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Abstract

In this note the performance of the ALICE High Momentum Particle IDentification (HMPID) detec-
tor during the LHC run period 2010—2015 is presented. The HMPID extends the charged hadron
identification capability of the ALICE apparatus at high momenta, identifying with three sigma sep-
aration power charged pions and kaons in the momentum range 1—3 GeV/c and (anti-)protons in the
range 1.5—5 GeV/ec. It consists of seven Ring Imaging Cherenkov (RICH) modules, 1.3x1.32x0.3 m?
each. The detection of Cherenkov UV photons is achieved by Multiwire Proportional Chambers
(MWPCs) with CsI pad segmented photocathodes, for a total active area of 10.3 m”. The Cherenkov
radiator used is the liquid C¢F}4 (perfluorohexane) with n = 1.299 at a photon wavelength A = 175 nm.
The detector stability with emphasis on the Csl quantum efficiency and the Particle IDentification
(PID) performance, by means of both statistical and track-by-track approaches, are presented. Fi-
nally, the perspective of the detector operation during the Run 3 data-taking period (2022—2024)
with Pb—Pb runs at 50 kHz of collision rate, is briefly discussed and evidence for the effective de-
tector operation is provided.
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1 Introduction

ALICE, A Large Ion Collider Experiment [1, 2] at the CERN LHC, was designed to study the physics
of strongly interacting matter at extreme temperatures and energy densities produced in nucleus—nucleus
collisions, where the formation of a new phase of matter, the quark—gluon plasma, is expected. The
existence of such a phase and its properties are key issues in Quantum Chromodynamic (QCD) for
the understanding of quark confinement and chiral-symmetry restoration. To study the QGP properties,
ALICE combines different detector techniques allowing Particle IDentification (PID) in a wide transverse
momentum (pr) range from hundreds of MeV/c up to about 100 GeV/c.

The HMPID detector [3] can identify charged pions and kaons in the pt range 1—3 GeV/c and (anti-
)protons in the range 1.5—5 GeV/c. It consists of seven Ring Imaging Cherenkov (RICH) modules,
1.3x1.32x0.3 m? each. It covers 5% of the central barrel acceptance in the pseudorapidity interval |7l
< 0.6 and A9 =~ 60°, with a distance from the interaction point is about 5 m. The HMPID enhances
the ALICE PID performance enabling identification of charged hadrons beyond the momentum interval
achievable in the Inner Tracking System (ITS), Time Projection Chamber (TPC) and Time Of Flight
(TOF) detectors.

In 1993 the Research and Development project 26 (RD26) was launched at CERN to explore solutions
for particle identification based on RICH counters equipped with large area Cesium lodine (Csl) pho-
tocathodes (PCs) for Multiwire Proportional Chambers (MWPC), less expensive than vacuum photode-
tectors. The main technological issues were how to get a reliable production process for reproducible
Csl quantum efficiency (QE) in several tens of photocathodes (CsI PCs), with a surface up to 0.3 m?,
and how to ensure the QE stability on a time scale of several years, compatible with the duration of high
energy physics experiments. The development pursued in the RD26 project was also of interest to the
COMPASS [4] and the HADES [5]] collaborations.

In 1999 a RICH prototype, 2/3 of the final module size, was installed in the STAR experiment at the
Brookhaven National Laboratory (BNL) Relativistic Heavy Ion Collider (RHIC) in the USA. The detec-
tor transportation from CERN to USA, its operation over two years and the PID carried out combining
the HMPID data with the momentum measured by the STAR Time Projection Chamber, validated the
capabilities of a large area CsI-based RICH detector as a PID system at colliders [6-8]].

After the experience at BNL, before starting the mass production of the seven RICH modules (2004-
2006), dedicated aging tests using radioactive source (°°Sr) were carried out at CERN [9H1T1] to further
investigate the stability of the CsI QE, simulating 10 years of operation in ALICE. The charge dose so far
accumulated and the expected additional integrated luminosity during the LHC Run 3 data-taking period
with Pb—Pb runs at 50 kHz of collision rate, will finally result in a CsI charge absorbed dose of about
0.2 mC/cm?, a value for which no relevant CslI aging effect have been observed

In this note the HMPID performance during the LHC Run 1 data-taking period (2010-2013) and part of
Run 2 (2015) are presented. Then two PID approaches, namely statistical and track-by-track, with the
relative performances, are presented. Finally, the perspective to operate the HMPID during the Run 3
data-taking period (2022-2024) with Pb—Pb runs at 50 kHz, is briefly discussed.

