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Physics

In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD):
first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin
breaking effects, second a computational study measuring non-perturbative Greens functions.
We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects
necessary for understanding how a lattice computation is performed and how discretization
effects can be understood. Our work in Wilson and twisted-mass fermions investigates an
increasingly relevant regime where lattice simulations are performed with quarks at or near
their physical masses and both the mass difference of the up and down quarks and their dif-
fering electric charges are included. Our computation of a non-perturbative Greens functions
on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which
they calculate Greens functions which vanish in perturbation theory, yet have a contribution
from the one instanton background.

In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-
mass fermions in the presence of non-degeneracy between the up and down quark and dis-
cretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that
the CP-violating phase of the continuum theory (which occurs for sufficiently large non-
degeneracy) is continuously connected to the Aoki phase of the lattice theory with degen-

erate quarks. We show that discretization effects can, in some cases, push simulations with



physical masses closer to either the CP-violating phase or another phase not present in the
continuum, so that at sufficiently large lattice spacings physical-point simulations could lie

in one of these phases.

In chapter 3, we extend the work in chapter 2 to include the effects of electromag-
netism, so that it is applicable to recent simulations incorporating all sources of isospin
breaking. For Wilson fermions, we find that the phase diagram is unaffected by the inclu-
sion of electromagnetism—the only effect is to raise the charged pion masses. For maximally
twisted fermions, we previously took the twist and isospin-breaking directions to be different,
in order that the fermion determinant is real and positive. However, this is incompatible with
electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking
direction, following the RM123 collaboration. We map out the phase diagram in this case,
which has not previously been studied. The results differ from those obtained with different
twist and isospin directions. One practical issue when including electromagnetism is that
the critical masses for up and down quarks differ. We show that one of the criteria suggested

to determine these critical masses does not work, and propose an alternative.

In chapter 4, we delve deeper into the technical details of the analysis in chapter 3.
We determine the phase diagram and chiral condensate for lattice QCD with two flavors of
twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization
errors and a nonzero value of ©gcp. We find that, in general, the only phase structure is
a first-order transition of finite length. Pion masses are nonvanishing throughout the phase
plane except at the endpoints of the first-order line. Only for extremal values of the twist

angle and Oqcp (w =0 or 7/2 and ©qep = 0 or 7) are there second-order transitions.

In chapter 5 we move on to a new topic, working to make a first measurement of non-
perturbative Greens functions which vanish in perturbation theory but have a non-vanishing
one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi-

classical approach. This measurement was done using 163 x 48 configurations generated by



the MILC collaboration, with coupling f = 6.572, light quark mass mya = 0.0097, strange
quark mass msa = 0.0484, lattice spacing a ~ 0.14 fm and pion mass m,a = 0.2456.
The analysis was done by separating the Green function of interest into pseudoscalar and
scalar components. These are separately calculated on 440 configurations, using the Chroma
software package. To improve statistics, we used the various reduction technique suggested
in Ref. [13]. We subtracted out the long distance contributions from the pion, excited
pion and ag from the Green function, in the hope of obtaining the short distance form
predicted by Ref. [24]. Unfortunately, after subtraction of the ay and pion states only noise
remained. While the results are not in themselves useful, we believe this approach will be
worth repeating in the future with finer lattices with a fermion action with better chiral

symmetry.
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Chapter 1
INTRODUCTION

In this Introduction, we present a brief overview of some of the important ideas and tools
used in the main body of this thesis. We begin in Sec. 1.1 with an introduction to lattice
quantum chromodynamics (LQCD) and lattice hadron spectroscopy which are utilized in
Ch. 5. In Sec. 1.2 we give a minimal introduction to chiral perturbation theory which is the

primary tool used in Ch. 2-4.
1.1 Introduction to lattice QCD

In this section, we present an concise overview of the formulation of LQCD with a focus
on the portions which are relevant to the main body of this dissertation. In the following
we derive the Wilson gauge action, discuss various formulations of lattice fermions, and
summarize steps in implementing a computer simulation, including building and extracting
correlation functions. The following discussion is carried out entirely in Euclidean spacetime,
which is obtained from Minkowski time ¢ by Wick rotating as ¢ — 7. A finite temperature,
T, can be included in a lattice formulation by making the Euclidean time direction periodic
with period of the inverse temperature and identifying 7,,,, = 1/T". For the sake of brevity,

this discussion only considers zero temperature where 7 is unbounded.

1.1.1  Continuum Gauge Action

The continuum QCD gauge action is,

1 v
Spmse = 553 / dhete(Gh (2) G (2)) (1.1)



where G/bw is the gluon field strength tensor and “b” is color index, running from 1 to 8 over

the eight generators of QCD gauge group, SU(3). “x” and “v” run from 1 to 4 over the 4

Euclidean spacetime directions. Gi’w can be expressed in terms of the gauge field, AZ,
GZW(SL’) = @LAZ(Q:) — &,AZ(Q:) +1 [AZ(:I:), A,‘f(a:)} foed, AZ(:U) = AH(SL’)Tb )

where f%¢ is the group structure constant and T° are the 3x3 traceless hermitian Gell-
Mann matrices which are the generators of SU(3). GY, transforms under a local SU(3)

transformation Q(z) as,
GZ’V(x) — Gﬁ”y(x) = Q(I)GZV(J])QT(ZL') ) (1.2)

As seen from the presence of the gauge fields multiplying the generators, the continuum
action is written in term of elements of the group algebra su(3) rather than than group
elements. The following presents the lattice gauge action, written in terms group elements.

By construction, the lattice action obtained agrees with Eq. 1.1 in the continuum limit.

1.1.2 Discretized Action

In order to discretize QCD), spacetime must first be discretized. The simplest and most widely
used discretization is a four-dimensional hypercubic lattice with lattice spacing a. The four-
dimensional position vector x is replaced by a discrete position vector n = (ng,ny, n.,n,)

and the spacetime integral is replaced by a discrete sum,
r=(x,y,2,7) = an = a(ng, ny, n,,n,), /d4x—>@4z )
n

Rather than considering the AZ’S as the gluon degrees of freedom, we instead use Wilson

lines of length a connecting adjacent lattice sites

]
t:%"

(n)) -

U,(n) = exp(ia
b=1

Here p is the direction of the link and n is the location of the starting lattice site, as can be

seen in Fig. 1.1 These gauge links transform on the left at the starting point of the link and



Figure 1.1: Gauge field link at point n = (ng, ny, n,, n,)

on the right at the end point
Uu(n) = U (n) = Qn)U,(n)Q (n + f1) . (1.3)

A gauge invariant action can be constructed from a path ordered product of links forming a
closed loop. The simplest non-trivial gauge invariant product of links is called an elementary

plaquette; it is formed by making a 1x1 loop of links.

(P (1)) = tr (Uu()U- (0 + WU- (0 + = YU, (1 — ) (1.4)
— tr(Qn) U, (n)QT (n + 2)Qn + ) U_,(n+ 2)Q (0 + i — D)
Qn+ o —)U_,(n+ g — )2 (n — 2)Qn — D)U,(n — 2Q1(n)))
= 0 (Uu(n)U_ (n + @)U—u(n + = YU, (n — )
Links oriented in the —p and —v directions can be related to the links in the positive direction

as,

U-(n) = Upn — i) (1.5)



Figure 1.2: Elementary plaquette

A picture of a plaquette, labeled using only positively oriented links is shown in Fig. 1.2.

One form of the action that can be constructed out of plaquettes is the Wilson action,

Sgauge = 7 ZZRetr 1—P,,(n)). (1.6)

To see that this form is consistent with continuum action in the continuum limit, a — 0,
each link can be Taylor expanded in powers of a. In order to maintain a local action, gauge
fields that result from links shifted from point n in the g or © direction can themselves be

expanded in terms of derivatives of the gauge field
A (n+70) = A,(n) + ad, Au(n) + O(a?) . (1.7)

Collecting terms is a simple yet tedious exercise which can be found in some greater detail

in [32]. The action that results from this expansion is,

Sgauge = 2 50 ZZ (tr(GL, (M)GE" (n) + O(a?)) (1.8)



In the a — 0 limit, assuming that fields, GG, are smoothly varying on the scale of the lattice
spacing, the sum over n is converted to an integral over x and O(a?) terms vanish, yielding

the original continuum action Eq. 1.1.

1.1.8 Lattice fermions

In order to discretize the fermion part of the QCD action, we start with the continuum

action,
S fermion = / P0B(x) (1 Dul(w) +m) b(x), Dp(x) = 0 +idu(x) . (19)

In general, the fermion field ¢ can be a vector of dimension Ny, the number of flavors, in
which case m is an Ny x N; mass matrix. For simplicity, we focus on one flavor here. The

components of the action transform as,

() = ' (x) = Ux)y(z),
bla) = ¥ (@) = P(@)Q (@),

Du(w) = Dj,(z) = Q2)Dy(2)Q' () .

In order to discretize, it is easiest to start with the free theory, without gauge fields, and
insert gauge links where needed to have a gauge invariant action. In addition to replacing

the integral with a sum, the derivative acting on ¥ must be replaced with a finite difference

1

Ou(w) = o (U(n+ ) = ¥fn — ) (1.10)

The discretized free fermion action is now

A

Stree = a’ Z@(n) (’Yu (W + ﬂ);aw(n — 1) + mw(n)) : (1.11)

From the above gauge transformation of ¢ and v it is clear the finite difference term is not

gauge invariant. This can be fixed by inserting gauge links

G(n)Uu(n)p(n+ f1) = $(n)QN (0)Q(n)U, (n)Q (0 + @) Qn + f)o(n + f1) . (1.12)



This yields the discretized fermion action,

n)(n—+ i) —Ul(n — p)(n — [
S termion =a4za(n) <%UM< Jo(n + ) 2(2‘( myin = i) +m@b(n)> : (1.13)

Similar to the gauge action, this action also agrees with the continuum action in the a — 0
limit. This action is referred to as the naive fermion action. It is called “naive” due to having
doublers, which are unphysical quark mass poles. This can be seen by looking at the naive
Dirac operator, D(n,m),

Sfermion = a* Y _ ¥ (n) D(n,m)i(m) (1.14)

n,m

Up(n)0ntjom — UL (0 = 1)0n—jim
2a

D(n,m) =, +m(n)dpm - (1.15)

One way to see the presence of doublers is to restrict ourselves to the free theory, U,(n) = 1,
and Fourier transforming the naive Dirac operator. Skipping intermediate steps [32], the

Fourier transformed naive Dirac operator is,

D(n,m) = %Z e~ P D(n, m)edme (1.16)
= 0(p — q) (ml +ia~"y,sin(pua)) = (p — ) D(p) - (1.17)

Where V' is the lattice spacetime volume and p,,, g, are momenta which have values in the
range (—m/a,w/a] with —7/a and 7/a identified. This operator can then be inverted to
obtain the quark propagator,

~ ml—ia "y, sin(pua)
m? +a=2)" sin*(pa)

D™(p) (1.18)

The sum over y in the denominator is shown explicitly to emphasize that it is separate from
the sum in the numerator. The doublers are easiest to see in limit of massless quarks, m — 0,

where the propagator has the form,

A—1 _ —tay,sin(pua)
D (p)‘m=0 - ZM SiHQ(pMG) : (119)



Taking the continuum limit with fixed p results in the correct pole at p = (0,0,0,0). For
non-zero lattice spacing, poles appear whenever one or more components of p equals 7/a,
resulting in 15 non-physical doublers.

There are several solutions which eliminate the undesired doublers, each having their own

benefits, which we briefly discuss after introducing the simplest solution, Wilson fermions.

1.1.4 Wilson Fermions

The earliest solution to the doubling problem is the use of Wilson fermions [cite Wilson|. The
idea behind Wilson fermions is to add a term to the action that vanishes in the continuum
limit while giving the doublers masses proportional to a~! such that they become extremely
massive and decouple from the theory as a — 0. This is accomplished by subtracting a

discretized covariant Laplacian from the naive Dirac operator,

U,(0)6ntim — 20n.m + Ut (n — )6n_i.m
D(n;m)Wilson = D(n;m)naive —a M( ) i 72 ) H( /1') " . (120)
a

For the free theory, this results in the inverse propagator, in momentum space,

D(p) = (ml +ia ty, sin(pua) + a7t Z(l - cos(pua))1> . (1.21)

I

The added term (the last term) vanishes both for fixed p as a — 0 and at the massless

physical pole, p = (0,0,0,0). Each doubler has an effective mass of

2N
Mdoubler = M + 7 (].22)

where N is the number of components of p equal to 7/a.

While Wilson fermions solve the doubling problem, the solution comes at the expense
of chiral symmetry, which is discussed further in Sec. 1.2. One modification to the Wilson
action is twisted mass where the quark mass matrix is given an axial SU(N¢) phase such that
the mass and Wilson terms in the action do not mix. Twisted mass fermions are one of the

main focuses of this dissertation and are discussed in much greater detail in chapter 2.



1.1.5 Numerical simulation

The basic principle behind an actual lattice simulation is considering the exponential of the
action as a probability density function describing the importance of various configurations of
gauge fields. In order to have a probability density function that can be accurately sampled

with a finite number of gauge configurations, it is necessary to rotate to Euclidean time,

= / D(U)D (¢) D (1) e “ruetidean | (1.23)

This formulation favors configurations with lower action, which is consistent with the prin-
ciple of least action from classical physics *

In order to include fermions, the Grassmann Gaussian integral over the fermionic fields
is performed, replacing the integral over ¢ and ¢ with a factor of the determinant of the

Dirac operator for each flavor. This fermion determinant then acts as a weighting, changing

the importance of different gauge field configurations,

/ D (U) D (¢)) D () e Somoct[aei(Dmy ) / DU (H det [P + my ) ~Saange
(1.24)
In continuum field theory, expectation values of operators are calculated just like moments

of a probability density, by integrating the operator over configuration space, weighted by

the exponentiated action and normalized by the partition function,

1 — _
=2 / D(U)D (¢) D () e *ruetisean O (U, ), 1)) . (1.25)
An alternative, equivalent approach, is to calculate the operator and average over configu-
rations which are selected from the probability distribution. If the selected configurations
faithfully sample all of configuration space, the expectation values of operators can be cal-

culated with errors which scale as N~%2 where N is the number of configurations sampled,

. 1
(O) = lim NZO(U,w V) = Zo U,p,9) + O(1/VN) . (1.26)

conf conf

In actuality, classical physics is restricted to a stationary action, §S = 0, such that the action is a local
minima but not necessarily a global minima.



The numerical challenge is now to generate an ensemble of gauge field configurations
which sample the distribution of possible gauge fields. In order to sample the physical en-
semble, this generation must be aperiodic and ergodic, meaning every possible configuration
could eventually be reached.

The basic procedure for generating these configurations begins with thermalization. Con-
figurations are first initialized, most often with either a “cold start” or a “hot start” where
each link is set to the identity or a random SU(3) phase, respectively. Then, each link is
sucessively updated. There are several kinds of update algorithms but the simplest is the
Metropolis update. In a Metropolis update, a candidate link is obtained by making a small
change to the original link by multiplying it by an SU(3) matrix, X, which is near the
identity,

Uu(n)candidate — XUM<n)Old . (127)

This change is accepted if it lowers or does not change the action, and is accepted with
probability,
e_(S(Ucandidate)_s(Uold)) (128)

if the action is increased. This process must be repeated until the configuration generated
can be said to have thermalized. There are multiple ways to check when thermalization has
been attained, typically involving measuring when observables, such as the average plaquette
value, fluctuate about a stable value. Factors that can result in more configurations needing
to be generated until thermalization include small gauge coupling, g, and large lattice sizes.
How close the candidate generating matrix X is to the identity can also effect thermalization.
Too small of a change and the gauge fields will change slowly, too large of a change and the
action may greatly increase, causing candidate gauge fields to be rejected. In practice,
thermalization can be somewhat sped up by using sequences of different update algorithms.

Once thermalized, future configurations can be used for actual measurements of QCD
observables. Due to the sequential nature of the update, successive configurations are corre-

lated. In order for errors to be well understood and fall as N~/2, this correlation must be
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accounted for. One strategy is to only save configurations that are sufficiently spaced out
along the chain of successive updates. This spacing is chosen by determining the correlation
between measurements of a representative operator, such as the average plaquette. The
details are beyond the scope of this introduction and are discussed elsewhere, such as [32].
Another strategy is blocking the configurations. Rather than considering the mean value
of some operator on each configuration, the mean value on a block of M configurations is
measured. The size of each block, M, is increased, until the variance falls as M !, at which
point, the measurement on each block can be considered independent.

The number of independent configurations required for a measurement depends on the
quantity’s intrinsic fluctuation, measured by its standard deviation, and the desired precision.
It is desirable to include enough configurations such that the statistical error is smaller than
any systematic errors. In practice, modern studies typically use hundreds to thousands of

configurations.

1.1.6 Hadron correlators

In order to discuss hadronic states, we must first introduce the Euclidean correlator. Consider
some operator O which acts on a Hilbert space to either create or destroy a state. Using the

completeness relationship in some orthonormal basis,
1= len) (el (1.29)
n

the trace of the operator O is defined as,

tr (6) = Z<€n|5|6n> : (1.30)

n

A Euclidean correlator relates states that are created or destroyed at some space-time sepa-
ration z,. As we are interested in the energies of hadron states, we will restrict ourselves to

Euclidean time separations, 7. The points are connected using the Euclidean time evolution

operator e~ where H is the Hamiltonian operator. Considering a space-time which is
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periodic in the time direction, as is the case in many lattice simulations, the returning time

evolution operator is e~ #(Tmez=7) A general Euclidean correlator then has the form,
]. T -~ N
<02(7')01 (0)) = E tr <€7H(Tma17T)02€7HT01) s (131)

where the normalization factor is Z = tr (e‘ﬁ Tm”). The natural choice of basis is the eigen-
states of H, where H |n) = E,|n). Here E, are the discrete real valued energy eigenvalues
chosen to be ordered such that,

Ey < Ey < Bs... (1.32)

where Fj is the vacuum energy. In this basis, the Euclidean correlator becomes,

(05(7)01(0)) = %Z<m|52|n> (n|O;|m)e=Fm(Tmaa=7) g=EnT (1.33)

m,n

An overall factor with the vacuum energy e 0™mes can be factored out and included in the

Eor Eor

normalization factor Z. The vacuum energy state e™"°" and e™°” can be canceled between
the two exponentials. This can be done such that we are only considering energy differences
from the vacuum, as this is the energy which is observable in real world experiments. For
ease of notation, we will simply set Ey = 0. In the 7,,,, — oo limit, which corresponds to

zero temperature, only the E,, = 0 term in the sum survives, resulting in,

lim_(O0a(7)01(0)) = D _(0]0aln)(n]O1]0)e 57 . (1.34)

The factor e_Eon‘”'/ Z equals unity in the 7,,,, — 00 limit so it does not appear here. 51
and 52 can be chosen to be 5; and 5h respectively. These operators create or destroy from
the vacuum a state with the quantum numbers of some hadron hA. The above can now be

written as,

lim  (Ox(1)05(0)) = [(h|O}]0)[2e=Pn7 + |(k'|O}]0)[?e~"w ™ + higher energy excitations ,
Tmax 00
(1.35)
where Ej, is the lowest energy state with the quantum numbers h and Ej/ is the energy of the

first excited state. Each successive excited state will fall off more quickly with 7, allowing
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extraction of mass of a hadron by measuring at the Euclidean correlator at large values of 7.
All sorts of hadronic matter can be studied using this method, including mesons, baryons,
and gluonic matter, including glueballs and exotics. For simplicity and as it is most relevant
to Ch. 5, we will look just at mesons using the pion for illustration. The pion is psuedoscalar
that is composed of a light quark and antiquark, indicating it can be created the operator

@)

e = dysu. Technically, this is the state of the charged 7, but for simulations without
electromagnetism and degenerate up and down quark masses, all three pions are degenerate.
A correlator that can be used to extract the pion mass is,
C(n,) = Z(ﬂ%d(f, n,)dysu(0)) = Ay (e 4 e_m”a(NT_”T))+higher energy excitations .
' (1.36)
This equation differs from Eq. 1.35 in several ways. 7 has been replaced with an, as space-
time is now discretized. A sum over space on each time-slice is included to project out only
the zero momentum mode such that the only energy contribution is from the mass of the
pion. Lastly, due to finite time extent with periodic boundary conditions, the image pion

(Nz—n7)

propagator e~ appears. This can be written compactly using the cosh function,

C(n,) = Agcosh(mess(n, — N, /2)) . (1.37)

The mass of the pion is extracted either by fitting the measurement to Eq. 1.37 or by looking
at an effective mass plot, which is generated by solving,

C(n,) _ cosh(mesg(n, — N, /2))
C(n;+1)  cosh(mess(n, +1— N,/2))

(1.38)

for m.s at each time slice n, and finding where the value of m.s; reaches a stable plateau.

An example of the pion correlator and an effective mass can be seen in Fig. 1.3a and 1.3b.

1.2 Introduction to chiral symmetry and chiral perturbation field theory

In this section, we will lay the groundwork for and introduce chiral perturbation field theory
(XPT) such that it may be used in Ch. 2-4. For a more in depth review of XPT I recommend
the lectures Ref. [59], [41], and the textbook Ref. [51].
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(a) Ensemble averaged pion correlator, with fit (b) Ensemble averaged pion effective mass,

to Eq. 1.37. calculated using Eq. 1.38

1.2.1  Chiral symmetry

The massless QCD Lagrangian obeys a SU(Ny) xSU(Ny)g chiral symmetry. As only the up,
down and strange quarks are light compared to the natural scale of QCD Aqcp ~ 300 MeV
it is only sensible to consider the Ny = 2 and Ny = 3 theories. The fermionic field, ¢ is a

vector of quark fields
b=1d| v=(ad3), (1.39)

where s is included in the Ny = 3 theory but not the Ny = 2 theory. The chiral symmetry
of the Lagrangian can be made clear using the chiral projectors P g = (1 £ 75)/2, which

have the properties,
(PLr)*=1 PLPr=PrP,=0 (1.40)
YuPr.r = Pr i,

and act on fermionic fields as,

1 = (Pr+ Pr)Y = Pripr + Prir (1.41)
E]-:@(PL‘*’PR) :JRPL‘FELPR-



14

where each left or right-handed fermionic field independently transforms under a left or right

handed chiral transformation,

Left-handed transformation: ¢, — Uy Yr — YR (1.42)
Y, = U EEL Y — g
Right-handed transformation: v, — 1, Yr — UrYgr
V= Yy ER—)UJE,%%

Using these properties, the massless QCD fermionic Lagrangian can be seen to be invariant

under a chiral transformation,

VI = (Pp + Pr)IP(PL + Pr)v (1.43)
= (rPL+ VL Pr)P(Prir + Pribg)
= YpDvr + ¢ Py
Left-handed transformation: — ¢z P¢g + 0, UL DU,
= YplDr+ ¢ Dy
Right-handed transformation: — 9 zULDUgbr + ¢ Py,

= YplDyr + ¥, Dyr

where ) = 7, (0" + igA*). While chiral symmetry is a symmetry of the massless QCD La-
grangian, it is spontaneously broken by the vacuum, which obtains a nonzero quark conden-
sate (Y1h) ~ A%CD. The condensate is not invariant under an arbitrary chiral transformation

as its left and right handed components do not separate,

() = (g + P R) #0 . (1.44)

The left and right handed transformations can be repackaged into a vector transformation,
where U, = Ur and an axial transformation, Uy = UIT%. While not preserving full chiral
symmetry, as long as the condensate for each flavor is equal, (wu) = (dd)(= (3s)) a SU(N;)

vector symmetry is preserved while the axial transformation is not. Goldstone’s theorem tells
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us that the number of broken generators, in this case the axial generators, is equal to the
number of massless Nambu-Goldstone bosons. In the three flavor theory, SU(3), xSU(3)g —
SU(3)y with eight mesons— the four kaons, three pions and the eta. In the two flavor theory,
SU(2) x SU(2)g — SU(2)y with three mesons, the pions.

In reality, the up, down and strange quarks are not massless and are not degenerate, which
explicitly breaks both the axial and the vector transformation. Despite this explicit breaking,
spontaneous breaking by a non-vanishing condensate is still considered the primary cause of
chiral symmetry breaking due to the approximate SU(3)y symmetry which manifests itself
in the eight light mesons and the even better SU(2)y symmetry manifesting in the pions
which are the lightest hadronic states. This is due to the three light quark masses being

small relative to the scale of the condensate m,, 45/Aqcp < 1.

