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Abstract
Applying machine learning methods to high-energy physics simulations has recently emerged as a rapidly developing area. A 
prominent example is the Zero Degree Calorimeter (ZDC) simulation in the ALICE experiment at CERN, where substituting 
the traditional computationally extensive Monte Carlo methods with generative models radically reduces computation time. 
Although numerous studies have addressed the fast ZDC simulation, there remains significant potential for innovations. 
Recent developments in generative neural networks have enabled the creation of models capable of producing high-quality 
samples indistinguishable from real data. In this paper, we apply the latest advances to the simulation of the ZDC neutron 
detector and achieve a significant improvement in the Wasserstein metric compared to existing methods with a low genera-
tion time of 5 ms per sample. Our focus is on exploring novel architectures and state-of-the-art generative frameworks. We 
compare their performance against established methods, demonstrating competitive outcomes in speed and efficiency. The 
source code and hyperparameters of the models can be found at https://​github.​com/m-​wojnar/​zdc.
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Introduction

Numerical simulations using high-performance computing 
have become integral to scientific research, forming the third 
pillar of science alongside theory and experiments. However, 
modeling these systems often demands extensive computa-
tional resources and memory, posing significant challenges. 
To mitigate these issues, researchers employ surrogate mod-
els—simplified versions of more complex simulations that 
approximate the behavior of the system [1]. Creating these 
surrogates has been a standard research practice to balance 
accuracy and computational efficiency. Recently, the advent 
of machine learning (ML) and neural networks has revolu-
tionized this approach. These networks, with their compu-
tational universality, have demonstrated remarkable success 

in approximating complex systems, enabling faster and more 
efficient physical simulations without directly modeling the 
experiments.

The application of ML in physical simulations can take 
various forms, such as supervised learning, incorporating a 
physical loss term, or leveraging differentiable numerical 
simulations [2]. Generative neural networks have recently 
shown promise as a viable alternative to traditional meth-
ods for fast simulations. These networks are capable of 
generating high-quality samples that are indistinguishable 
from real data, significantly reducing computational costs. 
Using various frameworks, such as autoencoders, generative 
adversarial networks (GAN), and normalizing flows (NF), 
these models have also shown their potential in high-energy 
physics [3–5].

The Zero Degree Calorimeter (ZDC) [6] in the ALICE 
experiment at CERN plays a crucial role in measuring 
particle showers to determine the centrality of collisions 
[7]. Traditionally, the simulation of ZDC responses relies 
on GEANT [8], a Monte Carlo toolkit designed to model 
the trajectory of particles. Although this method provides 
precise results, it comes with a cost of significant time and 
computational resources needed to perform the simulation. 
Since the demand for calorimeter simulations grows [9], the 
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motivation to develop more efficient techniques is stronger 
than ever.

This paper explores the application of state-of-the-art 
(SOTA) generative neural network architectures to the simu-
lation of the ZDC neutron detector. We examine novel archi-
tectures and frameworks, such as the Vision Transformer 
(ViT) and MLP-Mixer, which have not yet been extensively 
applied to this domain. We also consider modern generative 
frameworks, such as vector quantization (VQ), NFs, and dif-
fusion models. Our aim is to assess the performance of these 
models against established methods, highlight their poten-
tial benefits, and identify challenges. Figure 1 schematically 
shows the relationship between GEANT (simulation model) 
and generative neural networks (surrogate models). The data 
generated by the Monte Carlo simulator are used to train a 
faster model, which could eventually be used interchange-
ably with the traditional simulator.

Our contribution includes:

•	 Implementation, evaluation, and confrontation of vari-
ous SOTA neural network architectures and generative 
frameworks with comparison to existing methods on the 
task of fast simulation of the ZDC neutron detector.

•	 Achieving a competitive to SOTA Wasserstein metric 
score of 3.15 in the ZDC neutron detector simulation 
task using a diffusion model, with a low generation time 
of 5 ms per sample (orders of magnitude faster than 
Monte Carlo methods [10]). Until now, SDI-GAN [11] 
achieved the best fast simulation score of 4.5. Alternative 
approaches have shown results as low as 1.2, but with a 
generation time of 109 ms per sample [12].

•	 NF, as the second-best performing model presented in 
this paper, also achieved a strong score of 4.11, with the 
potential to improve the time of the computations in the 
future, and potentially even surpass the diffusion model 
in the performance vs time trade-off.

•	 Providing open-source code and detailed hyperparameter 
settings for reproducibility and further research.

The next section provides a review of the literature on fast 
ZDC simulations, Sect. "Dataset analysis" focuses on the 
analysis of the dataset, and Sect.  "Background" briefly 
describes the architectures and generative frameworks 
we use. Then, in Sects.  "Training setup" and  "Experi-
mental results", we present the methodology and results 
of our research, and finally we conclude the paper in 
Sect. Conclusions.