2 The HMPID principle of operation and layout

The HMPID consists of seven RICH modules (RICHO-6), of about 1.3x1.32x0.3 m? each, with prox-
imity focusing geometry. The Cherenkov photons emitted by the charged particles traversing the radi-
ator are detected by photon counters made of a 300 nm layer of Csl deposited onto the pad segmented
photocathodes of a MWPC filled with pure CH4. The total Csl active area is 10.3 m?. Liquid CgFy4
(perfluorohexane) is used as Cherenkov radiator, which has a refractive index n = 1.299 at A = 175 nm
where the CsI QE is approximately 25%.
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In each RICH module three quartz radiator vessels for the CgF4 with dimensions 1.3x0.4%0.025 m? are
installed. They are assembled by gluing NEOCERAM plates and fused silica optical windows (transpar-
ent to the Cherenkov UV photons). In Fig.[I|the layout of a section of one RICH module is shown. The
Cherenkov photons produced in 15 mm of CgF14 propagate through the proximity gap down to the Csl
photocathode where they are converted into photoelectrons. The avalanche multiplication in the MWPC
induces a charge signal on the pads. The collection electrode is designed to remove electrons produced
by the ionization in the proximity gap, it is set to a voltage of 500 V.

A readout electronics digitalizes the photoelectron cluster charge induced on the Csl pad segmented
photocathode. This with the module geometry allows for the Cherenkov angle to be determined.
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Fig. 1: Layout of a section of one RICH module.

Figure[2]shows the HMPID detector modules on the cradle during its insertion inside the ALICE solenoid
on September 2006. They are located in the 1 to 3 o’clock positions.

3 Performance and stability of the HMPID subsystems

In this section, we describe the HMPID sub-systems, namely: the Detector Control System (DCS), the
Front End Electronics (FEE) and Read Out (RO) electronics, the Low-Voltage (LV) and High-Voltage
(HV) power system, the cooling system, the CgF}4 recirculation system (LCS), the MWPC and finally
the Csl photocathodes (PCs).

3.1 The Detector Control System

The HMPID DCS [12]] ensures remote detector operation, monitoring and archiving. In Fig. [3|the User
Interface (UI) of the HMPID DCS is shown. The command execution is based on Finite State Machines
(FSM). The FSM architecture and the navigator tree is shown on the left side of the UI whereas on the
right side the monitoring panel corresponding to the selected FSM node is shown. Figure |4|shows the
segmentation of the different sub-systems in one RICH module as it appears in the DCS: six HV sectors
(HVs0-5) of 48 wires each, running over two half PCs; six LV sectors (FEE0-5) and two readout systems
(ROL and ROR). The ROL is reading one half of the FEE segments covering PCO, 2, 4, whereas ROR is
reading the complementary half segments covering the PC1, 3, 5.
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Fig. 2: September 2006: the HMPID cradle with the seven RICH modules was inserted in the ALICE solenoid. It
was the first detector installed in the experiment.
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Fig. 3: HMPID DCS User Interface. The Finite State Machine control navigator is located on the left, and the
monitoring panel corresponding to the selected FSM node, in this case the HMP-DCS, on the right side.

3.2 Front End and Read Out electronics

The FEE and RO electronics are based on two dedicated ASIC chips: the GASSIPLEX [13][14] and the
DILOGIC [14], respectively. The analogue GASSIPLEX chip is a low-noise signal processor (1000 e~
noise equivalent). The Dilogic-2 circuit was developed to process data produced by a 12 bits Analog to
Digital Converter (ADC), with a conversion time of about 20 ns. It subtracts the baseline of the FEE
channel (pedestal) and suppresses empty channels (zero suppression), selecting valid data and reducing
the size of the stored data. The percentage of FEE dead channels is of the order of 0.15%, and no RO
board failures were observed.
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Fig. 4: Correspondence of DCS control units (continuous and dashed line boxes) with the hardware of one RICH
module. There are two readout systems, left and right (ROL and ROR), six HV sectors and six LV sectors, marked
as FEE. Each HV sector powers two half CsI photocathodes (dotted line boxes).
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Fig. 5: Event readout rate as a function of the detector occupancy during Run 1, Run 2 and Run 3 data taking
periods. The input trigger rate used in the test is 100 kHz.

During the first long shutdown LS1 (2013-2015), a substantial improvement of the readout firmware
was carried out. Reinforced protections against overlapping LO triggers, an improved clock distribution
among the software modules in the FPGA (ALTERA Stratix Il EP2S15F484C5, installed on the Readout
Common Board (RCB) interfacing the FEE communication bus, the DAQ and the Trigger systems), the
latching of the detector data bus and the redefinition of the hardware-software reset of the electronics
were put in place. As a consequence, the event readout rate in pp collisions (= 0.1% detector occupancy)
increased from 2.7 kHz to 4.7 kHz and from 1.5 kHz to 3.0 kHz in central Pb—Pb collisions (= 3%
detector occupancy). Also the Common Data Header (CDH) was modified to accommodate 100 trigger
classes making the HMPID compliant with the experimental requirements for the Run 2 data-taking
period. Moreover, 14 Ethernet-JTAG interfaces for the 14 FPGAs, two for each RICH module (one
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for ROL and one for ROR), were installed, providing enhanced flexibility for remote updating of new
firmware versions.

