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Abstract

A noncommutative geometry is studied in the quasi-classical, linear field approxi-
mation. Integrability conditions for the associative structure of the algebra, which
we refer to as the Jacobi equations, force restrictions on the metric which can be
expressed as an effective additional source term for the Einstein tensor. All calcula-
tions are carried out in the ‘quasi-classical approximation’, by which we mean that
the noncommutativity is considered as a first-order perturbation of the limiting
classical configuration.

1. Introduction and motivation

Consider a smooth manifold M with a moving frame θ̃α. Let A be a non-
commutative deformation of the algebra C(M) of smooth functions on M
defined by a symplectic structure J and let θα be a noncommutative defor-
mation of the moving frame. The connection is assumed to satisfy both a
left and right Leibniz rule, a condition intimately connected with the exis-
tence of a reality condition, and the metric to be a bilinear map, a condition
connected with locality. The classical limit of the geometry is thus naturally
equipped with a linear connection and a metric as well as with a Poisson
structure. Under the assumptions which we shall impose the Poisson struc-
ture is non-degenerate. We shall be more precise about these extensions
below. We wish to show that in the weak-field, quasi-classical approxima-
tion they imply that the metric defined by the frame cannot be arbitrary
and that the Ricci tensor is fixed by Jacobi identities.
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As a measure of noncommutativity, and to recall the many parallelisms with
quantum mechanics, we use the symbol k̄, which will designate the square of
a real number whose value could lie somewhere between the Planck length
and the proton radius m−1

P . This becomes important when we consider
perturbations. We introduce a set Jμν of elements of an associative algebra
A defined by commutation relations

[xμ, xν ] = ik̄Jμν(xσ). (1..1)

The Jμν are of course restricted by Jacobi identities; we see below that there
are two other natural requirements which also restrict them.
Let μ be a typical ‘large’ source mass with ‘Schwarzschild radius’ GNμ. We
have two length scales, determined by respectively the square GN� of the
Planck length and by k̄. The gravitational field is weak if the dimensionless
parameter εGF = GN�μ2 is small; the space-time is almost commutative if
the dimensionless parameter ε = k̄μ2 is small. These two parameters are
not necessarily related but we shall here assume that they are of the same
order of magnitude.

εGF � ε. (1..2)

If noncommutativity is not directly related to gravity then it makes sense to
speak of ordinary gravity as the limit k̄ → 0 with GNμ non vanishing. On
the other hand if noncommutativity and gravity are directly related then
both should vanish with k̄. We wish here to consider an expansion in the
parameter ε, which we have seen is a measure of the relative dimension
of a typical ‘space-time cell’ compared with the Planck length of a typical
quantity of gravitational energy.
We suppose the calculus to be defined by a special set of 1-forms, a frame,
which commute with the elements of the algebra and we assume that the
derivations dual to the forms are inner. The momenta pα stand in duality
to the position operators xμ by the relation

[pα, xμ] = eμ
α. (1..3)

The right-hand side of this identity defines the gravitational field. The
left-hand side must obey Jacobi identities. These identities yield relations
between quantum mechanics in the given curved space-time and the non-
commutative structure of the algebra. The three aspects of reality then,
the curvature of space-time, quantum mechanics and the noncommutative
structure of space-time are intimately connected. We shall consider here
the even more exotic possibility that the field equations of general relativity
are encoded also in the structure of the algebra so that the relation between
general relativity and quantum mechanics can be understood by the relation
which each of these theories has with noncommutative geometry.
In spite of the rather lengthy formalism the basic idea is simple. We start
with a classical geometry described by a moving frame θ̃α and we quantize it
by replacing the moving frame by a frame θα, as we shall described in some
detail below. The easiest cases would include those frames which could be
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quantized without ordering problems. Let ẽα be the vector fields dual to
the frame θ̃α and quantize them as in (1..3) by imposing the rule

ẽα �→ eα = ad pα (1..4)

Finally, one must construct a noncommutative algebra consistent with the
resulting differential calculus; this defines the image of the map

θ̃α −→ Jμν (1..5)

More details of this map will be given in Section 2.3.. The algebra we
identify with ‘position space’. To it we add the extra elements which are
necessary in order that the derivations be inner; this is ordinary quantum
mechanics. The new element is that the consistency relations in the algebra
such as Jacobi identities

[pα, Jμν ] = [x[μ, [pα, xν]]]. (1..6)

largely restrict θα and Jμν .
If the space is flat and the frame is the canonical flat frame then the right-
hand side of (1..6) vanishes and it is possible to consistently choose the
expression Jμν to be equal to a constant. But on the other hand, if the
space is curved the right-hand side does not vanish identically except, of
course, in the trivial case Jμν = 0. The map (1..5) is not single valued
since any constant J has flat space as inverse image. Our motivation for
considering noncommutative geometry as an ‘avatar’ of gravity is the belief
that it sheds light on the role [1] of the gravitational field as the universal
regulator of ultra-violet divergences.
We resume the various possibilities, starting with a classical metric g̃μν .
The most important flow of information is from the classical metric g̃μν to
the commutator Jμν . The first step is to associate to the metric a mov-
ing frame θ̃α, which can be written in the form θ̃α = θ̃α