Related Works

Generative neural networks have been extensively applied 
to high-speed simulations in various CERN projects since 
2017. Early research introduced applications of GANs 
[5, 13–17], autoencoders [3, 18–20], and NFs [4, 19–21] 
(Table 1).

Fast supervised ZDC simulation, with its two-dimen-
sional structure and high resource requirements, is the 
perfect task for generative neural networks. A notable 
advancement came in 2021 with the introduction of the end-
to-end Sinkhorn Autoencoder (e2e SAE) [22]. This model 
enhances standard autoencoder designs by incorporating a 
noise generator neural network, allowing distinct classes 
to be encoded separately in the latent space. The e2e SAE 
demonstrated competitive performance in capturing criti-
cal physical relations, such as collision centers, crucial for 
realistic data simulation.

A significant challenge in the ZDC simulations is the 
varying diversity of the calorimeter responses for different 
particles. In 2023, a study addressed the limited diversity 
of GAN-generated samples [11]. The proposed SDI-GAN 
attempts to solve mode collapse in conditional GANs by 

Fig. 1   Interaction between the 
simulation model, surrogate 
model, and its training process
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incorporating a regularization factor into the loss function, 
encouraging the generator to explore new data modes for 
particles with diverse responses, while maintaining consist-
ency for others.

The 2023 study evaluated basic variational autoencoders 
(VAE) and GAN models for the simulation of the ZDC neu-
tron detector [10]. They improved the GAN framework with 
an auxiliary regularization network, additional postprocess-
ing steps, and proposed a neural network classifier to filter 
inputs that do not trigger the neutron detector’s response.

A different approach proposed in 2024 in [12] leverages 
a diffusion model, which achieves high-fidelity results and 
provides control over the simulation quality by adjusting the 
number of denoising steps. The authors note a high genera-
tion time and propose a compromise using a latent diffusion 
model to accelerate the simulation process.

The 2024 study [23] employs CorrVAE [24] to encode 
different aspects of an object into two separate hidden 
variables. This is achieved by having separate encoders for 
properties and objects. In addition, the correlation between 
properties is identified and processed by the mask pool layer, 
which consolidates the relevant information into a bridging 
latent variable.

The authors of [25], presented in 2024, integrate SDI-
GAN with an auxiliary regressor and intensity regularizator 
to model the responses of the ZDC proton detector. This 
work is a pioneering application of generative neural net-
works for fast ZDC proton simulation.

Table 1 summarizes the reviewed works in chronological 
order, indicating the models used. Despite these advances, 
the literature does not fully explore recent developments in 
generative neural networks. From our literature review, we 
found that the ViT [26] and MLP-Mixer [27] architectures 
have not yet been applied to this domain, and modern gen-
erative frameworks, such as VQ and diffusion, are rarely 
utilized. Furthermore, many existing solutions do not incor-
porate physical loss terms.

Dataset Analysis

The ZDC consists of four calorimeters, two for proton detec-
tion and two for neutron detection. Two sets of two detec-
tors (proton—ZP and neutron—ZN) are placed on each side 
of the interaction point IP2. These devices are designed as 
“spaghetti calorimeters”, comprising stacked heavy metal 
plates interspersed with a matrix of quartz fibers. The Cher-
enkov light emitted by charged particles passing through 
these fibers is detected and counted by photomultipliers 
(PMs). The schematic diagram of the ALICE central barrel 
including the ZDC can be found in [28], while the image of 
the ZDC is included in [29].

The output of every second fiber is sent to one of the PMs. 
The remaining ones are divided into four groups (upper-left, 
upper-right, lower-left, lower-right) and sent to four sepa-
rate PMs. Following this scheme, each detector response can 
be processed to produce five values, denoting the sums of 
the signal from each channel. These five values are further 
denoted as channels. The dataset, based on GEANT simula-
tions, consists of two parts: 9-dimensional particle proper-
ties (which serve as conditional variables) and ZN responses 
of dimensions 44 × 44 (which can be interpreted as images 
in generative models; the task is then to produce images 
with 44 × 44 = 1936 pixels). Figure 2 presents histograms 
of particle features. Note that momenta and mass formally 
have units of GeV

c
 and GeV

c2
 , respectively, where c is the speed 

of light in a vacuum. However, in this dataset, the values are 
normalized to GeV for simplicity.

The dataset generated with the GEANT4 Monte Carlo 
toolkit contains 306,780 samples, with responses hav-
ing at least 10 photons. Among all the examples, 99,695 
have a different sum of photons, and there are only 1805 
unique particles, indicating that the dataset might not cover 
the entire space of possible particles. Furthermore, there 
is a noticeable imbalance in the dataset—Fig. 3 illustrates 
each particle’s contribution, visualized by the circle’s size. 
Overall, the dataset includes 21 different types of particles. 
The observed dataset limitations may impact the results; for 
example, the model may generate low-quality results for 
the underrepresented particles. This might be mitigated by 

Table 1   Chronological overview of papers applying generative neural 
networks for fast simulations in high-energy physics. Note that VQ 
models are not used in any papers

