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ABSTRACT: The Tevatron chromaticity tracker (CT) has been successfully
commissioned and is now operational. The basic idea behind the CT is that when
the phase of the Tevatron RF is slowly modulated, the beam momentum is also
modulated. This momentum modulation is coupled transversely via chromaticity
to manifest as a phase modulation on the betatron tune. Thus by phase demodu-
lating the betatron tune, the chromaticity can be recovered. However, for the phase
demodulation to be successful, it is critical that the betatron tune be a coherent
signal that can be easily picked up by a phase detector. This is easily done because
the Tevatron has a phase locked loop (PLL) based tune tracker which coherently

excites the beam at the the betatron tune.



INTRODUCTION

In the traditional method for measuring chromaticity, the RF frequency is changed
and the excursion of the betatron tune from its nominal position is measured from which

the chromaticity can be extracted with the formula

=43

where ¢ is the chromaticity, 7 is the slip factor, frRy is the nominal RF frequency, Af is the
change in RF frequency from frp and AQ is the change in betatron tune from the nominal
betatron tune when Af = 0. It is obvious from (1) that if there is a way to continuously
track the tune, a slow frequency modulation of the RF will allow the continuous measure-
ment of chromaticity. In fact, this technique has been applied successfully at both RHIC
(Relativistic Heavy Ion Collider) and at the SPS (Super Protron Synchrotron),’ because
both machines have phase locked loop (PLL) tune trackers which measure the betatron

tunes continuously with high precision.

We have performed the above technique at the Tevatron with our PLL tune tracker.!
The results, however, have been mixed. This technique works with uncoalesced beam,
but for coalesced beam, it always gives a smaller chromaticity value than expected.? We
decided to pursue the phase modulation technique first proposed by D. McGinnis? to see
if the incorrect chromaticity measurements with coalesced beam can be mitigated.i And if
this technique can be demonstrated to work, it can be added to the arsenal of chromaticity
measurement techniques. An advantage of the phase modulation technique is that when
the frequency of the phase modulation is chosen so that it lies outside the tune tracker

PLL loop bandwidth, the TT is not stressed because it does not “see” the modulation and

This will also be the baseline technique for the LHC (Large Hadron Collider)

In fact, this method also shows a smaller value of chromaticity for coalesced beam. We
suspect that this is due to the difference in transverse emittance between coalesced and
uncoalesced beam. This will be discussed in this paper.

2



thus will not track it. This is unlike the traditional technique where the TT tracks the

tune motion from the RF frequency changes.

In this paper, we will summarise the theory behind the phase modulation method
and discuss the problems we have found in our first attempt to implement it and how we
have solved them. We will also show the measurements with beam which demonstrates the
performance of the CT. Finally, we will show some reasons why the chromaticity measured
with the CT or with the traditional method with the TT for coalesced beam is smaller

than we expect.



THEORY

The theory has been worked out in other papers®?* and we will not repeat it here. We
quote the relevant formula here which relates the phase amplitude of the phase demodu-

lated signal to chromaticity for betatron mode (k,+)

A
2e = (k2 Qv t ) oned )

where k& € N U {0} is the mode number, Q) is the fractional betatron tune, £ is the
chromaticity, 7 is the slip factor, A¢,,oq is the amplitude of the phase modulation applied
to the accelerating RF, h is the harmonic number and Z+ € R is the amplitude of the

phase demodulated signal. Solving for &, we have

£r =1 (ik +Qo T Ahfid) (3)

In particular, for the Tevatron, the CT looks at the (k,+) mode,§ ie.

hZzy
A¢mod

Therefore, it is obvious from (4) that once we can measure the phase amplitude Z; and

§+=77{(k+620)—

(4)

the betatron tune ), the chromaticity ¢ is easily calculated. The parameters which are

relevant to the Tevatron and CT are shown in Table 1.

In practice, the measurement of the phase oscillation w.r.t. the betatron tune is difficult
to accomplish if the betatron tune is not coherent. In fact, early experiments performed by
D. McGinnis using this technique did not yield satisfactory results because the betatron
tune from the Schottky pickups is an incoherent signal and therefore the phase is not well
defined. It was not until the TT system became operational that this technique became
feasible because the TT excites the beam coherently. And thus the phase can be reliably

measured w.r.t. the coherently excited betatron tune.

