1...b8c, a1a2a3

+Rb1...b8[a1a2, a3]c +Ra1a2a3b1...b8, c � 1

3
Rb1...b8c[a1a2, a3],

⇥

Ra1...a6 , Rb1...b6
⇤

= 5Ra1...a6[b1...b5, b6] + 4Ra1...a6[b1b2b3, b4b5b6], (A.2)
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while the negative level ones are

[Ra1a2a3 , Ra4a5a6 ] = 2Ra1...a6 , [Ra1a2a3 , Rb1...b6 ] = 6Ra1a2a3[b1...b5, b6],

[Ra1a2a3 , Rb1...b8, c] =
3

2
Rb1...b8[a1, a2a3]c �

1

6
Rb1...b8c, a1a2a3

+Rb1...b8[a1a2, a3]c +Ra1a2a3b1...b8, c �
1

3
Rb1...b8c[a1a2, a3],

[Ra1...a6 , Rb1...b6 ] = 5Ra1...a6[b1...b5, b6] + 4Ra1...a6[b1b2b3, b4b5b6], (A.3)

The commutators between the positive and negative level generators up to level 3 are

given by

[Ra1a2a3 , Rb1b2b3 ] = 18 �[a1a2
[b1b2

Ka3]
b3] � 2 �a1a2a3b1b2b3

Ka
a,

[Ra1a2a3 , Rb1...b6 ] = 60 � a1a2a3
[b1b2b3

Rb4b5b6],
⇥

Ra1a2a3 , R
b1...b6

⇤

= 60 �[b1b2b3a1a2a3
Rb4b5b6],

[Ra1a2a3 , Rb1...b8, b] = 112 � a1a2a3
[b1b2b3

Rb4...b8]b � 112 � a1a2a3
[b1b2|b| Rb3...b8],

⇥

Ra1a2a3 , R
b1...b8, b

⇤

= 112 �[b1b2b3a1a2a3
Rb4...b8]b � 112 �[b1b2|b|a1a2a3

Rb3...b8],

[Ra1...a6 , Rb1...b6 ] = � 1080 �[a1...a5
[b1...b5

Ka6]
b6] + 120 �a1...a6b1...b6

Ka
a,

⇥

Ra1...a6 , R
b1...b8, b

⇤

= � 3360 �[b1...b6a1...a6
Rb7b8]b � 3360 �[b1...b5|b|a1...a6

Rb6b7b8],

[Ra1...a6 , Rb1...b8, b] = � 3360 � a1...a6
[b1...b6

Rb7b8]b � 3360 � a1...a6
[b1...b5|b| Rb6b7b8],

[Ra1...a8, c, Rb1...b8, d] =
16 · 7!
9

⇣

�a1...a8b1...b8
Kc

d + 8 �cd �
[a1...a7
[b1...b7

Ka8]
b8]

+ 7 �[a1d �a2...a7|c|
[b1 . . . b7

Ka8]
b8]

+ �a1 . . . a8
[b1...b7|d| K

c
b8]

+ �[a1...a7|c|b1 . . . b8
Ka8]

d

� �cd �
a1...a8
b1...b8

Kp
p + �[a1d �a2...a8]cb1 . . . b8

Kp
p

⌘

, (A.4)

The level 4 commutators with lower level ones are

⇥

Ra1a2a3 , R
b1...b9, c1c2c3

⇤

= 189 �[c1c2[b1a1a2 a3
Rb2...b9], c3] + 432 �[c1[b1b2a1 a2a3

Rb3...b9]c2, c3]

+ 252 �[b1b2b3a1a2a3
Rb4...b9][c1c2, c3],

[Ra1a2a3 , Rb1...b9, c1c2c3 ] = 189 � a1a2 a3
[c1c2[b1

Rb2...b9], c3] + 432 � a1 a2a3
[c1[b1b2

Rb3...b9]c2, c3]

+ 252 � a1a2a3
[b1b2b3

Rb4...b9][c1c2, c3],
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⇥

Ra1...a6 , R
b1...b9, c1c2c3

⇤

= 3 · 7! �[c1[b1...b5a1 . . . a6
Rb6...b9]c2c3] � 15 · 7! �[c1c2[b1...b4a1 . . . a6

Rb5...b9]c3]

� 4 · 7! �[b1...b6a1...a6
Rb7...b9]c1c2c3 ,

[Ra1...a6 , Rb1...b9, c1c2c3 ] = 3 · 7! � a1 . . . a6
[c1[b1...b5

Rb6...b9]c2c3] � 15 · 7! � a1 . . . a6
[c1c2[b1...b4

Rb5...b9]c3]

� 4 · 7! � a1...a6
[b1...b6

Rb7...b9]c1c2c3 ,
⇥

Ra1...a8, d, R
b1...b9, c1c2c3

⇤

= 56 · 7!
⇣

�[a1d �a2...a6|c1c2c3|b1 . . . b8
Ra7a8a9] � �[c1d �c2c3][a1...a6b1 . . . b8

Ra7a8a9]

+ 2 �[a1d �a2...a7[c1c2b1 . . . b8
Rc3]a8a9] + �[a1d �a2...a8[c1b1 . . . b8

Rc2c3]a9]

� �[c1d �[a1...a8b1...b8
Ra9]c2c3] � 2 �[c1d �c2[a1...a7b1 . . . b8

Ra8a9]c3]
⌘

,

⇥

Ra1...a8, d, Rb1...b9, c1c2c3

⇤

= 56 · 7!
⇣

� d
[a1

�b1 . . . b8
a2...a6|c1c2c3| Ra7a8a9] � � d

[c1
�b1 . . . b8
c2c3][a1...a6

Ra7a8a9]

