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We report on our Ward identity determination of the O(a) improvement coefficient for the flavour
singlet scalar density, namely gs, from three-flavour lattice QCD with Wilson-clover fermions
and the tree-level Symanzik improved gauge action. We employ five couplings, g% € [1.5,1.77],
that cover the range used in large-volume CLS simulations. While gg itself is for instance
relevant for the O(a) improvement of meson and baryon sigma terms, a relation to bg, the O(a)
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1. Introduction

The O(a) improvement parameter of the flavour singlet scalar density, termed gs, is for instance
relevant for the full O(a) improvement of meson and baryon sigma terms, o, = m,(H|gq|H), in
a setup with Wilson fermions, see [1]. The flavour singlet scalar density gq of flavour g enters in
the matrix element that is multiplied by the quark mass m,. |H) refers to the ground state of a
hadron H. So far gg is only known from perturbation theory, see eq. (3) below; as it is expected
to be small it has been neglected in all sigma term calculations, as reported in [2, 3]. In [4] its
impact is estimated from perturbation theory to be of the order of —0.05 MeV on their estimate of
the pion-nucleon sigma term of o = (43.6 + 3.8) MeV. Thus in this case perturbation theory
indeed indicates that gs can be neglected since its effect is smaller than the uncertainty’s.

However, for a more reliable estimation, a non-perturbative study of gg is crucial and becoming
more relevant as the precision of sigma term computations increases. The aim of our work is to
perform a non-perturbative determination in the range of the CLS couplings, g(z) € [1.5,1.77].

Furthermore, the gs estimates may be used to obtain b, via the relation [1]

be = 2g58s - (1)

In a setup with Wilson fermions the O(a) improvement parameter of the gauge coupling, by,
is in principle required for full O(a) improvement at non-vanishing sea quark masses as g% =
gé (1 +abg (g%)Tqu /N¢) [1], where M, denotes the sea quark mass matrix. For the action and
coupling range employed here, b is only known from one-loop perturbation theory [5, 6] as

by = 0.012000(2) X Nt g2 +O(g?) . )

For a lower range of couplings, g(z) € [0.4, 1.5], there has been a recent non-perturbative determi-
nation [7] relevant for ALPHA’s decoupling strategy to determine the strong coupling [8]. Our
determination will be relevant for calculations using the CLS ensembles (see [9]) such as sigma
term determinations or other computations in the range of the CLS couplings with Wilson fermions.
By inserting eq. (2) for b, in eq. (1) we retrieve a lowest-order perturbative prediction for gg,

gs = 0.012000(2) x N¢/2+0(g?) . (3)

Note that this work’s non-perturbative gs results cannot be used to extract b, via eq. (1) and hence,
cannot be directly compared to the above perturbative expression: an additional term needs to be
included in the gs Ward identity, used here, for the relation from eq. (1) to hold, see sect. (5). There,
we also detail the next steps necessary to obtain the adequate gs estimates as to extract by viaeq. (1).

2. Chiral Ward Identities
The well-known PCAC relation is derived from the general continuum axial Ward identity
/R d*x €(x) [0, (A%(x)0) = 2m (P*(x)O)] = = (5,0) 4)

by choosing the operator O to be an exterior single operator Oeyy, i.e. located outside the region R
such that its axial variation is zero, (5o0) = (6AOext) = 0. Also, we always impose €%(x) = € =



O(a) improvement of the flavour singlet scalar density Pia Leonie Jones Petrak

const. for the smallness parameter so that the Ward identity reflects global chiral symmetry. A%,
P% and m denote the axial current, pseudo-scalar density and degenerate quark mass, respectively.
Here, we derive a Ward identity suggested in [1], see [10] for an earlier account of similar identities.