Year Reference GAN Autoencoder NF Diffusion

2017 [5] ✓

2018 [17] ✓

2018 [15] ✓

2018 [16] ✓

2019 [14] ✓

2019 [13] ✓

2020 [3] ✓

2021 [4] ✓

2021 [21] ✓

2021 [18] ✓

2021 [22] ✓

2022 [19] ✓ ✓

2023 [20] ✓ ✓

2023 [11] ✓

2023 [10] ✓ ✓

2024 [12] ✓

2024 [23] ✓

2024 [25] ✓
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generating more data to make the dataset balanced, but since 
this task requires expert knowledge, it is out of the scope of 
this paper. Also, traditional methods for dealing with imbal-
anced datasets do not apply in our case, due to the high level 
of imbalance.

Figure 4 shows dataset visualizations made using t-distrib-
uted stochastic neighbor embedding (t-SNE). Particle features 
were normalized prior to generating the embeddings and only 
the unique particles were used for visualization, thus there are 
1805 points. The t-SNE embedding separates the particles 
into four clusters. The cluster on the left contains negatively 
charged particles, the cluster on the right—positively charged, 
and the other two are neutral. Note that the most frequently 
represented � particles have their own cluster. The figure uses 
colors to represent the six most common particle types, while 

all other types are depicted in a uniform color (yellow). Par-
ticle proportions may be different than in Fig. 3, as this visu-
alization shows only unique feature vectors. The visualization 
reveals the structure of the particles, highlighting separation 
by the charge and mass of the particles.

In an ZDC simulation, the varying diversity of the detector 
responses plays an important role, i.e., for some particles, the 
detector gives consistent responses in different independent 
runs. In contrast, for others they are diverse, as illustrated in 
the Monte Carlo simulations shown in Fig. 5. The consistency 
regards the position of the center of the shower, as well as the 
number of generated photons.

Fig. 2   Histograms of particle features. E stands for energy, v for primary vertex positions, p for momenta, m for mass, and q for charge
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Background

This section outlines the theory and key characteristics 
of the generative neural networks discussed in this paper. 
Details of the neural network architectures employed in 
this study can be found in Appendix C.

Autoencoders

The classical autoencoder framework consists of an encoder 
and a decoder, which, respectively, map the input data to the 
latent space and reconstruct the data from this space. VAE 
[30] extends the model with variational inference of latent 
variables to enable sampling from the model.

Another variation of the autoencoder is the supervised 
autoencoder [31]. As stated in [32], the supervised autoen-
coder can be viewed as a way to incorporate the physical 
loss term into the model [2]. These models transform the 
input into conditional variables (e.g., particle parameters in 
the ZDC) and then reconstruct the original data. Their loss 
function is

where E� is the encoder with parameters � , D� is the decoder 
with parameters � , c represents the conditional variables, 
and � is a regularization weight.

VAEs constrain the hidden space to match a specific dis-
tribution, which can limit model expressiveness and force 
conditional variables onto a single manifold in the latent 
space [22]. In addition, the common Gaussian distribution 
can impair the linear separability of complex data and does 
not support sparse latent representations via ReLU activation 
[33]. To address this, autoencoders with noise generators 
do not regularize the hidden space but preserve generative 
capabilities through an additional neural network—the noise 
generator. This network maps conditional variables to the 

(1)L(�,�;x, c) = ||D�(E�(x)) − x||2
2
+ �||E�(x) − c||2

2
,

Fig. 3   Diagram depicting the distribution of particles in the dataset

Fig. 4   Unique particle features visualization using t-SNE. The colors 
denote the types of the particles

Fig. 5   Example ZDC neutron detector simulations generated with 
GEANT software. The columns represent responses to different parti-
cle types, labeled above each column for clarity. The rows show inde-
pendent runs for the same particles. This figure stresses the diversity 
of the detector responses, as the first three are much more consistent 
than the other two
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latent space. e2e SAE combines reconstruction loss Lrec , 
Sinkhorn loss LS aligning noise generator and encoder out-
puts, and a regularization term Lreg:

where � are noise generator parameters, � is the Sinkhorn 
loss weight, and � is the regularization weight. The original 
e2e SAE uses a complex Laplacian pyramid loss combined 
with l2 loss for reconstruction, where l2 loss minimizes the 
mean squared error between predicted and target values (i.e., 
||ypred − ytarget||22 ). However, for ZDC responses, only l2 is 
used, omitting the regularization term.1 For comparison, 
we propose an autoencoder with a noise generator trained 
with the l2 loss rather than the Sinkhorn loss to align the 
outputs of the noise generator and the encoder. This leads 
to a simpler formulation that requires fewer computational 
resources.

As well-established models, autoencoders are favored for 
ZDC simulations because of their ease of training and robust 
mathematical basis. On the other hand, classic autoencoders 
have difficulty reproducing the input faithfully and suffer 
from blurred images.

