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Abstract. We outline the gauge theory of CPT transformations. Gauge CPT provides
an alternative to the dark matter hypothesis by unveiling a natural extension of general
relativity. Additionally, the new dynamical degrees of freedom revealed by gauge CPT
should be essential for any approach to quantum gravity. Even though it may seem
absurd to entertain the notion of gauging a discrete symmetry because there are no
continuous parameters, we show otherwise via a "back door".

1. Introduction

The outstanding success of the gauge paradigm provides hope that it can again be used to
solve some of the current issues in physics such as an alternative to dark matter and supplying
missing ingredients required for quantum gravity. Actually, we do not have much of a choice
other than the CPT symmetry if we are to stick with experimentally veri�ed symmetries. The
use of vierbein and the arbitrary choices of where (on the continuous spacetime manifold) one
wants to apply the local CPT symmetry transformations allow for the gauging procedure.

The actual physics consists of four parts: motivation, fundamental local CPT transforma-
tions, choice of Lagrangian, and experimental/observational explanations and predictions. A
good introduction to gauge CPT can be found in "The Baryonic Tully-Fisher Law and the Gauge
Theory of CPT Transformations" [1]. A simpli�ed mathematical approach is in "A free-�eld
Lagrangian for a gauge theory of the CPT symmetry" [2].

2. Motivation

There are two components of the motivation to gauge CPT - quantum gravity and astrophysical
issues. Brie�y, we argue that gauging the CPT symmetry is necessary for any approach to
quantum gravity for two reasons: First, PT (together) is a proper Lorentz transformation just
like the continuous Lorentz rotations (boosts and spatial rotations), �, used to obtain the metric
spin connection formulation of general relativity (GR). Therefore, it would seem logical to
include local PT transformations with local Lorentz rotations in order to complete the gauging
of the entire group of proper Lorentz transformations. Inclusion of C is required to preserve the
universal symmetry status introduced by the Lorentz rotations. Second, the CPT symmetry is
born from the eminently successful union of special relativity with quantum theory - a "bridge"
between the two theories. Because GR can be obtained by gauging global Lorentz rotations,
should not CPT be brought along for the ride, too? Perhaps the new physical dynamical degrees
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of freedom unveiled by gauge CPT can be used to resolve at least some of the renormalization
problems encountered when trying to make GR a quantum �eld theory? This last point is anal-
ogous to expanding the early nonrenormalizable weak interaction theories by the renormalizable
SU (2)
 U (1) electroweak theory.

We now turn to the astrophysical motivation for gauge CPT. The starting point is the �at
rotation curves of spiral galaxies and the excessive gravitational lensing produced by galaxies and
galactic groups. That particles (matter and photons) are not moving the way they should be are
the observational facts. Dark matter and modi�ed gravity theories are not. Even though dark
matter sounds too much like the 19th century aether, it is certainly worth examining. However,
the absence of its detection and the well-known theoretical issues such as the core-cusp problem
should add to the motivation to examine the logical alternative of modi�ed or extended gravity
theories.

Because accelerations are caused by forces, and all known forces can be obtained by gauging
select global symmetries, we search for a candidate symmetry to be gauged. That CPT is an
experimentally veri�ed symmetry is su¢ cient reason to attempt gauging it and examine the
consequences. Also, because CPT is a universal symmetry containing Lorentz transformations,
there is the intuition of obtaining the required mass independent accelerations of galactic rotation
curves.

3. Fundamental local CPT transformations

The two fundamental local CPT transformations of spacetime (vierbein) and Dirac wavefunction
are perhaps the most di¢ cult part of gauge CPT; di¤erent descriptions of the derivation are
found in [1], [2], [3], [4]. In the usual gauging procedure we �rst introduce "arbitrariness," then
introduce locality in a closely intertwined procedure. For example, in the U (1) gauging process,
we �rst pick an arbitrary phase � from the continuum of choices in 0 � � < 2� and apply it to
a wavefunction  ! ei� . Then, we make it local by replacing � with � (x):  ! ei�(x) . In
gauging CPT, the two steps are more distinct and reversed.