8 n earlier papers, we have mistakenly used mode (k, —).
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Table 1. Tevatron and CT Parameters

Parameter Value Description
n 0.0029 slip factor
k 448 mode number
Qo 0.55 - 0.6 fractional betatron tune
h 1113 harmonic number
Admod 2.8° - 11.2° amplitude of phase modulation
Qnod o x 23 g7 1 phase modulation frequency
Qs 21 x (35 — 84) s~ ! synchrotron frequency
WRF 21 x (53.1 x 10%) s71 | RF frequency
19 4—-15 Tevatron chromaticity range

RF Frequency and Betatron Tune Excursion

The maximum change in betatron tune AQmax due to the phase modulation is given

by the following formula (for derivation see Ref. 4)

Admod X Qmod <QO . 5) ’

AQmaX = WRF -

; ()

And for A¢y,oq = 10°, Qo = 0.583 plus the numbers from Table 1, we have
1x107% < AQuax <3x 1074 4<¢<10 (6)

When we translate these numbers to the traditional method which uses (1) for calculating
&, we find that with the above AQmax excursion, the equivalent change in RF frequency
Af is

(15 <Af <4)max Hz  4<£<10 (7)
We can compare Af found above to the traditional method when done by hand which is
+40 Hz. This means that the maximum Af change using the CT is about 10x smaller

than the traditional method.



PROBLEMS

Our early attempts with this method did not produce a chromaticity measurement
better than +1 unit when we measure the horizontal chromaticity. See Figure 1. We have

traced the source of the problem to the following:

(i) The vertical tune @,. This causes beats with Q);,. See Figure 2.

(7i) The lower sideband of the betatron tune (1 — ;) adds shoulders to the input of

the CT. See Figure 3.

(747) The synchrotron frequency (s which interferes with the phase demodulation.

In fact, all the above can be easily reproduced on the bench with the setup shown in

Figure 4 using the parameters shown in Table 2.

Beam Simulator

The beam simulator consists of three signal generators (See Figure 4). The HP8657A
is used to synchronise two signal generators HP8904 and HP33250A. The HP8904 OUT 1
is set to produce a carrier frequency which is at the horizontal betatron tune. The carrier
is phase modulated by both the CT RF modulation frequency which is at 23 Hz and the
synchrotron frequency which can range from 35 to 84 Hz. OUT 2 is set to produce the
vertical betatron frequency and summed with OUT 1 and sent to the input of the CT.
The HP33250A outputs a sine wave at the horizontal betatron tune which is the reference
frequency for the CT. With the settings shown in Table 2, we can reproduce the poor

tracking of uncoalesced beam shown in Figure 5.
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10° Phase Modulation
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Figure 1  As the chromaticity is changed with a calibrated knob
CXINJ (green), CT (red) tracks those changes but with errors as large
as 1 unit of chromaticity.
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Figure 2 The green trace shows (), beating with )y,.
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Figure 3 The shoulders shown in the green trace in (a) come from
the addition of the betatron tunes @ and (1 — Q). (b) When a
high pass filter is used to suppress (1 — @j,) and pass only @y, the
shoulders go away. This data comes from uncoalesced beam being
phase modulated at an amplitude of 5.6°.
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Chromaticity Tracker :
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Figure 4 We can reproduce the behaviour of the CT with £1 unit
of error (See Figure 5) when the commutating filter is not in the
circuit.



Table 2. Simulator Settings

HP8904 OUT 1 Settings

Channel Frequency Amplitude Mode Description

A 28.1 kHz 200 mV sine horizontal betatron freq.

B 23 Hz 5° phase mod. phase modulation

C 84 Hz 45° phase mod. synchrotron modulation
HP8904 OUT 2 Settings

D 27.3 kHz 100 mV sine vertical betatron freq.
HP33250A Settings

1 28.1 kHz 200 mVp, sine horizontal betatron freq.

as reference for CT

Commutating Filter

Our solution for increasing the accuracy of the CT is to have a narrow band filter
(NBF) which can filter out all the extraneous signals outside the betatron tune. However,
the resonance of the NBF must dynamically track the motion of the betatron tune because
it is not stationary. An NBF which can easily change its resonant frequency exists and is

called a commutating filter.