μdxμ. The frame
is then ‘quantized’ according to the ordinary rules of quantum mechanics;
the dual derivations ẽα are replaced by inner derivations eα = ad pα of a
noncommutative algebra. The commutation relations are defined by the J ,
obtained from the θ by solving a differential equation. The calculus is de-
fined by the frame. The basic idea of the present article was anticipated in
a more specialized treatment [2] of asymptotically-flat space-times as well
as in a string-theoretical reduction [3, 4] of noncommutative geometry to a
supplementary 2-form.
The problem we wish to aboard here is that of the existence and definition
of an energy-momentum for the Poisson structure and of an eventual con-
tribution of this energy-momentum to the gravitational field equations. In
the formulation which we are here considering the Ricci tensor and therefore
the Einstein tensor as well are determined as integrability conditions for the
underlying associative-algebra structure. The value in vacuo of the com-
mutative limit of this tensor we interpret as the energy-momentum of the
symplectic structure. In the frame formalism the field equations are most
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elegantly (and, once one is familiar with it, easily) written as the vanishing
of a 3-form. This follows from the identity

Gαβ ∗ θβ = −1
2

Ωβγ ∗ θαβγ (1..7)

We write accordingly the energy-momentum of the gravitational field in
terms of a vector-valued 3-form τS which has the property [5] that it is
exact if and only if the Einstein field equations are satisfied. If this be so
one sees that the total energy-momentum is given as the integral over the
sphere at infinity of the Sparling 2-form

σα = −1
2
∗ ωαβθβ. (1..8)

Since in the noncommutative case there is a preferred frame, the one canon-
ically aligned with respect to the eigenvectors of the conformal tensor, one
can claim that the 2-form itself and not only the integral thereof is well-
defined. Our assumption is that there is another 3-form

τPS = τPS(J) (1..9)

which vanishes in the commutative limit and which is such that the sum

τ = τS + τPS (1..10)

is an exact 3-form. We cannot give an explicit formula for τPS in general.
We can only express it in certain simple limiting case.

1.1. Differential calculi
Let then A be a noncommutative ∗-algebra generated by four hermitian
elements xμ which satisfy the commutation relations (1..1). Assume that
over A is a differential calculus which is such [6] that the module of 1-forms
is free and possesses a preferred frame θα which commutes,

[xμ, θα] = 0, (1..11)

with the algebra. The space one obtains in the commutative limit is therefore
parallelizable with a global moving frame θ̃α defined to be the commutative
limit of θα. We can write the differential

dxμ = eμ
αθα, eμ

α = eαxμ. (1..12)

The algebra is defined by a product which is restricted by the matrix of
elements Jμν ; the metric is defined, we shall see below, by the matrix of
elements eμ

α. The differential calculus is defined as the largest one consistent
with the module structure of the 1-forms so constructed.
Consistency requirements, essentially determined by Leibniz rules, impose
relations between these two matrices which in simple situations allow us to
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find a one-to-one correspondence between the structure of the algebra and
the metric. The input of which we shall make the most use is the Leibniz
rule

ik̄eαJμν = [eμ
α, xν ] − [eν

α, xμ]. (1..13)

One can see here a differential equation for Jμν in terms of eμ
α. In important

special cases the equation reduces to a simple differential equation of one
variable. The relation (1..13) can be written also as Jacobi identities

[pα, [xμ, xν ]] + [xν , [pα, xμ]] + [xμ, [xν , pα]] = 0 (1..14)

if one introduce the momenta pα associated to the derivation by the rela-
tion (1..3).
Finally, we must insure that the differential is well defined. A necessary
condition is that d[xμ, θα] = 0 from which it follows that the momenta pα
must satisfy the consistency condition

2pγpδP
γδ

αβ − pγF γ
αβ − Kαβ = 0. (1..15)

The P γδ
αβ define the product π in the algebra of forms. We write P αβ

γδ in the
form

P αβ
γδ =

1
2

δ[α
γ δ

β]
δ + iεQαβ

γδ (1..16)

of a standard projector plus a perturbation. If further we decompose [7]
Qαβ

γδ as the sum of two terms

Qαβ
γδ = Qαβ

− γδ + Qαβ
+ γδ (1..17)

symmetric (antisymmetric) and antisymmetric (symmetric) with respect to
the upper (lower) indices then the condition that P αβ

γδ be a projector is
satisfied to first order in k̄ because of the property that

Qαβ
γδ = P αβ

ζη Q ζη
γδ + Qαβ

ζη P ζη
γδ . (1..18)

The compatibility condition with the product

(P αβ
ζη )∗P ηζ

γδ = P βα
γδ (1..19)

is satisfied provided Qαβ
γδ is real.