We consider a singlet composite operator O = SO,y where the flavour singlet scalar density is
defined by S°(x) = iy (x)T % (x),T° = —i/V2N¢1 noxn; in the SU(Ny) flavour basis. The diagonal
flavour matrix 7 is introduced to handle flavour singlet quantities such as this one. With Oy lying
outside R, we have (640) = ([645°(y)]Oex) and obtain

5aSY(y) = —— [5a5(W(y) + F(SaU()] = —1] =€ () P(y) )
V2N¢ N¢

for the current under small axial variations €“(x) of the action. Inserting our choice of operator in
eq. (4) and following the same notation and procedure as in [11] (for a non-singlet Ward identity to
obtain the parameter Z, defined below eq. (9)), we transfer the Ward identity to the lattice:

ZpZ8a® Y ([AG (123 %) = A (1:%] S°(1)0%) (62)
Xy
~2amZpz3a® Y " w(x) (P ()8’ (5)0%) (6b)
X,y Xo=I]

= _\/szzpcﬁ Zy]wa(y)()“) (6¢)

where the external source was set to Oy = O¢ as defined in [11] and Za, Zg and Zp are the
renormalisation parameters. The weight factor w(xg) is needed to implement the trapezoidal rule
for discretising integrals. Repeated flavour indices a are summed over and m is the PCAC mass.

We also consider another choice of operator for O in eq. (4), O = 10ex = 10¢. The Ward
identity can be derived in the same fashion leading to

Zaz8a® Y ([ Ad (%) — AG(11:%)] 0)(S°()) (7a)
X,y
“2amZpZ§a® )" " w(x0) (P (x)0“N(S°(») (7b)
X,y Xxo=t1
=0 (70

The main difference is that the r.h.s. of eq. (4) is zero in this case as (640) = ([0a1]Oex) +
(1[640ext]) = 0: the flavour variation of the constant unity matrix is clearly zero (while the
variation is generally zero outside R where Oy is again defined).

Now it will become clearer why these two Ward identities (6) and (7) are of use. Having
inserted the improvement pattern for all operators, a divergence cancels when the two equations are
subtracted. The (cubic) divergence lies in the eg( g(z)) term in the improvement pattern of the flavour
singlet scalar density [10] (see [1] for a notation more similar to the one applied here),

ngdﬂg@@n+Qégﬁsgaﬂumxwﬂw@n+ouﬂ» ®
f f

where Tr stands for the trace over colour indices. Note that the discretised form of the field strength,

(SD°(x) = 8°(x) +

Tr[F 4y (X) Fypry ()], must be local, symmetric w.r.t. the site where the bilinear S° is placed and based
on the gauge action employed, see [1]. We write this discretised form as {Tr[FF](x)}5.



O(a) improvement of the flavour singlet scalar density Pia Leonie Jones Petrak

We apply the improvement scheme to SV in both Ward identities (6) & (7) and subtract the now
O(a) improved Ward identities from one another as to make use of the fact that (a3eg (g%)]lO) =
(a3es (gé)]l)(O). So all terms containing es(gg) are the same in both equations and cancel. The
combined Ward identity simplifies to

& Y b =) {[(4505°000%) - (45 000X (5" ) ©a)
X,y
+ e [ (AF(TFF)00)%0°) = (A5 WO W(TFFIF*)| - o
+acadxg :(Pa(x)SO(y)O“> - <P“(x)0a><SO(y)>]} (9¢)
—a® Z 2am Z a)(xo){ ><P“(x)SO(y)Oa> - (P“(x)()a)(SO(y))] (9d)
X,y X0=1] i
¥ jz% (P () (THFFI(0)}50°) - (P*(x)0* ) ({TH FF] (y)}5g>]} (%)
— _ 3 3 a a 2
= \/;fa Zy:Zrm(P (y)O?) +O(am,a”), 9f)
having divided by ZAzg and employed ry, = % and Z = ZAZPZS. Hence, the only unknown

quantity left is gg; we already determined Z and ;Em in [11] and cp in [12]. Note that quark-line
disconnected diagrams appear in some of the three-point functions as a consequence of the flavour
singlet property of the Ward identity considered here. Our determinations of Z and ry, are based
on flavour non-singlet Ward identities; thus no such disconnected diagrams entered there.