1.2.2  Chiral perturbation theory

Chiral perturbation theory (XPT) is the energy effective field theory that describes QCD at
energies below the chiral scale A, ~ 1 GeV, where the light mesons fields are the degrees
of freedom. The chiral scale A, is the mass scale of hadrons made up of the three light
quarks which are not psuedo Nambu-Goldsone bosons, such as the rho and the proton. The

condensate can be treated as the vacuum expectation value of a dynamical field, ¥(x), which

is an element of SU(3)y /SU(2)y,

(@) o< (URUL + UjUR) = (%) (1.45)
S(x) — ULS(z)U},

The field parametrizes the light meson fields as,
¥(z) = (X)e2m @1 (1.46)

where f ~ 92 MeV (the pion decay constant in the chiral m, 4, — 0 limit) is a low energy

coefficent (LEC). 7 are the meson fields and 7 are the Gell-Mann matrices in the three
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flavor theory and the Pauli matrices in the two flavor theory,

0 n nt K+
Tt v vz
. arpa __ P 70 KO
SUB)y : 7T* = T SRy (1.47)
K— KO _2n
V2 V2 V12
0 at
SUQ2)y: 7 T*=|[ 2 \/50
V2 2

From here, we follow the normal strategy of an effective field theory, writing down the most
general Lagrangian by including all non-trivial terms that obey the symmetries of this theory,
starting with the lowest dimension terms. At leading order (LO), this is simply the kinetic
term,

2
L, = fz tr [0,0,21] . (1.48)

As the quarks are not massless, the quark mass matrix must be included, although it does not
respect chiral symmetry. To get around this, we use the spurion trick, where the mass matrix,
M, is treated as though it transforms like ¥, with the actual value of M only substituted

when evaluating,

M — U,MU},
m, 0O 0

M=10 my 0 , (1.49)
0 0 ms,

where the third row and column is deleted in the two flavor theory. The mass term enters
the LO Lagrangian with a new LEC By,
f2
Ly="tr (0,520,251 — 2By(MST + ZMT)] . (1.50)

Expanding the above equation in powers of 7%, the meson masses are found to be,

Mg qp = Bolmy +mp),  f# [, f={ud s} (1.51)
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with the exception of the 7° and 7 in the three flavor theory that mix, resulting in a correc-
tions to the masses that go as By(m, — mg)?/ms.

For greater accuracy, next to leading order (NLO) corrections can be included as well
by including higher dimension terms in the Lagrangian. To determine the next terms that
must be included, a power counting must be established. The leading Lagrangian scales as
O(p* ~ Bymy), which is small compared to the natural scale of XPT A} = (4nf)>. The

NLO Lagrangian will include terms which are suppressed by an additional factor of Ai,
2 B 4 2 B B 2

L2 Boms ot P Bumy | (Bumy)

A2 A2 AL AL AL

X

(1.52)

In the three flavor theory, there are 10 independent terms, but here we show only the 8 which

do not include external sources,

Lynio = — Ly tr [0,30,51° + Ly tr [0,50,51] tr [0,%0,%1] (1.53)
+ Lstr [0,20,570,50,51 + Lytr [0,20,57] tr [2Bo(MET + £MT)]
+ Ly tr [0,59,X12B, (M + $M1)] — Lg (tr 2By(ME! + =M1)])?

— Ly (tr [2Bo(M St — =MN)))* = Letr [4B2 (MSIMS! + SMISMD)] . (1.54)

In the two flavor theory, by exploiting identities among traces of SU(2) matrices, the NLO
Lagrangian can be further reduced to 7 independent terms. The LEC for each of these terms,
the L;’s, are called the Gasser-Leutwyler coefficents. These coefficents are fundamental
parameters of QCD, some of which can be measured experimentally, while others can be
calculated on the lattice, exploiting the fact that lattice simulations are not restricted to a

single set of quark masses.



18

Chapter 2

PHASE DIAGRAM OF NON-DEGENERATE TWISTED MASS
FERMIONS !

2.1 Introduction

It has long been known, in the case of three light quarks, that there is a transition to a CP-
violating phase for non-degenerate quarks when one of the quark masses becomes sufficiently
negative [19]. For example, using leading order (LO) SU(3) chiral perturbation theory (XPT),
and fixing m, and mg, the transition occurs when m, = —mgms/(mg + ms) [16]. The
neutral pion becomes massless on the transition line, and within the new phase the chiral
order parameter, (X), becomes complex. For physical QCD this is mostly a curiosity, since
increasingly accurate determinations of the quark masses indicate clearly that all are positive
relative to one another [11, 4]. Thus physical QCD, despite the non-degeneracy of the up
and down quarks, lies away from the critical line.

For lattice QCD (LQCD), however, the situation is less clear. The position of the tran-
sition can be shifted closer to the physical point by discretization effects. Indeed, it is well
known that, with degenerate Wilson-like fermions,? discretization effects can lead to the ap-
pearance of a new phase—the Aoki phase—in which isospin is spontaneously broken and (X)
is complex [3, 56]. In addition, advances in simulations now allow calculations to be done
at the physical light-quark masses, including, very recently, the physical non-degeneracy be-
tween up and down quarks [14]. Tt is thus natural to ask how, in LQCD with non-degenerate
quarks, discretization effects change the position and nature of the CP-violating phase. This

question is particularly acute in the case of twisted-mass fermions, where additional symme-

!This chapter is adapted with minimal changes from Ref. [38]

2“Wilson-like” indicates that the analysis holds for both Wilson fermions and various improvements
thereof, in particular for non-perturbatively O(a)-improved Wilson fermions.
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try breaking is explicitly included.

In this chapter we address this question for Wilson-like and twisted-mass lattice fermions.
We do so using XPT, specifically the versions of XPT in which the effects of discretization
have been included. Our work also allows us to address a related issue: In what way is the
CP-violating phase of the continuum theory related to the Aoki phase of the lattice theory??

Since twisted-mass QQCD is only defined for even numbers of fermion flavors [28], a nec-
essary step for our work is to rephrase the continuum SU(3) XPT analysis of Ref. [16] in the
two-flavor theory obtained by integrating out the strange quark. This requires that the con-
tributions of one of the next-to-leading order (NLO) low-energy coefficients (¢7) be treated as
parametrically larger than the others. Thus we are led to a somewhat non-standard power-
counting, but one which reproduces the SU(3) phase diagram, including the CP-violating
phase, within SU(2) XPT. This approach has been used before along the line m, = —my [61];
here we extend the analysis to arbitrary mass splitting. Similar work has also been done
recently in the context of a effective theory including the n meson [5].

The organization of this article is as follows. In Sec. 2.2 we briefly recall the results
for the phase structure and pion masses at LO in SU(2) and SU(3) XPT, and show how
they differ. Section 2.3 describes the matching of SU(3) and SU(2) XPT. In Sec. 2.4, we
recall briefly how discretization effects are incorporated in XPT for degenerate Wilson-like
fermions, and the resulting phase structure. We then present our first new results: the phase
diagram including both discretization effects and non-degeneracy. In Sec. 2.5 we move onto
twisted-mass fermions, focusing first on the phase diagram and pion masses in the case of
maximal twist, where most simulations have been done because of the property of automatic
O(a) improvement [28]. It is nevertheless interesting to understand how the results with
untwisted and maximally twisted fermions are connected, and so, in Sec. 2.6, we discuss the
phase diagram for general twist.

Up to this stage, our analysis is done using the LO terms due to the average quark

3This issue has been raised previously by Mike Creutz and his conjectured answer is confirmed by the
present analysis [18].
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mass, discretization effects and non-degenerate quark masses. To understand how robust
the results are we consider, in Sec. 2.7, the impact of including the next higher order terms

in our power counting. Some conclusions are collected in Section 2.8.
2.2 Continuum Vacuum Structure at leading order in XPT

In this section we review the vacuum structure predicted by LO XPT for both two and three
light flavors. The LO chiral Lagrangian in Euclidean space-time is, for any number of light
flavors,

2
L, = fz tr [0,20,2" — (xZT + =y )] | (2.1)

where ¥ € SU(Ny) and x = 2ByM (with M the mass matrix), while f ~ 92 MeV and B
are low-energy constants (LECs).

For two light flavors the chiral order parameter can be parametrized as (3) = exp(ifn-T).
Although the mass matrix M = diag(m,, m,) has both singlet and triplet components, the

leading order potential depends only on the former

Vsu(2),L0 = —f; tr [xZT + EXT} = —f; cosftr[x] = —f*cosfx,. (2.2)
In the last step we have defined the convenient quantity x, = By(m, +mg). The potential is
minimized at # = 0 if y, > 0 and at § = 7 if y, < 0, resulting in the phase diagram sketched
in Fig. 2.1. In terms of the behavior of the condensate, this is a first-order phase transition
at which the condensate flips sign. This characterization is somewhat misleading, however,
because the two sides of the transition are related by a non-anomalous flavor rotation. Such
a transformation can change M — —M and ¥ — —X, while leaving physics unchanged.
Thus by adding an extra dimension to the phase diagram (as we will do later) one finds that
the two sides are connected.
Expanding the potential about its minimum, using ¥ = (X) exp(i7 - 7/f) we find the

2 _
=

standard LO result for the pion masses, m |xe|- These thus vanish along the phase
transition line. That they vanish at the origin follows from Goldstone’s theorem due to the

spontaneous breaking of the exact axial symmetry. That they vanish away from the origin
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my

Figure 2.1: Phase diagram at lowest order in SU(2) XPT.

along the transition line is not expected from symmetry arguments, and indeed holds, as we

will see, only at LO in XPT.

The phase diagram of the three-flavor theory has a more interesting structure, as eluci-
dated most extensively by Creutz [16]. Since mg > m,,, mq4 in nature, it is natural to hold m
fixed and vary the other two quark masses. The resulting phase diagram at LO is sketched
in Fig. 2.2. The “normal” region, in which (3) = 1, ends at a transition line along which
mo vanishes. This occurs (for fixed m; > 0) when one of the other masses, say m,,, becomes

sufficiently negative. The explicit expression for the neutral pion mass in this phase is

2
m2 sU@E) = gBO <mu + mg +ms — \/mﬁ +m2 4+ m2 — mymg — m,ms — mdms> . (2.3)

which vanishes when m,, = —mgms/(mg+ ms). The charged pions remain massive through-

out the normal phase except at the origin.

Moving outside the normal phase one enters a CP-violating phase in which the condensate
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Figure 2.2: Phase diagram at lowest order in SU(3) XPT with fixed strange quark mass.

Equations for the positions of phase transition lines are given in the text.

is complex. The explicit form is

exp i¢p 0 0
(B) = 0 exp 1) 0 (2.4)
0 0  exp—i(¢p+)
where the phases satisfy
My, Sin ¢ = mgsiny = —mygsin (¢ + ) . (2.5)

In this case there is a genuine phase transition at the boundary. It is of second order: (¥) is
continuous, and a single pion becomes massless.

The phase diagram is symmetric under both m,, <> my interchange and inversion through
the origin (with m, fixed). Inversion is brought about by a non-anomalous axial isospin
transformation, which also changes the condensate as shown in Fig. 2.2. We note that the

CP-violating region is of finite width.* Specifically, as one moves away from the origin along

4The theory along the m, = —my diagonal is identical to that with m, = mq at fqcp = m, and has
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the m, = —my diagonal, the width of this region grows proportionally to (1., —mg)?/ms.
As the figure shows, there are additional phase boundaries in the second and fourth

quadrants. These occur, however, when |m,|, |mg4| > |ms|, and thus lie far from the region of

physical interest. In the rest of our analysis, we consider only the region in which |m,,|, |mg| <

|ms|, and thus zoom in on the vicinity of the origin in Fig. 2.2.
2.3 Matching SU(2) and SU(3) XPT for non-degenerate quarks

If we choose the quark masses to satisfy |m,|, |mq4| < |ms| < Aqep, then the properties of
pions can be simultaneously described by both SU(2) and SU(3) XPT, and the predictions
of the two theories must agree. The results of the previous section show that this is not the
case if we work to LO in both theories—the CP-violating phase is absent in SU(2) XPT.
The discrepancy is resolved by noting that the CP-violating phase has a width proportional
to (m,—my)?, indicating that it arises at NLO in SU(2) XPT. In this section we recall how
the two theories are matched, and show how the CP-violating phase can then be obtained
in SU(2) XPT when including the resulting NLO term.

To do the matching, one considers quantities accessible in both SU(2) and SU(3) theories,
namely pion masses and scattering amplitudes. Expanding the LO SU(3) result in powers
of my.q/ms, the leading terms match with the LO SU(2) result, while the first subleading
terms match with an NLO SU(2) contribution. The subleading terms in the SU(3) results are
in fact proportional to (m, —mg)?, because they arise from intermediate 1 propagators and
involve two factors of the 7° —n mixing amplitude. The only source of such mass dependence

at NLO in the SU(2) theory is the ¢; term in the NLO potential

l l
Vsu(2) NLo = —Té[tr(xfz + %)) + %[tr(x*E — 2T)2. (2.6)
Writing x as
X = xel+ e, with € = By(m, —my), (2.7)

been discussed extensively in the literature. In particular, a XPT analysis of this theory has been given in
Ref. [61].
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we see that only the e part contributes to the ¢7; term. Thus this term leads to contributions

proportional to (m, —mg)>.

Other NLO contributions (i.e. those proportional to different
NLO LECs or coming from loops) do not have this mass dependence.

The simplest quantity with which to do the matching is the neutral pion mass, and this
was used to determine the value of ¢7 in Ref. [31]. The LO SU(3) result [given in Eq. (2.3)

above| expands to

¢ 62mud
m?rOSU(?))LO =Xt~ 1Bym +0( m27 ) : (2.8)
The SU(2) result at NLO is
26762 X2
m72rOSU(2) NLO = Xt — 72 +0 (A—g , (2.9)
X

where A, = 47 f is the chiral scale. The x? contributions arise from terms in the NLO chiral

Lagrangian (including ¢3) as well as from chiral logarithms. Equating these two results one

finds [31]
_F
~ 8Byms

lr (2.10)

One can show that with this value for ¢;, contributions to all pion n-point amplitudes pro-
portional to €2/m, agree in the two theories.

We stress that in this matching we are not taking into account “standard” NLO contri-
butions, i.e. those suppressed relative to LO results by factors of m,.a/Aqep ~ (mx/A)?
(up to logarithms). Such contributions arise in both SU(3) and SU(2) XPT and must be
included in a full NLO matching. This is not necessary for our purposes since such terms
lead to small isospin-conserving corrections to the vacuum structure and pion masses—they
do not introduce qualitatively new effects. By contrast, the €2 terms that we keep lead to
isospin breaking, and are the leading order contributions which do so. Indeed, for this reason
{7 is not renormalized at this order, since, as already noted, one-loop chiral logarithms do not
contain a term proportional to €2. Thus it is consistent to work with the classical potential,
rather than the one-loop effective potential. This is not the case for other LECs such as /3,

which are renormalized and thus scale-dependent [31].
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We can formalize this by noting that standard NLO contributions are parametrically
smaller than the terms we keep by a factor of ms/Aqcp. This allows the development

of a consistent power-counting scheme in which the €? terms are larger than generic m?

contributions.?

We discuss this in the following section. To be consistent we should also
account for NLO contributions in SU(3) XPT of size m,/Aqcp relative to LO terms. These,
however, lead only to a renormalization of the SU(2) constants f and By relative to their
SU(3) counterparts. Since we work henceforth entirely in the SU(2) theory, we choose to
leave this renormalization implicit.

We now show that the inclusion of the ¢; term leads to the same phase diagram as found

in the LO SU(3) analysis. Given the matching result Eq. (3.4), we always assume ¢; > 0 in
the following. Using (¥) = exp(ifn - T), the potential becomes

Vsu(e) = —f? (Xg cos 0 + cpe’n; sin® 9) , (2.11)
where ¢, = 07/ f% Since ¢; > 0, the potential is always minimized by choosing |n3| = 1.
Since ng = 1 and n3 = —1 are related by changing the sign of 8, we can, without loss of

generality, set ng = 1. The resulting potential is stationary with respect to 6 at the “normal”
values # = 0 and 7, and in addition at

Xe

cosf = 5 -
20@6

(2.12)

This new stationary value always leads to the global minimum of the potential where it is
valid, i.e. when |cosf| < 1. Thus, for fixed ¢, there is a new phase for —2c,e? < y, < 2¢4€?,
within which () is complex and CP is violated. Although cos@ is fixed, the sign of 6 is
not, with the two possible vacua begin related by a CP transformation. This phase matches
continuously onto the normal phases with cosf = +1 at its boundaries. Thus the phase

transition is of second order.

>The numerical basis for this power-counting is not very strong. For example, ¢7 and £3(u) are comparable

in size for reasonable values of the scale y. Thus the numerical size of the standard NLO corrections we
are dropping may be comparable to those proportional to €2 that we are keeping. The key point, however,
is that we are interested in qualitatively new effects, rather than a precise quantitative description.
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cosf) =

2c;€2 <Z> — 1

(X)) = -1 x

cosf = ——
20#:2

Figure 2.3: Phase diagram from SU(2) XPT including ¢; term with ¢; > 0. Equations for

the positions of phase transition lines are given in the text.

The resulting phase diagram is sketched in Fig. 2.3. This is not only qualitatively similar
to the central portion of the LO SU(3) phase diagram, Fig. 2.2, but is in fact in complete
quantitative agreement at the appropriate order. For example, expanding the SU(3) result
for the phase boundary, m, = —mgy/(1 4+ mg/ms), in powers of m, 4/ms, and keeping only
the leading non-trivial term, one finds that the boundary occurs at x, = ¢2/(4Bymy). This
agrees with the SU(2) result y, = 2¢7¢?/ f? using the matching condition (3.4). We have also
checked that the pion masses agree throughout the phase plane. We do not quote results for
pion masses here, since they are included in the more general analysis presented below.

The fact that the CP-violating phase can be reproduced within SU(2) XPT was first
explained by Smilga [61]. His work considered only the case m, = —myg, which, as noted
above, is the same as m, = mg with 0qcp = 7. The analysis presented here gives the
(very simple) generalization to arbitrary non-degenerate quark masses. There is also a close
relation between our analysis and the recent work of Aoki and Creutz [5]. These authors do

not use XPT per se, but rather an effective theory containing both pions and the n meson. If
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the n were integrated out then their theory would reduce to that we consider here, including
the /7 term, plus small corrections. We think, however, that it is preferable to work in a
strict effective theory framework, in which only the light particles are kept as dynamical

degrees of freedom.

2.4 Including discretization effects for Wilson-like fermions

In this section we recall how lattice artifacts can be incorporated into XPT, and study
their impact on the phase structure described above at leading non-trivial order. We do
this for untwisted Wilson-like fermions—twist will be considered in the following sections.
The method leads to the chiral effective theory describing lattice simulations close to the
continuum limit. We begin by recalling the analysis for degenerate quarks and then add in
non-degeneracy. We work entirely in the two-flavor theory obtained after the strange quark
(and the charm quark too, if present) has been integrated out. For untwisted Wilson-like
fermions (unlike for twisted-mass fermions), the analysis could also be carried out within
SU(3) XPT, but there is no advantage to doing so as the dominant long-distance dynamics
lies in the SU(2) sector.

Both quark masses and discretization effects break chiral symmetry, and it is important to
understand the relative size of these effects. Our focus here is on state-of-the-art simulations,
which have m, 4 close to their physical values (m, ~ 2.5 MeV and mg ~ 5 MeV in the MS
scheme at u = 2 GeV), and lattice spacings such that 1/a &~ 3 GeV. In this case, the relative
size of discretization effects is characterized by aAqep ~ 0.1 (using Agep = 300 MeV), so
that

algep ~ 30MeV > my g ~ a*Aoyop ~ 3MeV . (2.13)

The appropriate power-counting is thus (in schematic notation) a® ~ m. This is the Aoki
regime, in which competition between discretization and mass effects leads to interesting
phase structure [3, 56].

Discretization effects can be incorporated into XPT following the method of Ref. [56].

For unimproved (or partially improved) Wilson fermions, the dominant discretization effect
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Figure 2.4: Phase diagram in LO SU(2) XPT including discretization effects with w’ < 0

(Aoki scenario). Equations for the positions of phase transition lines are given in the text.

is proportional to a. In the pion sector, however, this contribution can be absorbed entirely
into a common shift in all quark masses [56], and we assume below that this shift has been
made. The first non-trivial discretization effect is that proportional to a?. This changes the

LO potential to [56]
2
Vo= — fz tr(x'S + 2Ty) — Wtr(ATS + BTA)]2. (2.14)
Here we are using the notation of Ref. [57], in which A = 2Wyal is a spurion field, with
dimensions of mass squared, and proportional to the identity matrix in flavor space. W, and
W' are new LECs.
The analysis of the vacuum structure for degenerate quarks was given in Ref. [56]. Since
V,2 is independent of the €, the results are unchanged at LO in the presence of non-degeneracy.

To determine the vacuum we must minimize

Var = — f* (xecos + w' cos®§) (2.15)
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where w' = 64W'Wga?/ f?. For w' < 0, the analysis is essentially the same as that for Vsu(2)

with 7 > 0, as given in the previous section. Stationary points are at cosf = +1 and

Xe

cosf = —=—
2w’

(2.16)

with the latter being the global minimum where valid (| cos@| < 1). This leads to the phase
diagram shown in Fig. 2.4, with an Aoki phase [3] separated from the normal phases by
second-order transitions at |y,| = —2w’. Strictly speaking, the name “Aoki phase” has been
applied previously only on the diagonal m, = my axis, but in the present approximation it
holds also for non-degenerate quarks. Within the Aoki phase the potential is independent
of the direction of the condensate, n, so that there are two massless Goldstone bosons, the
charged pions. Parity and flavor are violated within this phase. With the canonical choice
of the direction of the condensate, n = 2z, CP is also violated.

For w’ > 0, the global minimum lies at cos = sign(x,), with a first-order transition at
X¢ = 0. The phase diagram is thus identical to that in the continuum, Fig. 2.1. The only
difference is that here the yellow line indicates a genuine first-order transition, since on the
lattice there are no symmetries connecting the two sides. This case is referred to as the

first-order scenario [56].

We are now ready to combine the effects of non-degeneracy with discretization errors.
This requires that we adopt an appropriate power-counting scheme for the relative impor-
tance of €2, m and a?, where m indicates a generic quark mass. Recalling that €2 terms are

enhanced compared to generic m? terms we use
m~a®>> e >man~a>ae >m?~ma®~a.... (2.17)

This can be thought of as treating ¢ ~ a'*?, with 0 < § < 1/2. The utility of this power
counting is that allows us to first add the €? term to those proportional to m and a2, and
then consider terms of order ma ~ a® at a later stage (in Sec. 2.7 below). Indeed, we could,
for the purposes of this section, set § = 0, and treat the €? term as of LO. We do not do

so, however, since this would require us to later treat ae? terms as of the same size as those
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proportional to ma ~ a®. Nevertheless, we will loosely describe the inclusion of m, a? and €2
terms as constituting our LO analysis, while treating the ma ~ a® terms as being of NLO.
Terms of yet higher order will not be considered.

With the power counting in hand, we can extend the inclusion of discretization errors
into XPT to incorporate the effects of non-degeneracy. This leads to the appearance of new
operators in the Symanzik effective Lagrangian, and thus, potentially, to new terms in the
chiral Lagrangian. The constraints on additional operators in the Symanzik Lagrangian in
the presence of non-degeneracy were worked out in Ref. [65]. Using their results within
our power-counting scheme, we find that the lowest order new operator is ~ ae?it). This
is, however, of higher order than we consider here. All other operators are of yet higher
order. Thus, at the order we work, non-degeneracy only enters our calculation through the
continuum /7 term. The LO potential thus becomes

Va2 7 = — fzztr(XTE + 3y) — Wtr(ATS + T A)? + f—g[tr(XTZ — )2, (2.18)
We stress that it is self-consistent to determine the vacuum structure and pion masses from
a tree-level analysis of V,2 . since loop effects only come in at O(m? ma?, a*).

In terms of the parameters of (3J), the potential is now given by

V, )
—% = X¢cos B + cee’nisin® 0 + w' cos? 6. (2.19)
As before, we can set n3 = 1 without loss of generality. The stationary points are at
cosf = +1 and
cosf = X (2.20)

2(cpe? —w')
The latter minimizes the potential if cye? —w’ > 0 and is valid for | cos §] < 1. This results in
the phase diagrams of Figs. 2.5a and 2.5b for w’ < 0 and w’ > 0, respectively. In the former

case, corresponding to the Aoki phase for degenerate quarks, the second-order transition

SFurthermore, when mapped to the chiral Lagrangian, it leads to contributions which can be absorbed
by making the untwisted mass m have a weak dependence on e. Thus it does not lead to new phases, but
only to a small distortion of the phase diagram.
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cosf =1
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cost) = —1
(a) Aoki scenario (w' < 0). (b) First-order scenario (w’ > 0).

