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In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD):

first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin

breaking effects, second a computational study measuring non-perturbative Greens functions.

We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects

necessary for understanding how a lattice computation is performed and how discretization

effects can be understood. Our work in Wilson and twisted-mass fermions investigates an

increasingly relevant regime where lattice simulations are performed with quarks at or near

their physical masses and both the mass difference of the up and down quarks and their dif-

fering electric charges are included. Our computation of a non-perturbative Greens functions

on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which

they calculate Greens functions which vanish in perturbation theory, yet have a contribution

from the one instanton background.

In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-

mass fermions in the presence of non-degeneracy between the up and down quark and dis-

cretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that

the CP-violating phase of the continuum theory (which occurs for sufficiently large non-

degeneracy) is continuously connected to the Aoki phase of the lattice theory with degen-

erate quarks. We show that discretization effects can, in some cases, push simulations with



physical masses closer to either the CP-violating phase or another phase not present in the

continuum, so that at sufficiently large lattice spacings physical-point simulations could lie

in one of these phases.

In chapter 3, we extend the work in chapter 2 to include the effects of electromag-

netism, so that it is applicable to recent simulations incorporating all sources of isospin

breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclu-

sion of electromagnetism—the only effect is to raise the charged pion masses. For maximally

twisted fermions, we previously took the twist and isospin-breaking directions to be different,

in order that the fermion determinant is real and positive. However, this is incompatible with

electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking

direction, following the RM123 collaboration. We map out the phase diagram in this case,

which has not previously been studied. The results differ from those obtained with different

twist and isospin directions. One practical issue when including electromagnetism is that

the critical masses for up and down quarks differ. We show that one of the criteria suggested

to determine these critical masses does not work, and propose an alternative.

In chapter 4, we delve deeper into the technical details of the analysis in chapter 3.

We determine the phase diagram and chiral condensate for lattice QCD with two flavors of

twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization

errors and a nonzero value of ΘQCD. We find that, in general, the only phase structure is

a first-order transition of finite length. Pion masses are nonvanishing throughout the phase

plane except at the endpoints of the first-order line. Only for extremal values of the twist

angle and ΘQCD (ω = 0 or π/2 and ΘQCD = 0 or π) are there second-order transitions.

In chapter 5 we move on to a new topic, working to make a first measurement of non-

perturbative Greens functions which vanish in perturbation theory but have a non-vanishing

one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi-

classical approach. This measurement was done using 163 × 48 configurations generated by



the MILC collaboration, with coupling β = 6.572, light quark mass m`a = 0.0097, strange

quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm and pion mass mπa = 0.2456.

The analysis was done by separating the Green function of interest into pseudoscalar and

scalar components. These are separately calculated on 440 configurations, using the Chroma

software package. To improve statistics, we used the various reduction technique suggested

in Ref. [13]. We subtracted out the long distance contributions from the pion, excited

pion and a0 from the Green function, in the hope of obtaining the short distance form

predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise

remained. While the results are not in themselves useful, we believe this approach will be

worth repeating in the future with finer lattices with a fermion action with better chiral

symmetry.
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Chapter 1

INTRODUCTION

In this Introduction, we present a brief overview of some of the important ideas and tools

used in the main body of this thesis. We begin in Sec. 1.1 with an introduction to lattice

quantum chromodynamics (LQCD) and lattice hadron spectroscopy which are utilized in

Ch. 5. In Sec. 1.2 we give a minimal introduction to chiral perturbation theory which is the

primary tool used in Ch. 2-4.

1.1 Introduction to lattice QCD

In this section, we present an concise overview of the formulation of LQCD with a focus

on the portions which are relevant to the main body of this dissertation. In the following

we derive the Wilson gauge action, discuss various formulations of lattice fermions, and

summarize steps in implementing a computer simulation, including building and extracting

correlation functions. The following discussion is carried out entirely in Euclidean spacetime,

which is obtained from Minkowski time t by Wick rotating as t→ iτ . A finite temperature,

T , can be included in a lattice formulation by making the Euclidean time direction periodic

with period of the inverse temperature and identifying τmax = 1/T . For the sake of brevity,

this discussion only considers zero temperature where τ is unbounded.

1.1.1 Continuum Gauge Action

The continuum QCD gauge action is,

Sgauge =
1

2g2

∫
d4x tr(Gb

µ,ν(x)Gµ,ν
b (x)) (1.1)
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where Gb
µ,ν is the gluon field strength tensor and “b” is color index, running from 1 to 8 over

the eight generators of QCD gauge group, SU(3). “µ” and “ν” run from 1 to 4 over the 4

Euclidean spacetime directions. Gb
µ,ν can be expressed in terms of the gauge field, Abµ,

Gb
µ,ν(x) = ∂µA

b
ν(x)− ∂νAbµ(x) + i

[
Acµ(x), Adν(x)

]
f bcd, Abµ(x) = Aµ(x)T b .

where f bcd is the group structure constant and T b are the 3x3 traceless hermitian Gell-

Mann matrices which are the generators of SU(3). Gb
µ,ν transforms under a local SU(3)

transformation Ω(x) as,

Gb
µ,ν(x)→ G′bµ,ν(x) = Ω(x)Gb

µ,ν(x)Ω†(x) . (1.2)

As seen from the presence of the gauge fields multiplying the generators, the continuum

action is written in term of elements of the group algebra su(3) rather than than group

elements. The following presents the lattice gauge action, written in terms group elements.

By construction, the lattice action obtained agrees with Eq. 1.1 in the continuum limit.

1.1.2 Discretized Action

In order to discretize QCD, spacetime must first be discretized. The simplest and most widely

used discretization is a four-dimensional hypercubic lattice with lattice spacing a. The four-

dimensional position vector x is replaced by a discrete position vector n = (nx, ny, nz, nτ )

and the spacetime integral is replaced by a discrete sum,

x = (x, y, z, τ)→ an = a(nx, ny, nz, nτ ),

∫
d4x→ a4

∑
n

.

Rather than considering the Abµ’s as the gluon degrees of freedom, we instead use Wilson

lines of length a connecting adjacent lattice sites

Uµ(n) = exp(ia
8∑
b=1

Abµ(n)) .

Here µ is the direction of the link and n is the location of the starting lattice site, as can be

seen in Fig. 1.1 These gauge links transform on the left at the starting point of the link and
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Figure 1.1: Gauge field link at point n = (nx, ny, nz, nτ )

on the right at the end point

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω†(n+ µ̂) . (1.3)

A gauge invariant action can be constructed from a path ordered product of links forming a

closed loop. The simplest non-trivial gauge invariant product of links is called an elementary

plaquette; it is formed by making a 1x1 loop of links.

tr(Pµ,ν(n)) = tr (Uµ(n)U−ν(n+ µ̂)U−µ(n+ µ̂− ν̂)Uν(n− ν̂)) (1.4)

→ tr(Ω(n)Uµ(n)Ω†(n+ µ̂)Ω(n+ µ̂)U−ν(n+ µ̂)Ω†(n+ µ̂− ν̂)

Ω(n+ µ̂− ν̂)U−µ(n+ µ̂− ν̂)Ω†(n− ν̂)Ω(n− ν̂)Uν(n− ν̂Ω†(n)))

= tr (Uµ(n)U−ν(n+ µ̂)U−µ(n+ µ̂− ν̂)Uν(n− ν̂))

Links oriented in the−µ and−ν directions can be related to the links in the positive direction

as,

U−µ(n) = Uµ(n− µ̂)† . (1.5)
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Figure 1.2: Elementary plaquette

A picture of a plaquette, labeled using only positively oriented links is shown in Fig. 1.2.

One form of the action that can be constructed out of plaquettes is the Wilson action,

Sgauge =
4

g2

∑
n

∑
µ,ν

Re tr(1− Pµ,ν(n)) . (1.6)

To see that this form is consistent with continuum action in the continuum limit, a → 0,

each link can be Taylor expanded in powers of a. In order to maintain a local action, gauge

fields that result from links shifted from point n in the µ̂ or ν̂ direction can themselves be

expanded in terms of derivatives of the gauge field

Aµ(n+ ν̂) = Aµ(n) + a∂νAµ(n) +O(a2) . (1.7)

Collecting terms is a simple yet tedious exercise which can be found in some greater detail

in [32]. The action that results from this expansion is,

Sgauge =
a4

2g2

∑
n

∑
µ,ν

(
tr(Gb

µ,ν(n)Gµ,ν
a (n)) +O(a2)

)
. (1.8)
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In the a→ 0 limit, assuming that fields, G, are smoothly varying on the scale of the lattice

spacing, the sum over n is converted to an integral over x and O(a2) terms vanish, yielding

the original continuum action Eq. 1.1.

1.1.3 Lattice fermions

In order to discretize the fermion part of the QCD action, we start with the continuum

action,

Sfermion =

∫
d4xψ(x) (γµDµ(x) +m)ψ(x), Dµ(x) = ∂µ + iAµ(x) . (1.9)

In general, the fermion field ψ can be a vector of dimension Nf , the number of flavors, in

which case m is an Nf ×Nf mass matrix. For simplicity, we focus on one flavor here. The

components of the action transform as,

ψ(x)→ ψ′(x) = Ω(x)ψ(x),

ψ(x)→ ψ
′
(x) = ψ(x)Ω†(x),

Dµ(x)→ D′µ(x) = Ω(x)Dµ(x)Ω†(x) .

In order to discretize, it is easiest to start with the free theory, without gauge fields, and

insert gauge links where needed to have a gauge invariant action. In addition to replacing

the integral with a sum, the derivative acting on ψ must be replaced with a finite difference

∂µψ(x) =
1

2a
(ψ(n+ µ̂)− ψ(n− µ̂)) . (1.10)

The discretized free fermion action is now

Sfree = a4
∑
n

ψ(n)

(
γµ

(ψ(n+ µ̂)− ψ(n− µ̂))

2a
+mψ(n)

)
. (1.11)

From the above gauge transformation of ψ and ψ it is clear the finite difference term is not

gauge invariant. This can be fixed by inserting gauge links

ψ(n)Uµ(n)ψ(n+ µ̂)→ ψ(n)Ω†(n)Ω(n)Uµ(n)Ω†(n+ µ̂)Ω(n+ µ̂)ψ(n+ µ̂) . (1.12)
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This yields the discretized fermion action,

Sfermion = a4
∑
n

ψ(n)

(
γµ
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

2a
+mψ(n)

)
. (1.13)

Similar to the gauge action, this action also agrees with the continuum action in the a→ 0

limit. This action is referred to as the naive fermion action. It is called “naive” due to having

doublers, which are unphysical quark mass poles. This can be seen by looking at the naive

Dirac operator, D(n,m),

Sfermion = a4
∑
n,m

ψ(n)D(n,m)ψ(m) (1.14)

D(n,m) = γµ
Uµ(n)δn+µ̂,m − U †µ(n− µ̂)δn−µ̂,m

2a
+mψ(n)δn,m . (1.15)

One way to see the presence of doublers is to restrict ourselves to the free theory, Uµ(n) = 1,

and Fourier transforming the naive Dirac operator. Skipping intermediate steps [32], the

Fourier transformed naive Dirac operator is,

D̃(n,m) =
1

V

∑
n,m

e−ip·naD(n,m)eiq·ma (1.16)

= δ(p− q)
(
m1 + ia−1γµ sin(pµa)

)
= δ(p− q)D̃(p) . (1.17)

Where V is the lattice spacetime volume and pµ, qµ are momenta which have values in the

range (−π/a, π/a] with −π/a and π/a identified. This operator can then be inverted to

obtain the quark propagator,

D̃−1(p) =
m1− ia−1γµ sin(pµa)

m2 + a−2
∑

µ sin2(pµa)
. (1.18)

The sum over µ in the denominator is shown explicitly to emphasize that it is separate from

the sum in the numerator. The doublers are easiest to see in limit of massless quarks, m→ 0,

where the propagator has the form,

D̃−1(p)|m=0 =
−iaγµ sin(pµa)∑

µ sin2(pµa)
. (1.19)
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Taking the continuum limit with fixed p results in the correct pole at p = (0, 0, 0, 0). For

non-zero lattice spacing, poles appear whenever one or more components of p equals π/a,

resulting in 15 non-physical doublers.

There are several solutions which eliminate the undesired doublers, each having their own

benefits, which we briefly discuss after introducing the simplest solution, Wilson fermions.

1.1.4 Wilson Fermions

The earliest solution to the doubling problem is the use of Wilson fermions [cite Wilson]. The

idea behind Wilson fermions is to add a term to the action that vanishes in the continuum

limit while giving the doublers masses proportional to a−1 such that they become extremely

massive and decouple from the theory as a → 0. This is accomplished by subtracting a

discretized covariant Laplacian from the naive Dirac operator,

D(n,m)Wilson = D(n,m)naive − a
Uµ(n)δn+µ̂,m − 2δn,m + U †µ(n− µ̂)δn−µ̂,m

2a2
. (1.20)

For the free theory, this results in the inverse propagator, in momentum space,

D̃(p) =

(
m1 + ia−1γµ sin(pµa) + a−1

∑
µ

(1− cos(pµa))1

)
. (1.21)

The added term (the last term) vanishes both for fixed p as a → 0 and at the massless

physical pole, p = (0, 0, 0, 0). Each doubler has an effective mass of

mdoubler = m+
2N

a
(1.22)

where N is the number of components of p equal to π/a.

While Wilson fermions solve the doubling problem, the solution comes at the expense

of chiral symmetry, which is discussed further in Sec. 1.2. One modification to the Wilson

action is twisted mass where the quark mass matrix is given an axial SU(Nf) phase such that

the mass and Wilson terms in the action do not mix. Twisted mass fermions are one of the

main focuses of this dissertation and are discussed in much greater detail in chapter 2.
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1.1.5 Numerical simulation

The basic principle behind an actual lattice simulation is considering the exponential of the

action as a probability density function describing the importance of various configurations of

gauge fields. In order to have a probability density function that can be accurately sampled

with a finite number of gauge configurations, it is necessary to rotate to Euclidean time,

Z =

∫
D (U)D (ψ)D

(
ψ
)
e−SEuclidean . (1.23)

This formulation favors configurations with lower action, which is consistent with the prin-

ciple of least action from classical physics 1

In order to include fermions, the Grassmann Gaussian integral over the fermionic fields

is performed, replacing the integral over ψ and ψ with a factor of the determinant of the

Dirac operator for each flavor. This fermion determinant then acts as a weighting, changing

the importance of different gauge field configurations,∫
D (U)D (ψ)D

(
ψ
)
e−(Sgauge+

∫
d4xψ( /D+mf)ψ =

∫
D (U)

(∏
f

det
[
/D + mf

])
e−Sgauge .

(1.24)

In continuum field theory, expectation values of operators are calculated just like moments

of a probability density, by integrating the operator over configuration space, weighted by

the exponentiated action and normalized by the partition function,

〈O〉 =
1

Z

∫
D (U)D (ψ)D

(
ψ
)
e−SEuclideanO

(
U, ψ, ψ

)
. (1.25)

An alternative, equivalent approach, is to calculate the operator and average over configu-

rations which are selected from the probability distribution. If the selected configurations

faithfully sample all of configuration space, the expectation values of operators can be cal-

culated with errors which scale as N−1/2 where N is the number of configurations sampled,

〈O〉 = lim
N→∞

1

N

∑
conf

O
(
U, ψ, ψ

)
=

1

N

∑
conf

O
(
U, ψ, ψ

)
+O(1/

√
N) . (1.26)

1In actuality, classical physics is restricted to a stationary action, δS = 0, such that the action is a local
minima but not necessarily a global minima.
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The numerical challenge is now to generate an ensemble of gauge field configurations

which sample the distribution of possible gauge fields. In order to sample the physical en-

semble, this generation must be aperiodic and ergodic, meaning every possible configuration

could eventually be reached.

The basic procedure for generating these configurations begins with thermalization. Con-

figurations are first initialized, most often with either a “cold start” or a “hot start” where

each link is set to the identity or a random SU(3) phase, respectively. Then, each link is

sucessively updated. There are several kinds of update algorithms but the simplest is the

Metropolis update. In a Metropolis update, a candidate link is obtained by making a small

change to the original link by multiplying it by an SU(3) matrix, X, which is near the

identity,

Uµ(n)candidate = XUµ(n)old . (1.27)

This change is accepted if it lowers or does not change the action, and is accepted with

probability,

e−(S(Ucandidate)−S(Uold)) (1.28)

if the action is increased. This process must be repeated until the configuration generated

can be said to have thermalized. There are multiple ways to check when thermalization has

been attained, typically involving measuring when observables, such as the average plaquette

value, fluctuate about a stable value. Factors that can result in more configurations needing

to be generated until thermalization include small gauge coupling, g, and large lattice sizes.

How close the candidate generating matrix X is to the identity can also effect thermalization.

Too small of a change and the gauge fields will change slowly, too large of a change and the

action may greatly increase, causing candidate gauge fields to be rejected. In practice,

thermalization can be somewhat sped up by using sequences of different update algorithms.

Once thermalized, future configurations can be used for actual measurements of QCD

observables. Due to the sequential nature of the update, successive configurations are corre-

lated. In order for errors to be well understood and fall as N−1/2, this correlation must be
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accounted for. One strategy is to only save configurations that are sufficiently spaced out

along the chain of successive updates. This spacing is chosen by determining the correlation

between measurements of a representative operator, such as the average plaquette. The

details are beyond the scope of this introduction and are discussed elsewhere, such as [32].

Another strategy is blocking the configurations. Rather than considering the mean value

of some operator on each configuration, the mean value on a block of M configurations is

measured. The size of each block, M , is increased, until the variance falls as M−1, at which

point, the measurement on each block can be considered independent.

The number of independent configurations required for a measurement depends on the

quantity’s intrinsic fluctuation, measured by its standard deviation, and the desired precision.

It is desirable to include enough configurations such that the statistical error is smaller than

any systematic errors. In practice, modern studies typically use hundreds to thousands of

configurations.

1.1.6 Hadron correlators

In order to discuss hadronic states, we must first introduce the Euclidean correlator. Consider

some operator Ô which acts on a Hilbert space to either create or destroy a state. Using the

completeness relationship in some orthonormal basis,

1 =
∑
n

|en〉〈en| (1.29)

the trace of the operator Ô is defined as,

tr
(
Ô
)

=
∑
n

〈en|Ô|en〉 . (1.30)

A Euclidean correlator relates states that are created or destroyed at some space-time sepa-

ration xµ. As we are interested in the energies of hadron states, we will restrict ourselves to

Euclidean time separations, τ . The points are connected using the Euclidean time evolution

operator e−Ĥτ where Ĥ is the Hamiltonian operator. Considering a space-time which is
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periodic in the time direction, as is the case in many lattice simulations, the returning time

evolution operator is e−Ĥ(τmax−τ). A general Euclidean correlator then has the form,

〈O2(τ)O1(0)〉 =
1

Z
tr
(
e−Ĥ(τmax−τ)Ô2e

−Ĥτ Ô1

)
, (1.31)

where the normalization factor is Z = tr
(
e−Ĥτmax

)
. The natural choice of basis is the eigen-

states of Ĥ, where Ĥ|n〉 = En|n〉. Here En are the discrete real valued energy eigenvalues

chosen to be ordered such that,

E0 ≤ E1 ≤ E2... (1.32)

where E0 is the vacuum energy. In this basis, the Euclidean correlator becomes,

〈O2(τ)O1(0)〉 =
1

Z
∑
m,n

〈m|Ô2|n〉〈n|Ô1|m〉e−Em(τmax−τ)e−Enτ . (1.33)

An overall factor with the vacuum energy e−E0τmax can be factored out and included in the

normalization factor Z. The vacuum energy state e−E0τ and eE0τ can be canceled between

the two exponentials. This can be done such that we are only considering energy differences

from the vacuum, as this is the energy which is observable in real world experiments. For

ease of notation, we will simply set E0 = 0. In the τmax → ∞ limit, which corresponds to

zero temperature, only the Em = 0 term in the sum survives, resulting in,

lim
τmax→∞

〈O2(τ)O1(0)〉 =
∑
n

〈0|Ô2|n〉〈n|Ô1|0〉e−Enτ . (1.34)

The factor e−E0τmax/Z equals unity in the τmax → ∞ limit so it does not appear here. Ô1

and Ô2 can be chosen to be Ô†h and Ôh respectively. These operators create or destroy from

the vacuum a state with the quantum numbers of some hadron h. The above can now be

written as,

lim
τmax→∞

〈Oh(τ)O†h(0)〉 = |〈h|Ô†h|0〉|
2e−Ehτ + |〈h′|Ô†h|0〉|

2e−Eh′τ + higher energy excitations ,

(1.35)

where Eh is the lowest energy state with the quantum numbers h and Eh′ is the energy of the

first excited state. Each successive excited state will fall off more quickly with τ , allowing
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extraction of mass of a hadron by measuring at the Euclidean correlator at large values of τ .

All sorts of hadronic matter can be studied using this method, including mesons, baryons,

and gluonic matter, including glueballs and exotics. For simplicity and as it is most relevant

to Ch. 5, we will look just at mesons using the pion for illustration. The pion is psuedoscalar

that is composed of a light quark and antiquark, indicating it can be created the operator

Oπ+ = dγ5u. Technically, this is the state of the charged π+ but for simulations without

electromagnetism and degenerate up and down quark masses, all three pions are degenerate.

A correlator that can be used to extract the pion mass is,

C(nτ ) =
∑
~x

〈uγ5d(~x, nτ )dγ5u(0)〉 = A0

(
e−mπanτ + e−mπa(Nτ−nτ )

)
+higher energy excitations .

(1.36)

This equation differs from Eq. 1.35 in several ways. τ has been replaced with anτ as space-

time is now discretized. A sum over space on each time-slice is included to project out only

the zero momentum mode such that the only energy contribution is from the mass of the

pion. Lastly, due to finite time extent with periodic boundary conditions, the image pion

propagator e−mπa(Nτ−nτ ) appears. This can be written compactly using the cosh function,

C(nτ ) = Ã0 cosh(meff (nτ −Nτ/2)) . (1.37)

The mass of the pion is extracted either by fitting the measurement to Eq. 1.37 or by looking

at an effective mass plot, which is generated by solving,

C(nτ )

C(nτ + 1)
=

cosh(meff (nτ −Nτ/2))

cosh(meff (nτ + 1−Nτ/2))
(1.38)

for meff at each time slice nτ and finding where the value of meff reaches a stable plateau.

An example of the pion correlator and an effective mass can be seen in Fig. 1.3a and 1.3b.

1.2 Introduction to chiral symmetry and chiral perturbation field theory

In this section, we will lay the groundwork for and introduce chiral perturbation field theory

(χPT) such that it may be used in Ch. 2-4. For a more in depth review of χPT I recommend

the lectures Ref. [59], [41], and the textbook Ref. [51].
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(a) Ensemble averaged pion correlator, with fit

to Eq. 1.37.

(b) Ensemble averaged pion effective mass,

calculated using Eq. 1.38

1.2.1 Chiral symmetry

The massless QCD Lagrangian obeys a SU(Nf )L×SU(Nf )R chiral symmetry. As only the up,

down and strange quarks are light compared to the natural scale of QCD ΛQCD ∼ 300 MeV

it is only sensible to consider the Nf = 2 and Nf = 3 theories. The fermionic field, ψ is a

vector of quark fields

ψ =


u

d

s

 ψ =
(
u, d, s

)
, (1.39)

where s is included in the Nf = 3 theory but not the Nf = 2 theory. The chiral symmetry

of the Lagrangian can be made clear using the chiral projectors PL/R = (1 ± γ5)/2, which

have the properties,

(PL,R)2 = 1 PLPR = PRPL = 0 (1.40)

γµPL,R = PR,Lγµ

and act on fermionic fields as,

1ψ = (PL + PR)ψ = PLψL + PRψR (1.41)

ψ1 = ψ(PL + PR) = ψRPL + ψLPR.
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where each left or right-handed fermionic field independently transforms under a left or right

handed chiral transformation,

Left-handed transformation: ψL → ULψL ψR → ψR (1.42)

ψL → U †LψL ψR → ψR

Right-handed transformation: ψL → ψL ψR → URψR

ψL → ψL ψR → U †RψR .

Using these properties, the massless QCD fermionic Lagrangian can be seen to be invariant

under a chiral transformation,

ψ /Dψ = ψ(PL + PR) /D(PL + PR)ψ (1.43)

= (ψRPL + ψLPR) /D(PLψL + PRψR)

= ψR /DψR + ψL /DψL

Left-handed transformation: → ψR /DψR + ψLU
†
L
/DULψL

= ψR /DψR + ψL /DψL

Right-handed transformation: → ψRU
†
R
/DURψR + ψL /DψL

= ψR /DψR + ψL /DψL

where /D = γµ(∂µ + igAµ). While chiral symmetry is a symmetry of the massless QCD La-

grangian, it is spontaneously broken by the vacuum, which obtains a nonzero quark conden-

sate 〈ψψ〉 ∼ Λ3
QCD. The condensate is not invariant under an arbitrary chiral transformation

as its left and right handed components do not separate,

〈ψψ〉 = 〈ψLψR + ψLψR〉 6= 0 . (1.44)

The left and right handed transformations can be repackaged into a vector transformation,

where UL = UR and an axial transformation, UL = U †R. While not preserving full chiral

symmetry, as long as the condensate for each flavor is equal, 〈uu〉 = 〈dd〉(= 〈ss〉) a SU(Nf )

vector symmetry is preserved while the axial transformation is not. Goldstone’s theorem tells
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us that the number of broken generators, in this case the axial generators, is equal to the

number of massless Nambu-Goldstone bosons. In the three flavor theory, SU(3)L×SU(3)R →

SU(3)V with eight mesons— the four kaons, three pions and the eta. In the two flavor theory,

SU(2)L × SU(2)R → SU(2)V with three mesons, the pions.

In reality, the up, down and strange quarks are not massless and are not degenerate, which

explicitly breaks both the axial and the vector transformation. Despite this explicit breaking,

spontaneous breaking by a non-vanishing condensate is still considered the primary cause of

chiral symmetry breaking due to the approximate SU(3)V symmetry which manifests itself

in the eight light mesons and the even better SU(2)V symmetry manifesting in the pions

which are the lightest hadronic states. This is due to the three light quark masses being

small relative to the scale of the condensate mu,d,s/ΛQCD � 1.