The commutating filter is a series of narrow band filters whose resonances are dictated
by the switching frequency wg,. See Figure 6. For a commutating filter which has N

identical capacitors, the resonances )05 are at

Q1res =k <Wsw>

N kelZ (8)

and the bandwidth of each resonance is

foo— 1
bw = T NRC
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Chromaticity Tracking of Actual Beam and Simulator
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Figure 5 This shows the behaviour of the CT when tracking actual
uncoalesced beam and the simulator. The settings of the simulator
are shown in Table 2. It is clear that the CT tracks the simulator
as poorly as actual beam when the commutating filter is not in the
circuit. With the addition of the commutating filter into the circuit,
it magically cleans up the noise sources and the CT can now track to

40.1 units of chromaticity on the bench.
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Figure 6 The commutating filter consists of a resistor R and N
capacitors C' numbered from 0,1,..., N — 1. The switch S rotates
at frequency wgy, and connects each capacitor C for a time period
of 2r/Nwgy. The frequency response of this commutating filter is
measured with a vector signal analyser (VSA) for R = 10 kQ and
C =0.1 uF.
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where R is the resistance and C' is the capacitance of the filter.

Therefore, when wg,, = N X Qowrey, one of the resonances will lie directly on top of

the betatron tune. Thus, any signals outside the resonance will be filtered out.

When this is added to the simulator at the location shown in Figure 4, we can see
that tracking improves dramatically on the bench. See Figure 5. In fact, with the filter,
the improvement of the CT when measuring actual beam is improved just as much. See

Figure 7.

10° Phase Modulation

—— ¢, from CT : : : :
12| e from CXINJ. i S N S

Figure 7 The data from Figure 1 is superimposed here to show the
improvement in the CT with the commutating filter when measuring
the chromaticity of the beam.
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IMPLEMENTATION

The current implementation of the CT is shown in Figure 8. At House F0, a phase

modulator is connected directly to the low level RF system so that the Tevatron RF can

be phase modulated. We have chosen the modulation frequency 2,,,q of the RF to be

(27 x 23) s~1. The choice is dictated by the closed loop bandwidth of the PLL tune tracker

which is about 5 Hz and the range of synchrotron frequencies of the Tevatron. See Table 1.

At House Al, our CT module picks up and processes the phase modulated betatron

signal from the Tevatron 21.4 MHz Schottky system after it has been filtered with the

commutating filter. At the heart of the CT module is the hardware phase detector (PD)

which has been implemented around an ALTERA Cyclone FPGA. See Figure 9. We have

designed the CT module to be compatible with both the modulation frequency and the

betatron frequency. In the ALTERA, there are two major blocks:

(4)

A hardware PD which extracts out the sine and cosine of the phase w.r.t. betatron
tune. The inputs to the PD are the phase modulated betatron tune from the
21.4 MHz Schottky after it has been filtered with the commutating filter and the
betatron tune from the T'T which is the carrier frequency. These two signals are

sampled at 250 kHz which is ~10x higher than the betatron frequency.

A 32-bit NIOS II floating point processor running at 50 MHz. It takes the arc-
tangent of the sine and cosine of the phase from the hardware PD. This is done at
(16 x 23) Hz which yields an oscillating signal which contains the 23 Hz component.
The amplitude of the 23 Hz oscillation is recovered by putting it through a Sliding
Goertzel filter? which is a clever discrete Fourier transform. In particular, we are
applying a 320 point Fourier transform. The amplitude of the 23 Hz component is

communicated back to the control system via ethernet.
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(737) From the amplitude of the 23 Hz component, the chromaticity is calculated using

(4) by a deemon running on the control system.

We will give detailed specifics of the implementation in the following subsections.

Hardware PD

The hardware PD performs a series of simple trigonometric manipulations to extract
out the phase component ¢ from the phase modulated input signal A sin(wgt+¢) w.r.t the
unmodulated reference betatron signal Bsinwgt. Both A and B are the amplitudes of the
phase modulated and reference signals respectively. See Figure 10. The key part in the
hardware PD is the Hilbert transformer. A Hilbert transformer is a type of filter which
phase shifts all signals within its operational bandwidth by exactly 7/2, i.e. sin(wt +
qﬁ)H@ft cos(wt + ¢). In particular, our Hilbert transformer is a 51 tap finite impulse
response (FIR) filter. See Appendix II. A 51 tap FIR filter has a 25 tap delay, which is

why delays are required in the hardware PD.

When we write out the mathematics of the block diagram shown in Figure 10, we find
that the output of the hardware PD is exactly ABsin ¢ and AB cos ¢. Note: it is necessary
that there is no DC offset in either the modulated betatron signal or the reference signal.

Any DC offset will give an undesirable oscillation at wg at the output.