From (1..11) it follows that

d[xμ, θα] = [dxμ, θα] + [xμ, dθα] = eμ
β [θβ, θα] − 1

2
[xμ, Cα

βγ ]θβθγ. (1..20)
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We have here introduced the Ricci rotation coefficients Cα
βγ . We find then

that multiplication of 1-forms must satisfy

[θα, θβ] =
1
2

θβ
μ[xμ, Cα

γδ]θγθδ. (1..21)

Consistency requires then that

θ[β
μ [xμ, Cα]

γδ] = 0. (1..22)

Because of the condition (1..11) consistency also requires that

θ(α
μ [xμ, Cβ)

γδ] = Qαβ
− γδ. (1..23)

We have in general four consistency relations which must be satisfied in order
to obtain a noncommutative extension. They are the Leibniz rule (1..13), the
Jacobi identity and the conditions (1..22) and (1..23) on the differential. The
first two constraints follow from Leibniz rules but they are not completely
independent of the differential calculus since one involves the momentum
operators. The condition (1..23) follows in general from the expression [8]

Cα
βγ = −4iεpδQ

αδ
− βγ (1..24)

for the rotation coefficients. It follows also from general considerations that
the rotation coefficients must satisfy the gauge condition

eαCα
βγ = 0. (1..25)

1.2. Metrics
The metric is a map

g : Ω1(A) ⊗ Ω1(A) → A. (1..26)

Using the frame it is defined by

g(θα ⊗ θβ) = gαβ , (1..27)

and bilinearity of the metric implies that gαβ are complex numbers. In the
present formalism [6] the metric is ‘real’ if it satisfies the condition

ḡβα = S αβ
γδ gγδ . (1..28)

‘Symmetry’ of the metric can be defined either using the projection

P αβ
γδ gγδ = 0, (1..29)

or the flip
S αβ

γδ gγδ = cgαβ . (1..30)
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We choose the frame to be orthonormal in the commutative limit; we can
write therefore

gαβ = ηαβ − iεhαβ . (1..31)

In the linear approximation, the condition of the reality of the metric be-
comes

hαβ + h̄αβ = T βα
γδ ηγδ . (1..32)

We introduce also

gμν = g(dxμ ⊗ dxν) = eμ
αeν

βgαβ . (1..33)

To analyze the relations between these matrices it is best to consider a small
perturbation of flat space. We set

gμν = gμν
0 − iεgμν

1 , eμ
α = δμ

α + iεΛμ
α, gαβ = ηαβ − iεhαβ . (1..34)

To first order then we have the relations

gμν
1 = hμν − gαβ

0 Λ(μ
α δ

ν)
β . (1..35)

We have included here the first term although it becomes important only
when the perturbation is around a non-flat background. We shall return to
this in Section 2.

1.3. Connections
To define a linear connection one needs a ‘flip’ [9, 10],

σ(θα ⊗ θβ) = S αβ
γδ θγ ⊗ θδ, (1..36)

which in the present notation is equivalent to a 4-index set of complex num-
bers S αβ

γδ which we can write as

S αβ
γδ = δβ

γ δα
δ + iεT αβ

γδ . (1..37)

The covariant derivative is given by

Dξ = σ(ξ ⊗ θ) − θ ⊗ ξ. (1..38)

In particular

Dθα = −ωα
γ ⊗ θγ = −(S αβ

γδ − δβ
γ δα

δ )pβθγ ⊗ θδ = −iεT αβ
γδ pβθγ ⊗ θδ, (1..39)

so the connection-form coefficients are linear in the momenta

ωα
γ = ωα

βγθβ = iεpδT
αδ

βγ θβ. (1..40)
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On the left-hand side of the last equation is a quantity ωα
γ which measures

the variation of the metric; on the right-hand side is the array T αδ
βγ which

is directly related to the anti-commutation rules for the 1-forms, and more
important the momenta pδ which define the frame. As k̄ → 0 the right-hand
side remains finite and

ωα
γ → ω̃α

γ . (1..41)

The identification is only valid in the weak-field approximation. The con-
nection is torsion-free if the components satisfy the constraint

ωα
ηδP

ηδ
βγ =

1
2
C α

βγ . (1..42)

The connection is metric if

ωα
βγgγδ + ωδ

γηS
αγ
βζ gζη = 0, (1..43)

or linearized,
T (αγ

δ
β) = 0. (1..44)

1.4. Geometry to algebra
The rotation coefficients are directly related to the commutators of the mo-
mentum generators. We have seen that the former are given by the expres-
sion (1..24) and the latter by (1..15), which we write in the form

[pα, pβ] = −4iεQγδ
− αβpγpδ − Kαβ . (1..45)

But the momentum generators are directly related to the position generators
by the duality relations. There is therefore a direct connection between the
rotation coefficients and the commutators Jμν . This relation can be derived
directly without explicitly referring to the momenta.
One can express the commutator of an arbitrary function f with xλ as a
derivative:

[xλ, f ] = ik̄Jλσ∂σf(1 + o(ε)). (1..46)

Then the Leibniz rule and the Jacobi identity can be written in leading order
as

eαJμν = ∂σe[μ
α Jσν] , (1..47)

εκλμνJ
γλeγJμν = 0. (1..48)

Written in terms of the frame components, these two constraint equations
become

eγJαβ − C [α
γδJ

β]δ = 0, (1..49)

εαβγδJ
αεeεJ

βγ = 0. (1..50)
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We have used here the definition of the rotation coefficients:

Cα
βγ = θα

μe[βeμ
γ] = −eν

βeμ
γ∂[νθ

α
μ]. (1..51)

This can be written also, not forgetting that εαβγδε
αεζη = −δεζη

βγδ, in terms
of the dual quantities

J∗
αβ =

1
2
εαβγδJ

γδ (1..52)

as
eαJ∗

βγ + Cδ
α[βJ∗

γ]δ + Cδ
αδJ

∗
βγ = 0. (1..53)