1.2.2 Chiral perturbation theory

Chiral perturbation theory (χPT) is the energy effective field theory that describes QCD at

energies below the chiral scale Λχ ∼ 1 GeV, where the light mesons fields are the degrees

of freedom. The chiral scale Λχ is the mass scale of hadrons made up of the three light

quarks which are not psuedo Nambu-Goldsone bosons, such as the rho and the proton. The

condensate can be treated as the vacuum expectation value of a dynamical field, Σ(x), which

is an element of SU(3)V /SU(2)V ,

〈ψψ〉 ∝ 〈U †RUL + U †LUR〉 = 〈Σ〉 (1.45)

Σ(x)→ ULΣ(x)U †R

The field parametrizes the light meson fields as,

Σ(x) = 〈Σ〉e2iπa(x)Ta (1.46)

where f ∼ 92 MeV (the pion decay constant in the chiral mu,d,s → 0 limit) is a low energy

coefficent (LEC). πa are the meson fields and T a are the Gell-Mann matrices in the three
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flavor theory and the Pauli matrices in the two flavor theory,

SU(3)V : πaT a =


π0

2
+ η√

12
π+
√

2
K+
√

2

π−√
2

−π0

2
+ η√

12
K0
√

2

K−√
2

K0√
2

− 2η√
12

 (1.47)

SU(2)V : πaT a =

 π0

2
π+
√

2

π−√
2
−π0

2


From here, we follow the normal strategy of an effective field theory, writing down the most

general Lagrangian by including all non-trivial terms that obey the symmetries of this theory,

starting with the lowest dimension terms. At leading order (LO), this is simply the kinetic

term,

Lχ =
f 2

4
tr
[
∂µΣ∂µΣ†

]
. (1.48)

As the quarks are not massless, the quark mass matrix must be included, although it does not

respect chiral symmetry. To get around this, we use the spurion trick, where the mass matrix,

M , is treated as though it transforms like Σ, with the actual value of M only substituted

when evaluating,

M → ULMU †R

M =


mu 0 0

0 md 0

0 0 ms

 , (1.49)

where the third row and column is deleted in the two flavor theory. The mass term enters

the LO Lagrangian with a new LEC B0,

Lχ =
f 2

4
tr
[
∂µΣ∂µΣ† − 2B0(MΣ† + ΣM †)

]
. (1.50)

Expanding the above equation in powers of πa, the meson masses are found to be,

m2
qf ,qf ′

= B0(mf +mf ′), f 6= f ′, f = {u, d, s} (1.51)
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with the exception of the π0 and η in the three flavor theory that mix, resulting in a correc-

tions to the masses that go as B0(mu −md)
2/ms.

For greater accuracy, next to leading order (NLO) corrections can be included as well

by including higher dimension terms in the Lagrangian. To determine the next terms that

must be included, a power counting must be established. The leading Lagrangian scales as

O(p2 ∼ B0mf ), which is small compared to the natural scale of χPT Λ2
χ = (4πf)2. The

NLO Lagrangian will include terms which are suppressed by an additional factor of Λ2
χ,

LO:
p2

Λ2
χ

∼ B0mf

Λ2
χ

NLO:
p4

Λ4
χ

∼ p2B0mf

Λ4
χ

∼ (B0mf )
2

Λ4
χ

. (1.52)

In the three flavor theory, there are 10 independent terms, but here we show only the 8 which

do not include external sources,

Lχ,NLO =− L1 tr
[
∂µΣ∂µΣ†

]2
+ L2 tr

[
∂µΣ∂νΣ

†] tr
[
∂µΣ∂νΣ

†] (1.53)

+ L3 tr
[
∂µΣ∂µΣ†∂νΣ∂νΣ

†]+ L4 tr
[
∂µΣ∂µΣ†

]
tr
[
2B0(MΣ† + ΣM †)

]
+ L5 tr

[
∂µΣ∂µΣ†2B0(MΣ† + ΣM †)

]
− L6

(
tr
[
2B0(MΣ† + ΣM †)

])2

− L7

(
tr
[
2B0(MΣ† − ΣM †)

])2 − L8 tr
[
4B2

0

(
MΣ†MΣ† + ΣM †ΣM †)] . (1.54)

In the two flavor theory, by exploiting identities among traces of SU(2) matrices, the NLO

Lagrangian can be further reduced to 7 independent terms. The LEC for each of these terms,

the Li’s, are called the Gasser-Leutwyler coefficents. These coefficents are fundamental

parameters of QCD, some of which can be measured experimentally, while others can be

calculated on the lattice, exploiting the fact that lattice simulations are not restricted to a

single set of quark masses.
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Chapter 2

PHASE DIAGRAM OF NON-DEGENERATE TWISTED MASS
FERMIONS 1

2.1 Introduction

It has long been known, in the case of three light quarks, that there is a transition to a CP-

violating phase for non-degenerate quarks when one of the quark masses becomes sufficiently

negative [19]. For example, using leading order (LO) SU(3) chiral perturbation theory (χPT),

and fixing md and ms, the transition occurs when mu = −mdms/(md + ms) [16]. The

neutral pion becomes massless on the transition line, and within the new phase the chiral

order parameter, 〈Σ〉, becomes complex. For physical QCD this is mostly a curiosity, since

increasingly accurate determinations of the quark masses indicate clearly that all are positive

relative to one another [11, 4]. Thus physical QCD, despite the non-degeneracy of the up

and down quarks, lies away from the critical line.

For lattice QCD (LQCD), however, the situation is less clear. The position of the tran-

sition can be shifted closer to the physical point by discretization effects. Indeed, it is well

known that, with degenerate Wilson-like fermions,2 discretization effects can lead to the ap-

pearance of a new phase—the Aoki phase—in which isospin is spontaneously broken and 〈Σ〉

is complex [3, 56]. In addition, advances in simulations now allow calculations to be done

at the physical light-quark masses, including, very recently, the physical non-degeneracy be-

tween up and down quarks [14]. It is thus natural to ask how, in LQCD with non-degenerate

quarks, discretization effects change the position and nature of the CP-violating phase. This

question is particularly acute in the case of twisted-mass fermions, where additional symme-

1This chapter is adapted with minimal changes from Ref. [38]

2“Wilson-like” indicates that the analysis holds for both Wilson fermions and various improvements
thereof, in particular for non-perturbatively O(a)-improved Wilson fermions.
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try breaking is explicitly included.

In this chapter we address this question for Wilson-like and twisted-mass lattice fermions.

We do so using χPT, specifically the versions of χPT in which the effects of discretization

have been included. Our work also allows us to address a related issue: In what way is the

CP-violating phase of the continuum theory related to the Aoki phase of the lattice theory?3

Since twisted-mass QCD is only defined for even numbers of fermion flavors [28], a nec-

essary step for our work is to rephrase the continuum SU(3) χPT analysis of Ref. [16] in the

two-flavor theory obtained by integrating out the strange quark. This requires that the con-

tributions of one of the next-to-leading order (NLO) low-energy coefficients (`7) be treated as

parametrically larger than the others. Thus we are led to a somewhat non-standard power-

counting, but one which reproduces the SU(3) phase diagram, including the CP-violating

phase, within SU(2) χPT. This approach has been used before along the line mu = −md [61];

here we extend the analysis to arbitrary mass splitting. Similar work has also been done

recently in the context of a effective theory including the η meson [5].

The organization of this article is as follows. In Sec. 2.2 we briefly recall the results

for the phase structure and pion masses at LO in SU(2) and SU(3) χPT, and show how

they differ. Section 2.3 describes the matching of SU(3) and SU(2) χPT. In Sec. 2.4, we

recall briefly how discretization effects are incorporated in χPT for degenerate Wilson-like

fermions, and the resulting phase structure. We then present our first new results: the phase

diagram including both discretization effects and non-degeneracy. In Sec. 2.5 we move onto

twisted-mass fermions, focusing first on the phase diagram and pion masses in the case of

maximal twist, where most simulations have been done because of the property of automatic

O(a) improvement [28]. It is nevertheless interesting to understand how the results with

untwisted and maximally twisted fermions are connected, and so, in Sec. 2.6, we discuss the

phase diagram for general twist.

Up to this stage, our analysis is done using the LO terms due to the average quark

3This issue has been raised previously by Mike Creutz and his conjectured answer is confirmed by the
present analysis [18].
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mass, discretization effects and non-degenerate quark masses. To understand how robust

the results are we consider, in Sec. 2.7, the impact of including the next higher order terms

in our power counting. Some conclusions are collected in Section 2.8.

2.2 Continuum Vacuum Structure at leading order in χPT

In this section we review the vacuum structure predicted by LO χPT for both two and three

light flavors. The LO chiral Lagrangian in Euclidean space-time is, for any number of light

flavors,

Lχ =
f 2

4
tr
[
∂µΣ∂µΣ† − (χΣ† + Σχ†)

]
, (2.1)

where Σ ∈ SU(Nf ) and χ = 2B0M (with M the mass matrix), while f ∼ 92 MeV and B0

are low-energy constants (LECs).

For two light flavors the chiral order parameter can be parametrized as 〈Σ〉 = exp(iθn̂ ·~τ).

Although the mass matrix M = diag(mu,md) has both singlet and triplet components, the

leading order potential depends only on the former

VSU(2), LO = −f
2

4
tr
[
χΣ† + Σχ†

]
= −f

2

2
cos θ tr[χ] ≡ −f 2 cos θ χ` . (2.2)

In the last step we have defined the convenient quantity χ` = B0(mu +md). The potential is

minimized at θ = 0 if χ` > 0 and at θ = π if χ` < 0, resulting in the phase diagram sketched

in Fig. 2.1. In terms of the behavior of the condensate, this is a first-order phase transition

at which the condensate flips sign. This characterization is somewhat misleading, however,

because the two sides of the transition are related by a non-anomalous flavor rotation. Such

a transformation can change M → −M and Σ → −Σ, while leaving physics unchanged.

Thus by adding an extra dimension to the phase diagram (as we will do later) one finds that

the two sides are connected.

Expanding the potential about its minimum, using Σ = 〈Σ〉 exp(i~π · ~τ/f) we find the

standard LO result for the pion masses, m2
π = |χ`|. These thus vanish along the phase

transition line. That they vanish at the origin follows from Goldstone’s theorem due to the

spontaneous breaking of the exact axial symmetry. That they vanish away from the origin



21

Figure 2.1: Phase diagram at lowest order in SU(2) χPT.

along the transition line is not expected from symmetry arguments, and indeed holds, as we

will see, only at LO in χPT.

The phase diagram of the three-flavor theory has a more interesting structure, as eluci-

dated most extensively by Creutz [16]. Since ms � mu,md in nature, it is natural to hold ms

fixed and vary the other two quark masses. The resulting phase diagram at LO is sketched

in Fig. 2.2. The “normal” region, in which 〈Σ〉 = 1, ends at a transition line along which

mπ0 vanishes. This occurs (for fixed ms > 0) when one of the other masses, say mu, becomes

sufficiently negative. The explicit expression for the neutral pion mass in this phase is

m2
π0 SU(3) =

2

3
B0

(
mu +md +ms −

√
m2
u +m2

d +m2
s −mumd −mums −mdms

)
, (2.3)

which vanishes when mu = −mdms/(md +ms). The charged pions remain massive through-

out the normal phase except at the origin.

Moving outside the normal phase one enters a CP-violating phase in which the condensate
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Figure 2.2: Phase diagram at lowest order in SU(3) χPT with fixed strange quark mass.

Equations for the positions of phase transition lines are given in the text.

is complex. The explicit form is

〈Σ〉 =


exp iφ 0 0

0 exp iψ 0

0 0 exp−i(φ+ ψ)

 (2.4)

where the phases satisfy

mu sinφ = md sinψ = −ms sin (φ+ ψ) . (2.5)

In this case there is a genuine phase transition at the boundary. It is of second order: 〈Σ〉 is

continuous, and a single pion becomes massless.

The phase diagram is symmetric under both mu ↔ md interchange and inversion through

the origin (with ms fixed). Inversion is brought about by a non-anomalous axial isospin

transformation, which also changes the condensate as shown in Fig. 2.2. We note that the

CP-violating region is of finite width.4 Specifically, as one moves away from the origin along

4The theory along the mu = −md diagonal is identical to that with mu = md at θQCD = π, and has
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the mu = −md diagonal, the width of this region grows proportionally to (mu−md)
2/ms.

As the figure shows, there are additional phase boundaries in the second and fourth

quadrants. These occur, however, when |mu|, |md| > |ms|, and thus lie far from the region of

physical interest. In the rest of our analysis, we consider only the region in which |mu|, |md| �

|ms|, and thus zoom in on the vicinity of the origin in Fig. 2.2.

2.3 Matching SU(2) and SU(3) χPT for non-degenerate quarks

If we choose the quark masses to satisfy |mu|, |md| � |ms| � ΛQCD, then the properties of

pions can be simultaneously described by both SU(2) and SU(3) χPT, and the predictions

of the two theories must agree. The results of the previous section show that this is not the

case if we work to LO in both theories—the CP-violating phase is absent in SU(2) χPT.

The discrepancy is resolved by noting that the CP-violating phase has a width proportional

to (mu−md)
2, indicating that it arises at NLO in SU(2) χPT. In this section we recall how

the two theories are matched, and show how the CP-violating phase can then be obtained

in SU(2) χPT when including the resulting NLO term.

To do the matching, one considers quantities accessible in both SU(2) and SU(3) theories,

namely pion masses and scattering amplitudes. Expanding the LO SU(3) result in powers

of mu,d/ms, the leading terms match with the LO SU(2) result, while the first subleading

terms match with an NLO SU(2) contribution. The subleading terms in the SU(3) results are

in fact proportional to (mu−md)
2, because they arise from intermediate η propagators and

involve two factors of the π0−η mixing amplitude. The only source of such mass dependence

at NLO in the SU(2) theory is the `7 term in the NLO potential

VSU(2)NLO = − `3

16
[tr(χ†Σ + Σ†χ)]2 +

`7

16
[tr(χ†Σ− Σ†χ)]2 . (2.6)

Writing χ as

χ = χ`1 + ετ3 , with ε = B0(mu −md) , (2.7)

been discussed extensively in the literature. In particular, a χPT analysis of this theory has been given in
Ref. [61].
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we see that only the ε part contributes to the `7 term. Thus this term leads to contributions

proportional to (mu−md)
2. Other NLO contributions (i.e. those proportional to different

NLO LECs or coming from loops) do not have this mass dependence.

The simplest quantity with which to do the matching is the neutral pion mass, and this

was used to determine the value of `7 in Ref. [31]. The LO SU(3) result [given in Eq. (2.3)

above] expands to

m2
π0SU(3)LO = χ` −

ε2

4B0ms

+O
(
ε2mu,d

m2
s

)
. (2.8)

The SU(2) result at NLO is

m2
π0SU(2)NLO = χ` −

2`7ε
2

f 2
+O

(
χ2
`

Λ2
χ

)
, (2.9)

where Λχ = 4πf is the chiral scale. The χ2
` contributions arise from terms in the NLO chiral

Lagrangian (including `3) as well as from chiral logarithms. Equating these two results one

finds [31]

`7 =
f 2

8B0ms

. (2.10)

One can show that with this value for `7, contributions to all pion n-point amplitudes pro-

portional to ε2/ms agree in the two theories.

We stress that in this matching we are not taking into account “standard” NLO contri-

butions, i.e. those suppressed relative to LO results by factors of mu,d/ΛQCD ∼ (mπ/Λχ)2

(up to logarithms). Such contributions arise in both SU(3) and SU(2) χPT and must be

included in a full NLO matching. This is not necessary for our purposes since such terms

lead to small isospin-conserving corrections to the vacuum structure and pion masses—they

do not introduce qualitatively new effects. By contrast, the ε2 terms that we keep lead to

isospin breaking, and are the leading order contributions which do so. Indeed, for this reason

`7 is not renormalized at this order, since, as already noted, one-loop chiral logarithms do not

contain a term proportional to ε2. Thus it is consistent to work with the classical potential,

rather than the one-loop effective potential. This is not the case for other LECs such as `3,

which are renormalized and thus scale-dependent [31].
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We can formalize this by noting that standard NLO contributions are parametrically

smaller than the terms we keep by a factor of ms/ΛQCD. This allows the development

of a consistent power-counting scheme in which the ε2 terms are larger than generic m2

contributions.5 We discuss this in the following section. To be consistent we should also

account for NLO contributions in SU(3) χPT of size ms/ΛQCD relative to LO terms. These,

however, lead only to a renormalization of the SU(2) constants f and B0 relative to their

SU(3) counterparts. Since we work henceforth entirely in the SU(2) theory, we choose to

leave this renormalization implicit.

We now show that the inclusion of the `7 term leads to the same phase diagram as found

in the LO SU(3) analysis. Given the matching result Eq. (3.4), we always assume `7 > 0 in

the following. Using 〈Σ〉 = exp(iθn̂ · ~τ), the potential becomes

VSU(2) = −f 2
(
χ` cos θ + c`ε

2n2
3 sin2 θ

)
, (2.11)

where c` = `7/f
2. Since `7 > 0, the potential is always minimized by choosing |n3| = 1.

Since n3 = 1 and n3 = −1 are related by changing the sign of θ, we can, without loss of

generality, set n3 = 1. The resulting potential is stationary with respect to θ at the “normal”

values θ = 0 and π, and in addition at

cos θ =
χ`

2c`ε2
. (2.12)

This new stationary value always leads to the global minimum of the potential where it is

valid, i.e. when | cos θ| ≤ 1. Thus, for fixed ε, there is a new phase for −2c`ε
2 ≤ χ` ≤ 2c`ε

2,

within which 〈Σ〉 is complex and CP is violated. Although cos θ is fixed, the sign of θ is

not, with the two possible vacua begin related by a CP transformation. This phase matches

continuously onto the normal phases with cos θ = ±1 at its boundaries. Thus the phase

transition is of second order.

5The numerical basis for this power-counting is not very strong. For example, `7 and `3(µ) are comparable
in size for reasonable values of the scale µ. Thus the numerical size of the standard NLO corrections we
are dropping may be comparable to those proportional to ε2 that we are keeping. The key point, however,
is that we are interested in qualitatively new effects, rather than a precise quantitative description.
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Figure 2.3: Phase diagram from SU(2) χPT including `7 term with `7 > 0. Equations for

the positions of phase transition lines are given in the text.

The resulting phase diagram is sketched in Fig. 2.3. This is not only qualitatively similar

to the central portion of the LO SU(3) phase diagram, Fig. 2.2, but is in fact in complete

quantitative agreement at the appropriate order. For example, expanding the SU(3) result

for the phase boundary, mu = −md/(1 + md/ms), in powers of mu,d/ms, and keeping only

the leading non-trivial term, one finds that the boundary occurs at χ` = ε2/(4B0ms). This

agrees with the SU(2) result χ` = 2`7ε
2/f 2 using the matching condition (3.4). We have also

checked that the pion masses agree throughout the phase plane. We do not quote results for

pion masses here, since they are included in the more general analysis presented below.

The fact that the CP-violating phase can be reproduced within SU(2) χPT was first

explained by Smilga [61]. His work considered only the case mu = −md, which, as noted

above, is the same as mu = md with θQCD = π. The analysis presented here gives the

(very simple) generalization to arbitrary non-degenerate quark masses. There is also a close

relation between our analysis and the recent work of Aoki and Creutz [5]. These authors do

not use χPT per se, but rather an effective theory containing both pions and the η meson. If
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the η were integrated out then their theory would reduce to that we consider here, including

the `7 term, plus small corrections. We think, however, that it is preferable to work in a

strict effective theory framework, in which only the light particles are kept as dynamical

degrees of freedom.

2.4 Including discretization effects for Wilson-like fermions

In this section we recall how lattice artifacts can be incorporated into χPT, and study

their impact on the phase structure described above at leading non-trivial order. We do

this for untwisted Wilson-like fermions—twist will be considered in the following sections.

The method leads to the chiral effective theory describing lattice simulations close to the

continuum limit. We begin by recalling the analysis for degenerate quarks and then add in

non-degeneracy. We work entirely in the two-flavor theory obtained after the strange quark

(and the charm quark too, if present) has been integrated out. For untwisted Wilson-like

fermions (unlike for twisted-mass fermions), the analysis could also be carried out within

SU(3) χPT, but there is no advantage to doing so as the dominant long-distance dynamics

lies in the SU(2) sector.

Both quark masses and discretization effects break chiral symmetry, and it is important to

understand the relative size of these effects. Our focus here is on state-of-the-art simulations,

which have mu,d close to their physical values (mu ≈ 2.5 MeV and md ≈ 5 MeV in the MS

scheme at µ = 2 GeV), and lattice spacings such that 1/a ≈ 3 GeV. In this case, the relative

size of discretization effects is characterized by aΛQCD ≈ 0.1 (using ΛQCD = 300 MeV), so

that

aΛ2
QCD ≈ 30 MeV� mu,d ≈ a2Λ3

QCD ≈ 3 MeV . (2.13)

The appropriate power-counting is thus (in schematic notation) a2 ∼ m. This is the Aoki

regime, in which competition between discretization and mass effects leads to interesting

phase structure [3, 56].

Discretization effects can be incorporated into χPT following the method of Ref. [56].

For unimproved (or partially improved) Wilson fermions, the dominant discretization effect
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Figure 2.4: Phase diagram in LO SU(2) χPT including discretization effects with w′ < 0

(Aoki scenario). Equations for the positions of phase transition lines are given in the text.

is proportional to a. In the pion sector, however, this contribution can be absorbed entirely

into a common shift in all quark masses [56], and we assume below that this shift has been

made. The first non-trivial discretization effect is that proportional to a2. This changes the

LO potential to [56]

Va2 =− f 2

4
tr(χ†Σ + Σ†χ)−W ′[tr(Â†Σ + Σ†Â)]2 . (2.14)

Here we are using the notation of Ref. [57], in which Â = 2W0a1 is a spurion field, with

dimensions of mass squared, and proportional to the identity matrix in flavor space. W0 and

W ′ are new LECs.

The analysis of the vacuum structure for degenerate quarks was given in Ref. [56]. Since

Va2 is independent of the ε, the results are unchanged at LO in the presence of non-degeneracy.

To determine the vacuum we must minimize

Va2 = −f 2
(
χ` cos θ + w′ cos2 θ

)
, (2.15)
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where w′ = 64W ′W 2
0 a

2/f 2. For w′ < 0, the analysis is essentially the same as that for VSU(2)

with `7 > 0, as given in the previous section. Stationary points are at cos θ = ±1 and

cos θ = − χ`
2w′

, (2.16)

with the latter being the global minimum where valid (| cos θ| ≤ 1). This leads to the phase

diagram shown in Fig. 2.4, with an Aoki phase [3] separated from the normal phases by

second-order transitions at |χ`| = −2w′. Strictly speaking, the name “Aoki phase” has been

applied previously only on the diagonal mu = md axis, but in the present approximation it

holds also for non-degenerate quarks. Within the Aoki phase the potential is independent

of the direction of the condensate, n̂, so that there are two massless Goldstone bosons, the

charged pions. Parity and flavor are violated within this phase. With the canonical choice

of the direction of the condensate, n̂ = ẑ, CP is also violated.

For w′ > 0, the global minimum lies at cos θ = sign(χ`), with a first-order transition at

χ` = 0. The phase diagram is thus identical to that in the continuum, Fig. 2.1. The only

difference is that here the yellow line indicates a genuine first-order transition, since on the

lattice there are no symmetries connecting the two sides. This case is referred to as the

first-order scenario [56].

We are now ready to combine the effects of non-degeneracy with discretization errors.

This requires that we adopt an appropriate power-counting scheme for the relative impor-

tance of ε2, m and a2, where m indicates a generic quark mass. Recalling that ε2 terms are

enhanced compared to generic m2 terms we use

m ∼ a2 > ε2 > ma ∼ a3 > aε2 > m2 ∼ ma2 ∼ a4 . . . . (2.17)

This can be thought of as treating ε ∼ a1+δ, with 0 < δ < 1/2. The utility of this power

counting is that allows us to first add the ε2 term to those proportional to m and a2, and

then consider terms of order ma ∼ a3 at a later stage (in Sec. 2.7 below). Indeed, we could,

for the purposes of this section, set δ = 0, and treat the ε2 term as of LO. We do not do

so, however, since this would require us to later treat aε2 terms as of the same size as those
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proportional to ma ∼ a3. Nevertheless, we will loosely describe the inclusion of m, a2 and ε2

terms as constituting our LO analysis, while treating the ma ∼ a3 terms as being of NLO.

Terms of yet higher order will not be considered.

With the power counting in hand, we can extend the inclusion of discretization errors

into χPT to incorporate the effects of non-degeneracy. This leads to the appearance of new

operators in the Symanzik effective Lagrangian, and thus, potentially, to new terms in the

chiral Lagrangian. The constraints on additional operators in the Symanzik Lagrangian in

the presence of non-degeneracy were worked out in Ref. [65]. Using their results within

our power-counting scheme, we find that the lowest order new operator is ∼ aε2ψ̄ψ. This

is, however, of higher order than we consider here.6 All other operators are of yet higher

order. Thus, at the order we work, non-degeneracy only enters our calculation through the

continuum `7 term. The LO potential thus becomes

Va2,`7 =− f 2

4
tr(χ†Σ + Σ†χ)−W ′[tr(A†Σ + Σ†A)]2 +

`7

16
[tr(χ†Σ− Σ†χ)]2 . (2.18)

We stress that it is self-consistent to determine the vacuum structure and pion masses from

a tree-level analysis of Va2,`7 since loop effects only come in at O(m2,ma2, a4).

In terms of the parameters of 〈Σ〉, the potential is now given by

−
Va2,`7
f 2

= χ` cos θ + c`ε
2n2

3 sin2 θ + w′ cos2 θ . (2.19)

As before, we can set n3 = 1 without loss of generality. The stationary points are at

cos θ = ±1 and

cos θ =
χ`

2(c`ε2 − w′)
. (2.20)

The latter minimizes the potential if c`ε
2−w′ > 0 and is valid for | cos θ| ≤ 1. This results in

the phase diagrams of Figs. 2.5a and 2.5b for w′ < 0 and w′ > 0, respectively. In the former

case, corresponding to the Aoki phase for degenerate quarks, the second-order transition

6Furthermore, when mapped to the chiral Lagrangian, it leads to contributions which can be absorbed
by making the untwisted mass m have a weak dependence on ε. Thus it does not lead to new phases, but
only to a small distortion of the phase diagram.
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(a) Aoki scenario (w′ < 0). (b) First-order scenario (w′ > 0).