Calculating ¢

Once the hardware PD provides us with ABsin¢ and AB cos ¢, it is obvious that
we have to take the arctangent of sin ¢/ cos¢ to obtain ¢. However, the arctangent is a

multiple-valued function and in all standard implementations of the arctangent in C or
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Figure 8 The current implementation of the CT consists of a phase
modulator at House FO which phase modulates the Tevatron RF. At
House Al, the betatron signal is tracked and excited by the tune
tracker PLL. The phase locked signal from the direct digital synthe-
siser (DDS) of the tune tracker PLL is used as the reference signal
for the phase detector of the CT. It is also upconverted 8x for the

commutating filter.
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FORTRAN, the arctangent of vectors like (—1,¢) and (—1, —¢) where € < 1 return

arctan(—1,¢) =7

(10)
arctan(—1, —€) = —7
where arctan(z,y) is the arctangent of the vector (z,y) in the az'y—plane.ﬁI
For example, if we have ¢ oscillating about —7 as follows
p(t) = —m + sin 27t (11)

then when we use the usual implementation of arctangent defined above on the vector
(cos p,sin ), we find that the result is discontinuous because of the arguments we gave

above. See Figure 11.

The solution to the problem is trivial. We simply increment a counter called the
winding number n when the vector (cosy,sin ¢) rotates from the third quadrant to the
fourth and decrement it when it rotates from the fourth to the third. Therefore, our

formula which includes the winding number is
atan2unwind(n, z, y) = 2nm 4 arctan(zx, y) (12)

When we apply atan2unwind() to the above example, we find that it exactly reproduces
©(n). Again see Figure 11. A C implementation of atan2unwind() is shown in Appendix III.
Note: This algorithm is the panacea if the vector (z,y) rotates smoothly from quadrant to
quadrant. On the other hand, if (z, y) jumps from quadrant 2 to quadrant 4, atan2unwind()

will have a discontinuity.

Calculating | Z4|

¢ at the output of the phase detector is a sinusoidal function in time. In fact, we can
write it as

o(t) = Z4 sin(Qpyoqt + 0) + () (13)

9 The standard ¢ arctangent implementation has its arguments flipped, i.e. atan2(y,x).
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The CT module lives on a NIM card. A diagram of the

essential blocks of the electronics on the card is also shown here.
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Hardware Phase Detector
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Figure 10 The hardware phase detector is implemented in an AL-
TERA FPGA. The phase modulated betatron signal Asin(wgt + ¢)
is referenced to the betatron signal Bsinwgt in order to extract out
sin ¢ and cos ¢. Note: ¢’ is a 25 tap delay and it is necessary to cre-
ate coswg(t —t') and sinwg(t — ') from sinwgt because the TT only
supplies the reference sine signal. All mathematics in the FPGA are
performed in 16-bit fixed point arithmetic.

where 6 is the phase w.r.t. the sampling frequency and ®(¢) contains phase oscillations

from synchrotron motion and phase noise.

The usual way to extract out Z4 is to Fourier transform ¢(¢) and then read off the

magnitude of the Fourier component at €,,,,q. In fact, since the ¢(t) data stream is flowing

19



Comparing arctan() and atan2unwind()

s
— Je(t)
arctan
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° 0
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-31/2
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t

Figure 11 This graph shows the behaviour of arctan(cos ¢, sin ¢)
and atan2unwind(cos ¢, sin ). Clearly, arctan() shows discontinuities
at £7, while atan2unwind() exactly matches ¢(t).

in continuously, we will have to continously perform FFT’s. This is terribly inefficient
because an N point FFT calculates all N/2 Fourier coefficients when we are only interested
in the Fourier amplitude at €,,,q. Instead, we use a method called the Sliding Goertzel
Algorithm (SGA) which is much more efficient because for N equally spaced input samples,
the SGA only requires (N + 1) multiplications and (2N — 1) additions for obtaining Z for
the first Z4 and then 3 multiplications and 5 additions for obtaining subsequent Z;’s. In
contrast, a radix-2 FF'T requires logg N 4+ 1 multiplications and %logz N + % additions for
calculating every Z4. Therefore, for N > 4, the SGA is a more efficient algorithm than

the radix-2 FFT. For a complete derivation of the SGA, see Appendix II of Ref. 4.

