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Abstract

Applying machine learning methods to high-energy physics simulations has recently emerged as a rapidly developing area. A
prominent example is the Zero Degree Calorimeter (ZDC) simulation in the ALICE experiment at CERN, where substituting
the traditional computationally extensive Monte Carlo methods with generative models radically reduces computation time.
Although numerous studies have addressed the fast ZDC simulation, there remains significant potential for innovations.
Recent developments in generative neural networks have enabled the creation of models capable of producing high-quality
samples indistinguishable from real data. In this paper, we apply the latest advances to the simulation of the ZDC neutron
detector and achieve a significant improvement in the Wasserstein metric compared to existing methods with a low genera-
tion time of 5 ms per sample. Our focus is on exploring novel architectures and state-of-the-art generative frameworks. We
compare their performance against established methods, demonstrating competitive outcomes in speed and efficiency. The

source code and hyperparameters of the models can be found at https://github.com/m-wojnar/zdc.

Keywords Generative neural networks - Fast simulations - High-energy physics - Zero degree calorimeter

Introduction

Numerical simulations using high-performance computing
have become integral to scientific research, forming the third
pillar of science alongside theory and experiments. However,
modeling these systems often demands extensive computa-
tional resources and memory, posing significant challenges.
To mitigate these issues, researchers employ surrogate mod-
els—simplified versions of more complex simulations that
approximate the behavior of the system [1]. Creating these
surrogates has been a standard research practice to balance
accuracy and computational efficiency. Recently, the advent
of machine learning (ML) and neural networks has revolu-
tionized this approach. These networks, with their compu-
tational universality, have demonstrated remarkable success
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in approximating complex systems, enabling faster and more
efficient physical simulations without directly modeling the
experiments.

The application of ML in physical simulations can take
various forms, such as supervised learning, incorporating a
physical loss term, or leveraging differentiable numerical
simulations [2]. Generative neural networks have recently
shown promise as a viable alternative to traditional meth-
ods for fast simulations. These networks are capable of
generating high-quality samples that are indistinguishable
from real data, significantly reducing computational costs.
Using various frameworks, such as autoencoders, generative
adversarial networks (GAN), and normalizing flows (NF),
these models have also shown their potential in high-energy
physics [3-5].

The Zero Degree Calorimeter (ZDC) [6] in the ALICE
experiment at CERN plays a crucial role in measuring
particle showers to determine the centrality of collisions
[7]. Traditionally, the simulation of ZDC responses relies
on GEANT [8], a Monte Carlo toolkit designed to model
the trajectory of particles. Although this method provides
precise results, it comes with a cost of significant time and
computational resources needed to perform the simulation.
Since the demand for calorimeter simulations grows [9], the
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motivation to develop more efficient techniques is stronger
than ever.

This paper explores the application of state-of-the-art
(SOTA) generative neural network architectures to the simu-
lation of the ZDC neutron detector. We examine novel archi-
tectures and frameworks, such as the Vision Transformer
(ViT) and MLP-Mixer, which have not yet been extensively
applied to this domain. We also consider modern generative
frameworks, such as vector quantization (VQ), NFs, and dif-
fusion models. Our aim is to assess the performance of these
models against established methods, highlight their poten-
tial benefits, and identify challenges. Figure 1 schematically
shows the relationship between GEANT (simulation model)
and generative neural networks (surrogate models). The data
generated by the Monte Carlo simulator are used to train a
faster model, which could eventually be used interchange-
ably with the traditional simulator.

Our contribution includes:

¢ Implementation, evaluation, and confrontation of vari-
ous SOTA neural network architectures and generative
frameworks with comparison to existing methods on the
task of fast simulation of the ZDC neutron detector.

e Achieving a competitive to SOTA Wasserstein metric
score of 3.15 in the ZDC neutron detector simulation
task using a diffusion model, with a low generation time
of 5 ms per sample (orders of magnitude faster than
Monte Carlo methods [10]). Until now, SDI-GAN [11]
achieved the best fast simulation score of 4.5. Alternative
approaches have shown results as low as 1.2, but with a
generation time of 109 ms per sample [12].

e NF, as the second-best performing model presented in
this paper, also achieved a strong score of 4.11, with the
potential to improve the time of the computations in the
future, and potentially even surpass the diffusion model
in the performance vs time trade-off.

Fig. 1 Interaction between the
simulation model, surrogate
model, and its training process

l E

UX

Vy

UZ

me]

Particle properties

Px |Py P2

& Training data

¢ Providing open-source code and detailed hyperparameter
settings for reproducibility and further research.

The next section provides a review of the literature on fast
ZDC simulations, Sect. "Dataset analysis" focuses on the
analysis of the dataset, and Sect. "Background" briefly
describes the architectures and generative frameworks
we use. Then, in Sects. "Training setup" and "Experi-
mental results", we present the methodology and results
of our research, and finally we conclude the paper in
Sect. Conclusions.