Generative Adversarial Networks

GANs [34] consist of two competing neural networks: the 
generator and the discriminator. The generator aims to pro-
duce realistic data, while the discriminator strives to dis-
tinguish between real and generated samples. The training 
objective is

where G� is the generator parameterized by � and D� the 
discriminator parameterized by �.

SDI-GAN [11] adjusts the diversity of generated samples 
based on the randomness of the original particle responses. 
T h e  d i v e r s i t y  m e a s u r e  i s  d e f i n e d  a s 
fdiv(c) =

∑
i,j

�∑
t(xtij − �ij)

2∕�Xc� , where xtij is the pixel 
value at coordinates i, j for sample t, and �ij is the mean of 
these pixel values for the condition c. The regularization 
term scales the diversity proportionally to the data 
variance:

(2)

L(�,�,� ;x, c) =Lrec(�,�;x)+

�LS(�,� ;x, c)+

�Lreg(�,�,�),

(3)
min
G�

max
D�

�x∼p(x)[logD�(x)]+

�z∼p(z)[log(1 − D�(G�(z)))],

where z1 and z2 are two different latent codes, dz is a latent 
space distance metric, and dI measures the dissimilarity 
between two images conditioned on c, using image embed-
dings generated by the penultimate layer of the discriminator.

The authors of [10] enhance GANs with an auxiliary 
regressor and postprocessing step to improve the quality 
of generated ZDC responses. The regressor, pretrained 
to predict peak photon count coordinates, adds a physical 
loss component during training. A postprocessing step fur-
ther refines the output images by scalar multiplication to 
optimize metric values that distinguish the generated from 
actual data distributions. An alternative method to ensure 
the global consistency of GAN-generated outputs (e.g., the 
position of the photons peak) involves incorporating l1 or 
l2 loss into the generator [35], where l1 loss minimizes the 
mean absolute error between predicted and target values 
(i.e., |ypred − ytarget| ). This approach is intended to faithfully 
recreate the global relationships within the image, in contrast 
to adversarial loss, which focuses on capturing local details.

For a long time, GANs have been the SOTA generative 
models, recognized for their ability to quickly generate high-
quality images [36]. Nevertheless, they are difficult to train, 
struggle to maintain adequate diversity in their outputs, and 
often suffer from mode collapse.

Vector Quantization

Vector Quantized Variational Autoencoder (VQ-VAE) 
[37] introduces discrete latent representations through VQ. 
Quantized vectors zq are selected as nearest neighbors of the 
encoder’s output from a codebook Z:

where ||x||2 denotes the l2 norm of the vector x. The decoder 
reconstructs input based on the quantized vectors, thus a 
straight-through gradient estimator is used during the train-
ing. The VQ-VAE loss function includes reconstruction loss, 
codebook alignment loss, and commitment loss:

where sg denotes a “stop gradient” operator, preventing 
updates for selected parts of the network. The second train-
ing phase aims to obtain a learnable prior. Since the VQ-
VAE encoder generates discrete outputs, autoregressive 
discrete models, such as the PixelCNN model [38] or trans-
formers, are employed for this task.

(4)LSDI(�,�;x, c) = fdiv(c) ⋅

(
dI(G�(c, z1),G�(c, z2))

dz(z1, z2)

)−1

,

(5)zq(x) = argmin
z∈Z

||E�(x) − z||2,

(6)

L(�,�,Z;x) =�[log p�,�(x|zq(x))]+
|| sg[E�(x)] − zq(x)||22+
�||E�(x) − sg[zq(x)]||22,

1  https://​gitlab.​cern.​ch/​swenz​el/​zdcfa​stsim/.

https://gitlab.cern.ch/swenzel/zdcfastsim/
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VQ-GAN [39] enhances VQ-VAE by incorporating 
patch-based adversarial and perceptual [40] terms into 
the loss function. VQ addresses VAE posterior collapse 
but introduces codebook collapse, where embeddings are 
underutilized. Mitigation strategies include the exponential 
moving averages (EMA) codebook update [37], a linear pro-
jection for a comparison of vectors, and l2 normalization for 
cosine similarity lookup [41].

VQ models enable the generation of high-fidelity images 
with a more interpretable latent space. However, their main 
drawbacks include the complex training procedure and the 
potential for codebook collapse, leading to inefficient learn-
ing and reduced output quality.