Figure 2.5: Phase diagrams including effects of both discretization and non-degeneracy. Blue
(yellow) lines indicate second (first) order transitions. Equations for the positions of phase

transition lines are given in the text.

lines lie at

xe = £2(cee? — ). (2.21)

Thus the width of the phase grows as |e| increases. Furthermore, comparing to Fig. 2.4, we see
that the continuum CP-violating phase and the Aoki phase are continuously connected.” The
only subtlety in this connection is that the condensate definitely points in the njz direction
for € # 0 (i.e. the direction picked out by the non-degenerate part of the mass term), whereas
for € = 0 the direction is arbitrary.

In the first-order scenario, Fig. 2.5b, the first-order transition along the m, = —my line
weakens as |e| increases, until, at c,e? = w’, the CP-violating phase appears. The second-

order transition lines are then given by |x,| = 2(cee? — w'), i.e. by the same equation as in

"This result is in agreement with Creutz’ conjecture [18].
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the Aoki scenario.
We next calculate the pion masses throughout the phase plane, expanding about the
vacuum as

Y = exp(ifrs) exp(i7 - T/ f) . (2.22)

Outside the CP-violating phase, we find

m2o = |xe| = 2(cee® — '), (2.23)
m2e = m2o + 2cp€” . (2.24)

while within the CP-violating phase we have

m2, = 2(ce® — w') sin? @ (2.25)

m2e = 2c4€” (2.26)

where 6 is given in Eq. (2.20). These results are plotted versus x, for various characteristic
choices of € and w' in Fig. 2.6.

Figures 2.6a and b show the continuum results for degenerate and non-degenerate masses,
respectively. The neutral pion mass vanishes along the second-order transition line, as ex-
pected. The full degeneracy at y, = 0 is due to the fact that the theory regains flavor
symmetry (with gcp = m) at this point. A characteristic feature of the spectrum at this
order is that the charged pion mass is independent of x, within the CP-violating phase. This
holds also when discretization errors are included.

Figures 2.6c and d show the spectrum for degenerate quarks with discretization errors in-
cluded, respectively for the Aoki and first-order scenarios, reproducing the results of Ref. [56].

Our new results are those of Figs. 2.6e-g, which include the effects of both discretization
errors and non-degeneracy. In this case the charged and neutral pion masses differ in general.
Figure 2.6e shows the behavior in the Aoki scenario, where m o vanishes on the phase
transition lines, and rises above m,+ in the central region of the CP-violating phase. There

are thus two values of x, where all pions are degenerate, but these are accidental degeneracies
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—2¢1€2 2,62 2w’ —2uw’

(a) w' = cpe2 =0 (b) w' =0, cpe? >0 (c) w' <0, coe® =0

X —2(0152'— w') 2(0152'— w') X
(d) w' >0, ce? =0 (e) w' <0, cpe® >0
m m*
X 72(6[62'7 w') 2(cr? — w') X
(f) coe? =w' >0 (g) coe® > w' >0

Figure 2.6: Pion masses for untwisted Wilson fermions including the effects of both dis-
cretization (w’ # 0) and non-degeneracy (e # 0). m2, is shown by solid (blue) lines, m2. by
dashed (red) lines. Explicit expressions for the masses are given in the text. Vertical scales

differ between the figures.

and not indicative of any symmetry. For the first-order scenario Fig. 2.6f shows the spectrum
when € is chosen so that the plot passes through the end-point of the second-order transition
line, while Fig. 2.6g shows what happens as one moves through the CP-violating phase. In

this case, there are no degenerate points.
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Simulations using Wilson-like fermions at physical masses, including isospin breaking,
have recently begun [14]. What is the significance of our results for such simulations? The
main issue is whether discretization effects can move the CP-violating phase such that it lies
closer to, or even includes, the physical point. Clearly one wants to avoid simulating in this
phase, since it has a different vacuum structure from the continuum theory. But even lying
close to a second-order transition could lead to algorithmic issues due to critical slowing
down. What we have found is that the phase does move closer to the physical point in the
Aoki scenario, Fig. 2.5a. In this scenario, the CP-violating phase now includes a region of
positive quark masses. On the other hand, for the first-order scenario, discretization effects
move the CP-violating phase away from the physical point. A positive aspect of our results
is that discretization errors lead only to a overall shift in pion masses (outside of the CP-
violating phase), so that the difference m2, — m2, takes its continuum value 2¢,e? in both

scenarios.



35

2.5 Twisted-mass fermions at maximal twist

In this section we extend the previous analysis to twisted-mass fermions [30] at maximal twist.
Such fermions have the important practical property of automatic O(a) improvement [28].
They are being used to simulate QCD with quarks at or near their physical masses [1, 15],
and isospin breaking is now being included [23]. The main question we address here is the
same as for untwisted fermions: How do discretization effects change the continuum phase
structure and pion masses?

In the continuum, twisted mass fermions are obtained by a non-anomalous axial rotation,

Lacp = YD +mp+ems)) — (D +mee™™ +em3)th = Y(D+m+ivsmip+ems)y, (2.27)

with my = (m,+my)/2, €, = (Mmy—myg)/2, m = mycosw, p = mysinw, and w the twist
angle. Conventionally, m is called the untwisted (average) mass and p the twisted (average)
mass. Choosing the twist in a direction orthogonal to 73 leaves the €, term unchanged. In
the continuum this is a convenience, but not a necessity. Once one discretizes ) with a
Wilson term, however, it is mandatory to twist in a direction orthogonal to 75 if one wants
to keep the fermion determinant real [29].8By convention, this direction is chosen to be 7.

The rescaled mass matrix that enters XPT is now
X = xe€ ™ 4 er3 = xocoswl +ixesinwr + emy = Ml 4 il + €73, (2.28)
and is no longer hermitian. Here we have defined

m = 2Bym = xycosw and 1 = 2By = yesinw (2.29)

following Ref. [57].

8In Ref. [23], which studies twisted-mass non-degenerate fermions, the twist is chosen in the 73 direction.

This leads to a complex fermion determinant, which is avoided in practice by perturbing at linear order
around the isospin-symmetric theory. Because the twist is in the 75 direction, our present results do not
apply to these simulations. We will discuss the generalization to 73 twist (along with the inclusion of
electromagnetism) in Chapter 3 and 4.
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To determine the effective chiral theory for twisted-mass lattice QCD the first step is to
determine the additional operators in the Symanzik Lagrangian that are induced by twisting.
As in the untwisted case, the form of the allowed operators can be obtained from the analysis
of Ref. [65], which includes both twist and non-degeneracy. In fact, since i* is smaller than €
in our power-counting, the inclusion of twist does not change the result for the untwisted case,
namely that the lowest order new operator is ~ ae? and of higher order than we are working.
Thus at LO the extension XPT to include twist and discretization errors is accomplished by
simply using the twisted x of Eq. (2.28) in the potential V,2 .. of Eq. (2.18).

Using our standard parametrization of () this gives

Vs,
f2

We focus in this section on the case of maximal twist, m = 0, where simple analytic results

= M cos O + fing sin 0 + ce’nj sin @ + w' cos® 6. (2.30)

can be obtained. Even with this simplification, we note that there is competition between
terms in three directions in X: the twist direction ny, the non-degeneracy direction ng, and
the identity direction (w’ term). Thus we can expect a more complicated phase structure
than for untwisted Wilson fermions. Furthermore, since non-degenerate twisted-mass quarks
completely break the continuous SU(2) flavor symmetry, we expect, in general, that all three
pion masses will differ.

We find the phase diagrams shown in Fig. 2.7. Note that we are now plotting the average
mass along the vertical axis and the difference horizontally. We do this because iz and e
are proportional to parameters that enter the twisted-mass lattice action. To compare to
the earlier plots, one should rotate those of Fig. 2.7 by 45° in a clockwise direction. We
see that, at maximal twist, it is the Aoki scenario which is preferred, in the sense that the
CP-violating phase does not move closer to the physical point. Indeed, the phase diagram in
this scenario is identical to that in the continuum, Fig. 2.3, with the replacement y, — 1. In
the first-order scenario, by contrast, there is an additional phase (colored green in Fig. 2.7b)
which brings lattice artifacts closer to the physical point. Thus the relative merits of the two

scenarios are interchanged compared to the untwisted case.
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(b) First-order scenario (w’ > 0)

Figure 2.7: Phase diagrams at maximum twist (m = 0).

To understand the phase diagrams we first recall the result for the degenerate case,
¢ = 0, which has been studied in Refs. [45, 52, 57]. These works find, for large |f|, that

the condensate is aligned with the twist, i.e. n; = 1 and sin@ = sign(jz). This is as in the

continuum. In the Aoki scenario (w’ < 0), this alignment holds for all i, and there is a
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first-order transition at i = 0 where sin # changes sign. In the first-order scenario (w’ > 0),
there are second-order transitions at the two points g = +2w’, at which one of the pion
masses vanishes. For |fi] < 2w’ the condensate smoothly rotates within the group manifold
with sin€ = fi/(2w’). These features are reproduced by our results along the vertical axes
in Fig. 2.7.

We now explain how these results are generalized to € # 0. We first observe that we can
set ny = 0. This is because, for any choice of ny, the ¢, term in Eq. (2.30) (with ¢, > 0) will be
minimized when n3 is maximized, i.e. with nj = 1—nj. Thus there are only two independent
variables, 0 and n,. Since n; satisfies |n;| < 1, we parametrize it as ny = cos ;. Since (X) is
invariant when 6 and 7 change sign, we need only consider ny > 0, i.e. 0 < ¢ < 7/2. The

stationary points are obtained from simultaneously solving

Va2 4,

20 cos [[icos g1 + 2sinO(sin® prce” — w')] =0, (2.31)
Vg2 o - :
a—’& o< sin@sin gy [I — 2sin 6 cos picee’] = 0. (2.32)
¥1

The solutions are

1. cosf = 0 (so that sin @ = +1) together with sin ¢, = 0 (so that n; = 1). In these cases

Va2, f2 = Fi, so that the solution with the lowest energy is that with sin § = sign (),

giving V2 0,/ f* = — |0l

2. sinf = sign(f) and ny = cosgr = ||/ (2cee?) so that Vo, /f? = =02/ (4ere?) — coe®.

2

This is only valid when n; < 1, i.e. || < 2¢e?. There are two degenerate solutions,

with ng = +sin .

3. sinf = /(2w') and ¢; = 0 (implying ny = 1) so that Ve, /f? = —p2/(4w') — w'.
This is only valid when || < 2w’. There are two degenerate solutions, with opposite

signs of cos 6.

4. cos = £1 and finy = 0, so that V,2,./f* = —w'. This never has lower energy than

the third solution and can be ignored.
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The first solution is the continuum one discussed above. The second has lower energy than
the first where it is valid, and goes over to the CP-violating phase when w’ = 0. The third
solution is relevant only for w’ > 0, in which case it has the lowest energy when cse? < w'.
The condensate in this phase is independent of €. These considerations lead to the phase
diagrams shown in Fig. 2.7. The potential is continuous throughout the phase planes, as
is the condensate except at the junction between the central (green colored) phase and the
CP-violating phase in Fig. 2.7b. Thus we expect the transitions to be of second order.

We calculate pion masses using the parametrization
Y =exp(ifn - 7/2) exp(i7 - T/ f) exp(i0n - 7/2) , [(X) = exp(ifn - T)] . (2.33)

Here we are using an axial transformation to rotate from the twisted basis to the physi-
cal basis, which ensures, in the continuum, that the pion fields have physical flavors [58].
In the continuum-like phase (uncolored in the figures), which lies in the regions |u| >

max(2cee?, 2uw'), we find
2, = [f] - 2 m2, = [al, 2, = |l - 20 (2.34)

These results are consistent with those of Ref. [46], where a XPT calculation in this phase
is carried out using the different power-counting m 2 a. Various aspects of these results are
noteworthy. First, all three masses differ. This is expected since flavor symmetry is com-
pletely broken. Second, the charged pions are not mass eigenstates; instead, the eigenstates
are 7 o and the neutral pion. These two points were also noted in Ref. [46]. Third, one of
the pion masses vanishes at each of the phase boundaries: m,, at the boundary with the
CP-violating (pink colored) phase, and m,, at the boundary with the central (green colored)
phase in the first-order scenario.” This is expected since these are continuous transitions at

which a Z, symmetry is broken (§ — —@ for the “green phase” and ng — —ng for the CP-

9In the degenerate case (e = 0) Refs. [45, 52, 57] find that it is m,, which vanishes at |fi| = 2w’, rather
than m,,. This difference arises because we twist in the 7; direction rather than the 73 direction used in
Refs. [45, 52, 57].
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violating phase). Finally, in the first-order scenario, there are four tricritical points at which
both m., and m,, vanish. These occur where all three phases meet, i.e. at || = 2¢,€? = 2w’

In the central (green) phase we find

~2
iy m2 =2, m2, = 2w’ — 2c€. (2.35)

2 I
my, = 2w o

Thus m,, and m,, are independent of z@ within this phase. These results agree with those in
the normal phase, Eq. (2.34), at the boundaries. They also show that m,, vanishes at the
borders with the CP-violating (pink) phases (c,e? = w’).

In the CP-violating phase there is mixing between m; and 73, with the mass eigenvectors
being

7}1 = N7 + N33 and 77'3 = —ngm; + nims, (236)

where we recall that n; = [i/(2cs€?) and n3 = /1 — n?. The masses are

m?rl = 2c0€? — 20, mfr2 = 2¢4€? m2. = 2c,e — ) (2.37)

Note that mz, and m,, are independent of fi, while the 73 mass vanishes along the boundaries
with the standard phases. The latter result is consistent with the results above because, on
these boundaries |ni| = 1 and so 73 = +m3.

A puzzling feature of these results is what happens at the boundaries between the central
(green) and CP-violating (pink) phases. According to Eq. (2.35) it is the mass of w5 which
vanishes there, while Eq. (2.37) has the mass of 7 vanishing. These appear to be different
particles. This is related to a second puzzle, namely that the condensate is discontinuous

across the boundary (which lies at w' = ¢y€?):

~ ~9 ~ ~o

(D)™ = ickom 4 /1- L1 v (D =il 24y f1-

3. (2.38)

4w/2
Here the + signs correspond to the two choices of vacuum state on each side. This situation
can be understood by noting that, at the boundary, the vacuum manifold expands to a line

which includes all four values of the condensate given in Eq. (2.38):

~ ~9

.
(Z) = 22w’7—1 Ty 4w'?

(cos ¢ + iT3sin @) , (2.39)
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where ¢ is arbitrary. The presence of this flat direction is the reason that one pion is massless,
since there is no breaking of a Z5 symmetry to explain the masslessness. The orientation of
the flat direction, which is the direction of the massless pion, depends on the position along
this vacuum manifold, and thus is different on the two sides of the transition. In this way to
two puzzles above are simultaneously explained.

Results for pion masses are plotted in Fig. 2.8. We choose the same parameters for the
plots as for the untwisted case, Fig. 2.6, so as to allow a clear comparison. The figures

illustrate the discussion given above.
2.6 Arbitrary Twist

In this section we give a brief discussion of the phase diagram at arbitrary twist. This allows
us to understand how the phase diagrams presented above for untwisted and maximally-
twisted quarks are related to one another. We focus on the phase diagram, and in particular,
the position of the critical manifold where one or more pions are massless.

For arbitrary twist, the potential is given in Eq. (2.30). As before, minimization leads to
ny = 0, so the potential depends only on 6 and ¢; (defined by cos ;3 = ny). The equations

for stationary points are
—msiné + cos 6 [ficos 1 + 2sin0(coe’ sin’p; — w')] =0, (2.40)

and Eq. (2.32). We focus on the case when both m and ji are non-zero, since the special
cases when one of these vanish have been discussed above.

When |7i], |m] > ce?, |w'| the solution which minimizes the potential has

3=

ny =cosp; =1, ng=sing;, tanf =~ (2.41)

The last equation becomes an equality in the continuum limit, and simply describes how
the condensate twists to compensate the twist in the mass. Discretization errors (here
proportional to w’) lead to a small deviation in 6 from this continuum result. We do not

quote the analytic form as it is not illuminating. In fact, the result for 6 turns out to
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Figure 2.8: Pion masses for maximally twisted fermions including the effects of both dis-
cretization (w’ # 0) and non-degeneracy (e # 0). m2, is shown by solid (blue) lines, m2,
(and mZ,) by dotted (red) lines and m2, (and mZ2 ) by dashed (green) lines. Not all lines
are visible in some figures due to degeneracies. Mixing of pions occurs only within the CP-

violating phase in Figs. (e) and (g). Explicit expressions for masses and mixing are given in

the text. Vertical scales differ between the figures.

be independent of the non-degeneracy €, so the results for the condensate given for the

degenerate theory in Refs. [45, 52, 57| remain valid in this phase. This phase is the extension
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of the “uncolored” phases in Figs. 2.5 and 2.7 to arbitrary twist. At a general position in
this phase, the mass eigenstates are 7, mo and 73 [using the parametrization of Eq. (2.33)]
and all have different masses.

As €% increases, we expect, based on the results of the previous two sections, that we
will enter a phase which is connected to the CP-violating (pink) phases found above. This
should have a condensate having components in both n; and nj3 directions, and 6 taking

non-extremal values. Indeed, if sinf and sin ¢; are both non-zero, Eq. (2.32) is solved by

o~

sinf cos p1 = e (2.42)
This requires that cee? > |fi|. Inserting this in Eq. (2.40) then yields
cosf =" (2.43)

2(ce? —w')’
which is valid if 2(cee? — w’) < m. The solution given by Egs. (2.42) and (2.43) turns out
to give the absolute minimum of the potential where it is valid. Its boundary with the

continuum-like phase occurs when | cos¢;| = 1, and is thus described by

(. -

For fixed e, this is an ellipse in the m, iz plane. One pion (73) is massless along this critical

surface.

Within the CP-violating phase all pions are massive, with the mass eigenstates being
and a mixture of m; and m3. The general expressions for these masses are uninformative, and
we quote only the results along the boundary of this phase. Here, in addition to the massless
w3 we find

1752

2w' 1
(2¢0€?)?

m2, = 2c.e’ — mZ, = 2ce€” . (2.45)

The only other critical lines are those we found at maximal twist, namely at m = 0,

[= 2w and cpe? < w'.
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The position of the critical manifold resulting from these considerations is shown in
Fig. 2.9 for both scenarios and in the continuum. The CP-violating phases lie within the
(distorted) cone-shaped regions. The contour plots show how the circular contours of the
continuum are distorted by discretization effects into ellipses. We note that, in the first-
order scenario shown in Fig. 2.9¢, if one passes through any point in the rectangular region
in the (m, €) plane between the two critical lines there is a first-order transition at which the

condensate changes discontinuously.
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(¢) First-order scenario (w’ > 0)

Figure 2.9: Location of the critical manifold for arbitrary twist. Results are shown only for
€ > 0 since the phase diagrams are symmetric under reflection in the ¢ = 0 plane. The left
panels show 3-d plots, the right panels contour plots. For w’ > 0, the contour plots do not
include the two critical lines which reach down to the e = 0 plane. The scale used for m and
it is the same, while that for € is arbitrary. See text for the equations describing the critical

manifold.
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2.7 Higher order

In this section we consider the effect on the previous results of the inclusion of the next

3 ~ ma. At this order we

highest order terms in our power counting, i.e. those scaling as a
can still determine the vacuum using the classical potential of the chiral theory. The O(ma)
term in this potential is standard, see, e.g. Ref. [50]. The O(a®) terms have been discussed
for ¢ = 0 in Ref. [53]; the results carry over unchanged to € # 0 since the first additional

term involving € scales as ae? and is of higher order in our power-counting. The relevant

additional terms entering the potential are

w f? w3 f°
32W0a (8W0a)3
where w and w3 are new LECs. There is also a term proportional to tr(ATA) tr(ATY + XTA),

Vs = tr(x'S + XTy) tr(ATE + BTA) — [tr(ATS + 27 4)] ’ (2.46)

but this can removed by (yet another) redefinition of . Inserting our standard parametriza-

tion (X) = exp(if7i-T), and combining the results with that from the LO potential, we obtain

Va2747,a3
12
The new LECs should satisfy |w| < 1 and |ws| < |w'[, |cs€?| in order to be consistent with

= (M cosf + finy sin 0)(1 + wcos @) + cie?n3 sin® @ + w' cos O + ws cos® 0. (2.47)

our power counting.

We begin by considering the untwisted theory, 1 = 0, where the phase diagram and pion
masses can be determined analytically. In this case m = x,. As previously, the potential is
minimized with nsz = 1, so that

£2
The stationary points satisfy

— xecosO(1 + wcos ) + cpe? sin® § + w' cos? § + ws cos® 6. (2.48)

sin [xe — 2(xew — coe® + w') cos 0 + 3w cos® 0] =0, (2.49)

which is solved by sinf = 0 (i.e. giving the usual continuum solutions with cos§ = +1) and
by the solutions to the quadratic function of cosf in parentheses. The latter will lead to

CP-violating vacua.



47

To simplify the discussion we consider the impact of the new terms separately. We first
set wz = 0. Then we can take w > 0 without loss of generality, since simultaneously changing
w— —w, 8§ - 0+ 7 and x;, — —x¢ leaves the potential unaffected. As the w contribution
to Eq. (2.49) leaves the function in parentheses linear in cosf, the analysis is little changed
from that at LO (see Sec. 2.4). We find that the CP-violating solution,

Xt
2(coe? —w' — xow)’

cosf = (2.50)

minimizes the potential where it is valid, i.e. wherever |cosf| < 1. The endpoints of this

phase give second-order transitions occurring at masses

2(coe® — w')

2.51
1+ 2w (251)

Xe ==+

Thus the phase boundaries are no longer symmetric with respect to x, = 0. As in the LO
case, if w' > 0 and ¢e? < w', the transition becomes first order (with the w term having no
impact since the transition occurs at x, = 0). The resultant phase diagrams are shown in
Fig. 2.10.

We have also calculated the pion masses. In the CP-conserving phases the results are

m2o = |xe| (1 + sign(xe)2w) — 2(cee? — w'), (2.52)

m2y = m2o + 2ce€ . (2.53)

The only change from the LO results, Eqgs. (2.23) and (2.24), is that the slope with respect

to x¢ is no longer symmetric when x, changes sign. In the CP-violating phases we find
m2o = 2(cee® —w' — xow)sin®@ and mZi = 2cp€?, (2.54)

where again only the former result is changed. The resulting pion masses are shown in
Fig. 2.11, and show clearly the above-mentioned asymmetry.

We now consider the impact of the ws term, setting w = 0. Again, without loss of
generality, we can assume wz > 0. The CP-violating stationary points are now obtained

from Eq. (2.49) by solving a quadratic equation, leading to the solutions

(coe® —w') £ \/(0g62 —w')? — 3xws
3U)3 .

cosfy = (2.55)
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It is straightforward to see from the properties of a cubic that, since wz > 0, only the 6_
solution can lead to a minimum of the potential. Whether it does lead to a minimum is a
more subtle question than in the LO analysis.

We begin by discussing the limit of small |ws|. Specifically, if we assume |cie? — w'| ~
Ixe| > |ws|, the square root in Eq. (2.55) can be expanded in powers of ws. It is then
straightforward to show that one recovers the LO results aside from small corrections pro-
portional to |ws/(cee? — w')|. In particular, if ce? — w’ > 0 there is a CP-violating phase
ending in second-order transitions to continuum-like phases, while if ¢,e? — w’ < 0 there is a
first-order transition.

The positions of these transitions are, however, shifted slightly by the ws term. The

boundaries of the CP-violating phase occur when cosf_ = +1 which gives
e = £2(ce® — w') — 3wy, (2.56)

without any O(w?) corrections. In words, the boundaries are simply offset from the LO
result, Eq. (2.21), by —3ws. In the first-order scenario, the transition occurs at the value of

x¢ such that the potentials at cos# = +£1 agree. This happens when
Xe¢ = —ws, (257)

so that the first-order transition line is offset from the LO result x, = 0 by —ws (again,
without any higher-order corrections).

