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Abstract: We examine the heap of linear connections on anchored vector bundles and Lie algebroids.
Naturally, this covers the example of affine connections on a manifold. We present some new
interpretations of classical results via this ternary structure of connections. Endomorphisms of
linear connections are studied, and their ternary structure, in particular the endomorphism truss, is
explicitly presented. We remark that the use of ternary structures in differential geometry is novel
and that the endomorphism truss of linear connections provides a concrete geometric example of
a truss.
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1. Introduction and Preliminaries
1.1. Introduction

We need hardly mention that the notion of a connection in its various forms is of
vital importance in differential geometry and geometric approaches to physics (see, for
example, [1]). As an important example of the role of connections in modern mathematics,
we point to the construction of characteristic classes of principal bundles via Chern-Weil
theory (for an introduction, see [2], Chapter 11). In physics, connections are related to gauge
fields and are vital in general relativity and other geometric approaches to gravity such as
metric-affine gravity. Connections are also found in geometric approaches to relativistic
mechanics, deformation quantisation and the BRST formalism. In short, connections are
found throughout modern geometry and physics.

In this note, we study linear connections on anchored vector bundles, especially
Lie algebroids, in the category of smooth real supermanifolds (in the sense of Berezin
and Leites; see [3]). Such connections, here formulated following Koszul as covariant
derivatives, generalise affine connections on manifolds, so our results are directly restricted
to the classical setting.

Heaps were first defined and studied by Priifer [4] and Baer [5] as a set equipped
with a ternary operation satisfying simple axioms, including a ternary generalisation of
associativity. A heap can, loosely, be thought of as a group in which the identity has been
discarded. Given some group, the ternary operation (a,b,c) + ab~!c defines a heap. For
example, in an affine space, one can construct a heap operation as (1, v, w) — u —v+w. In
the other direction, by selecting any element in a heap, one can reduce the ternary operation
to a group operation such that the chosen element is the identity element. Our main
reference for heaps and related structures is the book by Hollings and Lawson [6], which
presents translations of Wagner'’s original works on heaps and related ternary structures.

Via the above paragraph, it is clear that, as it forms an affine space, the set of
affine/linear connections on a (super)manifold /vector bundle forms a heap. Informally,
you cannot add two connections together, but you can combine three of them. We inves-
tigate the immediate consequences of this heap structure. An interesting observation is
that the set of endomorphisms of linear connections forms a truss. The latter structures are
ring-like algebraic structures in which the binary addition is replaced with a heap operation,
together with some natural distributivity axioms (see [7-11]). We explicitly construct the
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endomorphism truss of linear connections on a Lie algebroid (or just an anchored vector
bundle) in this note. We comment that the notion of endomorphisms of linear connections
does not seem to be a widely studied or used concept in mathematical physics. Presumably,
this is due to the fact that, in general relativity and very closely related theories, the connec-
tion of interest is the Levi-Civita connection. However, in theories such as metric-affine
gravity and affine gauge theory, more general affine connections are considered (see [12]
for a review of metric-affine theories). Thus, some of the ideas presented here may be of
relevance in novel theories of gravity (see [13] for an introduction to gravity theories other
than general relativity).

We remark that although we are working in supergeometry, none of the results of this
note hinges on that fact. All the statements and results cover the classical setting of affine
connections on manifolds. We assume the reader has some familiarity with supermanifolds
and supervector bundles. However, we will work in a coordinate-free way with globally
defined objects; thus, by forgetting the spurious sign factors, one will obtain the classical
results. For details on supermanifolds, the reader may consult Carmeli et al. [14], for
example. For details on (super) vector bundles, one may consult [15]. Local expressions for
Lie algebroids can be found in the introductory section of [16]. We will often neglect the
prefix ‘super’, and, unless explicitly stated, everything will be Z,-graded. In the examples
we give, the Riemmanian manifold can be replaced with a pseudo-Riemannian manifold.

Arrangement

We continue this section with a brief description of the algebraic structures needed
throughout this paper. In particular, heaps are recalled, as are Brzeziriski trusses. The main
content of this paper is found in Section 2. In that section, we recall the notion of linear
connections on anchored vector bundles and Lie algebroids and present their heap structure.
From there, we discuss metric compatibility, torsion and curvature, Lie derivatives and the
dual connection from a heap perspective. The main result of this paper, the construction of
the endomorphism truss of linear connections, is given at the end of that section. We end
this paper in Section 3 with a few concluding remarks.