Related Works

Generative neural networks have been extensively applied
to high-speed simulations in various CERN projects since
2017. Early research introduced applications of GANs
[5, 13—-17], autoencoders [3, 18-20], and NFs [4, 19-21]
(Table 1).

Fast supervised ZDC simulation, with its two-dimen-
sional structure and high resource requirements, is the
perfect task for generative neural networks. A notable
advancement came in 2021 with the introduction of the end-
to-end Sinkhorn Autoencoder (e2e SAE) [22]. This model
enhances standard autoencoder designs by incorporating a
noise generator neural network, allowing distinct classes
to be encoded separately in the latent space. The e2e SAE
demonstrated competitive performance in capturing criti-
cal physical relations, such as collision centers, crucial for
realistic data simulation.

A significant challenge in the ZDC simulations is the
varying diversity of the calorimeter responses for different
particles. In 2023, a study addressed the limited diversity
of GAN-generated samples [11]. The proposed SDI-GAN
attempts to solve mode collapse in conditional GANs by
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Table 1 Chronological overview of papers applying generative neural
networks for fast simulations in high-energy physics. Note that VQ
models are not used in any papers

Year Reference GAN Autoencoder NF Diffusion
2017 [5] v

2018 [17] v

2018 [15] v

2018 [16] v

2019 [14] v

2019 [13] v

2020 [3] v

2021 [4] v

2021 [21] v

2021 [18] v

2021 [22] v

2022 [19] v v

2023 [20] v v

2023 [11] v

2023 [10] v v

2024 [12] v
2024 [23] v

2024 [25] v

incorporating a regularization factor into the loss function,
encouraging the generator to explore new data modes for
particles with diverse responses, while maintaining consist-
ency for others.

The 2023 study evaluated basic variational autoencoders
(VAE) and GAN models for the simulation of the ZDC neu-
tron detector [10]. They improved the GAN framework with
an auxiliary regularization network, additional postprocess-
ing steps, and proposed a neural network classifier to filter
inputs that do not trigger the neutron detector’s response.

A different approach proposed in 2024 in [12] leverages
a diffusion model, which achieves high-fidelity results and
provides control over the simulation quality by adjusting the
number of denoising steps. The authors note a high genera-
tion time and propose a compromise using a latent diffusion
model to accelerate the simulation process.

The 2024 study [23] employs CorrVAE [24] to encode
different aspects of an object into two separate hidden
variables. This is achieved by having separate encoders for
properties and objects. In addition, the correlation between
properties is identified and processed by the mask pool layer,
which consolidates the relevant information into a bridging
latent variable.

The authors of [25], presented in 2024, integrate SDI-
GAN with an auxiliary regressor and intensity regularizator
to model the responses of the ZDC proton detector. This
work is a pioneering application of generative neural net-
works for fast ZDC proton simulation.

Table 1 summarizes the reviewed works in chronological
order, indicating the models used. Despite these advances,
the literature does not fully explore recent developments in
generative neural networks. From our literature review, we
found that the ViT [26] and MLP-Mixer [27] architectures
have not yet been applied to this domain, and modern gen-
erative frameworks, such as VQ and diffusion, are rarely
utilized. Furthermore, many existing solutions do not incor-
porate physical loss terms.

Dataset Analysis

The ZDC consists of four calorimeters, two for proton detec-
tion and two for neutron detection. Two sets of two detec-
tors (proton—ZP and neutron—ZN) are placed on each side
of the interaction point IP2. These devices are designed as
“spaghetti calorimeters”, comprising stacked heavy metal
plates interspersed with a matrix of quartz fibers. The Cher-
enkov light emitted by charged particles passing through
these fibers is detected and counted by photomultipliers
(PMs). The schematic diagram of the ALICE central barrel
including the ZDC can be found in [28], while the image of
the ZDC is included in [29].

The output of every second fiber is sent to one of the PMs.
The remaining ones are divided into four groups (upper-left,
upper-right, lower-left, lower-right) and sent to four sepa-
rate PMs. Following this scheme, each detector response can
be processed to produce five values, denoting the sums of
the signal from each channel. These five values are further
denoted as channels. The dataset, based on GEANT simula-
tions, consists of two parts: 9-dimensional particle proper-
ties (which serve as conditional variables) and ZN responses
of dimensions 44 X 44 (which can be interpreted as images
in generative models; the task is then to produce images
with 44 X 44 = 1936 pixels). Figure 2 presents histograms
of particle features. Note that momenta and mass formally

o cGeV 1 GeV : .
have units of = and ==, respectively, where c is the speed
C (&

of lightina vacuum. Howeyver, in this dataset, the values are
normalized to GeV for simplicity.