Once Z is extracted from ¢(t), £ is calculated using (4). However, there is a limitation

which we will discuss in the next subsection.
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Limitations

The present CT implementation has the limitation that the phase detector only returns
|Z+| because we do not measure the phase relationship between the 23 Hz at the CT and
the 23 Hz from the signal generator which is injected into the phase shifter of the LLRF.
See Figure 8. This means that there will always be a sign ambiguity in ¢ measured by the
CT. Fortunately, the Tevatron is set up to run with positive chromaticity only, and with
this knowledge, we can see that Z; < 0 and so (4) becomes

h|Zy|

= k
§+=n|( +QO)+A¢mod

> &min for Z4 <0 (14)

Limitation of the present CT

& measured by CT

Figure 12 When we use (14) for calculating &, it is always positive
because the present CT only measures |Z4| > 0. The smallest value
of £ that can be measured presently is 1.3 units.

In fact, the minimum chromaticity &,,;, that can be measured by the CT is when Z = 0.
In particular, we can use the parameters for the Tevatron and CT from Table 1 to calculate
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&min Which is

Emin = n(k + Q0> ~ 0.0029 x 448575 = 1.3 (15)

We plot the full range of ¢ that can be returned by the current implementation in Figure 12.
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MEASUREMENTS

We can measure the chromaticity of uncoalesced protons with the CT as a function of
the chromaticity sextupole setting CXINJ. In the Tevatron, the term “uncoalesced protons”
means filling 30 adjacent RF buckets in the Tevatron with protons to give a total of 200x10?
to 300 x 10Y protons. After we have calibrated CXINJ using the traditional method by
hand, we can plot the CT measured chromaticity as a function of calibrated CXINJ settings.

See Figure 13.

We notice that the CT returns a much smaller value of chromaticity for £, > 10. This
problem is not fully understood because the CT measures large chromaticities on the bench
using the beam simulator described in the previous subsection Beam Simulator. Computer
simulations give us some idea about why this happens but it is not a full explanation. See

the section CT Large Chromaticity Limitations below.

Chromaticity Drift At Injection

The Tevatron is a superconducting machine and so the persistent currents in its dipole
magnets depend on its ramp and squeeze history.” These persistent currents slowly decay
away and one manifestation is a drift of the chromaticity at the injection porch. Fig-
ure 14(b) shows the evolution of &, ,, from the decay of the persistent currents at the
injection porch as a function of time. The ramp history of the Tevatron before this plot
was made is as follows: the Tevatron was left at its collision energy at 980 GeV and
squeezed for 15 minutes and then unsqueezed and ramped down to its injection energy at

150 GeV.

An interesting feature in Figure 14(a) is that &;, has some dependence on beam current.

This observation is confirmed by both hand measurements with the traditional method as
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10° Phase Modulation
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Figure 13 The grey area is when the phase modulaton is off. After
it is turned on, the CT tracks the changes in chromaticity when the
calibrated CXINJ is changed. Notice that when &, > 10, the CT
returns a smaller chromaticity than the actual &j.
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well as with the CT measurements. After the third injection of beam around 2500 s, &,

jumps from 6 units before injection to 8 units after reinjection with lower beam current.

Measurements with Coalesced Proton Bunches

Up to this point, we have been measuring chromaticity with uncoalesced protons.
We now turn our attention to coalesced bunches of protons. In the Tevatron, the term
“coalesced bunch” means one bucket is filled with 200 x 10? to 300 x 10? protons. In
our experiment, we fill the Tevatron with 4 bunches of coalesced protons which are spaced
21 buckets apart. When we measure the chromaticity of coalesced protons with the CT (or
the TT), it turns out that the CT measures a smaller value of chromaticity than what we
expect. See Figure 15. The CT measures &, ~ 2 and &, ~ 3 while the traditional method
measures &, ~ 4.5 and &, ~ 2. This implies a difference of A&, = —2.5 and A&, = +1

when compared to the traditional method.

Table 4. Uncoalesced and Coalesced Beam Parameters

Parameter Uncoalesced Coalesced
oy (mm) 0.88 1.50
oy (mm) 0.5 0.55
TAp/p 2.25 x 1074 6 x 1074

Reasons for Difference

Besides the obvious difference in bunch structure between coalesced and uncoalesced
protons which we have described earlier, there are other differences because of the way

they are formed in the Main Injector. We have summarised these differences in Table 4.
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Figure 14 The CT tracks the chromaticity drift at the injection
porch of the Tevatron after 15 min at low beta, unsqueezed and
ramped down from high energy. It is interesting to notice in (a)
that after beam is reinjected at around 2500 s, &, jumps from 6 units
to 8 units with lower beam current. Grey area in (b) is when CT is

turned on and chromaticities is adjusted to 4 units.
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&n, for Coalesced Beam
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Figure 15 The CT measures &, ~ 2 units and &, ~ 3 units while
measurements by the traditional method gives &, ~ 4 to 5 units and
&y = 2.3 units.

