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One of the major challenges in the Large Hadron Collider forward (LHCf) experiment is the
accurate reconstruction of calorimetric clusters when multiple particles hit the same detector tower
simultaneously. Traditional reconstruction methods struggle with overlapping signals, especially
in events involving more than two particles or a combination of photons and neutrons. This paper
presents the development of machine learning (ML) techniques to improve the reconstruction
efficiency of such complex events. We discuss the motivations for integrating ML into the
LHCT reconstruction pipeline, outline the ML approach and dataset preparation, and compare
the performance of ML models with standard methods. The results demonstrate a significant
improvement in reconstructing multi-hit events, which is essential for analyses involving 7°, 7,
K9 mesons, and A° baryon. Finally, we explore future prospects for ML applications in the LHCf

experiment.
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1. Introduction

The LHCT experiment measures very forward neutral particles produced in proton-proton and
proton-ion collisions at the LHC, providing data for calibrating and testing hadronic interaction
models (HIM) used in simulating extended air showers (EASs) produced by ultra-high energy
cosmic rays (UHECR) in Earth atmosphere [1]. The apparatus consists of two independent detectors,
Arml and Arm2, located at zero degrees relative to the LHC beam line, about 141.5 meters from
Interaction Point 1 (IP1). Each detector has two sampling calorimeters, the Small Tower (ST) and
the Large Tower (LT), covering different rapidity regions near the beam pipe. Both Arm1 and Arm2
feature calorimeters composed of 16 GSO scintillator layers interleaved with 17 tungsten layers,
featuring about 44 radiation lengths (Xy) and 1.6 interaction lengths (17). The GSO and tungsten
layers are independent for the two towers, enabling simultaneous, separate energy measurements
in the ST and LT. Position determination is achieved using position-sensitive layers: Arml uses
plastic scintillating fibers (SciFi), while Arm2 employs silicon micro-strip detectors. The position
resolutions are about 200 um for Arm1 and 40 um for Arm2 in the case of electromagnetic
showers [2]. A significant challenge is accurately reconstructing multiple calorimetric clusters
when several particles hit the same detector tower simultaneously. Overlapping signals in both
the scintillators and position-sensitive layers complicate the reconstruction. Traditional methods
are effective for single-hit events but lose accuracy as overlapping particles increase. This issue is
particularly relevant in analyses focusing on particles like 7°, 17, K2, and A, whose decay products
may hit the detector simultaneously and in close proximity. Recent advancements in machine
learning (ML) offer promising solutions [3]. ML techniques can handle complex data patterns,
making them suitable for improving reconstruction efficiency in multi-hit events. By leveraging
detailed detector information, ML models can better deconvolute overlapping signals and accurately
determine the energy and position of individual particles. In this paper, we present the development
of ML approaches for the LHCf experiment, focusing on events involving two hits in the same
detector tower. We discuss the limitations of traditional methods and the benefits of integrating MLL
into the reconstruction pipeline.

2. Machine Learning Approach

2.1 Motivations for Machine Learning in LHCf

The primary motivation for including ML techniques in the LHCf reconstruction pipeline stems
from the need to enhance the accuracy of cluster reconstruction in multi-hit scenarios. Traditional
methods excel in single-hit events but face limitations when dealing with multiple particles hitting
the same calorimetric tower. In such cases, the total energy deposited must be correctly shared
among the incident particles, and accurate position reconstruction becomes challenging due to
overlapping signals. These challenges are particularly significant in analyses involving:

« Type II 7° and 7 meson analysis: Events where two photons from 7° and 17 meson decays hit
the same calorimetric tower. Traditional methods based on peak height ratios in the transverse
profile of position detectors can lead to a broadening of the invariant mass peak and reduced
reconstruction efficiency [4-7].
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Figure 1: Example of Lorentzian fits to the transverse profiles in the silicon layers for a two-hit event in the
Small Tower. The fit parameters serve as input variables for the ML models.

K9 analysis: Forward production of K? mesons, decaying into two 7° and resulting in four
photons, often requires reconstructing three or four photons in a single tower. Accurate
reconstruction is crucial for improving HIMs and understanding the strange quark production

[8].

+ A analysis: Studying forward A° production, decaying into a neutron and a 7%, involves
identifying complex event topologies with neutrons and photons overlapping in the same
tower. Accurate neutron identification and multi-particle reconstruction are essential for this
analysis.

Integrating ML techniques can address these challenges by providing more sophisticated tools for
handling overlapping signals and improving energy sharing and position reconstruction in complex
events.

2.2 Dataset Preparation

The ML models were trained to predict energy sharing between particles in two-hit events. We
generated a dataset using a full detector Monte Carlo (MC) simulation of proton-proton collisions
at \/s = 13 TeV with the QGSJETII-04 event generator, focusing on the Arm2 detector. Separate
models were developed for the two towers. For each event, the transverse profiles from the silicon
layers were fitted with a three-component Lorentzian function to extract fit parameters for each
particle in both X and Y views, resulting in 56 input variables (seven fit parameters per particle per
view for the first two silicon layers). Figure 1 shows an example of the fitted profiles. The dataset
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Figure 2: Schematic of the ML model architecture for energy reconstruction in two-hit events.

comprised approximately 130,000 events for the Small Tower and 60,000 for the Large Tower, split
into 70% for training and 30% for testing.

2.3 Model Architecture

The ML pipeline utilizes ensemble methods based on gradient-boosting decision trees (BDTs).
The architecture includes two first-level BDTs that predict the energy of each particle individually
using input variables from the Lorentzian fits. An on-top BDT then combines the predictions from
the first-level BDTs with the original input variables to infer the total event energy (see Figure 2).
We employed two popular libraries, XGBoost [9] and CatBoost [ 10], to implement the BDT models,
optimizing hyperparameters to minimize the Root Mean Square Error (RMSE) between predicted
and true energies.

3. Results and Future Prospects

The performance of the ML models was evaluated by comparing them with the standard LHCf
energy-sharing method, which uses the ratio of peak heights from the transverse profiles. The
RMSE was used as the evaluation metric. Figures 3 and 4 show scatter plots of the predicted versus
true energies for the Small Tower and Large Tower, respectively. The ML models significantly
outperformed the traditional method, reducing RMSE values substantially. The ML models provided
much closer agreement between predicted and true energies for both towers, while the standard
method showed larger deviations, especially at higher energies. The comparable performance
between XGBoost and CatBoost indicates the effectiveness of gradient-boosting decision trees
for this application. These results demonstrate that ML techniques enhance energy reconstruction
accuracy in two-hit events, offering significant improvements over traditional methods and indicating
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Figure 3: Predicted vs. true energies for two particles in the Small Tower using the standard method,
XGBoost, and CatBoost models.
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Figure 4: Predicted vs. true energies for two particles in the Large Tower using the standard method,
XGBoost, and CatBoost models.

their potential to improve analyses of complex events in the LHCf experiment. Future work will
extend these techniques to events with three or more overlapping particles, essential for analyses
involving K? and A® mesons. Preliminary tests with three-hit datasets are encouraging, though
further refinement and larger datasets are needed. Additionally, using raw energy deposition data
from silicon detectors, instead of fitted parameters, may enhance the models ability to deconvolute
overlapping signals and improve position reconstruction. Other potential ML applications in LHCf
include automating peak identification and classification in energy distributions and training models
for neutron identification based on calorimetric signatures. Scaling the models with larger, more
diverse datasets and exploring advanced ML architectures will further optimize the reconstruction
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pipeline, contributing to more accurate measurements and enabling new exotic analysis channels in
the LHCf experiment.
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