+ 2 � d
[a1

�b1 . . . b8
a2...a7[c1c2

Rc3]a8a9] + � d
[a1

�b1 . . . b8
a2...a8[c1

Rc2c3]a9]

� � d
[c1

� b1...b8
[a1...a8

Ra9]c2c3] � 2 � d
[c1

�b1 . . . b8
c2[a1...a7

Ra8a9]c3]

⌘

,

⇥

Ra1a2a3 , R
b1...b10, c1c2

⇤

=
405

2
�[b1b2(c1a1a2a3

Rb3...b10], c2) � 180 �[b1b2b3a1a2a3
Rb4...b10](c1, c2),

[Ra1a2a3 , Rb1...b10, c1c2 ] =
405

2
� a1a2a3
[b1b2(c1

Rb3...b10], c2) � 180 � a1a2a3
[b1b2b3

Rb4...b10](c1, c2),

⇥

Ra1...a6 , R
b1...b10, c1c2

⇤

= 0,
⇥

Ra1...a6 , Rb1...b10, (c1c2)

⇤

= 0,
⇥

Ra1...a8, d, R
b1...b10, c1c2

⇤

= 4 · 7!
⇣

�(c1d �c2)[a1...a7b1 . . . b8
Ra8a9a10] + �[a1d �a2...a8](c1b1 . . . b8

Rc2)a9a10]

� �(c1d �a2...a8](c1b1 . . . b8
Ra9a10]c2)

⌘

,

⇥

Ra1...a8, d, Rb1...b10, c1c2

⇤

= 4 · 7!
⇣

� d
(c1

� b1 . . . b8
c2)[a1...a7

Ra8a9a10] + � d
[a1

� b1 . . . b8
a2...a8](c1

Rc2)a9a10]

� � d
(c1

� b1 . . . b8
a2...a8](c1

Ra9a10]c2)

⌘

,

⇥

Ra1a2a3 , R
b1...b11, c

⇤

=
495

4
�[b1b2b3a1a2a3

Rb4...b11], c,

[Ra1a2a3 , Rb1...b11, c] =
495

4
� a1a2a3
[b1b2b3

Rb4...b11], c,

⇥

Ra1...a6 , R
b1...b11, c

⇤

= � 11 · 7!
2

�[b1...b6a1...a6
Rb7...b11]c

[Ra1...a6 , Rb1...b11, c] = � 11 · 7!
2

� a1...a6
[b1...b6

Rb7...b11]c,

⇥

Ra1...a8, d, R
b1...b11, c

⇤

=
11!

216

⇣

� c
[b1

�[a1 . . . a8
b2...b8]d

Ra9a10a11] � �cd �
[a1...a8
b1...b8

Ra9a10a11]
⌘

,

⇥

Ra1...a8, d, Rb1...b11, c

⇤

=
11!

216

⇣

�[b1c � b2...b8]d
[a1 . . . a8

Ra9a10a11] � �dc �
b1...b8
[a1...a8

Ra9a10a11]

⌘

. (A.5)
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The level 4 commutators with level � 4 ones are

[Ra1...a9, c1c2c3 , Rb1...b9, d1d2d3 ] = � 786 · 7! �a1...a9b1...b9
�[c1c2
[d1d2

Kc3]
d3]

� 87 · 7!2

140
�[c1[a1...a9b1 . . . b9

� a9]c2
[d1 d2

Kc3]
d3]

� 129 · 7!2

280
�c1c2c3d1d2d3

�[a1...a8
[b1...b8

Ka9]
b9]

+
3 · 7!2

5
�[a1a2[c1d1d2d3

� c2c3]a3...a8
[b1 . . . b8

Ka9]
b9]

� 93 · 7!2

35
�[a1[c1c2d1d2d3

� c3]a2...a8
[b1 . . . b8

Ka9]
b9]

� 3 · 7!2

5
�[a1a2a3d1d2d3

�a4...a9][c1c2
[b1 . . . b8

Kc3]
b9]

+
24 · 7!2

35
�[c1[a1a2d1 d2d3

�a3...a9]c2
[b1 . . . b8

Kc3]
b9]

� 111 · 7!2

280
�[a1...a8
[b1...b8

�a9][c1c2d1 d2d3
Kc3]

b9]

� 1674 · 7! �[a1...a8[c1b1 . . . b9
� c2c3]
[d1d2

Ka9]
d3]

+ 864 · 7! �[a1...a7[c1c2b1 . . . b9
� c3]a8
[d1 d2

Ka9]
d3]

+ 360 · 7! �c1c2c3d1d2d3
�a1...a9b1...b9

Kp
p +

27 · 7!2

70
�[c1c2[a1d1d2 d3

�a2...a9]c3]b1 . . . b9
Kp

p,

[Ra1...a11, c, Rb1...b11, d] =
55 · 11!
16

✓

�[a1d �|c|a2...a10
[b1 . . . b10

Ka11]
b11]

� 1

15
�cd �

[a1...a10
[b1...b10

Ka11]
b11]

◆

,

[Ra1...a10, c1c2 , Rb1...b10, d1d2 ] = � 5 · 7!2

14
�(c1c2)d1d2

�[a1...a9
[b1...b9

Ka10]
b10]

� 11!