Figure 2.5: Phase diagrams including effects of both discretization and non-degeneracy. Blue

(yellow) lines indicate second (first) order transitions. Equations for the positions of phase

transition lines are given in the text.

lines lie at

χ` = ±2(c`ε
2 − w′) . (2.21)

Thus the width of the phase grows as |ε| increases. Furthermore, comparing to Fig. 2.4, we see

that the continuum CP-violating phase and the Aoki phase are continuously connected.7 The

only subtlety in this connection is that the condensate definitely points in the n3 direction

for ε 6= 0 (i.e. the direction picked out by the non-degenerate part of the mass term), whereas

for ε = 0 the direction is arbitrary.

In the first-order scenario, Fig. 2.5b, the first-order transition along the mu = −md line

weakens as |ε| increases, until, at c`ε
2 = w′, the CP-violating phase appears. The second-

order transition lines are then given by |χ`| = 2(c`ε
2 − w′), i.e. by the same equation as in

7This result is in agreement with Creutz’ conjecture [18].
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the Aoki scenario.

We next calculate the pion masses throughout the phase plane, expanding about the

vacuum as

Σ = exp(iθτ3) exp(i~π · ~τ/f) . (2.22)

Outside the CP-violating phase, we find

m2
π0 = |χ`| − 2(c`ε

2 − w′) , (2.23)

m2
π± = m2

π0 + 2c`ε
2 . (2.24)

while within the CP-violating phase we have

m2
π0 = 2(c`ε

2 − w′) sin2 θ (2.25)

m2
π± = 2c`ε

2 , (2.26)

where θ is given in Eq. (2.20). These results are plotted versus χ` for various characteristic

choices of ε and w′ in Fig. 2.6.

Figures 2.6a and b show the continuum results for degenerate and non-degenerate masses,

respectively. The neutral pion mass vanishes along the second-order transition line, as ex-

pected. The full degeneracy at χ` = 0 is due to the fact that the theory regains flavor

symmetry (with θQCD = π) at this point. A characteristic feature of the spectrum at this

order is that the charged pion mass is independent of χ` within the CP-violating phase. This

holds also when discretization errors are included.

Figures 2.6c and d show the spectrum for degenerate quarks with discretization errors in-

cluded, respectively for the Aoki and first-order scenarios, reproducing the results of Ref. [56].

Our new results are those of Figs. 2.6e-g, which include the effects of both discretization

errors and non-degeneracy. In this case the charged and neutral pion masses differ in general.

Figure 2.6e shows the behavior in the Aoki scenario, where mπ0 vanishes on the phase

transition lines, and rises above mπ± in the central region of the CP-violating phase. There

are thus two values of χ` where all pions are degenerate, but these are accidental degeneracies
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(a) w′ = c`ε
2 = 0 (b) w′ = 0, c`ε

2 > 0 (c) w′ < 0, c`ε
2 = 0

(d) w′ > 0, c`ε
2 = 0 (e) w′ < 0, c`ε

2 > 0

(f) c`ε
2 = w′ > 0 (g) c`ε

2 > w′ > 0

Figure 2.6: Pion masses for untwisted Wilson fermions including the effects of both dis-

cretization (w′ 6= 0) and non-degeneracy (ε 6= 0). m2
π0 is shown by solid (blue) lines, m2

π± by

dashed (red) lines. Explicit expressions for the masses are given in the text. Vertical scales

differ between the figures.

and not indicative of any symmetry. For the first-order scenario Fig. 2.6f shows the spectrum

when ε is chosen so that the plot passes through the end-point of the second-order transition

line, while Fig. 2.6g shows what happens as one moves through the CP-violating phase. In

this case, there are no degenerate points.
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Simulations using Wilson-like fermions at physical masses, including isospin breaking,

have recently begun [14]. What is the significance of our results for such simulations? The

main issue is whether discretization effects can move the CP-violating phase such that it lies

closer to, or even includes, the physical point. Clearly one wants to avoid simulating in this

phase, since it has a different vacuum structure from the continuum theory. But even lying

close to a second-order transition could lead to algorithmic issues due to critical slowing

down. What we have found is that the phase does move closer to the physical point in the

Aoki scenario, Fig. 2.5a. In this scenario, the CP-violating phase now includes a region of

positive quark masses. On the other hand, for the first-order scenario, discretization effects

move the CP-violating phase away from the physical point. A positive aspect of our results

is that discretization errors lead only to a overall shift in pion masses (outside of the CP-

violating phase), so that the difference m2
π± −m2

π0 takes its continuum value 2c`ε
2 in both

scenarios.
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2.5 Twisted-mass fermions at maximal twist

In this section we extend the previous analysis to twisted-mass fermions [30] at maximal twist.

Such fermions have the important practical property of automatic O(a) improvement [28].

They are being used to simulate QCD with quarks at or near their physical masses [1, 15],

and isospin breaking is now being included [23]. The main question we address here is the

same as for untwisted fermions: How do discretization effects change the continuum phase

structure and pion masses?

In the continuum, twisted mass fermions are obtained by a non-anomalous axial rotation,

LQCD = ψ( /D+m`+ε`τ3)ψ → ψ( /D+m`e
iγ5τ1ω+ε`τ3)ψ = ψ( /D+m+ iγ5τ1µ+ε`τ3)ψ , (2.27)

with m` = (mu+md)/2, ε` = (mu−md)/2, m = m` cosω, µ = m` sinω, and ω the twist

angle. Conventionally, m is called the untwisted (average) mass and µ the twisted (average)

mass. Choosing the twist in a direction orthogonal to τ3 leaves the ε` term unchanged. In

the continuum this is a convenience, but not a necessity. Once one discretizes /D with a

Wilson term, however, it is mandatory to twist in a direction orthogonal to τ3 if one wants

to keep the fermion determinant real [29].8By convention, this direction is chosen to be τ1.

The rescaled mass matrix that enters χPT is now

χ = χ`e
iτ1ω + ετ3 = χ` cosω1 + iχ` sinωτ1 + ετ3 = m̂1 + iµ̂τ1 + ετ3 , (2.28)

and is no longer hermitian. Here we have defined

m̂ ≡ 2B0m = χ` cosω and µ̂ ≡ 2B0µ = χ` sinω (2.29)

following Ref. [57].

8In Ref. [23], which studies twisted-mass non-degenerate fermions, the twist is chosen in the τ3 direction.
This leads to a complex fermion determinant, which is avoided in practice by perturbing at linear order
around the isospin-symmetric theory. Because the twist is in the τ3 direction, our present results do not
apply to these simulations. We will discuss the generalization to τ3 twist (along with the inclusion of
electromagnetism) in Chapter 3 and 4.
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To determine the effective chiral theory for twisted-mass lattice QCD the first step is to

determine the additional operators in the Symanzik Lagrangian that are induced by twisting.

As in the untwisted case, the form of the allowed operators can be obtained from the analysis

of Ref. [65], which includes both twist and non-degeneracy. In fact, since µ̂2 is smaller than ε2

in our power-counting, the inclusion of twist does not change the result for the untwisted case,

namely that the lowest order new operator is ∼ aε2 and of higher order than we are working.

Thus at LO the extension χPT to include twist and discretization errors is accomplished by

simply using the twisted χ of Eq. (2.28) in the potential Va2,`7 of Eq. (2.18).

Using our standard parametrization of 〈Σ〉 this gives

−
Va2,`7
f 2

= m̂ cos θ + µ̂n1 sin θ + c`ε
2n2

3 sin2 θ + w′ cos2 θ . (2.30)

We focus in this section on the case of maximal twist, m̂ = 0, where simple analytic results

can be obtained. Even with this simplification, we note that there is competition between

terms in three directions in Σ: the twist direction n1, the non-degeneracy direction n3, and

the identity direction (w′ term). Thus we can expect a more complicated phase structure

than for untwisted Wilson fermions. Furthermore, since non-degenerate twisted-mass quarks

completely break the continuous SU(2) flavor symmetry, we expect, in general, that all three

pion masses will differ.

We find the phase diagrams shown in Fig. 2.7. Note that we are now plotting the average

mass along the vertical axis and the difference horizontally. We do this because µ̂ and ε

are proportional to parameters that enter the twisted-mass lattice action. To compare to

the earlier plots, one should rotate those of Fig. 2.7 by 45◦ in a clockwise direction. We

see that, at maximal twist, it is the Aoki scenario which is preferred, in the sense that the

CP-violating phase does not move closer to the physical point. Indeed, the phase diagram in

this scenario is identical to that in the continuum, Fig. 2.3, with the replacement χ` → µ̂. In

the first-order scenario, by contrast, there is an additional phase (colored green in Fig. 2.7b)

which brings lattice artifacts closer to the physical point. Thus the relative merits of the two

scenarios are interchanged compared to the untwisted case.
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(a) Aoki scenario or continuum (w′ ≤ 0)

(b) First-order scenario (w′ > 0)

Figure 2.7: Phase diagrams at maximum twist (m̂ = 0).

To understand the phase diagrams we first recall the result for the degenerate case,

ε = 0, which has been studied in Refs. [45, 52, 57]. These works find, for large |µ̂|, that

the condensate is aligned with the twist, i.e. n1 = 1 and sin θ = sign(µ̂). This is as in the

continuum. In the Aoki scenario (w′ < 0), this alignment holds for all µ̂, and there is a
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first-order transition at µ̂ = 0 where sin θ changes sign. In the first-order scenario (w′ > 0),

there are second-order transitions at the two points µ̂ = ±2w′, at which one of the pion

masses vanishes. For |µ̂| < 2w′ the condensate smoothly rotates within the group manifold

with sin θ = µ̂/(2w′). These features are reproduced by our results along the vertical axes

in Fig. 2.7.

We now explain how these results are generalized to ε 6= 0. We first observe that we can

set n2 = 0. This is because, for any choice of n1, the c` term in Eq. (2.30) (with c` > 0) will be

minimized when n2
3 is maximized, i.e. with n2

3 = 1−n2
1. Thus there are only two independent

variables, θ and n1. Since n1 satisfies |n1| ≤ 1, we parametrize it as n1 = cosϕ1. Since 〈Σ〉 is

invariant when θ and ~n change sign, we need only consider n1 ≥ 0, i.e. 0 ≤ ϕ1 ≤ π/2. The

stationary points are obtained from simultaneously solving

∂Va2,`7
∂θ

∝ cos θ
[
µ̂ cosϕ1 + 2 sin θ(sin2 ϕ1c`ε

2 − w′)
]

= 0 , (2.31)

∂Va2,`7
∂ϕ1

∝ sin θ sinϕ1

[
µ̂− 2 sin θ cosϕ1c`ε

2
]

= 0 . (2.32)

The solutions are

1. cos θ = 0 (so that sin θ = ±1) together with sinϕ1 = 0 (so that n1 = 1). In these cases

Va2,`7/f 2 = ∓µ̂, so that the solution with the lowest energy is that with sin θ = sign(µ̂),

giving Va2,`7/f 2 = −|µ̂|.

2. sin θ = sign(µ̂) and n1 = cosϕ1 = |µ̂|/(2c`ε2) so that Va2,`7/f 2 = −µ̂2/(4c`ε
2) − c`ε2.

This is only valid when n1 ≤ 1, i.e. |µ̂| ≤ 2c`ε
2. There are two degenerate solutions,

with n3 = ± sinϕ1.

3. sin θ = µ̂/(2w′) and ϕ1 = 0 (implying n1 = 1) so that Va2,`7/f 2 = −µ̂2/(4w′) − w′.

This is only valid when |µ̂| ≤ 2w′. There are two degenerate solutions, with opposite

signs of cos θ.

4. cos θ = ±1 and µ̂n1 = 0, so that Va2,`7/f 2 = −w′. This never has lower energy than

the third solution and can be ignored.
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The first solution is the continuum one discussed above. The second has lower energy than

the first where it is valid, and goes over to the CP-violating phase when w′ = 0. The third

solution is relevant only for w′ > 0, in which case it has the lowest energy when c`ε
2 < w′.

The condensate in this phase is independent of ε. These considerations lead to the phase

diagrams shown in Fig. 2.7. The potential is continuous throughout the phase planes, as

is the condensate except at the junction between the central (green colored) phase and the

CP-violating phase in Fig. 2.7b. Thus we expect the transitions to be of second order.

We calculate pion masses using the parametrization

Σ = exp(iθn̂ · ~τ/2) exp(i~π · ~τ/f) exp(iθn̂ · ~τ/2) , [〈Σ〉 = exp(iθn̂ · ~τ)] . (2.33)

Here we are using an axial transformation to rotate from the twisted basis to the physi-

cal basis, which ensures, in the continuum, that the pion fields have physical flavors [58].

In the continuum-like phase (uncolored in the figures), which lies in the regions |µ̂| ≥

max(2c`ε
2, 2w′), we find

m2
π1

= |µ̂| − 2w′ , m2
π2

= |µ̂| , m2
π3

= |µ̂| − 2c`ε
2 . (2.34)

These results are consistent with those of Ref. [46], where a χPT calculation in this phase

is carried out using the different power-counting m & a. Various aspects of these results are

noteworthy. First, all three masses differ. This is expected since flavor symmetry is com-

pletely broken. Second, the charged pions are not mass eigenstates; instead, the eigenstates

are π1,2 and the neutral pion. These two points were also noted in Ref. [46]. Third, one of

the pion masses vanishes at each of the phase boundaries: mπ3 at the boundary with the

CP-violating (pink colored) phase, and mπ1 at the boundary with the central (green colored)

phase in the first-order scenario.9 This is expected since these are continuous transitions at

which a Z2 symmetry is broken (θ → −θ for the “green phase” and n3 → −n3 for the CP-

9In the degenerate case (ε = 0) Refs. [45, 52, 57] find that it is mπ3 which vanishes at |µ̂| = 2w′, rather
than mπ1 . This difference arises because we twist in the τ1 direction rather than the τ3 direction used in
Refs. [45, 52, 57].
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violating phase). Finally, in the first-order scenario, there are four tricritical points at which

both mπ3 and mπ1 vanish. These occur where all three phases meet, i.e. at |µ̂| = 2c`ε
2 = 2w′.

In the central (green) phase we find

m2
π1

= 2w′ − µ̂2

2w′
, m2

π2
= 2w′ , m2

π3
= 2w′ − 2c`ε

2 . (2.35)

Thus mπ2 and mπ3 are independent of µ̂ within this phase. These results agree with those in

the normal phase, Eq. (2.34), at the boundaries. They also show that mπ3 vanishes at the

borders with the CP-violating (pink) phases (c`ε
2 = w′).

In the CP-violating phase there is mixing between π1 and π3, with the mass eigenvectors

being

π̃1 = n1π1 + n3π3 and π̃3 = −n3π1 + n1π3 , (2.36)

where we recall that n1 = µ̂/(2c`ε
2) and n3 =

√
1− n2

1. The masses are

m2
π̃1

= 2c`ε
2 − 2w′ , m2

π2
= 2c`ε

2 , m2
π̃3

= 2c`ε
2 − µ̂2

2c`ε2
. (2.37)

Note that mπ̃1 and mπ2 are independent of µ̂, while the π̃3 mass vanishes along the boundaries

with the standard phases. The latter result is consistent with the results above because, on

these boundaries |n1| = 1 and so π̃3 = ±π3.

A puzzling feature of these results is what happens at the boundaries between the central

(green) and CP-violating (pink) phases. According to Eq. (2.35) it is the mass of π3 which

vanishes there, while Eq. (2.37) has the mass of π̃1 vanishing. These appear to be different

particles. This is related to a second puzzle, namely that the condensate is discontinuous

across the boundary (which lies at w′ = c`ε
2):

〈Σ〉Boundary
Green = i

µ̂

2w′
τ1 ±

√
1− µ̂2

4w′2
1 vs. 〈Σ〉Boundary

Pink = i
µ̂

2w′
τ1 ± i

√
1− µ̂2

4w′2
τ3 . (2.38)

Here the ± signs correspond to the two choices of vacuum state on each side. This situation

can be understood by noting that, at the boundary, the vacuum manifold expands to a line

which includes all four values of the condensate given in Eq. (2.38):

〈Σ〉 = i
µ̂

2w′
τ1 +

√
1− µ̂2

4w′2
(cosφ+ iτ3 sinφ) , (2.39)
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where φ is arbitrary. The presence of this flat direction is the reason that one pion is massless,

since there is no breaking of a Z2 symmetry to explain the masslessness. The orientation of

the flat direction, which is the direction of the massless pion, depends on the position along

this vacuum manifold, and thus is different on the two sides of the transition. In this way to

two puzzles above are simultaneously explained.

Results for pion masses are plotted in Fig. 2.8. We choose the same parameters for the

plots as for the untwisted case, Fig. 2.6, so as to allow a clear comparison. The figures

illustrate the discussion given above.

2.6 Arbitrary Twist

In this section we give a brief discussion of the phase diagram at arbitrary twist. This allows

us to understand how the phase diagrams presented above for untwisted and maximally-

twisted quarks are related to one another. We focus on the phase diagram, and in particular,

the position of the critical manifold where one or more pions are massless.

For arbitrary twist, the potential is given in Eq. (2.30). As before, minimization leads to

n2 = 0, so the potential depends only on θ and ϕ1 (defined by cosϕ1 = n1). The equations

for stationary points are

−m̂ sin θ + cos θ
[
µ̂ cosϕ1 + 2 sin θ(c`ε

2 sin2ϕ1 − w′)
]

= 0 , (2.40)

and Eq. (2.32). We focus on the case when both m̂ and µ̂ are non-zero, since the special

cases when one of these vanish have been discussed above.

When |µ̂|, |m̂| � c`ε
2, |w′| the solution which minimizes the potential has

n1 = cosϕ1 = 1, n3 = sinϕ1, tan θ ≈ µ̂

m̂
. (2.41)

The last equation becomes an equality in the continuum limit, and simply describes how

the condensate twists to compensate the twist in the mass. Discretization errors (here

proportional to w′) lead to a small deviation in θ from this continuum result. We do not

quote the analytic form as it is not illuminating. In fact, the result for θ turns out to
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(a) w′ = c`ε
2 = 0 (b) w′ = 0, c`ε

2 > 0 (c) w′ < 0, c`ε
2 = 0

(d) w′ > 0, c`ε
2 = 0 (e) w′ < 0, c`ε

2 > 0

(f) w′ > 0, c`ε
2 = w′ (g) w′ > 0, c`ε

2 > w′

Figure 2.8: Pion masses for maximally twisted fermions including the effects of both dis-

cretization (w′ 6= 0) and non-degeneracy (ε 6= 0). m2
π2

is shown by solid (blue) lines, m2
π3

(and m2
π̃3

) by dotted (red) lines and m2
π1

(and m2
π̃1

) by dashed (green) lines. Not all lines

are visible in some figures due to degeneracies. Mixing of pions occurs only within the CP-

violating phase in Figs. (e) and (g). Explicit expressions for masses and mixing are given in

the text. Vertical scales differ between the figures.

be independent of the non-degeneracy ε, so the results for the condensate given for the

degenerate theory in Refs. [45, 52, 57] remain valid in this phase. This phase is the extension
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of the “uncolored” phases in Figs. 2.5 and 2.7 to arbitrary twist. At a general position in

this phase, the mass eigenstates are π1, π2 and π3 [using the parametrization of Eq. (2.33)]

and all have different masses.

As ε2 increases, we expect, based on the results of the previous two sections, that we

will enter a phase which is connected to the CP-violating (pink) phases found above. This

should have a condensate having components in both n1 and n3 directions, and θ taking

non-extremal values. Indeed, if sin θ and sinϕ1 are both non-zero, Eq. (2.32) is solved by

sin θ cosϕ1 =
µ̂

2c`ε2
. (2.42)

This requires that c`ε
2 ≥ |µ̂|. Inserting this in Eq. (2.40) then yields

cos θ =
m̂

2(c`ε2 − w′)
, (2.43)

which is valid if 2(c`ε
2 − w′) ≤ m̂. The solution given by Eqs. (2.42) and (2.43) turns out

to give the absolute minimum of the potential where it is valid. Its boundary with the

continuum-like phase occurs when | cosϕ1| = 1, and is thus described by(
m̂

2(c`ε2 − w′)

)2

+

(
µ̂

2c`ε2

)2

= 1 . (2.44)

For fixed ε, this is an ellipse in the m̂, µ̂ plane. One pion (π3) is massless along this critical

surface.

Within the CP-violating phase all pions are massive, with the mass eigenstates being π2

and a mixture of π1 and π3. The general expressions for these masses are uninformative, and

we quote only the results along the boundary of this phase. Here, in addition to the massless

π3 we find

m2
π1

= 2c`ε
2 − 2w′µ̂2

(2c`ε2)2
m2
π2

= 2c`ε
2 . (2.45)

The only other critical lines are those we found at maximal twist, namely at m̂ = 0,

µ̂ = 2w′ and c`ε
2 ≤ w′.
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The position of the critical manifold resulting from these considerations is shown in

Fig. 2.9 for both scenarios and in the continuum. The CP-violating phases lie within the

(distorted) cone-shaped regions. The contour plots show how the circular contours of the

continuum are distorted by discretization effects into ellipses. We note that, in the first-

order scenario shown in Fig. 2.9c, if one passes through any point in the rectangular region

in the (m̂, ε) plane between the two critical lines there is a first-order transition at which the

condensate changes discontinuously.
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(a) Aoki scenario (w′ < 0)

(b) Continuum (w′ = 0)

(c) First-order scenario (w′ > 0)

Figure 2.9: Location of the critical manifold for arbitrary twist. Results are shown only for

ε > 0 since the phase diagrams are symmetric under reflection in the ε = 0 plane. The left

panels show 3-d plots, the right panels contour plots. For w′ > 0, the contour plots do not

include the two critical lines which reach down to the ε = 0 plane. The scale used for m̂ and

µ̂ is the same, while that for ε is arbitrary. See text for the equations describing the critical

manifold.
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2.7 Higher order

In this section we consider the effect on the previous results of the inclusion of the next

highest order terms in our power counting, i.e. those scaling as a3 ∼ ma. At this order we

can still determine the vacuum using the classical potential of the chiral theory. The O(ma)

term in this potential is standard, see, e.g. Ref. [50]. The O(a3) terms have been discussed

for ε = 0 in Ref. [53]; the results carry over unchanged to ε 6= 0 since the first additional

term involving ε scales as aε2 and is of higher order in our power-counting. The relevant

additional terms entering the potential are

Va3 = − wf 2

32W0a
tr(χ†Σ + Σ†χ) tr(A†Σ + Σ†A)− w3f

2

(8W0a)3

[
tr(A†Σ + Σ†A)

]3
, (2.46)

where w and w3 are new LECs. There is also a term proportional to tr(A†A) tr(A†Σ + Σ†A),

but this can removed by (yet another) redefinition of χ. Inserting our standard parametriza-

tion 〈Σ〉 = exp(iθ~n·~τ), and combining the results with that from the LO potential, we obtain

−
Va2,`7,a3
f 2

= (m̂ cos θ + µ̂n1 sin θ)(1 + w cos θ) + c`ε
2n2

3 sin2 θ + w′ cos2 θ + w3 cos3 θ . (2.47)

The new LECs should satisfy |w| � 1 and |w3| � |w′|, |c`ε2| in order to be consistent with

our power counting.

We begin by considering the untwisted theory, µ̂ = 0, where the phase diagram and pion

masses can be determined analytically. In this case m̂ = χ`. As previously, the potential is

minimized with n3 = 1, so that

−
Va2,`7,a3
f 2

−→ χ` cos θ(1 + w cos θ) + c`ε
2 sin2 θ + w′ cos2 θ + w3 cos3 θ . (2.48)

The stationary points satisfy

sin θ
[
χ` − 2(χ`w − c`ε2 + w′) cos θ + 3w3 cos2 θ

]
= 0 , (2.49)

which is solved by sin θ = 0 (i.e. giving the usual continuum solutions with cos θ = ±1) and

by the solutions to the quadratic function of cos θ in parentheses. The latter will lead to

CP-violating vacua.
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To simplify the discussion we consider the impact of the new terms separately. We first

set w3 = 0. Then we can take w > 0 without loss of generality, since simultaneously changing

w → −w, θ → θ + π and χ` → −χ` leaves the potential unaffected. As the w contribution

to Eq. (2.49) leaves the function in parentheses linear in cos θ, the analysis is little changed

from that at LO (see Sec. 2.4). We find that the CP-violating solution,

cos θ =
χ`

2(c`ε2 − w′ − χ`w)
, (2.50)

minimizes the potential where it is valid, i.e. wherever | cos θ| < 1. The endpoints of this

phase give second-order transitions occurring at masses

χ` = ±2(c`ε
2 − w′)

1± 2w
. (2.51)

Thus the phase boundaries are no longer symmetric with respect to χ` = 0. As in the LO

case, if w′ > 0 and c`ε
2 < w′, the transition becomes first order (with the w term having no

impact since the transition occurs at χ` = 0). The resultant phase diagrams are shown in

Fig. 2.10.

We have also calculated the pion masses. In the CP-conserving phases the results are

m2
π0 = |χ`|(1 + sign(χ`)2w)− 2(c`ε

2 − w′) , (2.52)

m2
π± = m2

π0 + 2c`ε
2 . (2.53)

The only change from the LO results, Eqs. (2.23) and (2.24), is that the slope with respect

to χ` is no longer symmetric when χ` changes sign. In the CP-violating phases we find

m2
π0 = 2(c`ε

2 − w′ − χ`w) sin2 θ and m2
π± = 2c`ε

2 , (2.54)

where again only the former result is changed. The resulting pion masses are shown in

Fig. 2.11, and show clearly the above-mentioned asymmetry.

