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Abstract

We perform extensive three-loop tests of the hexagon bootstrap approach for structure constants in planar 
N = 4 SYM theory. We focus on correlators involving two BPS operators and one non-BPS operator in the 
so-called SL(2) sector. At three loops, such correlators receive wrapping corrections from mirror excitations 
flowing in either the adjacent or the opposing channel. Amusingly, we find that the first type of correction 
coincides exactly with the leading wrapping correction for the spectrum (divided by the one-loop anomalous 
dimension). We develop an efficient method for computing the second type of correction for operators with 
any spin. The results are in perfect agreement with the recently obtained three-loop perturbative data by 
Chicherin, Drummond, Heslop, Sokatchev [2] and by Eden [3]. We also derive the integrand for general 
multi-particle wrapping corrections, which turns out to take a remarkably simple form. As an application 
we estimate the loop order at which various new physical effects are expected to kick-in.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In [1] a simple proposal for studying 3-point correlation functions in planar N = 4 SYM was 
put forward. It is a sort of divide and conquer strategy where the 3-point correlator – represented 
as the usual string pair of paints – is cut into two simpler hexagonal building blocks which are 
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Fig. 1. A pair of pants is cut into two hexagons [1]. The excitations on the non-BPS operator (on the top) can end up 
on either half and we should sum over those possibilities. Stitching the hexagons back into the pair of pants amounts to 
integrating over the various rapidities of the mirror particles at the dashed lines. A process with nL mirror excitations on 
the left dashed line, nR on the right and nB at the bottom shows up at nB lB +nLlL +nRlR +n2

B
+(nL −nR)2 +nL +nR

loops as indicated in the figure and explained in Appendix A. It is nice to note that the number of particles needed grows 
very slowly with perturbation theory. We see that up to three loop order, for instance, we can either have the vacuum in 
all dashed lines or a single particle in a single dashed line. The latter Luscher type corrections will only show up for very 
small bridges lL , lR and lB , related to the lengths of the three external operators as also indicated in the figure.

bootstrapped using integrability and then stitched back together. The cutting procedure involves 
summing over partitions of the rapidities of the physical particles while the stitching back to-
gether requires integrating over the rapidities of the mirror particles, see Fig. 1. The leading 
process with no mirror particle exchanged is called the asymptotic result while processes with 
mirror excitations travelling around are referred to as wrapping effects.

In this paper we present a series of tests for the hexagon picture, at both the asymptotic and 
wrapping levels, by confronting its predictions with available perturbative data. The focus will 
be on state-of-the-art correlators, involving two BPS operators and one non-BPS operator in the 
so-called SL(2) sector, for which explicit results are culminating at three loops [2,3]. There are 
several new effects, on the integrability side, showing up at this loop order precisely. It is the 
first time the dressing phase [4], which here enters as an ingredient in the hexagon form factor 
proposal [1], contributes to the asymptotic part of the structure constant. It is also the first time on 
the wrapping side that some mirror channels open up. As already sketched in [1], a single mirror 
particle passing through one of the edges adjacent to the non-BPS operator (nL = 1 or nR = 1 in 
Fig. 1) first shows up at three loops. The same particle but in the edge opposed to the non-BPS 
operator (nB = 1 in Fig. 1) shows up earlier, at two loops already. At three loops however we 
can access to the quantum corrected version of this process, and notably to the first effect of the 
mirror dressing phase. These are all the novel effects that will be studied here within the hexagon 
approach and confronted with perturbation theory. In all cases, as we shall see, a perfect match 
will be observed.

Note added: As we were writing up this work, we received the three loop analysis [18] which 
overlaps substantially with some of our results.

2. Data

The comparison between theory (i.e. integrability) and experiment (i.e. direct perturbative 
computations) is one which involves compromise. From the integrability side, the simplest data 
to produce concern large operators, for which finite size corrections are suppressed. On the other 
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Fig. 2. Tuning k in the four-point functions 〈Tr(Z̄X)Tr(Z̄X̄)Tr(ZY k−1)Tr(ZȲ k−1)〉 studied in [2] helps disentangling 
the various finite size corrections to the three-loop structure constants. In all these cases we have lL = lR = 1 such that, 
at three loops, we always have to correct the asymptotic result by the adjacent mirror correction. The size of the opposing 
wrapping correction however depends interestingly on k. For k ≥ 4 we have lB ≥ 3 which completely suppresses this 
effect. For k = 3 the opposing bridge has length lB = 2 and the leading opposing wrapping correction is needed at three 
loops. Finally, the most complicated case from the integrability perspective is the rightmost one for k = 2 corresponding 
to lB = 1 where we need to take into account quantum corrections to the opposed wrapping as well.

hand, for perturbative computations, the smaller the external operator the simpler are the under-
lying combinatorics. A nice set of correlators recently studied in [2] provide an excellent middle 
ground. They are small enough to be efficiently computed in perturbation theory but large enough 
to allow us to have reasonable control over the various integrability finite size corrections.

More precisely, in [2] four point functions 〈O2O2OkOk〉 – involving two small BPS operators 
of size 2 (commonly referred to as 20′ operators) and two BPS operators of size k – were studied 
up to three loops.1 (The case k = 2 was known before [6,7].) From the OPE decomposition of 
these ones we can read off the product of structure constants C22S × CkkS where S denotes the 
spin of the lowest twist operator being exchanged (which are twist two operators in this case), 
see Fig. 2.

In the end, from this three-loop data, we produce Tables 1–3. The main goal of this paper is 
to reproduce these tables using the integrability approach by taking into account the various new 
physical effects which kick in at this loop order.

As discussed in more detail in the conclusions there are various fascinating effects to probe 
at even higher loops. We look forward, in particular, to having four loop data to analyze. In 
this regard, the simplest case to compute from perturbation theory is probably the k = 2 case 
corresponding to four external operators in the stress tensor multiplet. After all, for these ones 
the result is already known [7] in terms of a few unknown integrals which one would have to 

1 In fact this was the data we used at the time of the writing. Since then until the publishing of [2] the authors managed 
to extend their analysis to operators of basically any size. It would be very interesting to extend the comparison performed 
herein against their much more general predictions. More generally, in this impressive work, the lore that small operators 
are easier to tackle in perturbation theory is overthrown.
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Table 1
Three loop structure constant C44S corresponding to a large bottom bridge lB = 3, see Fig. 2a. It is given by the asymp-
totic result plus the wrapping correction in the adjacent edge. (In these tables we normalize the structure constants by the 
structure constants of three BPS scalar operators with the same R-charges.) This data is extracted from [2] with k = 4
(larger k’s yield the same) and matched against integrability in section 4.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
lB=3

for lL = lR = 1 and spin S

2 1
3 − 4g2 + 56g4 + g6 (112ζ3 − 160ζ5 − 768) + . . .

4 1
35 − 205g2

441 + 73306g4

9261 + g6
(

386ζ3
27 − 400ζ5

21 − 442765625
3500658

)
+ . . .