We make note that in Minkowski spacetime, the coordinate axes are �ipped, and the origin
is mapped to itself under the global PT transformation - these two properties are of crucial
importance in de�ning local CPT transformations in curved spacetime! We assume that there
is no nontrivial C operation acting on spacetime. In other words, we assume that there is no
such thing as antispacetime. A discussion of why this is an important concept to consider and
an attempt to �nd a nontrivial C spacetime operation can be found in [3]. We also note that the
Dirac spinor wavefunction,  , transforms under Minkowski global CPT as  (x�)! i
5 (x�).1

These two points are the essence of de�ning local CPT transformations.
The �rst crucially important step in the CPT gauging procedure is to make the CPT trans-

formation local. We start by introducing a vierbein �eld, e �
a (x), where � are the manifold

coordinates and a are local inertial coordinates at the point x. As described in [1], we view
e �
a (x) as tiny Minkowski coordinate axes centered at x�. When the free falling observer at
x� applies a CPT transformation, she sees that her origin stays put (x� ! x�), her coordinate

1We use Bjorken-Drell conventions except for �ab. In this paper �ab = 1
4

�

a; 
b

�
.
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axes �ip (e �
a (x) ! �e �

a (x)), and a Dirac wavefunction at her origin picks up a factor of i
5

( (x�)! i
5 (x�)). This is the de�nition of local CPT transformations applied at the point
x� in curved spacetime.

To complete the gauging procedure, we have to introduce arbitrariness. This may seem
di¢ cult because there are only two choices at a given point: do nothing, or do the above
local CPT transformations. To complete gauging our discrete transformations, we introduce
a real, di¤erentiable scalar function f (x) de�ned everywhere on our manifold. The choice
of f (x) is arbitrary. Wherever f (x) � 0, we do nothing to the vierbein and Dirac �elds.
Wherever f (x) > 0, we apply the local CPT transformation to the vierbein and Dirac �elds.
We emphasize that f (x) is NOT a physical �eld! The use of f (x) is the "back door" to
introduce continuous parameters - the manifold coordinates - into the gauging procedure for
the discrete CPT symmetry. Just as � (x) must disappear in the �nal �eld equations of the
U (1) gauge theory, f (x) must also disappear from the �eld equations of gauge CPT. Finally,
we also introduce local Lorentz rotations2 � (x), with the local CPT transformation for two
reasons. First, as stated before, we are gauging the entire proper Lorentz group of spacetime
transformations (induced by gauging CPT� on the Dirac �eld). Second, this forces us to
introduce the metric spin connection, !�ab. If the transformation of !�ab can compensate for
the variations induced by local CPT�, then nothing new is happening, i.e., there is no need to
introduce another gauge �eld.

Putting everything together, we get the two fundamental local CPT� transformations acting
at a point x� [4]:

e �
a ! � [�f ] e �

a +� [f ]
�
�e �

b

�
� b
a ; (1)

 ! � [�f ] +� [f ] i
5�  ; (2)

where � b
a and � are the spacetime vector and Dirac spinor representations of the proper

Lorentz rotations, � (x), respectively. We de�ne the Heaviside step function, � [y], as � [y] = 0,
if y � 0; and � [y] = 1, if y > 0. From these two transformations, one easily obtains the
transformations of  and !�ab:

 ! � [�f ] +� [f ] i 
5� ;
!�ab ! � [�f ]!�ab +� [f ] e!�ab + � [f ] � [�f ] &�ab + � [f ] � [f ]e&�ab;

where � [� � � ] is the Dirac delta functional. Explicit expressions for e!�ab, &�ab, and e&�ab are found
in the appendix from [4]. We are using the metric spin connection:

!�ab =
1

2

�
e �
a (@�eb� � @�eb�)� e �

b (@�ea� � @�ea�)� e �
a e

�
b (@�er� � @�er�) er�

�
:

Also, the volume element transforms as ed4x ! (� [f ] + � [�f ]) ed4x, where e = det
�
ea�
�
.

Clearly, these transformations are well de�ned in curved spacetime.
The appearance of the delta functionals, arising from the di¤erentiation of the transformed

vierbein and spinors, need to be in a de�nite integral in order to be de�ned. The obvious choice
is the action integral because of its fundamental role in physics. Therefore, we use the action
integral as the fundamental arena for deriving the necessary mathematics used to gauge the CPT
symmetry and introduce the new gauge �eld. The derivation of the mathematics used to handle
the various ensuing products of the step functions and delta functionals and their di¤erentiation
is found in the appendix from [4].