24
�a1...a10b1...b10

�(c1
(d1

Kc2)
d2)

,

� 5 · 7!2

84
�[a1
(d1

�|(c1|a2...a10]b1 . . . b10
Kc2)

d2)
+ 230 · 7! �(c1c2)d1d2

�a1...a10b1...b10
Kp

p

+ 100 · 7! �[a1(c1
(d1d2)

�c2)a2...a10]b1 . . . b10
Kp

p,

[Ra1...a10, c1c2 , Rb1...b9, d1d2d3 ] =
⇥

Ra1...a10, c1c2 , R
b1...b9, d1d2d3

⇤

= 0,

[Ra1...a10, c1c2 , Rb1...b11, d] =
⇥

Ra1...a10, c1c2 , R
b1...b11, d

⇤

= 0,

[Ra1...a9, c1c2c3 , Rb1...b11, d] =
⇥

Ra1...a9, c1c2c3 , R
b1...b11, d

⇤

= 0. (A.6)

We will now list the commutators of the l
1

representation. The commutators of the l
1

representation generators with those of GL (11) are given by

[Ka
b, Pc] = � �ac Pb +

1

2
�ab Pc,

[Ka
b, Z

a1a2 ] = 2 �[a1b Z |a|a2] +
1

2
�ab Z

a1a2 ,

[Ka
b, Z

a1...a5 ] = 5 �[a1b Z |a|a2...a5] +
1

2
�ab Z

a1...a5 ,

[Ka
b, Z

a1...a8 ] = 8 �[a1b Z |a|a2...a8] +
1

2
�ab Z

a1...a8 ,

[Ka
b, Z

a1...a7, c] = 7 �[a1b Z |a|a2...a7], c + �cb Z
a1...a7, a +

1

2
�ab Z

a1...a7, c,
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⇥

Ka
b, Z

a1...a8, b1b2b3
⇤

= 8 �[a1b Z |a|a2...a8], b1b2b3 + 3 �[b1b Z |a1...a8, a|b2b3] +
1

2
�ab Z

a1...a8, b1b2b3 ,

⇥

Ka
b, Z

a1...a9, b1b2
⇤

= 9 �[a1b Z |a|a2...a9], b1b2 + 2 �[b1b Z |a1...a9, a|b2] +
1

2
�ab Z

a1...a9, b1b2 ,
h

Ka
b, Ẑ

a1...a9, b1b2
i

= 9 �[a1b Ẑ |a|a2...a9], b1b2 + 2 �(b1b Ẑ |a1...a9, a|b2) +
1

2
�ab Ẑ

a1...a9, b1b2 ,
h

Ka
b, Z

a1...a10, c
(1)

i

= 10 �[a1b Z |a|a2...a10], c
(1)

+ �cb Z
a1...a10, a
(1)

+
1

2
�ab Z

a1...a10, c
(1)

,
h

Ka
b, Z

a1...a10, c
(2)

i

= 10 �[a1b Z |a|a2...a10], c
(2)

+ �cb Z
a1...a10, a
(2)

+
1

2
�ab Z

a1...a10, c
(2)

,

[Ka
b, Z

a1...a11 ] =
3

2
�ab Z

a1...a11 . (A.7)

The commutators of the level 1 generator of E
11

with l
1

generators are given by

[Ra1a2a3 , Pa] = 3 �[a1a Za2a3], [Ra1a2a3 , Za4a5 ] = Za1...a5 ,
⇥

Ra1a2a3 , Zb1...b5
⇤

= Zb1...b5a1a2a3 + Zb1...b5[a1a2, a3],

⇥

Ra1a2a3 , Zb1...b8
⇤

= Za1a2a3b1...b8 +
4

135
Za1a2a3[b1...b5, b6b7b8]

� 20

63
Za1a2a3[b1...b6, b7b8] � Za1a2a3[b1...b7, b8]

(2)

,

⇥

Ra1a2a3 , Zb1...b7, c
⇤

= Za1a2a3c[b1...b4, b5b6b7] +
1

2
Zc[b1...b5[a1a2, a3]b6b7]

+ Za1a2a3c[b1...b5, b6b7] � 3

7
Zc[b1...b6[a1a2, a3]b7]

� Ẑc[b1...b6[a1a2, a3]b7]

� Za1a2a3c[b1...b6, b7]
(1)

� 3

8
Zcb1...b7[a1a2, a3]

(1)

. (A.8)

Level 2 generator gives

[Ra1...a6 , Pa] = � 3 �[a1a Za2...a6],

⇥

Ra1...a6 , Zb1b2
⇤

= � Za1...a6b1b2 +
1

3
Za1...a6[b1, b2],

⇥

Ra1...a6 , Zb1...b5
⇤

= � Za1...a6b1...b5 +
4

189
Za1...a6[b1b2b3, b4b5],

� 40

441
Za1...a6[b1b2b3, b4b5]

� 55

336
Za1...a6[b1...b4, b5]

(1)

+
5

16
Za1...a6[b1...b4, b5]

(2)

. (A.9)
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For level 3 generator we have

[Ra1...a8, c, Pa] = � 4

3
�ca Z

a1...a8 +
4

3
�[a1a Za2...a8]c +

4

3
�[a1b Za2...a8], c,

⇥

Ra1...a8, c, Zb1b2
⇤

= � 16

135
Zb1b2c[a1...a5, a6a7a8] +

4

63
Ẑb1b2[a1...a7, a8]c

+
16

189
Zb1b2c[a1...a6, a7a8] � 16

189
Zb1b2[a1...a7, a8]c

+
1

42
Zb1b2c[a1...a7, a8]

(1)

� 1

42
Zb1b2a1...a8, c

(1)

� 1

6
Zb1b2c[a1...a7, a8]

(2)

+
1

6
Zb1b2a1...a8, c

(2)

. (A.10)

Finally, level 4 generators give

[Ra1...a11, c, Pa] = � 3

2
�ca Z

a1...a11 +
121

448
�[a1a Za2...a11], c

(1)

