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We report on the OpenMP parallelization of a Fortran-based Boltzmann-Vlasov
code that is of interest to the experiments at ELI-NP, specifically for the interpretation
of results concerning the excitation of pygmy and giant dipole resonances. We show
that the optimized codes can be successfully employed to obtain in reasonable running
times physically relevant results for the dynamics of such collective modes. The current
results can serve as a starting point for future computational investigations into fusion-
fission dynamics, also of interest at ELI-NP.

1. INTRODUCTION

Numerical investigations into nuclear and atomic dynamics typically rely on
sequential computer recipes that use only one CPU core. This is physically associ-
ated with the time integration of the equations that govern the evolution of a given
system, a task that usually precludes a direct parallelization. However, at every given
time step the dynamics requires information about many quantities (observables) that
determine the subsequent evolution of the system. Since the computing time of these
observables varies nonlinearly with some parameters that define the numerical im-
plementation scheme, the approach is not particularly efficient.

The Boltzmann-Vlasov equation discussed in this paper represents one of the
most advanced semi-classical numerical tools used for the description of nuclear [1–
4] and other mesoscopic quantum systems [5] which accounts both for mean-field
effects as well as two body collisions in the presence of Pauli blocking. One nu-
merical solution of the equation requires quantities that depend quadratically on the
number of so-called test particles (i.e., pseudo-particles) associated with every phy-
sical particle (i.e., nucleon) in the system. As a good spanning of the phase space
of the system (i.e., nucleus in the case of collective modes or nuclei in the case of
fusion-fission) requires a large number of test particles, the accuracy of the numerical
results is strongly limited by the available hardware infrastructure.

In this brief contribution we show an OpenMP [6] parallelization of widely-
used Boltzmann-Vlasov code, that provides considerable speed-up. The rest of the
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article is structured as follows: in Section 2 we show the Boltzmann-Vlasov equation
and its computational reduction to a (very large) set of ordinary differential equations
of Hamilton type, in Section 3 we detail the parallelization recipe, while in Section 4
we gather the main numerical results and our concluding remarks.

2. THE TEST PARTICLES METHOD FOR NUCLEAR BOLTZMANN-VLASOV EQUATION

The well-known semi-classical Boltzmann-Vlasov equation for the one-body
distribution function for protons and neutrons is:

∂fq(r,p, t)
∂t

+
p
m
·Orfq(r,p, t)−OrUq(r) ·Opfq(r,p, t) = I[fn(r,p, t),fp(r,p, t)],

(1)
where q = {p,n}, with p indicating protons and n neutrons, and I is the collision
integral which incorporates the Pauli blocking. In this equation the self-consistent
mean-field contains an isoscalar part of the form

Uis,q(ρ) =A
ρ

ρ0
+B

ργ

ρ0
(2)

and an isovector part of the form

Uiv,q(ρ) = C(ρ)
ρn−ρp
ρ0

τq+
1

2

∂C

∂ρ

(ρn−ρp)2

ρ0
, (3)

where τq = {−1,1} for protons and neutrons, respectively. Naturally, we have that
Uq(ρ) =Uis,q(ρ)+Uiv,q(ρ). In the previous equations ρ is the total density, ρn is the
neutron density and ρp is the proton density.

The coefficients in the isoscalar and isovector parts of the mean-field are taken
to reproduce the known features of symmetric nuclear matter: the saturation density
ρ0 =0.16 fm−3, the binding energyE/A=−16 MeV and a compressibility modulus
K = 200 MeV. These yield in A = −356 MeV, B = 303 MeV and γ = 7/6. In
the present calculations we choose a coefficient C(ρ) = 32 MeV which leads to a
symmetry energy around 28.3 MeV.