2 In most of the author�s previous work, �, denotes Lorentz rotations. To avoid confusion with the hypothetical
cosmological constant, we no longer use �.
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4. Consequences of the transformations

Do these transformations make sense? In other words, can we recover the global CPT transfor-
mations in Minkowski spacetime from these local transformations? Yes, our starting point is
the Hermitian Dirac action in Minkowski spacetime, SD, and the extension of the Dirac action
to curved spacetime by use of vierbein and the spin connection (@� ! @� +

1
2!�ab�

ab ), S!
[4]:

SD =

Z �
i

2

�
 
ae �

a @� � e �
a @� 


a 
�
�m  

�
ed4x; (3)

S! =
i

4

Z
e �
a !�bc 

n

a; �bc

o
 ed4x: (4)

We now apply the transformations to SD noting that the transformation of the volume element,
ed4x, only introduces removable singularities where f = 0 which we can ignore in a de�nite
integral:

SD ! S0D =

Z
� [�f ]

�
i

2

�
 
ae �a @� � e �a @� 
a 

�
�m  

�
ed4x (5)

+

Z
� [f ]

�
i

2

�
@� � +  @�� 

�
e �b �

b
a 


a�  

�
ed4x

�
Z
� [f ]

�
i

2
 � 


ae �b �
b
a (@��  + � @� )

�
ed4x

+

Z
� [f ]m  ed4x

+
i

2

Z
� [f ] @�f

n
� [�f ] ie �a  

�

a� + � 


a
�

5 

o
ed4x

� i
2

Z
� [f ] @�f

n
� [f ] ie �b �

b
a 
�
� 


a + 
a� 

�

5 

o
ed4x:

By setting f < 0 everywhere, we recover our original SD. Setting f > 0 and � constant
everywhere gives us the Minkowski Dirac action transformed by global CPT�. So, we assert
that the local CPT� transformations make sense. We note that SD is not invariant under
global CPT transformations - it changes sign. This has no e¤ect on the Dirac equation but
raises some subtle points when using variational calculus with gauge CPT [4].

To complete the introduction of the local CPT� transformations, we need �SD and �S!.
This is almost the same as �SD = S0D � SD, �S! = S0! � S! but for the subtle issues regarding
the sign change. However, the use of the simpli�ed mathematical approach in [2] avoids the
issues and leads to the same �SD as in [4]. Upon substitution of the local CPT� transformations
into SD and S!, along with various manipulations, one obtains the variation of the Dirac action
in curved spacetime, �S = �SD + �S! [4]:

�SD = �
1

4

Z
� [f ] @�f

n
e �a  


5
�h

a;� 

i
+ [� ; 


a]
�
 
o
ed4x; (6)

and
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�S! =
i

16

Z
� [f ] @�f 

n

a; �bc

oh
�ade

�
b

�
� d
c + �

d
c

�
� �bde �c

�
�da + �

d
a

�
(7)

+�bde
�
a

�
�dc � � d

c

�i
 ed4x

+
i

16

Z
� [f ] @�f � 

n

a; �bc

o
� �bd

h
e �i �

i
a

�
� d
c � �dc

�
�e �i �

i
c

�
�da + �

d
a + �

d
a

�
+ �die

i�
�
�cj�

j
a + �aj�

j
c

�i
 ed4x:

We now show that the introduction of the local CPT transformations unveils new physical
phenomena distinct, yet coupled, to general relativity. This discussion is slightly modi�ed and
abridged from [4]. If �SD = 0 identically, then nothing new is going on other than de�ning the
CPT symmetry locally on a curved manifold. If �SD 6= 0 but �SD+�S! = 0, then the local CPT
transformations are just a part of general relativity without any new physics. If �SD 6= 0 and
�SD + �S! 6= 0, then general relativity cannot accommodate the local CPT symmetry. We are
then forced to introduce a new gauge �eld X� in order to arrive at an expanded action invariant
under local CPT� transformations. The proof that there exists at least one transformation such
that �SD 6= 0 and �SD + �S! 6= 0 is done by explicit construction using a simple choice for local
Lorentz rotations corresponding to a velocity boost along the x-axis of Minkowski spacetime [4].
It is straightforward to show that such a � applied in regions where f > 0 satis�es the above
criteria that new physical phenomena is unveiled by gauge CPT�. Under this transformation
one obtains:

�SD = � sinh
!