During Run 3 the readout in ALICE will be in continuous mode. The data stream will be tagged with the
orbit signal (HB Trigger) [[15)]. The HMPID will remain a triggered detector with only two trigger levels,
L0 and L1. The L2 will be removed with a reduction of 100 microseconds of the event processing time,
with a corresponding increase of the event readout rate. Preliminary laboratory tests with the HMPID
show an increased readout rate up to 10 kHz and 7 kHz in pp and Pb—Pb collisions, respectively. The
readout performance in Run 1 (green line) and Run 2 (blue line), and the expected rate in Run 3 as
obtained in laboratory tests (red line), are shown in Fig. [5]

3.3 HYV and LV system

The HV and LV system is based on the system crate CAEN SY1527. The HV system uses five 12-
channel A1821PH boards, specifically developed for the HMPID, with 1 nA current sensitivity. The LV
EASY system consists of seven A3009 boards for the FEE sectors and four A3025 boards for the RO
electronics. The A3009 is a 12-channel board with 8V-9A/channel max, and the A3025 is a 4-channel
board with 8V-25A max.

During the entire 2010—2015 period the HV and LV power system was very stable, only two LV boards
out of eleven showed a single channel failure and were replaced.

3.4 Cooling system

The HMPID cooling system was designed to remove about 400 W of dissipated power from the FEE
and RO electronics. In Fig. [6] a schematic view of the cooling system is shown. The cooling water
circulates in the panels used to close the aluminum protection boxes to shield and protect the FEE and
RO electronics. To prevent water condensation on the electronics, the protection box is flushed with Nj.

The temperature monitoring in each RICH module is done by means of four PT100 sensors installed in
the protection box: two are fixed to the MWPC aluminum frame (one sensor at the top and the other at
the bottom), and two in the protection box to probe the temperature of the N, gas.

The temperature gradient measured on the aluminum frame is on average 6 °C (= 24 °C at the bottom
sensor and ~ 30 °C at the top sensor). This is caused by the different N, density in the protection box in
contact with the MWPC aluminium frame. The almost vertical position of the RICH modules explains
the warmer zone in the top part of the module.. The same temperature profile is present in the radiator
vessels as well (see paragraph [3.5.1)) and it is used to calculate offline the actual C¢Fi4 refractive index.
To maximize the cooling efficiency, slabs of insulating foam are glued on the external side of the cooling
panels.

3.5 Liquid circulation system

The liquid circulation system (LCS) provides both circulation and filtering of the liquid C¢F;4 to ensure
its best transparency to the emitted UV Cherenkov photons. It is composed of three parts: the pumping
station, the distribution station and the filling and purifying station. A dedicated system provides regular
measurements of the CgF4 transparency, which was stable in the period 2010-2015. In Fig. |/} as an
example, four months of measurements during 2015, are shown. The observed 2% of increase is not
relevant if propagated on the N, detected that is of the order of 12. Therefore it has no impact on the
physics performance.

The CgF14, a chemically inert, non-aromatic saturated fluorocarbon, was chosen as Cherenkov radiator
primarily because of its optical properties. With the refractive index n = 1.299 at 175 nm that corresponds
to a B threshold for the Cherenkov emission of B, = 0.77, it is suitable for the PID in the required
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Fig. 6: Schematic view of the cooling system taken from the DCS User Interface. The loop control buttons and
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the location in the protection box of the four PT100 sensors are shown.

momentum interval. The circulation through the radiator vessels is based on a gravity flow mechanism
to prevent accidental overpressure. Each vessel is fed by a so called header tube where an overflow is set

to establish the correct hydrostatic pressure.

The Cg¢Fi4 low boiling point (51 °C) results in an elevated vapor pressure, approximately 310 mbar
at 25 °C. To minimize the losses by evaporation, during the Run 1 data-taking period the liquid was
circulated and purified only during the Pb—Pb data taking period while it was stagnant during pp periods
and the LHC technical stops. In both conditions, no evident transparency differences were measured
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showing that the liquid radiator was affected by low levels of contaminants.
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Fig. 8: Layout of the radiator vessels with the year of production. The white boxes represent the radiator vessels
that were leaking at the end of Run 1. The interaction point is behind the figure plane.

3.5.1 Construction and stability of the quartz radiator vessels for the CoF 14

Each RICH module is equipped with three radiator vessels, each one covering the acceptance of two Csl
PCs, a detailed description can be found in Ref. [3]]. A radiator tray consists of one NEOCERAM plate
of 1330x413x4 mm?, three UV grade fused silica plates of 443x413x5 mm? transparent to the UV
Cherenkov photons, four NEOCERAM side bars, 15 mm high, and 30 cylindrical quartz spacers, 10 mm
in diameter and 15 mm high. The resulting surface and thickness of the liquid C¢F;4 contained in the
tray are 1330x413x15 mm°.

All the elements were glued using ARALDITE 2011 supplied by VANTICO. This denomination ap-
peared in 2003 as this glue was formerly known as AW 106. In order to ensure the long-term tightness of
the vessels, the machining, polishing and gluing procedure of the NEOCERAM and quartz plates were
established and carefully followed during the vessel assembly. In particular, the design and construction
of the vessels was based on the experience gained in RICH systems of other experiments (DELPHI and
SLD), equipped with similar radiator trays, and on compatibility of all selected materials with the usage
of the CgF14 [16]].