(Note: We have quoted beam size rather than emittance because it is sigma that is directly
measured by the flying wires, optical transition radiation devices, and ionisation profile
monitors in the Tevatron.) The transverse beam size quoted in this table is when the
beam is at the Schottky detectors at A17.0 It is clear from this table that the horizontal
beam size and the momentum spread are the two major differences between coalesced and
uncoalesced beam. When we simulate the CT with the algorithm described in Appendix I
and the parameters from Table 5, we find that it is, in fact, the transverse beam size (and
surprisingly not momentum spread) that is the main cause of the discrepancy. Note: the
simulation does not include dispersion but does include momentum spread. See Figure 16.
From the simulation, we see that there is a 1 mm threshold where if the beam size is
smaller than this, the chromaticity is essentially unaffected by beam size. However, if it
is larger than 1 mm, the measured chromaticity starts decreasing. This is consistent with

the observation that the measured horizontal chromaticity of coalesced beam is smaller
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because its horizontal beam size is larger than 1 mm. In fact, we have seen this effect
in an experiment. See Figure 17(a). The chromaticity takes a step decrement after each
ping of uncoalesced beam because the emittance and thus the beam size is increased. The
horizontal betatron tune @)}, also decrements after every ping, but we have checked that
this is due to drops in chromaticity because when the chromaticity is changed, @ also
changes. See grey box in Figure 17(b). However, when @, is changed, &}, remains constant.
This experiment shows that it is chromaticity which causes the betatron tune change and

not vice versa.

For the vertical, the discrepancy should be smaller or non-existent because the vertical
size is comparable. However, we still see a discrepancy of about 1 unit and so beam size

cannot be the entire answer.

Measured Chromaticity from Simulation

15

12

Measured ¢

2 5 1072 2 5 107" 2 5 10° 2 5
Beam o(mm)

Figure 16 In the simulation, when the beam sigma is less than
1 mm, the measured chromaticity is constant but when the beam
sigma becomes larger than 1 mm, the measured chromaticity de-
screases. Care has been taken in the simulation to ensure that the
emittance does not blow up from the TT kick and the RF modulation
and there is good S/N for extracting the chromaticity.
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Other Reasons

Since beam size does not explain all the difference in measured chromaticity between
uncoalesced and coalesced beam, we have empirical evidence that the beam distribution
changes with the RF frequency because the phase response of the beam does not behave
in the way we expect. The phase response is important!3# because both the TT and the
CT look at the null of the phase response. The TT tracks the phase null, while the CT
essentially measures the distance of the phase null from its nominal position. Therefore,
by measuring the phase response for different RF frequencies, we can see why the TT and

CT measured chromaticities are smaller than we expect for coalesced beam.

For example, using coalesced beam for horizontal chromaticity &;, = 4, we expect that
the phase null should move by +0.001 tune units for an RF frequency change A f = 40 Hz
and with the Tevatron parameters shown in Table 1. However, looking at Figure 18, we
do not see this. The intersections of the red and blue circles in the figure shows where we
expect the phase null of the response to be for Af = +40 Hz and —40 Hz respectively. In
fact, for Af = —40 Hz, the null of the phase response does not go far enough to touch the
intersection marked by the blue circle. This means that the measured chromaticity will be

smaller than what we expect.

Our suspicion that the distribution has changed comes from observing that the slope
of the phase response in Figure 18. We notice that the slope for Af = —40 Hz about zero
is steeper compared to the slope for Af = +40 Hz. This is a strong indication that there

is a transverse distribution change between these two RF frequency settings.

CT Large Chromaticity Limitation

For £ > 10, the CT does not measure the correct value despite having a clear carrier
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Figure 17 1In (a) the measured chromaticity takes a discrete step
down every time the beam is pinged. The sharp peaks (enclosed in
grey) in the Schottky power is the moment when the pinger kicks the
beam. The beam current is unaffected during this experiment. In (b),
we zoom into 3250 to 3500 s, when we change the chromaticity, the
betatron tune changes (enclosed in grey), but when the betatron tune
is changed the chromaticity remains constant (enclosed in yellow).
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Phase Response of Coalesced Beam
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Figure 18 The phase response of coalesced beam. Notice that the
null of the phase response does not move symetrically about Af =0
when the RF frequency is changed from —40 Hz to +40 Hz. In fact it
does not move enough when Af = —40 Hz to touch the intersection
of the blue dashed line and the phase equal to zero horizontal line

marked by the blue circle.