1.2. Algebraic Preliminaries

A semiheap (H) is a (possibly empty) set equipped with a ternary operation ((a,b,c) —
[a, b, c]) that is para-associative, i.e.,

[[a,b,c|,de] =[a]dcDblel =]ab,]cde].

A semiheap is said to be abelian if [a,b,c] = [c,b,a] for all a,b and ¢ € H. If all the
elements are bi-unitary, thatis, [a,b,b] = a and [b,b,a] = a for all a and b € H, then we
have a heap. We recall that a left truss is an abelian heap together with an associative binary
operation that distributes over the ternary operation (from the left), i.e.,

a-lbc,d|=la-ba-c,a-d|.

Similarly, a right truss can be defined. If we have both left and right distributivity,
then we speak of a truss. We divert the reader to the original literature on trusses for more
details (see [7-11]). A video lecture outlining the theory of trusses, including motivation
and a historical perspective, is available in [17].

2. The Ternary Structure of Connections
2.1. Connections on Anchored Vector Bundles

Let us recall the definition of an anchored vector bundle [18], here adapted to the
setting of supergeometry.
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Definition 1. A vector bundle (in the category of supermanifolds) w : A — M, where 7 is a
smooth, subjectivesubmersion; see Section 5.2 in [14] for details on this notion in supergeometry) is
said to be an anchored vector bundle if it is equipped with a vector bundle homomorphism (over
the identity) (o : A — TM), which is referred to as the anchor.

The C*(M) module of sections of a vector bundle is Z,-graded, i.e.,
Sec(A) = Seco(A) Bew(ar) Seci (A).

We generally consider homogeneous sections, i.e., either even or odd, in definitions
and proofs. The statements extend to inhomogeneous sections via linearity. By minor abuse
of notation, we also write

o :Sec(A) — Vect(M), (1)

for the associated (even) homomorphism of C*°(M) modules. When convenient, we write
pu := p(u), where u € Sec(A). We denote the Grassmann parity (or degree) of sections (as
well as functions, tensors, etc.) using “tildes”, i.e., u € Z, = {0,1}.

Example 1. The tangent bundle (TM) of a supermanifold (M), is an anchored vector bundle,
with the anchor being the identity map. The sections of the tangent bundle are vector fields on the
supermanifold (M).

Example 2. Let T : E — M be a vector bundle over the supermanifold (M). Then, as fibre products
exist in the category of supermanifolds, A := TM x 1 E is also a vector bundle over M. The
anchor is the projection onto the first factor (a little care is needed, as we have a locally ringed
space, but this can be made sense of using local coordinates, for example). Sections are clearly
Sec(A) = Vect(M) Qce(m) Sec(E). Then, on pure tensor products, p(X @ u) = X.

Definition 2. A linear connection on an anchored vector bundle (A, p) is an R-bilinear map, i.e.,
V :Sec(A) x Sec(A) — Sec(A),

such that

1. Vyo=i+7

2. Vfuv = fV,v;and

3. Vu(fo) = pulf)o+ (=1)"f fV,o,
forall f € C*(M), and u,v € Sec(A).

We will denote the set (or affine space) of linear connections on (4, p) as C(A).

Remark 1.

1. In this note, we only consider Grassmann even connections. Odd connections are not a truly
separate notion, as uncovered in [19].

2. The existence of Lie algebroid connections and, therefore, anchored vector bundles is established
in [20], for example, using a partition of unity. For real supermanifolds (as locally ringed
spaces), we always have partitions of unity.

3. There is the related notion of an A-valued connection (V : Sec(A) x Sec(E) — Sec(E)). As
we will want to discuss torsion, linear connections, as defined above, are needed.

4. Linear connections can be reformulated as odd vector fields on a particular bi-graded su-
permanifold built from the initial anchored vector bundle (see [21] for details). We avoid
graded/weighted geometry in this note and stick to a more classical presentation.