More interesting changes occur when |ce? — w'| ~ |ws|. Note that this does not require
that ws be large, but rather that there is a cancellation between the ce? and w’ terms. Here
we encounter a phenomenon first noted at € = 0 in Ref. [53]: one can have a first-order
transition from the continuum-like phase into the CP-violating phase, followed by a second-
order transition to the other continuum-like phase. This occurs when the local minimum at
6_ (with |cosf_| < 1 and cosf_ real) has the same potential as that at cos = 1. Then, as
X¢ is reduced, € jumps from 6 = 0 to 6_. This is possible with a cubic potential, but not
with a quadratic. Solving

VaQ,E7,a3 (9_) - Va27Z7,a3 (0) (258)
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leads to the following equation for the first-order boundary

(W' — cpe® — 3ws) (W' — coe? + ws)

- ) 2.59

Xe A5 ( )

As one moves along this boundary cos §_ varies. The boundary ends when either cosf_ = 1,
so there is no jump in #, and the transition becomes second-order, or when cosf_ = —1, so

there is only a first-order transition without the subsequent CP-violating phase. Combining

Egs. (2.55) and (2.59) we find that the transition becomes second-order at
Xe = o€ —w' = 3ws, (2.60)

while it becomes first-order at

Xe = et —w' = —ws. (2.61)

The first of these equations can be satisfied if w’ > —3ws, and so reaches from the first-order
scenario (w’ > 0) into a small region of the Aoki scenario. The second requires w’ > ws and
thus occurs only in the first-order scenario.

These results lead to the phase diagrams shown in Fig. 2.12. We see that the changes
due to the ws term are more substantive than those due to the w term.

We show the corresponding pion masses in Figs. 2.13-2.15; for the sake of brevity we do
not quote the analytic forms. Fig. 2.13 shows two “slices” through the phase diagram of
Fig. 2.12a. These should be compared to the LO results in Figs. 2.5¢ and 2.5e, respectively.

In Fig. 2.14 we show two slices through the phase diagram of Fig. 2.12b. The first, at
e = 0, shows the first-order transition, at which all pion masses are discontinuous. The
charged pions become massless in the CP-violating/Aoki phase, while the neutral pion is
massive. In the second slice, for which e satisfies 0 < ce2 < w’ + 3ws, the discontinuities
remain, but all pions are massive in the CP-violating phase (except at the lower boundary
where the neutral pion mass vanishes). Once cye? > w' + 3ws, the pion masses behave as in
Fig. 2.13b.

In Fig. 2.15 we show four slices through the phase diagram of Fig. 2.12c. The first (at

¢ = 0) shows how the w; term leads to a discontinuity in the pion masses at the first-order
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transition, unlike at LO. This was first observed in Ref. [53]. For non-zero €, the charged and
neutral pions are no longer degenerate, and both have a discontinuity. When one reaches
cee? = w' — ws, the neutral pion becomes massless at the transition point, as shown in the
second slice. This is the beginning of the CP-violating phase. As €? increases further, one
has both first and second-order transitions, as shown in the third slice. The final slice shows
the value of €2 at which the first-order transition turns into a second-order transition. For
larger values of €2 the pion masses behaves as in Fig. 2.13b.

The higher-order analysis in the twisted case is more complicated. Maximal twist no
longer occurs, in general, at m = 0, so one is forced to do the analysis for both m and
1t non-vanishing. In practice, this requires numerical minimization of the potential. The
resulting phase diagram and pion masses for € = 0 have been discussed in detail in Ref. [53].
The addition of isospin-breaking leads both to small quantitative changes, and to qualitative
changes in small regions of the phase plane. We restrict ourselves here to showing how the
NLO terms impact the critical manifold (on which at least one pion is massless). The Aoki
and first-order scenarios are shown, respectively, in Figs. 2.16 and 2.17.

The main effect is a distortion of the elliptical cross sections of the critical manifold.
In addition, the two vertical critical lines in the first-order scenario are shifted slightly in
position. The most significant qualitative change is the appearance of a hole in the manifold
when w' > ws > 0, which is (barely) visible above the ;1 = 0 axis in the right panel of
Fig. 2.17c. This occurs because of the extended first-order transition region seen in the
untwisted phase diagram of Fig. 2.12c.

We end this section by addressing the question of whether higher-order effects move
unphysical phases closer to the point with physical masses. The answer depends on the sign
of w and ws. For untwisted fermions, the results of Figs. 2.10-2.17, show that positive w
and w3 move unphysical phases away from the physical point. Conversely, negative values
of these LECs would move the phases closer. For twisted-mass fermions the answer is more

complicated, depending on the choice of twist angle.
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X¢

(a) Aoki Scenario (w' < 0)

X¢

cosf|=1

Ci 62

cos

(b) First-Order Scenario (w' > 0)

Figure 2.10: Phase diagrams for untwisted Wilson quarks including the NLO O(ma) term

proportional to w. Compare to LO results in Fig. 2.5.
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20’ —511.-" X-E XE
1—2w 142w

(a) w' <0, cpe? =0, w>0 (b) w' >0, cpe? =0, w >0
2 2
my my

201 — ) 20 — o) Xe
1-2w 1+ 2w

(c) w' <0, cpe? >0, w>0 (d) cpe? =w' >0, w>0

—2(ere? — w')

2(cre? — w')
1—2w

14+ 2w

(e) coe? >w' >0, w >0

Figure 2.11: Pion masses for untwisted Wilson fermions including the effects of the NLO w

term with w > 0 (but with w3z = 0). The figures should be compared to the LO results in
Figs. 2.6(c-g), respectively. See Fig. 2.6 also for notation.
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(a) Aoki scenario with w’ < —3ws <0

Xe
cos 6

(b) Aoki or first-order scenario with —3ws < w’ < ws (and w3 > 0)

Xe
cosf|=1

(c) First-order scenario with w’ > w3 > 0; cos @ in pink region is as is in (a) and (b)

Figure 2.12: Phase diagrams for untwisted Wilson fermions including the NLO O(a?) term

proportional to ws. Compare to LO results in Fig. 2.5.
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X¢ Xe

—3ws + 2w’ —?ng — 2w’ —3ws — 2(¢re? — w') —3ws +'2(Cgé2 —uw')

(a) cpe? =0, —w' < —3w3 <0 (b) cre? >0, —w' < —3wsz <0

Figure 2.13: NLO pion masses for untwisted Wilson fermions with w3 > 0 and w = 0.
Results are for the Aoki scenario with w’ < —3ws < 0, corresponding to the phase diagram

of Fig. 2.12a. Notation as in Fig. 2.6.

2
My
—3ws + 2u’ (w'|— 3wz} (w' +ws) Xe —3ws — 2(ce® — w') [ = 3uws) (' — i + wy)
4aws 4wy
(a) cpe? =0, —3ws < w' < w3 (b) cee? > w' + 3ws, —3wz < w' < w3

Figure 2.14: Examples of NLO pion masses for untwisted Wilson fermions with ws > 0 and

w = 0. Results are for —3ws < w’ < w3, corresponding to the phase diagram of Fig. 2.12b.
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2
my
—w3 Xe - Xe
(a) cpe? =0, w' > w3 >0 (b) cpe? = w' — w3, w' > w3z >0
2 2
my My
- - - X¢ - b X ¢
SRV R T R T T TR —9ws 3w X
4w3
(c) w' — w3 < cpe® < w' + 3ws, w' > w3z >0 (d) cre? = w' + 3wz, w' > wz >0

Figure 2.15: NLO pion masses for untwisted Wilson fermions with ws > 0 and w = 0.
Results are for the first-order scenario with w’ > ws, corresponding to the phase diagram of

Fig. 2.12c.
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2.8 Conclusions

In this work we have studied how using non-degenerate up and down quarks changes the
phase structure caused by competition between quark mass and discretization effects. We
draw two main conclusions. First, the continuum CP-violating phase is continuously con-
nected to the Aoki phase induced by discretization effects. Second, discretization effects
can move the theory with physical quark masses closer to, or even into, unphysical phases.
Whether this happens depends both on the twist angle and on the details of the discretiza-
tion (the latter impacting the values of the LECs w’, etc.). Our overall message is that a
complicated phase structure lies in the vicinity of the physical point and simulations should
be careful to avoid unphysical phases.

For twisted mass fermions our results for pion masses extend those of Ref. [46] into the
Aoki regime (m ~ a?). In the continuum-like phase, with both twisting and non-degeneracy,
the eigenstates are 71, my and 73, with all three pions having different masses. Our formulae
may be of use in removing the discretization effects from masses determined in simulations,
although we stress again that O(m?) terms dropped in our power counting may be important
if precision fitting is required.

One shortcoming of this work is that it does not include electromagnetic effects. In the
pion sector, these lead to isospin breaking that is generically larger than that from quark
non-degeneracy, and can also impact the phase structure.!® We will discuss the impact of

electromagnetism in Chapter 3 and 4.building upon the recent analysis of Ref. [34].
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Chapter 3

IMPACT OF ELECTROMAGNETISM ON PHASE
STRUCTURE FOR WILSON AND TWISTED-MASS
FERMIONS INCLUDING ISOSPIN BREAKING !

3.1 Introduction

The phase diagram of lattice QCD (LQCD) can contain unphysical transitions and unwanted
phases due to discretization effects. A well known example is the Aoki phase that can
be present with Wilson-like fermions [3].2 Unphysical phases occur when the effects of
physical light quark masses are comparable to those induced by discretization, specifically
m ~ a2A3@CD, with a the lattice spacing. This can be shown by extending chiral perturbation
theory (XPT) to include the effects of discretization [56]. Understanding the phase structure
is necessary so that LQCD simulations can avoid working close to unphysical phases, so as
to avoid distortion of results and critical slowing down.

In Ch. 2, we extended the analysis of the phase diagram to the case of nondegenerate
up and down quarks for Wilson-like and twisted-mass fermions. This was prompted by the
recent incorporation of mass splittings into simulations of LQCD.? We found a fairly com-
plicated phase structure, in which, for example, the Aoki phase was continuously connected
to Dashen’s CP-violating phase [19, 16].

A drawback of our analysis was that it did not include the other major source of isospin
breaking in QCD, namely electromagnetism. For most hadron properties, electromagnetic

effects are comparable to those of the mass nondegeneracy €, = (m,—m,)/2. For example, in

!This chapter is adapted with minimal changes from Ref. [39]

2“Wilson-like” refers to both unimproved and improved versions of Wilson fermions. The choice will not
matter in this work.

3For recent reviews of such simulations see Refs. [49, 64].
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the neutron-proton mass difference these two effects lead to contributions of approximately
—1 MeV and 2.5 MeV, respectively.* Furthermore, the recent LQCD simulations alluded to
above have included both mass nondegeneracy and electromagnetism. Thus, to be directly
applicable to such simulations, we must extend our analysis to include electromagnetism.
This is the purpose of the present note.

We work in Wilson or twisted-mass XPT (both of which we refer to as WXPT for the
sake of brevity) using a power-counting to be explained in Sec. 3.2. At the order we work, it
turns out that the inclusion of electromagnetism can be accomplished in most cases simply
by shifting low-energy coefficients (LECs) in the results without electromagnetism. Thus we
can take over many results from Ch. 2 without further work.

One new issue concerns the simultaneous inclusion of electromagnetism and quark non-
degeneracy with twisted-mass fermions. The approach we used in the absence of electromag-
netism in Ch. 2 (following Ref. [29]) was to apply the twist in a different direction in isospin
space (1) from that in which the masses are split (73). This leads to a real quark determi-
nant, and is the method used to simulate the s and ¢ quarks using twisted-mass fermions
(see, e.g., Ref. [15]). This does not, however, generalize to include electromagnetism in a
gauge-invariant way. Here, instead, we follow Ref. [23], and twist in the 73 direction. When
doing simulations, this has the disadvantage of leading to a complex quark determinant,’
but there are no barriers to studying the theory with XPT.

The remainder of chapter is organized as follows. We begin in Sec. 3.2 with a brief
discussion of our power-counting scheme and a summary of relevant results from Ch. 2. We
then explain, in Sec. 3.3, how electromagnetism changes the results of Ch. 2 for the case of
Wilson-like fermions. Section 3.4 describes how to simultaneously include isospin breaking,
electromagnetism and twist, while Sec. 3.5 gives our corresponding results for the phase

diagram, focusing mainly on the case of maximal twist. We conclude in Sec. 3.6.

4These results are from the recent LQCD calculation of Ref. [14], and use the convention of that work for
the separation of electromagnetic and ¢, effects.

°This is avoided in Refs. [22, 23] by expanding about the theory with degenerate quarks and no electro-
magnetism.
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Two technical issues are discussed in appendices. The first concerns the renormalization
factors needed to relate lattice masses to the continuum masses that appear in XPT. This
issue is subtle because singlet and nonsinglet masses renormalize differently. This point was
not discussed in Ch. 2, and we address it in Appendix A.1, except that we do not include
all the effects introduced by electromagnetism.

The second appendix concerns the need for charge-dependent critical masses in the pres-
ence of electromagnetism. These must be determined nonperturbatively, and various meth-
ods for doing so have been used in the literature. One of these methods, proposed in Ref. [23],
can be implemented using partially quenched (PQ) XPT, and thus checked. This is done in
App. A.2. We find that the method only provides one constraint on the up and down critical
masses and must be supplemented by an additional condition in order to determine both.

Appendix A.2 requires results from a XPT analysis of a theory with twisted nondegenerate
charged quarks at nonzero lattice spacing and at nonvanishing 0gcp. We provide such an

analysis in Chapter 4.
3.2 Power-counting and summary of previous work

In order to study the low-energy properties of LQCD, we must decide on the relative impor-

tance of the competing effects. The power counting that we adopt is

2

m~p’~a NozEM>e§>ma~a3~aozEM..., (3.1)

where m represents either m, or mgy. This is the power counting adopted in Ch. 2, except
that electromagnetic effects are now included. This scheme only makes sense if discretization
errors linear in a are absent, either because the action is improved or because the O(a) terms
can be absorbed into a shift in the quark masses (as is the case in WXPT [56]).

The explanation for the choice of leading order (LO) terms in this power-counting is
as follows. Present simulations have 1/a ~ 3 GeV, and using this together with Aqcp ~
300 MeV we find aAqep =~ 0.1. Thus second order discretization effects are of relative

size (aAqcp)? ~ 0.01. This is comparable to amy, m./Aqep and mg/Aqep (given that
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m,, ~ 2.5 MeV and my =~ 5 MeV [4, 47]). The results for the neutron-proton mass difference
described in the Introduction are consistent with this power-counting (using the fact that
My — Mg ~ My ~ My).

The choice of 62 as the dominant subleading contribution is less obvious, and is discussed
in some detail in Ch. 2. The essence of the argument is that, while the eg terms are not
necessarily numerically larger than generic m? terms, they give the leading contribution from
quark mass differences to isospin breaking in the low-energy effective theory. For example,
these contributions give rise to the CP-violating phase in the continuum analysis.®

In this note we keep only terms up to and including those proportional to 62, so that we
have the leading order term of each type. We refer to this as working at LO™" indicating

that it goes slightly beyond keeping only LO terms.

We now collect the relevant results from Ch. 2 concerning the phase diagram of Wilson-
like fermions in the presence of nondegeneracy. We work entirely in SU(2) WXPT, in which
the chiral field is ¥ € SU(2). The LO™ chiral Lagrangian for Wilson-like fermions (whether

improved or not) is

2
L, = fz tr [0,20,51] +V, (3.2)

V, = —f; tr(x'2 + fy) — W[tr(ATS + 2T A))? + f—é[tr(XTE — Xy)J?, (3.3)
where A = 2Wyal is the spurion field used to introduce lattice artifacts. This Lagrangian
contains several LECs: f ~ 92 MeV and By from LO continuum XPT, W, and W’ introduced
by disretization errors, and ¢7. The latter, though of next-to-leading order (NLO) in standard
continuum power-counting, leads to contributions proportional to eg and thus we keep it in
our LO+ calculation. ¢7 is not renormalized at one-loop order, and matching with SU(3)

XPT leads to the estimate [31]
f2
~ 8Bym,

ty (3.4)

6A further justification for this choice, also discussed in Ch. 2, is that in SU(3) XPT such terms are of
LO, since they are proportional to (m, —mg)?/ms.
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indicating that ¢; is positive.

The final ingredient in Eq. (4.2) is x = 2BoM, which contains the mass matrix M =
diag(my,, mq), with m, 4 renormalized masses in a mass-independent scheme. Since £, is
supposed to represent the long-distance physics of a lattice simulation close to the chiral and
continuum limits, to use it we need to know the relationship between bare lattice masses and
the renormalized masses. This relationship is nontrivial when using nondegenerate quarks,
and is discussed in Appendix A.1. This point was overlooked in Ch. 2.

To determine the vacuum of the theory, we must minimize the potential V,. Writing

() = "7 the potential becomes

Vi = —f? (Mg cos O + ceing sin® 0 + w' cos® §) (3.5)

where
my = Bo(my+mg), €, = 2Boe,, (3.6)
o= 7, uf = L (37)

Assuming ¢, > 0 [based on the estimate (3.4)], the resulting phase diagrams are shown in
Fig. 3.1. The unshaded phases are continuum-like with |cos §] = 1. The shaded (pink) phases

violate CP with
g
2(ce€2 — ')

The boundaries between continuum-like and CP-violating phases lie along the lines |m,| =

(3.8)

|ns| =1, cosf =

2(@@3 —w'), and are second order transitions. The boundary between the two continuum-like
phases with opposite cos @ is a first order transition. Within the continuum-like phases the
pion masses are

m2o = |my,| — 2(@@3 —w'), miy = |m,| + 2w, (3.9)
while within the CP-violating phase

m2, = 2(Cg€g —w')sin?60, mi. = 203@3. (3.10)

The neutral pion mass vanishes along the second order transition lines. Plots of these masses

are given in Ch. 2.
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~2
c;eq

cos 0| =

cos

(a) Aoki scenario (w' < 0). (b) First-order scenario (w' > 0).

Figure 3.1: Phase diagrams adapted from Fig. 2.5 including effects of both discretization and
nondegenerate quarks. CP is violated in the (pink) shaded regions. The (blue) lines at the
boundaries of the shade regions are second-order transitions (where the neutral pion mass
vanishes), while the (yellow) line along the ¢, axis joining the two shaded regions in (4.2b) is
a line of first order transitions. The analytic expression given for the shaded region in (4.2a)
holds also for that in (4.2b). As discussed below in Sec. 3.3.2, these phase diagrams apply

also in the presence of electromagnetism.

3.3 Charged, nondegenerate Wilson quarks

We now add electromagnetism, so that we are considering Wilson fermions with charged,
nondegenerate quarks. Precisely how electromagnetism is added at the lattice level is not
relevant; all we need to know is that electromagnetic gauge invariance is maintained by
coupling to exact vector currents of the lattice theory. We work here only at LO in agy, which

in terms of Feynman diagrams means keeping only those with a single photon propagator. We
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also work at infinite volume, thus avoiding the complications of power-law volume dependence

that occur in simulations [37, 21, 14].

3.3.1 Induced shifts in quark masses

The dominant effect of electromagnetism is a charge dependent shift in the critical mass, as
noted in Refs. [48, 23, 14]. Here we discuss this shift from the viewpoint of the Symanzik
low-energy effective Lagrangian [62, 63]. It arises from QCD self-energy diagrams in which
one of the gluons is replaced by a photon, and leads to the appearance of the operators

()M (3" 2T ),

a

f
B ep) D erff
Vi f

(=D (€)Y T (3.11)
I f

where f = u,d, e, = 2/3 and e; = —1/3. Examples of the corresponding Feynman diagrams
are shown in Fig. 3.2

These operators are allowed because electromagnetism breaks isospin, while Wilson fermions
violate chiral symmetries. Their contributions are smaller than those of the ) s ff/a oper-
ator that leads to the dominant shift in the critical mass. However, because apy ~ a? ~ m
in our power-counting, agy/a effects are proportional to a ~ m!/2, and thus dominate over
physical quark masses. They must therefore be removed by appropriate tuning of the bare
masses. Since the combined effect of the three operators is independent O(agm/a) shifts in
m,, and my, removing these shifts requires independent tuning of the v and d critical masses.

Different methods for doing this tuning have been used in the literature. The most
straightforward, used in Ref. [14], is to determine the bare quark masses directly by enforcing
that an appropriate subset of hadron masses agree with their experimental values (keeping

all isospin breaking effects). This avoids the need to directly determine the critical masses,

but is the most challenging numerically. An alternative approach, proposed in Ref. [23],
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(c)

Figure 3.2: Examples of LO contributions from electromagnetism to quark self-energies.
Diagrams with additional gluons and quark loops are not shown. These three types of
diagram lead, respectively, to the three operators listed in Eq. 3.11. Only the first operator

is present in the “electroquenched” approximation.
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makes use of a partially-quenched extension of the theory. In Appendix A.2 we check this
method by showing how it can be implemented in XPT. We find that it cannot determine
both critical masses, but instead only provides a single constraint between them. We then
introduce an additional tuning criterion which, together with that of Ref. [23], does allow
both critical masses to be determined.

For the rest of the main text, we assume that the charge-dependent critical masses have
been determined in some manner, such that O(agy/a) self-energy effects can be ignored.
This leaves electromagnetic corrections proportional to agy, which we must keep in our
power counting, as well as higher-order effects proportional to agy X m etc., which we can
ignore.

Examples of the latter effects are the bilinears
aEMZefcmfff and aEMZefclef. (3.12)
f f

These arise as O(am) corrections to the operators of Eq. (3.11), and are also present di-
rectly in the continuum theory. We stress that, in the Symanzik Lagrangian, one has no
dimensionful parameters other than m and 1/a, so bilinears proportional to agmAqep are
not allowed. Factors of Aqcp arise when we move from the Symanzik Lagrangian to XPT.

The only effect of electromagnetism that is simply proportional to agy—and thus of LO
in our power counting—is that arising from one photon exchange between electromagnetic
currents. This is a continuum effect, long studied in XPT. It leads to he following additional
term in the chiral potential [35, 26]:

2
VEM = _fZCEM tr(EngTTg) . (313)

Here cgyp is an unknown coefficient proportional to agy. All that is known about cgy is that

it is positive [66].

"Contributions from the isoscalar part of the photon coupling lead to the same form but with one or both
73’s replaced by identity matrices. In either case the contribution reduces to an uninteresting constant,
and is thus not included in Vgp.
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3.3.2  Phase diagram and pion masses

The competition between electromagnetic effects and discretization errors for two degenerate
Wilson fermions has been previously analyzed in Ref. [34]. Here we add in the effects of

nondegeneracy. This turns out to be very simple. Using the SU(2) identity
4tr(Tm¥l ) = [tr(S+2D]° = [r((Z-31m)]” -8, (3.14)

together with
X =m,l+ é;3, (3.15)

we find that Vgy can be absorbed into V, [given in Egs. (4.2) and (3.5)] by changing the

existing constants as
w — w' + cgm, and cﬁi — cﬁz + CEM - (3.16)

This allows us to determine the phase diagram and pion masses directly from the results
presented in the previous section.®

We first observe that, at the order we work, the phase diagram is unchanged by the
inclusion of EM—the results in Fig. 3.1 still hold. This can be seen from the form of the
potential in Eq. (3.5), which, since |ng| = 1, depends only on cﬁg —w'. This combination is,
however, unaffected by the shifts of Eq. (3.16) and so the phase boundaries and values of 6
throughout the phase plane are also unchanged.

Similarly, from Egs. (3.9) and (3.10) we see that the neutral pion masses are unchanged
throughout the phase plane. In particular, the second-order phase boundaries are (as ex-
pected) lines along which the neutral pion is massless.

The only change caused by electromagnetism is to the charged pion masses, which are

increased by the same amount throughout the phase plane:

8For ¢, = 0 our results are in complete agreement with those of Ref. [34].
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Figure 3.3: Pion masses for nondegenerate untwisted Wilson fermions including electromag-
netism. The three possible behaviors along vertical slices through phase diagrams of Fig. 3.1
are shown. Solid (blue) lines show m?2,, while dashed (red) lines show m?2,. Expressions for

masses are given in the text.

One implication is that, for €, = 0, the charged pions are no longer massless within the Aoki
phase (if present). This is because they are no longer Goldstone bosons, as the flavor sym-
metry is explicitly broken by electromagnetism. Also, as noted in Ref. [34], the charged pion
can be lighter than the neutral one inside the CP-violating phases. This is not inconsistent
with Witten’s identity [66] because the latter did not account for discretization effects. Plots
of the pion masses are shown in Fig. 3.3.

It is perhaps surprising that electromagnetism, which contributes at LO in our power-
counting, has no effect on the phase diagram, whereas the subleading contributions propor-
tional to 62 have a significant impact. We can understand this by noting that the CP-violating
phase is characterized by a neutral pion condensate, which remains uncoupled to the photon

until higher order in XPT (where form factors enter).