Normalizing Flows

NFs model complex probability distributions by stacking 
multiple simple, invertible transformations. Each transfor-
mation, denoted as fi , progressively maps a simple base 
distribution (e.g., Gaussian) to a complex target distribu-
tion. The transformation is given by x = (fn◦fn−1◦⋯◦f1)(z) , 
where x is the input data and z the latent representation. The 
NF framework allows the exact data likelihood computation 
using the change of variables formula:

where x = f (z) , pz(z) is the base density, px(x)—the target, 
and �f (z)

�z
 is the Jacobian of f. For NFs, the density estimation 

in the log domain can be written as

where zi−1 is the latent variable at the (i − 1) th stage.
One type of frequently used transformations in the 

scope of NFs is the autoregressive models, where the value 
of xd in the next autoregressive layer is conditioned on 
x1, x2,⋯ , xd−1 values in the previous (d—currently pro-
cessed dimension). In the case of autoregressive flows, 
each Jacobian �fi

�zi−1
 is a lower triangular matrix, which 

means that its determinant can be computed as a product 
of its diagonal elements. Autoregressive flows face a trade-
off between the efficiency of sampling and training. For 
example, Masked Autoregressive Flow (MAF) [42] ena-
bles fast training but is slow during the sampling, as it 
requires sequential processing. Conversely, Inverse 
Autoregressive Flow (IAF) [43] allows for fast sampling 

(7)
px(x) = pz(f

−1(x))
|||||
det

�f −1(x)

�x

|||||

= pz(z)
||||
det

�f (z)

�z

||||

−1

,

(8)log px(x) = log pz(z) +

n∑

i=1

log
||||
det

�fi

�zi−1

||||

−1

,

at the cost of slower training. The efficient implementation 
of the faster pass is given by MADE [44] blocks, which 
allow for computing all parameters of the transformation 
simultaneously, while preserving the autoregressive 
property.

NFs are elegant models, which offer stable training due 
to the minimization of the exact negative log-likelihood. 
However, their training requires a significant amount of 
resources, as they usually have many parameters, since there 
is no dimensionality reduction between layers. Also, MAF-
based architectures are slow to sample.

Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) [45] are 
generative models that generate new samples by incremen-
tally reversing a diffusion process. The technique involves 
gradually adding pure Gaussian noise �t to the data x0 at each 
step t. Throughout the training, the model parameterized 
by � learns to predict noise as ��(xt) . In every iteration, the 
network computes an approximation of the data x̂0 , and then 
the noise is applied to obtain xt−1:

where 𝛼t = Πt
s=1

𝛼s , �t = 1 − �t , and �t is a variance schedule. 
The variance schedule controls the amount of noise added at 
each step, ensuring a gradual and stable diffusion. The loss 
function is typically:

Denoising Diffusion Implicit Models (DDIM) [46] intro-
duces a non-Markovian diffusion process that allows for 
fewer sampling steps without significant loss of sample qual-
ity. The reverse process can be formulated as:

where �t controls the amount of noise added during the 
reverse process allowing a balance between the qual-
ity and diversity of samples. Setting �t = 0 makes the 
reverse process deterministic, leading to DDIM. If 
𝜂t =

√
(1 − 𝛼̄t−1)∕(1 − 𝛼̄t)

√
1 − 𝛼̄t∕𝛼̄t−1 the process becomes 

Markovian, resulting in DDPM.
Diffusion models are new SOTA generative models, 

producing high-quality, diverse samples [47]. Recent 
research has concentrated on improving their mathematical 

(9)x̂0 =
xt −

√
1 − 𝛼̄t𝜖𝜃(xt)√

𝛼̄t

,

(10)xt−1 =
√
𝛼̄t−1x̂0 +

√
1 − 𝛼̄t−1𝜖t−1,

(11)L(�;xt, �t) = �
�
‖�t − ��(xt)‖22

�
.

(12)xt−1 =
√
𝛼̄t−1x̂0 +

�
1 − 𝛼̄t−1 − 𝜂2t 𝜖𝜃(xt) + 𝜂t𝜖t−1,
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foundation and remarkable capabilities [48, 49]. However, 
they still require significant computational resources.

Training Setup

In this section, we provide an overview of the experimental 
setup, including dataset preparation, optimizer tuning, and 
the evaluation metrics used. In addition, we describe the 
architectures of the models employed in the study.

Dataset Preparation

The dataset was divided into training, validation, and testing 
sets in proportions of 70%, 10%, and 20%, respectively. The 
training was carried out on the training set, the parameters 
were tuned on the validation set, and the final results were 
calculated on the test set. Conditional variables (i.e., particle 

parameters) were standardized to a zero mean and a stand-
ard deviation of 1, and ZDC responses were logarithmized 
(except for NFs). Note that the metrics were calculated after 
inverse-transforming the data to their original scale.

Optimizer Tuning

The AdamW optimizer [50], with hyperparameters fine-
tuned through more than 100 trials per model with Optuna 
software,2 was used, focusing on the Wasserstein metric. 
The optimization procedure leveraged the Tree-structured 
Parzen Estimator (TPE) sampler [51] without pruning and 
considered the following parameters: learning rate, �1 , �2 , � , 
use of cosine decay, weight decay, and Nesterov momentum. 
The repository linked to this paper contains the source code 
for the models, as well as the hyperparameters for both the 
models and the optimizers.