The Boltzmann-Vlasov equation gives the time evolution of the one-body dis-
tribution function f(r,p, t) of a fermionic system in the presence of a mean-field
U(r) and two-body collisions. For the numerical solution of the equation a conve-
nient procedure is to decompose the distribution function f into a sum of N expo-
nentials with respect to r and p:

f(r,p, t) =
1

N

1

(2π~)3
1

(4πχφ)3/2

×
N∑
i

exp

(
−(r− ri(t)2)

2χ

)
exp

(
−(p−pi(t)2)

2φ

)
.

(4)
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Each exponential describes a so-called test particle through its position ri and
momentum pi. The derivatives of the distribution function with respect to r, p and t
are given bellow

Orf(r,p, t) =
1

N

1

(2π~)3
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[
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]
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) (5)
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1
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1
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The difficult part of the Boltzmann-Vlasov equation concerns the mean-field
U(r) for which one has to calculate the derivative with respect to r. We note that the
mean field depends implicitly on the distribution function f through the dependence
on the local densities of the nucleons (protons and neutrons). The average density is
given as

〈ρ〉=
∫
d3rd3pρ(r)f(r,p, t) =

1

N

1

(2π~)3
N∑
i

〈ρ(r)〉i

=
1

N2

1

(2π~)6
N∑
i,j

g2χ(ri− rj),

(8)

and one also uses the approximation

〈ργ(r)〉i ≈ 〈ρ(r)〉
γ
i . (9)
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The derivatives of the local averaged densities are given by

∂
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∂
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∂
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i

∂

∂xi
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The derivative of the mean-field with respect to coordinate xi is given by

∂

∂xi
〈U(ρ)〉i = t0

∂

∂xi
〈ρ(r)〉i+ t3

∂

∂xi
〈ρ(r)〉γi (12)

With the above decomposition of the distribution function and approximation for
the local average density we can see that the Boltzmann-Vlasov equation reduces
numerically to the following set of equations

pi(t+ δt) = pi(t)− δtOU(ri, t+ δt/2), (13)

ri(t+ δt/2) = ri(t− δt/2)+ δtpi(t)/m, (14)

where i goes over each test particle in the system. The full details of this numerical
recipe can be founds in Refs. [7–11].

As a good coverage of the phase-space requires a large number of test particles,
the main computational obstacles concern the memory needed for large sets of test
particles and the computing time. To better quantify the impact of the number of par-
ticles on the physical results, we show in Figure 1 the imaginary part of the Fourier
transform of the local neutrons and protons densities for 148Sn using 1500 test parti-
cles per nucleon (blue and green curves) and 6000 test particles per nucleon (black
and red curves). The main message of the figure is that an increased number of test
particles takes away the numerical noise from the plots and better evidences the two
collective modes which are excited, i.e., the out of phase oscillations associated with
the giant dipole resonance (located around 11-12 MeV) and the faint pygmy dipole
resonance (located around 7.5 MeV). This increase in the quality of the numerical re-
sults comes, however, with a substantial computational cost, as the run for 6000 test
particles took roughly one year, while that for 1500 took around one month using a
standard workstation.
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Fig. 1 – The imaginary part of the Fourier transform of the local densities of protons and neutrons
for 148Sn considering 1500 test particles (green and blue lines) and 6000 test particles (red and black
lines). The upper panel corresponds to local densities calculated within a shell that extends from 4.5 to
5.5 fm. The middle panel corresponds to a shell that extends from 5.5 to 6.5 fm, while the lower panel
corresponds to a shell between 6.5 to 7.5 fm.

3. OPENMP PARALLELIZATION

The overview of the program used to solve the two coupled Boltzmann-Vlasov
equations is presented in Fig. 2. It comprises of three main parts: computing the
ground-state of the system, carrying out the integration, and extracting information
from the system state at specific time intervals.

Fig. 2 – Program call graph.