� 33

64
�[a1a Za2...a11], c

(2)

,

[Ra1...a10, c1c2 , Pa] =
5

7
�[a1a Za2...a9(c1, c2)a10]

+
11

2016
�(c1a Z |a1...a10|, c2)

(1)

� 5

1008
�[a1a Za2...a10](c1, c2)

(1)

� 11

32
�(c1a Z |a1...a10|, c2)

(2)

+
5

16
�[a1a Za2...a10](c1, c2)

(2)

,

[Ra1...a9, c1c2c3 , Pa] = � 4

105
�[a1a Za2...a9], c1c2c3

+
2

21
�[c1a Z |a1...a9|, c2c3] +

3

49
�[a1a Za2...a9][c1, c2c3]. (A.11)

The commutators with the level �1 generator are

[Ra1a2a3 , Pa] = 0,
⇥

Ra1a2a3 , Z
b1b2
⇤

= 6 � b1b2
[a1a2

Pa3],
⇥

Ra1a2a3 , Z
b1...b5

⇤

= 60 �b1b2b3a1a2a3
Zb4b5],

⇥

Ra1a2a3 , Z
b1...b8

⇤

= � 42 �b1b2b3a1a2a3
Zb4...b8],

⇥

Ra1a2a3 , Z
b1...b7, c

⇤

=
945

4
�[b1b2|c|a1a2a3

Zb3...b7] +
945

4
�[b1b2b3a1a2a3

Zb3...b7]c,

⇥

Ra1a2a3 , Z
b1...b8, c1c2c3

⇤

= � 945 �c1c2c3a1a2a3
Zb1...b8 � 2835 �[b1[c1c2a1a2a3

Zc3]b2...b8],

� 2835 �[b1b2[c1a1a2a3
Zc2c3]b3...b8] + �[b1b2b3a1a2a3

Zb4...b8]c1c2c3

+ 6075 �[c1c2[b1a1a2a3
Zb2...b8], c3] + 42525 �[b1b2[c1a1a2a3

Zc2c3]b3...b7, b8]

+ 14175 �[b1b2b3a1a2a3
Z |c1c2c3|b4...b7, b8],

h

Ra1a2a3 , Ẑ
b1...b9, c1c2

i

=
36288

11
�(c1[b1b2a1a2a3

Zb3...b9], c2) +
31752

11
�[b1b2b3a1a2a3

Zb4...b9](c1, c2),
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⇥

Ra1a2a3 , Z
b1...b9, c1c2

⇤

= � 2646 �c1c2[b1a1a2a3
Zb2...b9] � 2646 �[b1b2b3a1a2a3

Zb4...b9]c1c2

� 5292 �[c1[b1b2a1a2a3
Zb2...b9]c2] � 2646 �[b1b2b3a1a2a3

Z |c1c2|b4...b8, b9]

+ 756 �[c1[b1b2a1a2a3
Zb4...b9], c2],

h

Ra1a2a3 , Z
b1...b10, c
(1)

i

= � 8820

11
�[b1b2b3a1a2a3

Zb4...b11]

+
18900

11
�[b1b2|c|a1a2a3

Zb3...b10] � 18900

11
�[b1b2b3a1a2a3

Zb4...b10]c,
h

Ra1a2a3 , Z
b1...b10, c
(2)

i

= � 100 �[b1b2b3a1a2a3
Zb4...b11]

+
8940

11
�[b1b2|c|a1a2a3

Zb3...b10] � 8940

11
�[b1b2b3a1a2a3

Zb4...b10]c,

⇥

Ra1a2a3 , Z
b1...b11

⇤

= 120 �[b1b2b3a1a2a3
Zb4...b11]. (A.12)

For the level � 2 generator we have

[Ra1...a6 , Pa] = 0,
⇥

Ra1...a6 , Z
b1b2
⇤

= 0,
⇥

Ra1...a6 , Z
b1...b5

⇤

= � 360 � b1...b5
[a1...a5

Pa6],
⇥

Ra1a2a3 , Z
b1...b8

⇤

= 2520 �[b1...b6a1...a6
Zb7b8],

⇥

Ra1...a6 , Z
b1...b7, c

⇤

= 5670 �[b1...b5|c|a1 . . . a6
Zb6b7] � 5670 �[b1...b6a1...a6

Zb7]c,

⇥

Ra1...a6 , Z
b1...b8, c1c2c3

⇤

=
5 · 10!
32

�c1c2c3[b1b2b3a1 . . . a6
Zb6...b8] � 15 · 10!

32
�[c1c2[b1...b4a1 . . . a6

Zb5...b8]c3]

+
15 · 10!
32

�[c1[b1...b5a1 . . . a6
Zb6b7b8]c2c3] � 5 · 10!

32
�[b1...b6a1...a6

Zb7b8]c1c2c3 ,

⇥

Ra1...a6 , Z
b1...b9, c1c2

⇤

= � 63 · 7!
2

�c1c2[b1...b4a1 . . . a6
Zb5...b9] � 63 · 7!

2
�[b1...b6a1...a6

Zb7b8b9]c1c2

+ 63 · 7! �[c1[b1...b5a1 . . . a6
Zb6...b9]c2],

h

Ra1...a6 , Z
b1...b10, c
(1)

i

=
315 · 7!
11

�[b1...b6a1...a6
Zb7...b10]c +

315 · 7!
11

�[b1...b5|c|a1 . . . a6
Zb6...b10]

h

Ra1...a6 , Z
b1...b10, c
(2)

i

=
5 · 7!
11

�[b1...b6a1...a6
Zb7...b10]c +

5 · 7!
11

�[b1...b5|c|a1 . . . a6
Zb6...b10]

h

Ra1...a6 , Ẑ
b1...b9, c1c2

i

= 0,
⇥

Ra1...a6 , Z
b1...b11

⇤

= 5040 �[b1...b6a1...a6
Zb7...b11]. (A.13)

Next, we have the commutators with level � 3 generator.