6 1
462 − 1106g2

27225 + 826643623g4

1078110000 + g6
(

48286ζ3
37125 − 56ζ5

33 − 1183056555847
88944075000

)
+ . . .

8 1
6435 − 14380057g2

4509004500 + 2748342985341731g4

42652702617525000 + g6
(

1039202363ζ3
9932422500 − 6088ζ5

45045 − 1270649655622342732745039
1075922954067591630000000

)
+ . . .

10 1
92378 − 3313402433g2

13995964873800 + 156422034186391633909g4

31100584702491617040000

+ g6
(

8295615163ζ3
1049947353000 − 2684ζ5

264537 − 7465848687069712820911408164847
77747563297936585275804036000000

)
+ . . .

Table 2
The structure constant C33S corresponds to a bottom bridge lB = 2. The 
difference between the structure constants C33S and C44S comes from 
the (leading) wrapping correction in the opposed channel, see Fig. 2b. 
This data is extracted from [2] with k = 3 and matched against integra-
bility in section 3.3.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
lB=2

−
(

C•◦◦
123

C◦◦◦
123

)2
∣∣∣∣∣
lB=3

for lL = lR = 1 and spin S

2 80g6ζ5 + . . .

4 g6
(

4ζ3
3 + 200ζ5

21

)
+ . . .

6 g6
(

7ζ3
33 + 28ζ5

33 − 1
180

)
+ . . .

8 g6
(

3ζ3
130 + 3044ζ5

45045 − 79
75600

)
+ . . .

10 g6
(

781ζ3
366282 + 1342ζ5

264537 − 45071
351630720

)
+ . . .

Table 3
The structure constant C22S corresponds to a small bottom bridge lB = 1. The difference between 
the structure constants C22S and C44S comes from the (leading and sub-leading) wrapping cor-
rection in the opposed channel, see Fig. 2c. This data is extracted from [3] and matched against 
integrability in section 3.3.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
lB=1

−
(

C•◦◦
123

C◦◦◦
123

)2
∣∣∣∣∣
lB=3

for lL = lR = 1 and spin S

2 g4 24ζ3 − g6 (240ζ3 + 240ζ5) + . . .

4 g4
(

20ζ3
7 + 1

3

)
− g6

(
13318ζ3

441 + 200ζ5
7 + 655

54

)
+ . . .

6 g4
(

14ζ3
55 + 199

3960

)
− g6

(
350413ζ3
136125 + 28ζ5

11 + 9984529
4900500

)
+ . . .

8 g4
(

1522ζ3
75075 + 1721

327600

)
− g6

(
90199113551ζ3
473445472500 + 3044ζ5

15015 + 17141506511
75125232000

)
+ . . .

10 g4
(

671ζ3
440895 + 578887

1230707520

)
− g6

(
3853245574541ζ3
293915262349800 + 1342ζ5

88179 + 846831496164217
39443776036056000

)
+ . . .
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Fig. 3. At four loops, from a four point function 〈Tr(Z̄X)Tr(Z̄X̄)Tr(ZY k−1)Tr(ZȲ k−1)〉 with k = 2 (on the right) 
we could test a very interesting new effect: the simultaneous wrapping effect. It is quite non-trivial to dig it out of a 
background of various other contributions. As a warm up exercise, it would be very convenient to also have at our 
disposal the case with k = 3 (on the left) with which we could first test all other complicated but presumably well 
understood effects before attacking the most interesting k = 2 case. See conclusions for a more detailed discussion on 
the importance of these checks.

evaluate (or at least to work out in the OPE limit). From the integrability point of view having a 
few other examples with larger operators would be useful as well. For example, the case k = 3
would allow us to isolate and check all effects other than simultaneous wrapping, see Fig. 3. 
It would be simpler to sharpen the integrability machinery with that case first. Of course, with 
even larger external operators we could disentangle further the various finite size corrections and 
increase the complexity of the integrability computation in an even more controllable fashion. 
The more (data) the merrier.

3. Integrability

The basic idea of the hexagon program is to cut the three-point function into two overlapping 
hexagons along three mirror edges. The recipe for sewing them back together is to perform a 
sum over complete basis of states for each mirror channel. As a result, the three-point function 
is expressed as an infinite series over mirror particles, each term of which comes with the mea-
sure, which is the cost of producing particles, and the factor needed for propagating particles 
from one hexagon to the other through the so-called bridges of size �ij . The leading term in the 
series corresponds to taking the mirror vacuum in all the channels and is called the asymptotic 
three-point function. It dominates both in the large bridge limit, for the obvious reason that large 
distance suppresses the propagation of gapped excitations, and in the weak coupling limit where 
the production and the propagation are typically suppressed.

To make this program run at higher loops, one must have a good handle on complicated 
hexagon processes involving many excitations exchanged in the three mirror channels. Although 
intractable at first glance, they in fact have a simple nice structure: Once we perform the sum-
mation over the flavor indices of mirror particles, the contribution from each mirror excitation 
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becomes proportional to the psu(2|2) transfer matrix (see Appendix A and Fig. 6 for more de-
tailed explanation). This is due to the Yang–Baxter relation and is a direct consequence of the 
matrix structure of our ansatz, which is essentially equivalent to the psu(2|2) S-matrix. The con-
stant of proportionality can then be read off by studying the cases where mirror particles are 
longitudinal derivatives D. As explained in Appendix A, the end result is remarkably simple, 
and the multi-particle integrand for fundamental mirror particles takes the form2:

Integrand= μ(wγ

B)e−E(wB)lB T (wγ

B)h�=(wγ

B,wγ

B)h(u,w−3γ

B ) (1)

× μ(wγ

L)e−E(wL)lLT (w−γ

L )h�=(wγ

L,wγ

L) × μ(wγ

R)e−E(wR)lRT (w−γ

R )h�=(wγ

R,wγ

R)

× h(w−γ

L ,w−5γ

R )h(w−γ

R ,w−5γ

L )

×
∑

α∪ᾱ=u

(−1)|ᾱ|eipᾱ lR
h(α,w−5γ

L )h(α,w−γ

R )h(ᾱ,w−γ

L )h(ᾱ,w−5γ

R )

h(α, ᾱ)
.

Here u is a set of rapidities for physical excitations and wB, wL and wR denote the sets of mirror 
rapidities for the bottom, the left adjacent and the right adjacent edges respectively. For bound 
states, we just need to substitute h, μ, T and E in (1) with their bound-state counterparts, as 
given in Appendix C.

As explained in more detail in Appendix A, taking into account the scaling with the cou-
pling of the various terms in the integrand, the estimate in Fig. 1 follows straightforwardly. As 
mentioned above, up to three loops, we can restrict the integrand to at most a single particle in 
either mirror edge. It what follows we will study these processes at three loops and see that they 
perfectly match with the perturbative data presented in the previous section.