Similarly, from (1..48)

εαβγδJ
γη(eηJ

αβ + JαζCβ
ηζ) = 0. (1..54)

Inserting (1..50) into (1..54) one finds the relation

εαβγδJ
αζJβηCγ

ηζ = 0. (1..55)

This equation can be written also in terms of the J∗
αβ as

Cα
[αγJ∗

β]δJ
δγ = 0. (1..56)

Or, using (1..50) it can be written

εαβγδJ
αζeζJ

βγ = 0. (1..57)

One can solve (1..50) for the rotation coefficients. One obtains

JγηeηJ
αβ = JαηJβζCγ

ηζ (1..58)

or, provided J−1 exists, as

Cα
βγ = JαηeηJ

−1
βγ . (1..59)

This can be rewritten as

Cα
βγ = JαδeδJ

ζηJ−1
ζβ J−1

ηγ (1..60)

and also, using (1..50) as

Cα
βγ = Jαδ(Cζ

εδJ
εη − Cη

εδJ
εζ)J−1

ζβ J−1
ηγ . (1..61)

Anticipating a notation from Section 2. we introduce

Ĉαβγ = J−1
αδ Cδ

βγ . (1..62)
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We find then that
Ĉαβγ = eαJ−1

βγ (1..63)

and that
Ĉαβγ + Ĉβγα + Ĉγαβ = 0, (1..64)

an equation which we can write as a de Rham cocyle condition

dJ−1 = 0. (1..65)

It follows that in the quasi-classical approximation, the linear connection
and the curvature can be directly expressed in terms of the commutation re-
lations. In particular if the latter are constants then the curvature vanishes.
Similar to Equation (1..49) one can derive the identity

eαJ−1
βγ = J−1

αδ Cδ
βγ (1..66)

for the derivative of the inverse if it exists. The two are consistent because of
the cocycle condition (1..65). If we consider J−1 as a Maxwell field strength
then there is a source given by

eαJ−1
αβ = Ĉα

αβ = J−1αγCαβγ . (1..67)

It follows also from the condition (1..25) that the commutator must neces-
sarily satisfy the constraint

eα

(
JαηeηJ

−1
βγ

)
= 0. (1..68)

This can also be written as

(eαJαζ + JαηCζ
αη) eζJ

−1
βγ = 0. (1..69)

We have assumed that the noncommutativity is small and we have derived
some relations to first-order in the parameter ε. We shall now make an
analogous assumption concerning the gravitational field; we shall assume
that εGF is also small and that we consider only the equations to first-order
in it as well. With these two assumptions the equations become relatively
easy to solve.
If we equate the Expression (1..59) for the rotation coefficients with that (1..51)
in terms of the components of the frame we find after a few simple applica-
tions of the Leibniz rule that

(dJ−1)αβγ = eμ
[βeγ]J

−1
αμ. (1..70)

The cocyle condition (1..65) is equivalent to the condition

eμ
[βeγ]J

−1
αμ. = 0. (1..71)
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An interesting particular solution is given by constants:

J−1
αμ. = J−1

0αμ.. (1..72)

It follows then that

Jμν = Jμα
0 eν

α, J
(μα
0 eν)

α = 0. (1..73)

One verifies that
Cα

αγ = JαηeηJ
−1
αγ = eηJ

αηJ−1
αγ (1..74)

and so the left-hand side vanishes if and only if

eβJαβ = 0. (1..75)

It follows also that

DβJαβ = eβJαβ + ω[α
βγJγβ] (1..76)

= Cβ
βγJγα + ω[α

βγJγβ] (1..77)

= ωβ
[βγ]J

γα + ω[α
βγJγβ] (1..78)

= −1
2
Cα

βγJβγ . (1..79)

Equation (1..50) can be written also using the covariant derivative as

DγJαβ = C [α
γδJ

β]δ + ω[α
γδJ

δβ] (1..80)

= ω[β
δγJα]δ. (1..81)

These last formulae are difficult to interpret; they might become clearer in
association with torsion.

2. The quasi-classical, weak-field approximation

In the weak-field approximation a frame can be written in the form

θα = (δα
μ − iεΛα

μ)dxμ. (2..1)

We do not assume here that Λαμ is symmetric in order to include the possi-
bility of a frame rotation. We now must assure that the four constraints of
Section 1. are satisfied; we must express these constraints in the appropriate
approximation. We suppose that as eλ

α → δλ
α we have also

Jμν → Jμν
0 . (2..2)
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Were we to choose eλ
0α to be a flat frame then the assumption would mean

that Jμν
0 ‘spontaneously’ breaks Lorentz invariance. Since Lorentz invari-

ance is broken for every non-flat frame by definition, it would be a stronger
assumption to suppose that Jμν

0 = 0. A particular classical solution might
have Killing vectors. We must assure that the additional symplectic struc-
ture respects them. Be this not the case, then we must look for a noncom-
mutative extension in a more general class of classical metrics. The constant
background Jμν

0 is, except in the case we are here considering, a very poor
starting point for perturbation.
We shall now consider fluctuations around a particular given solution to
the problem we have set. We suppose that is we have a reference solution
comprising a frame eλ

0α = δλ
α and a commutation relation Jμν

0 which we
perturb to

Jαβ = Jαβ
0 + iεIαβ , eμ

α = δμ
β (δβ

α + iεΛβ
α). (2..3)

The term Jαβ
0 is not necessarily constant but we suppose that it is slowly

varying with respect to the second. We consider the first term as being
determined by the asymptotic conditions of the problem, the global, distant
boundary conditions. The second term will be in general smaller than the
first but we shall assume that its derivatives are on the average larger.