[Ra1...a8, d, Pa] = 0,
⇥

Ra1...a8, d, Z
b1b2
⇤

= 0,
⇥

Ra1...a8, d, Z
b1...b5

⇤

= 0,
⇥

Ra1...a8, d, Z
b1...b8

⇤

= � 6720 �b1...b8a1...a8
Pd � 6720 � b1 . . . b8

[a1...a7|d| Pa8],

⇥

Ra1...a8, d, Z
b1...b7, c

⇤

= � 21 · 7!
2

�cd �
b1...b7
[a1...a7

Pa8] �
21 · 7!
2

� b1 . . . b8
[a1...a7|d| Pa8],
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⇥

Ra1...a8, d, Z
b1...b8, c1c2c3

⇤

= � 21 · 10!
4

�[b1d �b2...b7[c1c2a1 . . . a8
Zc3]b8] � 21 · 10!

4
�[c1d �c2[b1...b7a1 . . . a8

Zb8]c3]

+
21 · 10!

8
�[c1d �|b1...b8|a1...a8

Zc2c3] � 21 · 10!
8

�[b1d �b2...b6|c1c2c3|a1 . . . a8
Zb7b8]

� 21 · 10!
8

�[b1d �b2...b8][c1a1 . . . a8
Zc2c3] +

21 · 10!
8

�[c1d �c2c3][b1...b6a1 . . . a8
Zb7b8],

h

Ra1...a8, d, Ẑ
b1...b9, c1c2

i

= � 126 · 10!
55

�(c1d �c2)[b1...b7a1 . . . a8
Zb8b9] � 126 · 10!

55
�(c1d �[b1...b8a1...a8

Zb9]c2)

� 126 · 10!
55

�[b1d �b2...b8(c1a1 . . . a8
Zc2)b9],

⇥

Ra1...a8, d, Z
b1...b9, c1c2

⇤

=
49 · 9!
3

�[b1d �b2...b7|c1c2|a1 . . . a8
Zb8b9] � 49 · 9!

3
�[c1d �c2][b1...b7a1 . . . a8

Zb8b9]

� 49 · 9!
3

�[c1d �[b1...b8a1...a8
Zb9]c2] � 49 · 9!

3
�[b1d �b2...b8[c1a1 . . . a8

Zc2]b9],
h

Ra1...a8, d, Z
b1...b10, c
(1)

i

= � 7 · 10!
66

�cd �
[b1...b8
a1...a8

Zb9b10] +
7 · 10!
66

� c
[a1

�[b1 . . . b8
a2...a8]d

Zb9b10],
h

Ra1...a8, d, Z
b1...b10, c
(2)

i

= � 13 · 10!
54

�cd �
[b1...b8
a1...a8

Zb9b10] +
13 · 10!
54

� c
[a1

�[b1 . . . b8
a2...a8]d

Zb9b10],

⇥

Ra1...a8, d, Z
b1...b11

⇤

= 0. (A.14)

The commutators with level � 4 generator Ra1...a9, c1c2c3 are given by

[Ra1...a9, c1c2c3 , Pa] = 0,
⇥

Ra1...a9, c1c2c3 , Z
b1b2
⇤

= 0,
⇥

Ra1...a9, c1c2c3 , Z
b1...b5

⇤

= 0,
⇥

Ra1...a9, c1c2c3 , Z
b1...b8

⇤

= 0,
⇥

Ra1...a9, c1c2c3 , Z
b1...b7, c

⇤

= 0,
h

Ra1...a9, c1c2c3 , Ẑ
b1...b9, d1d2

i

= 0,
h

Ra1...a9, c1c2c3 , Z
b1...b10, d
(1)

i

= 0,
h

Ra1...a9, c1c2c3 , Z
b1...b10, d
(2)

i

= 0,

⇥

Ra1...a9, c1c2c3 , Z
b1...b9, d1d2

⇤

= � 1071 · 9!
8

� d1d2
[c1c2

� b1...b9
|a1...a9| Pc3] �

189 · 10!
16

� d1d2
[c1c2

�b1 . . . b9
c3][a1...a8

Pa9]

� 378 · 9! � d1d2
[a1[c1

�b1 . . . b9
c2c3]a2...a8

Pa9]

� 189 · 9! � d1d2
[a1a2

�b1 . . . b9
a3...a9][c1c2

Pc3]

� 189 · 10!
8

� d1d2
[c1[a1

�b1 . . . b9
a2...a9]c2

Pc3],

⇥

Ra1...a9, c1c2c3 , Z
b1...b8, d1d2d3

⇤

=
189 · 10!