frequency from the TT. See Figure 19. From computer simulations, we can see that large
synchrotron amplitudes interfere with the phase demodulation. However, in order to get
this interference in our simulation the beam size must be large as well. But because we do
not see a beam size increase when the chromaticity is increased when we measure it with

the flying wire system, we cannot fully explain why we have this limitation.
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Figure 19 Shown here is the horizontal Schottky spectrum with the
T'T locked to the centre of the betatron tune distribution for £, = 12.
The synchrotron lines are very distinct and large compared to the
phase modulation lines, which, in fact, can hardly be seen at all.
These large synchrotron lines interfere with the phase demodulation.

Table 5. The Simulation Parameters

Parameter Value Description
i 0.0029 slip factor
Qo 0.588 fractional betatron tune
h 1113 harmonic number
Ey 150 GeV energy of the synchronous particle
Vg 0.00185 synchrotron tune
Qr Qo TT kick tune
01 1072 —107% | TT kick strength chosen for no emittance growth
ks hn/vg octupole strength
Admod 10° amplitude of phase modulation
Qnod o1 x 23 571 phase modulation frequency
Np 10* — 109 number of particles
Tyim 243 simulation time in synchrotron periods
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CONCLUSION

The CT has been operational since 22 Oct 2008 and has been used in conjunction
with the traditional method for HEP (high energy physics) shot set up. The operation
of the CT has been reliable and it will replace the hand measured traditional method for
HEP tune ups soon. The problems which we have mentioned in this paper will need to be
resolved and machine studies have been requested to study the frequency response of the

beam and to get to the bottom of why the CT has these limitations.
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APPENDIX I

The formula which couples longitudinal phase modulated motion to transverse phase
modulated motion has been derived for d-function type beams in both the longitudinal
and transverse planes by McGinnis.? However, real beams have finite sizes and emittances
and so in order to understand this type of beam, we have derived the equations of motion

which can be used in a computer simulation.

Let us suppose that the phase of the RF is modulated by a sinusoid of the form

¢m0d(t) = A¢pod sin Qpypqt (16)

and the RF is also a sinusoid

Vip = Vsin (wrpt + dmoa(t)) (17)

where A¢,,,q is the peak of the phase modulation, €24 is the frequency of the phase
modulation, V' is the peak voltage of the RF and wgry is the frequency of the RF. Then
the longitudinal part is easily derived from Edwards’ with the inclusion of the phase
modulation terms. (These equations can be compared with those used by Huangs)

(3] ]

n+1

+ Admod {Sin [277Vmod Z

Ap
©n+1 = pn + 2mhn (—)
p k=1

n+1

—sin |27V 14+n| ==
0 (),
A n A
= n + 2mhn (_p) + Apmod X 2c0s | 2mV04 Z [1 +n (_p) }
P/ n+1 = P )k

A A
% [1 +n (_p) }) sin (27wm0d X % {1 +n _p) )
D Jns1 D Jns1
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where V04 = Qod/wWrev is the modulation tune, and wyey is the revolution frequency of
the synchronous particle, h = wrp/wrev is the harmonic number, 8 & 1 is the relativistic
beta, e is the the electron charge, Fg is the energy of the synchronous particle and =7
is the synchronous phase, i.e. we are above transition. Note: Technically, there is no
synchronous particle when we modulate the RF. However, what we do is to assume that
there is a reference RF system which is not modulated and then calculate phases and Ap/p

w.r.t. the synchronous particle in this reference RF system.

The equations of motion for the transverse part at the pickup with Courant-Snyder

parameters (o, Bp) are

ma =t (S) Jo<(5), )

Tpt1 = agcosOpy1 (19)

/
Pn+1 = ﬁp$n + apxn

= —apsinb,41 + O sin 2mnQy — k3xi+1 )

where (ag, 6p) is the polar coordinate of the particle in normalised transverse phase space
at n = 0, QQq is the unperturbed betatron tune for the particle with zero Ap/p. There is
a transverse kick from the T'T which gives an angular kick of size ©j, at the tune ); and

from an octupole with strength k3.