The dataset generated with the GEANT4 Monte Carlo
toolkit contains 306,780 samples, with responses hav-
ing at least 10 photons. Among all the examples, 99,695
have a different sum of photons, and there are only 1805
unique particles, indicating that the dataset might not cover
the entire space of possible particles. Furthermore, there
is a noticeable imbalance in the dataset—Fig. 3 illustrates
each particle’s contribution, visualized by the circle’s size.
Overall, the dataset includes 21 different types of particles.
The observed dataset limitations may impact the results; for
example, the model may generate low-quality results for
the underrepresented particles. This might be mitigated by
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Fig.2 Histograms of particle features. E stands for energy, v for primary vertex positions, p for momenta, m for mass, and g for charge

generating more data to make the dataset balanced, but since
this task requires expert knowledge, it is out of the scope of
this paper. Also, traditional methods for dealing with imbal-
anced datasets do not apply in our case, due to the high level
of imbalance.

Figure 4 shows dataset visualizations made using t-distrib-
uted stochastic neighbor embedding (t-SNE). Particle features
were normalized prior to generating the embeddings and only
the unique particles were used for visualization, thus there are
1805 points. The t-SNE embedding separates the particles
into four clusters. The cluster on the left contains negatively
charged particles, the cluster on the right—positively charged,
and the other two are neutral. Note that the most frequently
represented y particles have their own cluster. The figure uses
colors to represent the six most common particle types, while

@ Springer

all other types are depicted in a uniform color (yellow). Par-
ticle proportions may be different than in Fig. 3, as this visu-
alization shows only unique feature vectors. The visualization
reveals the structure of the particles, highlighting separation
by the charge and mass of the particles.

In an ZDC simulation, the varying diversity of the detector
responses plays an important role, i.e., for some particles, the
detector gives consistent responses in different independent
runs. In contrast, for others they are diverse, as illustrated in
the Monte Carlo simulations shown in Fig. 5. The consistency
regards the position of the center of the shower, as well as the
number of generated photons.



Computing and Software for Big Science (2025) 9:1

Page 5 of 18 1

Fig.3 Diagram depicting the distribution of particles in the dataset

Fig.4 Unique particle features visualization using t-SNE. The colors
denote the types of the particles

Background

This section outlines the theory and key characteristics
of the generative neural networks discussed in this paper.
Details of the neural network architectures employed in
this study can be found in Appendix C.

Fig.5 Example ZDC neutron detector simulations generated with
GEANT software. The columns represent responses to different parti-
cle types, labeled above each column for clarity. The rows show inde-
pendent runs for the same particles. This figure stresses the diversity
of the detector responses, as the first three are much more consistent
than the other two

Autoencoders

The classical autoencoder framework consists of an encoder
and a decoder, which, respectively, map the input data to the
latent space and reconstruct the data from this space. VAE
[30] extends the model with variational inference of latent
variables to enable sampling from the model.

Another variation of the autoencoder is the supervised
autoencoder [31]. As stated in [32], the supervised autoen-
coder can be viewed as a way to incorporate the physical
loss term into the model [2]. These models transform the
input into conditional variables (e.g., particle parameters in
the ZDC) and then reconstruct the original data. Their loss
function is

L0, ¢ix, ) = ||IDy(Eg(x)) — x| + BIE,x) = cllZ, (1)

where E|, is the encoder with parameters 6, D¢ is the decoder
with parameters ¢, c represents the conditional variables,
and f is a regularization weight.

VAEs constrain the hidden space to match a specific dis-
tribution, which can limit model expressiveness and force
conditional variables onto a single manifold in the latent
space [22]. In addition, the common Gaussian distribution
can impair the linear separability of complex data and does
not support sparse latent representations via ReLU activation
[33]. To address this, autoencoders with noise generators
do not regularize the hidden space but preserve generative
capabilities through an additional neural network—the noise
generator. This network maps conditional variables to the
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latent space. e2e SAE combines reconstruction loss £,,.,
Sinkhorn loss L aligning noise generator and encoder out-
puts, and a regularization term L,

L0, p,wix,c) =L, (0, p:x)+
BLsO, yx, o)+ 2)
VLo (0, b, w),

where y are noise generator parameters, f is the Sinkhorn
loss weight, and y is the regularization weight. The original
e2e SAE uses a complex Laplacian pyramid loss combined
with [2 loss for reconstruction, where /2 loss minimizes the
mean squared error between predicted and target values (i.e.,
| ¥pred — Yearget|13)- However, for ZDC responses, only [2 is
used, omitting the regularization term.! For comparison,
we propose an autoencoder with a noise generator trained
with the [2 loss rather than the Sinkhorn loss to align the
outputs of the noise generator and the encoder. This leads
to a simpler formulation that requires fewer computational
resources.

As well-established models, autoencoders are favored for
ZDC simulations because of their ease of training and robust
mathematical basis. On the other hand, classic autoencoders
have difficulty reproducing the input faithfully and suffer
from blurred images.