Metrics

In the literature on fast ZDC simulations, the Wasser-
stein distance is the most commonly used metric of model 

Table 2   Performance of CNN-based autoencoders across various 
architectures

Architecture CNN

Metric Wasserstein MAE RMSE

VAE 11.52 17.76 50.38
Supervised AE 23.71 31.90 72.32
AE + Sinkhorn NG 26.53 29.07 66.16
AE + l2 NG 37.56 39.32 92.28

Table 3   Performance of ViT-based autoencoders across various 
architectures

Architecture ViT

Metric Wasserstein MAE RMSE

VAE 11.90 18.05 49.48
Supervised AE 20.43 30.60 74.64
AE + Sinkhorn NG 11.34 15.88 44.17
AE + l2 NG 11.19 15.47 43.49

Table 4   Performance of MLP-Mixer-based autoencoders across vari-
ous architectures.a

a The × sign indicates that the model did not converge during the 
training

Architecture MLP-Mixer

Metric Wasserstein MAE RMSE

VAE 12.22 18.00 49.51
Supervised AE 17.08 26.90 104.83
AE + Sinkhorn NG × × ×

AE + l2 NG × × ×

Table 5   VQ-VAE reconstruction performance depending on model 
size

Model size Wasserstein MAE RMSE

0.25M 11.54 12.96 38.46
1 M 9.86 11.84 37.22
4 M 11.73 13.78 43.54
13 M 11.40 12.87 37.90
52 M 12.12 13.73 39.74

Fig. 6   Reconstruction performance of VQ-VAE as a function of 
model size. The size of the marker graphically corresponds to the size 
of the model

2  https://​optuna.​readt​hedocs.​io/.

https://optuna.readthedocs.io/
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performance, defined as the ability of the model to generate 
samples which closely resemble the input data. This met-
ric is calculated as the average Wasserstein distance of the 
five detector channels described in Sect. "Dataset analysis". 
Example histograms for both the original and generated 
samples are provided in Appendix B. Employing a metric 
that assesses the global characteristics of the samples is 
justified as the detector responses often vary between runs, 
and variations at the individual pixel level should not influ-
ence the metric’s value. A second metric that also appears 
in the literature is the mean absolute error (MAE). Unlike 
the Wasserstein metric, this is a local metric that directly 
compares the channel values of the original and generated 
samples. The last metric that we introduce is the pixel-wise 
root mean squared error (RMSE), which directly compares 
pixels. This metric indicates the extent to which the model 
attempts to match the original data. The used metrics can be 
defined as follows:

where F−1
q

 is the inverse cumulative distribution function of 
the distribution q, wi denotes the distribution of the ith chan-
nel, n refers to the number of evaluated examples, wk

i
 repre-

sents the value of the ith channel of the kth response, xk
ij
 is 

the value of the pixel with i and j coordinates of the kth 
response, and ŵ and x̂ are the corresponding predicted 
values.

Note that while lower MAE and RMSE metrics are gener-
ally considered better, it does not necessarily imply that the 
model is superior in the ZDC simulation task. Achieving the 
lowest possible value is not always desired, as it may sug-
gest that the model frequently produces consistent responses, 

(13)Wasserstein-1(w, ŵ) =
1

5

5∑

i=1
∫

1

0

|||F
−1
wi
(z) − F−1

ŵi
(z)

|||dz,

(14)MAE(w, ŵ) =
1

n

n∑

k=0

1

5

5∑

i=1

|wk
i
− ŵk

i
|,

(15)RMSE(x, x̂) =

√√√√1

n

n∑

k=0

1

44 ⋅ 44

44∑

i=1

44∑

j=1

(xk
ij
− x̂k

ij
)2,

even when the actual physical process yields diverse results. 
The optimal values of these metrics should be close to those 
derived from the original dataset. Due to the high stochastic-
ity of the simulated process, the reported metric values are 
the average of five runs.

Models Architecture

Encoder and decoder networks were implemented in the 
CNN, ViT, and MLP-Mixer architectures. These models 
have been used as building blocks in autoencoders, GANs, 
and VQ models, with additional layers specific to each 
framework. Network designs in various architectures are 
shown in Appendix C. The diagrams show the scheme of 
encoder networks, with decoder networks formed by revers-
ing these structures. All models discussed in this paper oper-
ate in the raw data space.

Experimental Results

The training was performed on a single NVIDIA A100 
GPU with 40 GB of memory on the Athena supercom-
puter.3 All models were trained for 100 epochs in batches 

Table 6   Performance comparison of different GAN models

Model Postprocessing Wasserstein MAE RMSE

GAN 7.09 25.65 104.60
GAN ✓ 5.70 24.71 100.98
GAN + l2 loss 6.44 27.37 109.24
GAN + l2 loss ✓ 6.07 26.78 107.07
SDI-GAN 6.57 27.01 107.82
SDI-GAN ✓ 6.36 26.58 105.94

Table 7   Performance 
comparison NF depending on 
the amount of added noise

Noise range: 
[0,  x)

Wasserstein

1.0 12.57
0.75 6.67
0.5 4.58
0.1 7.10
0.01 8.10

Fig. 7   Performance and time required for a diffusion model to pro-
duce samples depending on the number of denoising steps

3  https://​www.​cyfro​net.​pl/​en/​19073​,artyk​ul,athena.​html.

https://www.cyfronet.pl/en/19073,artykul,athena.html
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of size 256. At the end of each epoch, the weights were 
stored to allow for reconstruction at any time during the 
training. The test metrics were computed after the comple-
tion of the training. The purpose of the experiments is to 
compare the performance and speed of different genera-
tive models in the task of the ZDC neutron detector simu-
lation. Note, that the most important metric—the Was-
serstein distance—for the reference GEANT data equals 
0.53 (Table 8), and the goal is to achieve a score as low 
as possible.