All the trays were tested before their installation in the RICH modules. In Fig. [§] their layout and the
year of production (YP) are shown. The interaction point is located behind the figure plane. In Fig. [§]
the white boxes represent the position of the four (out of 42) radiator vessels that started to leak during
Run 1. In black the date when the leak started is indicated. So far the exact reason of the leakages is not
know, we can just formulate some hypothesis (detector ageing). The broken radiator vessels was emptied
and isolated.

3.6 Multi-Wire Proportional Chamber (MWPC)
3.6.1 Geometry and stability of MWPC

Details on the MWPC design and construction are given in [3]. We summarise some basic features here.
The MWPC has asymmetric gaps, the anode wire-Csl photocathode gap is 2 mm, whereas the anode
wire-cathode wire gap is 2.4 mm. Such an asymmetry optimizes the coupling between anode wires and
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Fig. 9: Map of the excluded HV sectors and the year when they have been excluded.
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Fig. 10: Example of Single Electron Pulse Height Distribution (SEPHD) in RICH6 HV sector 5, extracted from
p—Pb collisions at /sy = 5.02 TeV data, collected in 2013. Ay is the inverse of the slope of the fit.

pad cathode plane. The 20 um anode wires have a 4.2 mm pitch and are soldered, whereas the 100 um
cathode and collecting grid wires, with a pitch of 2 mm, are crimped. To remove electrons produced by
the ionizing track from the proximity gap, a collecting grid is located close to the radiator vessels and
biased with 400 V. A voltage of about 2050 V is needed to obtain a visible gas gain of about 4x 10*
at the FEE integration time of about 1 ps, with respect to a total gain of ~ 8x 10* at the ion drift time
(> 10 usec).

As shown in Fig. ] each MWPC is powered by six HV sectors. Few HV sectors due to discharges were
excluded and set to a lower voltage than the working one. Figure[9]shows the position of the excluded HV
sectors as gray boxes within the HMPID layout. The year of the exclusion is also indicated. Considering
only the excluded HV sectors, the detector acceptance reduces to ~ 90%. Considering also the excluded
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Fig. 11: Ag parameters as a function of time for the various HV sectors. Ay is related to the chamber gain.

leaking trays, the detector acceptance reduces to ~ 70% with a good stability after more than ten years
from the construction.

3.6.2 CH, gas gain stability and uniformity

A stable gas gain at the design value of about 4 x 10* minimizes the impact of the ion bombardment on
the Csl ensuring an efficiency of about 90% for single photoelectron detection. The single photoelectron
detection efficiency is defined as follows:

_Am
Eler =€ % (D

where Ay is the average single electron pulse height and Ay, is the detection threshold for the FEE elec-
tronics. The gain monitoring was performed by measuring the Single Electron Pulse Height Distributions
(SEPHD). Figure[I0]shows an example of the SEPHD in the RICH6 HV sector 5. The A parameter ex-
tracted from an exponential fit to the SEPHDs for each HV sector and for the various ALICE data taking
periods is shown in Fig. [TT| where each group of narrowly spaced points refers to the same period. The
vertical spread of measurements for the same data taking period is due to the different gain among the
six HV sectors in the MWPC. In fact, on average, due to the temperature gradient, the gain increases
going from the bottom to the top of the chamber, as can be observed in Fig. [I2] (empty circles) for each
module (RICHO-6 correspond to ch0-6 in the figure).

In September 2011 the gain spread among the different HV sectors was reduced by a HV equalization
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Fig. 12: A, values (proportional to the chamber gain) for the various HV sectors of each RICH module (for
clearness only bins corresponding to even HV sectors are labelled) before the gain equalization (empty circles) and
after the gain equalization (filled squares). HV sector O is at the bottom of the chamber, HV sector 5 is the upper
one.

procedure (values in the range 2025-2055 V). The goal of this procedure was to reduce Ag to =~ 35 ADC
channels (the design value is 30 ADC channels) and to reduce the gain spread down to 12%. As from
2012 the spread of points in the same data taking period remains constant, confirming the stability of the
HV equalization. The observed average gain variations for each module as a function of time of about
15% are mainly related to change of atmospheric pressure since the temperature in the ALICE solenoid
remained stable. After the HV equalization a better uniformity over the full detector is obtained, as
can be observed in Fig. [I2] (filled squares). On the average the higher A values in the RICH3 is most
probably due to mechanical tolerances of the MWPC aluminium frames. A smaller anode-cathode gap
with the same HV setting, can increase the gas gain of the entire MWPC.

3.7 Stability of the CsI photocathodes

During the photocathode production (2001—-2006), the CsI QE was measured via a Vacuum Ultravio-
let (VUV) scanner [[17, [18]]. Only photocathodes satisfying some selection criteria (QE above a certain
threshold and uniformity) were installed in the MWPCs. The CsI QE after 15 years from the production
(out of which 5 taking data) is discussed in this section. Since direct access to the PC is not possible an
indirect method for the evaluation of the CsI QE was developed. It is based for each photocathode on
the measurement of the average number of detected Cherenkov photons per ring (Npp), for particles at
B ~ 1. Ny, depends on:

— the gas gain;
— the Cg¢F4 transparency;

— the CsI QE that in turn, depends on:

the specific charge dose on the photocathodes;
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Fig. 13: Average number of detected Cherenkov photons per ring (Nph) as a function of the sin2(6cy,) for the six

photocathodes of RICH 2, measured in the Run 1 and part of Run 2 data-taking periods.