Generative Adversarial Networks

GANSs [34] consist of two competing neural networks: the
generator and the discriminator. The generator aims to pro-
duce realistic data, while the discriminator strives to dis-
tinguish between real and generated samples. The training
objective is

min max[E
0

ninm: [log Dy(x)]+

x~p(x)
(€)]
[Ez~p(z) [log(1 — Da (G¢ @1,

where G, is the generator parameterized by ¢ and D, the
discriminator parameterized by 6.

SDI-GAN [11] adjusts the diversity of generated samples
based on the randomness of the original particle responses.
The diversity measure 1is defined as

Ffaw(0) = le \/Zt(xﬁj - yij)2/|XC| , where x,; is the pixel
value at coordinates i, j for sample ¢, and Hij is the mean of
these pixel values for the condition c¢. The regularization
term scales the diversity proportionally to the data
variance:

! https://gitlab.cern.ch/swenzel/zdcfastsim/.
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where z, and z, are two different latent codes, 4. is a latent
space distance metric, and d; measures the dissimilarity
between two images conditioned on c, using image embed-
dings generated by the penultimate layer of the discriminator.

The authors of [10] enhance GANs with an auxiliary
regressor and postprocessing step to improve the quality
of generated ZDC responses. The regressor, pretrained
to predict peak photon count coordinates, adds a physical
loss component during training. A postprocessing step fur-
ther refines the output images by scalar multiplication to
optimize metric values that distinguish the generated from
actual data distributions. An alternative method to ensure
the global consistency of GAN-generated outputs (e.g., the
position of the photons peak) involves incorporating /1 or
12 loss into the generator [35], where /1 loss minimizes the
mean absolute error between predicted and target values
(i€, [Ypred = Ytarget)- This approach is intended to faithfully
recreate the global relationships within the image, in contrast
to adversarial loss, which focuses on capturing local details.

For a long time, GANs have been the SOTA generative
models, recognized for their ability to quickly generate high-
quality images [36]. Nevertheless, they are difficult to train,
struggle to maintain adequate diversity in their outputs, and
often suffer from mode collapse.

Vector Quantization

Vector Quantized Variational Autoencoder (VQ-VAE)
[37] introduces discrete latent representations through VQ.
Quantized vectors z, are selected as nearest neighbors of the
encoder’s output from a codebook Z:

z,(x) = arzgergmHEg(x) —2ll», 5)

where ||x||, denotes the /2 norm of the vector x. The decoder
reconstructs input based on the quantized vectors, thus a
straight-through gradient estimator is used during the train-
ing. The VQ-VAE loss function includes reconstruction loss,
codebook alignment loss, and commitment loss:

L(0. ¢, Z:x) =E[log py ,(x|z,(x)]+
|| sglEp(0)] — z,(0)] 5+ 6)
BIIEp(x) — sglz, (01113,

where sg denotes a “stop gradient” operator, preventing
updates for selected parts of the network. The second train-
ing phase aims to obtain a learnable prior. Since the VQ-
VAE encoder generates discrete outputs, autoregressive
discrete models, such as the Pixel CNN model [38] or trans-
formers, are employed for this task.
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VQ-GAN [39] enhances VQ-VAE by incorporating
patch-based adversarial and perceptual [40] terms into
the loss function. VQ addresses VAE posterior collapse
but introduces codebook collapse, where embeddings are
underutilized. Mitigation strategies include the exponential
moving averages (EMA) codebook update [37], a linear pro-
jection for a comparison of vectors, and /2 normalization for
cosine similarity lookup [41].

VQ models enable the generation of high-fidelity images
with a more interpretable latent space. However, their main
drawbacks include the complex training procedure and the
potential for codebook collapse, leading to inefficient learn-
ing and reduced output quality.

Normalizing Flows

NFs model complex probability distributions by stacking
multiple simple, invertible transformations. Each transfor-
mation, denoted as f;, progressively maps a simple base
distribution (e.g., Gaussian) to a complex target distribu-
tion. The transformation is given by x = (f, of,_; 0 -+ of})(2),
where x is the input data and z the latent representation. The
NF framework allows the exact data likelihood computation
using the change of variables formula:
af—l(x)‘

= p,(f~'(x))|det

Py(x)

(N

k)

where x = f(z), p.(z) is the base density, p (x)—the target,

af(z)

and == is the Jacobian of f. For NFs, the density estimation

in the log domain can be written as

-1

det i , 8)

<i-1

logp,(x) = logp,(2) + Z log

where z;_, is the latent variable at the (i — 1)th stage.