2.1. The constraints
The two constraint equations (1..49) and (1..50) become

εαβγδJ
αε
0 eεI

βγ = 0, (2..4)

eγIαβ − e[γΛ[α
δ] J

β]δ
0 = 0. (2..5)

In terms of the unknowns

Îαβ = J−1
0 αγJ−1

0 βδI
γδ , Λ̂αβ = J−1

0 αγΛγ
β (2..6)

they can be written

εαβγδeγ Îαβ = 0, (2..7)

eγ(Îαβ − Λ̂[αβ]) = e[αΛ̂β]γ . (2..8)

The first constraint is a (well-known) cocycle condition, the statement that
the symplectic 2-form is closed. The second is the origin of the particularities
of our construction, it and the fact that the ‘ground-state’ value of Jμν is
an invertible matrix.
We decompose also Λ̂ as the sum

Λ̂αβ = Λ̂+
αβ + Λ̂−

αβ (2..9)
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of a symmetric and antisymmetric term. The second constraint can be
written then

eγ Îαβ − (eαΛ̂−
βγ + eβΛ̂−

γα + eγΛ̂−
αβ) = eγΛ̂−

αβ + e[αΛ̂+
β]γ . (2..10)

It implies a second cocyle condition. If we multiply by εαβγδ we find that

εαβγδeγΛ̂−
αβ = 0. (2..11)

We can rewrite now Equation (2..10) as

eγ(Îαβ − Λ̂−
αβ) = e[αΛ̂+

β]γ . (2..12)

This equation has the integrability conditions

eδe[αΛ̂+
β]γ − eγe[αΛ̂+

β]δ = 0. (2..13)

But the left-hand side is the linearized approximation to the curvature of
a (ficticious) metric with components gμν + iεΛ̂+

μν . If it vanishes then the
perturbation is a derivative. (We have in fact shown here that a deformation
of a commutator can be always chosen antisymmetric to first order). For
some 1-form A

Λ̂+
βγ =

1
2
e(βAγ). (2..14)

Equation (2..12) becomes therefore

eα(Î − Λ̂− − dA)βγ = 0. (2..15)

It follows then that for some 2-form c with constant components cβγ

Λ̂− = Î − dA + c, Λ̂αβ = Îαβ + eβAα + cαβ . (2..16)

The remaining constraints are satisfied identically. The most important rela-
tion is Equation (2..16) which, in terms of the original ‘unhatted’ quantities,
becomes

Λα
β = J−1

0 βγIαγ + Jαγ
0 (cγβ + eβAγ). (2..17)

This equation defines a map which to a given perturbation of the commu-
tation relations associates a perturbation of the canonically flat Minkowski
frame. We are interested here in the image of this map.
We can also introduce

Î =
1
2
Îαβθαθβ, Λ̂− =

1
2
Λ̂−

αβθαθβ (2..18)

and write
dÎ = 0, dΛ̂− = 0. (2..19)

The first equation is a particular case of Equation (1..65).
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2.2. The metric
We recall that a perturbation of a frame

eμ
α = eμ

0β + iεΛμ
α (2..20)

engenders a perturbation

gμν = gμν
0 − iεg1

μν , g1
μν = −gαβ

0 e
(μ
0αΛν)

β (2..21)

of the metric. The frame components of the perturbation are

g1αβ = −J−1
0(αγIβ)

γ − J0(α
γeβ)Aγ . (2..22)

Since
Jαγ

0 Îγβ = J−1
0βγIαγ (2..23)

one can write (2..22) also as

g1
αβ = −J

(αγ
0 (Îγ

β) + eβ)Aγ). (2..24)

2.3. The algebra to geometry map
We can now be more precise about the map (1..5). Let θα be a frame which
is a small perturbation of a flat frame and let Jαβ be the frame components
of a small perturbation of a constant ‘background’ J0. Us interests the
map (2..17)

Iαβ −→ Λα
β . (2..25)

We recall that we are considering only first-order fluctuations around a given
frame and that these fluctuations are redundently parameterized by the
array Λα

β . We can rewrite the map (1..5) as a map

Λα
β −→ Iαβ . (2..26)

It can be defined as an inverse of the map defined in Equation (2..25).
We are interested also in the inverse map. That is, given an arbitrary metric
with linearization about the Minkowski metric defined by a matrix Λα

β we
wish to know whether or not we can find a consistent perturbation Iμν of
the commutation relation. We must solve then Equation (2..17) for Iμν in
terms of Λα

β . That is, we write

Iαβ = Jβγ
0 Λα

γ − Jβγ
0 Jαδ

0 eγAδ (2..27)

dropping the unimportant constant cγδ. The condition (2..14) assures us
that the right-hand side is antisymmetric.
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In principle, because we use the frame formalism covariance is assured at
least to the semi-classical approximation. (We are not sure exactly what
this would mean in general.) However since we base our construction on
the commutator of two generators (coordinates) it is of interest to show this
explicitly. We consider therefore a first order transformation of the form

x′μ = xμ + iεBμ (2..28)

and we introduce the notation Jμν = Jμν
0 + iεJμν

1 . The transformation of
the commutator is given by

J ′μν
1 = Jμν

1 + J
[μσ
0 ∂σBν] . (2..29)