2

⇣

�d1d2d3c1c2c3
� b1...b8
[a1...a8

Pa9] � �[b1b2b3c1c2c3
� b4...b8]d1d2d3
[a1 . . . a8

Pa9]

+ 3 �[d1[b1b2c1c2c3
� b3...b8]d2d3]
[a1 . . . a8

Pa9] � 3 �[d1d2[b1c1c2c3
� b2...b8]d3]
[a1 . . . a8

Pa9]

⌘

,

⇥

Ra1...a9, c1c2c3 , Z
b1...b11

⇤

= 0. (A.15)
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Taking commutators with level � 4 generator Ra1...a10, c1c2 one finds

[Ra1...a10, c1c2 , Pa] = 0,
⇥

Ra1...a10, c1c2 , Z
b1b2
⇤

= 0,
⇥

Ra1...a10, c1c2 , Z
b1...b5

⇤

= 0,
⇥

Ra1...a10, c1c2 , Z
b1...b8

⇤

= 0,
⇥

Ra1...a10, c1c2 , Z
b1...b7, c

⇤

= 0,
⇥

Ra1...a10, c1c2 , Z
b1...b9, d1d2

⇤

= 0,
h

Ra1...a10, c1c2 , Ẑ
b1...b9, d1d2

i

=
189 · 12!

88

⇣

� d1d2
(c1c2)

� b1...b9
[a1...a9

Pa10] + 2 �[b1(d1
(c1 c2)

� d2)b2...b9]
[a1 . . . a9

Pa10]

⌘

,
h

Ra1...a10, c1c2 , Z
b1...b10, d
(1)

i

=
105 · 10!

44

⇣

�b1...b10a1...a10
� d
(c1

Pc2) + �[b1...b9|d|a1 . . . a10
� b10]
(c1

Pc2)

+ � b1 . . . b10
[a1...a9(c1

� d
c2)

Pa10]

⌘

,
h

Ra1...a10, c1c2 , Z
b1...b10, d
(2)

i

=
5 · 10!
4

⇣

�b1...b10a1...a10
� d
(c1

Pc2) + �[b1...b9|d|a1 . . . a10
� b10]
(c1

Pc2)

+ � b1 . . . b10
[a1...a9(c1

� d
c2)

Pa10]

⌘

,

⇥

Ra1...a10, c1c2 , Z
b1...b8, d1d2d3

⇤

= 0,
⇥

Ra1...a10, c1c2 , Z
b1...b11

⇤

= 0. (A.16)

Finally, commutators with level � 4 generator Ra1...a11, b are

[Ra1...a11, c, Pa] = 0,
⇥

Ra1...a11, c, Z
b1b2
⇤

= 0,
⇥

Ra1...a11, c, Z
b1...b5

⇤

= 0,
⇥

Ra1...a11, c, Z
b1...b8

⇤

= 0,
⇥

Ra1...a11, c, Z
b1...b7, c

⇤

= 0,
⇥

Ra1...a11, c, Z
b1...b9, d1d2

⇤

= 0,
h

Ra1...a11, c, Ẑ
b1...b9, d1d2

i

= 0,
⇥

Ra1...a11, c, Z
b1...b8, d1d2d3

⇤

= 0,
h

Ra1...a11, c, Z
b1...b10, d
(1)

i

= � 105 · 10!
8

⇣

�dc �
b1...b10
[a1...a10

Pa11] � �[b1c � b2...b10]d
[a1 . . . a10

Pa11]

⌘

,
h

Ra1...a11, c, Z
b1...b10, d
(2)

i

= � 5 · 10!
24

⇣

�dc �
b1...b10
[a1...a10

Pa11] � �[b1c � b2...b10]d
[a1 . . . a10

Pa11]

⌘

,

⇥

Ra1...a11, c, Z
b1...b11

⇤

= 180 · 7! �b1...b11a1...a11
Pc. (A.17)

B E11 algebra in 4D

In this appendix we give the E
11

ns l1 algebra decomposed into representations of

GL (4) ⇥ SL (8). The set of generators of this algebra was given in Section 3.4 up

to level 2. This algebra was previously constructed in [48, 54]. We will first give
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the commutation relations of level 0 generators with the rest of E
11

algebra. The

commutation relations of any generator with Ka
b are

[Ka
b, K

c
d] = �cb K

a
d � �ad K

c
b,

⇥

Ka
b, R

I
J

⇤

= 0,
⇥

Ka
b, R

I1...I4
⇤

= 0,
⇥

Ka
b, R

cI1I2
⇤

= �cb R
aI1I2 , [Ka

b, R
c
I1I2 ] = �cb R

a
I1I2 ,

[Ka
b, RcI1I2 ] = � �ac RbI1I2 ,

⇥

Ka
b, Rc

I1I2
⇤

= � �ac Rb
I1I2 ,

h

Ka
b, K̂

cd
i

= 2 �(cb K̂ |a|d),
h

Ka
b, K̂cd

i

= � 2 � a
(c K̂|b|d),

⇥

Ka
b, R

a1a2I
J

⇤

= 2 �[a1b R|a|a2]I
J ,

⇥

Ka
b, Ra1a2

I
J

⇤

= � 2 � a
[a1

R|b|a2]
I
J ,

⇥

Ka
b, R

a1a2I1...I4
⇤

= 2 �[a1b R|a|a2]I1...I4 , [Ka
b, Ra1a2I1...I4 ] = � 2 � a

[a1
R|b|a2]I1...I4 . (B.1)