We now consider the impact of the w3 term, setting w = 0. Again, without loss of

generality, we can assume w3 > 0. The CP-violating stationary points are now obtained

from Eq. (2.49) by solving a quadratic equation, leading to the solutions

cos θ± =
(c`ε

2 − w′)±
√

(c`ε2 − w′)2 − 3χ`w3

3w3

. (2.55)
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It is straightforward to see from the properties of a cubic that, since w3 > 0, only the θ−

solution can lead to a minimum of the potential. Whether it does lead to a minimum is a

more subtle question than in the LO analysis.

We begin by discussing the limit of small |w3|. Specifically, if we assume |c`ε2 − w′| ∼

|χ`| � |w3|, the square root in Eq. (2.55) can be expanded in powers of w3. It is then

straightforward to show that one recovers the LO results aside from small corrections pro-

portional to |w3/(c`ε
2 − w′)|. In particular, if c`ε

2 − w′ > 0 there is a CP-violating phase

ending in second-order transitions to continuum-like phases, while if c`ε
2 −w′ < 0 there is a

first-order transition.

The positions of these transitions are, however, shifted slightly by the w3 term. The

boundaries of the CP-violating phase occur when cos θ− = ±1 which gives

χ` = ±2(c`ε
2 − w′)− 3w3 , (2.56)

without any O(w2
3) corrections. In words, the boundaries are simply offset from the LO

result, Eq. (2.21), by −3w3. In the first-order scenario, the transition occurs at the value of

χ` such that the potentials at cos θ = ±1 agree. This happens when

χ` = −w3 , (2.57)

so that the first-order transition line is offset from the LO result χ` = 0 by −w3 (again,

without any higher-order corrections).

More interesting changes occur when |c`ε2 − w′| ∼ |w3|. Note that this does not require

that w3 be large, but rather that there is a cancellation between the c`ε
2 and w′ terms. Here

we encounter a phenomenon first noted at ε = 0 in Ref. [53]: one can have a first-order

transition from the continuum-like phase into the CP-violating phase, followed by a second-

order transition to the other continuum-like phase. This occurs when the local minimum at

θ− (with | cos θ−| < 1 and cos θ− real) has the same potential as that at cos θ = 1. Then, as

χ` is reduced, θ jumps from θ = 0 to θ−. This is possible with a cubic potential, but not

with a quadratic. Solving

Va2,`7,a3(θ−) = Va2,`7,a3(0) (2.58)
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leads to the following equation for the first-order boundary

χ` =
(w′ − c`ε2 − 3w3)(w′ − c`ε2 + w3)

4w3

. (2.59)

As one moves along this boundary cos θ− varies. The boundary ends when either cos θ− = 1,

so there is no jump in θ, and the transition becomes second-order, or when cos θ− = −1, so

there is only a first-order transition without the subsequent CP-violating phase. Combining

Eqs. (2.55) and (2.59) we find that the transition becomes second-order at

χ` = c`ε
2 − w′ = 3w3 , (2.60)

while it becomes first-order at

χ` = c`ε
2 − w′ = −w3 . (2.61)

The first of these equations can be satisfied if w′ > −3w3, and so reaches from the first-order

scenario (w′ > 0) into a small region of the Aoki scenario. The second requires w′ > w3 and

thus occurs only in the first-order scenario.

These results lead to the phase diagrams shown in Fig. 2.12. We see that the changes

due to the w3 term are more substantive than those due to the w term.

We show the corresponding pion masses in Figs. 2.13-2.15; for the sake of brevity we do

not quote the analytic forms. Fig. 2.13 shows two “slices” through the phase diagram of

Fig. 2.12a. These should be compared to the LO results in Figs. 2.5c and 2.5e, respectively.

In Fig. 2.14 we show two slices through the phase diagram of Fig. 2.12b. The first, at

ε = 0, shows the first-order transition, at which all pion masses are discontinuous. The

charged pions become massless in the CP-violating/Aoki phase, while the neutral pion is

massive. In the second slice, for which ε satisfies 0 < c`ε
2 < w′ + 3w3, the discontinuities

remain, but all pions are massive in the CP-violating phase (except at the lower boundary

where the neutral pion mass vanishes). Once c`ε
2 ≥ w′ + 3w3, the pion masses behave as in

Fig. 2.13b.

In Fig. 2.15 we show four slices through the phase diagram of Fig. 2.12c. The first (at

ε = 0) shows how the w3 term leads to a discontinuity in the pion masses at the first-order
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transition, unlike at LO. This was first observed in Ref. [53]. For non-zero ε, the charged and

neutral pions are no longer degenerate, and both have a discontinuity. When one reaches

c`ε
2 = w′ − w3, the neutral pion becomes massless at the transition point, as shown in the

second slice. This is the beginning of the CP-violating phase. As ε2 increases further, one

has both first and second-order transitions, as shown in the third slice. The final slice shows

the value of ε2 at which the first-order transition turns into a second-order transition. For

larger values of ε2 the pion masses behaves as in Fig. 2.13b.

The higher-order analysis in the twisted case is more complicated. Maximal twist no

longer occurs, in general, at m̂ = 0, so one is forced to do the analysis for both m̂ and

µ̂ non-vanishing. In practice, this requires numerical minimization of the potential. The

resulting phase diagram and pion masses for ε = 0 have been discussed in detail in Ref. [53].

The addition of isospin-breaking leads both to small quantitative changes, and to qualitative

changes in small regions of the phase plane. We restrict ourselves here to showing how the

NLO terms impact the critical manifold (on which at least one pion is massless). The Aoki

and first-order scenarios are shown, respectively, in Figs. 2.16 and 2.17.

The main effect is a distortion of the elliptical cross sections of the critical manifold.

In addition, the two vertical critical lines in the first-order scenario are shifted slightly in

position. The most significant qualitative change is the appearance of a hole in the manifold

when w′ > w3 > 0, which is (barely) visible above the µ̂ = 0 axis in the right panel of

Fig. 2.17c. This occurs because of the extended first-order transition region seen in the

untwisted phase diagram of Fig. 2.12c.

We end this section by addressing the question of whether higher-order effects move

unphysical phases closer to the point with physical masses. The answer depends on the sign

of w and w3. For untwisted fermions, the results of Figs. 2.10-2.17, show that positive w

and w3 move unphysical phases away from the physical point. Conversely, negative values

of these LECs would move the phases closer. For twisted-mass fermions the answer is more

complicated, depending on the choice of twist angle.
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(a) Aoki Scenario (w′ < 0)

(b) First-Order Scenario (w′ > 0)

Figure 2.10: Phase diagrams for untwisted Wilson quarks including the NLO O(ma) term

proportional to w. Compare to LO results in Fig. 2.5.
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(a) w′ < 0, c`ε
2 = 0, w > 0 (b) w′ > 0, c`ε

2 = 0, w > 0

(c) w′ < 0, c`ε
2 > 0, w > 0 (d) c`ε

2 = w′ > 0, w > 0

(e) c`ε
2 > w′ > 0, w > 0

Figure 2.11: Pion masses for untwisted Wilson fermions including the effects of the NLO w

term with w > 0 (but with w3 = 0). The figures should be compared to the LO results in

Figs. 2.6(c-g), respectively. See Fig. 2.6 also for notation.
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(a) Aoki scenario with w′ < −3w3 < 0

(b) Aoki or first-order scenario with −3w3 < w′ < w3 (and w3 > 0)

(c) First-order scenario with w′ > w3 > 0; cos θ in pink region is as is in (a) and (b)

Figure 2.12: Phase diagrams for untwisted Wilson fermions including the NLO O(a3) term

proportional to w3. Compare to LO results in Fig. 2.5.
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(a) c`ε
2 = 0, −w′ < −3w3 < 0 (b) c`ε

2 > 0, −w′ < −3w3 < 0

Figure 2.13: NLO pion masses for untwisted Wilson fermions with w3 > 0 and w = 0.

Results are for the Aoki scenario with w′ < −3w3 < 0, corresponding to the phase diagram

of Fig. 2.12a. Notation as in Fig. 2.6.

(a) c`ε
2 = 0, −3w3 < w′ < w3 (b) c`ε

2 ≥ w′ + 3w3, −3w3 < w′ < w3

Figure 2.14: Examples of NLO pion masses for untwisted Wilson fermions with w3 > 0 and

w = 0. Results are for −3w3 < w′ < w3, corresponding to the phase diagram of Fig. 2.12b.
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(a) c`ε
2 = 0, w′ > w3 > 0 (b) c`ε

2 = w′ − w3, w′ > w3 > 0

(c) w′ − w3 < c`ε
2 < w′ + 3w3, w′ > w3 > 0 (d) c`ε

2 = w′ + 3w3, w′ > w3 > 0

Figure 2.15: NLO pion masses for untwisted Wilson fermions with w3 > 0 and w = 0.

Results are for the first-order scenario with w′ > w3, corresponding to the phase diagram of

Fig. 2.12c.
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(a) w3 = w = 0

(b) w3 = 0, w > 0

(c) w′ < −3w3 < 0, w = 0

Figure 2.16: Location of the critical manifold in the Aoki scenario (w′ < 0) including NLO

terms. Notation as in Fig. 2.9.
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(a) w3 = w = 0

(b) w3 = 0, w > 0

(c) w′ > w3 > 0, w = 0

Figure 2.17: Location of the critical manifold in the first-order scenario (w′ > 0) including

NLO terms. Notation as in Fig. 2.9.
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2.8 Conclusions

In this work we have studied how using non-degenerate up and down quarks changes the

phase structure caused by competition between quark mass and discretization effects. We

draw two main conclusions. First, the continuum CP-violating phase is continuously con-

nected to the Aoki phase induced by discretization effects. Second, discretization effects

can move the theory with physical quark masses closer to, or even into, unphysical phases.

Whether this happens depends both on the twist angle and on the details of the discretiza-

tion (the latter impacting the values of the LECs w′, etc.). Our overall message is that a

complicated phase structure lies in the vicinity of the physical point and simulations should

be careful to avoid unphysical phases.

For twisted mass fermions our results for pion masses extend those of Ref. [46] into the

Aoki regime (m ∼ a2). In the continuum-like phase, with both twisting and non-degeneracy,

the eigenstates are π1, π2 and π3, with all three pions having different masses. Our formulae

may be of use in removing the discretization effects from masses determined in simulations,

although we stress again that O(m2) terms dropped in our power counting may be important

if precision fitting is required.

One shortcoming of this work is that it does not include electromagnetic effects. In the

pion sector, these lead to isospin breaking that is generically larger than that from quark

non-degeneracy, and can also impact the phase structure.10 We will discuss the impact of

electromagnetism in Chapter 3 and 4.building upon the recent analysis of Ref. [34].
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Chapter 3

IMPACT OF ELECTROMAGNETISM ON PHASE
STRUCTURE FOR WILSON AND TWISTED-MASS
FERMIONS INCLUDING ISOSPIN BREAKING 1

3.1 Introduction

The phase diagram of lattice QCD (LQCD) can contain unphysical transitions and unwanted

phases due to discretization effects. A well known example is the Aoki phase that can

be present with Wilson-like fermions [3].2 Unphysical phases occur when the effects of

physical light quark masses are comparable to those induced by discretization, specifically

m ∼ a2Λ3
QCD, with a the lattice spacing. This can be shown by extending chiral perturbation

theory (χPT) to include the effects of discretization [56]. Understanding the phase structure

is necessary so that LQCD simulations can avoid working close to unphysical phases, so as

to avoid distortion of results and critical slowing down.

In Ch. 2, we extended the analysis of the phase diagram to the case of nondegenerate

up and down quarks for Wilson-like and twisted-mass fermions. This was prompted by the

recent incorporation of mass splittings into simulations of LQCD.3 We found a fairly com-

plicated phase structure, in which, for example, the Aoki phase was continuously connected

to Dashen’s CP-violating phase [19, 16].

A drawback of our analysis was that it did not include the other major source of isospin

breaking in QCD, namely electromagnetism. For most hadron properties, electromagnetic

effects are comparable to those of the mass nondegeneracy εq = (mu−md)/2. For example, in

1This chapter is adapted with minimal changes from Ref. [39]

2“Wilson-like” refers to both unimproved and improved versions of Wilson fermions. The choice will not
matter in this work.

3For recent reviews of such simulations see Refs. [49, 64].
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the neutron-proton mass difference these two effects lead to contributions of approximately

−1 MeV and 2.5 MeV, respectively.4 Furthermore, the recent LQCD simulations alluded to

above have included both mass nondegeneracy and electromagnetism. Thus, to be directly

applicable to such simulations, we must extend our analysis to include electromagnetism.

This is the purpose of the present note.

We work in Wilson or twisted-mass χPT (both of which we refer to as WχPT for the

sake of brevity) using a power-counting to be explained in Sec. 3.2. At the order we work, it

turns out that the inclusion of electromagnetism can be accomplished in most cases simply

by shifting low-energy coefficients (LECs) in the results without electromagnetism. Thus we

can take over many results from Ch. 2 without further work.

One new issue concerns the simultaneous inclusion of electromagnetism and quark non-

degeneracy with twisted-mass fermions. The approach we used in the absence of electromag-

netism in Ch. 2 (following Ref. [29]) was to apply the twist in a different direction in isospin

space (τ1) from that in which the masses are split (τ3). This leads to a real quark determi-

nant, and is the method used to simulate the s and c quarks using twisted-mass fermions

(see, e.g., Ref. [15]). This does not, however, generalize to include electromagnetism in a

gauge-invariant way. Here, instead, we follow Ref. [23], and twist in the τ3 direction. When

doing simulations, this has the disadvantage of leading to a complex quark determinant,5

but there are no barriers to studying the theory with χPT.

The remainder of chapter is organized as follows. We begin in Sec. 3.2 with a brief

discussion of our power-counting scheme and a summary of relevant results from Ch. 2. We

then explain, in Sec. 3.3, how electromagnetism changes the results of Ch. 2 for the case of

Wilson-like fermions. Section 3.4 describes how to simultaneously include isospin breaking,

electromagnetism and twist, while Sec. 3.5 gives our corresponding results for the phase

diagram, focusing mainly on the case of maximal twist. We conclude in Sec. 3.6.

4These results are from the recent LQCD calculation of Ref. [14], and use the convention of that work for
the separation of electromagnetic and εq effects.

5This is avoided in Refs. [22, 23] by expanding about the theory with degenerate quarks and no electro-
magnetism.
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Two technical issues are discussed in appendices. The first concerns the renormalization

factors needed to relate lattice masses to the continuum masses that appear in χPT. This

issue is subtle because singlet and nonsinglet masses renormalize differently. This point was

not discussed in Ch. 2, and we address it in Appendix A.1, except that we do not include

all the effects introduced by electromagnetism.

The second appendix concerns the need for charge-dependent critical masses in the pres-

ence of electromagnetism. These must be determined nonperturbatively, and various meth-

ods for doing so have been used in the literature. One of these methods, proposed in Ref. [23],

can be implemented using partially quenched (PQ) χPT, and thus checked. This is done in

App. A.2. We find that the method only provides one constraint on the up and down critical

masses and must be supplemented by an additional condition in order to determine both.

Appendix A.2 requires results from a χPT analysis of a theory with twisted nondegenerate

charged quarks at nonzero lattice spacing and at nonvanishing θQCD. We provide such an

analysis in Chapter 4.

3.2 Power-counting and summary of previous work

In order to study the low-energy properties of LQCD, we must decide on the relative impor-

tance of the competing effects. The power counting that we adopt is

m ∼ p2 ∼ a2 ∼ αEM > ε2q > ma ∼ a3 ∼ aαEM... , (3.1)

where m represents either mu or md. This is the power counting adopted in Ch. 2, except

that electromagnetic effects are now included. This scheme only makes sense if discretization

errors linear in a are absent, either because the action is improved or because the O(a) terms

can be absorbed into a shift in the quark masses (as is the case in WχPT [56]).

The explanation for the choice of leading order (LO) terms in this power-counting is

as follows. Present simulations have 1/a ≈ 3 GeV, and using this together with ΛQCD ≈

300 MeV we find aΛQCD ≈ 0.1. Thus second order discretization effects are of relative

size (aΛQCD)2 ≈ 0.01. This is comparable to αEM, mu/ΛQCD and md/ΛQCD (given that
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mu ≈ 2.5 MeV and md ≈ 5 MeV [4, 47]). The results for the neutron-proton mass difference

described in the Introduction are consistent with this power-counting (using the fact that

mu−md ∼ mu ∼ md).

The choice of ε2q as the dominant subleading contribution is less obvious, and is discussed

in some detail in Ch. 2. The essence of the argument is that, while the ε2q terms are not

necessarily numerically larger than generic m2 terms, they give the leading contribution from

quark mass differences to isospin breaking in the low-energy effective theory. For example,

these contributions give rise to the CP-violating phase in the continuum analysis.6

In this note we keep only terms up to and including those proportional to ε2q, so that we

have the leading order term of each type. We refer to this as working at LO+ indicating

that it goes slightly beyond keeping only LO terms.

We now collect the relevant results from Ch. 2 concerning the phase diagram of Wilson-

like fermions in the presence of nondegeneracy. We work entirely in SU(2) WχPT, in which

the chiral field is Σ ∈ SU(2). The LO+ chiral Lagrangian for Wilson-like fermions (whether

improved or not) is

Lχ =
f 2

4
tr
[
∂µΣ∂µΣ†

]
+ Vχ (3.2)

Vχ = −f
2

4
tr(χ†Σ + Σ†χ)−W ′[tr(Â†Σ + Σ†Â)]2 +

`7

16
[tr(χ†Σ− Σ†χ)]2 , (3.3)

where Â = 2W0a1 is the spurion field used to introduce lattice artifacts. This Lagrangian

contains several LECs: f ≈ 92 MeV and B0 from LO continuum χPT, W0 and W ′ introduced

by disretization errors, and `7. The latter, though of next-to-leading order (NLO) in standard

continuum power-counting, leads to contributions proportional to ε2q and thus we keep it in

our LO+ calculation. `7 is not renormalized at one-loop order, and matching with SU(3)

χPT leads to the estimate [31]

`7 =
f 2

8B0ms

, (3.4)

6A further justification for this choice, also discussed in Ch. 2, is that in SU(3) χPT such terms are of
LO, since they are proportional to (mu−md)

2/ms.
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indicating that `7 is positive.

The final ingredient in Eq. (4.2) is χ = 2B0M , which contains the mass matrix M =

diag(mu,md), with mu,d renormalized masses in a mass-independent scheme. Since Lχ is

supposed to represent the long-distance physics of a lattice simulation close to the chiral and

continuum limits, to use it we need to know the relationship between bare lattice masses and

the renormalized masses. This relationship is nontrivial when using nondegenerate quarks,

and is discussed in Appendix A.1. This point was overlooked in Ch. 2.

To determine the vacuum of the theory, we must minimize the potential Vχ. Writing

〈Σ〉 = eiθn̂·~τ , the potential becomes

Vχ = −f 2
(
m̂q cos θ + c`ε̂

2
qn

2
3 sin2 θ + w′ cos2 θ

)
, (3.5)

where

m̂q = B0(mu+md), ε̂q = 2B0εq, (3.6)

c` =
`7

f 2
, w′ =

64W ′W 2
0 a

2

f 2
. (3.7)

Assuming c` > 0 [based on the estimate (3.4)], the resulting phase diagrams are shown in

Fig. 3.1. The unshaded phases are continuum-like with |cos θ| = 1. The shaded (pink) phases

violate CP with

|n3| = 1, cos θ =
m̂q

2(c`ε̂2q − w′)
. (3.8)

The boundaries between continuum-like and CP-violating phases lie along the lines |m̂q| =

2(c`ε̂
2
q−w′), and are second order transitions. The boundary between the two continuum-like

phases with opposite cos θ is a first order transition. Within the continuum-like phases the

pion masses are

m2
π0 = |m̂q| − 2(c`ε̂

2
q − w′) , m2

π± = |m̂q|+ 2w′ , (3.9)

while within the CP-violating phase

m2
π0 = 2(c`ε̂

2
q − w′) sin2 θ , m2

π± = 2c`ε̂
2
q . (3.10)

The neutral pion mass vanishes along the second order transition lines. Plots of these masses

are given in Ch. 2.
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(a) Aoki scenario (w′ < 0). (b) First-order scenario (w′ > 0).

Figure 3.1: Phase diagrams adapted from Fig. 2.5 including effects of both discretization and

nondegenerate quarks. CP is violated in the (pink) shaded regions. The (blue) lines at the

boundaries of the shade regions are second-order transitions (where the neutral pion mass

vanishes), while the (yellow) line along the εq axis joining the two shaded regions in (4.2b) is

a line of first order transitions. The analytic expression given for the shaded region in (4.2a)

holds also for that in (4.2b). As discussed below in Sec. 3.3.2, these phase diagrams apply

also in the presence of electromagnetism.

3.3 Charged, nondegenerate Wilson quarks

We now add electromagnetism, so that we are considering Wilson fermions with charged,

nondegenerate quarks. Precisely how electromagnetism is added at the lattice level is not

relevant; all we need to know is that electromagnetic gauge invariance is maintained by

coupling to exact vector currents of the lattice theory. We work here only at LO in αEM, which

in terms of Feynman diagrams means keeping only those with a single photon propagator. We
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also work at infinite volume, thus avoiding the complications of power-law volume dependence

that occur in simulations [37, 21, 14].

3.3.1 Induced shifts in quark masses

The dominant effect of electromagnetism is a charge dependent shift in the critical mass, as

noted in Refs. [48, 23, 14]. Here we discuss this shift from the viewpoint of the Symanzik

low-energy effective Lagrangian [62, 63]. It arises from QCD self-energy diagrams in which

one of the gluons is replaced by a photon, and leads to the appearance of the operators

(a)
αEM

a
(
∑
f

e2
fff) ,

(b)
αEM

a
(
∑
f ′

ef ′)
∑
f

efff ,

(c)
αEM

a

∑
f ′

(e2
f ′)
∑
f

ff , (3.11)

where f = u, d, eu = 2/3 and ed = −1/3. Examples of the corresponding Feynman diagrams

are shown in Fig. 3.2

These operators are allowed because electromagnetism breaks isospin, while Wilson fermions

violate chiral symmetries. Their contributions are smaller than those of the
∑

f f̄f/a oper-

ator that leads to the dominant shift in the critical mass. However, because αEM ∼ a2 ∼ m

in our power-counting, αEM/a effects are proportional to a ∼ m1/2, and thus dominate over

physical quark masses. They must therefore be removed by appropriate tuning of the bare

masses. Since the combined effect of the three operators is independent O(αEM/a) shifts in

mu and md, removing these shifts requires independent tuning of the u and d critical masses.

Different methods for doing this tuning have been used in the literature. The most

straightforward, used in Ref. [14], is to determine the bare quark masses directly by enforcing

that an appropriate subset of hadron masses agree with their experimental values (keeping

all isospin breaking effects). This avoids the need to directly determine the critical masses,

but is the most challenging numerically. An alternative approach, proposed in Ref. [23],
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(a)

(b)

(c)

Figure 3.2: Examples of LO contributions from electromagnetism to quark self-energies.

Diagrams with additional gluons and quark loops are not shown. These three types of

diagram lead, respectively, to the three operators listed in Eq. 3.11. Only the first operator

is present in the “electroquenched” approximation.
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makes use of a partially-quenched extension of the theory. In Appendix A.2 we check this

method by showing how it can be implemented in χPT. We find that it cannot determine

both critical masses, but instead only provides a single constraint between them. We then

introduce an additional tuning criterion which, together with that of Ref. [23], does allow

both critical masses to be determined.

For the rest of the main text, we assume that the charge-dependent critical masses have

been determined in some manner, such that O(αEM/a) self-energy effects can be ignored.

This leaves electromagnetic corrections proportional to αEM, which we must keep in our

power counting, as well as higher-order effects proportional to αEM ×m etc., which we can

ignore.

Examples of the latter effects are the bilinears

αEM

∑
f

e2
fmf f̄f and αEM

∑
f

e2
f f̄ /Df . (3.12)

These arise as O(am) corrections to the operators of Eq. (3.11), and are also present di-

rectly in the continuum theory. We stress that, in the Symanzik Lagrangian, one has no

dimensionful parameters other than m and 1/a, so bilinears proportional to αEMΛQCD are

not allowed. Factors of ΛQCD arise when we move from the Symanzik Lagrangian to χPT.

The only effect of electromagnetism that is simply proportional to αEM—and thus of LO

in our power counting—is that arising from one photon exchange between electromagnetic

currents. This is a continuum effect, long studied in χPT. It leads to he following additional

term in the chiral potential [35, 26]:7

VEM = −f
2

4
cEM tr(Στ3Σ†τ3) . (3.13)

Here cEM is an unknown coefficient proportional to αEM. All that is known about cEM is that

it is positive [66].

7Contributions from the isoscalar part of the photon coupling lead to the same form but with one or both
τ3’s replaced by identity matrices. In either case the contribution reduces to an uninteresting constant,
and is thus not included in VEM.
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3.3.2 Phase diagram and pion masses

The competition between electromagnetic effects and discretization errors for two degenerate

Wilson fermions has been previously analyzed in Ref. [34]. Here we add in the effects of

nondegeneracy. This turns out to be very simple. Using the SU(2) identity

4 tr(Στ3Σ†τ3) =
[
tr(Σ+Σ†)

]2 − [tr([Σ−Σ†]τ3)
]2 − 8, (3.14)

together with

χ = m̂q1 + ε̂qτ3 , (3.15)

we find that VEM can be absorbed into Vχ [given in Eqs. (4.2) and (3.5)] by changing the

existing constants as

w′ −→ w′ + cEM , and c`ε̂
2
q −→ c`ε̂

2
q + cEM . (3.16)

This allows us to determine the phase diagram and pion masses directly from the results

presented in the previous section.8

We first observe that, at the order we work, the phase diagram is unchanged by the

inclusion of EM—the results in Fig. 3.1 still hold. This can be seen from the form of the

potential in Eq. (3.5), which, since |n3| = 1, depends only on c`ε̂
2
q −w′. This combination is,

however, unaffected by the shifts of Eq. (3.16) and so the phase boundaries and values of θ

throughout the phase plane are also unchanged.

Similarly, from Eqs. (3.9) and (3.10) we see that the neutral pion masses are unchanged

throughout the phase plane. In particular, the second-order phase boundaries are (as ex-

pected) lines along which the neutral pion is massless.