2

Z
� [f ] @�f 

�
e �0 


5
1 + e �1 

5
0
�
 ed4x; (8)

and

�S! =
3

64
sinh! (cosh! � 1)

Z
� [f ] @�f 

�
e �2 


5
3 � e �3 
5
2
�
 ed4x; (9)

where ! = tanh�1
�
v
c

�
, v and c being the velocities of the boost and light respectively. Because

the 
5
a are linearly independent and  is arbitrary, we see that �SD 6= 0, �S! 6= 0, and
�SD + �S! 6= 0 for this choice of transformation. Also see [2] for a simpli�ed proof. The fact
that �S! 6= 0 means that general relativity is not invariant under local CPT� transformations;
however, the Einstein-Hilbert action remains invariant but allows for an extension as shown in
[2]. Therefore, the new gauge �eld X� must also compensate for the inhomogeneous (i.e. � [f ])
terms arising from the transformation of !�ab under local CPT� transformations. Thus, we
see from variational arguments that a new gauge �eld coupled to GR is required in order to
accommodate local CPT� transformations.

5. Introduction of the new gauge �eld

We now introduce the new gauge �eld, X�, subject to only one assumption - minimal coupling.
There are three reasons for minimal coupling: simplicity, the author�s preference of viewing
gauge �elds as "compensating" �elds, and a quick way to get rid of the � [�f ] � [f ] terms in the
transformation of !�ab.

This last reason motivates the fundamental necessary requirement for any Lagrangian allowed
under gauge CPT� transformations: absence of � [f ] in the transformed Lagrangian. Because
CPT is a discrete symmetry, singularities must occur when CPT is made local. The arena
of the action integral determines which singularities are allowed and which are fatal. For
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example, terms with the coe¢ cient (� [�f ] + � [f ]) have removable singularities at f = 0, and
the coe¢ cient can be simply replaced by 1. Terms containing � [f ] produce surface integrals at
f = 0. These are �nite but arbitrary because the choice of f is arbitrary; therefore, one cannot
uniquely extremize the action in order to obtain �eld equations. So, any potential Lagrangian
densities cannot contain � [f ] after local CPT� transformations are applied. The following
derivation of the structure and transformation of X� is taken directly from [4] abridged with
slight changes.

The �rst step in determining the transformation of X� is to notice that both �SD and �S!
are boundary integrals, i.e. they contain the terms � [f ] @�f: Also, the transformation of !�ab
contains the terms � [�f ] � [f ] &�ab and � [f ] � [f ]e&�ab which need to be cancelled out by the
transformation of X� under local CPT� transformations. Hence, the transformation of X�

under local CPT� transformations will be of the form:

X� ! � [�f ]X� +� [f ] eX� +� [�f ] � [f ]Y� +� [f ] � [f ] eY�: (10)

We introduce the covariant derivatives, D� , D� :

D� = @� +
1

2
!�ab�

ab + �X� ; (11)

and
D� = @� �

1

2
!�ab �

ab + �� 
0Xy
�

0; (12)

where � is the coupling constant. The �rst order theory [3], [5] unveiled only the 
5 components
of X�. However, from �SD and �S!, we see that other components are also needed. So, we
treat X� as a matrix: X� = x�n�

n, where the x�n are the dynamical components of X�; and
the �n are the 16 linearly independent matrices I, 
5, 
a, 
5
a, and �ab.

The replacement of @� and @� in SD by D� , D� results in an expanded action, SD!X ,
which will determine Y� and eY� upon requiring �SD!X = 0. The form of eX�, the transformation
of X� under global CPT� transformations, is determined by requiring the � [f ] term of the
transformed SD!X to change sign, just as in S0D.

We determine Y� and eY� by requiring the transformation of the expanded action to have
no terms containing � [f ]. By simply substituting the transformation equations into SD!X and
setting the sums of all terms containing � [�f ] � [f ] and � [f ] � [f ] separately to zero, we can
straightforwardly solve for Y� and eY�. We obtain:

Y� = ��1
�
@�f

�
I � i
5� 

�
� 1
2
&�ab�

ab

�
; (13)

and eY� = ��1
�
@�f

�
�I � i
5� 

�
� 1
2
e&�ab�ab� : (14)

We note that 
5� and 
5� are linear combinations of I, 

5, and �ab; so we see that only

eight of the possible 16 �n are needed. We assume that X� has only these eight x�n dynamical
components: X� = x�II + x�5


5 + x�ab�
ab.