3. Numerical Setup

Lla pB K #REP Ny [MDU]  Nepse — am™"

12 34014 0.1368240 4 8 10466 0.00065(16)
8 11992 0.000056(67)

20 3.6900 0.1371452 10 4 10000 0.000094(59)
8
4

16 3.5522 0.1371379 4

24 3.8013 0.1370387 2 8000 —0.000008(35)

10072 0.000011(14)

32 39764 0.1367450 2

Table 1: Simulation parameters L(= T), 8, «, the number of replica #REP and Ngep, the number of molecular
dynamics units, MDU, all configurations are separated by. The ensembles are labelled by their lattice extent
i.e. L12, L16, L.20, L24, L32, and were originally generated as part of another study [13, 14]; we have
(approximately) doubled the statistics of the ensembles L12 and L.16. For each ensemble we list the O(a)
improved PCAC mass am'™" obtained by averaging over the local masses of the three central time slices.

We employ the tree-level Symanzik-improved gauge action with Ny = 3 mass-degenerate O(a)
improved Wilson fermions. For the corresponding improvement coefficient cgy we use the non-
perturbative determination of [15]. As for our earlier determination of Z and ry, [11] we impose
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Schrodinger functional boundary conditions at the temporal boundaries of the lattice since this setup
is well-suited for massless renormalisation schemes. All gauge field ensembles used in this study
are summarised in table 1 and lie on a precisely tuned line of constant physics (LCP), defined by
a fixed spatial and temporal extent of L = T ~ 1 fm and (nearly) massless quarks, see table 1. For
the tuning, the gradient flow running coupling was kept constant, see [13, 14, 16]; the ensembles
were originally generated as part of another study [13, 14] and we have (approximately) doubled
the statistics of the ensembles .12 and L16. The LCP ensures that our estimates of gg become
smooth functions of the lattice spacing, higher-order ambiguities vanishing monotonically. For all
ensembles we use one-loop boundary O(a) improvement for both the gauge and fermion fields (i.e.
the appropriate ¢y, ¢; values). For full O(a) improvement of the Schrédinger functional correlation
functions we additionally require the improvement coefficient c 4, non-perturbatively known from
[12]. Consequently, the quantity of interest, gs, is the only unknown quantity in our numerical
calculations (based on eq. (10)) as we make use of our results for Z and ry, from [11].

Most of the needed correlation functions needed overlap with those already implemented and
evaluatedin [11]. Due to the now flavour singlet nature of the Ward identities, two additional types of
correlation functions are relevant: we implement single propagator traces via stochastic estimators.
To reduce the variance at moderate cost we combine frequency splitting, to treat intermediate modes,
and a hopping parameter expansion, to treat the high modes, as proposed in [17]. We incorporate
the necessary gluonic contributions in an openQCD based code [18], as anticipated below eq. (8),
including all contributing rectangles and plaquettes symmetrically w.r.t. the site of the bilinear.

The Markov chain Monte Carlo sampling of the gauge field configurations suffers from critical
slowing down of the topological charge for smaller lattice spacings. As in [11], we project the data
to the trivial topological sector (as suggested in [19]) so that the insufficient sampling of all sectors
is no longer relevant: Ward identities hold in one sector only as well, irrespective of the sector at
hand. The statistical error analysis is carried out with pyerrors, a python implementation [20] of
the I'-method [21], combined with linear error propagation via automatic differentiation [22, 23].

4. Analysis

We write down the gs Ward identity introduced in eq. (9) in terms of the Schrodinger func-
tional correlation functions with explicit flavour indices 7, j not summed over; note that the Wick
contractions are not written out here. We obtain!