3.1. Asymptotic result

At leading order in the large distance expansion, only the vacuum states in the mirror channels 
contribute. We can thus set nB = nL = nR = 0 in (1) and reduce it to the asymptotic structure 
constants [1],

C•◦◦
123

C◦◦◦
123

∣∣∣∣
asymptotic

=

√√√√√√√√√

∏
i

μi

∏
i �=j

hij

det
1≤i,j≤S

∂ui

(
pjL + 1

i

∑
k �=j

logSjk

)
︸ ︷︷ ︸

≡ Gaudin

×
∑

α∪ᾱ=u

(−1)|ᾱ| ∏
j∈ᾱ

eipj �
∏

i∈α,j∈ᾱ

1

hij︸ ︷︷ ︸
≡Aasymptotic

, (2)

where L = L1 is the twist of non-BPS operator (of spin S) and � = lR is the length of one 
of the adjacent bridges.3 The determinant factor inside the square root is the famous Gaudin 
norm. The most interesting factor in the structure constant is the last factor. It is given by a sum 

2 Here a function with sets as arguments denote a product of such functions with the elements of the sets as arguments. 
For explicit definition, see (9).

3 It can be either lR or lL = L − lR ; Bethe equations together with Sij = hij /hji ensure that the result is the same.
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Table 4
Integrability predictions for the asymptotic result for twist two operators.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
asymptotic

for lL = lR = 1 and spin S

2 1
3 − 4g2 + 56g4 + g6 (−804 + 16 ζ3) + . . .

4 1
35 − 205g2

441 + 73306g4

9261 + g6
(

134ζ3
63 − 3670467025

28005264

)
+ . . .

6 1
462 − 1106g2

27225 + 826643623g4

1078110000 + g6
(

1484ζ3
7425 − 4879310394853

355776300000

)
+ . . .

8 1
6435 − 14380057g2

4509004500 + 2748342985341731g4

42652702617525000 + g6
(

4665511ζ3
283783500 − 10449826286558318778958087

8607383632540733040000000

)
+ . . .

10 1
92378 − 3313402433g2

13995964873800 + 156422034186391633909g4

31100584702491617040000

+ g6
(

21027743ζ3
16665831000 − 61273849341907187613352885884203

621980506383492682206432288000000

)
+ . . .

over the distributions of the Bethe roots into two partitions which arises from cutting the pair of 
pants into two, see Fig. 1. We are using the short-hand notation μk = μ(uk), Sij = S(ui, uj ), 
hij = h(ui, uj ) etc. Explicit expressions for the measure μ and hexagon transitions h can be 
found in [1] and are summarized in Appendix C for convenience.

Here we are interested in the case of twist L = 2 and adjacent bridges � = lR = lL = 1. 
Solving Bethe equations is particularly simple for twist 2. There is a single solution for each spin 
S which is best encoded in the so-called Baxter polynomial Q(u) ≡ ∏S

j=1(u − uj ). To find this 
polynomial to high order in perturbation theory we can solve Bethe equations in Mathematica 
with very high precision and rationalize the final result. For spin S = 4, for instance, we find

Q(u) =
(

u4 − 13

14
u2 + 27

560

)
+ g2

(
60

49
− 384

49
u2

)
+ g4

(
7370

1029
u2 + 7990

1029

)

+ g6
(

u2
(

−200ζ3

7
− 335225

7203

)
+ 50ζ3

7
+ 21325

28812

)
+ O(g8) (3)

Note the appearance of ζ3 in the three loop correction to the Bethe roots. It comes from the 
BES dressing phase which first shows up at this loop order. (This effect shows up for three-point 
functions at three loops but affects the spectrum at four loops only since the magnon dispersion 
relation is itself of order g2.) The procedure is then straightforward. For each spin S we solve 
Bethe equations and plug the Bethe roots in (2). (At lower loop orders, this is spelt out in great 
detail in [8] and [1].) In this way we generate Table 4.

We see that up to order g4, i.e. two loops, this table is identical to Table 1. This is expected 
and was already pointed out in [1]. After all, Table 1 concerns three-point functions with a large 
bottom bridge lB > 2 for which finite size corrections should kick in at three loops (for the 
adjacent channels and at even higher loops for the opposing channel). In the next section 4, we 
will see that once these adjacent wrapping corrections are added to the asymptotic result, Table 1
is perfectly reproduced. In section 3.3 we study the opposing wrapping which becomes relevant 
at three loops provided one decreases the length of the bottom bridge to lB ≤ 2. In this way we 
will reproduce the remaining perturbative data quoted in Tables 2 and 3.

3.2. Adjacent wrapping

We now move to the first adjacent wrapping correction corresponding to putting a single 
mirror particle in either of the adjacent channels, i.e. for nL = 1 or nR = 1 with all other occu-
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pation numbers set to zero. This new wrapping effect starts at three loops for adjacent bridges 
lL = lR = 1 as highlighted in Fig. 1 so it is quite interesting to test it against fresh perturbative 
data. From (1) we have

C•◦◦
123

C◦◦◦
123

∣∣∣∣
adjacent

= √
Gaudin×

∞∑
a=1

∫
dv

2π

Ta(v
−γ )μa(v

γ )

(y[a]y[−a])�
∏
j

ha(v−γ , uj )

×
∑

α∪ᾱ=u

(−1)|α| ∏
j∈ᾱ

(eipj �ha(uj , v
−γ )ha(v

−γ , uj ))
∏

i∈α,j∈ᾱ

1

hij︸ ︷︷ ︸
≡Aadjacent(v)

, (4)

where � = lL = lR (= 1 for the twist two case of interest for this paper). We should now expand 
these expressions in perturbation theory, perform the v integration and sum over the bound-state 
index a.

Amusingly, the last two of these steps turn out to be trivial as we now explain. The last line 
in (4) resembles the sum over partitions which we encountered in the asymptotic regime in the 
last subsection with an effective momentum term eip(u)� → eip(u)�ha(u, v−γ )ha(v

−γ , u). With 
this effective momentum, the Aadjacent factor actually yields a very familiar object: another copy 
of the mirror transfer matrix Ta(v

−γ ) in the a-th anti-symmetric representation! That is, at weak 
coupling, we find that when � = 1

Aadjacent(v)/Aasymptotic = 2v[a]v[−a]Q(i/2)

−g2γQ[1+a] Ta(v
−γ ) + O(g2) . (5)

The proof of this interesting identity will be given in Appendix D. Taking into account the weak 
coupling expressions for the transfer matrix, measures and for the dynamical parts (presented in 
appendices Appendix B and Appendix C) we have therefore

C•◦◦
123

C◦◦◦
123

∣∣∣∣
adjacent

= C•◦◦
123

C◦◦◦
123

∣∣∣∣
asymptotic

× g6

γ

×

⎡
⎢⎢⎢⎢⎣

∞∑
a=1

∫
dv

2π

− γ 2

2

(
Q( i

2 )
(a−1)/2∑

k=−(a−1)/2

Q[2k]

v[2k+1]v[2k−1]
)2

(v[a]v[−a])2Q[−a+1]Q[a−1]Q[−a−1]Q[a+1]

⎤
⎥⎥⎥⎥⎦ . (6)

Now, beautifully, the object in the square brackets is the exact same integral and sum which 
yields the wrapping correction to the energy of multi-particle states [10] as computed by Bajnok, 
Janik and Lukowski in [9]. In this work, the authors also evaluated this correction for twist 2
operators of arbitrary spin S. Therefore, to get the adjacent finite size correction to the structure 
constants, we simply need to divide their result by the one loop anomalous dimension γ = 8S1. 
(Curiously, this very same object is appearing at four loops for the spectrum corrections and at 
three loops for the structure constants; the division by γ nicely ensures that the transcendentality 
counting works.) In this way we can immediately generate Table 5.