First line of Equation (19)

For pedantic reasons, we will show how the betatron tune shift in the first line of (19)

has been derived. From the definition of the betatron tune @)

Q= q‘ﬁQ/(érev (20)
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we can write down the approximations to (ﬁQ and érev

¢ <1+ AwQ)
= W, —_—
Q = wQo 200

. Aw
¢rev = Wrev (1 + rev)

Wrev

(21)

wqo is betatron frequency when the modulation is zero, Awg/wgq is the relative change
in betatron frequency, and Awrey/wrey is the relative change in revolution frequency. If we

assume that Awg /on, Awrey /wrey < 1, we have

; A
?Q:Q()(l—{—ﬂ)(l—%)
Grev wQo Wrev

~ Qo (1 _ Avrev + AWQ)

Wrev wQo

(22)

because wq Jwrev = Qp-

If we use the following relationships which involve Ap/p, Awrey/wy and Awg /w(o,

Awrey S (%)
wo b
AwQ AQ (Ap>
[ N A— é’ _
wgo Qo p

o-afien(2)] (4

which when the rhs is examined, we find that the change in betatron tune has two contri-

(23)

then (22) becomes

butions. One comes purely from momentum spread (contained in [.]) and the other from

chromaticity.
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Table 3. Hilbert Transformer Filter Coefficients

APPENDIX II

~.

© 00 N O Ut =W NN = O

NN N N N N o b s e e e e e e
T W D = O © 0 3 O Ut i W N = O

coefficient 3]

0.0124427
0.0000000
0.00900775
0.0000000
0.0122483
0.0000000
0.0162677
0.0000000
0.0212626
0.0000000
0.0275401
0.0000000
0.0355514
0.0000000
0.0461607
0.0000000
0.0608791
0.0000000
0.0831083
0.0000000
0.121635
0.0000000
0.208752
0.0000000
0.635464
0.0000000

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

coefficient[z]
—0.0124427
0.0000000
—0.00900775
0.0000000
—0.0122483
0.0000000
—0.0162677
0.0000000
—0.0212626
0.0000000
—0.0275401
0.0000000
—0.0355514
0.0000000
—0.0461607
0.0000000
—0.0608791
0.0000000
—0.0831083
0.0000000
—0.121635
0.0000000
—0.208752
0.0000000
—0.635464
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Magnitude Response of Hilbert Transformer
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Figure 20 The frequency response of the Hilbert transformer using

the coeflicients shown in Table 3.
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APPENDIX III

The C code which implements an arctangent which knows about the winding number.

See (12).

Listing 1 C source listing for atan2unwind ()

#include <math.h>

/**********************************************************************

NAME

atan2unwind() -- Unwinds the phase given by atan2().

SYNOPSIS

atan2unwind() unwinds the phase given by atan2(). The range of
atan2() is between -pi and pi and thus there is a discontinuity
when the phase goes from the 3rd to the 4th quadrant and vice
versa. Therefore, a phase unwinder is needed to smoothly change
the phase at this transition. The simplest thing to do is to
monitor the crossing between the 2nd and 3rd quadrant. If the
phase goes from 3rd to 2nd, I increment the counter n, while if
the phase goes from 2nd to 3rd I decrement the counter. For the
other quadrants, I keep the counter n unchanged. The formula for
calculating phase becomes:

2xn*M_PI + atan2(y,x)

NOTE: statics are used!!!!

USAGE

Call reset_atan2unwind() once before atan2unwind() is used to
reset the global variables.
reset_atan2unwind() - reset the global variables.
atan2unwind (
y - y axis value of the phasor
X - x axis value of the phasor

) - returns the unwound phase

AUTHOR

C.Y. Tan

SEE ALSO
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atan2()
LOGS
$ok ok ok 3 ok K oK oK 3 ok 3 ok 3k 3 ok 3 ok 3k 3 ok 3 ok K 3K ok 3 ok 3 oK ok 3 ok 3k ok ok 3 ok 3 ok ok 3 ok 3 ok ok 3 ok 3 ok ok 3 ok 3 ok sk ok ook K sk ok ok sk k ok k /
static int oldquad = 1;
static int n = 0;
static float twon pi = 0;
void reset_atan2unwind()
{

oldquad = 1;

n = 0;

twon pi = 0;
ki

float atan2unwind(const float y, const float x)

{

// find the quadrant where the phasor lies

int q;
if (x >= 0){

q=~(y >0)7 1:4;
} else {

q=(y>07 2:3;
}
if(q !'= oldquad){
if (oldquad == 2 && q == 3){
n++;
twon_pi = 2*xn*M_PI;
}
else if (oldquad == 3 && q == 2){
n--;

twon pi = 2*n*xM_PI;

}
oldquad = q;

return twon pi + atan2(y,x);
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