The only change caused by electromagnetism is to the charged pion masses, which are

increased by the same amount throughout the phase plane:

m2
π± −→ m2

π± + 2cEM . (3.17)

8For ε̂q = 0 our results are in complete agreement with those of Ref. [34].
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(a) Aoki scenario with

w′ < −cEM

(b) First-order scenario with

w′ > c`ε̂
2
q

(c) First-order or Aoki

scenario with

−cEM < w′ < c`ε̂
2
q

Figure 3.3: Pion masses for nondegenerate untwisted Wilson fermions including electromag-

netism. The three possible behaviors along vertical slices through phase diagrams of Fig. 3.1

are shown. Solid (blue) lines show m2
π0 , while dashed (red) lines show m2

π± . Expressions for

masses are given in the text.

One implication is that, for ε̂q = 0, the charged pions are no longer massless within the Aoki

phase (if present). This is because they are no longer Goldstone bosons, as the flavor sym-

metry is explicitly broken by electromagnetism. Also, as noted in Ref. [34], the charged pion

can be lighter than the neutral one inside the CP-violating phases. This is not inconsistent

with Witten’s identity [66] because the latter did not account for discretization effects. Plots

of the pion masses are shown in Fig. 3.3.

It is perhaps surprising that electromagnetism, which contributes at LO in our power-

counting, has no effect on the phase diagram, whereas the subleading contributions propor-

tional to ε̂2q have a significant impact. We can understand this by noting that the CP-violating

phase is characterized by a neutral pion condensate, which remains uncoupled to the photon

until higher order in χPT (where form factors enter).

The implications of these results for practical simulations (such as those of Ref. [14])
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are unchanged from the discussion in Ch. 2. In particular, for the Aoki scenario (w′ <

0) discretization effects move the CP-violating phase closer to the physical point than for

degenerate quarks, so one must beware of simulating too close to this transition.

3.4 Nondegeneracy, electromagnetism and twist

When using twisted-mass fermions one must decide on the relative orientation in isospin

space both of the twist and the isospin-breaking induced by quark mass differences and

electromagnetism. In the absence of electromagnetism, the standard choice is to align these

two effects in orthogonal directions. For example, one usually takes τ3 for isospin-breaking, as

in the continuum, while twisting in the τ1 direction.9 This is the choice used in simulations

of the strange-charm sector using twisted-mass fermions [8]. It ensures that the fermion

determinant is real, and (subject to some conditions) positive [29]. This was the choice

whose phase structure we determined using WχPT in Ch. 2.

This approach does not, however, allow for the inclusion of electromagnetism. One

problem is apparent already in the continuum limit, where the twisted-mass quark action is

(in the “twisted” basis) [30]

ψ( /D +mqcω + iγ5τ1mqsω + εqτ3)ψ . (3.18)

Here /D is the gluonic covariant derivative, mq is the average quark mass, and ω the twist

angle with cω = cosω and sω = sinω. This action is not invariant under flavor rotations in

the τ3 direction, so there is no conserved vector current to which the photon can couple. In

other words, there is no global flavor transformation available to gauge.

To avoid this problem, we recall that twisting is, in the continuum, simply a nonanomalous

change of variables that does not effect physical quantities. Thus we should start with the

standard action including electromagnetism

ψ( /D − ie /AQ+mq + εqτ3)ψ , (3.19)

9Any linear combination of τ1 and τ2 is equivalent; τ1 is the standard choice.
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with Aµ the photon field coupling via the charge matrix

Q =
1

6
1 +

1

2
τ3 , (3.20)

and then perform a chiral twist

ψ −→ eiωγ5τ1/2ψ, ψ −→ ψeiωγ5τ1/2 . (3.21)

This leads to the quark action of Eq. (3.18) with the addition of the photon coupling

ψ /A

[
1

6
1 +

1

2
(cωτ3 − sωτ2γ5)

]
ψ . (3.22)

Thus the photon couples to a linear combination of vector currents and to an axial current

in the τ2 direction. In the continuum, this combination is conserved [given the twisted mass

matrix of Eq. (3.18)] and the action remains gauge invariant.

We conclude that the correct fermion action to discretize is the sum of Eqs. (3.18) and

(3.22). This, however, is not possible in a gauge invariant way using Wilson’s lattice deriva-

tive (except for sω = 0). The Wilson term breaks all axial symmetries, so the τ2γ5 part of

the photon coupling is to a lattice current that is not conserved.

To avoid this problem, and obtain a discretized twisted theory that maintains gauge

invariance, one needs to twist in a direction that leaves the photon coupling to a conserved

current. The only choice is to twist in the τ3 direction. Then the twisted form of the

continuum Lagrangian is

ψ( /D − ie /AQ+mqcω + τ3εqcω + iγ5τ3mqsω + iγ5εqsω)ψ . (3.23)

This is discretized by adding the standard Wilson term. Since the photon is coupled to

vector currents that are exact symmetries of both the Wilson term and the full mass matrix,

gauge invariance is retained.

This form of the twisted isospin-violating action (with ω = π/2) is used in the recent work

of Refs. [22, 23]. It has one major practical disadvantage—the quark determinant is complex

for nonzero twist. This is true for nondegenerate masses alone, as explained in Ref. [65].
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Adding electromagnetism only makes the problem worse, since at the least it induces further

nondegeneracy in the masses. Because the action is complex, direct simulation with present

fermion algorithms is challenging. This problem is avoided in Refs. [22, 23] by doing a

perturbative expansion in powers of εq and αEM. The expectation values are then evaluated

in the theory with no isospin breaking, for which the fermion determinant with twisting is

real and positive.

In the following section we study the phase diagram of the theory with the discretized

form of the Lagrangian (4.5). To our knowledge, this form of the twisted theory has not

previously been studied in WχPT either with nondegeneracy alone or with electromagnetism.

3.5 χPT for charged, nondegenerate quarks with a τ3 twist

The conclusion of the previous section is that the twisted-mass theory whose phase diagram

is of interest is that with lattice fermion Lagrangian

ψL [DW +m0 + τ3ε0 + iγ5τ3µ0 + iγ5η0]ψL . (3.24)

ψL is a lattice fermion field and DW the lattice Dirac operator including the Wilson term

(and possibly improved). DW is coupled to both gluons and photons, with the latter coupling

to the τ3 vector current. The action differs from that considered (implicitly) in Sec. 3.3 only

by the addition of the two mass parameters µ0 and η0.

The four bare mass parameters in (3.24) are related in the continuum limit to the renor-

malized up and down masses, the twist angle (which is a redundant parameter) and the QCD

theta angle, θQCD. The aim is to tune the bare parameters so that the dimension 4 part of

the quark contribution to the Symanzik effective Lagrangian is given by Eq. (4.5) with the

desired physical quark masses, for some choice of ω. As for untwisted Wilson fermions the

dominant effect of electromagnetism is to cause separate O(αEM/a) shifts in the (untwisted)

up and down masses. These shifts depend on twisted masses only at quadratic order, so

that, to the order we work, they are identical to those for Wilson fermions. They can be

determined by the methods discussed in Sec. 3.3.1 and Appendix A.2. They are equivalent
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to independent shifts in m0 and ε0.

After the additive shift in m0 and ε0, all four masses in (3.24) must be multiplicatively

renormalized in order to be related to the continuum masses in Eq. (4.5). As discussed in

Appendix A.1, this requires different renormalization factors for all four masses. We assume

here that these renormalizations have been carried out, so that the dimension four term in the

Symanzik effective Lagrangian is given by Eq. (4.5) and described by the three parameters

mq, εq and ω.

We stress that this tuning and renormalization must be carried out with sufficient accu-

racy. If not, instead of Eq. (4.5), one ends up with a similar form having different twist angles

for the mq and εq parts. The parity-odd parts can then only be removed by a combined flavor

nonsinglet and flavor singlet twist. Since the latter is anomalous, this corresponds to a the-

ory with nondegenerate quark masses, electromagnetism, a twist angle and a nonvanishing

θQCD. In other words, the theory not only has the unphysical parity violation due to twisting

(which can be rotated away in the continuum limit) but also the physical parity violation

induced by θQCD. Indeed, to analyze the tuning in χPT one needs to include a nonvanishing

θQCD, an analysis we carry out in Chapter 4.

Assuming that the dimension-four quark Lagrangian is Eq. (4.5), we next investigate

which higher-dimension operators are introduced into the Symanzik Lagrangian by twisting.

Those operators present for Wilson fermions remain, but, as discussed in Sec. 3.3, are all of

higher order than we consider. The dominant operators introduced by twisting will violate

parity, because they are linear in the parity-violating mass terms µ0 and η0. Examples of

the new operators are10

aη0GµνG̃µν , aη0ψG̃µνσµνψ , and aµ0ψτ3G̃µνσµνψ . (3.25)

Since we generically treat am terms as being beyond LO+ [see Eq. (3.1)], we should be able

to ignore these operators. However, because η0 ∼ εq and we are treating εq as somewhat

10The first of these corresponds to an induced value of θQCD proportional to aη0. This is one way of seeing
that the lattice action (3.24) leads to a complex fermion determinant.
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enhanced, one might be concerned about dropping aη0 terms. In fact, the aη0 operators

in (3.25), when matched into χPT, pick up an additional factor of m or p2, and thus are

unambiguously suppressed. The reason for the extra factors is that the LO representation of

a flavor-singlet pseudoscalar in χPT, tr(Σ− Σ†), vanishes identically. For the induced θQCD

term, one can also see this result by noting that it can be rotated into the isosinglet mass

term, leading to a contribution proportional to mθQCD ∼ aεm.

Proceeding in this fashion, we find that all other new operators induced by the parity-

breaking masses are beyond LO+ in our power counting. Thus, once the requisite tuning

has been done, the LO+ chiral effective theory for τ3 twisted fermions with isospin breaking

is given by the same result as for Wilson fermions, i.e.

f 2

4
tr
[
∂µΣ∂µΣ†

]
+ Vχ + VEM (3.26)

[see Eqs. (4.2) and (4.4)], except that the quark mass matrix is now twisted

χ = (m̂q + ε̂qτ3)eiωτ3 . (3.27)

We analyze the phase structure of this chiral theory in the next two subsections.

3.5.1 Phase diagram and pion masses at maximal τ3 twist

We begin working at maximal τ3 twist, which is the choice used in Refs. [22, 23]. In this case

χ = im̂qτ3 + iε̂q , (3.28)

and the chiral potential becomes

−Vχ+EM

f 2
= m̂qn3 sin θ − (c`ε̂

2
q + w′) sin2 θ + cEM(cos2 θ + n2

3 sin2 θ) , (3.29)

up to an irrelevant constant. Since cEM > 0, the right-hand side is maximized always with

|n3| = 1, and we see that the cEM term becomes a constant. Thus, once again, electromag-

netism has no impact on the phase diagram. We also see that the effect of nondegeneracy
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(a) Aoki scenario (w′ < 0). (b) First-order scenario (w′ > 0).

Figure 3.4: Phase diagrams including effects of discretization and nondegeneracy for maxi-

mally τ3-twisted quarks. Electromagnetism has no impact on the phase diagram. Notation

as in Fig. 3.1. The neutral pion is massless along the second-order phase boundary between

shaded (CP-violating) and unshaded phases.

can be deduced from the results for the degenerate case (studied in Refs. [45, 52, 57]) simply

by shifting w′.

The resulting phase diagrams are shown in Fig. 3.4. Comparing to the untwisted results of

Fig. 3.1, we see that the role of the Aoki and first-order scenarios has interchanged. Without

loss of generality, we can take n3 = 1 throughout the phase plane. Then, in the continuum-

like (unshaded) phases we have sin θ = sign(m̂q), corresponding to the condensate aligning or

antialigning with the applied twist. Second order transitions occur at |m̂q| = 2(w′+c`ε̂
2
q). For

smaller values of |m̂q| the condensate angle is sin θ = m̂q/(2[w′ + c`ε̂
2
q]), with two degenerate

minima having opposite signs of cos θ. If one switches to the “physical basis” in which the
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twist is put on the Wilson term, then one finds that this phase violates CP, just as in the

Wilson case.

These results differ significantly from the phase structure for nondegenerate quarks with

a maximal τ1 twist, shown in Fig. 2.7. In particular, an additional phase found for w′ > 0

with a τ1 twist is absent here. We stress again that only the theory with a τ3 twist, i.e. that

discussed here, can incorporate electromagnetism.

For the pion masses we find the following results. Within the continuum-like phases we

have

m2
π0 = |m̂q| − 2(c`ε̂

2
q + w′) , m2

π± = |m̂q|+ 2cEM , (3.30)

while within the CP-violating phase

m2
π0 = 2(c`ε̂

2
q + w′) cos2 θ , m2

π± = 2(c`ε̂
2
q + w′ + cEM) . (3.31)

As expected, only the charged pion masses are affected by electromagnetism. Plots of these

results along vertical slices through the phase diagram are shown in Fig. 3.5.

It is interesting to compare to the results with untwisted fermions, which are given in

Eqs. (3.9) and (3.10) together with the shift (3.17) of m2
π± by 2cEM induced by electromag-

netism. We see that the neutral pion mass differs only by the change of sign of w′ (which

also implies the interchange sin θ ↔ cos θ). This means that the results in the two scenarios

interchange exactly. For the charged pion masses, apart from the interchange of scenarios

there are also overall shifts proportional to w′.

The implications of these results for present simulations are as follows. If one could

simulate the theory directly (somehow dealing with the fact that the action is complex)

then one would need to avoid working in or near the CP-violating phase. This is now more

difficult in the first-order scenario than the Aoki scenario—opposite to the situation with

untwisted Wilson fermions. This qualitative result is the same as for τ1 twisting (without

electromagnetism), although the area taken up by unphysical phases is larger in that case.

As noted above, actual simulations done to date at maximal twist use perturbation theory

in ε̂q and αEM, and so evaluate all expectation values in the theory with ε̂q = αEM = 0.
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(a) Aoki scenario with

c`ε̂
2
q + w′ < −cEM < 0

(b) Aoki scenario with

−cEM < c`ε̂
2
q + w′ < 0

(c) Aoki or first-order

scenario with c`ε̂
2
q + w′ > 0

Figure 3.5: Pion masses for nondegenerate maximally τ3-twisted fermions including elec-

tromagnetism. The three possible behaviors along vertical slices through phase diagrams

of Fig. 3.4 are shown. Solid (blue) lines show m2
π0 , while dashed (red) lines show m2

π± .

Expressions for masses are given in the text.
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Clearly, if w′ > 0, these simulations must be careful to have m̂q large enough to avoid the

CP-violating phase.11

3.5.2 Nonmaximal τ3 twist

We have also investigated the phase structure for general τ3 twist, i.e. nonvanishing and

nonmaximal. One motivation for doing so is that twisted-mass simulations cannot achieve

exactly maximal twist; another is to see how the phase diagrams of Fig. 3.1 change into those

of Fig. 3.4.

Expressions are simplified if we define θ relative to a twist ω, i.e. if we use

〈Σ〉 = eiωτ3/2eiθn̂·~τeiωτ3/2 . (3.32)

Then we find (dropping constants)12

− V
f 2

= m̂q cos θ + c`ε̂
2
qn

2
3 sin2 θ + w′(cos θ cosω − n3 sin θ sinω)2

+ cEM(cos2 θ + n2
3 sin2 θ) . (3.33)

This is not amenable to simple analytic extremization, and we have used a mix of analytic

and numerical methods. One can show analytically that the minima always occur at |n3| = 1.

This implies that, once again, the electromagnetism does not play a role in determining the

phase structure.

The sign of n3 can always be absorbed into θ, so we can again choose n3 = 1 without loss

of generality. The potential can then be written (up to θ-independent terms) as

− V
f 2

∣∣∣∣∣
n3=1

= m̂q cos θ + cos2 θ
[
−c`ε̂2q + w′ cos(2ω)

]
− w′

2
sin(2θ) sin(2ω) . (3.34)

11In addition, if these simulations are done close to the onset of the CP-violating phase, one would expect
the expansion in ε̂q to be poorly convergent. This is probably not a problem for the method of Ref. [30],
however, since they take the continuum limit of the term linear in ε̂q, and in this limit w′ = 0 and the
lattice artifacts discussed here vanish.

12At ω = π/2 this should agree with Eq. (3.29), and it does once the different definitions of θ and n̂ are
taken into account.
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A numerical investigation of this potential finds that, for nonextremal ω, and for all nonzero

w′, there is a first-order transition as m̂q passes through zero, irrespective of the value of ε̂q.

At this transition θ jumps from π/2− δ to π/2 + δ, with δ 6= 0 depending on the parameters.

Thus, unlike at the extremal points ω = 0, π/2, there are no second-order transition lines.

Correspondingly, there are no values of the parameters for which any of the pion masses

vanish. This is very different from the theory with a τ1 twist, where in Ch. 2 we found a

two-dimensional critical sheet in m̂q, ε̂q, ω space.

The absence of critical lines at nonextremal twist can be understood in terms of symme-

tries. For ω = 0 and π/2, the potential has a θ → −θ symmetry, and this Z2 symmetry is

broken by the condensate in the CP-violating phase, leading to a massless pion at the tran-

sition. For nonextremal twist, however, the potential of Eq. (3.33) has no such symmetry.

Lacking this symmetry, one expects, and finds, only first-order transitions.

3.6 Conclusions

This work completes our study of how isospin breaking impacts the phase structure of

Wilson-like and twisted-mass fermions. The main results are the phase diagrams presented in

Figs. 3.1 and 3.4, together with the corresponding pion masses. These results show how the

combination of discretization errors and nondegeneracy can bring unphysical phases closer

to (or further away) from the physical point.

The inclusion of electromagnetism into the analysis turns out to be very straightforward,

aside from the need to introduce independent up and down critical masses. Electromagnetism

has no impact on the phase diagrams at leading order, because the condensates in the CP-

violating phases involve neutral pions. The only impact is to uniformly increase the charged

pion masses.

We have investigated within WχPT the conditions used in Ref. [23] to determine the

two critical masses in the presence of electromagnetism. We find that, unless one makes

the electroquenched approximation, the two conditions are in fact not independent. To

determine both critical masses one needs an additional condition, and we have presented one
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possibility in Appendix A.2. Our condition requires simulating at nonzero (though small)

θQCD, and thus will be difficult to implement in practice, but provides an existence proof

that an alternative condition exists.

Our analysis has been carried out in infinite volume. For the finite volumes used in

lattice simulations one might be concerned about significant finite-volume effects on the

electromagnetic contributions. The impact on the results presented here, however, should be

minimal. The phase diagram will remain unaffected by electromagnetism, while the shifts in

critical masses are dominated by ultraviolet momenta, themselves insensitive to the volume.

The only significant effect will be on electromagnetic mass shifts, with cEM picking up an

effective power-law volume dependence [37, 21, 14, 9].
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Chapter 4

PHASE STRUCTURE WITH NONZERO ΘQCD AND TWISTED
MASS FERMIONS 1

4.1 Introduction

In chapters 2 and 3 we determined the phase structure of two-flavor lattice QCD with Wilson

and twisted-mass fermions at nonvanishing lattice spacing in the presence of the two phys-

ical sources of isospin breaking: nondegenerate up and down quarks and electromagnetism.

These results are relevant for present simulations because O(a2) discretization effects are of

comparable size to those from isospin breaking (Here a is the lattice spacing). Discretiza-

tion effects can thus significantly distort the chiral condensate and lead to unphysical phase

transitions.

In particular, the CP-violating phase found by Dashen in the continuum [19] can be

enlarged by discretization effects, and for large enough a can include the point with physical

quark masses.

In Ch. 3 we found that the inclusion of electromagnetism along with twisting requires

one to consider, at an intermediate stage, a lattice theory that has, in addition to isospin

breaking, a nonvanishing value of ΘQCD. We repeat the explanation of this result below.

The purpose of the present note is to study the properties of this extended theory, providing

results that are used in Ch. 3 to tune to the physical value, ΘQCD = 0. We also present some

results not needed in Ch. 3 so as to provide a complete picture of the parameter dependence

of the phase structure.

Our analysis is carried out using SU(2) chiral perturbation theory (χPT ). Previous work

has considered this theory at nonvanishing ΘQCD in the continuum. In particular, Refs. [61]

1This chapter is adapted with minimal changes from Ref. [40]
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and [16] have studied the theory at ΘQCD = π, elucidating the Dashen phase. In addition,

Refs. [43] and [2] considered this and related theories for arbitrary ΘQCD in the small-volume

regime, where one can use the methods of random matrix theory. In all these theories they

find a Dashen phase. What our study adds to this previous work is the inclusion of the

effects of working at nonvanishing lattice spacing.

We begin by recalling the essential features of SU(2) χPT including discretization effects,

nondegenerate quarks, and electromagnetism, in the power counting we use in chapters 2

and 3. In this power counting, effects proportional the average light quark mass, mq =

(mu+md)/2, are assumed comparable to those quadratic in lattice spacing,2 and to those

proportional to αEM, i.e., mq ∼ a2 ∼ αEM. We also include in the leading-order Lagrangian

the dominant term introduced by nondegeneracy, which is proportional to ε2q, where εq =

(mu−md)/2. We work to leading order in this combined power counting, so that loop effects

need not be considered. Ignoring electromagnetism for now, the Lagrangian is then

Lχ =
f 2

4
tr
[
∂µΣ∂µΣ†

]
+ Vχ (4.1)

Vχ = −f
2

4
tr(χ†Σ + Σ†χ)−W ′[tr(Â†Σ + Σ†Â)]2

+
`7

16
[tr(χ†Σ− Σ†χ)]2 . (4.2)

Here Σ ∈ SU(2) is the chiral field, f ≈ 92 MeV and B0 are the continuum leading order low

energy coefficients (LECs), and Â = 2W0a1 is a spurion field, with W0 and W ′ LECs intro-

duced by discretization errors. The quark mass matrix, M , is contained in the convenient

quantity χ = 2B0M .3 Matching physical quantities in continuum SU(2) and SU(3) χPT

one finds

`7 =
f 2

8B0ms

(4.3)

2Terms linear in a, if present, can, in the pion sector, be absorbed into an additive shift in the quark
mass, so that the leading discretization effects relevant for the phase structure are proportional to a2 [56].

3The detailed relationship of the masses in M to the bare lattice quark masses is explained in Ap-
pendix A.1. We also note that M contains only the LR projection of the full mass matrix.
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where ms is the strange quark mass [31]. Thus we know that `7 is positive.

In the continuum, the leading term induced in the chiral potential by electromagnetism

is that due to one-photon exchange between electromagnetic currents [35, 26]

VEM = −f
2

4
cEM tr(Στ3Σ†τ3), (4.4)

where cEM is proportional to αEM and is known to be positive [66]. Electromagnetism also

contributes to mass renormalization, but this is implicitly included by our use of renor-

malized masses in the quark mass matrix M . Although the quark masses depend on the

renormalization scheme chosen, this dependence is canceled by that of the prefactor B0, so

that the product χ is independent of renormalization scheme and scale.

On the lattice, with Wilson or twisted-mass fermions, the inclusion of electromagnetism

leads to additional issues. The first of these concerns the direction of the twist. Quark

nondegeneracy picks out the τ3 direction in isospin space. In the absence of electromagnetism,

one can twist in an orthogonal direction, e.g. τ1, and this choice leads to a real lattice

fermion determinant [29]. However, such a twist leads leads to an electromagnetic current

that includes an axial component when written in terms of bare quarks. This current cannot

be coupled in a gauge-invariant way to the electromagnetic field in a lattice theory since it

is not conserved as shown in Ch. 3.

To include both electromagnetism and nondegeneracy on the lattice, one is thus forced

to twist in the τ3 direction [22, 23]. This, however, leads to a complex lattice fermion deter-

minant [65], making the theory challenging to simulate.4 An intuitive way of understanding

why the action is complex is to note that, in the continuum, when the twist angle is ω, the

fermion mass term is given by

ψ(mqcω + τ3εqcω + iγ5τ3mqsω + iγ5εqsω)ψ , (4.5)

where ψ is an isodoublet, cω = cosω, and sω = sinω. By construction, in the continuum

a nonsinglet axial rotation (i.e., a twist) can return the mass matrix to its standard form

4This is avoided in Refs. [22] and [23] by working to linear order in perturbation theory about the isospin
symmetric theory.



85

mq + τ3εq. However, on the lattice, such a rotation is not a symmetry. Crudely speaking,

the lattice theory with mass matrix (4.5) corresponds to a continuum theory in which the

coefficients of the four terms are differently renormalized. In such a theory the mass terms

involving γ5 cannot both be rotated away, and thus the theory has a nonzero ΘQCD. As is

well known, this leads to a complex fermion determinant. The only redeeming feature is

that, if one could tune the lattice quark mass matrix such that it took the form of Eq. (4.5)

in the continuum limit, then the imaginary part of the fermion determinant would vanish in

this limit.

The situation is not this simple, however, because of the second issue induced by the

inclusion of electromagnetism in the lattice theory. This is the presence of independent

additive renormalizations of the up and down bare untwisted quark masses proportional to

αEM/a. Since in our power counting m ∼ a2 ∼ αEM, these renormalizations dominate over

the leading order terms described above and collected in Eqs. (4.2) and (4.4). They must

be tuned away by applying nonperturbative conditions to determine, independently, the two

critical masses.5 One of the results of Ch. 3 was a demonstration that the tuning method

used in Ref. [23] does not work in general.6 The method provided only a single condition,

while two are needed. The key point for present purposes is that, with the untwisted parts

of the quark masses “detuned”, the theory one is studying has, even in the continuum limit,

a nonvanishing value of ΘQCD. Thus, to come up with a second condition that will set

ΘQCD = 0 (in the continuum limit) one must understand the properties of the detuned

theory. This is the purpose of the present analysis.

To understand why detuning leads to nonzero ΘQCD, it is instructive to write out the

5There is, in addition, the standard additive renormalization proportional to 1/a (times powers of αs)
that is common to both quarks. The nonperturbative conditions that remove the αEM/a shifts will also
remove the larger 1/a shifts. The point here is that the smaller (but still divergent) electromagnetic
renormalizations imply the need for two conditions, rather than one.