The basic equations (1..47) and (1..48) are to first order written as

eαJμν
1 = ∂σe[μ

α J
σν]
0 (2..30)

εκλμνJ
γλ
0 eγJμν

1 = 0. (2..31)

in the old coordinate system and as

eαJ ′μν
1 = ∂σe[′μ

α J
σν]
0 (2..32)

εκλμνJ
γλ
0 eγJ ′μν

1 = 0. (2..33)

in the new. We must show that the two are equivalent. We recall the
definitions

[pα, xμ] = eμ
α = δμ

α + iεΛμ
α, (2..34)

[pα, x′μ] = e′μα = δμ
α + iεΛ′μ

α = δμ
α + iε(Λμ

α + eαBμ)

= [pα, xμ] + iεeαBμ. (2..35)

The basic equations in the new coordinates become then

eαJ ′μν
1 = ∂σe′[μα J

σν]
0 (2..36)

εκλμνJ
γλ
0 eγJμν

1 = 0. (2..37)

But we shall not use these equations but rather work exclusively using frame
components. The system written in frame components

eγIαβ − C
[α
1 γδJ

β]δ
0 = 0, (2..38)

εαβγδJ
αε
0 eεI

βγ = 0 (2..39)
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remains untouched by the coordinate transformation. We must verify how-
ever that the components are well defined. We have respectively in the two
coordinate systems

Jαβ = Jμνθα
μθβ

ν = Jαβ
0 + iε(Jαβ

1 − Λ[α
μ J

μβ]
0 ), (2..40)

J ′αβ = J ′μνθ′αμ θ′βν = Jαβ
0 + iε(J ′αβ

1 − Λ[′α
μ J

μβ]
0 ). (2..41)

To show that the two right-hand sides are equal we calculate

δJαβ = J ′αβ − Jαβ

= J ′μνθ′αμ θ′βν − Jμνθα
μθβ

ν

= iε(J ′αβ
1 − Jαβ

1 − (Λ[′α
μ − Λ[α

μ )Jμβ]
0 )

= 0. (2..42)

The frame components of the perturbation and the perturbation of the frame
components are related in a simple way. From (2..40) we have

Jαβ
1 = Iαβ + J

[αγ
0 Λβ]

γ . (2..43)

Introducing the solution (2..27) into the last equation we obtain

Jαβ
1 = −Iαβ + Jαγ

0 Jβδ
0 e[γAδ]. (2..44)

From the last equation we can see that under coordinate transformation

δAα = J−1
0 αβBβ. (2..45)

We see than that for any perturbation of Minkowski space there is a com-
patible noncommutative algebra, defined by the solution to Equation (2..27)
and differential calculus, defined by the frame which characterizes the per-
turbation, such that the resulting noncommutative geometry has the given
geometry as limit. In fact we have reduced the problem to finding the so-
lution of a Maxwell-Einstein problem with the components of the metric
perturbation simple linear combinations of a monopole field strength.

2.4. The curvature

To the lowest order in noncommutativity one obtains the standard expres-
sion for the frame components of the linearized Riemann tensor in terms of
g1αβ. That is,

Rαβγδ = 1
2 iε

(
eαe[γg1δ]β − eβe[γg1δ]α

)
. (2..46)
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The right-hand side can be expressed in terms of the perturbation of the
symplectic structure. Using the expression (2..24) for the perturbation of
the metric we find that

Rαβγδ = −1
2

iε
(
J−1ζ

0 [γeδ]e[αIβ]ζ + J−1ζ
0 [αeβ]e[γIδ]ζ

)
. (2..47)

We see that as expected, the curvature does not depend on Aα.
With use of the cocycle condition the equation can be written as a divergence

Rαβγδ = −1
2

iεeζ

(
J0ζ[γeδ]Îαβ + J0ζ[αeβ]Iγδ

)
. (2..48)

For the linearized Ricci curvature one finds the expression

Rβγ =
1
2

iεeζ
(
J0ζ(βeαÎγ)α + Jαζ

0 e(β Îγ)α

)
. (2..49)

One more contraction yields the expression

R = 2iεJ0
ζαeζe

β Îαβ (2..50)

for the Ricci scalar. Using again the cocycle condition permits us to write
this in the form

R = iεJζα
0 eγeγ Îαζ . (2..51)

We see than that for any perturbation of Minkowski space there is a com-
patible noncommutative algebra, defined by the solution to Equation (2..27)
and differential calculus, defined by the frame which characterizes the per-
turbation, such that the resulting noncommutative geometry has the given
geometry as limit.

3. Ground-state examples

To further illustrate the formalism we shall discuss the two most important
types of broken symmetry and give an example for each. We shall also give
two examples of q-deformed symmetries. None of these examples can be
completely solved; they illustrate some of the of the difficulties involved in
finding a solution. By the expression ‘ground state’ we mean a convenient
solution about which we can apply the perturbation procedure and anal-
yse the structure of the solutions in a neighborhood. In the examples this
coincides with what one would normally call a ground state.