Example 3. A real vector space (V; non-super for simplicity) can be considered as an anchored
vector bundle over a single point, where the anchor is the zero map. A linear connection on (V) is
simply an R-bilinear map (V : V. x V = V).
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Example 4. Let 7w : A — M be an arbitrary vector bundle (in the category of supermanifolds).
This vector bundle can be considered an anchored vector bundle by setting the anchor to be the zero
map. As the zero vector field can be considered as both even and odd, this choice is consistent. We
refer to such structures as zero-anchored vector bundles. Then, a linear connection on a zero vector
bundle is an even R-bilinear map such that

Vo= ()" Vy(fv) = fVuo,
that is, a linear connection in this context is a bilinear form on the C® (M) module (Sec(A)).

Example 5. Given a vector bundle connection (V : Vect(M) x Sec(A) — Sec(A) on (A, p)),
one has a canonically associated linear connection by setting V,v := Vp(u>v.
Definition 3. The ternary operation on the affine space of linear connections on an anchored bundle

is defined as
v),v®, vO].= v —v@ 4 v0O), )

for arbitrary V) € C(A) (here,i =1,2,3).

The ternary operation does, indeed, produce another linear connection. Note, of
course, that the sum or difference of two linear connections is not a linear connection. The
reader can easily verify the following proposition (see Section 1.2).

Proposition 1. Let (A, p) be an anchored vector bundle. Then, the set of linear connections (C(A))
is an abelian heap, with the ternary operation being defined by (2).

From the general theory of heaps, we know that if we fix some connection (V) €
C(A)), then we have an associated abelian group structure on C(A) given by

v w0 v@ .= v, v v,
and the inverse operation is given by
(V) 1= v, v,vO],

The identity element is the chosen connection (V(?)). All such abelian groups associ-
ated with a different choice of reference connection are isomorphic.

Example 6. Let (M, g) be a Riemannian manifold. Then, we have the canonical Levi-Civita
connection on the tangent bundle (TM), which we denote as V°. We consider the tangent bundle
an anchored vector bundle where the anchor is the identity map. Thus, the set of affine connections
on (M, g) is canonically an abelian group, with the group product and inverse being

vh.v@ .= v,y v,
(V) 1=V Vv, V.

If V) are metric connections, ie., Vg = 0, then, due to the linearity of the metric,
(VD), V@), VO] is also a metric connection, that is, metric connections form a subheap of the heap
of all affine connections. In turn, we also have a subgroup of metric connections. We will discuss
this in a little more detail in Section 2.2. Moreover, given an arbitrary affine connection (V), we
note that

V=[V,V,V =V (V-V,

which gives a “heapy” origin to the well-known fact that any affine connection on a Riemannian
manifold is the Levi-Civita connection plus a tensor of type (1,2).
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Remark 2. The previous example directly generalises to even and odd Riemannian supermanifolds,
as we, again, have a canonical Levi-Civita connection.

A section (u € Sec(A)) is said to be auto-parallel if there exists a linear connection
(V € C(A)) such that V,u = 0. We denote the set of all such linear connections as C(A, u).
The following proposition is evident.

Proposition 2. Let (A, p) be an anchored vector bundle. The set (C(A,u)) for any section
(u € Sec(A)) is closed under ternary operation (2).

2.2. Metric Compatibility

A Riemannian metric on an anchored vector bundle (77 : A — M) is a smooth assign-
ment of an (even) inner product to the fibres.

(=[=): Sec(A) x Sec(A) — CT(M).

By even, we mean that (u|v) = # + 0. It is possible to consider odd Riemannian
metrics, but in order to keep close to the classical Riemannian geometry, we restrict our
attention to even structures. Note that the existence of an even Riemannian metric requires
that Rank(A) = n|2m. We refer to an anchored vector bundle equipped with a Riemannian
metric as a Riemannian anchored bundle.

A linear connection (V € C(A)) is said to be metric-compatible if

ou(vlw) = (Vyolw) + (=1)"7 (0| V,w) 3)
forall u,v and w € C(A) (see [22]).

Example 7. Consider a Riemmanian manifold (M, g). The tangent bundle (TM) is then a Rieman-
nian anchored bundle (the anchor is the identity map). The metric compatibility condition reduces
to the ‘classical” metric compatibility condition.