6The method, based on introducing unphysical valence quarks, works only in the electroquenched approx-
imation, in which sea quarks are kept neutral and degenerate. It fails once the sea quarks are charged.
The second method proposed in Ref. [23], and the method used in Ref. [14], do not suffer from the same
problem, because they tune using physical quantities.
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renormalized mass matrix M in a detuned, twisted theory. It is convenient to work with χ

rather than M , since this is what enters the chiral Lagrangian. The form is

χ =

m̂W
u + iµ̂u 0

0 m̂W
d − iµ̂d

 (4.6)

where the “hat” on a mass indicates multiplication by 2B0. In particular, m̂W
u = 2B0m

W
u ,

with mW
u the renormalized untwisted or “Wilson” part of the up-quark mass, while µ̂u =

2B0µu, with µu the twisted part of the up-quark mass. Similar notation holds for the down-

quark masses. The superscript W distinguishes the untwisted masses from the full physical

masses, which are given, for example, by m2
u = (mW

u )2 + µ2
u. The two twisted masses in

(4.6) have opposite overall signs because twisting involves τ3. In this notation, tuning the

untwisted parts of both masses to their critical values means tuning both m̂W
u and m̂W

d to

zero. As long as µu and µd have opposite signs this corresponds to tuning to maximal twist.

We can rewrite the mass matrix of Eq. (4.6) in terms of the average physical quark mass

mq and the nondegeneracy εq:

χ =

(m̂q + ε̂q)e
i(ϕ+ω) 0

0 (m̂q − ε̂q)ei(ϕ−ω)

 . (4.7)

Here m̂q = 2B0mq, ε̂q = 2B0εq,

tan(ϕ+ ω) =
µ̂u
m̂W
u

and tan(ϕ− ω) = − µ̂d
m̂W
d

. (4.8)

We observe from Eq. (4.7) that ω is the twist angle, while ϕ, being the overall phase of the

mass matrix, is proportional to ΘQCD:

ϕ =
ΘQCD

2
. (4.9)

Thus having a general, detuned mass matrix corresponds to working at nonzero ΘQCD.

Tuning to the critical values of the untwisted quark masses corresponds to setting ω = π/2

and ϕ = 0, i.e., tuning to maximal twist with vanishing ΘQCD.



87

In summary, the dominant effect of including electromagnetism in a theory with Wilson

or twisted-mass fermions is mass renormalization. For nonvanishing twist, this implies that

one must work at nonvanishing ΘQCD in order to tune to ΘQCD = 0. While this will be

challenging for simulations, it is straightforward to study this theory in χPT. Working at

leading order in our power counting, one has simply to find the minima of the potential that

is composed of the terms given in Eqs. (4.2) and (4.4).

When determining the expectation value of the chiral field, it is convenient to parametrize

it relative to the twist it would obtain were ϕ = a = 0:

〈Σ〉 = eiωτ3/2eiθn̂·~τeiωτ3/2 (4.10)

The full potential V = Vχ + VEM then becomes

− V
f 2

= m̂q cos θ cosϕ+ n3ε̂q sin θ sinϕ+ c` (n3ε̂q sin θ cosϕ− m̂q cos θ sinϕ)2

+ w′ (n3 sin θ sinω − cos θ cosω)2 + cEM

(
n2

3 + (1− n2
3) cos θ2

)
,

(4.11)

up to an irrelevant overall constant. Here we have introduced

c` =
`7

f 2
and w′ =

64W ′W 2
0 a

2

f 2
. (4.12)

Given that `7 and cEM are both positive, the potential is always minimized with the conden-

sate aligned in the τ3 direction, i.e. n̂ = (0, 0,±1). Without loss of generality we can set

n̂ = (0, 0, 1) and absorb any sign into θ. The main task in the following is the determination

of the values of θ which minimize V as the parameters are varied.

An immediate conclusion from this analysis is that the remaining explicit effect of elec-

tromagnetism, namely the cEM term, is simply a constant for n3 = 1. It therefore does not

effect the minimization of the potential, and thus has no impact on the phase structure.

Physically this is because the condensate lies in the neutral pion direction. The only effect

of this term is to give an overall positive shift in the charged pion masses.7

7In light of these considerations,we drop the cEM term in the subsequent discussion of minimization of
the potential.
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The remainder of this chapter is organized as follows. In Sec. 4.2 we determine the phase

diagram in the m̂q− ε̂q plane. We do so in stages, beginning by elucidating the symmetries of

the potential (4.11), then working out the phase diagram in the continuum, next adding in

discretization effects for the extremal cases where ω = 0 and π/2, and finally considering the

most general choices of parameters. We then return, in Sec. 4.3, to the original motivation

for the present work, namely the determination of a condition such that, in the presence

of electromagnetism, maximal twist at ΘQCD = 0 can be achieved in a physical phase. We

conclude in Sec. 4.4.

4.2 Determination of phase diagram

4.2.1 Symmetries of the phase diagram

Before entering into detailed calculations we collect some general results that follow from

the form of the potential, Eq. (4.11).

First we note that, without loss of generality, we need only consider ω and ϕ in the range

0 ≤ ω, ϕ ≤ π/2 , (4.13)

as long as we consider the full m̂q − ε̂q plane. This is because V is invariant under each of

the following four transformations

(i) {ω → ω + π} , (4.14)

(ii) {ω → −ω, θ → −θ, ε̂q → −ε̂q} , (4.15)

(iii) {ϕ→ −ϕ, ε̂q → −ε̂q} , (4.16)

(iv) {ϕ→ ϕ+ π, m̂q → −m̂q, ε̂q → −ε̂q} . (4.17)

In the following, we refer to the endpoints of the range (4.13) as the “extremal” values of ω

and ϕ, while values within the range are called “nonextremal”.

In addition, V is invariant under

(v) {ω → π

2
−ω, ϕ→ π

2
−ϕ, m̂q ↔ ε̂q, θ →

π

2
−θ} . (4.18)
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This implies relations between the phase transition lines for different values of the parameters.

For example, the phase diagram for ω = ϕ = 0 is related to that for ω = ϕ = π/2 by a

reflection in the diagonal line m̂q = ε̂q.

The final invariance that plays a role in the following is

(vi) {ω → π

2
−ω, ε̂q → −ε̂q, w′ → −w′, θ → −θ} . (4.19)

This relates the phase diagrams with opposite signs of w′.

4.2.2 Continuum χPT with nonzero ΘQCD

In this section we examine the phase structure in the continuum. Without discretization

effects, the twist angle is redundant and has no effect on the phase diagram. This is manifest

in the basis used in Eq. (4.11), where with w′ ∝ a2 = 0 there is no dependence on ω.

We begin by recalling results for the extremal cases ϕ = 0 and π/2, corresponding to

ΘQCD = 0 and π. These have real and imaginary quark masses, respectively.

The physical case, ϕ = 0, has been described extensively in the literature [19, 17, 38].

The phase diagram is shown in Fig. 4.1(a). There is a second-order transition between the

standard continuum phase and the CP-violating Dashen phase, lying along m̂q = ±2c`ε̂
2
q. In

the Dashen phase, the potential has two degenerate minima, both having

cos θ =
m̂q

2c`ε̂q
, (4.20)

and differing in the sign of θ.

The case of ΘQCD = π (ϕ = π/2) was first described by Smilga [61]. The potential

has the same form as for ϕ = 0, except that m̂q and cos θ are exchanged with ε̂q and sin θ,

respectively. This implies that the phase diagram has the same form as for ϕ = 0, except

that it is reflected in the m̂q = ε̂q line, as shown in Fig. 4.1(b). This is an example of the

symmetry (4.18) at work (since the change in ω is irrelevant in the continuum). There is

thus a second-order transition to a Dashen-like phase along the lines ε̂q = ±2c`m̂
2
q. There is

again a two-fold degeneracy within this phase.
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(a) ϕ = 0 (b) ϕ = π/2

Figure 4.1: Continuum phase diagram for (a) ϕ = ΘQCD/2 = 0 and (b) ϕ = π/2. Shaded

(pink) regions have varying values of the vacuum angle θ, as indicated in the figures. Un-

shaded regions have constant θ. The neutral pion mass vanishes along the phase transition

lines.
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For nonextremal ϕ (0 < ϕ < π/2) the potential (4.11) cannot be minimized exactly and

it is instructive to look at some simple limits.

First we drop the O(m2) c` term. In the extremal cases this means that the width of the

shaded (pink) phases shrinks to zero, so that there is a first-order transition along the entire

m̂q = 0 line for ϕ = 0 and along the ε̂q = 0 line for ϕ = π/2. By contrast, for nonextremal

ϕ, there are no transitions. The potential is minimized at,

tan θ =
ε̂q
m̂q

tanϕ , (4.21)

and changes continuously as one moves through the phase diagram, except when passing

through the origin.

The absence of a transition for nonextremal ϕ continues to hold when the c` term is

restored. This can be understood as due to the lack of a Z2 symmetry in the potential.

It is the presence of a Z2 symmetry for extremal ϕ (under which θ → θ + π) that, when

broken by the vacuum, leads to a second-order transition. The upshot is that the extremal

phase diagrams of Fig. 4.1 are replaced by blank diagrams with no transitions, aside from

the singular point at the origin.

To show a concrete example of this, we consider ϕ = π/4. Using the parametrization

m̂q = r cosα, ε̂q = r sinα and r2 = m̂2
q + ε̂2q. The potential is then

− V
f 2

=
r√
2

[
cos (θ − α) + κ cos2 (θ + α)

]
, (4.22)

where κ = c`r/
√

2 can be treated as small in our power counting. The minima occur when

0 = sin (θ − α) + 2κ sin [2(θ + α)] . (4.23)

Expanding in powers of κ about the leading-order solution, θ = α, we find

θ = α− 2κ sin (4α) +O(κ2) . (4.24)

The presence of only a single solution indicates the absence of a Dashen-like phase. We

have investigated this numerically for other values of ϕ and found that there are no phase

transitions for any nonextremal ϕ.
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To see how the degeneracy of the Dashen-like phase is broken for nonextremal ϕ, consider

the potential along the m̂q = 0 axis:

− V
f 2

= ε̂q sin θ sinϕ+ c`ε̂
2
q sin2 θ cos2 ϕ . (4.25)

For ϕ = 0, one finds (since c` > 0) that there are degenerate minima at sin θ = ±1. This

corresponds to moving from the origin in Fig. 4.1(a) along the ε̂q axis and thus lying in the

(shaded pink) Dashen phase. Turning on a nonzero ϕ, the potential is still extremized at

|sin θ| = 1, but the two extrema are no longer degenerate

−V(sin θ = ±1)

f 2
= ±ε̂q sinϕ+ c`ε̂

2
q cos2 ϕ . (4.26)

Thus there is a unique minimum, such that sin θ = 1 for ε̂q > 0 and sin θ = −1 for ε̂q < 0

(assuming a positive ϕ). There thus can be no Dashen-like phase.

4.2.3 Discretization effects at nonzero ΘQCD for extremal ω

We now turn on discretization errors by considering non vanishing w′. Just as in the con-

tinuum, the phase diagram is easiest to determine for extremal ϕ. The case of ω = ϕ = 0

(untwisted fermions with ΘQCD = 0) has long been studied, and it has been shown that

there are two distinct scenarios depending on the sign of w′: the so-called Aoki scenario for

w′ < 0, and the first-order scenario for w′ > 0 [3, 56, 38]. The resulting phase diagrams are

shown in Fig. 4.2, and should be compared to the continuum diagram of Fig. 4.1(a). For

w′ < 0, the Dashen phase, in which θ is degenerate, expands vertically so as to include the

origin. The CP violating phase along the m̂q axis is typically called the Aoki phase, so we

call the extended CP violating region the Aoki-Dashen phase. This situation is shown in

Fig. 4.2(a). For w′ > 0, the vertical width of the continuum Dashen phase is reduced, and

there is a segment of first-order transition along the ε̂q axis, as shown in Fig. 4.2(b). In both

scenarios, within the Aoki-Dashen phases the potential is minimized by

cos θ =
m̂q

2(c`ε̂q − w′)
, (4.27)
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(a) w′ < 0. (b) w′ > 0.

Figure 4.2: Phase diagrams adapted from Fig. 2.5 including effects of discretization for

ω = ϕ = 0: (a) Aoki scenario (w′ < 0) and (b) first-order scenario (w′ > 0).. The expression

for θ in the shaded (pink) region in (a) also holds in (b). The boundary of the shaded regions

are second-order transition lines, along which the neutral pion mass vanishes. The (yellow)

solid line running along the ε̂q axis between the shaded regions is a first-order transition.
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so that again there are two degenerate vacua with opposite signs of θ.

We next consider ϕ = π/2 while holding ω = 0 (i.e. Wilson fermions at ΘQCD = π).

This has not been previously studied in the presence of lattice artifacts. As described above,

for the continuum terms in V , changing ϕ from 0 to π/2 has the effect of interchanging m̂q

and cos θ with ε̂q and sin θ, respectively. Since the w′ term can be rewritten as w′ cos2 θ =

w′(1− sin2 θ), the same interchanges hold for w′ 6= 0 as long as one flips the sign of w′. Up

to some unimportant sign flips, this is an example of the general transformation obtained by

combining Eqs. (4.18) and (4.19):

(vii) {ϕ→ π

2
−ϕ, m̂q → −ε̂q, ε̂q → m̂q,

w′ → −w′, θ → θ − π

2
} . (4.28)

The implication is that the phase diagrams for ϕ = π/2 are obtained from those of Fig. 4.2

by rotating 90◦ counterclockwise, and interchanging the w′ < 0 and w′ > 0 scenarios. The

positions of the resulting transitions are shown schematically in Fig. 4.3.

The twist angle is no longer redundant when w′ 6= 0, entering the w′ term in Eq. (4.11)

as w′ cos2(θ + ω). Thus changing ω from 0 to π/2 has the effect of flipping the sign of w′:

w′ cos2(θ+π/2) = w′ sin2 θ = w′(1−cos2 θ). This is an example of the general transformation

(4.19). It implies that the phase diagrams for maximal twist can be simply obtained from

those without twist. The situation is summarized in Fig. 4.3.

In the remainder of this subsection we keep ω at one of the extremal values but allow

ϕ to take on nonextremal values. We recall that in the continuum, the phase diagram with

such parameters has no phase transitions. This turns out not to be the case when w′ 6= 0.

Examples of the results we find are shown in Fig. 4.4.

We begin with ω = 0 and nonextremal ϕ, and work in the w′ > 0 scenario. We find that

there is a first-order transition along a finite segment of the ε̂q axis, across which θ changes

discontinuously. The length of the segment depends on ϕ. As ϕ approaches zero [in which

limit one obtains the phase diagram of Fig. 4.2(b)] the first-order segment asymptotes to

precisely the first order transition line shown in Fig. 4.2(b), with end points c`ε̂
2
q = ±w′.
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Figure 4.3: Schematic positions of phase boundaries for extremal choices of ω and ϕ for

both w′ < 0 and w′ > 0 scenarios. Dashed lines indicate second order transitions, solid lines

indicate first-order transitions. Results for two of these parameter choices also appear in

Fig. 4.2.



96

We stress again that, for non vanishing ϕ, there are no regions of Aoki-Dashen phase. As

ϕ increases, the first-order segment reduces in length, until, as ϕ → π/2, it approaches the

width of the Aoki phase that appears at ϕ = π/2, i.e. with end points ε̂q = ±2w′. [Recall

that the phase diagram at ϕ = π/2 is given by Fig. 4.2(a) rotated by 90◦; see also Fig. 4.3.]

The first-order segment at the halfway point, ϕ = π/4, is shown as the horizontal solid (red)

line in Fig. 4.4.

The length of the segment can be obtained analytically for all ϕ. To do so, one extremizes

the potential after setting m̂q = 0. The global minimum lies at

sin θ =
−ε̂q sinϕ

2(c`ε̂2q cos2 ϕ− w′)
, (4.29)

with the sign of cos θ undetermined. As one passes through the transition line (by varying

m̂q), cos θ changes sign, indicating a first-order transition. Solving for the endpoints, where

cos θ = ±1, we find

|ε̂q| =
− sinϕ+

√
sin2 ϕ+ 16c`w′ cos2 ϕ

4c` cos2 ϕ
. (4.30)

This gives the results quoted above in the limits ϕ→ 0, π/2.

The corresponding results for w′ < 0 can be obtained from those just described for w′ > 0

using the transformation of Eq. (4.28). In words, to obtain the phase diagram for ϕ = ϕ0

and w′ = w′0 < 0, one takes the diagram with ϕ = π/2− ϕ0 and w′ = |w′0| and rotates it by

90◦ counterclockwise. This implies that the first-order transition line is now vertical.

Similarly, one can obtain results for ω = π/2 from those at ω = 0 using the transformation

of Eq. (4.18). Specifically to obtain the phase diagram for ϕ = ϕ0 at ω = π/2, one takes

that with ϕ = π/2− ϕ0 and ω = 0 and reflects it in the m̂q = ε̂q line. This implies that the

first order line is vertical for w′ > 0 and horizontal for w′ < 0. An example of this result (for

w′ > 0) is shown by the vertical solid (purple) line in Fig. 4.4.

Since there are no second-order phase transitions, the pion masses are nonvanishing

throughout the phase plane, with the exception of the endpoint of the first-order transitions,

where the mass of the neutral pion vanishes.
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Figure 4.4: Phase diagram including discretization effects (with w′ > 0) for several values

of ω and ϕ. Solid lines are analytically determined first-order transition lines described in

the text. Points represent the location of the numerically determined first-order transition

lines. Dashed lines show the positions of the central second-order transition lines that arise

at extremal values of ω and ϕ as shown in Fig. 4.3. These are included to set the scale, since

they depend on the values of w′ and c`. Results for w′ < 0 can be obtained from these using

the transformations of Eqs. (4.19) and (4.28).
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4.2.4 Nonextremal ω and ϕ

Finally, we consider the most general choice of parameters: both ω and ϕ nonextremal. Here,

in most cases, we have to proceed numerically, although we can check the results analytically

for the special case of ω = ϕ = π/4.

We have found in the previous subsection that, for extremal ω but nonextremal ϕ there

is a first-order transition line of finite length that is oriented either horizontally or vertically.

For example, Fig. 4.4 shows that for ϕ = π/4 and w′ > 0, the transition line is horizontal

at ω = 0 and vertical at ω = π/2. It is not surprising, therefore, that for intermediate

values of ω there is a first order transition line of finite length at an intermediate angle that

interpolates between the horizontal and vertical limits. Examples for several intermediate

values of ω for ϕ = π/4, π/8 and 3π/8 are shown in the figure. We observe that, aside from

the special case of ω = ϕ = π/4, the first order lines are “S-shaped” rather than straight.

We also observe an example of an overlapping transition line (though of different lengths)

for the parameter choices (ω, ϕ) = (π/8, π/4) and (π/4, π/8). We have not understood this

overlapping analytically, and do not know if it is exact. Figure 4.4 also shows an example

of the application of the symmetry of Eq. (4.18), which implies that the transition lines

for parameters (ω, ϕ) = (π/8, π/8) and (3π/8, 3π/8) should be related by reflection in the

diagonal m̂q = ε̂q line.

For ω = ϕ = π/4, we know from the symmetry of Eq. (4.18) that the transition line must

be invariant under reflection in the m̂q = ε̂q line. Thus it must either lie along this line or

be perpendicular to it, and in both cases it must be straight. It turns out that, for w′ > 0 it

lies along the diagonal, as shown in Fig. 4.4 by the solid (blue) line. Given this information,

it is straightforward to determine the end points analytically, and we find that they lie at

m̂q = ε̂q = ±1−
√

1− 16c`w′

4cl
. (4.31)

We note the curious result that these points lie at the junction of the boundaries of the

Aoki-Dashen phases for extremal ω and ϕ.
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4.3 Maximal twist condition

The standard technique for tuning to maximal twist in the absence of isospin breaking is

to enforce the vanishing of the “PCAC mass”. This determines the critical value of the

untwisted component of the common quark mass. This critical value can then be used even

in the presence of isospin breaking due to quark masses, i.e. when the twisted components

of the up and down quark masses differ. This is no longer the case when electromagnetism is

included, because, as explained in the Introduction, the critical masses for the up and down

quarks differ. Setting the PCAC mass to zero is essentially a way of enforcing, in a particular

correlation function, the restoration of SU(2) flavor and parity symmetries at nonzero lattice

spacing. In the presence of electromagnetism, however, these symmetries are absent even in

the continuum limit, so it makes no sense to enforce them. Thus one must use alternative

methods to tune to maximal twist.

In Ch. 3, we analyze a method for carrying out the tuning in the presence of electromag-

netism, proposed in Ref. [23], This involves partial quenching, and our analysis is somewhat

involved, but the details do not matter here. Our key finding is that the method fails to

tune the untwisted components of the up and down quark masses to zero, as required for

maximal twist, but rather only enforces a condition on the condensate:

〈Σ〉 ≡ ei(θ+ω)τ3 = ei(π/2)τ3 ⇒ θ′ ≡ θ + ω = π/2 . (4.32)

In the first equality we are simply using the definition of the phase angle θ, given in Eq. (4.10),

together with the result that ~n points in the τ3 direction. This implies that the total τ3

rotation angle is θ′ = θ + ω, which is set by the condition of Ref. [23] to π/2.

The condition (4.32) is indeed consistent with the desired parameters, i.e. with ω = π/2

and ϕ = 0. To see this we note that, for these parameters, the phase diagrams are those of

Fig. 4.2 except that the w′ < 0 and w′ > 0 diagrams are interchanged.8 Thus, as long as the

physical masses are such that one is in the unshaded region, i.e. as long as one avoids the

8This result is obtained by acting with the transformation (4.19) on the ω = ϕ = 0 results that are
actually shown in the figure. See also also Fig. 4.3.
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Aoki-Dashen phases, one has that cos θ = 1 and thus θ = 0. This means that θ′ = ω = π/2,

which satisfies Eq. (4.32).

However, there is in general a one-dimensional family of solutions to Eq. (4.32), all having

different values of ω and ϕ. One can understand this intuitively as follows. Nonvanishing

values of ω and of ϕ both violate parity, and thus both lead to a nonzero twist of the

condensate, i.e. a nonzero value of θ′. For any choice of ϕ, the desired value θ′ = π/2 can,

in general, be obtained by a suitable value of ω. Thus there is a line in the ω − ϕ plane

along which the condition is satisfied. In order to tune to the desired point on this line an

additional condition is needed.

It turns out to be easier to do the calculation using the parametrization of the mass matrix

given in Eq. (4.6). Here we fix the twisted components of the masses µ̂u and µ̂d (ultimately to

their physical values, namely 2B0m
phys
u and 2B0m

phys
d , respectively) and vary the untwisted

ccmponents m̂W
u and m̂W

d . This corresponds to what is done in actual simulations. The

condition of Eq. (4.32) then forces the theory to lie on a line in the m̂W
u − m̂W

d plane. Our

aim is to determine this line and to find an additional condition that picks out the desired

point on the line, namely m̂W
u = m̂W

d = 0.

In terms of the parametrization (4.6) the potential is

− V
f 2

=
m̂W
u + m̂W

d

2
cos θ′ +

µ̂u + µ̂d
2

sin θ′

+ c`

(
µ̂u − µ̂d

2
cos θ′ − m̂W

u − m̂W
d

2
sin θ′

)2

+ w′ cos2 θ′ .

In order for an extremum of this potential to lie at θ′ = π/2, it is simple to show that the

untwisted masses must satisfy

m̂W
d

m̂W
u

= −
(

1− c`(µ̂u − µ̂d)
1 + c`(µ̂u − µ̂d)

)
≡ s , (4.33)

i.e., the theory must lie along a straight line in the m̂W
u − m̂W

d plane with slope s determined

by the physical masses and c`. We can turn this into a constraint on ω and ϕ by equating

the parametrizations of Eqs. (4.7) and (4.6). One finds m̂W
u,d = µ̂u,d cot (ω ± ϕ), so that the



101

allowed values of ω and ϕ satisfy

s µ̂u cot (ω + ϕ) = µ̂d cot (ω − ϕ) . (4.34)

Lines satisfying this equality are shown in Fig. 4.5. The desired point is at ϕ = 0, ω = π/2,

but, as claimed above, solutions exist for all values of ϕ.

Figure 4.5: Values of ω and ϕ for which θ′ = π/2, using µ̂u ≈ 2B0m
phys
u and µ̂d ≈ 2B0m

phys
d ,

but with c` larger than the physical value so as to increase the curvature of the lines for the

sake of clarity.

The above considerations assume that the extrema at θ′ = π/2 is a minimum of the

potential. This can be determined by examining either the second derivative of the potential

evaluated at the correct value of s and θ′ = π/2 or, equivalently, by checking that the neutral

pion mass is nonnegative. The neutral pion mass along the line (4.33) is

m2
π0 =

µ̂u+µ̂d
2
−2c`

(
µ̂u−µ̂d

2

)2

+2c`

(
m̂W
u −m̂W

d

2

)2

−2w′. (4.35)

The sum of the first two terms is positive for physical parameters (since this is just the

physical neutral pion mass-squared at this order in χPT, and higher order corrections are
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small). The third term is always positive and vanishes only at the point of maximal twist

(as long as s 6= 1, which is the case for physical parameters). The last term can be negative

if w′ > 0. Thus, if w′ takes a large enough positive value, it can be that the point we are

aiming to tune to does not lie at the minimum of the potential. This happens when the

physical point lies inside the Aoki-Dashen phase.

Assuming that this does not happen, we can ask what criterion can be used to tune

to maximal twist along the lines satisfying Eq. (4.32). The criterion proposed in Ch. 3 is

simply to minimize the neutral pion mass, Eq. (A.24), since, as already noted, this occurs

when m̂W
u = m̂W

d = 0. One can also minimize the charged pion mass, the expression for

which is given in Ch. 3.

We close this section by making a connection with our results for the phase diagram for

general ω and ϕ, obtained in Sec. 4.2. In particular, we imagine that we have somehow tuned

close to maximal twist, but that there is a small offset. Specifically we fix ω = π/2 + δ and

ϕ = αδ with |δ| � 1 and α ∼ O(1). This differs from (and is less realistic than) our analysis

above where we fixed the twisted up and down masses. Nevertheless, this allows a valid

theoretical exercise: with ω and ϕ fixed in this way, we determine the line in the m̂q − ε̂q
plane that satisfies the tuning condition of Eq. (4.32).