3.1. Plane symmetric ground state
The simplest anisotropic homogeneous solution to Einstein equations is the
Kasner metric:

ds2 = −dt2 + t2q1(dx1)2 + t2q2(dx2)2 + t2q3(dx3)2. (3..52)
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The vacuum equations with vanishing cosmological constant impose the con-
straints on the parameters qi

q1 + q2 + q3 = 1, q2
1 + q2

2 + q2
3 = 1. (3..53)

The metric (3..52) is a member of a 1-parameter family of solutions. A
partial noncommutative extension of the Kasner space expressed in terms
of the momentum generators has been found [11]. We shall give a complete
noncommutative version of it for the parameter values qi = (0, 0, 1) at which
it is flat. This solution can be used as a background around which a family
of perturbative solutions can be found using the same technique as in the
previous section.
The moving frame is given by

θ0 = dt, θi = (tQ)ijdxj , (3..54)

where Q is a symmetric 3×3 matrix. It can be simply written also in the
coordinates yi = (tQ)ijx

j as

θ0 = dt, θi = dyi − Qi
jt

−1yjdt, (3..55)

The Ricci rotation coefficients for the Kasner frame are given by the non-
vanishing value

Ca
b0 = Qa

b t
−1, (3..56)

and the nonvanishing components of the Ricci curvature tensor are

R0
0 = −Tr (Q − Q2) t−2, Ra

b = −(1 − Tr Q)Qa
b t−2. (3..57)

We impose the commutation relations

[x, y] = ik̄J12, [t, z] = ik̄J(τ), (3..58)

with τ = τ(t). The Jacobi identities are satisfied if

J12 = c (3..59)

with c a constant which we shall set equal to one. The algebra is the tensor
product

A = A1 ⊗A2. (3..60)

of a factor generated by (x, y) and a factor generated by (t, z). The tensor
product structure, we shall see, is respected by the differential calculus; the
classical limit is just the metric product of two manifolds. The algebra just
defined is too restrictive to describe a general element of the Kasner family.
It can be explicitly and easily solved however and it is a convenient ground
state.
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From the definitions follow the commutation relations

[p0, τ ] = 1, [pb, x
a] = (τQ)ab . (3..61)

If the momenta are expressed in terms of the position generators the Leibniz
rules are satisfied automatically.

The first factor is generated by the elements (x, y). We set

ik̄p1 = −y, ik̄p2 = x. (3..62)

Then we have
θ1 = dx, θ2 = dy. (3..63)

and we have completely described the geometry of the first factor.
For the second factor we suppose p3 = p3(τ) so that

[p3, z] = τ̇ p′3J
03, f ′ = ∂τf. (3..64)

and
[p3, τ ] = 0, [p3, x] = 0, [p3, y] = 0. (3..65)

We have further
θ3(e3) = τ−q3[p3, z] = 1 (3..66)

from which we conclude that [p3, z] = τ q3. We write this as a differential
equation

τ̇ p′3J
03 = τ q3 (3..67)

for p3(τ). By construction

[p3, t] = 0, [p3, x] = 0, [p3, y] = 0. (3..68)

We define

ik̄p0 = z, ik̄p3(τ) =
∫ t(τ)

0
(J03)−1τ q3dt. (3..69)

The frame is given by

θ0 = dt, θ3 = τ−q3dz. (3..70)

We have thus completely described the geometry of the second factor. There
are two free quantities, the functions J(t) and τ(t), as well as the eigenvalues
of the matrix Q. The solution is however a very particular one. One can
find more general solutions by adding a perturbation. From this point of
view the most interesting Kasner solution is highly nonperturbative.
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3.2. Spherically symmetric ground state

The noncommutative version of a spacelike compact surface, be it chosen in
a way which truly screens points, must have a finite-dimensional structure
algebra since the number of degrees of freedom must be finite. This is
certainly a difficult problem in general and it will be aborded in a subsequent
article [12] devoted to a noncommutative extension of the newtonian limit.
However when one imposes spherical symmetry the problem simplifies and
was indeed solved [13] several years ago. We recall that in the Wick-rotated
version both factors behave as spheres. We must construct a differential
calculus over the product which has the Schwarzschild metric as compatible
metric. Over each factor one can easily construct a differential calculus but
the product of these two would have as metric simply the product metric.
We wish the metric to be such that if restricted to the first factor it have a
well determined dependence on the radial generator from the second factor.
We saw in the first section that both the metric and the differential calculus
are defined by the frame.
A fuzzy (noncommutative) version of the 2-sphere can be constructed if one
allows the differential calculus to be that of the (parallelizable) circle bundle
S3 over it. Let w be the parameter which parametrizes the extra circle. We
have then five possible generators for the algebra, the two which describe
the 2-sphere, the circle variable and the time t and radial parameter r. With
the three generators (w, t, r) an obvious algebra can be constructed for each.
Since the w plays a secondary role one could omit it and quantize by making
t and r conjugate variables. Since r takes discrete values it would seem that
the logical variable to choose as conjugate would be w. The time would be
left as commutative variable. This is acceptable if the metric is static. One
can show however that to within terms of second order the radial parameter
is continuous.