Proposition 3. Let V1), V(2 and V) € C(A) be metric-compatible connections on a Rieman-
nian anchored bundle. Then, [V(), V@),V ©®)] is also a metric-compatible connection.

Proof. Let V), V(2 and VO € C(A) be metric-compatible connections on a Riemannian
anchored bundle, and let 1, v and w € Sec(A) be arbitrary sections. Using the linear nature
of the inner product (metric), together with the metric compatibility condition (3), we
observe that

(YD, V@, VO,0fw) + (~1)7 (2] [V, VD, ¥O),w) = (VD olw) + (~1)7 (0 |v<” w)
<v<2v|w> ( 17 (0] VP w)
+ (VP olw) + (~1)7° <|v<3>
:pu< |w>—pu<| ) + pu (0]w)
= pulvlw).

This is precisely the metric compatibility condition for [V(1), V(2), V)], O

Corollary 1. The subset of metric-compatible connections (Cp;c(A) C C(A)) on a Riemannian
anchored bundle forms an abelian subheap of (C(A), [—, —, —]).
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2.3. Torsion and Curvature

To discuss torsion and curvature in the setting of anchored vector bundles, we require
a bracket on the space of sections. We focus on the situation of Lie algebroids, though one
can relax the Jacobi identity and the compatibility of the anchor with the bracket, if desired.
For completeness, we define a Lie algebroid following Pradines (see [18]), modified to the
setting of supergeometry. The reader may also consult Mackenzie for further details [23].

Definition 4. An anchored vector bundle (A, p) is a Lie algebroid if the space of sections Sec(A)
comes equipped with an R-bilinear map, i.e., a Lie bracket,

[~ —] :Sec(A) x Sec(A) — Sec(A),
that satisfies the following:

1. [u9]=u+70;

2. [u,v] =—(=-1)"[v,u];

3. [u, fo] = pu(f)o+ (—1)L~‘ff[u,v];and

4. [u,fo,w]] = [[u, 0], w] + (1) [0, [u, w]]

forall u,vand w € Sec(A) and f € C®(M).
The above conditions imply that the anchor is a homomorphism of Lie algebras, i.e.,

Pluo) = [p(u), p(v)].

Example 8. The tangent bundle of a supermanifold (TM) is a Lie algebroid, with the anchor being
the identity map and the Lie bracket being the standard commutator of vector fields.

Example 9. Let g = go @ g1 be a supervector space. Then, associated with this via the ‘mani-
foldcation’ functor, is the linear supermanifold (here, thought of as a vector bundle over a point
(g™ — x)). The important aspect of the construction is that g = Sec(g™@™). If g is a Lie algebra,
then g™ is a Lie algebroid with zero anchor.

General Lie algebroids are, loosely, a mixture of the two above examples. For further
examples, the reader may consult [23]. The mantra here is that whatever can be done with
the tangent bundle can be done in the setting of Lie algebroids. In particular, we have the
notion of torsion. The forsion tensor of a linear connection on a Lie algebroid (4, p, [—, —])
is given by -

Ty (u,v) :=Vyo—(=1)""Vou—[u,v], 4)

forall u,v € Sec(A).

Remark 3. The Fundamental Theorem of Riemannian Lie Algebroids states that there is a unique
connection on a Riemannian Lie algebroid characterised by the two properties of vanishing torsion
and metric compatibility. Such connections, following the classical nomenclature, are known as
Levi-Civita connections.

Proposition 4. Let V1), V() and V) € C(A) be connections on a Lie algebroid (A, p, [—, —]).
Then,
Tivo vo vey = Tvn — Tye + Tye) -
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Proof. Directly, given any u,v € Sec(A),

Tgn,ve voy(,0) = v),v@,vO,0 - (-1)7® vV, v®,v®],u - [u,0]

= Vo — (1) VMNu— [0 - VDo + (1) VPu 4 [u, 9]

+ VE?)Z) — (1" fo’)v — [u,0] = Tgn)(u,0) — Toe (4,0) + Tge (4,0) .
O

Remark 4. The above proposition shows that torsion can be considered a heap homomorphism from
the heap of connections to the heap of vector-valued two forms.

Corollary 2.
1. The subset of torsion-free connections (Ctp(A) C C(A)) forms an abelian subheap
of (C(A), [= = —]).