One type of frequently used transformations in the
scope of NFs is the autoregressive models, where the value
of x, in the next autoregressive layer is conditioned on
Xy,Xy, *++,X,_; values in the previous (d—currently pro-
cessed dimension). In the case of autoregressive flows,

Y

each Jacobian is a lower triangular matrix, which

i-1
means that its determinant can be computed as a product
of its diagonal elements. Autoregressive flows face a trade-
off between the efficiency of sampling and training. For
example, Masked Autoregressive Flow (MAF) [42] ena-
bles fast training but is slow during the sampling, as it
requires sequential processing. Conversely, Inverse
Autoregressive Flow (IAF) [43] allows for fast sampling

at the cost of slower training. The efficient implementation
of the faster pass is given by MADE [44] blocks, which
allow for computing all parameters of the transformation
simultaneously, while preserving the autoregressive
property.

NFs are elegant models, which offer stable training due
to the minimization of the exact negative log-likelihood.
However, their training requires a significant amount of
resources, as they usually have many parameters, since there
is no dimensionality reduction between layers. Also, MAF-
based architectures are slow to sample.

Diffusion Models

Denoising Diffusion Probabilistic Models (DDPM) [45] are
generative models that generate new samples by incremen-
tally reversing a diffusion process. The technique involves
gradually adding pure Gaussian noise ¢, to the data x at each
step t. Throughout the training, the model parameterized
by 0 learns to predict noise as €,(x,). In every iteration, the
network computes an approximation of the data %, and then
the noise is applied to obtain x,_;:

R x, — /1 —aeh(x,)
Xo = ; &)

t

a
X1 =V a1 Xg+ V1 —a,_€_, (10)
aga,=1-

where @, = TI'_ a,, p,, and f, is a variance schedule.
The variance schedule controls the amount of noise added at
each step, ensuring a gradual and stable diffusion. The loss
function is typically:

LO:x,, ) = Elle, — e,(x)II3]- (11)

Denoising Diffusion Implicit Models (DDIM) [46] intro-
duces a non-Markovian diffusion process that allows for
fewer sampling steps without significant loss of sample qual-
ity. The reverse process can be formulated as:

X1 =V a_y Xy + V l-a,_, - ’1;259(%) + 1,615 (12)

where 7, controls the amount of noise added during the
reverse process allowing a balance between the qual-
ity and diversity of samples. Setting #, = 0 makes the
reverse process deterministic, leading to DDIM. If
n, =+ —a,_;)/(1—a)y/1-a/a,, the process becomes
Markovian, resulting in DDPM.

Diffusion models are new SOTA generative models,
producing high-quality, diverse samples [47]. Recent
research has concentrated on improving their mathematical
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Table 2 Performance of CNN-based autoencoders across various
architectures

Table5 VQ-VAE reconstruction performance depending on model
size

Architecture CNN Model size Wasserstein MAE RMSE
Metric Wasserstein MAE RMSE 0.25M 11.54 12.96 38.46
VAE 1152 17.76 5038 M 9.86 11.84 37.22
Supervised AE 2371 31.90 7232  4M 11.73 13.78 4354
AE + Sinkhorn NG 26.53 29.07 66.16  13M 11.40 12.87 37.90
AE + 2 NG 37.56 39.32 928 M 12.12 13.73 39.74
Table 3 Performance of ViT-based autoencoders across various 16
architectures .2
=
Architecture ViT QE) 12 .- //. _____ .___-.
Metric Wasserstein MAE RMSE o e
T 8-
VAE 11.90 18.05 49.48 R
Supervised AE 20.43 30.60 74.64 %‘ 4
AE + Sinkhorn NG 11.34 15.88 44.17 %
AE + 12 NG 1119 15.47 4349 =
0 T T T T T T T T T
10° 10° 107 10®

Table 4 Performance of MLP-Mixer-based autoencoders across vari-
ous architectures.®

Architecture MLP-Mixer

Metric Wasserstein MAE RMSE
VAE 12.22 18.00 49.51
Supervised AE 17.08 26.90 104.83
AE + Sinkhorn NG X X X

AE + 2 NG X X X

# The X sign indicates that the model did not converge during the
training

foundation and remarkable capabilities [48, 49]. However,
they still require significant computational resources.

Training Setup

In this section, we provide an overview of the experimental
setup, including dataset preparation, optimizer tuning, and
the evaluation metrics used. In addition, we describe the
architectures of the models employed in the study.

Dataset Preparation

The dataset was divided into training, validation, and testing
sets in proportions of 70%, 10%, and 20%, respectively. The
training was carried out on the training set, the parameters
were tuned on the validation set, and the final results were
calculated on the test set. Conditional variables (i.e., particle

@ Springer

Number of parameters

Fig.6 Reconstruction performance of VQ-VAE as a function of
model size. The size of the marker graphically corresponds to the size
of the model

parameters) were standardized to a zero mean and a stand-
ard deviation of 1, and ZDC responses were logarithmized
(except for NFs). Note that the metrics were calculated after
inverse-transforming the data to their original scale.