O, and H,O contaminants in the MWPC CH4 gas;

the Csl physical-chemical aging process, if any.

The stability of Ny (ANp, = 0) after the equalization of the gas gain and the measured stability of the
CeF14 transparency enable to indirectly infer the stability of the QE. The charge dose below the limit for
a possible loss of QE and the contaminants in the MWPC gas below the tolerated levels, would finally
allow concluding that there is no physical-chemical aging of the CsI.

In Fig. the Npp as a function of sin?Bcy, for the six photocathodes of the RICH2, corrected by the single
photoelectron (PE) detection efficiency (as calculated from eq. (I))) is shown. The correction by the de-
tection efficiency is applied to take into account the gain variation. The values for the period 2012-2015
are a bit lower then the other since after the HV equalization gain decreased and the correction by the
single photoelectron detection efficiency doesn’t totally compensate the effect. The monitoring is per-
formed by looking at the time evolution of the value of Ny, extracted in the interval 0.38 < sin?6cp, < 0.4,
where the Cherenkov angle is at the maximum value (cos(65¢™) ~ 1/n). For this analysis only fully
accepted Cherenkov photon rings are used. Although this selection provides adequate statistics for mon-
itoring purposes, it doesn’t allow us a direct comparison with the N, measured during the test beam at
the production time of the photocathode (2001 to 2006). At that time only perpendicular tracks were
selected. In Fig. Efl, Nph is shown per photocathode and per RICH module in the period 2010-2015.

The lower value of Ny, in RICHS and RICHO respectively on PCO-PC1 and PC2-PC3, is due to the
not operational HV sectors. Incomplete rings are included in the analysis. Due to the excluded leaking
radiator vessels and the failing HV sectors, only the PC4-5 of RICH4 are fully monitored.

The Ny trends of Fig. 14]are fitted in the period 2011-2015 with linear functions (2010 data are excluded
since taken before the HV equalization). The distribution of angular coefficients of the fit functions
is reported in Fig. [I5] The symmetric shape of this distribution and the mean value compatible with
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Fig. 14: Average number of reconstructed photons per track at the maximum Cherenkov angle per photocathode,
as a function of the time, in pp and p—Pb collisions. A gas gain normalization factor was applied. To guide the
eyes the fitting lines are shown.

zero demonstrate the stability of Ny,. The slightly negative slope of PCO, PC2 and PC3 of RICH2 are
of the same order of the positive slope in other modules and could be considered compatible with a
stable photocathodes response (within the precision of this method). The observed stability of the C¢F14
transparency is an indication of the CsI QE stability over time. In addition, the presence of contaminants
in the MWPC gas and the absorbed charge dose might have an effect on the CsI aging and this effect will
be discussed in the next section.

3.7.1 Monitoring of the charge dose on the Csl

The RD26 and ALICE studies on the CsI aging due to the charge dose induced by avalanche ions demon-
strated that this is an important parameter to monitor. Ultimately, it defines the lifetime of the detector.
Several tests were carried out and the main results can be found in Refs. [9H11]].

In order to calculate the charge dose in the period 2010—2015, the anode currents measured with the
nano-ammeters of the HV channels are used. In Fig.[I6] as an example, the distribution of the anode
current I, (in gA) for the RICHO-SECTORO and RICHO-SECTOR3 is shown. The I, peaks at about
200 nA and 240 nA (black curve) correspond to the ramping up to the operational voltages. The peaks
are produced when the HV cables and HV capacitors in the MWPC are charged up. The different peak
position in BEAM TUNING and STABLE BEAM for the two channel is due to the different capacitive
load (HV cable and HV decoupling capacitors) in the two channels. The red curve represents the I,
produced by the ionizing particles produced during the collisions and impinging on that sectors when
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Fig. 15: Distribution of the slope parameters of the linear fit to the (Npn) trends shown in Fig.

the HV is at its nominal value of about 2050 V. Some undesired samples around 200 nA survived since
a more precise timing of the experiment-detector HV operation would be required. Nevertheless their
contribution to the I, is negligible since they are few entries in the logarithmic scale and in addition it
goes in the conservative direction when the charge dose is calculated. In the HV sector 3, due to HV
discharges, the voltage was set at 500 V (see Fig.[9) and the gas multiplication is not active, thus the red
curve correspond only to the pedestal current. On the average they were at about 1nA on all over the 42
HYV channels for the 7 RICH modules.

The specific charge dose on the CsI PCs is determined using 60% of the total anode current. This fraction
is calculated by a simplified model that combines the contributions of ionizing particles and Csl photo-
electrons. It assumes that half of the positive ion avalanches from the ionizing particles migrates towards
the Csl photocathode whereas, conservatively, the full positive ion avalanches from CsI photoelectrons
migrate towards the photocathode.