[ 5" (12, y0) = Nefik dlSC(IZ’J’O)] - [ LNt y0) = Niefi% dlsc(tl,YO)] (10a)
£ £ - 70| Ne ey o) (10b)
—8S {2 [ i, deC(t2, YO) lj dlqc(tls YO)] 2[ ([2) - Il\J(l‘l)]ka)(yo)} (IOC)

w{aatz[ B 12, 30) = Nefgh (12030 | = ady | A1 (0130 = Nefgg ™ (rvo) | (100)

INote that we no longer use the conventions from [1] but those employed in [7] because of the way correlation
functions are defined in our openQCD based codes. In the former a hermitian F,, is used while an anti-hermitian
definition is utilised in the latter case. We still label the improvement parameter of the flavour singlet density by gg from
[1], as before, by replacing ds, used in the latter convention [7], by —gs as g5 = —ds.
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+p%ﬁ%ﬁ—wu§mﬂmﬂ¢m} (10e)
~2am {| JE5 <" 11,12, v0) = Nef ™ 1112, y0) | + Y (11,120 Ne £ gy (30) (10f)
-gs -2 [ FEY (11, 12, ) — ﬁj(h,tz)f(m()’o)” (10g)
=—2ZrmfP (y0) + O(am, a?) , (10h)

where ‘disc’ refers to quark-line disconnected contributions. In this notation the explicit N¢
dependence, a consequence of the flavour singlet nature of the identity, becomes apparent: Clearly,
only the quark-line disconnected diagrams are multiplied by Ny, in particular those that involve S°
and not those that are purely gluonic (f(g)). Thus, regarding the Wick contractions this can be
understood as an additional quark loop for each additional quark flavour. Except for the quark-line
and gluonic disconnected contributions, this flavour singlet identity is not that different from the
flavour non-singlet case considered in [11] for the determination of Z: The connected correlation
functions are the same, i.e. with the same Wick contractions, disregarding different prefactors which
result from the different flavour structures. Thus the definitions of the above correlation functions
can be found in the appendices of [11]. Note that ‘con’ superscripts were not used then because of
the lack of disconnected contributions. We list the additional correlation functions needed here:

12

I e y0) = _%‘2_3 Z <<l/;i(x)7075¢j(x) : Zj(u)ysé“i(V)>F~<¢_’j(y)]1¢j(y)>F> : (11)
G

X,y.u,v

ij,disc

Substituting yoys by ys we define f,q i ““(x0, yo) and fos (x0,y0) analogously. For the same

analysis, we also need to establish

9
G (o) = _%nyuv<<‘/;i(x)7075‘//j(x) : {_j(ll)ys_(i(V)>F‘<E(Y)>F>G- (12)

and the purely gluonic case of figy(yo) = a*/2 Zy(ﬁ[F F](y))g. The correlation functions

” CO“(I] , 17, y()) fl] dlsc(h , 1, yo) and f” d1sc(t1 , 17, yo) are defined by
oy 2 . %, for xg =11,
Fi(t,12,50) = D @(x0) f7 (x0,y0)  where  w(xo) = , (13)
Xo=t1 1, otherwise
setting, e.g. [ (xo,y0) = ” Con(tl,tz,yo) for fPJ ““N(t1,t2,v0). The single propagator trace

contributing is defined by f<S>(yo) =a Zy (z//,(y)]ll,//, (y)) .
We evaluate the Ward identity for Ny = 3 on the ensembles summed up in table 1: by working

close to the chiral limit with (nearly) vanishing quark masses (see table 1), O(am) effects may
be safely neglected and the Ward identity becomes valid up to O(a?) cut-off effects. In [11] we
found that for our Z Ward identity the term above proportional to the current quark mass m, which
can in principle be discarded in the chiral limit, still stabilises the chiral extrapolation (also found
in refs. [24-27] previously). Thus we prefer to keep it here too (even though we do not perform
chiral extrapolations here but extract the Ward identity in the (nearly) chiral limit). We evaluate the
operators P and S” at t; ~ T/3 and 1, ~ 2T /3 (labelled by T/3) respectively, or alternatively at
t1 = T/4 and t, = 3T /4 (labelled by T /4). In practice, we round #; and 7, to the nearest integer
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0.041 ..... Ne=3 pert. [ VR T V7 %