2. Ty ye,ye) T Tve vo ve) T Tive ve vo) = Tvo) + Tge) + Tye)-

Example 10. Continuing Example 6, the torsion-free connections on a Riemannian manifold
(M, g) form an abelian subheap of the abelian heap of all affine connections. Moreover, the set of
torsion-free connections canonically comes with an abelian group structure.

Following Brzezinski, from Definition 2.9 and Proposition 2.10 of [9], we know that
there is a subheap relation (NCTF( A) on C(A)) defined by v ~Crp(A) V(2) if there exists a
V € Crr(A) such that [V, V@), V] € Crr(A). In fact, if two connections are equivalent,
then [V, V2, V'] € Crr(A) forall V/ € Crp(A). It is known that such a relation defines
an equivalence relation.

We then observe from Proposition 4, assuming we have equivalent connections, that
T[V(1>,V(2>,V] = Tga) — Ty@ = 0. Thus, the torsion tensors for two equivalent connections
must be equal. In other words, connections with the same torsion are representatives of
the same equivalence class within the heap of linear connections. As a standard, we will
denote an equivalence class via a chosen representative as [V].

Example 11. Let (M, g) be a Riemannian manifold. We have a canonical torsion-free affine
connection (V0 ), i.e., the Levi-Civita connection. Then, we can canonically choose vO 4T
where T is an even skew-symmetric (1,2) tensor, as a representative of any equivalence class of
affine connections.

The curvature tensor of a connection on a Lie algebroid is given by
Ry (u,0)w := V,Vow — (=1)® V,V,w — Vi@, (5)
for arbitrary u, v and w € Sec(A).

Proposition 5. Let VY, V(@ and V@) € C(A) be connections on a Lie algebroid (A, p, [—, —]).
Then,
Rign) v v (1 0)w = Rga) (1, 0)w + Ry (1, 0)w + Ry ) (1, 0)w

+2V{5 w0+ g(—l)ff[vﬁ,”, viw,

for arbitrary u,v and w € Sec(A).
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Proof. Via direct calculation,

Riym e yo, (oo = [V, V2, v v, v, v Jw

~ () v, v, v, v, vl - (vl v 2 v Tw
= [fo), Vgl)} w— VE;L]w + [V&z), Vz(,2>] w+ VSL] quEj?v]w - Vfi)v]w

#7299 = Ve s B0, v e
=
= Ry (4, 0)w + Ry (1,0)w + Ry (u,0)w

+2vi w+ Y (-1, v e,
’ i#i

O
Setting V = V(1) = V(2 = V) allows for a quick check.

Ry (u,0)w = 3RV (u,0)w + 2V, yyw — 2[Vy, Vo]w = 3Ry (4, v)w — 2Ry (u,0)w = Ry (1, v)w,

so the proposition is consistent.

Corollary 3. Let V) € C(A) be flat connections; then,
” N ;
Riga) gia) gy (1,0)0 =2V w+ Y (~1)I[VE, v ]w.
i#]
Specifically, the connection [V(l), v@), V(3)] need not be flat.
The above corollary tells us that, in general, the heap structure on connections on a
Lie algebroid does not close on the subset of flat connections. This is not surprising, as the

curvature tensor is not first-order in the connection but second-order. Thus, we do not have
the analogue of the particularly nice result for torsion (see Proposition 4).

Example 12. Consider a manifold (M) equipped with three affine connections (V) € C(TM) =:
C(M)). Then, the Riemannian curvature can be written with respect to a coordinate basis as

3 . 3 .. . . . . . .
(12/3)1290”]/ =Y (I)RF’UW + Y (-1)¥ (ay(l)rgg — av(])rfw + (I)FIF;A(J)E% _ (J)rﬁ/\(l)ril\a) ,
i=1 i j=1i#]

where T represents the Christoffel symbols of the affine connections. The second term is interpreted
as a mixed curvature built from all three connections.

2.4. Lie Derivatives of Connections

The Lie derivative of a linear connection on a Lie algebroid is defined as
(LyV)(0,w) = Ly(Vow) — V0w — (—1)® V,L,w,

where L,v := [u, U}. Note that the Lie derivative of a connection is, itself, not a connection
but a tensor. The linear property of the ternary product means that the following is evident.