In Fig. [I7]the sum of the charge doses of 2015 and 2010—2013 [19] is shown. A total average value of
~ 0.02 mC/cm? per PC (full bars) is reached. This value is an order of magnitude below the limit of 0.2
mC/cm? for a possible CsI QE loss [10,[11]. As a consequence, an impact of the absorbed charge dose
on the CsI QE can be excluded and the measured value is compatible with the observed stability of Npp.
Figure [T7] shows also the predictions for Run 3 and 4. In the Appendix [A] details on the model used for
the charge dose calculation and its distribution over time in the period 2010—2015 can be found.

3.7.2 Monitoring of the Csl polluting agents

It is known that polluting agents as water and oxygen can affect the CsI QE. From extensive studies [7]]
it was concluded that exposure at the level of tens or hundreds of ppm does not degrade the CsI QE.
Figure[I8|shows the level of water and oxygen monitored through the DCS during the years 2010—2015.
Their values of up to 2 ppm for water and 12 ppm for O, are well below the accepted limits and therefore
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Fig. 16: In black: distribution of the anode current /, (in A) in two HV sector 3 of the RICHO registered in the
period 2011-2015. In red: I, (in nA) excluding the HV ramp up phase and considering only the data with HV at
the nominal value. The peak at about 70 nA in the left plot corresponds to high luminosity/background events. The
plot on the right shows the current values of a failing HV sector, where gas multiplication is not active, so the red
histogram is the current pedestal of the channel.

they do not have any impact on the Csl QE. The measured values are consistent with the observed
stability of (Npp).

3.7.3 Csl physical-chemical aging

The Csl physical-chemical aging would be measurable only exploiting photocathodes not exposed to any
charge dose nor contaminants. At present, this direct measurement cannot be done. On the base of the
observed stability and the analysis reported in the previous paragraphs it is possible to conclude that after
10 years from the production date for the majority of the photocathodes, no physical-chemical aging is
affecting the CsI photocathodes.

4 Particle identification performance

The HMPID identifies charged hadrons by combining the emission angle of Cherenkov photons with
the momentum measurement provided by the ALICE tracking devices. The HMPID PID in the mo-
mentum interval 1—5 GeV/c, effectively contributes in the measurement of the inclusive charged hadron
production, and to the identification of light nuclei (deuteron in the momentum interval 3—8 GeV/c).

4.1 Pattern recognition algorithm

The measurement of the Cherenkov photon angles requires the track extrapolation from the central track-
ing devices (the Inner Tracking System (ITS) and the Time Projection Chamber (TPC)) up to the corre-
sponding cluster on the HMPID photocathode. This cluster is called minimum ionizing particle (MIP)
cluster in the rest of the document.

Starting from the centroid of the MIP cluster and scanning around candidate photon clusters, the Cherenkov
emission angles are calculated. This procedure is called back-tracing [3]]. To associate the average emis-
sion angle to the track and reject the background contribution, the Hough Transform Method (HTM) is
applied [3,[8]. The result of the pattern recognition procedure is shown in Fig.[I9] in which the Cherenkov
angle, Ocy, is reported as a function of the track momentum for pp collisions at /s = 13 TeV. The three
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symbols correspond to the different HMPID modules.

visible bands correspond to pion, kaon and (anti-)proton signals. The experimental values are in good
agreement with the theoretical curves. In pp and p—Pb collisions the track multiplicity in the HMPID
acceptance corresponds to an average detector occupancy of & 0.1%. Figure [20]shows the primary track
multiplicity in Pb—Pb collisions at /sy = 5.02 TeV as a function of the collision centrality. The track
multiplicityfaliroo produced in the most central (0-5%) Pb—Pb collisions, corresponds to an average de-
tector occupancy of ~ 3.5%. In these conditions the probability that the HTM algorithm detects fake
Cherenkov patterns increases. Figure 21] shows the Cherenkov angles as a function of the track mo-
mentum in the most central (0—10%) Pb—Pb collisions at /sy = 5.02 TeV. Although a non-negligible
background contribution is present, the three bands of pions, kaons and (anti-)protons are clearly visible.
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4.2 Particle identification approaches

Particle identification with HMPID can be performed using two different approaches: on a statistical
basis and on a track-by-track basis. To extract the particle yields for identified hadron production studies,
the statistical approach is used. The track-by-track approach can be used in the case of jet physics studies,
which requires the identification of the jet leading particle, or in the case of identified hadron correlation
studies.

4.2.1 Identification on statistical basis

In pp and p—Pb collisions, due to the low track multiplicity, the particle raw yields can be extracted by a
triple-Gaussian fit to the Cherenkov angle distribution as shown in Fig. 22| for the transverse momentum
intervals 2.5 < pt < 2.6 GeV/c and 3.8 < pr < 4.0 GeV/c.

The fit function used is the following:

_ 2 (0—<6>)2 (0—<6y>)2
Y _ (6-<61>) YK _ %( Y _ g
f(8)=—T=e % + e .

Zo'K e Zcp

+
orV21 OokV2® opV2rm

2

Where (6;) and o;, (with i = 7, K, p) are the means and the standard deviations of the Cherenkov angle
distributions of the three hadron species, respectively. Y; represents the integral of the three-Gaussian
functions, i.e. the raw particle yields to be evaluated. The mean and standard deviation values for the
three different particle hypothesis are deduced from the expected Cherenkov trend and MC simulation,
and fixed in the fit function (eq. (2))) in order to extract the particle yields.