It is now a very pleasurable task to add up the two integrability generated Tables 4 and 5
and observe that they perfectly reproduce the OPE data in Table 1! This is another important 
check of the hexagon proposal; it is the first non-trivial check of the so-called adjacent wrapping 
corrections.
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Table 5
Integrability predictions for twice the adjacent wrapping for twist 
two operators. The factor of two is convenient since we have a left 
and a right adjacent contribution which yield the same result.

S 2

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
adjacent

for lL = lR = 1 and spin S

2 g6 (36 + 96ζ3 − 160ζ5) + . . .

4 g6
(

2300ζ3
189 − 400ζ5

21 + 41575
9072

)
+ . . .

6 g6
(

13622ζ3
12375 − 56ζ5

33 + 7367101
17820000

)
+ . . .

8 g6
(

145984913ζ3
1655403750 − 6088ζ5

45045 + 8828613403153
266983516800000

)
+ . . .

10 g6
(

3485433677ζ3
524973676500 − 2684ζ5

264537 + 47383910636511053
19050244772832000000

)
+ . . .

3.3. Opposing wrapping

We next study the contribution from the opposing channel. Up to five loops, we have only 
single-particle wrapping corrections and the integrand can be obtained by setting nB = 1 and 
nL = nR = 0 in (1):

C•◦◦
123

C◦◦◦
123

∣∣∣∣
opposing

= √
Gaudin×Aasymptotic ×

∞∑
a=1

∫
dv

2π

Ta(v
γ )μa(v

γ )

(y[a]y[−a])�
∏
j

ha(vγ , uj )
(7)

The opposing wrapping already shows up at two loops for lB = 1, as studied in [1], and it appears 
for both lB = 1 and lB = 2 at three loops. For lB = 2, we just need to keep the leading term in the 
expansion of (7) and integrate. This is essentially the same as the two loop computation for lB = 1
and we can use the same methodology explained in [1]. On the other hand, for lB = 1, we need 
to expand it one-loop further. This results in a more complicated integrand, for which analytic 
integration is harder to perform. To overcome this difficulty, we develop a simple trick which 
is explained in detail in Appendix E: The basic idea is to replace the Baxter polynomial Q(v)

appearing in the integrand with the “plane-wave” form, eiut . The integral with this plane-wave 
expression is more convergent than the original one and we can simply compute it by taking the 
residues. Once it is computed, we can retrieve the results for any Baxter polynomials by simply 
applying the differential operator Q(−i∂t ) to the final answer.

With this new trick, it is now straightforward to generate results for any spin and they are 
summarized in Tables 6 and 7.

Having computed all the relevant wrapping corrections at three loop, we can now compare 
them with the perturbative data. For this purpose, it is convenient to subtract the asymptotic 
structure constant and the adjacent wrappings from the perturbative data. In the case at hand, 
this can be achieved simply by subtracting the perturbative result for lB = 3 from the rel-
evant data since the structure constants with lB = 3 do not receive the opposing wrapping 
correction at three loop. This is precisely what is done in Table 2 and Table 3. The integra-
bility predictions just produced, in Tables 6 and 7, beautifully match with the perturbative 
data.
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Table 6
Integrability predictions for the opposing wrapping for an op-
posing bridge of size lB = 2. It beautifully matches with per-
turbative data in Table 2.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
opposing

for lB = 2, lL = lR = 1 and spin S

2 80g6ζ5 + . . .

4 g6
(

4ζ3
3 + 200ζ5

21

)
+ . . .

6 g6
(

7ζ3
33 + 28ζ5

33 − 1
180

)
+ . . .

8 g6
(

3ζ3
130 + 3044ζ5

45045 − 79
75600

)
+ . . .

10 g6
(

781ζ3
366282 + 1342ζ5

264537 − 45071
351630720

)
+ . . .

Table 7
Integrability predictions for the opposing wrapping for an opposing bridge of size lB = 1. It per-
fectly matches with perturbative data in Table 3.

S

(
C•◦◦

123
C◦◦◦

123

)2
∣∣∣∣∣
opposing

for lB = 1, lL = lR = 1 and spin S

2 g4 24ζ3 − g6 (240ζ3 + 240ζ5) + . . .

4 g4
(

20ζ3
7 + 1

3

)
− g6

(
13318ζ3

441 + 200ζ5
7 + 655

54

)
+ . . .

6 g4
(

14ζ3
55 + 199

3960

)
− g6

(
350413ζ3
136125 + 28ζ5

11 + 9984529
4900500

)
+ . . .

8 g4
(

1522ζ3
75075 + 1721

327600

)
− g6

(
90199113551ζ3
473445472500 + 3044ζ5

15015 + 17141506511
75125232000

)
+ . . .

10 g4
(

671ζ3
440895 + 578887

1230707520

)
− g6

(
3853245574541ζ3
293915262349800 + 1342ζ5

88179 + 846831496164217
39443776036056000

)
+ . . .

4. Conclusion

In this paper, we successfully compared the hexagon program against perturbative data up 
to three loops and obtained the general expression for the hexagon integrand with arbitrarily 
many particles in each mirror channel. The form of the latter clearly indicates several important 
milestones, at even higher loop orders, which call for more perturbative data and stand as a 
challenge for (or might lead to some amendments to) the hexagon program. See Fig. 4 for a road 
map.

The next important test in line, and perhaps the most critical one, awaits us already at the next 
loop order, that is at four loops. At four loops we can have one excitation in each of the two 
adjacent edges to the non-BPS operator, as shown in Fig. 4. Pictorially this is the same sort of 
drawing as for the usual wrapping corrections arising in the spectrum, describing a single mirror 
particle crossing once each of the two dashed lines and thus winding once around the non-BPS 
operator. It is not a coincidence that this sort of full wrapping effect first shows up at the same 
loop order for the spectrum and for the 3-point function, since the SUSY cancellations delaying 
it to four loops is the same in both cases.

The hard task with this type of effect (involving at least one particle in each dashed line) 
is that it leads to a (double) pole in the hexagon integrand. This one comes about when the 
two mirror rapidities we are integrating over collide and is manifest in (1) where it arises from 
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Fig. 4. Various new physical effects await us at the next few loop orders. The estimates here hold for the smallest possible 
external operators (all with length two). For bigger operators these effects are delayed as summarized in Fig. 1.