Optimizer Tuning

The AdamW optimizer [50], with hyperparameters fine-
tuned through more than 100 trials per model with Optuna
software,2 was used, focusing on the Wasserstein metric.
The optimization procedure leveraged the Tree-structured
Parzen Estimator (TPE) sampler [51] without pruning and
considered the following parameters: learning rate, f,, p,, €,
use of cosine decay, weight decay, and Nesterov momentum.
The repository linked to this paper contains the source code
for the models, as well as the hyperparameters for both the
models and the optimizers.

Metrics

In the literature on fast ZDC simulations, the Wasser-
stein distance is the most commonly used metric of model

2 https://optuna.readthedocs.io/.
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performance, defined as the ability of the model to generate
samples which closely resemble the input data. This met-
ric is calculated as the average Wasserstein distance of the
five detector channels described in Sect. "Dataset analysis".
Example histograms for both the original and generated
samples are provided in Appendix B. Employing a metric
that assesses the global characteristics of the samples is
justified as the detector responses often vary between runs,
and variations at the individual pixel level should not influ-
ence the metric’s value. A second metric that also appears
in the literature is the mean absolute error (MAE). Unlike
the Wasserstein metric, this is a local metric that directly
compares the channel values of the original and generated
samples. The last metric that we introduce is the pixel-wise
root mean squared error (RMSE), which directly compares
pixels. This metric indicates the extent to which the model
attempts to match the original data. The used metrics can be
defined as follows:

5 1
Wasserstein-1(w, w) = % Z/ |F»;.l (2) — vav_l @ldz, (13)
=170 ' '

5
1wl A
MAE(w, #) = — 3 = 3" Iwj =], (14)

n 44 44
AN 1 1 k ak 2
RMSE(x, 8) = 4| - k:zo YRY] Z Zl(xij - 52,

=1 j=

s)

where F~!is the inverse cumulative distribution function of
the distribution g, w; denotes the distribution of the ith chan-
nel, n refers to the number of evaluated examples, wf.‘ repre-
sents the value of the ith channel of the kth response, xi; is
the value of the pixel with i and j coordinates of the kth
response, and W and X are the corresponding predicted
values.

Note that while lower MAE and RMSE metrics are gener-
ally considered better, it does not necessarily imply that the
model is superior in the ZDC simulation task. Achieving the
lowest possible value is not always desired, as it may sug-
gest that the model frequently produces consistent responses,

Table 6 Performance comparison of different GAN models

Model Postprocessing ~ Wasserstein ~ MAE ~ RMSE
GAN 7.09 25.65  104.60
GAN v 5.70 2471  100.98
GAN + 2 loss 6.44 27.37  109.24
GAN + 21loss v 6.07 26.78  107.07
SDI-GAN 6.57 27.01  107.82
SDI-GAN v 6.36 26.58  105.94

Table 7 Performance

. . Noise range: Wasserstein
comparison NF depending on [0, x)
the amount of added noise ;
1.0 12.57
0.75 6.67
0.5 4.58
0.1 7.10
0.01 8.10

Number of steps

5 10 25 50 100 250 500 1000
30 | | | | | | | |
-@ Wasserstein
25 MAE
£ 20
:;3
2 151
g
ko
=101 @
5 e
M @@
0 . — — ‘
1073 1072 107!

Time per sample [s]

Fig. 7 Performance and time required for a diffusion model to pro-
duce samples depending on the number of denoising steps

even when the actual physical process yields diverse results.
The optimal values of these metrics should be close to those
derived from the original dataset. Due to the high stochastic-
ity of the simulated process, the reported metric values are
the average of five runs.

Models Architecture

Encoder and decoder networks were implemented in the
CNN, ViT, and MLP-Mixer architectures. These models
have been used as building blocks in autoencoders, GANSs,
and VQ models, with additional layers specific to each
framework. Network designs in various architectures are
shown in Appendix C. The diagrams show the scheme of
encoder networks, with decoder networks formed by revers-
ing these structures. All models discussed in this paper oper-
ate in the raw data space.

Experimental Results

The training was performed on a single NVIDIA A100
GPU with 40 GB of memory on the Athena supercom-
puter.> All models were trained for 100 epochs in batches

3 https://www.cyfronet.pl/en/19073,artykul,athena.html.
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Table 8 Performance comparison of generative frameworks

Model Wasserstein - MAE RMSE Time [ms]
GEANT (original data) 0.53 1641 59.87 -
Autoencoder 11.19 1547 4349 0.015
GAN 5.70 2471 100.98 0.023
VQ-VAE 9.61 2195 6582  0.091
VQ-GAN 4.58 2290 8545 0.091

NF 4.11 19.36 127.22 160.0
Diffusion 315 20.10 7358  5.360

of size 256. At the end of each epoch, the weights were
stored to allow for reconstruction at any time during the
training. The test metrics were computed after the comple-
tion of the training. The purpose of the experiments is to
compare the performance and speed of different genera-
tive models in the task of the ZDC neutron detector simu-
lation. Note, that the most important metric—the Was-
serstein distance—for the reference GEANT data equals
0.53 (Table 8), and the goal is to achieve a score as low
as possible.