3.3. A q-deformed ground state

The quantum euclidean planes were introduced by Faddeev et al. [14]. There
is a problem constructing real differential calculi over them which can only
be solved by dropping the condition of q-covariance. We shall briefly discuss
the two simplest cases, the quantum line and quantum euclidean space.

3.3.1. The q-deformed line

The algebra R
1
q, called the q-deformed line is generated by an hermitian x

and a unitary Λ which satisfy the commutation relation

xΛ = qλx . (3..71)

One can think of the unitary operator as a generator of finite translations.
One can represent R

1
q on a Hilbert space Rq with basis |k〉 by

x|k〉 = qk|k〉, Λ|k〉 = |k + 1〉. (3..72)
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This explains the origin of the expression ‘dilatator’. The spectrum of Λ is
continuous. We set x = qy. Then the element y has the representation

y|k〉 = k|k〉 (3..73)

on the basis elements. As operators on Rq one finds the representations

e1|k〉 = −z−1|k + 1〉 + z−1β|k〉, ē1|k〉 = z−1|k − 1〉 + z−1β̄|k〉 (3..74)

for the derivations with two arbitrary complex parameters β and β̄. The z
is a renormalization parameter. If we choose

β = α, β̄ = ᾱ (3..75)

then we can write

e1 = z−1α + p1, ē1 = z−1ᾱ + p̄1. (3..76)

The limit q → 1 is rather difficult to control. From the relations of the
algebra and the two differential calculi one might expect Λ → 1. This is
consistent with the limiting relations e1x = ē1x = x and the intuitive idea
that x is an exponential function on the line. We mention this algebra and
its differential calculus because it is a possible model for the (t, r) plane
discussed in the previous example. It has also attracted the attention of
workers [15] in the field of loop quantum cosmology, independently it would
seem and for the same reason. This manifest convergence of views was
apparently first noticed some time later [16]. For more details concerning
a model with an extra commutative time added we refer to Cerchiai et al.
[17, 18].

3.3.2. The q-deformed euclidean space
We mention this algebra and its differential calculus because it is a possible
model for a static ground state. For more details we refer to Fiore [19] and
to Fiore & Madore [20]. The geometry of the higher-dimensional quantum
planes has been also examined [21].

The conditions [xi, θa] = 0 become

xiθa
j = R̂−1ki

ljθ
a
kxl (3..77)

in terms of the braid matrix and yield equations with solution

θ− = Λ−1y−1ξ−,

θ0 = Λ−1r−1(
√

q(q + 1)y−1x+ξ− + ξ0),

θ+ = −Λ−1r−2(
√

qq(q + 1)y−1(x+)2ξ− + (q + 1)x+ξ0 − yξ+).
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An analogous expression can be found for the frame θ̄a of the differential
calculus Ω̄∗(R3

q). From the relations

[(θa)∗, f∗] = −[θa, f ]∗ = 0, f ∈ R
3
q, (3..78)

it follows that (θa)∗ can be written in terms of θ̄b. We choose the second
frame so that the relation

(θa)∗ = θ̄bgba (3..79)

is satisfied.
Consider the elements pa ∈ R

3
q with

p− = +h−1qΛy−1x+,

p0 = −h−1√qΛy−1r,

p+ = −h−1Λy−1x−.

(3..80)

By direct calculation one verifies that they define the derivations dual to the
frame.
Since Λ is unitary the hermitian adjoints p∗a are given by

p∗± = −Λ−2g±bpb, p∗0 = Λ−2g0bpb. (3..81)

The fact that the pa are not anti-hermitian is related to the fact that the
differential d is not real. We have chosen this rather odd normalization so
that the pa satisfy the commutation relations

p−p0 = qp0p−,

p+p0 = q−1p0p+,

[p+, p−] = h(p0)2.
(3..82)

These equations can be rewritten more compactly in the form

P ab
cdpapb = 0. (3..83)

This is Equation (1..15) with

Ca
bc = 0, Fab = 0. (3..84)

It is easy to check that
gabpapb = qh−2Λ2. (3..85)

If one introduces the corresponding elements p̄a which yield the derivations
dual to the frame θ̄a one finds that the involution on the pa can be written

p∗a = −gabp̄b. (3..86)
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It follows that (df)∗ = d̄f∗. The metric is conformally flat with conformal
factor r−2. If one uses spherical polar coordinates then one sees immediately
that the space is S2×R with log r as the preferred coordinate along the line.
The radius of the sphere is equal to one.
To write the commutative limit of the frame it is most convenient to use the
real coordinates xr = (x, y, z) and use the components

θ1 =
1√
2
(θ− + θ+), θ2 = θ0, θ3 =

i√
2
(θ− − θ+) (3..87)

of the frame. A short calculation yields

θ1 = y−1dx − y−1r−1(x − iz)dr,

θ2 = y−1dr − iy−1r−1(xdz − zdx),

θ3 = y−1dz − iy−1r−1(x − iz)dr

and by direct calculation one can verify that in fact the line element is indeed

ds2 = (θ1)2 + (θ2)2 + (θ3)2 = r−2(dx2 + dy2 + dz2). (3..88)

The conformal factor r has the effect of introducing a function of q in the
expression for the connection. This might be used to arrange the compati-
bility condition but it is not possible to choose rθa as a frame since it does
not commute with Λ. This element, which does not lie in the center but
nevertheless has vanishing exterior derivative, is the origin of the problem.
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