We now turn our attention to �nding eX� by again substituting the transformation equations
into the expanded action. As mentioned above, we require that the � [f ] terms in the expanded
action change sign and cancel out the corresponding unvaried terms of the expanded action in
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the regions where f > 0. We obtain from the � [f ] terms:

e �b �
b
a � 


a

�
(@�� ) + � @� +

1

2
e!�cd�cd�  + �
5 eX�


5�  

�
(15)

�e �b �
b
a

�
@� 

�
� 


a�  � e �b �
b
a

�
 @�� �

1

2
e!�cd � �cd� 
a�  

�e �b �
b
a �

� 
5� 

0 eXy

�

0
5
a�  

= e �a  

a

�
@� +

1

2
!�cd�

cd + �X� 

�
�e �a

�
@� �

1

2
!�cd �

cd + �� 
0Xy
�

0

�

a :

The discussion on use of this equation to �nd eX� is found in [4]; the result is:

eX� = 
5� X�� 

5 = � X�� : (16)

We temporarily retain the 
5 to emphasize that the transformations are CPT� and not merely
�.

6. The free-�eld Lagrangian

Now that the transformation of X� has been determined, we can construct a Lagrangian density
comprised of the expanded Dirac Lagrangian, free-�eld Lagrangian for X�, and a density con-
taining the Einstein-Hilbert term of GR, �R, where � = (�16�GN )�1 (this discussion is slightly
modi�ed from [1]). The total Lagrangian must satisfy the following requirements [2], [3], [4],
[5]:

1) gauge covariance under local CPT� transformations,

2) absence of any Dirac delta functionals, � [:::], in the Lagrangian under local CPT�
transformations,

3) terms containing x�ab which are not solely constrained to appear within the combination�
1
2!�ab + �x�ab

�
�ab, and

4) some components of X� appearing in both types of free-�eld Lagrangians used in GR and
the standard model (SM).

The �rst requirement is obvious. The second prevents pathological variations of the expanded
action under local CPT� transformations as mentioned earlier. The third ensures that x�ab
has physical signi�cance and is not just a fancy way to ignore the delta functionals appear-
ing in the transformation of !�ab. The fourth re�ects that CPT arises from both GR and
quantum theory (SM). To this end, we note that the minimal coupling term acting on matter,�
1
2!�ab + �x�ab

�
�ab , implies replacing �R by �RX!, where �RX! is the modi�ed Einstein-

Hilbert curvature term formed by replacing the metric spin connection !�ab inR by !�ab+2�x�ab.
We obtain [2] for the Hermitian action, S:



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics
Journal of Physics: Conference Series 2533 (2023) 012048

IOP Publishing
doi:10.1088/1742-6596/2533/1/012048

8

S =

Z �
i

2
e �
a  


a

�
@� +

1

2
!�bc�

bc + �X� 

�
�m  

�
jej d4x (17)

�
Z �

i

2
e �
a

�
@� �

1

2
!�bc �

bc + � 
0Xy
�

0

�

a 

�
jej d4x

+

Z �
1

4
Tr
�
H��H

��y
�
+
�

2

�
RX! +R

y
X!

��
jej d4x;

where

H�� =
�

2

�
!�ab

h
�ab; X�

i
� !�ab

h
�ab; X�

i�
+ �2 [X�; X� ] + � (@�X� � @�X�) : (18)

The term 1
4Tr

�
H��H

��y� contains both a Yang-Mills term for X� - re�ecting the quantum (SM)
contribution to the origin of the CPT symmetry - and part of the coupling of GR with gauge
CPT. We note that a mass term for X�, mTr

�
X�X

�y�, is not gauge covariant and not allowed
[2], [3], [4], [5]. The proof that the Lagrangian density is gauge covariant is found in [2].