Regarding the autoencoder results, the model with 
a noise generator in the ViT architecture achieved the 
highest performance, with a Wasserstein metric score of 
11.19, slightly outperforming the VAE based on CNN 
(Tables 2, 3, and 4). Using Sinkhorn loss improves the 
results for CNN models but does not provide gains over l2 
loss in ViT. The VAE consistently produces similar results 
across various architectures. The results of the experiment 
indicate that the ViT architecture provides the best and 
most stable performance and was therefore selected for 
use in other models in further experiments.

In further experiments, a VQ-VAE model was imple-
mented and the corresponding optimizer was tuned. The 
encoder and decoder were based on ViT, the codebook size 
was set to 256, and to ensure good codebook utilization, 
the gradient update method with l2 normalization and pro-
jection was employed. To provide more insights about this 
approach, Table 5 and Fig. 6 show the reconstruction per-
formance of VQ-VAE depending on model size, where the 
medium-sized model (1 M parameters) achieved the best 
results with a Wasserstein score of 9.86. Larger models 
did not show significant improvement, suggesting that 1 M 
parameters are sufficient for the task. Note that the medium-
sized model may have achieved the best results due to the 
small dataset or codebook size. In this case, because the 
objective is image reconstruction instead of generation, we 
aim for the minimum value across all three metrics, which 
indicates that the reconstructed image is similar to the 
input. Subsequently, we trained a transformer model acting 
as a learnable prior with around 4 million parameters. The 
transformer operated in the next-token prediction regime, 

which is considered the most efficient approach for small 
models [52]. Although the size of the model did not signifi-
cantly affect the results, the selection of suitable sampling 
parameters ensured optimal generation performance. We 
experimented with top-k and top-p sampling methods, but 
the optimal outcomes were achieved by varying the sam-
pling temperatures, particularly at � = 1.4 . Ultimately, the 
model achieved a Wasserstein metric value of 9.61, which 
we report as the final score of VQ-VAE models on the task 
of generating responses of the ZDC detector.

Following this, VQ-GAN was trained with a combina-
tion of l1, l2, perceptual, and adversarial loss functions. The 
codebook update method has been changed from gradient 
update to EMA due to better training stability and codebook 
utilization. The best results (4.58 in the Wasserstein metric) 
were achieved by combining l2 and adversarial losses with 
loss weights tuned with Optuna.

Various GANs were implemented with both generator and 
discriminator optimizers tuned. Additional improvements 
were made by incorporating the l2 loss function, applying 
the postprocessing step, and training SDI-GAN (where con-
dition c refers to the primary particle 9-D feature vectors). 
The use of a classical GAN, together with the postprocess-
ing step (scalar multiplication), allowed the best result of 
5.70 in the Wasserstein metric (Table 6). Keep in mind that 
these outcomes might not align with those documented in 
previous studies due to the utilization of a different network 
architecture and training methodology.

In addition, we implemented a modified CaloFlow [4] 
with two separate models: a Bayesian neural network (BNN) 
for predicting the number of photons based on the other con-
ditional variables, and the MAF for modeling the full ZDC 
output. Like the authors of [4], we used rational quadratic 
splines (RQS) as transformations, with their parameters 
learned by MADE blocks. The flow model was conditioned 
on the particle properties and the number of photons pre-
dicted by the BNN. This way, the second model was only 
focused on modeling the place and shape of the hit, and 
not its luminosity. Since the numbers of photons present in 
the responses are discrete, an additional transformation was 
needed to help the flow adapt to this distribution. Therefore, 
a small amount of noise was added to each value, so a par-
ticular sum of photons was represented by a range [photon 
sum; photon sum + max noise) instead of just a photon sum. 
We investigated how the amount of noise added affects the 
results. Our experiments revealed that the noise influence is 
significant; the results for one of the models are shown in 
Table 7. We treated the noise range as one of the hyperpa-
rameters, which allowed for obtaining a final model reaching 
a Wasserstein score of 4.11.