Written in terms of the variables of Eq. (4.7), the tuning condition becomes

s(m̂q + ε̂q) cos(ω + ϕ) = (m̂q − ε̂q) cos(ω − ϕ) , (4.36)

where we recall that s is given by Eq. (4.33). For our fixed values of ω and ϕ, this equation

can be converted into a result in the m̂q − ε̂q plane, using an expansion in powers of δ:

m̂q = −ε̂q
α− 2c`ε̂q
1− 2αc`ε̂q

+O(δ2) . (4.37)

Examples of this result (for both signs of w′) are shown in Fig. 4.6 by the (green) solid lines.

As noted above, this result is only valid if the pion mass-squared of Eq. (A.24) is positive

or zero. Thus the line terminates at the point where mπ0 vanishes, which occurs only for

w′ > 0.
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(a) (b)

Figure 4.6: Applying the tuning condition at fixed ω = π/2+0.1 and ϕ = 0.05 for (a) w′ < 0

and (b) w′ > 0. The size of c` and w′ can be seen from the tick marks on the axes, which lie

at m̂q = ±2w′ and ε̂q = ±
√
|w′| /c`. The solid (green) line shows the result of applying the

condition (4.32) as well as requiring that m2
π0 ≥ 0. (Red) points show the locations of the

numerically determined first-order transition lines.

Also shown in the figures are the positions of the first-order lines, which have been

determined numerically. We observe that, for w′ < 0, the line along which Eq. (4.32) holds

goes all the way to the origin, where it runs into the first-order line. By contrast, for w′ > 0

the endpoint of the tuned line is precisely the starting point of the first-order line. This is

reasonable since it is the only position in the phase diagram where a pion is massless. In any

case, we see that, even for nonextremal ω and ϕ, where there is only a first-order transition,

the condition (4.32) cannot be maintained all the way to the origin.

4.4 Conclusions

In this short note, we have determined the phase structure of lattice QCD in the presence

of isospin breaking and a nonvanishing value of ΘQCD. This is, for the present, a theoretical

exercise, but one that was necessary in order to understand how to tune to maximal twist
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in the presence of electromagnetism, an analysis that was completed in Ch. 3.

The results are also interesting in their own right. In particular, for generic (nonextremal)

values of the twist angle and ΘQCD, the continuum theory has no phase structure, while the

lattice theory has a segment of first-order transition whose length is set by w′ and is thus of

O(a2).

We have kept in our analysis only the leading order terms arising from each type of

symmetry breaking. A quantitative analysis would require the inclusion of all other terms

of O(m2) as well as those proportional to ma. Based on our work in Ch. 2, however, we do

not expect these terms to lead to qualitative changes in the phase diagrams.
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Chapter 5

LATTICE INVESTIGATION OF INSTANTON EFFECTS IN
QCD

5.1 Introduction

While it has long been known that instantons play a role in QCD, leading effects due to a

single instanton are multiplied by a factor of e−8π2/g2 . While these can be significant at low

energies, where g is large, perturbation theory in this regime is not trustworthy. At higher

energies, where perturbation theory does apply, g is small and instanton effects are exponen-

tially suppressed. In order to understand the effects of instantons, physicists often rely on

results from models such as the instanton liquid model [60]. Another approach, used in re-

cent work [25, 24] is to study Greens functions which maximally violate chirality. In massless

QCD, there are no perturbative chirality violating contributions and the only contributions

come from a non-zero instanton background. These Greens functions allow an analytic win-

dow into non-perturbative physics that can be checked against lattice calculations such as

those analyzed below in Sec. 5.2.

The remainder of this section will briefly summarize Ref. [25], introducing the chirality

violating Greens functions and explaining how they can be understood using the operator

product expansion (OPE). We will skip over many of the technical details in order to get to

the Greens functions that are important in physical QCD, where Nc = Nf = 3, and can be

measured on the lattice using publicly available configurations.

5.1.1 Chirality Violating Greens Functions

To begin, consider an SU(Nc) theory with Nf light flavors, where Nf is sufficiently small

that the theory is asymptotically free. Generally a Dirac fermion can be decomposed into
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left and right handed fields using the projectors introduced in Sec. 1.2

1ψ = (PL + PR)ψ = PLψL + PRψR, PL,R =
1± γ5

2
, (PL,R)2 = 1

ψ1 = ψ(PL + PR) = ψRPL + ψLPR, PLPR = PRPL = 0 . (5.1)

Chirality preserving operators only have Wick contractions between left(right)-handed fermionic

fields and left(right)-handed anti-fermionic fields for each flavor. One example is the kinetic

term of the QCD Lagrangian, Eq. 1.43. Chirality violating operators can be constructed

out of a quark bilinear with zero or an even number of γµs. The simplest example is

q(x)q(x) = qR(x)qL(x) + qL(x)qR(x). Another chirality violating bilinear is the Pauli term,

q(x)σµνF
µν(x)q(x), where σµν = i

2
[γµ, γν ]. Using these elements, a gauge invariant Greens

function that vanishes in normal perturbation theory 1 can be constructed. While these

operators vanish in normal perturbation theory, they will not vanish in the one instanton

background, due to instantons having chirality violating zero modes for each flavor. One

such example is the follwing two point function, where f is a flavor index,

G(x, 0) =

〈(
A∏
f=1

qfqf (x)

) Nf∏
f=A+1

qfqf (0)

〉 = 〈O1(x)O2(0)〉 . (5.2)

This correlation function is singular and can be analyzed at small x using the standard OPE

with the form,

O1(x)O2(0) ≈
∞∑
n=0

Cn(x)Õn(0) . (5.3)

The coefficents, Cn, in the OPE can be written as a short distance expansion as long as the

theory is asymptotically free. The lowest dimension operator that contributes is the identity,

O1(x)O2(0) ≈ C0(x)1 + higher dimension . (5.4)

The coefficient, C0(x), vanishes in normal perturbation and thus must be non-perturbative.

As discussed in Refs. [25, 24], its leading short-distance behavior is given by perturbation

1Normal perturbation theory here means expanding about the S = 0, zero-instanton background
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theory about a single instanton background. The leading behavior of C0 can be estimated

from dimensional analysis and the instanton factor to be

C0(x) ∼ (Λx)b0x−3Nf (5.5)

where b0 = 3Nf + 11
3

(Nc −Nf ) and Λ is the scale of the theory. (Λx)b0 is just the standard

instanton factor, e−8π2/g2 , as seen from the 1-loop solution to the beta function

g2

4π
=

(
− b0

2π
log(xΛ)

)−1

→ (Λx)b0 = e−8π2/g2

where the renormalization scale is taken to be µR = x−1. It can be seen from Eq. 5.5 that

if Nf > NC there will be a singularity, if Nf < NC there will be no singularity, and in the

case relevant for QCD, Nf = NC there will be a logarithmic singularity. In the case of a

logarithmic singularity, a more careful analysis is required, as discussed in [25].

In order to avoid the issue of a logarithmic singularity in QCD with Nf = NC = 3,

it is useful to include insertions of PL/RσµνF
µν , which, by power counting, will each bring

additional singular terms proportional to x−2. Specifically, the Greens function that we have

investigated on the lattice is

G(x, 0) = 〈u(x)PL/RσµνF
µν(x)d(x)d(0)PL/RσρσF

ρσ(0)s(0)sPL/Ru(0)〉 . (5.6)

In order to maximally violate chirality, the projector PL or PR must be included explicitly.

This Greens function has the OPE

uPL/RσµνF
µνd(x)dPL/RσρσF

ρσssPL/Ru(0) ∼ cΛ9x−4(1 + k log(xµ))1 (5.7)

+ kx−4Õ1(0) + higher dimension

where k is of order (g2/4π)/π and all three projectors are either PL or PR. The log(xµ)

term includes non-perturbative operator mixing with the full instanton ensemble and is not

calculable, but will not be more singular than the leading term. As long as x is small enough,

the terms proportional to k should be a small effect that can either be ignored or calculated

on the lattice and subtracted [24].
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The coefficient c in Eq. 5.7 can be calculated in the instanton background, as shown

in [24]. In the MS scheme at order g2, the leading term of the Greens function Eq. 5.6 is

calculated to be

G(x, 0) = −2.64

(
g2

4π

)−6

Λ9x−4 . (5.8)

In order to move to lattice simulation, there are lessons to be taken from this calculation

in regards to the required lattice spacing and quark masses. In order for the higher dimension

terms in the OPE proportional to k to be only a ∼ 10% effect, x ∼ 0.11fm. For the lattice,

this means an ideal lattice spacing a would be less than 0.11fm. As both in physical QCD

and on the lattice, quarks are massive, there are perturbative contributions to the Greens

function. The leading perturbative contribution to this Greens function behaves as

mumdms

(4π2)4x10
. (5.9)

For reasonable quark masses, light quark (up and down) mass m` . 10MeV and strange

quark mass ms ∼ 100MeV, the non-perturbative contribution to the Greens function is

dominant for x & (30Λ)−1 ∼ 0.02fm. The result of these constraints is a window 0.02fm .

x . 0.11fm that must be taken into account both when choosing a lattice spacing and when

analyzing the measurement of the correlation function on the lattice.

5.2 Simulation details and setup

5.2.1 Ensemble details and mass tuning

For this investigation, we used 440 configurations from a publicly available ensemble provided

by the MILC collaboration, described in Ref. [10]. The ensemble analyzed was generated

using the asqtad improved staggered action with 2 + 1 flavors. This ensemble has dimension

163 × 48, coupling constant β = 6
g2

= 6.572, light quark mass m`a = 0.0097, strange

quark mass msa = 0.0484, and has the lattice spacing a ≈ 0.14fm and pion mass in lattice

units mπa = 0.2456. As mentioned in Sec. 5.1 this lattice spacing is larger than ideal.

a ≈ 0.14fm ≈ (1.4GeV)−1 corresponds leading correction of terms with a factor of k, seen
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in Eq. 5.7, of ∼ 20% [47]. Furthermore, any distance greater than ∼ 4a will probe scales

near ΛQCD, where the coupling diverges, and the perturbative expansion of C0 breaks down

entirely. For this reason and others, the following data should considered as a first study of

the Greens function in Eq. 5.8 in which several systematic errors are not yet controlled.

The calculation of the Greens functions and related quantities was done using the Wilson

action. This mixed action approach makes writing code and analysis simpler but explicitly

breaks chiral symmetry. This explicit breaking means that the quark masses are additively

renormalized and the mass parameter κf = (2(mfa+4))−1 must be tuned. In this simulation,

the up and down quarks are degenerate so there are two values of κ to tune: κ`, the light

quark mass parameter, and κs, the strange quark mass parameter. Chiral perturbation

theory predicts that at leading order m2
π ∝ mq ∝ 1/κ − 1/κcrit. By calculating m2

π at

a range of values of κ, the desired κ` and κs, as well as the point corresponding to zero

quark mass, κcrit can be determined. κ` is found by tuning to the pion mass quoted by

MILC [10] mπa = 0.2456. κs is found using the ηs method described in Ref. [20], where κ

is tuned to the mass of the fictitious ηs, which is a pion constructed using valence strange

quark fields with no quark-disconnected contractions included, rather than light quarks.

The mass of the ηs was found in Ref. [20] to be mηs = 685.8MeV which in our lattice

units is mηsa = 0.4866. The best fits to these meson masses were found to be κ` = 0.1691

κs = 0.1658 with κcrit = 0.1703 as seen in the plots of the zero spatial momentum pion

correlator, Fig. 5.1, and of pion mass squared versus κ−1, Fig. 5.2. The lattice simulation

was performed using the Chroma software package, distributed by JLab [27]. The meson

correlator measurements were performed and parsed using the hadspec code provided by

Balint Joo in numerous tutorials. The correlators were measured using code written by

myself, using Chroma and QDP++’s built-in functions.

5.2.2 Variance Reduction

In measuring the operator Eq. 5.7, it would be optimal to measure it for all 163× 48 choices

of origin, while calculating each propagator as precisely as possible. This is not practical



110

Figure 5.1: Pion correlators at zero spatial momentum for a range of values of κ, including

κ` = 0.1691 and κs = 0.1658. The right-hand plot is on a log scale.

from a computational perspective and it would also be excessive, as measurements on an

overlapping space-time volume are expected to be highly correlated. In order to obtain

precise measurements of the operator for each configuration, while keeping computational

costs reasonable, we the variance reduction method suggested in Ref. [13].

The method in Ref. [13] works as follows. Assume there is an observable, O, that can

accurately be measured on an ensemble of configurations to obtain an expectation value,

〈O〉 =
1

Nconf

Nconf∑
i=1

Oi +O

(
1√
Nconf

)
. (5.10)

Then a secondary measurement can be constructed, Oappx, which obeys three criteria. First,

it must be highly correlated with O,

r = Corr(O,Oappx) =
〈∆O∆Oappx〉√

〈(∆O)2〉〈(∆Oappx)2〉
≈ 1, ∆X = X − 〈X〉 . (5.11)

Second, the computational cost to compute to Oappx should be significantly less than to

compute O. Lastly, Oappx must be invariant (or covariant) under a lattice symmetry trans-

formation, i.e. after transforming Oappx by some group element g ∈ G, where G is the group

of lattice symmetries: translations, rotations, etc., 〈Oappx〉 = 〈Oappx,g〉. If these conditions
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Figure 5.2: Pion mass squared versus κ−1 showing κ` = 0.1691, κs = 0.1658 and

κcrit = 0.1703. Error bars represent the standard error of the fit used in in determining

pion masses.

hold, it is practical to measure an improved observable Oimp which is defined as,

Oimp = O −Oappx +
1

NG

∑
g∈G

Oappx,g (5.12)

where NG is the number of group transformations used. If these conditions hold, the statis-

tical error of 〈Oimp〉 is smaller than that of 〈Oimp〉,

errimp = err

√
2(1− r) +

1

NG

. (5.13)

For our simulation, we were inspired by the truncated solver method [6]. We used Oappx

which is the same operator as O, namely the operator in Eq. 5.7, symmetrized under parity,

O(x, 0) = uPLσµνF
µνd(x)dPLσρσF

ρσssPLu(0)+uPRσµνF
µνd(x)dPRσρσF

ρσssPRu(0) (5.14)

but allowing a much larger residual in the conjugate gradient solver when calculating the

propagators for Oappx. The computationally costly measurements, O, were performed using
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Figure 5.3: Measurement of Eq. 5.14. The right-hand plot of the correlator shows a magnified

version of the same data.

a conjugate gradient residual of 10−12 whereas the computationally cheaper measurements,

Oappx, used a residual of 10−2. The cheaper measurement took approximately 60 times less

time to calculate. To ensure that the costly and cheap measurements were highly correlated,

the correlation of the two sets of data was calculated for 3 configurations for each correla-

tion function measured and found to have an average value of r = 0.972 . The symmetry

transformation exploited was just that of translational symmetry on a given configuration.

For each configuration, O was measured with one origin, while Oappx was measured 48 times

with the origin placed at equally spaced nodes on a 23 × 6 grid.

5.3 Measurement of non-perturbative Greens functions

Our preliminary measurement of the operator Eq. 5.14, seen in Fig. 5.3 did not have a good

fit to the form 1/x4 (fit not shown). This suggests that the measurement is dominated by

long distance effects. Generically 〈O(x, 0)〉 is expected to have the form,

〈O(x, 0)〉 = −2.64

(
g2

4π

)−6

Λ9x−4 + Long distance effects +O(mumdms) (5.15)

We expect that the long distance effects are dominated by contributions from hadronic

states, specifically the scalar and psuedoscalar mesons, also known as the a0 and the pion.
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To see this, we expand the projectors in Eq. 5.14 to obtain four separate terms, comprising

a “pion-like” operator and an “a0-like” operator,

O =uPLσµνF
µνd(x)dPLσρσF

ρσssPLu(0) + uPRσµνF
µνd(x)dPRσρσF

ρσssPRu(0)

=
1

4

(
uσµνF

µνd(x)dσρσF
ρσssu(0) + uσµνF

µνd(x)dγ5σρσF
ρσssγ5u(0)

+ uγ5σµνF
µνd(x)dγ5σρσF

ρσssu(0) + uγ5σµνF
µνd(x)dσρσF

ρσssγ5u(0)
)

=
1

4
(Oπ +Oa0) (5.16)

Oa0 =uσµνF
µνd(x)dσρσF

ρσssu(0) + uσµνF
µνd(x)dγ5σρσF

ρσssγ5u(0) (5.17)

Oπ =uγ5σµνF
µνd(x)dγ5σρσF

ρσssu(0) + uγ5σµνF
µνd(x)dσρσF

ρσssγ5u(0) . (5.18)

We propose that Oa0 will be a0-like under the assumption that the strange quark loop, ss,

will be dominated by the identity component in Dirac space, resulting in a measurement

similar to an a0 correlator, 〈ud(x)du(0)〉. Similarly, we propose that Oπ will be pion-like,

resulting in a measurement similar to a pion correlator, 〈uγ5d(x)dγ5u(0)〉. This assumption

can be tested by comparing the measurement of each part of Oa0 and Oπ. If they are

highly correlated it suggests whether or not γ5 is inserted between s and u does not have

much effect on the correlator. Using this approach we will subtract the a0 and pion scalar

propagator from the measurement of Oa0 and Oπ repectively before combining them with

intent of extracting the 1/x4 behavior seen in Eq. 5.8.

5.3.1 a0 Correlator

Before fitting Oa0 and Oπ, it is good to know what mπa and ma0a are for κ` = 0.1691 so it

can be determined whether Oa0 and Oπ are a0 and pion-like. mπ was already determined

above, as shown in Fig. 5.1, to be mπa = 0.252 in lattice units. The determination of ma0a

is slightly more difficult. In the right-hand plot of Fig. 5.4 we see that at light masses,

the a0 correlator is noisy and potentially has a “bump” where the correlator has the wrong

sign. A similar bump is seen for the lighter quark mass a0 correlators in Ref. [44] where it

is attributed to a η′π ghost state due to quenching. As we are using a mixed action, with
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Figure 5.4: a0 correlators at zero spatial momentum for a range of values of κ. The left-hand

plot shows heavier values of κ, the right shows lighter values, including including κ` = 0.1691.

staggered sea quarks and Wilson valence quarks, it would not be surprising if there are some

artifacts related to partial quenching. To estimate ma0a, the correct sign points for the four

smaller values of κ were fit to an exponential, seen in Fig. 5.4 and 5.5. The square of the

resulting masses were plotted against 1/κ and extrapolated to 1/κ` = 1/0.1691, as seen in

Fig. 5.6. This resulted in an estimate of ma0a = 0.985±0.065 where the errors only represent

the mean prediction bands of the linear fit at 68.27% confidence and do not take into account

possible deviation from a linear relation between m2
a0

and 1/κ or systematic effects on the

value of the mass at larger values of 1/κ.

5.3.2 Oπ Correlator

In measuring both Oπ and Oa0 , measurements at points related by lattice symmetries, reflec-

tions about each space-time direction and rotations in space, were averaged over. In order

to reduce discretization effects only points which are not along the axes of the lattice, such

as (1, 0, 0, 0), (0, 5, 0, 0) are included. The measurement of the two terms which make up

Oπ, seen in Eq. 5.18, were found to be nearly identical. The correlation of the measurement

of each term on a given configuration, averaged over all configurations is 0.9997 and were

found to have the same fit parameters for all fits attempted. Initial fits of the tail of the
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Figure 5.5: a0 correlators for heavier values of κ, on a negative log scale with a fit to points

shown.

correlator, 5.5 < |x|/a < 10, to the form of a scalar propagator resulted in a mass which

was significantly less than the pion mass. Suspecting that this is due to the pion being a

long lived state and noting that the region 5.5 < |x|/a < 10 includes distances large relative

to the lattice size in the spatial direction, L = 16, the correlator was fit to a sum of scalar

propagators, including the 26 nearest spatial images,

C(x) = a

K1(m|x|)
|x|

+
∑
ximg

K1(m|x− ximg|)
|x− ximg|

 (5.19)

ximg ∈ (±L, 0, 0, 0), (0,±L, 0, 0), (±L,±L, 0, 0), (±L, 0∓ L, 0), (±L,∓L,±L, 0)...

where K1 is the modified bessel function of the first kind. Fitting to the tail resulted in the

fit parameters summarized in Table 5.1 which includes a mass of m = 0.250 which is close to

the pion mass mπa = 0.252. Points generated using the fit of the form Eq. 5.19 using these

fit parameters are shown in Fig. 5.7. While this is a good fit for the tail of the measurement,

it is a poor fit for the early points due to excited pion states. To also include the first excited



116

Figure 5.6: a0 mass squared versus κ−1. Shaded region shows mean prediction bands of

the linear fit at 68.27% confidence. The dashed line indicates 1/κ` = 1/0.1691. Error bars

represent standard error of fit in determining a0 masses.

Figure 5.7: Tail of measurement of Oπ versus |x|/a. Left-hand plot shows points with errors,

the right-hand plot shows data points in light blue along with points generated by the fit

function, Eq. 5.19, using parameters found in Table 5.1.
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Table 5.1: Fit parameters for tail of Oπ correlator

Estimate Standard Error

a 0.02672 0.00015

m 0.25001 0.00048

Table 5.2: Fit parameters for Oπ correlator

Estimate Standard Error

a 0.026849 0.000076

b 2.451 0.080

µ 1.605 0.015

pion state we have fit to the range 0 < |x|/a < 10 using the form,

C(x) = a

K1(0.25001|x|)
|x|

+
∑
ximg

K1(0.25001|x− ximg|)
|x− ximg|


+ b

K1(µ|x|)
|x|

+
∑
ximg

K1(µ|x− ximg|)
|x− ximg|

 . (5.20)

The fit parameters are summarized in Table 5.2. Points generated using the fit of the form

Eq. 5.19 using these fit parameters are shown in Fig. 5.8. The last step is to subtract this

fit from the correlator and look at the remainder, shown in Fig. 5.9. It appears that points

with |x|/a . 2.5 are indistinguishable from noise, leaving a very small number of points to

analyze when combined with the Oa0 measurement.

5.3.3 Oa0 Correlator

Just as with Oπ, the results for the two terms that make up Oa0 , seen in Eq. 5.17, were

found to be nearly identical. The correlation of the measurement of each term on a given
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Figure 5.8: Measurement of Oπ versus |x|/a on a log scale. Left-hand plot shows results

with errors, right-hand plot shows results (without errors)along with the corresponding fit

points generated from Eq. 5.20 using parameters found in Table 5.1.

Figure 5.9: Remainder of the measurement of Oπ versus |x|/a after subtracting Eq. 5.19

using parameters found in Table 5.2. The right-hand plot shows a magnified version of the

same data. Error bars come from averaging over configurations and not taking into account

any error on the fit.

configuration, averaged over all configurations is 0.9995 and the fit parameters were identical

for all fits attempted. As seen above for the a0 correlator at κ` = 0.1691, the Oa0 correlator

changes sign, as seen in Fig. 5.10. Changing sign suggests, as it did for the a0 correlator, that
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Figure 5.10: Measurement of Oa0 versus |x|/a. The right-hand plot shows a magnified

version of the same data

the measurement may be contaminated by the effects of using a mixed action 2. We have

fit the data in the range 2 < |x|/a < 6, after which the majority of the points have changed

sign and fitting to a strictly positive function will not yield a good fit, and before there is

expected to be contamination from excited states. As in the Oπ case, the correlator was fit to

a sum of scalar propagators, including the 26 nearest spatial images, shown in Eq. 5.19. The

fit parameters are shown in Table 5.3 with the fit shown in Fig. 5.11. The mass parameter

was found to be m = 1.391 which is significantly larger than than the estimated a0 mass,

ma0a = 0.985. This can be taken either as an indication that the extrapolation shown in

Fig. 5.6 was not justified or a more careful fit, like the one used for Oπ in Eq. 5.20 including

exciting states, is needed. Unfortunately, since the tail of the correlator has the wrong sign,

it is not feasible to fit to an additional propagator in the limited allowed range.

Subtracting the fit from the Oa0 measurement is shown in Fig. 5.12. Like with Oπ, the

resulting data looks rather noisy, such that it seem unlikely that the combination of Oπ and

2The connection of the sign change to the effects of partial quenching is not so theoretically clear cut
here as in the a0 correlator discussed above. This is because the operators used to create and destroy the
states are not hermitian conjugates, and thus the contribution from all states does not need to have the
same sign. However, in the approximation that ss̄ can be replaced by the identity element, the connection
between sign-change and partial quenching is appropriate.
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Table 5.3: Fit parameters for Oa0 correlator

Estimate Standard Error

a -0.781 0.048

m 1.258 0.017

Figure 5.11: Measurement of Oa0 versus |x|/a with fit to Eq. 5.19 using parameters in

Table 5.3. The right-hand plot shows a magnified version of the same data. Error bars are

not shown to improve visibility.

Oa0 will reproduce the 1/x4 behavior seen in Eq. 5.8.

5.3.4 Full O = 1
4

(Oπ +Oa0) Correlator

The full correlator, O = 1
4

(Oπ +Oa0) of Eq. 5.14 leads to the result in Fig. 5.3. Subtracting

both the fit from the Oπ and Oa0 measurements is shown in Fig. 5.13. As expected from

the subtractions in the Oπ and Oa0 , seen in Fig. 5.9 and Fig. 5.12, the remaining data is too

noisy to hope to see the 1/x4 behavior of Eq. 5.8, as there are only three data points before

the data changes sign.
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Figure 5.12: Remainder of the measurement of Oa0 versus |x|/a after subtracting Eq. 5.19

using parameters found in Table 5.1. The right-hand plot shows a magnified version of the

same data. Error bars come from averaging over configurations and not taking into account

any error on the fit.

Figure 5.13: Remainder of the measurement of O = 1
4

(Oπ +Oa0) versus |x|/a after

subtracting 1/4 multiplied by Eq. 5.19 using the parameters found in Table 5.2 and

Table 5.3. Error bars come from averaging over configurations and not taking into account

any error on the fit.
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5.4 Conclusions and future directions

Ultimately, the remainder of the results for the correlator Eq. 5.14 after subtracting the a0

and pion states was too noisy to see if the expected 1/x4 behavior of the Greens function

Eq. 5.8 exists. We believe, however, that the strategy we have used, i.e. breaking the Greens

function into a0 and pion-like components, is a good approach. We suspect that the largest

systematic issues with our simulation were using a mixed action which did not preserve chiral

symmetry and using too large of a lattice spacing. The first issue can be addressed by using

both a sea and valence action which preserves chiral symmetry, such as domain wall fermions.