The Euler-Lagrange variation of S with respect to x�ab, e
�
a , !�ab,  , x�I , and x�5 respectively

gives the following �eld equations [1], [4], [6]:

4�D�

�
@�x�cd � @

�x�cd
�
Tr

��
�ab
�y
�cd
�
+ 2� f(!�rs + 2�x��rs) (19)

�
�
@�x�cd � @

�x�cd
�
Tr

�h
�ab; �rs

iy
�cd
��

+2�D� (2�x
�
cdx

�
rs + !

�
cdx

�
rs + !

�
rsx

�
cd)Tr

��
�ab
�y h

�cd; �rs
i�

�
�
� (!�cd + 2�x

�
�cd)

�
2�x�mkx

�
rs + !

�
mkx

�
rs + !

�
rsx

�
mk

�
�Tr

�h
�ab; �cd

iy h
�mk; �rs

i��
+8��bc (ea�en� � en�ea�)

�
!�cn + 2�x

�
�cn

�
+8��ac

�
eb�en� � en�eb�

� �
!�nc + 2�x

�
�nc

�
= 4i �ab
� + 8�D�

�
ea�eb� � ea�eb�

�
:

The modi�ed GR equation,

1

2

��
R��X! +R

��y
X!

�
� 1
2
g��

�
RX! +R

y
X!

��
=
1

2�
T�� ; (20)

where

T�� =
g��

4
Tr
�
H��H

��y
�
+
i

2

��
D� 

�

� �  
�D� 

�
(21)

+g��
�
i

2

�
 
�D� �

�
D� 

�

� 

�
�m  

�
:

The Palatini variation with respect to !�ab,
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��bc (en�ea� � ea�en�)
�
!�cn + �x

�
�cn + �x�cn

�
(22)

+��ac
�
en�eb� � eb�en�

� �
!�nc + �x

�
�nc + �x�nc

�
+
i

4
 
n
�ab; 
�

o
 +

�2

4

�
x��rs

�
�@�x�cd + @

�x�cd
�

�Tr
�h
�ab; �rs

iy
�cd
�
+ x�rs

�
�@�x��cd + @

�x��cd
�

�Tr
�h
�ab; �rs

i �
�cd
�y�

+
1

2
x�rs

�
2�x��mkx

��
cd

+!�mkx
��
cd + x

��
mk!

�
cd

�
Tr

�h
�ab; �rs

i
�
h
�mk; �cd

iy�
+
1

2
x��rs

�
2�x�mkx

�
cd + !

�
mkx

�
cd + x

�
mk!

�
cd

�
�Tr

�h
�ab; �rs

iy
�
h
�mk; �cd

i��
= �D�

�
ea�eb� � ea�eb�

�
;

the Dirac equation,

ie �a 

a

�
@� +

1

2
!�bc�

bc + �X� 

�
�m = 0; (23)

and �nally

i e �
a 


a = 4�
�
@�x�I � @�x

�
I

�
;�
and (24)

i e �a 

a
5 = 4� (@�x�5 � @�x

�
5 );� (the chiral terms of X�). (25)

We note that chiral and gravitational anomalies have not been taken into account.

7. Weak �eld gauge CPT extension of gravity

The ultimate judge to see if gauge CPT has anything to do with reality is experimental and
astrophysical predictions. The arguments leading to the point neutrino emitting source, weak
�eld gauge CPT force law are found in [1], [6]. However, early discussions of experimental
predictions appear in [3], [4]. The weak �eld law is used to explain the Tully-Fisher law as well
as four experimental predictions [1], [6]. Due to space limitations, we simply state the law:

aX = k
(I�)

1
2

r
; (26)

where aX is the acceleration a point mass feels due to the (anti)neutrino source, I� is the total
(anti)neutrino luminosity (power) of the point source, r is the distance of the point mass from
the (anti)neutrino source, and k is the physical constant (k = 4:25 � 10�8 m

(kg:s)
1
2
) associated

with gauge CPT analogous to Newton�s gravitational constant, GN .
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8. Conclusion

We have gauged the CPT symmetry and used it to derive a new gauge �eld with some com-
ponents being a natural extension of GR. Further work remains, for example, the physical
meaning of the x�I � x�5 terms and the relationship to anomalies. Rigorous point and plane
wave neutrino source solutions to the �eld equations are required to determine the attractive or
repulsive nature of the forces as well as strictly proving the inverse square behavior. Of course,
another step is to incorporate Gauge CPT with GR to see if a renormalizable quantum �eld
theory can be obtained.
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