Finally, a DDPM model with 4 million parameters was 
trained, utilizing both convolutional and attention layers 
along with DDIM sampling. The impact of the number of 

Table 8   Performance comparison of generative frameworks

Model Wasserstein MAE RMSE Time [ms]

GEANT (original data) 0.53 16.41 59.87 –
Autoencoder 11.19 15.47 43.49 0.015
GAN 5.70 24.71 100.98 0.023
VQ-VAE 9.61 21.95 65.82 0.091
VQ-GAN 4.58 22.90 85.45 0.091
NF 4.11 19.36 127.22 160.0
Diffusion 3.15 20.10 73.58 5.360
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denoising steps on generation time and quality was assessed 
(Fig. 7), with 50 steps selected as the optimal value due 
to its balance between generation time and output quality. 
The time presented in the figure was obtained using one 
NVIDIA A100 GPU in batches of 2048 images, exclud-
ing the compilation time. Furthermore, once the number of 
steps was determined, the DDIM � parameter was fine-tuned 
and fixed at 0.7. This adjustment led to an improved model 
performance, achieving a score of 3.15 in the Wasserstein 
metric. Note that increasing the number of steps improves 
the diffusion performance, with 1000 steps resulting in a 
Wasserstein score of 2.10, although it takes approximately 
100 milliseconds to generate a single sample.

Table 8 provides a comprehensive comparison of gen-
erative frameworks, presenting performance metrics and 
generation time. The generation time was measured on the 
same hardware as before, in batches of 256 images, exclud-
ing the compilation time. The diffusion model shows supe-
rior performance with the lowest Wasserstein distance of 
3.15. The histograms of the values generated by diffusion 
in the individual channels are very similar to those obtained 
in Monte Carlo simulations (Appendix B), further confirm-
ing the suitability of this model for ZDC simulations. VQ-
GAN and NF also perform well with a Wasserstein metric 
of 4.58 and 4.11, respectively, while GAN shows moderate 
performance. VQ-VAE and Autoencoder exhibit the poorest 
performance, indicated by the highest Wasserstein distance. 
Note that GAN and NF present significantly higher RMSE 
values compared to the original data, which might imply that 
while they accurately capture the photon number distribu-
tion in the channels, they generate detector responses that 
are excessively varied from the original ones (Appendix A). 
Conversely, the autoencoder exhibits a lower RMSE com-
pared to GEANT, probably due to smoothed images and 
issues with particles that have diverse responses, resulting 
in the model producing outputs that are close to zero. Exam-
ple simulation results are shown in Fig. 8. The Wasserstein 
metric for the original dataset was calculated by randomly 
dividing the test set in half, with one part acting as detector 
responses and the other as generated samples. This approach 
was also applied to the MAE and RMSE metrics, although it 
required that the compared examples have identical particle 
features.

Considering the significance of simulation time for sur-
rogate models, we observe that autoencoder and GAN have 
the shortest generation time, approximately 0.02 millisec-
onds per sample. VQ-VAE and VQ-GAN have a margin-
ally worse time of 0.1 milliseconds, whereas diffusion and 

NF, despite their excellent performance, are significantly 
slower with a generation time of more than 5 and 160 mil-
liseconds, respectively.

Conclusions

This study presents a comprehensive exploration of SOTA 
neural network architectures and generative frameworks 
for fast simulation of the ZDC neutron detector in the 
ALICE experiment at CERN. Our findings indicate that 
ViT-based networks are the most effective among the 
architectures tested. In addition, incorporating VQ meth-
ods proves superior to basic VAEs and GANs, offering a 
good balance between performance (Wasserstein metric 
of 4.58) and generation speed (0.1 milliseconds per sam-
ple). Notably, our implementation of diffusion models and 
NFs demonstrates excellent performance, with Wasserstein 
distances of 3.15 and 4.11, respectively. While diffusion 
models generate samples in a reasonable time frame (5 
milliseconds), NFs are not practical due to their longer 
generation times, despite their strong performance.

In future work, we primarily want to enhance VQ and 
diffusion due to their good balance of throughput and per-
formance. We also see potential in the NFs. In specific, 
we plan to 

1.	 Improve the VQ simulation fidelity using the latest ViT 
advances [53], trying different sampling methods, and 
testing new codebook update techniques [54].

2.	 Speed up diffusion the generation time by working in the 
latent space [55] and reducing the number of denoising 
steps. To achieve this, exploring knowledge distillation 
[56] and rectified flows [49] could be beneficial.

3.	 Further investigate the potential of NFs by testing archi-
tectures which allow for a faster generation time at the 
cost of slower training [43].

4.	 Create a larger and balanced dataset that accurately cov-
ers the space of primary particles. This task is demand-
ing due to the extensive computational resources needed 
and the complex scientific software involved.

Appendix A: Example simulations

See Fig. 8.
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Fig. 8   Example simulations generated by models discussed in this paper. The first column corresponds to the �+ particle, the middle columns 
are � , and the last column is K0

S
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Appendix B: Original and generated 
histogram

Fig. 9.

Fig. 9   Histogram of the sum of photons in the ZDC neutron detec-
tor channels in responses generated by the GEANT (Original) and the 
diffusion model (Generated). Note the logarithmic scale on the y-axis
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Appendix C: Neural network architectures

Figs. 10, 11 and 12.

Fig. 10   Convolutional encoder architecture
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Fig. 11   ViT encoder architecture
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