In the most central Pb—Pb collisions, due to the high number of primary and secondary tracks, the three
Gaussian distributions for pions, kaons and (anti-)protons in a narrow transverse momentum interval, sit
on a background distribution produced by identification of fake Cherenkov patterns in the high occu-
pancy events (Fig. yellow curve). A polynomial function of 6’ order is used to fit and subtract the
background contribution from the ¢y, distribution. The shoulder in the distributions starting at 0.7 rad is
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o

a boundary effect due to the finite geometrical acceptance of the chamber.

Figure [24] shows the separation in units of standard deviation (o) for #/K and K/p in the HMPID as a
function of the transverse momentum, for pp collisions at /s = 13 TeV and in the 5% most central Pb—Pb
collisions at /sny = 5.02 TeV. The precision of the fit of the background distribution represents a source
of systematic uncertainty. For example, in the most central Pb—Pb collisions at /sy = 2.76 TeV. and
at low transverse momenta (1.5 GeV/c), the systematic uncertainty due to the background subtraction
amounts to ~ 15% for pions and ~ 8% for kaons and (anti-)protons [20]. In pp and p—Pb collisions
where the background is negligible (Fig. [22)) and the background fit is not needed, the total systematic
uncertainty is smaller (< =~ 12%).

Exploiting the statistical unfolding, the HMPID provided pion and kaon prt spectra between 1.5 GeV/c
and 4 GeV/c and (anti-)proton spectra in the pr interval 1.5—6 GeV/c. The analysis was performed for
pp, p—Pb and Pb-Pb collision data [20-23]] collected during the LHC Run 1 data-taking period. In the
most central Pb—Pb collisions the HMPID reduces the uncertainties of the measurements in the region
of transition between the identification by the Time-Of-Flight and the specific energy loss, dE/dx, in the
relativistic rise region at ~ 3 GeV/c. It thus improves the precision of the measurement and validates the
other methods in the region where these techniques have worse PID performance.

4.2.2 Identification on a track-by-track basis

For the identification on a track-by-track basis, two PID estimators can be used:

— the probability that the particle is one of the known charged hadron species;

— the difference between the value of the measured Cherenkov angle and the theoretical one for
known hadrons in units of the detector resolution (sigma).

The second estimator is defined as:
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where 68? is the measured Cherenkov angle, G(i:’ltlheor is the theoretical angle calculated for each mass

hypothesis, and o; is the expected resolution extracted. from data. Selecting on N variables it is possible
to select a sample of identified hadrons with a given purity and contamination level, defined as:
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where Niq(i) is the number of particles identified as of type i, Ni;(i) is the number of particles correctly
identified while N (i) is the number of particles mis-identified, with i = 7, K, p.

In Fig. 23] the purity and the contamination of a sample of protons in Pb—Pb collisions in two different
centrality intervals, obtained from a HIJING Monte Carlo simulation [24], identified by the HMPID
requiring IN5| < 2 in Pb—Pb collisions, are shown. The simulation has been performed in the official
framework of ALICE, AliRoot [25] and it reproduces very well the detector response. In the most
central Pb—Pb collisions, the mis-identification probability is higher than in the more peripheral ones due
to the higher charged track multiplicity. As a consequence the purity of the proton sample is lower in
central Pb—Pb collisions than in peripheral ones.
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Fig. 25: Purity and contamination for identified protons obtained from a HIJING Monte Carlo simulation in Pb—Pb
collisions at /snn = 2.76 TeV, in two different centrality intervals, 0-5% (left) and 40-50% (right).

4.3 Deuteron identification

Figure[26]shows the squared particle mass distribution calculated using the measured HMPID Cherenkov
angle, in the most central (0-10%) Pb—Pb collisions at /sy = 5.02 TeV. The signal to background
ratio for deuterons is large enough to allow its identification. The squared mass is calculated using the
equation:

m* = p* (n*cos*Och — 1) 5)

where p is the particle momentum measured by the ALICE tracking detectors and » is the radiator re-
fractive index. In the squared mass distribution four peaks, corresponding to pions, kaons, (anti-)protons
and deuterons, are clearly visible. The deuteron yield in the HMPID was measured in the transverse
momentum interval 3—8 GeV/c. The yields have been combined with those measured by identifying the
deuterons with the TPC and TOF in the common transverse momentum interval [26]].

5 Perspective for the detector operation during 2022—-2024

After ten years from the first operation, it can be concluded that the HMPID performance is stable and
the PID capabilities are according to expectations

At the end of the LHC Run 3 data-taking period (2022—2024 HL-LHC, Run 3) with Pb—-Pb runs at
50 kHz of collision rate an integrated specific charge dose on the CsI photocathodes of ~ 0.2 mC/cm? is
expected (see Fig. and in these conditions, no CsI QE loss is expected [[10]. If nevertheless needed,
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Csl QE loss at the level of few per cents can be compensated by increasing the photoelectrons detection
efficiency obtained increasing the MWPC voltage.