1/h(w
γ

R, wγ

L)h(w
γ

L, wγ

R) and from the fact that h(uγ , vγ ) vanishes for equal rapidities. An op-
timistic point of view would be that this pole just calls for a prescription, such as principal part 
integration, for instance.4 It might also well be the tip of an iceberg and the symptom of some-
thing yet to be understood. Four loops is, for instance, the onset of corrections to the Bethe wave 
function as well, which might challenge the splitting procedure as understood so far and produce 
corrections to the asymptotic Gaudin norm entering our expression. Can it be that the smoothing 
of the singularity just discussed requires taking this into account? This is definitely plausible. 
After all, the pole at equal momenta results from a decoupling limit with a residue coming from 
a single mirror particle which encircles the non-BPS operator asymptotically close to it.5 But is 
it not exactly how a putative wrapping correction to the norm would look like? Clearly, having 
four loops gauge theory data at hand would be a fantastic help for settling all that. It would allow 
one to experiment the various options and hopefully figure out which one holds best.

At higher loops, the interplay between perturbative and integrability methods could also help 
better understand the space of functions appearing in the four-point correlators and perhaps 
design a program akin to the hexagon function program [13] which appears so powerful for 
scattering amplitudes, in conjunction with the pentagon OPE [14]. Perhaps a less ambitious pro-
gram would be to develop such understanding close to the so-called light-cone OPE limit since 
this is the limit required to extract data about the leading twist operators flowing in the conformal 
partial wave decomposition.

4 In the so-called pentagon OPE approach [14] for scattering amplitudes, there is a similar decoupling pole for the 
pentagon which shows up in the heptagon and higher n-gons integrands. In that case however there is a well-understood 
iε prescription for integrating it.

5 As such the pole is an IR effect which comes about because the mirror space is taken to have infinite volume. This is 
reminiscent of the IR ambiguities that plague the form factor approach to finite temperature correlators and must also be 
handled carefully [11,12].
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Looking ahead, once all stitching subtleties are properly understood we can start cutting and 
gluing any strings that move. Four-point functions, for instance, would be a very natural next 
frontier.
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Appendix A. Multi-particle integrand

Here we derive an integrand for general multi-particle wrapping corrections for a class of cor-
relators studied in the main text. For simplicity, below we focus on fundamental mirror particles, 
but the results can be extended easily to bound states. Before delving into general multi-particle 
cases, we shall briefly recall the result in [1] for a single-particle wrapping on the bottom edge. 
Such a correction can be computed by putting a mirror particle on the first hexagon and its anti-
particle on the second hexagon. A crucial observation made in [1] is that, after summing over 
flavors of the particle (D, D̄, Y and Ȳ ), the result becomes proportional to a transfer matrix 
T (u−γ ). This is a direct consequence of the matrix structure of the hexagon form factor and 
can be understood pictorially as in Fig. 5. The constant of proportionality is then determined by 
evaluating the configuration with D in the first hexagon and D̄ in the second hexagon. For the 
bottom edge, it is given simply by a product of h’s and the asymptotic structure constant (2)6:

h(u,w−3γ

B ) ×
⎡
⎣Gaudin×

∑
α∪ᾱ=u

(−1)|ᾱ| ∏
j∈α

eipj lR
1

h(α, ᾱ)

⎤
⎦ . (8)

Here and below, we are using simplified notations such as

h(u,v) ≡
∏

ui∈u,vj ∈v

h(ui, vj ) , h#(u,u) ≡
∏

ui ,uj ∈u
i#j

h(ui, vj ) ,
(9)

where # can be either <, > or �=. In addition to these two contributions, the integrand contains 
the propagation factor e−E(v)lB and the measure μ(vγ ) whose explicit expressions can be found 
in Appendix C.

For general multi-particle wrappings, the result again consists of the part coming from summa-
tion over flavors (the matrix part), the constant of proportionality determined by the configuration 
with D’s and D̄’s (the dynamical part), the propagation factors and the measures. Importantly, 
thanks to the Yang–Baxter relation, the matrix part can always be written as a product of transfer 
matrices as illustrated in Fig. 6. By contrast, the dynamical part is more nontrivial since each term 
in the sum for the asymptotic structure constant will receive different corrections from particles 
on adjacent edges.

6 The expression (8) looks slightly different from the one written in [1]. However, it can be recast into the same form 
by using h(u, v) = 1/h(v4γ , u).
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Fig. 5. Matrix part for a single mirror excitation. After summing over flavor indices, the wrapping correction becomes 
proportional to the psu(2|2) transfer matrix.

Fig. 6. Matrix part for two mirror excitations. Owing to the Yang–Baxter relation, the matrix part can be factorized into 
two psu(2|2) transfer matrices. The interaction between mirror particles only appears in the dynamical factors.

To see this explicitly, let us take a close look at the dynamical part. The simplest way to 
compute this is to put mirror particles on the top edges of the hexagons as shown in Fig. 7. 
Since the first hexagon only contains “longitudinal derivatives” D’s, it gives rise to the factorized 
dynamical factors,

h<(w−3γ

B ,w−3γ

B )h<(w−5γ

L ,w−5γ

L )h<(w−γ

R ,w−γ

R )h(w−γ

R ,w−3γ

B )h(w−γ

R ,w−5γ

L )

× h(w−3γ
,w−5γ

)h(α,w−3γ
)h(α,w−5γ

)h(α,w−γ
) .

(10)

B L B L R
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Fig. 7. The configuration for general wrapping corrections. One can decorate mirror edges by particles by putting them 
on the top edge as shown above. To evaluate the contribution from the second hexagon, it is convenient to utilize the 
mirror transformation and convert all the particles into D. After this manipulation, it becomes clear that the dynamical 
part is given simply by factorized expressions (10) and (11).

As for the second hexagon, it is convenient to perform mirror transformations and bring the par-
ticles to the right hand side of the top edge (see Fig. 7). After this manipulation, mirror particles 
become D’s and the result is again given by a factorized expression,

h>(w−3γ

B ,w−3γ

B )h>(w−γ

L ,w−γ

L )h>(w−5γ

R ,w−5γ

R )h(w−γ

L ,w−3γ

B )h(w−γ

L ,w−5γ

R )

× h(w−3γ

B ,w−5γ

R )h(ᾱ,w−3γ

B )h(ᾱ,w−γ

L )h(ᾱ,w−5γ

R ) .
(11)

Having determined the dynamical part, it is now straightforward to write down the full ex-
pression by putting together the matrix part, the measures and the propagation factors7:

Integrand

= μ(wγ

B)μ(wγ

L)μ(wγ

R)e−E(wB)lB e−E(wL)lLe−E(wR)lRT (wγ

B)T (w−γ

L )T (w−γ

R )

× h�=(wγ

B,wγ

B)h�=(wγ

L,wγ

L)h�=(wγ

R,wγ

R)h(w−γ

L ,w−5γ

R )h(w−γ

R ,w−5γ

L )

× h(u,w−3γ

B )
∑

α∪ᾱ=u

(−1)|ᾱ|eipᾱlR
h(α,w−5γ

L )h(α,w−γ

R )h(ᾱ,w−γ

L )h(ᾱ,w−5γ

R )

h(α, ᾱ)
.