Proposition 6. Let V), V2 and V) € C(A) be linear connections on a Lie algebroid
(A,p,[—,—]). Then,

(L,[VD,v®, VO (v,w) = (L,VV)(v,w) — (L,V?) (v, w) + (L, V) (v, w)

forall u,vand w € Sec(A).
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Remark 5. The above proposition shows that the Lie derivative with respect to a given section can
be considered as a heap homomorphism from the heap of connections to the heap of vector-valued
two forms.

2.5. The Dual Connection

Given a linear connection (V € C(A)) on a Lie algebroid, the dual connection is
defined as -
Vo= (=1)" Vyu + [u,v].

The reader can quickly check that this defines another linear connection on A.
Example 13. Consider a Lie superalgebra (g), in particular g™ — x, as a Lie algebroid, with
the anchor being the zero map and the Lie bracket as the bracket. Then, Vv := [u,v] defines a

linear connection.

Proposition 7. The dual map ~: C(A) — C(A) is a heap homomorphism, i.e.,

v, v, ve]=[vh, ve ve,

Proof. Let u,v € SecA be arbitrary (but homogeneous) sections of a Lie algebroid; then,

1)”75Vz(,1)u—(—1) Vg,z)u—i—( 1) V§,3)u+[u,v]

v, v@,ve)] o= (-
= ((— 1)'“’ 7, u+[u v]) — ((—1)“”V§)u+[u,v])
(

O

2.6. The Endomorphism Truss of Connections

Definition 5. Let (A, p) be an anchored vector bundle. Then, an anchored vector bundle
endomorphism is a vector bundle map (over the identity) (¢ : A — A) that preserves the anchor,
ie.,, 0 = po¢. Furthermore, if (A,p,[—, —]) is a Lie algebroid, then an anchored vector bundle
endomorphism is a Lie algebroid endomorphism if ¢[u, v] = [¢p(u), ¢(v)] for all u,v € Sec(A).

Example 14. Consider the tangent bundle of a supermanifold (TM) equipped with an idempotent
endomorphism, i.e., a vector bundle map over the identity ¢ : TM — TM such that po ¢ = ¢.
Then, we consider TMy := (TM, ¢) as an anchored vector bundle. Due to the idempotent condition,
¢ is also an endomorphism of TM.

For this subsection, we need only discuss anchored vector bundles; there is no real
change at all when extending to Lie algebroids. In particular, the Lie bracket plays no role
in the following.

Definition 6. Let (A, p) be an anchored vector bundle. An endomorphism of the set of connec-
tions (® = (¢, w) : C(A) — C(A)) consists of the following two parts:

1. Ananchored vector bundle endomorphism (¢ : A — A);

2. Aneven (1,2) tensor, thought of as a C*°(M)-linear map (w : Sec(A) x Sec(A) — Sec(A))

and is defined as
(PV)uv 1= V(v + w(u,v)

for arbitrary u,v € Sec(A). Composition is defined in the obvious way, i.e., if & = (¢, w) and
D = (¢, '), then ® o @ := (p o ¢, w + w'). The identity endomorphism is 1 = (1,0), where
0 is the zero map on sections, i.e., the map sends any pair of sections to the zero section. We denote
the monoid of endomorphisms of connections as End(C(A)).
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For completeness, we explicitly check that @V is, indeed, a connection on (4, p).
Firstly, ®V is (Grassmann) even, i.e.,

Secondly,
(DV) 0 = Vo +w(fu,0) = Vv + fw(u,v) = f(Vyuv +w(u,0)).

Thirdly,

(®V)ufo = Vg fo+ w(it, f0) = ppu () 0+ (—1)7 £ (Vg0 + w(u,0))
=pu(f)o+ (-7 f (Voo +w(u,0)).

Thus, compared with Definition 2, we see that ®V is a linear connection. Moreover, quick
calculations show we do, indeed, have a heap morphism, i.e.,

o[V, v v, = V((;()u)v +w(u,v) — V;z()u)v —w(u,v)+ V((;E)u)v + w(u,v)

= oV, ev®, ov®)],0.