Test results with an upgraded readout firmware have already shown that in pp collisions an event readout
rate of 10 kHz can be achieved, doubling the current HMPID readout rate. In addition, the integration of
the detector in the new ALICE systems [15}27] is progressing well.

Therefore the HMPID will also contribute to the ALICE physics program in the LHC Run 3 data taking
period.

For the participation of the HMPID detector to the LHC Run 4 data taking period (starting in 2026) a
final decision will be taken at the end of 2024 on the basis of the general HMPID detector status.

6 Conclusions

The HMPID project has successfully proven that RICH detectors based on pad segmented CsI photo-
cathodes in MWPC, can be operated over a time scale compatible with the runtime of experiments at
colliders. With 10.3 m? of CsI active area, the HMPID, the largest detector based on this technology,
has successfully participated in the ALICE physics program during the LHC run period 2010—2015. In
this period the detector has shown good stability, in particular for the Ny, the number of detected photon
per track at the maximum Cherenkov angle. This is the evidence of the CslI QE stability and so far the
demonstration of the absence of aging effects. The measured specific charge dose of 0.02 mC/cm? on
the Csl photocathodes, the low level of O, and H>O contaminants in the MWPC gas and the absence of
Csl physical-chemical aging effects, are consistent with the observed stability of the CsI QE.

The charge dose so far accumulated and the additional one expected from the remaining LHC Run 2 data
taking period and LHC Run 3 one, will result in a CsI charge absorbed dose of about 0.2 mC/cm?, where
no relevant Csl aging effects are expected.
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The HMPID PID capability allowed pions, kaons, and (anti-)protons to be identified in the transverse mo-
mentum interval 1 -5 GeV/c in pp, p—Pb and Pb—Pb collisions. It contributed to the measurements of the
identified charged hadron production (nuclear modification factor Raa, spectra of identified particles),
and on the deuteron identification [20-23) 26]].

Given the good and stable detector performance the HMPID will participate to the Run 3 data taking
period (2022-2024) with Pb—Pb runs at 50 kHz of collision rate.

The final decision for the HMPID participation in the Run 4 data-taking period will be taken at the end
of 2024, on the basis of the general detector status.
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A Absorbed charge dose

In this section some details on the absorbed charge dose calculation are given. In order to determine the
average specific charge dose on the Csl photocathodes, the fraction of the anode current, I,, that flows
through the cathode pad plane is calculated using a simple model. According to the model, I, consists of
two components: /.,y which goes through the cathode wires, and I, collected through the cathode pads.
Ip is of interest to calculate the Csl specific charge dose. It is the sum of two components: the first is
equal to one-half of the current produced from the charged particle (/yyp 2), the second is the full current
produced by photoelectrons (Zphotons):

Icp = IMIP/Z + Iphotons (A.1)
Using the measured average charge for MIPs and for single photoelectron in the MWPC, (Qwmp) and

(Qsphe>, we can compute the ratio r = Qgphe/Omrp and then express Ip as fraction of I, once the average
number of photons per track is calculated. The resulting formula is therefore

Ip =[x, (A.2)
where f is:

f _ 0.54rx Nphotons
1+ r X Nphotons

(A.3)

For Nphotons = 0 only one half of the anode current produced by a charged track flows through the cathode
pads, whereas for a large number of photons almost all of 7, would flow through the pads.
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Fig. A.1: Integrated charge dose as a function of time in the various HV sectors of the RICHO. HV sector 3 is a
failing one and it is set to a much lower voltage, so the absorbed charge dose is much lower than the other sectors.

In order to choose a realistic value for Nppotons t0 be used in eq. (A.3), a set of 23 millions pp collision
events recorded in 2010, were analyzed. On average, 2.7 photons per charged track were measured. In
this way, the contribution of the photons emitted by the primary avalanche (photon feedback effect [3l])
is also taken into account, which for a gas gain of G =~ 8x10%, is of the order of Npn ~ 0.03/avalanche
induced by a single electron. With Nypotons = 3 in eq. (A.3)), the approximate value of 0.6 for f is obtained.
So using I, = 0.6x1,, each high voltage sector has produced an average value of specific charge dose of
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0.0133 mC/cm? on each CslI photocathode. It is calculated integrating a fraction of I, over the time when
the channel voltage is at the operational value of ~ 2050 and dividing the final value for the PC surface.
The HV channels are affected by a pedestal current of 1 nA. For the calculation of the charge dose this
value is subtracted from 1,.

In Fig. the specific charge dose in mC/cm? as a function of the time for the RICHO is shown. Periods
with a steeper slope refer to running at a higher collision rate (pp collisions 2011), to increased number
of charged particles produced by the beam halo interaction (second half of 2012) or to the p—Pb period
(beginning of 2013) where the charged particle multiplicity is higher than in pp. In the 2015 Pb—Pb run,
the integrated charge dose of ~ 0.005 mC/cm? for 0.3 nb—! of integrated delivered luminosity can be
seen. The bottom-left panel with very low charge dose corresponds to the excluded HV sector where a
residual voltage was applied, to reduce the edge effects on the adjacent HV sectors.
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