(12)

Here we used the properties of h and T , h(u2γ , v2γ ) = h(u, v), h(u4γ , v) = 1/h(v, u) and 
T (u4γ ) = T (u), to simplify the expression. To generalize (12) to the cases including bound 
states, one just needs to substitute h(u, v), μ(u), T (u) and E(u) with their bound-state counter-
parts, which are given in Appendix C.

An important feature of (12) is that the matrix part is given by a product of transfer matrices. 
This makes it easy to take into account cancellation due to supersymmetry and enables us to 
estimate the coupling-constant dependence quite accurately. As will be derived in Appendix C, 
various factors in (12) scale as

7 We denoted the rapidities of particles on the left adjacent edge in blue, the right adjacent edge in green and the bottom 
edge in red to make it clear which part comes from which wrapping.
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h(w
γ

i ,w
γ

j ) ∼ μ(wγ ) ∼ e−E(w) ∼ O(g2) ,

h(w
−γ

i ,w
−5γ

j ) ∼ h(w
−5γ

i ,w
−γ

j ) ∼ O(g−2) , (13)

while all other factors are O(1). From this, one can determine the coupling-constant dependence 
of the integrand as

Integrand∼ O
(
g2

[
nBlB+nLlL+nRlR+n2

B+(nL−nR)2+nL+nR

])
, (14)

as anticipated in Fig. 1.
Another interesting feature of (12) is the absence of any interaction between particles on the 

bottom edge and particles on the adjacent edges. In particular, there are no kinematical poles 
between particles in the bottom and particles in one of the adjacent edges (in contradistinction 
with the case where two particles face each other in opposing adjacent edges). The absence of 
such poles has a natural interpretation: As mentioned in section 4, such a pole corresponds to 
a physical process where a particle goes around one of the operators and the residue will be 
given by the psu(2|2)2 transfer matrix of the operator. However, since the operator is BPS in this 
case, the transfer matrix vanishes and so does the residue. In other words, the absence of poles is 
another manifestation of the SUSY cancellation.

Appendix B. Transfer matrices

Transfer matrices in symmetric and antisymmetric representations were computed in [5]. The 
asymptotic transfer matrices in the anti-symmetric representation are the ones relevant for our 
analysis and take the form8

Ta(u) =
1∑

n=−1

(3n2 − 2)

n∏
m=0

R(+)(u[2m−a])
R(−)(u[2m−a])

a−2n
2∑

j= 2−a
2

a−2
2∏

k=j+n

R(+)(u[2n−2k])B(+)(u[−2k])
R(−)(u[2n−2k])B(−)(u[−2k])

,

(15)

where

R(±)(u) =
∏
j

(x(u) − x∓
j ) , B(±)(u) =

∏
j

(
1

x(u)
− x∓

j ) . (16)

Its mirror version u → u±γ is directly obtained by crossing x[±a] → 1/x[±a], while keeping 
fixed the remaining Zhukowsky variables. Of course, this transformation does not commute with 
perturbation theory. Thus, for perturbative studies it is convenient to have independent expansions 
of these transfer matrices after various mirror rotations. We have

Ta(u
−γ ) = −g2γ

1

2Q[−a+1]

a−1
2∑

k=− a−1
2

Q[2k]

u[2k+1]u[2k−1] + O(g4) , (17)

Ta(u) = 1

Q[−a−1]
(
Q[−a−1] − Q[−a+1] − ig2 γ

2

(2Q[−a+1]

u[−a]

8 Compared to previous arXiv version and to the normalization used in [1] we removed a (−1)a factor in the normal-
ization of the transfer matrix. This new convention avoids some further annoying minus signs popping up elsewhere.
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−
a−1

2∑
k=− a−1

2

i Q[2k]

u[2k+1]u[2k−1]
)

+ O(g4)
)

, (18)

Ta(u
+γ ) = 1

Q[−a−1]
(

1 + i

2
g2 γ

u[−a]
)(

Q[a+1] + Q[−a−1] − Q[a−1] − Q[−a+1]

+ ig2 γ

2

(Q[a+1]

u[a] − Q[−a−1]

u[−a] +
(Q[a−1]

u[a−2] − Q[−a+1]

u[−a+2]
)
δa �=1

+
a−3

2∑
k=− a−3

2

i Q[2k]

u[2k+1]u[2k−1]
)

+ O(g4)
)

, (19)

where γ =
S∑

j=1

2
u2

j + 1
4

is the one loop anomalous dimension and Q(u) ≡
S∏

j=1
(u −uj ) is the Baxter 

polynomial. We are using the standard short-hand notation f [a] = f (u + ia/2) and in particular 
u[a] = u + ia/2.

The leading order limit of (19) was used in [1]; the expansion in this channel is relevant 
for mirror excitations in the bottom mirror edge. The expression in (17) is relevant for mirror 
excitations in one of the adjacent edges. It is also this expansion which is relevant for the study 
of Luscher correction in the spectrum problem. The middle line (18) for a physical rapidity u is 
presented here for completeness but is not being used.

Appendix C. Fused hexagons and weak coupling expansions

Here we summarize various weak coupling expansions of measures and fused pentagon tran-
sitions

ha(u, v) =
a−1

2∏
k=− a−1

2

h(u[2k], v)

relevant for the analysis in this paper. It is convenient to split the pentagon transitions into its 
symmetric and anti-symmetric part (since the latter is just the well studied S-matrix):

ha(u, v)ha(v,u) = pa(u, v) , ha(u, v)/ha(v,u) = Sa(u, v) . (20)

The S-matrix reads

Sa(u, v) = 1

σ 2
a (u, v)

(u − v + i a−1
2 )(u − v + i a+1

2 )

(u − v − i a−1
2 )(u − v − i a+1

2 )

a−1
2∏

k=− a−1
2

⎛
⎝1 − 1

y+x[−2k−1]

1 − 1
y−x[+2k+1]

⎞
⎠2

, (21)

where σa(u, v) = eiχ(u[a],v+)+iχ(u[−a],v−)−iχ(u[−a],v+)−iχ(u[a],v−) is the (fused) BES dressing 
phase [4]. The product factor pa is considerably simpler since the dressing phase drops out 
in this case and the fusion is also particularly simple, leading to a simple expression purely in 
terms of Zhukowsky variables,

pa(u, v) = (u − v)2 + (a−1)2

4

(u − v)2 + (a+1)2

⎛
⎝1 − 1

y−x[+a]

1 − 1
− [−a]

1 − 1
y+x[−a]

1 − 1
+ [+a]

⎞
⎠2

. (22)

4 y x y x
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These results can now be straightforwardly expanded in perturbation theory. For illustration, we 
provide here some explicit results to leading and sub-leading order at weak coupling

Sa(u, v) = (u[+a−1] − v)(u[+a+1] − v)

(u[−a+1] − v)(u[−a−1] − v)

×
(

1 − 2g2

i

( 1
v+ H(u[a]

−i
) − 1

v+ H(u[−a]
−i

) + 1
v− H(u[−a]

i
) − 1

v− H(u[a]
i

)
) + . . .