The implications of these results for practical simulations (such as those of Ref. [14])
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are unchanged from the discussion in Ch. 2. In particular, for the Aoki scenario (w' <
0) discretization effects move the CP-violating phase closer to the physical point than for

degenerate quarks, so one must beware of simulating too close to this transition.
3.4 Nondegeneracy, electromagnetism and twist

When using twisted-mass fermions one must decide on the relative orientation in isospin
space both of the twist and the isospin-breaking induced by quark mass differences and
electromagnetism. In the absence of electromagnetism, the standard choice is to align these
two effects in orthogonal directions. For example, one usually takes 75 for isospin-breaking, as
in the continuum, while twisting in the 7, direction.’ This is the choice used in simulations
of the strange-charm sector using twisted-mass fermions [8]. It ensures that the fermion
determinant is real, and (subject to some conditions) positive [29]. This was the choice
whose phase structure we determined using WXPT in Ch. 2.

This approach does not, however, allow for the inclusion of electromagnetism. One
problem is apparent already in the continuum limit, where the twisted-mass quark action is

(in the “twisted” basis) [30]

(I + mycy, + iy5Timgs, + €,73)0 . (3.18)

Here ) is the gluonic covariant derivative, m, is the average quark mass, and w the twist
angle with ¢, = cosw and s,, = sinw. This action is not invariant under flavor rotations in
the 73 direction, so there is no conserved vector current to which the photon can couple. In
other words, there is no global flavor transformation available to gauge.

To avoid this problem, we recall that twisting is, in the continuum, simply a nonanomalous
change of variables that does not effect physical quantities. Thus we should start with the

standard action including electromagnetism

V(D —iedQ +my + eg3)Y (3.19)

9 Any linear combination of 7, and 75 is equivalent; 7; is the standard choice.
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with A, the photon field coupling via the charge matrix

1 1
and then perform a chiral twist
) — W2y ) — het@rsTL2 (3.21)

This leads to the quark action of Eq. (3.18) with the addition of the photon coupling

EA él + %(CwTB - Sw7-2’y5) ¢ . (322)

Thus the photon couples to a linear combination of vector currents and to an axial current
in the 75 direction. In the continuum, this combination is conserved [given the twisted mass
matrix of Eq. (3.18)] and the action remains gauge invariant.

We conclude that the correct fermion action to discretize is the sum of Egs. (3.18) and
(3.22). This, however, is not possible in a gauge invariant way using Wilson’s lattice deriva-
tive (except for s, = 0). The Wilson term breaks all axial symmetries, so the 75y5 part of
the photon coupling is to a lattice current that is not conserved.

To avoid this problem, and obtain a discretized twisted theory that maintains gauge
invariance, one needs to twist in a direction that leaves the photon coupling to a conserved
current. The only choice is to twist in the 73 direction. Then the twisted form of the

continuum Lagrangian is

(I —ieAQ + mycy, + T364Cw + iY5T3MgSw + V56450 )1 - (3.23)

This is discretized by adding the standard Wilson term. Since the photon is coupled to
vector currents that are exact symmetries of both the Wilson term and the full mass matrix,
gauge invariance is retained.

This form of the twisted isospin-violating action (with w = m/2) is used in the recent work
of Refs. [22, 23]. Tt has one major practical disadvantage—the quark determinant is complex

for nonzero twist. This is true for nondegenerate masses alone, as explained in Ref. [65].
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Adding electromagnetism only makes the problem worse, since at the least it induces further
nondegeneracy in the masses. Because the action is complex, direct simulation with present
fermion algorithms is challenging. This problem is avoided in Refs. [22, 23] by doing a
perturbative expansion in powers of ¢, and agy. The expectation values are then evaluated
in the theory with no isospin breaking, for which the fermion determinant with twisting is
real and positive.

In the following section we study the phase diagram of the theory with the discretized
form of the Lagrangian (4.5). To our knowledge, this form of the twisted theory has not

previously been studied in WXPT either with nondegeneracy alone or with electromagnetism.
3.5 XPT for charged, nondegenerate quarks with a 73 twist

The conclusion of the previous section is that the twisted-mass theory whose phase diagram

is of interest is that with lattice fermion Lagrangian

Yy [Dw 4 mg + T3€0 + 5730 + Y570 VL - (3.24)

Yy, is a lattice fermion field and Dy, the lattice Dirac operator including the Wilson term
(and possibly improved). Dy is coupled to both gluons and photons, with the latter coupling
to the 73 vector current. The action differs from that considered (implicitly) in Sec. 3.3 only
by the addition of the two mass parameters o and 7.

The four bare mass parameters in (3.24) are related in the continuum limit to the renor-
malized up and down masses, the twist angle (which is a redundant parameter) and the QCD
theta angle, fqcp. The aim is to tune the bare parameters so that the dimension 4 part of
the quark contribution to the Symanzik effective Lagrangian is given by Eq. (4.5) with the
desired physical quark masses, for some choice of w. As for untwisted Wilson fermions the
dominant effect of electromagnetism is to cause separate O(agy/a) shifts in the (untwisted)
up and down masses. These shifts depend on twisted masses only at quadratic order, so
that, to the order we work, they are identical to those for Wilson fermions. They can be

determined by the methods discussed in Sec. 3.3.1 and Appendix A.2. They are equivalent
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to independent shifts in mqg and €.

After the additive shift in mg and €, all four masses in (3.24) must be multiplicatively
renormalized in order to be related to the continuum masses in Eq. (4.5). As discussed in
Appendix A.1, this requires different renormalization factors for all four masses. We assume
here that these renormalizations have been carried out, so that the dimension four term in the
Symanzik effective Lagrangian is given by Eq. (4.5) and described by the three parameters
Mg, €4 and w.

We stress that this tuning and renormalization must be carried out with sufficient accu-
racy. If not, instead of Eq. (4.5), one ends up with a similar form having different twist angles
for the m, and ¢, parts. The parity-odd parts can then only be removed by a combined flavor
nonsinglet and flavor singlet twist. Since the latter is anomalous, this corresponds to a the-
ory with nondegenerate quark masses, electromagnetism, a twist angle and a nonvanishing
Oqcp. In other words, the theory not only has the unphysical parity violation due to twisting
(which can be rotated away in the continuum limit) but also the physical parity violation
induced by 0qcp. Indeed, to analyze the tuning in XPT one needs to include a nonvanishing
fqcp, an analysis we carry out in Chapter 4.

Assuming that the dimension-four quark Lagrangian is Eq. (4.5), we next investigate
which higher-dimension operators are introduced into the Symanzik Lagrangian by twisting.
Those operators present for Wilson fermions remain, but, as discussed in Sec. 3.3, are all of
higher order than we consider. The dominant operators introduced by twisting will violate
parity, because they are linear in the parity-violating mass terms pg and ny. Examples of

the new operators are'”

anoGuué;w ) Gﬁowéuu%uw 3 and aMOETSG,uVU;ww . (325)

Since we generically treat am terms as being beyond LO™ [see Eq. (3.1)], we should be able

to ignore these operators. However, because 7y ~ ¢, and we are treating €, as somewhat

19T he first of these corresponds to an induced value of fqcp proportional to ang. This is one way of seeing
that the lattice action (3.24) leads to a complex fermion determinant.
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enhanced, one might be concerned about dropping any terms. In fact, the any operators
in (3.25), when matched into XPT, pick up an additional factor of m or p?, and thus are
unambiguously suppressed. The reason for the extra factors is that the LO representation of
a flavor-singlet pseudoscalar in XPT, tr(3 — ), vanishes identically. For the induced fqcp
term, one can also see this result by noting that it can be rotated into the isosinglet mass
term, leading to a contribution proportional to mfqcp ~ aem.

Proceeding in this fashion, we find that all other new operators induced by the parity-
breaking masses are beyond LO™ in our power counting. Thus, once the requisite tuning
has been done, the LO™ chiral effective theory for 73 twisted fermions with isospin breaking

is given by the same result as for Wilson fermions, i.e.

2
fz tr [0,29,5'] + Vy + Vau (3.26)
[see Egs. (4.2) and (4.4)], except that the quark mass matrix is now twisted

X = (Mg + &,73)e™™ . (3.27)

We analyze the phase structure of this chiral theory in the next two subsections.

3.5.1 Phase diagram and pion masses at maximal T3 twist

We begin working at maximal 73 twist, which is the choice used in Refs. [22, 23]. In this case

X = 1MyTs + i€, , (3.28)
and the chiral potential becomes
V ~ . . . .
— X}FQEM = mynzsinf — (Cgeg +w') sin? 0 + cpyi(cos® 6 + n3sin®0) (3.29)

up to an irrelevant constant. Since cgy > 0, the right-hand side is maximized always with
Ing| = 1, and we see that the cgy term becomes a constant. Thus, once again, electromag-

netism has no impact on the phase diagram. We also see that the effect of nondegeneracy
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sin 0 sin 6

(a) Aoki scenario (w' < 0). (b) First-order scenario (w' > 0).

Figure 3.4: Phase diagrams including effects of discretization and nondegeneracy for maxi-
mally 73-twisted quarks. Electromagnetism has no impact on the phase diagram. Notation
as in Fig. 3.1. The neutral pion is massless along the second-order phase boundary between

shaded (CP-violating) and unshaded phases.

can be deduced from the results for the degenerate case (studied in Refs. [45, 52, 57]) simply
by shifting w’.

The resulting phase diagrams are shown in Fig. 3.4. Comparing to the untwisted results of
Fig. 3.1, we see that the role of the Aoki and first-order scenarios has interchanged. Without
loss of generality, we can take nz = 1 throughout the phase plane. Then, in the continuum-
like (unshaded) phases we have sin § = sign(m,), corresponding to the condensate aligning or
antialigning with the applied twist. Second order transitions occur at |m,| = 2(w'+¢¢€2). For
smaller values of || the condensate angle is sin 6 = M,/ (2[w’ 4 ¢,€2]), with two degenerate

minima having opposite signs of cosf. If one switches to the “physical basis” in which the
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twist is put on the Wilson term, then one finds that this phase violates CP, just as in the
Wilson case.

These results differ significantly from the phase structure for nondegenerate quarks with
a maximal 77 twist, shown in Fig. 2.7. In particular, an additional phase found for w’ > 0
with a 7 twist is absent here. We stress again that only the theory with a 73 twist, i.e. that
discussed here, can incorporate electromagnetism.

For the pion masses we find the following results. Within the continuum-like phases we
have

m2o = M| = 2(ceél + '), mie = |My| + 2cpy (3.30)

while within the CP-violating phase
m2, = 2(Cg€§ +w')cos®f, mii = 2(0562 +w' + cgm) - (3.31)

As expected, only the charged pion masses are affected by electromagnetism. Plots of these
results along vertical slices through the phase diagram are shown in Fig. 3.5.

It is interesting to compare to the results with untwisted fermions, which are given in
Egs. (3.9) and (3.10) together with the shift (3.17) of m2. by 2cgy induced by electromag-
netism. We see that the neutral pion mass differs only by the change of sign of w’ (which
also implies the interchange sin # <> cos#). This means that the results in the two scenarios
interchange exactly. For the charged pion masses, apart from the interchange of scenarios
there are also overall shifts proportional to w’.

The implications of these results for present simulations are as follows. If one could
simulate the theory directly (somehow dealing with the fact that the action is complex)
then one would need to avoid working in or near the CP-violating phase. This is now more
difficult in the first-order scenario than the Aoki scenario—opposite to the situation with
untwisted Wilson fermions. This qualitative result is the same as for 7 twisting (without
electromagnetism), although the area taken up by unphysical phases is larger in that case.
As noted above, actual simulations done to date at maximal twist use perturbation theory

in €, and agwm, and so evaluate all expectation values in the theory with €, = agm = 0.
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Figure 3.5: Pion masses for nondegenerate maximally 73-twisted fermions including elec-
tromagnetism. The three possible behaviors along vertical slices through phase diagrams
of Fig. 3.4 are shown. Solid (blue) lines show m2,, while dashed (red) lines show m2,.

Expressions for masses are given in the text.
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Clearly, if w' > 0, these simulations must be careful to have m, large enough to avoid the

CP-violating phase.!

3.5.2  Nonmazimal 13 twist

We have also investigated the phase structure for general 75 twist, i.e. nonvanishing and
nonmaximal. One motivation for doing so is that twisted-mass simulations cannot achieve
exactly maximal twist; another is to see how the phase diagrams of Fig. 3.1 change into those
of Fig. 3.4.

Expressions are simplified if we define 6 relative to a twist w, i.e. if we use
<E> _ e’ing/Qe’i@flﬁ?eingg/Q ] (332)

Then we find (dropping constants)!?

Voo : o
——5 = Mg cos b + coéan3 sin® 6 + w'(cos f cos w — ng sin f sinw)

f2

2
+ cpp(cos® @ + nj sin® 0) . (3.33)

This is not amenable to simple analytic extremization, and we have used a mix of analytic
and numerical methods. One can show analytically that the minima always occur at |ng| = 1.
This implies that, once again, the electromagnetism does not play a role in determining the
phase structure.

The sign of n3 can always be absorbed into 6, so we can again choose n3 = 1 without loss

of generality. The potential can then be written (up to f-independent terms) as

/
—% = Mg cos 0 + cos” 0 [—coél + w' cos(2w)] — w? sin(26) sin(2w) . (3.34)

nz=1

1Tn addition, if these simulations are done close to the onset of the CP-violating phase, one would expect
the expansion in é; to be poorly convergent. This is probably not a problem for the method of Ref. [30],
however, since they take the continuum limit of the term linear in é,, and in this limit w’ = 0 and the
lattice artifacts discussed here vanish.

12At w = 7/2 this should agree with Eq. (3.29), and it does once the different definitions of # and 7 are
taken into account.
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A numerical investigation of this potential finds that, for nonextremal w, and for all nonzero
w', there is a first-order transition as m, passes through zero, irrespective of the value of é,.
At this transition 6 jumps from /2 — 6 to 7/2+ 9, with 0 # 0 depending on the parameters.
Thus, unlike at the extremal points w = 0,7/2, there are no second-order transition lines.
Correspondingly, there are no values of the parameters for which any of the pion masses
vanish. This is very different from the theory with a 7 twist, where in Ch. 2 we found a
two-dimensional critical sheet in m,, €, w space.

The absence of critical lines at nonextremal twist can be understood in terms of symme-
tries. For w = 0 and 7/2, the potential has a § — —0 symmetry, and this Zy symmetry is
broken by the condensate in the CP-violating phase, leading to a massless pion at the tran-
sition. For nonextremal twist, however, the potential of Eq. (3.33) has no such symmetry.

Lacking this symmetry, one expects, and finds, only first-order transitions.
3.6 Conclusions

This work completes our study of how isospin breaking impacts the phase structure of
Wilson-like and twisted-mass fermions. The main results are the phase diagrams presented in
Figs. 3.1 and 3.4, together with the corresponding pion masses. These results show how the
combination of discretization errors and nondegeneracy can bring unphysical phases closer
to (or further away) from the physical point.

The inclusion of electromagnetism into the analysis turns out to be very straightforward,
aside from the need to introduce independent up and down critical masses. Electromagnetism
has no impact on the phase diagrams at leading order, because the condensates in the CP-
violating phases involve neutral pions. The only impact is to uniformly increase the charged
pion masses.

We have investigated within WXPT the conditions used in Ref. [23] to determine the
two critical masses in the presence of electromagnetism. We find that, unless one makes
the electroquenched approximation, the two conditions are in fact not independent. To

determine both critical masses one needs an additional condition, and we have presented one
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possibility in Appendix A.2. Our condition requires simulating at nonzero (though small)
Oqcp, and thus will be difficult to implement in practice, but provides an existence proof
that an alternative condition exists.

Our analysis has been carried out in infinite volume. For the finite volumes used in
lattice simulations one might be concerned about significant finite-volume effects on the
electromagnetic contributions. The impact on the results presented here, however, should be
minimal. The phase diagram will remain unaffected by electromagnetism, while the shifts in
critical masses are dominated by ultraviolet momenta, themselves insensitive to the volume.
The only significant effect will be on electromagnetic mass shifts, with cgy picking up an

effective power-law volume dependence [37, 21, 14, 9].
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Chapter 4

PHASE STRUCTURE WITH NONZERO Oqgcp AND TWISTED
MASS FERMIONS !

4.1 Introduction

In chapters 2 and 3 we determined the phase structure of two-flavor lattice QCD with Wilson
and twisted-mass fermions at nonvanishing lattice spacing in the presence of the two phys-
ical sources of isospin breaking: nondegenerate up and down quarks and electromagnetism.
These results are relevant for present simulations because O(a?) discretization effects are of
comparable size to those from isospin breaking (Here a is the lattice spacing). Discretiza-
tion effects can thus significantly distort the chiral condensate and lead to unphysical phase
transitions.

In particular, the CP-violating phase found by Dashen in the continuum [19] can be
enlarged by discretization effects, and for large enough a can include the point with physical
quark masses.

In Ch. 3 we found that the inclusion of electromagnetism along with twisting requires
one to consider, at an intermediate stage, a lattice theory that has, in addition to isospin
breaking, a nonvanishing value of ©qgcp. We repeat the explanation of this result below.
The purpose of the present note is to study the properties of this extended theory, providing
results that are used in Ch. 3 to tune to the physical value, Oqcp = 0. We also present some
results not needed in Ch. 3 so as to provide a complete picture of the parameter dependence
of the phase structure.

Our analysis is carried out using SU(2) chiral perturbation theory (XPT ). Previous work

has considered this theory at nonvanishing ©qcp in the continuum. In particular, Refs. [61]

!This chapter is adapted with minimal changes from Ref. [40]
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and [16] have studied the theory at Ogcp = 7, elucidating the Dashen phase. In addition,
Refs. [43] and [2] considered this and related theories for arbitrary Oqcp in the small-volume
regime, where one can use the methods of random matrix theory. In all these theories they
find a Dashen phase. What our study adds to this previous work is the inclusion of the

effects of working at nonvanishing lattice spacing.

We begin by recalling the essential features of SU(2) XPT including discretization effects,
nondegenerate quarks, and electromagnetism, in the power counting we use in chapters 2
and 3. In this power counting, effects proportional the average light quark mass, m, =
(my+mgq)/2, are assumed comparable to those quadratic in lattice spacing,? and to those

proportional to agm, t.e., mg ~ a®? ~ agy. We also include in the leading-order Lagrangian

2

the dominant term introduced by nondegeneracy, which is proportional to €,

where €, =
(mu—mg)/2. We work to leading order in this combined power counting, so that loop effects

need not be considered. Ignoring electromagnetism for now, the Lagrangian is then

2
L, = fz tr [0,20,5] + V, (4.1)
2
V, = —fz tr(x'2 + BTy) — W[tr(ATS + T A))?
+ f—g[tr(XTZ — 22 (4.2)

Here ¥ € SU(2) is the chiral field, f ~ 92 MeV and By are the continuum leading order low
energy coefficients (LECs), and A = 2Wpal is a spurion field, with W, and W’ LECs intro-
duced by discretization errors. The quark mass matrix, M, is contained in the convenient
quantity x = 2ByM.? Matching physical quantities in continuum SU(2) and SU(3) XPT

one finds
f2
~ 8Bym,

lr (4.3)

2Terms linear in a, if present, can, in the pion sector, be absorbed into an additive shift in the quark
mass, so that the leading discretization effects relevant for the phase structure are proportional to a? [56].

3The detailed relationship of the masses in M to the bare lattice quark masses is explained in Ap-
pendix A.1. We also note that M contains only the LR projection of the full mass matrix.
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where my is the strange quark mass [31]. Thus we know that ¢; is positive.
In the continuum, the leading term induced in the chiral potential by electromagnetism

is that due to one-photon exchange between electromagnetic currents [35, 26]
2

Vem = —chEM tr(X735073), (4.4)
where cgyp is proportional to agy and is known to be positive [66]. Electromagnetism also
contributes to mass renormalization, but this is implicitly included by our use of renor-
malized masses in the quark mass matrix M. Although the quark masses depend on the
renormalization scheme chosen, this dependence is canceled by that of the prefactor By, so
that the product x is independent of renormalization scheme and scale.

On the lattice, with Wilson or twisted-mass fermions, the inclusion of electromagnetism
leads to additional issues. The first of these concerns the direction of the twist. Quark
nondegeneracy picks out the 73 direction in isospin space. In the absence of electromagnetism,
one can twist in an orthogonal direction, e.g. 7, and this choice leads to a real lattice
fermion determinant [29]. However, such a twist leads leads to an electromagnetic current
that includes an axial component when written in terms of bare quarks. This current cannot
be coupled in a gauge-invariant way to the electromagnetic field in a lattice theory since it
is not conserved as shown in Ch. 3.

To include both electromagnetism and nondegeneracy on the lattice, one is thus forced
to twist in the 73 direction [22, 23]. This, however, leads to a complex lattice fermion deter-
minant [65], making the theory challenging to simulate.? An intuitive way of understanding
why the action is complex is to note that, in the continuum, when the twist angle is w, the

fermion mass term is given by

Y(MyCy + T3€4Co + 1Y5T3MgSew + 1Y5€450,) (4.5)

where v is an isodoublet, ¢, = cosw, and s, = sinw. By construction, in the continuum

a nonsinglet axial rotation (i.e., a twist) can return the mass matrix to its standard form

4This is avoided in Refs. [22] and [23] by working to linear order in perturbation theory about the isospin
symmetric theory.
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mq + T3€¢,. However, on the lattice, such a rotation is not a symmetry. Crudely speaking,
the lattice theory with mass matrix (4.5) corresponds to a continuum theory in which the
coefficients of the four terms are differently renormalized. In such a theory the mass terms
involving 5 cannot both be rotated away, and thus the theory has a nonzero ©qgcp. As is
well known, this leads to a complex fermion determinant. The only redeeming feature is
that, if one could tune the lattice quark mass matrix such that it took the form of Eq. (4.5)
in the continuum limit, then the imaginary part of the fermion determinant would vanish in
this limit.

The situation is not this simple, however, because of the second issue induced by the
inclusion of electromagnetism in the lattice theory. This is the presence of independent
additive renormalizations of the up and down bare untwisted quark masses proportional to
agm/a. Since in our power counting m ~ a® ~ agy, these renormalizations dominate over
the leading order terms described above and collected in Egs. (4.2) and (4.4). They must
be tuned away by applying nonperturbative conditions to determine, independently, the two
critical masses.> One of the results of Ch. 3 was a demonstration that the tuning method
used in Ref. [23] does not work in general.5 The method provided only a single condition,
while two are needed. The key point for present purposes is that, with the untwisted parts
of the quark masses “detuned”, the theory one is studying has, even in the continuum limit,
a nonvanishing value of ©qcp. Thus, to come up with a second condition that will set
O©qcep = 0 (in the continuum limit) one must understand the properties of the detuned

theory. This is the purpose of the present analysis.

To understand why detuning leads to nonzero ©qcp, it is instructive to write out the

®There is, in addition, the standard additive renormalization proportional to 1/a (times powers of o)
that is common to both quarks. The nonperturbative conditions that remove the agy/a shifts will also
remove the larger 1/a shifts. The point here is that the smaller (but still divergent) electromagnetic
renormalizations imply the need for two conditions, rather than one.

6The method, based on introducing unphysical valence quarks, works only in the electroquenched approx-

imation, in which sea quarks are kept neutral and degenerate. It fails once the sea quarks are charged.
The second method proposed in Ref. [23], and the method used in Ref. [14], do not suffer from the same
problem, because they tune using physical quantities.
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renormalized mass matrix M in a detuned, twisted theory. It is convenient to work with y

rather than M, since this is what enters the chiral Lagrangian. The form is
‘= my + ifl, 0 (46)

0 mY —ifig

where the “hat” on a mass indicates multiplication by 2B,. In particular, m? = 2Bym!,
with m!” the renormalized untwisted or “Wilson” part of the up-quark mass, while 7i, =
2By, with p, the twisted part of the up-quark mass. Similar notation holds for the down-
quark masses. The superscript W distinguishes the untwisted masses from the full physical
masses, which are given, for example, by m? = (m)”)? + u2. The two twisted masses in
(4.6) have opposite overall signs because twisting involves 73. In this notation, tuning the
untwisted parts of both masses to their critical values means tuning both m!V and M)’ to
zero. As long as u,, and ug have opposite signs this corresponds to tuning to maximal twist.
We can rewrite the mass matrix of Eq. (4.6) in terms of the average physical quark mass

m, and the nondegeneracy €,:

X = . : (4.7)

Here m, = 2Bym,, €, = 2Bye,,

tan(p + w) = ﬁ':—sv and tan(p —w) = —% . (4.8)
u d

We observe from Eq. (4.7) that w is the twist angle, while ¢, being the overall phase of the
mass matrix, is proportional to ©gcp:

Oqcp
o=—2=.