Regarding the autoencoder results, the model with
a noise generator in the ViT architecture achieved the
highest performance, with a Wasserstein metric score of
11.19, slightly outperforming the VAE based on CNN
(Tables 2, 3, and 4). Using Sinkhorn loss improves the
results for CNN models but does not provide gains over /2
loss in ViT. The VAE consistently produces similar results
across various architectures. The results of the experiment
indicate that the ViT architecture provides the best and
most stable performance and was therefore selected for
use in other models in further experiments.

In further experiments, a VQ-VAE model was imple-
mented and the corresponding optimizer was tuned. The
encoder and decoder were based on ViT, the codebook size
was set to 256, and to ensure good codebook utilization,
the gradient update method with /2 normalization and pro-
jection was employed. To provide more insights about this
approach, Table 5 and Fig. 6 show the reconstruction per-
formance of VQ-VAE depending on model size, where the
medium-sized model (1 M parameters) achieved the best
results with a Wasserstein score of 9.86. Larger models
did not show significant improvement, suggesting that 1 M
parameters are sufficient for the task. Note that the medium-
sized model may have achieved the best results due to the
small dataset or codebook size. In this case, because the
objective is image reconstruction instead of generation, we
aim for the minimum value across all three metrics, which
indicates that the reconstructed image is similar to the
input. Subsequently, we trained a transformer model acting
as a learnable prior with around 4 million parameters. The
transformer operated in the next-token prediction regime,

@ Springer

which is considered the most efficient approach for small
models [52]. Although the size of the model did not signifi-
cantly affect the results, the selection of suitable sampling
parameters ensured optimal generation performance. We
experimented with fop-k and top-p sampling methods, but
the optimal outcomes were achieved by varying the sam-
pling temperatures, particularly at = = 1.4. Ultimately, the
model achieved a Wasserstein metric value of 9.61, which
we report as the final score of VQ-VAE models on the task
of generating responses of the ZDC detector.

Following this, VQ-GAN was trained with a combina-
tion of /1, [2, perceptual, and adversarial loss functions. The
codebook update method has been changed from gradient
update to EMA due to better training stability and codebook
utilization. The best results (4.58 in the Wasserstein metric)
were achieved by combining /2 and adversarial losses with
loss weights tuned with Optuna.

Various GANs were implemented with both generator and
discriminator optimizers tuned. Additional improvements
were made by incorporating the 2 loss function, applying
the postprocessing step, and training SDI-GAN (where con-
dition c refers to the primary particle 9-D feature vectors).
The use of a classical GAN, together with the postprocess-
ing step (scalar multiplication), allowed the best result of
5.70 in the Wasserstein metric (Table 6). Keep in mind that
these outcomes might not align with those documented in
previous studies due to the utilization of a different network
architecture and training methodology.

In addition, we implemented a modified CaloFlow [4]
with two separate models: a Bayesian neural network (BNN)
for predicting the number of photons based on the other con-
ditional variables, and the MAF for modeling the full ZDC
output. Like the authors of [4], we used rational quadratic
splines (RQS) as transformations, with their parameters
learned by MADE blocks. The flow model was conditioned
on the particle properties and the number of photons pre-
dicted by the BNN. This way, the second model was only
focused on modeling the place and shape of the hit, and
not its luminosity. Since the numbers of photons present in
the responses are discrete, an additional transformation was
needed to help the flow adapt to this distribution. Therefore,
a small amount of noise was added to each value, so a par-
ticular sum of photons was represented by a range [photon
sum; photon sum + max noise) instead of just a photon sum.
We investigated how the amount of noise added affects the
results. Our experiments revealed that the noise influence is
significant; the results for one of the models are shown in
Table 7. We treated the noise range as one of the hyperpa-
rameters, which allowed for obtaining a final model reaching
a Wasserstein score of 4.11.

Finally, a DDPM model with 4 million parameters was
trained, utilizing both convolutional and attention layers
along with DDIM sampling. The impact of the number of
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denoising steps on generation time and quality was assessed
(Fig. 7), with 50 steps selected as the optimal value due
to its balance between generation time and output quality.
The time presented in the figure was obtained using one
NVIDIA A100 GPU in batches of 2048 images, exclud-
ing the compilation time. Furthermore, once the number of
steps was determined, the DDIM # parameter was fine-tuned
and fixed at 0.7. This adjustment led to an improved model
performance, achieving a score of 3.15 in the Wasserstein
metric. Note that increasing the number of steps improves
the diffusion performance, with 1000 steps resulting in a
Wasserstein score of 2.10, although it takes approximately
100 milliseconds to generate a single sample.