The second issue can be addressed by using configurations with a smaller lattice spacing.

Both of these solutions present challenges, as both require greater computational resources.

It is possible that this increased computational cost can be somewhat mitigated by using

somewhat heavier quark masses. As discussed in Sec. 5.1, the leading perturbative correction

due to explicit breaking of chiral symmetry by quark masses is proportional to mumdms/x
10,

seen in Eq. 5.9. There is trade-off between using a smaller spacing versus using heavier quark

masses that can be investigated and it is possible that this leading perturbative correction

could be included in a fit to the remainder of the measurement of the operator Eq. 5.14.

While it may be computationally difficult, we believe it is worthwhile to continue to pursue

this line of investigation, as can help open a portal into measuring instanton effects directly

on the lattice.



123

Chapter 6

CONCLUSION

In chapters 2 through 4 of this thesis we have shown how the phase diagram of LQCD

is effected by the inclusion of non-degenerate light quark masses and electromagnetism both

with and without twisting. Also included was some clarification about how twisting must

be performed in the case with electromagnetism. These results are increasingly relevant as

lattice practitioners strive for sub-percent level accuracy by working in the Aoki regime with

all isospin breaking effects. This is even more true for collaborations which use twisted mass

fermions where the process of tuning to maximal twist becomes more complicated when both

non-degenerate light quark masses and electromagnetic effects are taken into account. The

work presented above points out some of the potential pitfalls and offers potential solutions

for future simulations.

In chapter 5 we have made a first attempt at directly measuring instanton effects in

chirality violating Greens functions. A successful measurement of such an operator could

confirm recent work in Ref. [24], opening a new window into studying instantons analytically.

While our work did not produce useful results, we have elucidated some of the possible issues

in such a measurement and have introduced a procedure which can be used in future, more

resource intensive calculation.

The two topics described in this thesis are related by their connection to chiral symmetry

breaking in LQCD. The first study was an analytic investigation and the later a primarily

computational one. While mostly unrelated to each other, we believe both studies have

helped shine light on aspects of chiral symmetry breaking on the lattice, an increasingly

relevant topic in the modern frontier of highly accurate LQCD research.
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Appendix A

APPENDIX TO CHAPTER 3

A.1 Relating lattice masses to those in χPT

In this appendix we describe how bare lattice masses used in simulations with Wilson-like

fermions are related to the masses mu and md appearing in χPT (contained in the mass

matrix M). This discussion draws heavily from the results of Ref. [12]. We do not consider

the impact of electromagnetism here; this is discussed in the subsequent appendix.

We must assume that the number of dynamical quarks in the underlying simulations is

Nf = 3 (up, down and strange) or Nf = 4 (adding charm). Working with up and down

quarks alone turns out not to be sufficient, but in any case this is not the physical theory.

We must also have that amf � 1 for all flavors f , so that an expansion in these quantities

makes sense. This condition is met by state-of-the-art simulations. Note that this condition

is much weaker than the requirement that the quarks are light in the sense of χPT, which is

mf � ΛQCD. In the main text, we assume the latter condition holds only for up and down

quarks.

Let m0,f be the bare dimensionless lattice mass for flavor f (i.e. the mass appearing in the

lattice action). Because of the additive renormalization induced by explicit chiral symmetry

breaking, unrenormalized quark masses are given by

m̃f =
m0,f −mcr

a
, (A.1)

where mcr is the (dimensionless) critical mass for the given number of dynamical flavors.

Methods to determine mcr are described below. Then, as shown in Ref. [12], renormalized
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masses are given by1

mf = Zm

[
m̃f + (rm − 1)

∑
f m̃f

Nf

+O(am̃2)

]
. (A.2)

Here Zm is the renormalization constant for flavor nonsinglet mass combinations such as

εq = (mu−md)/2, while Zmrm is the corresponding constant for the average quark mass.

rm − 1 is a finite constant, arising first at O(g4) in perturbation theory. By implementing

continuum Ward-Takahashi identities, one can determine rm nonperturbatively for Nf = 3

and 4, although not for Nf = 2 [12]. This is the reason for the restriction on Nf noted above.

We assume here that rm has been calculated in this way.

Equation (A.2) shows that the renormalized mass mf does not vanish when m̃f = 0 if

other flavors are massive. Specifically, for the up and down quarks we have

mu +md = Zm
1+rm

2
(m̃u + m̃d)

+ Zm
rm−1

2
(m̃s + m̃ch) , (A.3)

mu −md = Zm(m̃u − m̃d) . (A.4)

(Here we we have chosen Nf = 4 for definiteness; the result for Nf = 3 is similar.) Thus

the two-flavor massless point receives an overall additive shift due to the strange and charm

quarks, and we also see explicitly the difference between singlet and nonsinglet renormaliza-

tions.

These results imply that, in terms of unrenormalized masses, the phase diagrams of

Fig. 3.1 would be translated in the vertical direction (due to the additive mass shift) and

stretched by different factors in the vertical and horizontal directions. The respective stretch

factors are B0Zm(1 + rm)/2 and B0Zm. If, however, rm is known, then the two stretch

factors can be made equal by applying a finite renormalization to remove the (1 + rm)/2

factor. Knowledge of Zm is, however, not useful, since it always appears multiplied by the

unknown LEC B0.

1The correction terms of O(am̃2) in (A.2) are subleading in our power-counting and will be dropped
henceforth.
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We would like to be able to remove the additive mass shift in Eq. (A.3). To do so we

consider how the critical mass mcr is determined. The expressions above assume that it has

been obtained by doing simulations with Nf degenerate quarks of mass m, and equating mcr

to the value of m at which the “PCAC mass” vanishes. This is equivalent to imposing

〈π+|∂µ(ūγµγ5d)|0〉
∣∣∣
m=mcr

= 0 . (A.5)

If, instead, one imposes this condition by varying m = mu = md, with ms and mch held fixed

at their physical values, then the mcr so obtained automatically includes the shift due to

loops of strange and charm quarks. This is because one is enforcing a consequence of chiral

symmetry in the two-flavor subsector. With this new choice of mcr, and with the adjustment

of stretch factors described above, the phase diagrams of Fig. 3.1 apply directly for lattice

masses m̃f .

This new choice of mcr has a second advantage: it removes an additional shift of O(a)

in the relation between bare quark masses and the masses appearing in χPT. As explained

in Ref. [56], this shift is caused by the O(a) clover term in the Symanzik effective action

(and is thus absent for nonperturbatively improved Wilson fermions). In the main text it is

assumed that this shift has been removed.

Since we include O(a2) terms in the main text, we must determine how they impact the

considerations above. There is no further shift in the quark masses at this order—this next

occurs at O(a3) [53]. However, as illustrated by Fig. 3.1, the O(a2) terms do impact the

phase diagram. This means that, in general, one cannot use the vanishing of the PCAC mass

to determine mcr with untwisted Wilson fermions. For example, if one is in the first-order

scenario [Fig. 3.1(b) along the m̂q axis], then the PCAC mass simply does not vanish for

any m̂q. Instead, one must introduce a twisted component to the mass, µ ∼ O(a), and then

enforce the vanishing of the PCAC mass (in the so-called “twisted basis”). Extrapolating the

result linearly to µ = 0 yields a result for mcr that has errors of O(a3), which is sufficiently

accurate for our analysis. For a detailed discussion of this point see Ref. [53].

In summary, by determining rm from Ward identities, and the critical mass from the
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PCAC mass condition with twisted-mass quarks, one can obtain lattice quark masses which

are proportional to those appearing in χPT at the order we work. Specifically, we find

m̂q

B0Zm
=

1+rm
2

(m̃u+m̃d) and
ε̂q

B0Zm
= (m̃u−m̃d) , (A.6)

where m̂q and ε̂q are the quantities appearing in the chiral potential of Eq. (3.5).

This analysis can be straightforwardly extended to arbitrary twist. We begin with max-

imal twist, for which the mass matrix in χPT is given by Eq. (3.28), and the relevant bare

masses are µ0 and η0 of Eq. (3.24). In this case there is no additive renormalization, but

the presence of different renormalization factors for singlet and nonsinglet masses remains.

Using the results of Ref. [12], we find2

m̂q

B0Zm
=
ZS
ZP

1+rP
rP

µ0 and
ε̂q

B0Zm
=
ZS
ZP

η0 . (A.7)

Here ZS/ZP and rP are finite constants, both of which can be determined from Ward identi-

ties for Nf = 3 and 4, but not for Nf = 2 [12]. Like rm, rP begins at O(g4) in perturbation

theory.

At arbitrary twist one has four bare masses, and they are related to the corresponding

four renormalized masses using the same renormalization factors as given in Eqs. (A.6) and

(A.7).

Finally, we stress that the analysis presented here does not include electromagnetic ef-

fects. The dominant such effect is that the critical mass mcr has to be chosen differently for

the up and down quarks, and is discussed in the following appendix. A subdominant, but

still important, effect is that the renormalization factors now depend not only on αS but

also on αEM. The latter dependence can presumably be adequately captured using pertur-

bation theory. The formulae given above still hold if one uses the new critical masses and

renormalization factors.

2Specifically, we have used Zm = 1/ZS and rm = 1/rS .
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A.2 Determining the critical masses in the presence of electromagnetism

The analysis of the previous appendix must be extended when electromagnetism is included,

due to the presence of charge-dependent self energy corrections proportional to αEM/a. This

implies that the critical masses for up and down quarks differ, and we label them mcr,u and

mcr,d, respectively. In Ref. [23] two methods for a nonperturbative determination of these

critical masses are proposed. One of these (the method used in practice in Ref. [23]) involves

only up and down quarks, and thus can be implemented, and therefore checked, within SU(2)

WχPT. We do so in this appendix, finding that the method does not fix both critical masses,

but rather constrains them to lie in a one-dimensional subspace of the mcr,u—mcr,d plane.

We then provide an additional condition that does completely determine mcr,u and mcr,d.

The tuning conditions require the use of twisted-mass quarks, although the resulting

values of mcr,u and mcr,d apply for both Wilson and twisted-mass quarks. Thus the lattice

quark Lagrangian is given by Eq. (3.24). We can write the mass matrix in two useful forms

m0 + τ3ε0 + iγ5τ3µ0 + iγ5η0 =

m0,u + iγ5µ0,u 0

0 m0,d − iγ5µ0,d

 . (A.8)

The tuning proceeds by first choosing bare twisted masses µ0,u and µ0,d such that, when mul-

tiplicatively renormalized as described in the previous appendix, they give rise, respectively,

to the desired physical up and down quark masses.3 The negative sign multiplying µ0,d is

chosen to correspond to a τ3 twist. The second step is to tune the untwisted masses m0,u

and m0,d to their critical values such that the (additively) renormalized untwisted masses

vanish.

The method of determining mcr used in the previous section is no longer useful—the van-

ishing of the PCAC mass is a condition based on the recovery of the chiral SU(2) group, but

this group is explicitly broken by electromagnetism. The workaround proposed in Ref. [23]

is to add to the sea quarks (labeled uS and dS) a pair of valence quarks, uV and dV , each

3In fact, the tuning can be done using any values of the twisted masses which respect our power counting.
The critical masses do not depend on the twisted masses at the order we work.



134

of which has the same charge and untwisted mass as the corresponding sea quark, but has

opposite twisted mass.4 Thus (uS, uV ) and (dV , dS) each form a twisted pair. The key point

is that, within each pair, the O(αEM/a) shift in the untwisted mass is common. Therefore it

is plausible that one can determine the critical mass for each pair by enforcing the recovery

of the corresponding valence-sea chiral SU(2). Specifically, mcr,u is determined by

〈πuSV |∂µ(ūSγµγ5uV )|0〉
∣∣∣
m0,u=mcr,u

= 0 , (A.9)

while mcr,d is determined by the analogous condition with u→ d:

〈πdSV |∂µ(d̄Sγµγ5dV )|0〉
∣∣∣
m0,d=mcr,d

= 0 . (A.10)

Here πuSV and πdSV are sea-valence pions composed, respectively, of up and down quarks.

When using a partially quenched theory, one also needs to add ghost fields, ũV and d̃V ,

to cancel the valence quark determinants.5 Thus the full softly-broken chiral symmetry is

the graded group SU(4|2)L × SU(4|2)R. This raises the question of whether complications

arising from partial quenching, or from discretization effects, can lead to corrections to the

tuning criteria of Eqs. (A.9) and (A.10). This is one of the issues we address here by mapping

these conditions into χPT.

We begin by mapping the mass matrix in the unquenched sector into χPT. The four

parameters of Eq. (A.8) map into

χ =

m̂ue
iωu 0

0 m̂de
−iωd

 =

(m̂q + ε̂q)e
i(ω+ϕ) 0

0 (m̂q − ε̂q)ei(−ω+ϕ)

 . (A.11)

The choice of sign for ωd is such that it is positive with a τ3 twist. χ contains the additional

parameter ϕ compared to the mass matrix analyzed in the main text, Eq. (3.27). ϕ is a

4This description is equivalent to that of Ref. [23], but differs technically in two ways. First, we find that
one need only introduce two valence quarks to describe the method, rather than the four used in Ref. [23].
This does not impact the method itself, only its description. Second, we work in the twisted basis, rather
than the physical basis used in Ref. [23].

5For reviews of partially quenched theories and the corresponding χPT, see Refs. [59, 33].
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measure of the difference between up and down twist angles,

ωu = ω + ϕ , ωd = ω − ϕ . (A.12)

As discussed in Sec. 3.5, such a difference corresponds to the introduction of a nonzero

θQCD—the explicit relation is ϕ = θQCD/2.

We note that the relations between the bare masses of Eq. (A.8) and the parameters of χ

in Eq. (A.11)—which can be worked out along the lines of the previous appendix—are not

needed here. All we need to know is that, if m0,u = mcr,u and m0,d = mcr,d, then both up

and down masses are fully twisted. Thus the twist angles in χ are ωu = ωd = π/2, implying

maximal twist with no θQCD term: ω = π/2 and ϕ = 0. Reaching this point in parameter

space is the aim of tuning.

When considering the PQ extension of this theory, we will focus mainly on the quark

sector, since the ghosts do not play a significant role. Collecting the four quark fields in the

order

ψ>PQ = (uS, uV , dV , dS) , (A.13)

the extended quark mass matrix is

χPQ =

(m̂q + ε̂q)e
iωuτ3 0

0 (m̂q − ε̂q)eiωdτ3

 . (A.14)

The factors of τ3 arise because, by construction, valence quarks have opposite twisted masses

to the corresponding sea quarks. We stress that the O(αEM/a) shifts are incorporated into

the parameters m̂q and ε̂q, along with the usual O(1/a) shifts. We can also include the O(a)

shifts in the same fashion.

To implement the conditions (A.9) and (A.10) in the PQ theory, we need the extension

of Σ to this theory. This is a 6× 6 matrix transforming in the usual way under SU(4|2)L ×

SU(4|2)R. In fact, as we only need matrix elements for states composed of quarks, and since

we know from Ref. [7] that there are no quark-ghost condensates, we can focus on the 4× 4

quark sub-block, which we call ΣPQ. We now argue that the expectation value of ΣPQ has
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the form

〈ΣPQ〉 = diag(eiθ, e−iθ, eiθ, e−iθ) . (A.15)

This is based on the following results. First, the unquenched 2 × 2 block of ΣPQ (i.e.

that involving the first and last rows and columns) is just the unquenched Σ field. This is

unaffected by partial quenching [54, 55], and its expectation value is given by an unquenched

χPT calculation. This calculation must include not only nondegeneracy, electromagnetism

and twist, but also nonvanishing θQCD. To our knowledge such an analysis has not previously

been done, so we carry it out in Chapter 4.The result is that the unquenched condensate 〈Σ〉

only rotates in the τ3 direction—there are no off-diagonal condensates such as 〈ūSdS〉. This

fixes the first and last entries in Eq. (A.15) to have opposite phase angles.

This is an important result for the following, so we emphasize its key features. Although

θQCD 6= 0 leads to an overall phase in the mass matrix [eiϕ in Eq. (A.11)], its effect on the

condensate 〈Σ〉 is qualitatively similar to that of a twist ω, despite the fact that the latter

leads to opposite phases on u and d quarks. This happens because Σ is constrained to lie in

SU(2), and so has no way to break parity other than rotating in the τ3 direction. An overall

phase rotation would take it out of SU(2) into the U(2) manifold.

The second result needed to obtain Eq. (A.15) is the existence of relations between valence

and sea-quark condensates. In particular, one can show that

〈ūV uV 〉 = 〈ūSuS〉 and 〈ūV γ5uV 〉 = −〈ūSγ5uS〉 , (A.16)

to all orders in the hopping parameter expansion. The minus sign in the second relation

follows from the opposite twisted mass of sea and valence quarks. The result (A.16) holds

on each configuration and thus also for the ensemble average, even though the measure

is complex for θQCD 6= 0. Since the additive and multiplicative renormalizations of these

condensates are the same for valence and sea quarks, the result (A.16) implies that valence

and sea up-quark condensates have opposite “twists”, e±iθ. The same argument applies to

the down-quark condensates, and taken together these arguments determine the form of the

second and third diagonal elements in Eq. (A.15).
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The final result needed to obtain the form (A.15) is the vanishing of off-diagonal con-

densates involving one or more valence quarks, e.g. 〈ūV dV 〉 and 〈ūV dS〉. These differ from

the diagonal condensates in that there is no mass term in the quark-level Lagrangian that

can serve as a source for such condensates. Thus to determine whether they are nonzero

one must add a source, e.g. ∆ d̄V uV , calculate the resulting condensate, send the volume

to infinity, and finally send the parameter ∆ → 0. This analysis has been carried out in

Appendix A of Ref. [36] in a theory with twisted-mass quarks, although, unlike our situation,

the quarks were degenerate and θQCD = 0. The general lessons from Ref. [36] are (i) that

to obtain a nonvanishing condensate one needs a source of infrared divergence to cancel the

overall factor of ∆, and (ii) that nonvanishing twisted masses cut off such divergences. These

lessons apply also for all the off-diagonal condensates that we consider here. However, the

argument as given in Ref. [36] assumes that the measure is real and positive, which does not

hold here. Nevertheless, since we are tuning to θQCD = 0, we expect the impact of having a

complex measure to be small. Furthermore, we know from Chapter 3that the corresponding

sea quark condensates, e.g. 〈ūSdS〉 and 〈ūSγ5dS〉, vanish even when θQCD 6= 0. These con-

densates differ from those containing valence quarks only by changing the signs of some of

the twisted masses. Since it is the presence of these masses, and not their detailed properties,

that leads to the vanishing of the condensate, we expect the result holds for all off-diagonal

condensates.

With the form (A.15) in hand, we can now apply the tuning conditions (A.9) and (A.10) in

χPT. We do so by generalizing the analysis of Ref. [58], where the twist angle for unquenched

twisted-mass fermions was determined in χPT by applying a PCAC-like condition. The

required extension is from the SU(2) sea-quark sector alone to the full valence-sea SU(4)

symmetry. Much of the analysis carries over with minimal changes from Ref. [58], so we only

sketch the calculation.

The first step is to obtain the pion fields that couple to external particles in the tuning

conditions. Following Ref. [58], we obtain these by expanding the chiral field about its
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vacuum value as

ΣPQ = ξPQ e
2iΠ/f ξPQ , (A.17)

Π =
15∑
a=1

πaλa , (A.18)

ξPQ =
√
〈ΣPQ〉 = diag(eiθ/2, e−iθ/2, eiθ/2, e−iθ/2) . (A.19)

Here λa are the generators of SU(4), with πa the corresponding pion fields. These are the

pions in the PQ theory that are composed of quarks alone, with no ghost component.6 The

pions needed for tuning, πuSV and πdSV , are contained in the upper and lower diagonal 2× 2

blocks of Π, respectively.

The next step is to determine the form, in χPT, of the axial currents appearing in

the tuning conditions. These can be obtained by introducing sources into derivatives using

standard methodology. Since, by definition, our chiral potential does not contain derivatives,

at LO+ only the LO kinetic term [shown in Eq. (3.2)] enters into the determination of the

currents. We do not display the form of the currents, however, as the calculation needed for

each of the tuning conditions is exactly the same as that carried out in Ref. [58]. This is

because each tuning condition involves a separate, nonoverlapping SU(2) subgroup of SU(4)

(upper-left or lower-right 2× 2 block), and because the condensate (A.15) does not connect

these subgroups. We simply quote the results of the calculation:

〈πuSV |∂µ(ūSγµγ5uV )|0〉 ∝ cos θ , (A.20)

〈πdSV |∂µ(d̄Sγµγ5dV )|0〉 ∝ cos θ . (A.21)

Thus enforcing either (A.9) or (A.10) has the effect of setting θ = ±π/2 and the condensate

to

〈ΣPQ〉 = ±diag(i,−i, i,−i) , (A.22)

For our choices of signs of the twisted masses µ0,u and µ0,d in Eq. (A.8), the ± signs are in

fact plusses, i.e. θ = π/2.

6A similar form to Eq. (A.19) holds for the full 6 × 6 PQ chiral field, but we can focus on the SU(4)
block, since the pions we leave out in this way are those containing one or more ghost fields.
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A surprising aspect of this result is that the two tuning conditions are not independent: if

one enforces, say, Eq. (A.9) then Eq. (A.10) will be automatically satisfied. This dependence

arises because changing mu in turn changes ϕ and ω and this impacts the d condensate

through the quark determinant. One might, therefore, wonder how the two tuning conditions

have been successfully applied in Ref. [23]. To understand this, we note that this work makes

two approximations. First, isospin-breaking effects are evaluated only through linear order in

an expansion in mu−md and αEM. Second, insertions of mu−md or photons on sea-quark loops

are dropped (the “electroquenched approximation”). The latter approximation has the effect

of disconnecting the two tuning conditions—all quark loops in both conditions are evaluated

with uncharged, degenerate sea-quarks, so the u-quark condensate cannot be impacted by

changes in md and vice versa. Since χPT predicts that there is a tight correlation between

the condensates, it appears to us that the electroquenched approximation is theoretically

problematic. However, from a purely numerical viewpoint, the dropped contributions may

well lead only to small corrections.

The lack of independence implies that the tuning conditions cannot determine both mu,c

and md,c—only one constraint on these two critical masses is obtained. In terms of the

parameters of mass matrix (A.11), the conditions determine only a relation between ω and

ϕ. Thus, after enforcing either (A.9) or (A.10) the theory is known to lie along a line in

the ω—ϕ plane. In terms of the bare masses, the theory lies along a line in the m0,u—m0,d

plane (with, recall, µ0,u and µ0,d fixed at the values leading to physical quark masses when

m0,u = m0,d = 0). We do know that this one-dimensional subspace includes the point we

are trying to tune to, namely that with (ω, ϕ) = (π/2, 0). This follows from the analysis of

Sec. 3.5.1. At maximal twist with ϕ = 0, the twist in the condensate is also maximal, i.e.

θ = π/2. The only caveat is that the values of the twisted masses must be such that one lies

in the continuum-like phase, rather than the CP-violating phase (see Fig. 3.4).

To complete the tuning we need an additional condition that forces us to the desired point

along the allowed line. At first blush one might expect that it would be simple to find an
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additional tuning condition, since theories with θQCD 6= 0 have explicit parity violation. This

is in contrast to the parity violation induced by a nonzero twist ω which, in the continuum

limit, can be removed by a chiral rotation. This suggests that one should look for quantities

that vanish when parity is a good symmetry. The flaw in this approach is that parity is

broken by ω 6= 0 away from the continuum limit—the chiral rotation required to obtain the

parity-symmetric form is not a symmetry on the lattice. Thus the distinction between ϕ 6= 0

and ω 6= 0 no longer holds.

The only choice that we have found for a second condition involves using the pion masses.

Specifically, we find that, along the line picked out by setting θ = π/2, the masses of both

charged and neutral pions are minimized when ϕ = 0. This assumes only that we are in the

continuum-like phase for the physical values of µ0,u and µ0,d.

The details of the calculation are presented in Chapter 4.Working at LO+, we find that

the constraint θ = π/2 forces the quark masses to lie on the line

m̂d

m̂u

= −
(

1− c`(µ̂u − µ̂d)
1 + c`(µ̂u − µ̂d)

)
. (A.23)

As noted above, this line passes through the desired point mu = md = 0. The slope is −1

when c` = 0, and increases in magnitude as c` increases (assuming the physical situation

µ̂u < µ̂d). There is no singularity when the slope reaches infinity—this simply means that

the constraint line is the mu = 0 axis. For larger c` the slope is positive. It decreases

with increasing c`, though it always remains greater than unity. The pion masses along the

constraint line are

m2
π0 =

µ̂u+µ̂d
2

− 2c`

(
µ̂u−µ̂d

2

)2

+ 2c`

(
m̂u−m̂d

2

)2

− 2w′ , (A.24)

m2
π± =

µ̂u+µ̂d
2

+ 2c`

(
m̂u−m̂d

2

)2

+ 2cEM . (A.25)

Thus we see that both masses are minimized along the constraint line when mu = md = 0.

If one were to implement this tuning condition in practice, then one would apply it for the

charged pion masses, since these have no quark-disconnected contractions.
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This analysis breaks down when c` gets too large, because the theory with mu = md = 0

then lies in the the CP-violating phase. This can be seen from the result (A.24)—for large

enough c` the squared neutral pion mass becomes negative. This happens sooner for the

first-order scenario, w′ > 0.

We close this section by commenting on the impact of higher-order terms in χPT. Because

of such terms, even if one perfectly implements our two tuning conditions—namely either

Eq. (A.9) or (A.10) and minimizing the pion masses—one will not have precisely tuned to

mu = md = 0. This can be seen, for example, from the analysis of Ref. [58], where terms of

O(ap2, am) lead to maximal twist occurring at untwisted masses of O(aµ), with µ the twisted

mass, rather than zero. Shifts of this size occur also in the presence of isospin breaking,

although the detailed form of the corrections will differ. Within our power-counting, however,

µ ∼ a2 so that the shifts in the untwisted masses are ∼ O(a3), beyond the order that we

consider.
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