. (4.9)

Thus having a general, detuned mass matrix corresponds to working at nonzero Oqcp.
Tuning to the critical values of the untwisted quark masses corresponds to setting w = /2

and ¢ = 0, 7.e., tuning to maximal twist with vanishing ©qcp.
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In summary, the dominant effect of including electromagnetism in a theory with Wilson
or twisted-mass fermions is mass renormalization. For nonvanishing twist, this implies that
one must work at nonvanishing ©qcp in order to tune to ©qgcp = 0. While this will be
challenging for simulations, it is straightforward to study this theory in XPT. Working at
leading order in our power counting, one has simply to find the minima of the potential that

is composed of the terms given in Eqs. (4.2) and (4.4).

When determining the expectation value of the chiral field, it is convenient to parametrize

it relative to the twist it would obtain were p = a = 0:
<2> — eiw73/26i0ﬁ-776iw73/2 (410)

The full potential ¥V =V, 4+ Vgm then becomes
%

~ A~ . . ~ . ~ . 2
—— = M, cos f cos p + nzé, sin O sin v + ¢; (ngé, sin b cos ¢ — M, cos sin p)

f? (4.11)

+w' (ngsin@sinw — cos O cosw)® + cpu (n3 + (1 —n3)cos6?) ,
up to an irrelevant overall constant. Here we have introduced

14 64W'W2a?
cr = -~ and w = 2= o4

P I?

Given that ¢; and cgy; are both positive, the potential is always minimized with the conden-

(4.12)

sate aligned in the 73 direction, i.e. n = (0,0,£1). Without loss of generality we can set
n = (0,0,1) and absorb any sign into §. The main task in the following is the determination
of the values of 6§ which minimize V as the parameters are varied.

An immediate conclusion from this analysis is that the remaining explicit effect of elec-
tromagnetism, namely the cgy term, is simply a constant for ny = 1. It therefore does not
effect the minimization of the potential, and thus has no impact on the phase structure.
Physically this is because the condensate lies in the neutral pion direction. The only effect

of this term is to give an overall positive shift in the charged pion masses.”

"In light of these considerations,we drop the cgy term in the subsequent discussion of minimization of
the potential.
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The remainder of this chapter is organized as follows. In Sec. 4.2 we determine the phase
diagram in the m, — ¢, plane. We do so in stages, beginning by elucidating the symmetries of
the potential (4.11), then working out the phase diagram in the continuum, next adding in
discretization effects for the extremal cases where w = 0 and 7/2, and finally considering the
most general choices of parameters. We then return, in Sec. 4.3, to the original motivation
for the present work, namely the determination of a condition such that, in the presence
of electromagnetism, maximal twist at ©qgcp = 0 can be achieved in a physical phase. We

conclude in Sec. 4.4.

4.2 Determination of phase diagram

4.2.1 Symmetries of the phase diagram

Before entering into detailed calculations we collect some general results that follow from
the form of the potential, Eq. (4.11).

First we note that, without loss of generality, we need only consider w and ¢ in the range

0<w,p<m/2, (4.13)

as long as we consider the full m, — €, plane. This is because V is invariant under each of

the following four transformations

(i) {w > w+m}, (4.14)
(17) {w = —w, 0§ > —0, ¢, - —¢€,}, (4.15)
(i1) {¢ = —p, & — =€}, (4.16)
() {@ = @+, g = Ty, & — —&4)}. (4.17)

In the following, we refer to the endpoints of the range (4.13) as the “extremal” values of w
and ¢, while values within the range are called “nonextremal”.

In addition, V is invariant under
s T
() fw = -, p > o -

. 0, Ty < ég 0 — g—e}. (4.18)
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This implies relations between the phase transition lines for different values of the parameters.
For example, the phase diagram for w = ¢ = 0 is related to that for w = ¢ = 7/2 by a
reflection in the diagonal line m, = €.

The final invariance that plays a role in the following is
(vi) {w — g—w, €g = —€4, W = —w', 6 — —0}. (4.19)

This relates the phase diagrams with opposite signs of w’.

4.2.2  Continuum XPT with nonzero ©qcp

In this section we examine the phase structure in the continuum. Without discretization
effects, the twist angle is redundant and has no effect on the phase diagram. This is manifest
in the basis used in Eq. (4.11), where with w’ o< a® = 0 there is no dependence on w.

We begin by recalling results for the extremal cases ¢ = 0 and 7/2, corresponding to
©qcp = 0 and 7. These have real and imaginary quark masses, respectively.

The physical case, ¢ = 0, has been described extensively in the literature [19, 17, 38].
The phase diagram is shown in Fig. 4.1(a). There is a second-order transition between the
standard continuum phase and the CP-violating Dashen phase, lying along m, = ﬂIQCgég. In

the Dashen phase, the potential has two degenerate minima, both having

cosf) = —L (4.20)

and differing in the sign of 6.

The case of Ogcp = 7 (p = 7/2) was first described by Smilga [61]. The potential
has the same form as for ¢ = 0, except that m, and cosf are exchanged with €, and sin#,
respectively. This implies that the phase diagram has the same form as for ¢ = 0, except
that it is reflected in the m, = €, line, as shown in Fig. 4.1(b). This is an example of the
symmetry (4.18) at work (since the change in w is irrelevant in the continuum). There is
thus a second-order transition to a Dashen-like phase along the lines ¢, = :I:QCgmg. There is

again a two-fold degeneracy within this phase.
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(a) =0 (b) ¢ =1m/2

Figure 4.1: Continuum phase diagram for (a) ¢ = Oqcp/2 = 0 and (b) ¢ = 7/2. Shaded
(pink) regions have varying values of the vacuum angle 6, as indicated in the figures. Un-
shaded regions have constant #. The neutral pion mass vanishes along the phase transition

lines.
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For nonextremal ¢ (0 < ¢ < 7/2) the potential (4.11) cannot be minimized exactly and
it is instructive to look at some simple limits.

First we drop the O(m?) ¢, term. In the extremal cases this means that the width of the
shaded (pink) phases shrinks to zero, so that there is a first-order transition along the entire
mg = 0 line for ¢ = 0 and along the ¢, = 0 line for ¢ = 7/2. By contrast, for nonextremal

©, there are no transitions. The potential is minimized at,

~

tanf = gtango, (4.21)
Mg

and changes continuously as one moves through the phase diagram, except when passing
through the origin.

The absence of a transition for nonextremal ¢ continues to hold when the ¢, term is
restored. This can be understood as due to the lack of a Z; symmetry in the potential.
It is the presence of a Z; symmetry for extremal ¢ (under which § — 6 + 7) that, when
broken by the vacuum, leads to a second-order transition. The upshot is that the extremal
phase diagrams of Fig. 4.1 are replaced by blank diagrams with no transitions, aside from
the singular point at the origin.

To show a concrete example of this, we consider ¢ = m/4. Using the parametrization
My =rcosa, é, =rsina and r? = T/T\Lg + ég. The potential is then

v _ [cos (6 — @) + kcos® (0 + a)] , (4.22)

VR
where k = ¢;7/v/2 can be treated as small in our power counting. The minima occur when
0=sin(d —a)+2ksin[2(0 + «)]. (4.23)
Expanding in powers of x about the leading-order solution, 8 = «, we find
0 = o — 2k sin (4a) + O(K?). (4.24)

The presence of only a single solution indicates the absence of a Dashen-like phase. We
have investigated this numerically for other values of ¢ and found that there are no phase

transitions for any nonextremal .
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To see how the degeneracy of the Dashen-like phase is broken for nonextremal ¢, consider
the potential along the m, = 0 axis:

i €qsindsin ¢ + cé sin® 6 cos® ¢ . (4.25)

For ¢ = 0, one finds (since ¢, > 0) that there are degenerate minima at sind = +1. This

corresponds to moving from the origin in Fig. 4.1(a) along the €, axis and thus lying in the

(shaded pink) Dashen phase. Turning on a nonzero ¢, the potential is still extremized at

|sin @] = 1, but the two extrema are no longer degenerate

V(sinf = +1 . "
—% = €, 8in ¢ 4 ¢ cos” . (4.26)
Thus there is a unique minimum, such that sinf = 1 for ¢, > 0 and sinf = —1 for ¢, < 0

(assuming a positive ). There thus can be no Dashen-like phase.

4.2.3  Discretization effects at nonzero ©qcp for extremal w

We now turn on discretization errors by considering non vanishing w’. Just as in the con-
tinuum, the phase diagram is easiest to determine for extremal ¢. The case of w = ¢ = 0
(untwisted fermions with ©qcp = 0) has long been studied, and it has been shown that
there are two distinct scenarios depending on the sign of w’: the so-called Aoki scenario for
w' < 0, and the first-order scenario for w’ > 0 [3, 56, 38]. The resulting phase diagrams are
shown in Fig. 4.2, and should be compared to the continuum diagram of Fig. 4.1(a). For
w’ < 0, the Dashen phase, in which # is degenerate, expands vertically so as to include the
origin. The CP violating phase along the m, axis is typically called the Aoki phase, so we
call the extended CP violating region the Aoki-Dashen phase. This situation is shown in
Fig. 4.2(a). For w’ > 0, the vertical width of the continuum Dashen phase is reduced, and
there is a segment of first-order transition along the €, axis, as shown in Fig. 4.2(b). In both

scenarios, within the Aoki-Dashen phases the potential is minimized by

m
cosf = g

Bl B 4.27
2(cpey —w')’ ( )
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ciéq =w
cos 0 cosf|= —1
(a) w' <0. (b) w' > 0.

Figure 4.2: Phase diagrams adapted from Fig. 2.5 including effects of discretization for
w = = 0: (a) Aoki scenario (w’ < 0) and (b) first-order scenario (w’ > 0).. The expression
for 0 in the shaded (pink) region in (a) also holds in (b). The boundary of the shaded regions
are second-order transition lines, along which the neutral pion mass vanishes. The (yellow)

solid line running along the €, axis between the shaded regions is a first-order transition.
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so that again there are two degenerate vacua with opposite signs of 6.

We next consider ¢ = 7/2 while holding w = 0 (i.e. Wilson fermions at Oqcp = 7).
This has not been previously studied in the presence of lattice artifacts. As described above,
for the continuum terms in V), changing ¢ from 0 to m/2 has the effect of interchanging m,
and cos @ with é, and sin 6, respectively. Since the w’ term can be rewritten as w'cos? 6 =
w'(1 — sin? ), the same interchanges hold for w’ # 0 as long as one flips the sign of w’. Up
to some unimportant sign flips, this is an example of the general transformation obtained by

combining Eqs. (4.18) and (4.19):

.. ™ ~ A A ~
(U”) {90 — 5_907 Mg —r —€q; € =2 My,

w = —w', 0 — 0 — g} . (4.28)

The implication is that the phase diagrams for ¢ = 7/2 are obtained from those of Fig. 4.2
by rotating 90° counterclockwise, and interchanging the w’ < 0 and w’ > 0 scenarios. The
positions of the resulting transitions are shown schematically in Fig. 4.3.

The twist angle is no longer redundant when w’ # 0, entering the w’ term in Eq. (4.11)
as w' cos?(f + w). Thus changing w from 0 to 7/2 has the effect of flipping the sign of w':
w' cos?(0+m/2) = w'sin? § = w'(1—cos? ). This is an example of the general transformation
(4.19). It implies that the phase diagrams for maximal twist can be simply obtained from
those without twist. The situation is summarized in Fig. 4.3.

In the remainder of this subsection we keep w at one of the extremal values but allow
@ to take on nonextremal values. We recall that in the continuum, the phase diagram with
such parameters has no phase transitions. This turns out not to be the case when w’ # 0.
Examples of the results we find are shown in Fig. 4.4.

We begin with w = 0 and nonextremal ¢, and work in the w’ > 0 scenario. We find that
there is a first-order transition along a finite segment of the €, axis, across which § changes
discontinuously. The length of the segment depends on ¢. As ¢ approaches zero [in which
limit one obtains the phase diagram of Fig. 4.2(b)] the first-order segment asymptotes to

precisely the first order transition line shown in Fig. 4.2(b), with end points ngg = tw'.
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Figure 4.3: Schematic positions of phase boundaries for extremal choices of w and ¢ for

both w’ < 0 and w’ > 0 scenarios. Dashed lines indicate second order transitions, solid lines

indicate first-order transitions. Results for two of these parameter choices also appear in

Fig. 4.2.
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We stress again that, for non vanishing ¢, there are no regions of Aoki-Dashen phase. As
¢ increases, the first-order segment reduces in length, until, as ¢ — 7/2, it approaches the
width of the Aoki phase that appears at ¢ = 7/2, i.e. with end points ¢, = £2w’. [Recall
that the phase diagram at ¢ = 7/2 is given by Fig. 4.2(a) rotated by 90°; see also Fig. 4.3.]
The first-order segment at the halfway point, ¢ = 7 /4, is shown as the horizontal solid (red)
line in Fig. 4.4.

The length of the segment can be obtained analytically for all . To do so, one extremizes

the potential after setting m, = 0. The global minimum lies at

—€gsin g

sinf =

4.29
2(ce€2 cos? o —w')’ (429)

with the sign of cos@ undetermined. As one passes through the transition line (by varying
my), cos @ changes sign, indicating a first-order transition. Solving for the endpoints, where

cosf = £1, we find

—sin g + \/sin? ¢ + 16¢,u’ cos? ¢
4cy cos? o '

(4.30)

’éq| =

This gives the results quoted above in the limits ¢ — 0, 7/2.

The corresponding results for w’ < 0 can be obtained from those just described for w’ > 0
using the transformation of Eq. (4.28). In words, to obtain the phase diagram for ¢ =
and w' = w(, < 0, one takes the diagram with ¢ = 7/2 — ¢y and w’ = |wj| and rotates it by
90° counterclockwise. This implies that the first-order transition line is now vertical.

Similarly, one can obtain results for w = 7 /2 from those at w = 0 using the transformation
of Eq. (4.18). Specifically to obtain the phase diagram for ¢ = g at w = /2, one takes
that with ¢ = 7/2 — ¢y and w = 0 and reflects it in the m, = €, line. This implies that the
first order line is vertical for w’ > 0 and horizontal for w’ < 0. An example of this result (for
w' > 0) is shown by the vertical solid (purple) line in Fig. 4.4.

Since there are no second-order phase transitions, the pion masses are nonvanishing
throughout the phase plane, with the exception of the endpoint of the first-order transitions,

where the mass of the neutral pion vanishes.
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Figure 4.4: Phase diagram including discretization effects (with w’ > 0) for several values
of w and ¢. Solid lines are analytically determined first-order transition lines described in
the text. Points represent the location of the numerically determined first-order transition
lines. Dashed lines show the positions of the central second-order transition lines that arise
at extremal values of w and ¢ as shown in Fig. 4.3. These are included to set the scale, since

they depend on the values of w’ and ¢;. Results for w’ < 0 can be obtained from these using

the transformations of Eqgs. (4.19) and (4.28).
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4.2.4 Nonextremal w and ¢

Finally, we consider the most general choice of parameters: both w and ¢ nonextremal. Here,
in most cases, we have to proceed numerically, although we can check the results analytically
for the special case of w = ¢ = 7/4.

We have found in the previous subsection that, for extremal w but nonextremal ¢ there
is a first-order transition line of finite length that is oriented either horizontally or vertically.
For example, Fig. 4.4 shows that for ¢ = 7/4 and w’ > 0, the transition line is horizontal
at w = 0 and vertical at w = /2. It is not surprising, therefore, that for intermediate
values of w there is a first order transition line of finite length at an intermediate angle that
interpolates between the horizontal and vertical limits. Examples for several intermediate
values of w for ¢ = 7/4, /8 and 37/8 are shown in the figure. We observe that, aside from
the special case of w = ¢ = 7/4, the first order lines are “S-shaped” rather than straight.
We also observe an example of an overlapping transition line (though of different lengths)
for the parameter choices (w, ¢) = (7/8,7/4) and (7w /4,7/8). We have not understood this
overlapping analytically, and do not know if it is exact. Figure 4.4 also shows an example
of the application of the symmetry of Eq. (4.18), which implies that the transition lines
for parameters (w,y) = (7/8,7/8) and (37/8,37/8) should be related by reflection in the
diagonal m, = €, line.

For w = ¢ = 7/4, we know from the symmetry of Eq. (4.18) that the transition line must
be invariant under reflection in the m, = €, line. Thus it must either lie along this line or
be perpendicular to it, and in both cases it must be straight. It turns out that, for w’ > 0 it
lies along the diagonal, as shown in Fig. 4.4 by the solid (blue) line. Given this information,
it is straightforward to determine the end points analytically, and we find that they lie at

- :I:l — /1 — 16¢cpw’

My = €, =
q q 4Cl

(4.31)

We note the curious result that these points lie at the junction of the boundaries of the

Aoki-Dashen phases for extremal w and .
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4.3 DMaximal twist condition

The standard technique for tuning to maximal twist in the absence of isospin breaking is
to enforce the vanishing of the “PCAC mass”. This determines the critical value of the
untwisted component of the common quark mass. This critical value can then be used even
in the presence of isospin breaking due to quark masses, i.e. when the twisted components
of the up and down quark masses differ. This is no longer the case when electromagnetism is
included, because, as explained in the Introduction, the critical masses for the up and down
quarks differ. Setting the PCAC mass to zero is essentially a way of enforcing, in a particular
correlation function, the restoration of SU(2) flavor and parity symmetries at nonzero lattice
spacing. In the presence of electromagnetism, however, these symmetries are absent even in
the continuum limit, so it makes no sense to enforce them. Thus one must use alternative
methods to tune to maximal twist.

In Ch. 3, we analyze a method for carrying out the tuning in the presence of electromag-
netism, proposed in Ref. [23], This involves partial quenching, and our analysis is somewhat
involved, but the details do not matter here. Our key finding is that the method fails to
tune the untwisted components of the up and down quark masses to zero, as required for

maximal twist, but rather only enforces a condition on the condensate:
(B) = 0 — /2 o g =04 =7/2. (4.32)

In the first equality we are simply using the definition of the phase angle 0, given in Eq. (4.10),
together with the result that 7 points in the 73 direction. This implies that the total 73
rotation angle is #’ = 6 + w, which is set by the condition of Ref. [23] to 7/2.

The condition (4.32) is indeed consistent with the desired parameters, i.e. with w = 7/2
and ¢ = 0. To see this we note that, for these parameters, the phase diagrams are those of
Fig. 4.2 except that the w’ < 0 and w’ > 0 diagrams are interchanged.® Thus, as long as the

physical masses are such that one is in the unshaded region, i.e. as long as one avoids the

8This result is obtained by acting with the transformation (4.19) on the w = ¢ = 0 results that are
actually shown in the figure. See also also Fig. 4.3.
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Aoki-Dashen phases, one has that cosf = 1 and thus # = 0. This means that ¢/ = w = 7/2,
which satisfies Eq. (4.32).

However, there is in general a one-dimensional family of solutions to Eq. (4.32), all having
different values of w and ¢. One can understand this intuitively as follows. Nonvanishing
values of w and of ¢ both violate parity, and thus both lead to a nonzero twist of the
condensate, i.e. a nonzero value of #'. For any choice of ¢, the desired value ' = 7/2 can,
in general, be obtained by a suitable value of w. Thus there is a line in the w — ¢ plane
along which the condition is satisfied. In order to tune to the desired point on this line an
additional condition is needed.

It turns out to be easier to do the calculation using the parametrization of the mass matrix
given in Eq. (4.6). Here we fix the twisted components of the masses ji,, and jz4 (ultimately to

phys
d

their physical values, namely 2BymP"W* and 2Bym} ™", respectively) and vary the untwisted

ccmponents mY and m)’. This corresponds to what is done in actual simulations. The

w

condition of Eq. (4.32) then forces the theory to lie on a line in the m,

—m)Y plane. Our
aim is to determine this line and to find an additional condition that picks out the desired
point on the line, namely m = mY = 0.

u

In terms of the parametrization (4.6) the potential is

w sin @'

fiu — Jia =i o)
U .
+c | ——cosf — “Tdsm@’ + w' cos? 0.

In order for an extremum of this potential to lie at @ = 7/2, it is simple to show that the

untwisted masses must satisfy

@:_(1_0‘@“_%)) = (4.33)
my 1+ co(ftu — Ha) 7

i.e., the theory must lie along a straight line in the m!" —m/}" plane with slope s determined
by the physical masses and ¢, We can turn this into a constraint on w and ¢ by equating

the parametrizations of Eqs. (4.7) and (4.6). One finds )y = fiuqcot (w & ), so that the
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allowed values of w and ¢ satisfy
s [y cot (w4 ) = figcot (w — @) . (4.34)

Lines satisfying this equality are shown in Fig. 4.5. The desired point is at ¢ = 0, w = 7/2,

but, as claimed above, solutions exist for all values of .

w

n/\

N |

INE

a1
[ SE-

INE

/\

NIy

Figure 4.5: Values of w and ¢ for which §' = /2, using Ji, ~ 2BymP"™* and fig ~ ZBomZhys,

but with ¢, larger than the physical value so as to increase the curvature of the lines for the

sake of clarity.

The above considerations assume that the extrema at #' = 7/2 is a minimum of the
potential. This can be determined by examining either the second derivative of the potential
evaluated at the correct value of s and 6’ = 7/2 or, equivalently, by checking that the neutral

pion mass is nonnegative. The neutral pion mass along the line (4.33) is

~ ~ A A 2 AW AW 2
m2 :M—Qc@ (M" 5 'ud) +2¢, (w) —2uw'. (4.35)

2 2

The sum of the first two terms is positive for physical parameters (since this is just the

physical neutral pion mass-squared at this order in XP'T, and higher order corrections are
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small). The third term is always positive and vanishes only at the point of maximal twist
(as long as s # 1, which is the case for physical parameters). The last term can be negative
if w' > 0. Thus, if w’ takes a large enough positive value, it can be that the point we are
aiming to tune to does not lie at the minimum of the potential. This happens when the
physical point lies inside the Aoki-Dashen phase.

Assuming that this does not happen, we can ask what criterion can be used to tune
to maximal twist along the lines satisfying Eq. (4.32). The criterion proposed in Ch. 3 is
simply to minimize the neutral pion mass, Eq. (A.24), since, as already noted, this occurs

w W

when 7, = m,; = 0. One can also minimize the charged pion mass, the expression for

which is given in Ch. 3.

We close this section by making a connection with our results for the phase diagram for
general w and ¢, obtained in Sec. 4.2. In particular, we imagine that we have somehow tuned
close to maximal twist, but that there is a small offset. Specifically we fix w = 7/2 + ¢ and
¢ = ad with |§] < 1 and a ~ O(1). This differs from (and is less realistic than) our analysis
above where we fixed the twisted up and down masses. Nevertheless, this allows a valid
theoretical exercise: with w and ¢ fixed in this way, we determine the line in the m, — ¢,
plane that satisfies the tuning condition of Eq. (4.32).

Written in terms of the variables of Eq. (4.7), the tuning condition becomes
s(my + €;) cos(w + ) = (M, — &) cos(w — ¢), (4.36)

where we recall that s is given by Eq. (4.33). For our fixed values of w and ¢, this equation
can be converted into a result in the m, — €, plane, using an expansion in powers of 9:

- L — 2c4€q 9

=—é,—— + 0. 4.37
mq €q1—2Ong€Aq+ ( ) ( )
Examples of this result (for both signs of w’) are shown in Fig. 4.6 by the (green) solid lines.
As noted above, this result is only valid if the pion mass-squared of Eq. (A.24) is positive

or zero. Thus the line terminates at the point where m, o vanishes, which occurs only for

w' > 0.
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Figure 4.6: Applying the tuning condition at fixed w = 7/240.1 and ¢ = 0.05 for (a) w’ < 0
and (b) w’ > 0. The size of ¢, and w’ can be seen from the tick marks on the axes, which lie
at m, = +2w’ and é, = ++/[w'| /e, The solid (green) line shows the result of applying the
condition (4.32) as well as requiring that m2, > 0. (Red) points show the locations of the

numerically determined first-order transition lines.

Also shown in the figures are the positions of the first-order lines, which have been
determined numerically. We observe that, for w’ < 0, the line along which Eq. (4.32) holds
goes all the way to the origin, where it runs into the first-order line. By contrast, for w’ > 0
the endpoint of the tuned line is precisely the starting point of the first-order line. This is
reasonable since it is the only position in the phase diagram where a pion is massless. In any
case, we see that, even for nonextremal w and ¢, where there is only a first-order transition,

the condition (4.32) cannot be maintained all the way to the origin.

4.4 Conclusions

In this short note, we have determined the phase structure of lattice QCD in the presence
of isospin breaking and a nonvanishing value of ©qcp. This is, for the present, a theoretical

exercise, but one that was necessary in order to understand how to tune to maximal twist



104

in the presence of electromagnetism, an analysis that was completed in Ch. 3.