)
,

Sa(u
γ , v) = (u[+a−1] − v)(gy−)2

(u[−a+1] − v)(u[−a−1] − v)(u[a+1] − v)

×
(

1 − g2

v+v−
( 2i

u[a] + 4uv

u[a]u[−a] + H(u[−a]
i

) + H(u[a]
i

) + H(u[−a]
−i

)

+ H(u[a]
−i

)
))

,

with H(n) the harmonic number, and

pa(u, v) = 1

pa(u2γ , v)
= (u − v)2 + (a−1)2

4

(u − v)2 + (a+1)2

4

(
1 − 2ag2

(u2 + a2

4 )(v2 + 1
4 )

+ . . .

)
, (23)

pa(u
γ , v) = 1

pa(u−γ , v)
=

(v+

v−
)2 u[+a+1] − v

u[−a−1] − v

u[−a+1] − v

u[+a−1] − v

×
(

1 + ig2(u + a2v + 4u2v + 4uv2)

(u2 + a2

4 )(v2 + 1
4 )2

+ . . .

)
.

Combining these expansions (with sub-leading terms included of course) with the important 
relation h(u4γ , v) = 1/h(v, u), we can easily reproduce any of the weak coupling expansions 
used in this paper. Finally we have the fused measures

μa(u) = a(x[+a]x[−a])2

g2(x[+a] − x[−a])2((x[+a])2 − 1)(1 − (x[−a])2)

= 1

a
− ag2(

a2

4 + u2
)2

+ O(g4) , (24)

μa(u
γ ) = a(x[+a]x[−a])2

g2(x[+a]x[−a] − 1)2((x[+a])2 − 1)((x[−a])2 − 1)

= ag2(
a2

4 + u2
)2

− ag4
(
a2 − 8u2

)
(

a2

4 + u2
)4

+ O
(
g6

)
.

Appendix D. Transfer matrix from sum over partitions

In this appendix, we will show that the integrand for a mirror particle on the adjacent edge 
with the bridge size � = 1 coincides with the transfer matrix Ta(v

γ ) at the leading order in the 
weak coupling expansion.

As discussed in section 4, the integrand for a mirror particle on the left adjacent edge is given 
by
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Aadjacent(v) =
∑

α∪ᾱ=u

(−1)|α| ∏
j∈ᾱ

(eipj �ha(uj , v
−γ )ha(v

−γ , uj ))
∏

i∈α,j∈ᾱ

1

hij

. (25)

By setting � = 1 and expanding the terms in the sum at weak coupling, we obtain

Aadjacent(v) =A(v[1−a], v[1+a]) + O(g2) , (26)

where the function A is given by the following sum over partitions:

A(v,w) =
∑

α∪ᾱ=u

(−1)|ᾱ| ∏
ū∈ᾱ

ū − i/2

ū + i/2

(v − ū − i)(w − ū − i)

(v − ū)(w − ū)

∏
u∈α
ū∈ᾱ

u − ū − i

u − ū
. (27)

The goal of this appendix is to prove the following interesting identity between A and the leading 
order Ta(v

−γ ),

A(v[1−a], v[1+a]) = 2i|u||u|!
−g2γ

v[a]v[−a]

Q[1+a](v)
Ta(v

−γ )

= i|u||u|!v[a]v[−a]

Q[1+a]Q[1−a]

a−1
2∑

k=− a−1
2

Q[2k]

v[2k+1]v[2k−1] .

(28)

As a first step, let us prove the following identity, which is valid for any rapidity set w with 
the cardinality |w| > 1:

Asu2(w) ≡
∑

α∪ᾱ=w

(−1)|ᾱ| ∏
w̄∈ᾱ

w̄ − i/2

w̄ + i/2

∏
w∈α
w̄∈ᾱ

w − w̄ − i

w − w̄
= 0 . (29)

To show this, we just need to notice that Asu2(w) is identical to the scalar product between the 
vacuum descendant and general off-shell Bethe states in the SU(2) spin chain with length 1. For 
the SU(2) spin chain, it is clearly impossible to put more magnons than the length of the chain 
(see Appendix C of [15]). This immediately leads to the identity (29).

Now, using the definition of A, one can show by straightforward computation that9

1

(s − t)Q(s)Q(t)

(
1 − s − i/2

s + i/2
ei∂s

)(
1 − t − i/2

t + i/2
ei∂t

)
(s − t)Q(s)Q(t)A(s, t) (30)

coincides with Asu2(u ∪ s ∪ t) and therefore must vanish. Then, setting s and t to be v[1−a] and 
v[1+a], we get the following functional relation:

A(v[1−a], v[1+a]) + v[a]v[−a]Q[3+a](v)Q[3−a](v)

v[2+a]v[2−a]Q[1+a](v)Q[1−a](v)
A(v[3−a], v[3+a])

= − (1 − a)v[−a]Q[3−a](v)

av[2−a]Q[1−a](v)
A(v[3−a], v[1+a])

+ (1 + a)v[a]Q[3+a](v)

av[2+a]Q[1+a](v)
A(v[1−a], v[3+a]) .

(31)

In particular for a = 1, the relation reads

9 The differential operator used here appeared in [17] in a different context.
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A(v, v[2]) + v[−1]Q[4](v)

v[3]Q(v)
A(v[2], v[4]) = 2v[1]Q[4](v)

v[3]Q[2](v)
A(v, v[4]) . (32)

Using (31) recursively, one can express A(v[1−a], v[1+a]) in terms of the fundamental one, 
A(v, v[2]). Furthermore, one can verify that the right hand side of (28) satisfies the relation (31). 
Thus, to prove (28), we only need to show it for a = 1; the rest follows from (31).

To prove (28) for a = 1, we use the following properties, which characterize A(v, v[2])
uniquely:

1. A(v, v[2])
∣∣
u=∅

= 1.