Remark 6. We can also consider automorphisms by insisting that ¢ : A — A is invertible.
Then, @1 := (¢!, —w). Also note that the gauge group (Gau(A)) is the group of vertical
automorphisms of the vector bundle; there is no compatibility condition with the anchor or brackets.
The action is defined a (y¥V),0 := P(V,p~1(v)), where € Gau(A).

Proposition 8. Let (A, p) be an anchored vector bundle. Then, the End(C(A)) set is a truss.

Proof. This follows from general facts about endomorphisms of abelian heaps (see Section 3.7
in [9]). We explicitly construct [®(1), ®(2), ®)] via its evaluation. Specifically,

(0,0, 00)V) v:=[@VV,e?V,e0V],0
= V¢(1)MU — V4><2>uv + V¢<3)uv
+ W (u,0) — w® (u,0) + 0® (u,0).

Thus, we have the structure of an abelian heap on the End(C(A)) set. The binary
product is given as

(Po®'V) v:= Vyp,v+w(u,v) + ' (u,0).

Defining ® o [®(1), &), ®O)] := [® 0 d(1),® 0 @), ® 0 ®(3)], we have the left dis-
tributivity property. Explicitly,
(@@, 0@, 0¥]V) v:= @0V, 00V, 000 V],0
= V¥ = V@0 + V)0
+ (@ (1,0) + w(u,0)) — (0 (u,0) + w(u,0))
+ (0O (1,0) + w(u,0)).

The right distributivity property follows similarly. [
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For completeness, given a Lie algebroid, the torsion transform is expressed as

Tov (1,0) = Ty (§(u),0) + Ty (1, ¢(0)) = Vugp(0) + (=1) Vogp(u)
+[9(u), 0] + [u,¢(0)] = [,9] + w(u,0) = (-1 w(v,u),

and the curvature transforms as

Rov (1, 0)w = Ry (¢ (1), $(0))w + Vg @(0,w) = (=1) w (0, V p(,y0)
— (—1)E5V¢(v)w(u,w) + w(u, V(P(U)w)
+ w(u,w(v,w) = (=1)7 w(v,w(u,w)) — w([u,v],w).

Note that if w = 0, i.e., we are only considering bundle endomorphisms (over the
identity), then Rev (1, v)w = Ry (¢(u), p(v))w.

Example 15. Consider the tangent bundle (TM) of a supermanifold. As a Lie algebroid, the anchor
is the trivial map, and the Lie bracket is the standard Lie bracket of vector fields. We denote the set of
affine connections as C(M). We fix ¢ : TM — TM to be the identity map. Then, any even (1,2)
tensor defines a “restricted” endomorphism of C(M) or a “general shift” via

VxY — VxY + w(X, Y) .
The truss structure is defined as

the binary product being the addition of tensors, i.e., w o w' = w + w'. The distributivity of the
binary product over the ternary product is evident, i.e.,

wolwW,w?,w¥] = (0 +w) - (0? + w) + (W® +w),
and similarly for the right distributivity. The torsion transforms as
Tow(X,Y) = Tg(X,Y) + w(X,Y) = (-1)X w(¥, X).

The Riemannian curvature transforms as

Rov(X,Y)Z = Ry(X,Y)Z + Vxw(Y,Z) — (-1)XY w(Y, VxZ)
— (~DX Vyw (X, Z) + w(X, VyZ) + w(X,w(Y,Z))
— (D)X w(Y,w(X,2)) - w([X,Y],Z).

Remark 7. General shifts in affine connections (see Example 15) are well-known in the literature
and are studied in the context of metric-affine gravity (MAG) (see, for example, [24] and references
therein). The new aspect here is the realisation that there is a truss behind these shifts.

3. Concluding Remarks

In this note, we have presented the heap structure on a set of linear connections on a
Lie algebroid. Some preliminary consequences, such as the torsion and curvature of a triple
product of connections, have been presented. A key result here is the explicit construction
of the endomorphism truss of linear connections.

We remark that the results of this note extend verbatim to the algebraic setting of
(left) connections on anchored modules and Lie-Rinehart pairs over associative supercom-
mutative, unital superalgebras. Indeed, we have avoided using local descriptions in any
calculations. With a little effort, we expect the results presented here to generalise to the
setting of almost commutative Lie algebroids (see [25]).
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