The results are also interesting in their own right. In particular, for generic (nonextremal)
values of the twist angle and ©qcp, the continuum theory has no phase structure, while the
lattice theory has a segment of first-order transition whose length is set by w’ and is thus of
O(a?).

We have kept in our analysis only the leading order terms arising from each type of
symmetry breaking. A quantitative analysis would require the inclusion of all other terms
of O(m?) as well as those proportional to ma. Based on our work in Ch. 2, however, we do

not expect these terms to lead to qualitative changes in the phase diagrams.
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Chapter 5

LATTICE INVESTIGATION OF INSTANTON EFFECTS IN
QCD

5.1 Introduction

While it has long been known that instantons play a role in QCD, leading effects due to a
single instanton are multiplied by a factor of 87 /¢°. While these can be significant at low
energies, where ¢ is large, perturbation theory in this regime is not trustworthy. At higher
energies, where perturbation theory does apply, g is small and instanton effects are exponen-
tially suppressed. In order to understand the effects of instantons, physicists often rely on
results from models such as the instanton liquid model [60]. Another approach, used in re-
cent work [25, 24] is to study Greens functions which maximally violate chirality. In massless
QCD, there are no perturbative chirality violating contributions and the only contributions
come from a non-zero instanton background. These Greens functions allow an analytic win-
dow into non-perturbative physics that can be checked against lattice calculations such as
those analyzed below in Sec. 5.2.

The remainder of this section will briefly summarize Ref. [25], introducing the chirality
violating Greens functions and explaining how they can be understood using the operator
product expansion (OPE). We will skip over many of the technical details in order to get to
the Greens functions that are important in physical QCD, where N, = Ny = 3, and can be

measured on the lattice using publicly available configurations.

5.1.1  Chirality Violating Greens Functions

To begin, consider an SU(V,) theory with N; light flavors, where Ny is sufficiently small

that the theory is asymptotically free. Generally a Dirac fermion can be decomposed into



106

left and right handed fields using the projectors introduced in Sec. 1.2

14+
1Y = (Pp + Pr)Y = Ppip + Prig, Prr= 275;(PL,R)2:1
1 = (P, + Pr) = xPy +;Pp, PLPpr=PrP,=0. (5.1)

Chirality preserving operators only have Wick contractions between left(right)-handed fermionic
fields and left(right)-handed anti-fermionic fields for each flavor. One example is the kinetic
term of the QCD Lagrangian, Eq. 1.43. Chirality violating operators can be constructed
out of a quark bilinear with zero or an even number of ~#s. The simplest example is
q(x)q(z) = Gr(x)qr(x) + G, (x)gr(z). Another chirality violating bilinear is the Pauli term,
q(z)o,, F* (x)q(x), where o, = %[W,%]. Using these elements, a gauge invariant Greens

I can be constructed. While these

function that vanishes in normal perturbation theory
operators vanish in normal perturbation theory, they will not vanish in the one instanton
background, due to instantons having chirality violating zero modes for each flavor. One

such example is the follwing two point function, where f is a flavor index,
A Ny
Gl,0) = <<H aqu@:)) II @9:0) > = (01(2)0x(0)) - (5.2)
/=1 f=A+1

This correlation function is singular and can be analyzed at small x using the standard OPE

with the form,
O1(2)05(0) & Y _ ()0, (0) . (5.3)

The coefficents, C,,, in the OPE can be written as a short distance expansion as long as the

theory is asymptotically free. The lowest dimension operator that contributes is the identity,

O1(x)O04(0) ~ Cy(z)1 + higher dimension . (5.4)

The coefficient, Cy(z), vanishes in normal perturbation and thus must be non-perturbative.

As discussed in Refs. [25, 24], its leading short-distance behavior is given by perturbation

!'Normal perturbation theory here means expanding about the S = 0, zero-instanton background
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theory about a single instanton background. The leading behavior of Cjy can be estimated

from dimensional analysis and the instanton factor to be
Co(x) ~ (Ax)Poz=3Ns (5.5)

where by = 3Ny + L (N. — Ny) and A is the scale of the theory. (Az)® is just the standard

instanton factor, e 87/9" as seen from the 1-loop solution to the beta function

2 -1
I _ (—E log(xA)) — (Az)bo = =87/
2

where the renormalization scale is taken to be pur = x71. It can be seen from Eq. 5.5 that
it Ny > N¢ there will be a singularity, if Ny < N¢ there will be no singularity, and in the
case relevant for QCD, Ny = N¢ there will be a logarithmic singularity. In the case of a
logarithmic singularity, a more careful analysis is required, as discussed in [25].

In order to avoid the issue of a logarithmic singularity in QCD with Ny = N¢ = 3,
it is useful to include insertions of Pp ro,, F'*, which, by power counting, will each bring
additional singular terms proportional to z=2. Specifically, the Greens function that we have

investigated on the lattice is
G(z,0) = (u(x) Pryrouw F™ (2)d(2)d(0) Pr/ro e 7 (0)s(0)8 Py ru(0)) - (5.6)

In order to maximally violate chirality, the projector P, or Pgr must be included explicitly.

This Greens function has the OPE

UPL RO F™ d(2)dPr ro e FP7 s5PL u(0) ~ cA%2~4(1 + klog(zp))1 (5.7)

+ kz~*O1(0) + higher dimension

where k is of order (g?/4m)/m and all three projectors are either P or Pg. The log(zpu)
term includes non-perturbative operator mixing with the full instanton ensemble and is not
calculable, but will not be more singular than the leading term. As long as x is small enough,
the terms proportional to k should be a small effect that can either be ignored or calculated

on the lattice and subtracted [24].
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The coefficient ¢ in Eq. 5.7 can be calculated in the instanton background, as shown
in [24]. In the MS scheme at order g2, the leading term of the Greens function Eq. 5.6 is
calculated to be

G(z,0) = —2.64 (j—Q) B Az~ (5.8)

T
In order to move to lattice simulation, there are lessons to be taken from this calculation
in regards to the required lattice spacing and quark masses. In order for the higher dimension
terms in the OPE proportional to & to be only a ~ 10% effect, x ~ 0.11fm. For the lattice,
this means an ideal lattice spacing a would be less than 0.11fm. As both in physical QCD
and on the lattice, quarks are massive, there are perturbative contributions to the Greens
function. The leading perturbative contribution to this Greens function behaves as

My, Mg

i) (5.9)

For reasonable quark masses, light quark (up and down) mass m, < 10MeV and strange
quark mass mg ~ 100MeV, the non-perturbative contribution to the Greens function is
dominant for z 2> (30A)™! ~ 0.02fm. The result of these constraints is a window 0.02fm <
x < 0.11fm that must be taken into account both when choosing a lattice spacing and when

analyzing the measurement of the correlation function on the lattice.
5.2 Simulation details and setup

5.2.1 Ensemble details and mass tuning

For this investigation, we used 440 configurations from a publicly available ensemble provided
by the MILC collaboration, described in Ref. [10]. The ensemble analyzed was generated
using the asqtad improved staggered action with 2+ 1 flavors. This ensemble has dimension
163 x 48, coupling constant § = g% = 6.572, light quark mass mya = 0.0097, strange
quark mass mga = 0.0484, and has the lattice spacing a ~ 0.14fm and pion mass in lattice

units mya = 0.2456. As mentioned in Sec. 5.1 this lattice spacing is larger than ideal.

a ~ 0.14fm ~ (1.4GeV)™! corresponds leading correction of terms with a factor of k, seen
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in Eq. 5.7, of ~ 20% [47]. Furthermore, any distance greater than ~ 4a will probe scales
near Aqcp, where the coupling diverges, and the perturbative expansion of Cj breaks down
entirely. For this reason and others, the following data should considered as a first study of
the Greens function in Eq. 5.8 in which several systematic errors are not yet controlled.
The calculation of the Greens functions and related quantities was done using the Wilson
action. This mixed action approach makes writing code and analysis simpler but explicitly
breaks chiral symmetry. This explicit breaking means that the quark masses are additively
renormalized and the mass parameter r; = (2(mya—+4))~" must be tuned. In this simulation,
the up and down quarks are degenerate so there are two values of x to tune: ky, the light
quark mass parameter, and kg, the strange quark mass parameter. Chiral perturbation
theory predicts that at leading order m2 o m, o 1/k — 1/Kei. By calculating m?2 at
a range of values of k, the desired k, and kg, as well as the point corresponding to zero
quark mass, K. can be determined. ky is found by tuning to the pion mass quoted by
MILC [10] mra = 0.2456. &, is found using the 7, method described in Ref. [20], where &
is tuned to the mass of the fictitious ns, which is a pion constructed using valence strange
quark fields with no quark-disconnected contractions included, rather than light quarks.
The mass of the 7, was found in Ref. [20] to be m,, = 685.8MeV which in our lattice
units is m,,a = 0.4866. The best fits to these meson masses were found to be x, = 0.1691
ks = 0.1658 with k.., = 0.1703 as seen in the plots of the zero spatial momentum pion
correlator, Fig. 5.1, and of pion mass squared versus k', Fig. 5.2. The lattice simulation
was performed using the Chroma software package, distributed by JLab [27]. The meson
correlator measurements were performed and parsed using the hadspec code provided by
Balint Joo in numerous tutorials. The correlators were measured using code written by

myself, using Chroma and QDP++’s built-in functions.

5.2.2 Variance Reduction

In measuring the operator Eq. 5.7, it would be optimal to measure it for all 163 x 48 choices

of origin, while calculating each propagator as precisely as possible. This is not practical
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Figure 5.1: Pion correlators at zero spatial momentum for a range of values of k, including

ke = 0.1691 and ks = 0.1658. The right-hand plot is on a log scale.

from a computational perspective and it would also be excessive, as measurements on an
overlapping space-time volume are expected to be highly correlated. In order to obtain
precise measurements of the operator for each configuration, while keeping computational
costs reasonable, we the variance reduction method suggested in Ref. [13].

The method in Ref. [13] works as follows. Assume there is an observable, O, that can

accurately be measured on an ensemble of configurations to obtain an expectation value,

Nconf
1
(0) = O +0 | ——u (5.10)
Nconf ; \/ Nconf

Then a secondary measurement can be constructed, OP* which obeys three criteria. First,

it must be highly correlated with O,

appxr
(a0A0) ~1, AX=X-(X). (5.11)

r = Corr(O, 0"P") = V{((AO)2) ((AOapr=)?2) -

Second, the computational cost to compute to OP* should be significantly less than to
compute O. Lastly, O%P* must be invariant (or covariant) under a lattice symmetry trans-
formation, i.e. after transforming OP?* by some group element g € GG, where G is the group

of lattice symmetries: translations, rotations, etc., (O%P*) = (OP=9)  If these conditions



111

2 2
gré’fa 1/ Kepit 1/ kg 1/ks

0.5]
0.4f
0.3}
0.2}

0.1r . . o

Figure 5.2: Pion mass squared versus k! showing x, = 0.1691, x, = 0.1658 and
Kerit = 0.1703. Error bars represent the standard error of the fit used in in determining

pion masses.

hold, it is practical to measure an improved observable O which is defined as,
. 1
O"? =0 — 0" + — OPPeg 5.12
ey 512
geG
where N is the number of group transformations used. If these conditions hold, the statis-

tical error of (O") is smaller than that of (O"),

1
ClTiymp = err\/Q(l —r)+ N (5.13)
¢

For our simulation, we were inspired by the truncated solver method [6]. We used O“P*

which is the same operator as O, namely the operator in Eq. 5.7, symmetrized under parity,

O(x,0) = uPL0,, F* d(2)dPLo e F*° s3PLu(0) +UPgo,, F* d(2)dPro e F*° s5Pru(0) (5.14)

but allowing a much larger residual in the conjugate gradient solver when calculating the

propagators for O“PP*. The computationally costly measurements, O, were performed using
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Figure 5.3: Measurement of Eq. 5.14. The right-hand plot of the correlator shows a magnified

version of the same data.

a conjugate gradient residual of 1072 whereas the computationally cheaper measurements,
O%r* used a residual of 1072, The cheaper measurement took approximately 60 times less
time to calculate. To ensure that the costly and cheap measurements were highly correlated,
the correlation of the two sets of data was calculated for 3 configurations for each correla-
tion function measured and found to have an average value of r = 0.972 . The symmetry
transformation exploited was just that of translational symmetry on a given configuration.
For each configuration, O was measured with one origin, while O%P* was measured 48 times

with the origin placed at equally spaced nodes on a 2% x 6 grid.
5.3 DMeasurement of non-perturbative Greens functions

Our preliminary measurement of the operator Eq. 5.14, seen in Fig. 5.3 did not have a good
fit to the form 1/z* (fit not shown). This suggests that the measurement is dominated by
long distance effects. Generically (O(z,0)) is expected to have the form,

2

—6
(O(z,0)) = —2.64 <i—) Az~ + Long distance effects + O(m,mgms) (5.15)
7r

We expect that the long distance effects are dominated by contributions from hadronic

states, specifically the scalar and psuedoscalar mesons, also known as the ay and the pion.
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To see this, we expand the projectors in Eq. 5.14 to obtain four separate terms, comprising

a “pion-like” operator and an “ag-like” operator,

O =uPpo,, F"d(x)dPLo . F* s5Pu(0) + UPro,, F*" d(2)d Pro » F*° s3Pru(0)

) ~ _
=1 (W0 F* d(x)do e FP7 s5u(0) + U0, F* d(x)dy50 e FP7 s575u(0)

+ ﬂ%UWF“”d(x)a%apon"sEu(O) + ﬂ%JWF“”d(x)aaponosg%u(O))

1
=1 (O™ + O™) (5.16)
(OA :ﬂau,,F"”d(x)aapan"SEu(O) + HUWF“”d(:E)a'yg)apgFp"s§'y5u(0) (5.17)
O™ =50, F" d(x)dys0 0 F?7 s5u(0) + Wy50,, F* d(2)do e P s375u(0) . (5.18)

We propose that O% will be agp-like under the assumption that the strange quark loop, s3,
will be dominated by the identity component in Dirac space, resulting in a measurement
similar to an ag correlator, (ud(x)du(0)). Similarly, we propose that O™ will be pion-like,
resulting in a measurement similar to a pion correlator, (@ysd(z)dysu(0)). This assumption
can be tested by comparing the measurement of each part of O% and O7. If they are
highly correlated it suggests whether or not 75 is inserted between 5 and u does not have
much effect on the correlator. Using this approach we will subtract the ag and pion scalar
propagator from the measurement of O% and OT repectively before combining them with

intent of extracting the 1/2* behavior seen in Eq. 5.8.

5.3.1 aqg Correlator

Before fitting O% and O7, it is good to know what m,a and m,,a are for k, = 0.1691 so it
can be determined whether O and O™ are ay and pion-like. m, was already determined
above, as shown in Fig. 5.1, to be m,a = 0.252 in lattice units. The determination of m,,a
is slightly more difficult. In the right-hand plot of Fig. 5.4 we see that at light masses,
the ag correlator is noisy and potentially has a “bump” where the correlator has the wrong
sign. A similar bump is seen for the lighter quark mass aqy correlators in Ref. [44] where it

is attributed to a n'mw ghost state due to quenching. As we are using a mixed action, with
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Figure 5.4: ag correlators at zero spatial momentum for a range of values of k. The left-hand

plot shows heavier values of , the right shows lighter values, including including x, = 0.1691.

staggered sea quarks and Wilson valence quarks, it would not be surprising if there are some
artifacts related to partial quenching. To estimate m,,a, the correct sign points for the four
smaller values of k were fit to an exponential, seen in Fig. 5.4 and 5.5. The square of the
resulting masses were plotted against 1/k and extrapolated to 1/k, = 1/0.1691, as seen in
Fig. 5.6. This resulted in an estimate of m,,a = 0.98540.065 where the errors only represent
the mean prediction bands of the linear fit at 68.27% confidence and do not take into account
possible deviation from a linear relation between m?2 and 1/x or systematic effects on the

value of the mass at larger values of 1/x.

5.3.2 O™ Correlator

In measuring both O™ and 0%, measurements at points related by lattice symmetries, reflec-
tions about each space-time direction and rotations in space, were averaged over. In order
to reduce discretization effects only points which are not along the axes of the lattice, such
as (1,0,0,0),(0,5,0,0) are included. The measurement of the two terms which make up
O™, seen in Eq. 5.18, were found to be nearly identical. The correlation of the measurement
of each term on a given configuration, averaged over all configurations is 0.9997 and were

found to have the same fit parameters for all fits attempted. Initial fits of the tail of the
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Figure 5.5: aq correlators for heavier values of k, on a negative log scale with a fit to points

shown.

correlator, 5.5 < |z|/a < 10, to the form of a scalar propagator resulted in a mass which
was significantly less than the pion mass. Suspecting that this is due to the pion being a
long lived state and noting that the region 5.5 < |z|/a < 10 includes distances large relative
to the lattice size in the spatial direction, L = 16, the correlator was fit to a sum of scalar

propagators, including the 26 nearest spatial images,

2l T o= il

Timg € (£L,0,0,0), (0,£L,0,0), (L, £L,0,0), (+L,0 F L,0), (L, TL, +L,0)...

where K is the modified bessel function of the first kind. Fitting to the tail resulted in the
fit parameters summarized in Table 5.1 which includes a mass of m = 0.250 which is close to
the pion mass m,a = 0.252. Points generated using the fit of the form Eq. 5.19 using these
fit parameters are shown in Fig. 5.7. While this is a good fit for the tail of the measurement,

it is a poor fit for the early points due to excited pion states. To also include the first excited
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Figure 5.6: ay mass squared versus s !.

the linear fit at 68.27% confidence. The dashed line indicates 1/k, = 1/0.1691. Error bars

Shaded region shows mean prediction bands of

represent standard error of fit in determining ay masses.
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Figure 5.7: Tail of measurement of O™ versus |z|/a. Left-hand plot shows points with errors,

the right-hand plot shows data points in light blue along with points generated by the fit

function, Eq. 5.19, using parameters found in Table 5.1.
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Table 5.1: Fit parameters for tail of O™ correlator

Estimate | Standard Error

a | 0.02672 | 0.00015
m | 0.25001 | 0.00048

Table 5.2: Fit parameters for O™ correlator

Estimate | Standard Error

a | 0.026849 | 0.000076
b | 2.451 0.080
| 1.605 0.015

pion state we have fit to the range 0 < |x|/a < 10 using the form,

K,(0.25001|x]) K71(0.25001 |2 — Zimg|)
Cr)=a z] +Z 7 — Zomg]
Timg
K K — Lim,
o [ Kaldsh) | 5~ Fiuke = simg) (5.20)

] | = Timg|

Timg

The fit parameters are summarized in Table 5.2. Points generated using the fit of the form
Eq. 5.19 using these fit parameters are shown in Fig. 5.8. The last step is to subtract this
fit from the correlator and look at the remainder, shown in Fig. 5.9. It appears that points
with |z|/a < 2.5 are indistinguishable from noise, leaving a very small number of points to

analyze when combined with the O% measurement.

5.3.83 O Correlator

Just as with O™, the results for the two terms that make up O, seen in Eq. 5.17, were

found to be nearly identical. The correlation of the measurement of each term on a given
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Figure 5.8: Measurement of O™ versus |z|/a on a log scale. Left-hand plot shows results

with errors, right-hand plot shows results (without errors)along with the corresponding fit

points generated from Eq. 5.20 using parameters found in Table 5.1.

(O™ (x,0)) — Co=(x)
0.010}

0.005F

-0.005F

-0.0101

-0.015} 1

- |z]/a

{O7(x,0)) — Co=(x)

0.004

0.002}

-0.002}

-0.004%

i
} i L"iﬂ‘kﬂ*ﬁ'-s - - \x|/a

Figure 5.9: Remainder of the measurement of O™ versus |z|/a after subtracting Eq. 5.19

using parameters found in Table 5.2. The right-hand plot shows a magnified version of the

same data. Error bars come from averaging over configurations and not taking into account

any error on the fit.

configuration, averaged over all configurations is 0.9995 and the fit parameters were identical

for all fits attempted. As seen above for the ag correlator at xk, = 0.1691, the O correlator

changes sign, as seen in Fig. 5.10. Changing sign suggests, as it did for the aq correlator, that
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Figure 5.10: Measurement of O% versus |z|/a. The right-hand plot shows a magnified

version of the same data

the measurement may be contaminated by the effects of using a mixed action 2. We have
fit the data in the range 2 < |x|/a < 6, after which the majority of the points have changed
sign and fitting to a strictly positive function will not yield a good fit, and before there is
expected to be contamination from excited states. Asin the O™ case, the correlator was fit to
a sum of scalar propagators, including the 26 nearest spatial images, shown in Eq. 5.19. The
fit parameters are shown in Table 5.3 with the fit shown in Fig. 5.11. The mass parameter
was found to be m = 1.391 which is significantly larger than than the estimated ay mass,
mg,a = 0.985. This can be taken either as an indication that the extrapolation shown in
Fig. 5.6 was not justified or a more careful fit, like the one used for O™ in Eq. 5.20 including
exciting states, is needed. Unfortunately, since the tail of the correlator has the wrong sign,

it is not feasible to fit to an additional propagator in the limited allowed range.

Subtracting the fit from the O measurement is shown in Fig. 5.12. Like with O™, the

resulting data looks rather noisy, such that it seem unlikely that the combination of O™ and

2The connection of the sign change to the effects of partial quenching is not so theoretically clear cut
here as in the ag correlator discussed above. This is because the operators used to create and destroy the
states are not hermitian conjugates, and thus the contribution from all states does not need to have the
same sign. However, in the approximation that ss can be replaced by the identity element, the connection
between sign-change and partial quenching is appropriate.
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Table 5.3: Fit parameters for O% correlator

Estimate | Standard Error
a | -0.781 0.048
m | 1.258 0.017
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Figure 5.11: Measurement of O% versus |z|/a with fit to Eq. 5.19 using parameters in
Table 5.3. The right-hand plot shows a magnified version of the same data. Error bars are

not shown to improve visibility.

O% will reproduce the 1/z* behavior seen in Eq. 5.8.

5.8.4 Full O = (O™ + O™) Correlator

The full correlator, O = 1 (O™ + O™) of Eq. 5.14 leads to the result in Fig. 5.3. Subtracting
both the fit from the O™ and O measurements is shown in Fig. 5.13. As expected from
the subtractions in the O™ and O, seen in Fig. 5.9 and Fig. 5.12, the remaining data is too
noisy to hope to see the 1/z* behavior of Eq. 5.8, as there are only three data points before

the data changes sign.
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using parameters found in Table 5.1. The right-hand plot shows a magnified version of the
same data. Error bars come from averaging over configurations and not taking into account
any error on the fit.
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subtracting 1/4 multiplied by Eq. 5.19 using the parameters found in Table 5.2 and
Table 5.3. Error bars come from averaging over configurations and not taking into account

any error on the fit.
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5.4 Conclusions and future directions

Ultimately, the remainder of the results for the correlator Eq. 5.14 after subtracting the ag
and pion states was too noisy to see if the expected 1/z* behavior of the Greens function
Eq. 5.8 exists. We believe, however, that the strategy we have used, i.e. breaking the Greens
function into ag and pion-like components, is a good approach. We suspect that the largest
systematic issues with our simulation were using a mixed action which did not preserve chiral
symmetry and using too large of a lattice spacing. The first issue can be addressed by using
both a sea and valence action which preserves chiral symmetry, such as domain wall fermions.
The second issue can be addressed by using configurations with a smaller lattice spacing.
Both of these solutions present challenges, as both require greater computational resources.
It is possible that this increased computational cost can be somewhat mitigated by using
somewhat heavier quark masses. As discussed in Sec. 5.1, the leading perturbative correction
due to explicit breaking of chiral symmetry by quark masses is proportional to m,mgm,/z',
seen in Eq. 5.9. There is trade-off between using a smaller spacing versus using heavier quark
masses that can be investigated and it is possible that this leading perturbative correction
could be included in a fit to the remainder of the measurement of the operator Eq. 5.14.
While it may be computationally difficult, we believe it is worthwhile to continue to pursue
this line of investigation, as can help open a portal into measuring instanton effects directly

on the lattice.
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Chapter 6
CONCLUSION

In chapters 2 through 4 of this thesis we have shown how the phase diagram of LQCD
is effected by the inclusion of non-degenerate light quark masses and electromagnetism both
with and without twisting. Also included was some clarification about how twisting must
be performed in the case with electromagnetism. These results are increasingly relevant as
lattice practitioners strive for sub-percent level accuracy by working in the Aoki regime with
all isospin breaking effects. This is even more true for collaborations which use twisted mass
fermions where the process of tuning to maximal twist becomes more complicated when both
non-degenerate light quark masses and electromagnetic effects are taken into account. The
work presented above points out some of the potential pitfalls and offers potential solutions
for future simulations.