For the initialization, the program reads from the input files the number of neu-
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trons, protons, the width of Gaussian functions, χ and φ, the number of test particles
per nucleon, the integration step N , the total evolution time, the time interval be-
tween subsequent CLUSTER calls, as well as the choice in isoscalar and isovector
channels. Several test runs were performed to determine the optimal balance between
computational speed and accuracy. The second part of the program simulates the time
evolution of the system. It accomplishes this by integrating the differential equations
using the Runge-Kutta method of integration at each time step. Once the new posi-
tion for the Gaussians are known, the new distribution functions are reconstructed.
The third part of the program computes the physical properties of interest, namely:
the dipole moments, the quadrupole moments, the local densities and energies, and
stores them on the corresponding files on disk.

Fig. 3 – Program call graph.

An initial code analysis revealed that most of the processing (i.e. 65%) is hap-
pening inside the TIME PROPAGATION subroutine and therefore this will constitute
the primary focus for code optimization. The detailed analysis of the TIME PROP-
AGATION subroutine outlined the fact that it is computationally intensive, and that
I/O operations make up just an insignificant amount of time, making this subroutine
an ideal candidate for paralellization. To this end, we have used an OpenMP parallel
construct that involved adding the code to distribute the workload between concurrent
threads. The challenging task was determining what were the shared and what were
the private variables respectively. For individual values, simple PRIVATE/SHARED
clauses were sufficient. For private arrays however, we allocated an array within
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each thread and we deallocated it at the end of each parallel region. There were also
special variables that accumulated values throughout the loop and for these cases we
employed a REDUCTION clause. Data dependencies were solved by duplicating
the arrays that were updated inside the inner loops. Thus, every thread reads from
the original array and writes in the auxiliary array. By doing this, the original array
does not change throughout the execution of the inner loop. Finally, an additional
subroutine was the developed, updating the values of the auxiliary array.

The next candidate for parallelization was the COLLISIONS subroutine, as its
main loop is also computationally intensive. Given that there was no need to allocate
arrays for each individual thread, another OpenMP parallel construct can be used.
Test runs showed that the updated values are disjoint between threads so the data
dependencies are limited to individual variables. The test runs also revealed that
most of the iterations end quite fast and a very small number of iterations go trough
most of the instructions so another mechanism of assigning work to threads could be
implemented. A good candidate would be dynamic scheduling which keeps track of
the remaining workload so faster threads – having more iterations which end quickly
– get more work. However, this method of scheduling adds a computational overhead
which will need to be addressed in the future.

4. RESULTS AND CONCLUSIONS

As the current Boltzmann-Vlasov sequential numerical investigations are limi-
ted by long computing times, we have focused in this manuscript on an OpenMP
parallelization which substantially reduces the overall running times of the codes. To
this end, the computing load is distributed over multiple CPU cores, thereby reducing
the computing time.

In our numerical investigations with the OpenMP parallelized code we have
observed a consistent decrease of the computing time with an increasing number of
threads, an aspect which is illustrated in Figs. 3 and 4. Figure 3, in particular, shows
that the computing time has a linear dependence on the integration time, independent
on the number of threads, while Fig. 4 shows the overall increase of the speed-up
with an increasing number of threads.

The results reported in Figs. 3 and 4 can be substantially improved by a concep-
tual parallelization of the code which is done by spreading the computing load among
several CPU cores through a direct allocation of a given region of phase-space to a
given core. As the test particles that were previously assigned to the complete system
now describe only a few physical particles, the number of test particles per physical
particle can be substantially higher, and one can therefore simultaneously achieve a
significant boost in accuracy and a reduced computational time. The main advantage
of this method is that at a given iteration the computation in one cell is indepen-
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Fig. 4 – Program call graph.

dent from the computations in the other cells so, unlike parallel computing, the cores
to which the cells are assigned do not need to have a joint shared memory. While
the changes imposed by the parallelization of our existing source codes do not alter
the overall structure of the applications, the distributed versions require conceptual
modifications that make it necessary to rewrite the source codes.

The current results are of interest to the experiments at ELI-NP [12], specif-
ically for the interpretation of results concerning the excitation of pygmy and giant
dipole resonances.
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