The commutators with SL (8) generator RI
J are given by

⇥

RI
J , R

K
L

⇤

= �KJ RI
L � �IL R

K
J ,

⇥

RI
J , R

I1...I4
⇤

= 4 �[I1J R|I|I2I3I4] � 1

2
�IJ R

I1...I4 ,

⇥

RI
J , R

aI1I2
⇤

= 2 �[I1J Ra|I|I2] � 1

4
�IJ R

aI1I2 ,

⇥

RI
J , R

a
I1I2

⇤

= � 2 � I
[I1

Ra
|J |I2] +

1

4
�IJ R

a
I1I2 ,

⇥

RI
J , RaI1I2

⇤

= � 2 � I
[I1

Ra|J |I2] +
1

4
�IJ RaI1I2 ,

⇥

RI
J , Ra

I1I2
⇤

= 2 �[I1J Ra
|I|I2] � 1

4
�IJ Ra

I1I2 ,
h

RI
J , K̂

(ab)
i

= 0,
h

RI
J , K̂(ab)

i

= 0,

⇥

RI
J , R

a1a2K
L

⇤

= �KJ Ra1a2I
L � �IL R

a1a2K
J ,

⇥

RI
J , Ra1a2

K
L

⇤

= �KJ Ra1a2K
I
L � �IL Ra1a2

K
J ,

⇥

RI
J , R

a1a2I1...I4
⇤

= 4 �[I1J Ra1a2|I|I2I3I4] � 1

2
�IJ R

a1a2I1...I4 ,

⇥

RI
J , Ra1a2I1...I4

⇤

= � 4 � I
[I1

Ra1a2|J |I2I3I4] +
1

2
�IJ Ra1a2I1...I4 , (B.2)
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The commutators with the other E
7

generators RI1...I4 generators are given by

⇥

RI1...I4 , RJ1...J4
⇤

= � 1

36
"I1...I4[J1J2J3|L| RJ4]

L,

⇥

RI1...I4 , RaJ1J2
⇤

=
1

24
"I1...I4J1...J4 Ra

J3J4 ,

⇥

RI1...I4 , Ra
J1J2

⇤

= �[I1I2J1J2
RaI3I4],

⇥

RI1...I4 , RaJ1J2

⇤

= �[I1I2J1J2
Ra

I3I4],

⇥

RI1...I4 , Ra
J1J2
⇤

=
1

24
"I1...I4J1...J4 RaJ3J4 ,

⇥

RI1...I4 , Ra1a2I
J

⇤

= � 4 �[I1J Ra1a2|I|I2I3I4] +
1

2
�IJ R

a1a2I1...I4 ,

⇥

RI1...I4 , Ra1a2
I
J

⇤

= � 1

6
"I1...I4J1J2J3I Ra1a2J1J2J3J +

1

48
�IJ "

I1...I4J1...J4 Ra1a2J1...J4 ,

⇥

RI1...I4 , Ra1a2J1...J4
⇤

=
1

36
"I1...I4[J1J2J3|L|Ra1a2J4]

L,

⇥

RI1...I4 , Ra1a2J1...J4

⇤

= � 2

3
�[I1I2I3
[J1J2J3

Ra1a2
I4]

J4],
h

RI1...I4 , K̂(ab)
i

= 0,
h

RI1...I4 , K̂
(ab)

i

= 0. (B.3)

The commutators of the positive level one E
11

generators with each other are given by

⇥

RaI1I2 , RbI3I4
⇤

= � 12RabI1...I4 ,

[Ra
I1I2 , R

b
I3I4 ] =

1

2
"I1...I4J1...J4 R

abJ1...J4 ,

⇥

RaI1I2 , Rb
J1J2

⇤

= 4 �[I1
[J1
RabI2]

J2] + 2 �I1I2J1J2
K̂(ab). (B.4)

The equivalent commutators for the negative level E
11

generators are

[RaI1I2 , RbI3I4 ] = � 12RabI1...I4 ,

[Ra
I1I2 , Rb

I3I4 ] =
1

2
"I1...I4J1...J4 Ra1a2J1...J4 ,

⇥

RaI1I2 , Rb
J1J2
⇤

= 4 �[J1
[I1

Rab
J2]

I2] + 2 �J1J2I1I2
K̂

(ab). (B.5)

The commutators between the level 1 and �1 E
11

generators are given by

⇥

RaI1I2 , Rb
I3I4
⇤

= � 12 �ab R
I1...I4 ,

⇥

Ra
I1I2

, RbI3I4

⇤

=
1

2
�ab "I1...I4J1...J4 R

J1...J4 ,

⇥

RaI1I2 , RbJ1J2

⇤

= 2 �I1I2J1J2
Ka

b + 4 �ab �
[I1
[J1

KI2]
J2] � �ab �

I1I2
J1J2

Kc
c,

⇥

Ra
I1I2 , Rb

J1J2
⇤

= � 2 �J1J2I1I2
Ka

b + 4 �ab �
[J1
[I1

KJ2]
I2] + �ab �

J1J2
I1I2

Kc
c, (B.6)
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The commutators with the level 2 and level �1 E
11

generators are given by

⇥

RabI
J , RcI1I2

⇤

= � 4 �[ac �
I
[I1
Rb]

|J |I2] +
1

2
�[ac �

I
J R

b]
I1I2 ,

⇥

RabI
J , Rc

I1I2
⇤

= 4 �[ac �
[I1
J Rb]|I|I2] � 1

2
�[ac �

I
J R

b]I1I2 ,

⇥

RabI1...I4 , RcJ1J2

⇤

= 2 �[ac �
[I1I2
J1J2

Rb]I3I4],

⇥

RabI1...I4 , Rc
I5I6
⇤

=
1

12
"I1...I8 �[ac R

b]
I7I8 ,

h

K̂ab, RcI1I2

i

= � �(ac Rb)
I1I2 ,

h

K̂ab, Rc
I1I2
i

= � �(ac Rb)J1J2 . (B.7)

Finally, the commutators of level � 2 with the level 1 E
11

generators are

⇥

Rab
I
J , R

cI1I2
⇤

= � 4 � c
[a�

[I1
J Rb]

|I|I2] +
1

2
�c
[a �

I
J Rb]