In chapter 5 we have made a first attempt at directly measuring instanton effects in
chirality violating Greens functions. A successful measurement of such an operator could
confirm recent work in Ref. [24], opening a new window into studying instantons analytically.
While our work did not produce useful results, we have elucidated some of the possible issues
in such a measurement and have introduced a procedure which can be used in future, more
resource intensive calculation.

The two topics described in this thesis are related by their connection to chiral symmetry
breaking in LQCD. The first study was an analytic investigation and the later a primarily
computational one. While mostly unrelated to each other, we believe both studies have
helped shine light on aspects of chiral symmetry breaking on the lattice, an increasingly

relevant topic in the modern frontier of highly accurate LQCD research.
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Appendix A
APPENDIX TO CHAPTER 3

A.1 Relating lattice masses to those in XPT

In this appendix we describe how bare lattice masses used in simulations with Wilson-like
fermions are related to the masses m, and m, appearing in XPT (contained in the mass
matrix M). This discussion draws heavily from the results of Ref. [12]. We do not consider
the impact of electromagnetism here; this is discussed in the subsequent appendix.

We must assume that the number of dynamical quarks in the underlying simulations is
Ny = 3 (up, down and strange) or Ny = 4 (adding charm). Working with up and down
quarks alone turns out not to be sufficient, but in any case this is not the physical theory.
We must also have that amy <1 for all flavors f, so that an expansion in these quantities
makes sense. This condition is met by state-of-the-art simulations. Note that this condition
is much weaker than the requirement that the quarks are light in the sense of XPT, which is
ms < Aqep. In the main text, we assume the latter condition holds only for up and down
quarks.

Let mg ¢ be the bare dimensionless lattice mass for flavor f (i.e. the mass appearing in the
lattice action). Because of the additive renormalization induced by explicit chiral symmetry

breaking, unrenormalized quark masses are given by

iy = o =T (A1)

a

where m,, is the (dimensionless) critical mass for the given number of dynamical flavors.

Methods to determine m,, are described below. Then, as shown in Ref. [12], renormalized
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masses are given by!

Zf mf
Ny

my = Ly, |mys+ (rp — 1) + O(am?)| . (A.2)

Here Z,, is the renormalization constant for flavor nonsinglet mass combinations such as
€g = (my—mg)/2, while Z,,r,, is the corresponding constant for the average quark mass.
Tm — 1 is a finite constant, arising first at O(g*) in perturbation theory. By implementing
continuum Ward-Takahashi identities, one can determine 7, nonperturbatively for Ny = 3
and 4, although not for Ny = 2 [12]. This is the reason for the restriction on Ny noted above.
We assume here that r,, has been calculated in this way.

Equation (A.2) shows that the renormalized mass m; does not vanish when m; = 0 if

other flavors are massive. Specifically, for the up and down quarks we have

1+r, -

My +mg = Zy, (My + My)
m_1 ~ ~
4 2 T (g - Tien) | (A.3)
my, — Mg = Zm(ﬁ’bu — ﬁ’Ld) . (A4)

(Here we we have chosen Ny = 4 for definiteness; the result for Ny = 3 is similar.) Thus
the two-flavor massless point receives an overall additive shift due to the strange and charm
quarks, and we also see explicitly the difference between singlet and nonsinglet renormaliza-
tions.

These results imply that, in terms of unrenormalized masses, the phase diagrams of
Fig. 3.1 would be translated in the vertical direction (due to the additive mass shift) and
stretched by different factors in the vertical and horizontal directions. The respective stretch
factors are BoZ,,(1 + rp)/2 and ByZ,,. If, however, r,, is known, then the two stretch
factors can be made equal by applying a finite renormalization to remove the (1 + r,,)/2

factor. Knowledge of Z,, is, however, not useful, since it always appears multiplied by the

unknown LEC B,.

!The correction terms of O(am?) in (A.2) are subleading in our power-counting and will be dropped
henceforth.
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We would like to be able to remove the additive mass shift in Eq. (A.3). To do so we
consider how the critical mass m,, is determined. The expressions above assume that it has
been obtained by doing simulations with Ny degenerate quarks of mass m, and equating m,
to the value of m at which the “PCAC mass” vanishes. This is equivalent to imposing

(0@ dl0)| =0, (A.5)

m=mecr

If, instead, one imposes this condition by varying m = m, = myg, with m, and m,;, held fixed
at their physical values, then the m,.,. so obtained automatically includes the shift due to
loops of strange and charm quarks. This is because one is enforcing a consequence of chiral
symmetry in the two-flavor subsector. With this new choice of m,,., and with the adjustment
of stretch factors described above, the phase diagrams of Fig. 3.1 apply directly for lattice
masses 1.

This new choice of m,, has a second advantage: it removes an additional shift of O(a)
in the relation between bare quark masses and the masses appearing in XPT. As explained
in Ref. [56], this shift is caused by the O(a) clover term in the Symanzik effective action
(and is thus absent for nonperturbatively improved Wilson fermions). In the main text it is
assumed that this shift has been removed.

Since we include O(a?) terms in the main text, we must determine how they impact the
considerations above. There is no further shift in the quark masses at this order—this next
occurs at O(a®) [53]. However, as illustrated by Fig. 3.1, the O(a?) terms do impact the
phase diagram. This means that, in general, one cannot use the vanishing of the PCAC mass
to determine m,, with untwisted Wilson fermions. For example, if one is in the first-order
scenario [Fig. 3.1(b) along the m, axis|, then the PCAC mass simply does not vanish for
any m,. Instead, one must introduce a twisted component to the mass, pt ~ O(a), and then
enforce the vanishing of the PCAC mass (in the so-called “twisted basis”). Extrapolating the
result linearly to u = 0 yields a result for m,, that has errors of O(a?), which is sufficiently
accurate for our analysis. For a detailed discussion of this point see Ref. [53].

In summary, by determining r,, from Ward identities, and the critical mass from the
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PCAC mass condition with twisted-mass quarks, one can obtain lattice quark masses which

are proportional to those appearing in XPT at the order we work. Specifically, we find

m I4rm, . €, .
BOqu = (M, +mg) and BOqu = (M —"M4) , (A.6)

where m, and €, are the quantities appearing in the chiral potential of Eq. (3.5).

This analysis can be straightforwardly extended to arbitrary twist. We begin with max-
imal twist, for which the mass matrix in XPT is given by Eq. (3.28), and the relevant bare
masses are i and 7y of Eq. (3.24). In this case there is no additive renormalization, but
the presence of different renormalization factors for singlet and nonsinglet masses remains.

Using the results of Ref. [12], we find?

T/T\Lq Zs 14+rp /E\q g
5 d = 2. A7
BoZ,,  Zp rp 0 M Bz Tz M (A7)

Here Zs/Zp and rp are finite constants, both of which can be determined from Ward identi-
ties for Ny = 3 and 4, but not for Ny = 2 [12]. Like r,,, 7p begins at O(g*) in perturbation
theory.

At arbitrary twist one has four bare masses, and they are related to the corresponding
four renormalized masses using the same renormalization factors as given in Egs. (A.6) and
(A.7).

Finally, we stress that the analysis presented here does not include electromagnetic ef-
fects. The dominant such effect is that the critical mass m.. has to be chosen differently for
the up and down quarks, and is discussed in the following appendix. A subdominant, but
still important, effect is that the renormalization factors now depend not only on ag but
also on agy. The latter dependence can presumably be adequately captured using pertur-
bation theory. The formulae given above still hold if one uses the new critical masses and

renormalization factors.

2Specifically, we have used Z,,, = 1/Zg and r,,, = 1/rg.
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A.2 Determining the critical masses in the presence of electromagnetism

The analysis of the previous appendix must be extended when electromagnetism is included,
due to the presence of charge-dependent self energy corrections proportional to agy/a. This
implies that the critical masses for up and down quarks differ, and we label them m,,, and
Mera, Tespectively. In Ref. [23] two methods for a nonperturbative determination of these
critical masses are proposed. One of these (the method used in practice in Ref. [23]) involves
only up and down quarks, and thus can be implemented, and therefore checked, within SU(2)
WXPT. We do so in this appendix, finding that the method does not fix both critical masses,
but rather constrains them to lie in a one-dimensional subspace of the m,,—m..q plane.
We then provide an additional condition that does completely determine mg,,, and mc, 4.
The tuning conditions require the use of twisted-mass quarks, although the resulting
values of m,,, and m..4 apply for both Wilson and twisted-mass quarks. Thus the lattice
quark Lagrangian is given by Eq. (3.24). We can write the mass matrix in two useful forms

. . Mo + 1Y5M0,u 0
Mo + T3€p + 1Y5T3o + 17570 = . (A.8)

0 Mo,d — 1Y5M0,d

The tuning proceeds by first choosing bare twisted masses (9, and fi 4 such that, when mul-
tiplicatively renormalized as described in the previous appendix, they give rise, respectively,

to the desired physical up and down quark masses.?

The negative sign multiplying 14 is
chosen to correspond to a 73 twist. The second step is to tune the untwisted masses mg,
and mgq to their critical values such that the (additively) renormalized untwisted masses
vanish.

The method of determining m,., used in the previous section is no longer useful-—the van-
ishing of the PCAC mass is a condition based on the recovery of the chiral SU(2) group, but
this group is explicitly broken by electromagnetism. The workaround proposed in Ref. [23]

is to add to the sea quarks (labeled ug and dg) a pair of valence quarks, uy and dy, each

3In fact, the tuning can be done using any values of the twisted masses which respect our power counting.
The critical masses do not depend on the twisted masses at the order we work.
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of which has the same charge and untwisted mass as the corresponding sea quark, but has
opposite twisted mass.* Thus (ug,uy) and (dy, dg) each form a twisted pair. The key point
is that, within each pair, the O(agm/a) shift in the untwisted mass is common. Therefore it
is plausible that one can determine the critical mass for each pair by enforcing the recovery
of the corresponding valence-sea chiral SU(2). Specifically, m.;,, is determined by

(miv|Ou(as 1500 10) =0, (A.9)

mo,u=Mcr,u

while mg, ¢ is determined by the analogous condition with u — d:
(wrloudsyasd)O)| =0, (A10)

Here 7%, and 7, are sea-valence pions composed, respectively, of up and down quarks.

When using a partially quenched theory, one also needs to add ghost fields, 4y and dy,
to cancel the valence quark determinants.® Thus the full softly-broken chiral symmetry is
the graded group SU(4|2) x SU(4|2)g. This raises the question of whether complications
arising from partial quenching, or from discretization effects, can lead to corrections to the
tuning criteria of Egs. (A.9) and (A.10). This is one of the issues we address here by mapping
these conditions into XPT.

We begin by mapping the mass matrix in the unquenched sector into XPT. The four
parameters of Eq. (A.8) map into

Ty e 0 My + €,)e'@t¥) 0
X = ] = (Mg + ) | . (A.11)
0 rigeied 0 (g — &,)ell=+9)

The choice of sign for wy is such that it is positive with a 73 twist. y contains the additional

parameter ¢ compared to the mass matrix analyzed in the main text, Eq. (3.27). ¢ is a

4This description is equivalent to that of Ref. [23], but differs technically in two ways. First, we find that

one need only introduce two valence quarks to describe the method, rather than the four used in Ref. [23].
This does not impact the method itself, only its description. Second, we work in the twisted basis, rather
than the physical basis used in Ref. [23].

SFor reviews of partially quenched theories and the corresponding XPT, see Refs. [59, 33].
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measure of the difference between up and down twist angles,
Wy =W+ ¢, Wig=w—¢. (A.12)

As discussed in Sec. 3.5, such a difference corresponds to the introduction of a nonzero
fqop—the explicit relation is ¢ = Ogcp/2.

We note that the relations between the bare masses of Eq. (A.8) and the parameters of
in Eq. (A.11)—which can be worked out along the lines of the previous appendix—are not
needed here. All we need to know is that, if mg, = mer, and moqg = Mmerq, then both up
and down masses are fully twisted. Thus the twist angles in x are w, = wg = /2, implying
maximal twist with no fqcp term: w = 7/2 and ¢ = 0. Reaching this point in parameter
space is the aim of tuning.

When considering the PQ extension of this theory, we will focus mainly on the quark
sector, since the ghosts do not play a significant role. Collecting the four quark fields in the

order

7W/JIIQ = (u37 uy,dy, dS) ) (Al?))

the extended quark mass matrix is

My + €,)enT 0
0 (- e

The factors of 73 arise because, by construction, valence quarks have opposite twisted masses
to the corresponding sea quarks. We stress that the O(agm/a) shifts are incorporated into
the parameters m, and €,, along with the usual O(1/a) shifts. We can also include the O(a)
shifts in the same fashion.

To implement the conditions (A.9) and (A.10) in the PQ theory, we need the extension
of ¥ to this theory. This is a 6 X 6 matrix transforming in the usual way under SU(4|2); x
SU(4]2)g. In fact, as we only need matrix elements for states composed of quarks, and since
we know from Ref. [7] that there are no quark-ghost condensates, we can focus on the 4 x 4

quark sub-block, which we call Xpg. We now argue that the expectation value of ¥pg has
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the form

(Spo) = diag(e”, e, e, e7). (A.15)

This is based on the following results. First, the unquenched 2 x 2 block of Xpg (i.e.
that involving the first and last rows and columns) is just the unquenched ¥ field. This is
unaffected by partial quenching [54, 55|, and its expectation value is given by an unquenched
XPT calculation. This calculation must include not only nondegeneracy, electromagnetism
and twist, but also nonvanishing 6gcp. To our knowledge such an analysis has not previously
been done, so we carry it out in Chapter 4.The result is that the unquenched condensate (¥)
only rotates in the 73 direction—there are no off-diagonal condensates such as (ugdg). This
fixes the first and last entries in Eq. (A.15) to have opposite phase angles.

This is an important result for the following, so we emphasize its key features. Although
fqcp # 0 leads to an overall phase in the mass matrix [’ in Eq. (A.11)], its effect on the
condensate (X) is qualitatively similar to that of a twist w, despite the fact that the latter
leads to opposite phases on v and d quarks. This happens because ¥ is constrained to lie in
SU(2), and so has no way to break parity other than rotating in the 73 direction. An overall
phase rotation would take it out of SU(2) into the U(2) manifold.

The second result needed to obtain Eq. (A.15) is the existence of relations between valence

and sea-quark condensates. In particular, one can show that

<ﬂvUV> = <ﬂ5Us> and <ﬂvv5uv> = —<1_/J5"}/5US>, (A16)

to all orders in the hopping parameter expansion. The minus sign in the second relation
follows from the opposite twisted mass of sea and valence quarks. The result (A.16) holds
on each configuration and thus also for the ensemble average, even though the measure
is complex for fgcp # 0. Since the additive and multiplicative renormalizations of these
condensates are the same for valence and sea quarks, the result (A.16) implies that valence
and sea up-quark condensates have opposite “twists”, e*®. The same argument applies to
the down-quark condensates, and taken together these arguments determine the form of the

second and third diagonal elements in Eq. (A.15).
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The final result needed to obtain the form (A.15) is the vanishing of off-diagonal con-
densates involving one or more valence quarks, e.g. (uydy) and (uyds). These differ from
the diagonal condensates in that there is no mass term in the quark-level Lagrangian that
can serve as a source for such condensates. Thus to determine whether they are nonzero
one must add a source, e.g. Adyuy, calculate the resulting condensate, send the volume
to infinity, and finally send the parameter A — 0. This analysis has been carried out in
Appendix A of Ref. [36] in a theory with twisted-mass quarks, although, unlike our situation,
the quarks were degenerate and fqcp = 0. The general lessons from Ref. [36] are (i) that
to obtain a nonvanishing condensate one needs a source of infrared divergence to cancel the
overall factor of A, and (ii) that nonvanishing twisted masses cut off such divergences. These
lessons apply also for all the off-diagonal condensates that we consider here. However, the
argument as given in Ref. [36] assumes that the measure is real and positive, which does not
hold here. Nevertheless, since we are tuning to qcp = 0, we expect the impact of having a
complex measure to be small. Furthermore, we know from Chapter 3that the corresponding
sea quark condensates, e.g. (ugdg) and (ugysds), vanish even when fqcp # 0. These con-
densates differ from those containing valence quarks only by changing the signs of some of
the twisted masses. Since it is the presence of these masses, and not their detailed properties,
that leads to the vanishing of the condensate, we expect the result holds for all off-diagonal
condensates.

With the form (A.15) in hand, we can now apply the tuning conditions (A.9) and (A.10) in
XPT. We do so by generalizing the analysis of Ref. [58], where the twist angle for unquenched
twisted-mass fermions was determined in XPT by applying a PCAC-like condition. The
required extension is from the SU(2) sea-quark sector alone to the full valence-sea SU(4)
symmetry. Much of the analysis carries over with minimal changes from Ref. [58], so we only
sketch the calculation.

The first step is to obtain the pion fields that couple to external particles in the tuning
conditions. Following Ref. [58], we obtain these by expanding the chiral field about its
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vacuum value as

Spo = Epe ™ Epq (A.17)
15

=) mha, (A.18)
a=1

Epo = /<2PQ> — diag(e/2, e=10/2 ¢i0/2 ¢=0/2) (A.19)

Here )\, are the generators of SU(4), with 7, the corresponding pion fields. These are the
pions in the PQ theory that are composed of quarks alone, with no ghost component.® The
pions needed for tuning, 7%, and 7%, are contained in the upper and lower diagonal 2 x 2
blocks of II, respectively.

The next step is to determine the form, in XPT, of the axial currents appearing in
the tuning conditions. These can be obtained by introducing sources into derivatives using
standard methodology. Since, by definition, our chiral potential does not contain derivatives,
at LO™ only the LO kinetic term [shown in Eq. (3.2)] enters into the determination of the
currents. We do not display the form of the currents, however, as the calculation needed for
each of the tuning conditions is ezactly the same as that carried out in Ref. [58]. This is
because each tuning condition involves a separate, nonoverlapping SU(2) subgroup of SU(4)
(upper-left or lower-right 2 x 2 block), and because the condensate (A.15) does not connect

these subgroups. We simply quote the results of the calculation:
(m§v[0u(tsyuysur)[0) o< cos b (A.20)
(7210,(dsv,v5dy)|0) o cos . (A.21)
Thus enforcing either (A.9) or (A.10) has the effect of setting § = +7/2 and the condensate
to
(Xpg) = tdiag(i, —i,, —1i), (A.22)
For our choices of signs of the twisted masses (1, and 94 in Eq. (A.8), the £ signs are in

fact plusses, i.e. 0 = 7/2.

6A similar form to Eq. (A.19) holds for the full 6 x 6 PQ chiral field, but we can focus on the SU(4)
block, since the pions we leave out in this way are those containing one or more ghost fields.
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A surprising aspect of this result is that the two tuning conditions are not independent: if
one enforces, say, Eq. (A.9) then Eq. (A.10) will be automatically satisfied. This dependence
arises because changing m, in turn changes ¢ and w and this impacts the d condensate
through the quark determinant. One might, therefore, wonder how the two tuning conditions
have been successfully applied in Ref. [23]. To understand this, we note that this work makes
two approximations. First, isospin-breaking effects are evaluated only through linear order in
an expansion in m,—my and agy. Second, insertions of m,—mgy or photons on sea-quark loops
are dropped (the “electroquenched approximation”). The latter approximation has the effect
of disconnecting the two tuning conditions—all quark loops in both conditions are evaluated
with uncharged, degenerate sea-quarks, so the u-quark condensate cannot be impacted by
changes in m, and vice versa. Since XP'T predicts that there is a tight correlation between
the condensates, it appears to us that the electroquenched approximation is theoretically
problematic. However, from a purely numerical viewpoint, the dropped contributions may

well lead only to small corrections.

The lack of independence implies that the tuning conditions cannot determine both m,, .
and mg.—only one constraint on these two critical masses is obtained. In terms of the
parameters of mass matrix (A.11), the conditions determine only a relation between w and
@. Thus, after enforcing either (A.9) or (A.10) the theory is known to lie along a line in
the w— plane. In terms of the bare masses, the theory lies along a line in the mg,—moq4
plane (with, recall, po, and g4 fixed at the values leading to physical quark masses when
mo. = moq = 0). We do know that this one-dimensional subspace includes the point we
are trying to tune to, namely that with (w, ) = (7/2,0). This follows from the analysis of
Sec. 3.5.1. At maximal twist with ¢ = 0, the twist in the condensate is also maximal, i.e.
0 = w/2. The only caveat is that the values of the twisted masses must be such that one lies
in the continuum-like phase, rather than the CP-violating phase (see Fig. 3.4).

To complete the tuning we need an additional condition that forces us to the desired point

along the allowed line. At first blush one might expect that it would be simple to find an
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additional tuning condition, since theories with fqcp # 0 have explicit parity violation. This
is in contrast to the parity violation induced by a nonzero twist w which, in the continuum
limit, can be removed by a chiral rotation. This suggests that one should look for quantities
that vanish when parity is a good symmetry. The flaw in this approach is that parity is
broken by w # 0 away from the continuum limit—the chiral rotation required to obtain the
parity-symmetric form is not a symmetry on the lattice. Thus the distinction between ¢ # 0
and w # 0 no longer holds.

The only choice that we have found for a second condition involves using the pion masses.
Specifically, we find that, along the line picked out by setting § = 7/2, the masses of both
charged and neutral pions are minimized when ¢ = 0. This assumes only that we are in the
continuum-like phase for the physical values of y, and g 4.

The details of the calculation are presented in Chapter 4. Working at LO™, we find that
the constraint § = /2 forces the quark masses to lie on the line

ma <1 — ol — ﬂd)) _ (A.23)

7 L+ co(fty — fra)

My,

As noted above, this line passes through the desired point m, = mg = 0. The slope is —1
when ¢, = 0, and increases in magnitude as ¢, increases (assuming the physical situation
fiy < fiq). There is no singularity when the slope reaches infinity—this simply means that
the constraint line is the m, = 0 axis. For larger ¢, the slope is positive. It decreases
with increasing ¢, though it always remains greater than unity. The pion masses along the

constraint line are

N ~ ~ N 2 ~ A 2
m2, = Ptld oo (HuTHa ) ol (TN gy (A.24)
2 2 2
i+ Ty —1a )"
mii == 5 Ha + 2¢y (qu> + 2CEM - (A.25)

Thus we see that both masses are minimized along the constraint line when m, = myg = 0.
If one were to implement this tuning condition in practice, then one would apply it for the

charged pion masses, since these have no quark-disconnected contractions.
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This analysis breaks down when ¢, gets too large, because the theory with m, = mg =0
then lies in the the CP-violating phase. This can be seen from the result (A.24)—for large
enough ¢, the squared neutral pion mass becomes negative. This happens sooner for the
first-order scenario, w’ > 0.

We close this section by commenting on the impact of higher-order terms in XPT. Because
of such terms, even if one perfectly implements our two tuning conditions—mnamely either
Eq. (A.9) or (A.10) and minimizing the pion masses—one will not have precisely tuned to
m, = mg = 0. This can be seen, for example, from the analysis of Ref. [58], where terms of
O(ap?, am) lead to maximal twist occurring at untwisted masses of O(ap), with p the twisted
mass, rather than zero. Shifts of this size occur also in the presence of isospin breaking,
although the detailed form of the corrections will differ. Within our power-counting, however,
i ~ a? so that the shifts in the untwisted masses are ~ O(a®), beyond the order that we

consider.



	List of Figures
	List of Tables
	Introduction
	Introduction to lattice QCD
	Introduction to chiral symmetry and chiral perturbation field theory

	Phase diagram of non-degenerate twisted mass fermions
	Introduction
	Continuum Vacuum Structure at leading order in 0.4exPT
	Matching SU(2) and SU(3) 0.4exPT for non-degenerate quarks
	Including discretization effects for Wilson-like fermions
	Twisted-mass fermions at maximal twist
	Arbitrary Twist
	Higher order
	Conclusions

	Impact of electromagnetism on phase structure for Wilson and twisted-mass fermions including isospin breaking
	Introduction
	Power-counting and summary of previous work
	Charged, nondegenerate Wilson quarks
	Nondegeneracy, electromagnetism and twist
	0.4exPT for charged, nondegenerate quarks with a 3 twist
	Conclusions

	Phase structure with nonzero QCD and twisted mass fermions
	Introduction
	Determination of phase diagram
	Maximal twist condition
	Conclusions
	Acknowledgements

	Lattice Investigation of Instanton Effects in QCD
	Introduction
	Simulation details and setup
	Measurement of non-perturbative GreenÕs functions
	Conclusions and future directions

	Conclusion
	Bibliography
	Appendix to Chapter 3
	Relating lattice masses to those in 0.4exPT
	Determining the critical masses in the presence of electromagnetism