2. A(v, v[2]) is a rational function whose denominator is given by Q(−i/2)Q[2](v).

3. A(v, v[2])
∣∣∣
u

ui→∞−→ − i|u|
ui

A(v, v[2])
∣∣∣∣
u\ui

4. Resui=i/2A(v, v[2]) = i

⎛
⎝∏

j �=i

(uj − i/2)

(uj + i/2)

⎞
⎠ (v − i/2)

(v + 3i/2)
Z[v|u\ui], where Z[v|u] is given by

Z[v|u] =
∑

α∪ᾱ=u

(−1)|ᾱ| ∏
ū∈ᾱ

v − ū − i

v − ū + i

∏
u∈α
ū∈ᾱ

u − ū − i

u − ū
(33)

The properties 1, 3 and 4 can be straightforwardly shown from the definition of A. To prove 
the second one, we need to show that A(v, v[2]) does not have a pole when two rapidities ui

and uj coincide. This follows from the fact that the residues of such a pole for {ui ∈ α, uj ∈ ᾱ}
and {ui ∈ α, uj ∈ ᾱ} have the opposite sign and therefore they disappear after summation. These 
properties allow us to determine A(v, v[2]) explicitly once Z[v|u] is computed. Now, to compute 
Z[v|u], we use the following relation, which can be deduced directly from (33):

Z[v|u] ui→∞−→ − i(|u| + 1)

ui

Z[v|u\ui] (34)

From (34) and Z[v|∅] = 1, we can conclude that Z[v|u] is given by

Z[v|u] = i|u|(|u| + 1)!
Q[2](v)

. (35)

Having determined Z[v|u], one can now use the properties listed above and prove by mathe-
matical induction that A(v, v[2]) is given by

A(v, v[2]) = i|u|−1|u|!
Q[2](v)

[(
1 − Q(i/2)

Q(−i/2)

)
v +

(
1 + Q(i/2)

Q(−i/2)

)
i

2

]
. (36)

Finally using the zero-momentum condition Q(i/2)/Q(−i/2) = 1, we arrive at (28) for a = 1. 
This completes the proof of the formula.

Now, to derive the equality (5) used in the main text, we also need to know Aasymptotic for 
� = 1. This can be determined in a similar manner as Z[v|u], namely by studying the behavior 
at ui ∼ ∞. The result is

Aasymptotic = i|u||u|!
Q(i/2)

. (37)

Dividing (28) by (37), we obtain the formula (5).
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Appendix E. Harmonic polylog technology

In this appendix we present an efficient method for computing the wrapping corrections in the 
opposing channel:

δA
A =

∫
du

2π

∑
a≥1

μ
γ
a (u)

(
1

x[+a]x[−a]

)l
Ta(u

γ )∏
i hDaD(uγ ,ui)

. (38)

Here the transfer matrix Ta(u
γ ) and the measure μγ (u) are given in (19) and (24) respectively, 

while the hexagon phase for bound states at weak coupling reads

1

Q[−a−1] ∏
i hDaD(uγ ,ui)

= 1
S∏

j=1
gx+

j

+ γg2
H(−u[2−a]

i
) + H(−u[2+a]

i
) + H(u[a−2]

i
) + H(u[−a−2]

i
) − 2i

u[−a]

4
∏S

j=1 gx+
j

,

with γ the one-loop anomalous dimension, 
S∑

j=1

2
u2

j + 1
4

, and H(x) the harmonic sum.

The basic idea is to first replace the Baxter polynomials Q(u) with a plane wave eiut , com-
pute the integral as a function of t and then perform the differential operator Q(−i∂t ) setting 
t = 0 in the end. There are two advantages of this method: First, once we compute the inte-
gral as a function of t , we can straightforwardly generate the results for any spin (namely any 
Baxter polynomials) simply by differentiation. Second, the plane wave makes the integral more 
convergent and allows us to compute it simply by taking the residues.

To understand how the method works in practice, let us first rederive the leading order wrap-
ping correction in the opposing channel computed in [1] for a bridge of size � = 1. At this order, 
the integrand is given by

δA
A

∣∣∣∣
�=1

= g4
∞∑

a=1

∫
du

2π

a(
u2 + a2

4

)3

Q[a+1] + Q[−a−1] − Q[a−1] − Q[1−a]
S∏

j=1
gx+

j

+ O(g6).

(39)

As noted in [1], this integral does not converge well for large spin operators. However, once we 
replace Q with eiut , the integral becomes more convergent and one can compute it simply by 
closing the contour of integration in the upper half plane (assuming t ≥ 0) and picking up the 
residues as follows:

δA
A |�=1 = Q(−i∂t )

S∏
j=1

gx+
j

[ ∞∑
a=1

(et − 1)e−(a+ 1
2 )t (eat − 1)(a2t2 + 6at + 12)

2a4

]
t=0

+ O
(
g6)

= g4Q(−i∂t )

S∏
gx+

j

[
sinh

(
t
2

)(
H 2

1 (6ζ2 − H10) + 6H1(H110 + 2ζ3)
j=1
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− 12(ζ2H11 + H1110)
)]

t=0
+ O

(
g6) , (40)

where the argument of each harmonic polylogarithm H... is 1 − e−t . To obtain the expression in 
the second line, we used the HPL package [16]. It is in fact easy to check that this result, after 
differentiation, reproduces the two-loop wrapping correction derived in [1].

With this new method, we now compute the three-loop correction. At three loops, we have to 
consider the correction coming from Bethe roots in (40) and also the correction to the integrand 
(38) which are given by∫

du

2π

μ
γ
a (u)

x[+a]x[−a]
(−1)(a)Ta(u

γ )∏
i hDaD(uγ ,ui)

∣∣∣∣
g6

= g6 Q(−i∂t )

2
S∏

j=1
gx+

j

[
sinh

(
t
2

)[
6γ ζ3H11 − 2γH11001

+ 2γH10011 + 2γH01101 − 2γH01011 − γH11011 + γH10111 − 80ζ3H111

− 8 (2H111101 − H111011 + H110111 − 2H101111 + 40ζ5H1) − 2γ ζ2ζ3 + 12γ ζ3H01
]

+ γ cosh
(

t
2

)
(6ζ3H11 + H11101 − H11011 + 20ζ5)

]
+ (40) + O(g8). (41)

Let us just point out that all the sums that appear after doing the integral by picking up its 
residues can also be expressed as harmonic polylogarithms, and the most complicated ones take 
the following form

∞∑
a=1

za

ab
Sd(a − 1) = H0 . . .01︸ ︷︷ ︸

b

0 . . .01︸ ︷︷ ︸
d

(z). (42)

At three loops we can also consider the finite size correction for a bridge of size � = 2

δA
A

∣∣∣∣
�=2

= g6
∫

du

2π

∑
a≥1

a(
u2 + a2

4

)4

Q[a+1] + Q[−a−1] − Q[a−1] − Q[1−a]
S∏

j=1
gx+

j

+ O(g8) (43)

= g6Q(−i∂t )

S∏
j=1

gx+
j

[
sinh

(
t
2

)
3

[
(60H1 (H11110 − ζ3H11 + ζ2H111 + 2ζ5)

− 120 (H111110 − ζ3H111 + ζ4H11 + ζ2H1111) + H 3
1 (H110 + 12ζ3)

− 12H 2
1 (ζ2H11 + H1110 − 5ζ4) + H 4

1 ζ2
]]

t=0
+ O(g8).

Interestingly, all the integrals we computed are given in terms of harmonic polylogarithms, 
Riemann zeta functions, cosh( t

2 ) and sinh( t
2 ). If this is true in general, one can determine the 

function of t directly by first constructing an ansatz as linear combination of functions with a 
given transcendental level and then fix the coefficients by computing a finite number of residues. 
Such a procedure was indeed very powerful for scattering amplitudes [13] and should be effective 
also in this case especially at higher loops.
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