I1I2 ,

⇥

Rab
I
J , R

c
I1I2

⇤

= 4 �c
[a �

I
[I1

Rb]|J |I2] �
1

2
�c
[a �

I
J Rb]I1I2 ,

⇥

Rab
I1...I4 , Rc

J1J2

⇤

= 2 �c
[a �

[I1I2
J1J2

Rb]
I3I4],

⇥

Rab
I1...I4 , RcI5I6

⇤

=
1

12
"I1...I8 �c

[a Rb]I7I8 ,
h

K̂ab, R
c
I1I2

i

= � �c
(a Rb)I1I2 ,

h

K̂ab, R
cI1I2

i

= � �c
(a Rb)

I1I2 . (B.8)

The Cartan involution preserves the above commutators and is given by

Generator Ic
�

Generator
�

Ka
b �Kb

a

RI
J �RJ

I

RI1...I4 � ?RI1...I4

RaI1I2 �RaI1I2

Ra
I1I2 Ra

I1I2

Ra1a2I
J �Ra1a2

J
I

Ra1a2I1...I4 Ra1a2I1...I4

K̂ab � K̂ab
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where ?RI1...I4 = 1

4!

"I1...I4J1...J4 RJ1...J4 .

We now give the action of E
11

on the l
1

representation generators. The commutation

relations with level 0 generators of E
11

are given by

[Ka
b, Pc] = � �ac Pb +

1

2
�ab Pc,

⇥

Ka
b, Z

I1I2
⇤

=
1

2
�ab Z

I1I2 , [Ka
b, ZI1I2 ] =

1

2
�ab ZI1I2 ,

[Ka
b, Z

c] = �cb Z
a +

1

2
�ab Z

c,
⇥

Ka
b, Z

cI
J

⇤

= �cb Z
aI

J +
1

2
�ab Z

cI
J ,

⇥

Ka
b, Z

cI1...I4
⇤

= �cb Z
aI1...I4 +

1

2
�ab Z

cI1...I4 ,
⇥

RI
J , Pc

⇤

= 0,

⇥

RI
J , Z

I1I2
⇤

= 2 �[I1J Z |I|I2] � 1

4
�IJ Z

I1I2 ,

⇥

RI
J , ZI1I2

⇤

= � 2 � I
[I1

Z|J |I2] +
1

4
�IJ ZI1I2 ,

⇥

RI
J , Z

a
⇤

= 0,
⇥

RI
J , Z

aK
L

⇤

= �KJ ZaI
L � �IL Z

aK
J ,

⇥

RI
J , Z

aI1...I4
⇤

= 4 �[I1J Za|I|I2...I4] � 1

2
�IJ Z

aI1...I4 ,

⇥

RI1...I4 , Pa

⇤

= 0,
⇥

RI1...I4 , ZJ1J2
⇤

=
1

24
"I1...I4J1...J4 ZJ3J4 ,

⇥

RI1...I4 , ZJ1J2

⇤

= �[I1I2J1J2
ZI3I4],

⇥

RI1...I4 , Za
⇤

= 0,

⇥

RI1...I4 , ZaI
J

⇤

= � 4

3
�[I1J Za|I|I2I3I4] +

1

6
�IJ Z

aI1...I4 ,

⇥

RI1...I4 , ZaJ1...J4
⇤

=
1

12
"J1...J4[I1I2I3|K| ZaI4]

K . (B.9)

The commutators with the E
11

level 1 generators are given by

⇥

RaI1I2 , Pb

⇤

= �ab Z
I1I2 ,

[Ra
I1I2 , Pb] = �ab ZI1I2 ,

⇥

RaI1I2 , ZJ1J2
⇤

= �ZaI1I2J1J2 ,
⇥

Ra
I1I2 , Z

J1J2
⇤

= �[J1
[I1

ZaJ2]
I2] + �J1J2I1I2

Za,
⇥

RaI1I2 , ZJ1J2

⇤

= �[I1
[J1

ZaI2]
J2] � �I1I2J1J2

Za,

[Ra
I1I2 , ZJ1J2 ] =

1

24
"I1I2J1J2K1...K4 Z

aK1...K4 . (B.10)
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The commutators with the E
11

level 2 generators are given by

h

K̂(a1a2), Pa

i

= �(a1a Za2),

⇥

Ra1a2I
J , Pa

⇤

= � 1

2
�[a1a Za2]I

J ,

⇥

Ra1a2I1...I4 , Pa

⇤

= � 1

6
�[a1a Za2]I1...I4 . (B.11)

The commutators with the E
11

level �1 generators are

[RaI1I2 , Pb] = 0,
⇥

RaI1I2 , Z
J1J2
⇤

= 2 �I1I2J1J2
Pa,

[RaI1I2 , ZJ1J2 ] = 0,
⇥

RI1I2
a , Pb

⇤

= 0,
⇥

Ra
I1I2 , ZJ1J2

⇤

= 0,
⇥

Ra
I1I2 , ZJ1J2

⇤

= � 2 �J1J2I1I2
Pa,

⇥

RaI1I2 , Z
b
⇤

= � 2 �ba ZI1I2 ,
⇥

RaI1I2 , Z
bI

J

⇤

= � 8 �ba �
I
[I1

ZI2]J ,
⇥

RaI1I2 , Z
bJ1...J4

⇤

= � 12 �ba �
[J1J2
I1I2

ZJ3J4],
⇥

Ra
I1I2 , Zb

⇤

= � 2 �ba Z
I1I2 , (B.12)

⇥

Ra
I1I2 , ZbI

J

⇤

= 8 �ba �
[I1
J ZI2]I ,

⇥

Ra
I1I2 , ZbJ1...J4

⇤

= � 1

2
�ba "

J1...J2I1...I4 ZI3I4 .
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