Table 8 provides a comprehensive comparison of gen-
erative frameworks, presenting performance metrics and
generation time. The generation time was measured on the
same hardware as before, in batches of 256 images, exclud-
ing the compilation time. The diffusion model shows supe-
rior performance with the lowest Wasserstein distance of
3.15. The histograms of the values generated by diffusion
in the individual channels are very similar to those obtained
in Monte Carlo simulations (Appendix B), further confirm-
ing the suitability of this model for ZDC simulations. VQ-
GAN and NF also perform well with a Wasserstein metric
of 4.58 and 4.11, respectively, while GAN shows moderate
performance. VQ-VAE and Autoencoder exhibit the poorest
performance, indicated by the highest Wasserstein distance.
Note that GAN and NF present significantly higher RMSE
values compared to the original data, which might imply that
while they accurately capture the photon number distribu-
tion in the channels, they generate detector responses that
are excessively varied from the original ones (Appendix A).
Conversely, the autoencoder exhibits a lower RMSE com-
pared to GEANT, probably due to smoothed images and
issues with particles that have diverse responses, resulting
in the model producing outputs that are close to zero. Exam-
ple simulation results are shown in Fig. 8. The Wasserstein
metric for the original dataset was calculated by randomly
dividing the test set in half, with one part acting as detector
responses and the other as generated samples. This approach
was also applied to the MAE and RMSE metrics, although it
required that the compared examples have identical particle
features.

Considering the significance of simulation time for sur-
rogate models, we observe that autoencoder and GAN have
the shortest generation time, approximately 0.02 millisec-
onds per sample. VQ-VAE and VQ-GAN have a margin-
ally worse time of 0.1 milliseconds, whereas diffusion and

NF, despite their excellent performance, are significantly
slower with a generation time of more than 5 and 160 mil-
liseconds, respectively.

Conclusions

This study presents a comprehensive exploration of SOTA
neural network architectures and generative frameworks
for fast simulation of the ZDC neutron detector in the
ALICE experiment at CERN. Our findings indicate that
ViT-based networks are the most effective among the
architectures tested. In addition, incorporating VQ meth-
ods proves superior to basic VAEs and GANS, offering a
good balance between performance (Wasserstein metric
of 4.58) and generation speed (0.1 milliseconds per sam-
ple). Notably, our implementation of diffusion models and
NFs demonstrates excellent performance, with Wasserstein
distances of 3.15 and 4.11, respectively. While diffusion
models generate samples in a reasonable time frame (5
milliseconds), NFs are not practical due to their longer
generation times, despite their strong performance.

In future work, we primarily want to enhance VQ and
diffusion due to their good balance of throughput and per-
formance. We also see potential in the NFs. In specific,
we plan to

1. Improve the VQ simulation fidelity using the latest ViT
advances [53], trying different sampling methods, and
testing new codebook update techniques [54].

2. Speed up diffusion the generation time by working in the
latent space [55] and reducing the number of denoising
steps. To achieve this, exploring knowledge distillation
[56] and rectified flows [49] could be beneficial.

3. Further investigate the potential of NFs by testing archi-
tectures which allow for a faster generation time at the
cost of slower training [43].

4. Create a larger and balanced dataset that accurately cov-
ers the space of primary particles. This task is demand-
ing due to the extensive computational resources needed
and the complex scientific software involved.

Appendix A: Example simulations

See Fig. 8.
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Fig. 8 Example simulations generated by models discussed in this paper. The first column corresponds to the 7+ particle, the middle columns
are y, and the last column is Kg
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Appendix B: Original and generated
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Fig.9 Histogram of the sum of photons in the ZDC neutron detec-
tor channels in responses generated by the GEANT (Original) and the
diffusion model (Generated). Note the logarithmic scale on the y-axis
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Appendix C: Neural network architectures

Figs. 10, 11 and 12.
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Fig. 10 Convolutional encoder architecture

@ Springer

—

Input tensor

Output tensor

(b) Convolutional block.



Computing and Software for Big Science (2025) 9:1 Page 15 0f 18 1

Input tensor
Patches ’ &

F F . . Layer normalization

Multi-head attention

Layer normalization
I

[\

Transformer " l
block [ s ]

I I I I | \ Dense /

Output features
—[ Output tensor I
(a) ViT encoder. P is an abbreviation for pro-
jection, while E represents embedded vectors. (b) Transformer block.

[l [ [v [ o [pe [ ]

P Projection

Fig. 11 ViT encoder architecture

@ Springer



1 Page 16 of 18

Computing and Software for Big Science (2025) 9:1

Patches
(& [oy [v2 o oy [ [ ] ] |
P Projection
E E E E E
T T (,r T r
MLP-Mixer < 4
block
[ [ [ | [
Output features

(a) MLP-Mixer encoder. P is an abbreviation
for projection, while F represents embedded
vectors.

Fig. 12 MLP-Mixer encoder architecture
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