0.034
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Figure 1: gg results obtained via eq. (10) for Ny = 3 using our Z and ry, interpolation formulas from [11] to
construct the Zry, values at the given couplings needed. The perturbative prediction from eq. (3) (dashed red
line) cannot be directly compared to the gg data points, see text below. The time interval [z, 1] (in eq. (10))
is set to [T'/4,3T /4] (labelled by T/4) or [T/3,2T /3] (labelled by T/3) as shown by different colours.

when T'/3 and T'/4 are not integers. We made the same choices previously for the determination of
Z in [11]. We extract the necessary PCAC mass plateaus by averaging over the local mass results
of the three central time slices, see table 1 for the results at each coupling.

Putting everything together and solving the Ward identity for gs, we obtain gs estimates at
five lattice spacings and for two choices of the time interval labelled 7'/3 and T /4, shown in fig. 1.
We find that both gg estimates approach zero for small couplings and are even compatible with
zero within their respective 1o-errors at the two smallest couplings available; gg at the next higher
coupling is close to zero as well. We also display the prediction from perturbation theory. Note that
this perturbative prediction needs to be treated with caution in the present context since it is derived
by applying b, = 2g§gs to the perturbative prediction of bg, cf. eq. (3). As we will discuss in the
next section the gs estimates here cannot be used in this relation to obtain bg: for eq. (1) to hold
our non-perturbative definition of gg through eq. (10) needs an additional term, which is merely an
O(a) ambiguity for gs. Therefore, the perturbative prediction can only give us an idea of the order
of magnitude of gs; as can be inferred from fig. 1 our gg estimates differ from the perturbative
prediction but the order of magnitude agrees well.

5. Conclusion and Outlook

We were able to determine non-perturbative estimates for gg for the first time. They were
determined employing the tree-level Symanzik-improved gauge action with Ny = 3 mass-degenerate
O(a) improved Wilson fermions and lie in the range of the CLS couplings, g% € [1.5,1.77].

As to be able to make use of the gs—b, relation and extract b, estimates from our gg estimates
additional steps are necessary. As derived in appendix A of [7] via gradient flow observables
the derivative of the full lattice action w.r.t. the coupling gé enters the derivation of the gs—b,
relation. In the action used here not only the gauge action depends on the coupling but also the
O(a) improved fermionic part of the action, through the improvement coefficient csw(gé). This
introduces an additional term o cgy (g(z)) in the derivation which was possibly overlooked in the
original publication [1]. For the gs—b, relation to be preserved in the O(a) improved theory, this
term must also be taken into account in the choice of discretisation used for Tr(F,,, F,)(x) in the
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improvement of the flavour singlet density, introduced in eq. (8). This amounts to [7]

2y .
Tr[ Fyuy (x) Fyy (x)] > ({Te[FF](x)}% + agg x &%ﬁ(’)%omﬂw) (14)
0

where {Tr[FF](x)}5: is the discretisation only based on the gauge action, used to determine gs
here. The additional term is the derivative w.r.t. g(2) of the fermionic part of the full O(a) improved
action used here, introducing a dependence on the clover term.

Therefore, so that the gs estimates can be related to b via by = 2g3gs the additional, clover term
like expression needs to be included too, i.e. the Ward identity from eq. (9) needs to be reevaluated
with {Tr[FF](x)}5 replaced by eq. (14). More precisely, we add to the Lh.s. of eq. (10) two terms

of the form (where ‘C’ stands for the insertion of the clover term like expression)
” ’ 7 di . 7. di
—gs{ | feonm) = N £ (1, y0) | = | £ (1, v0) = NefE (11, v0) | } (15)

+2am 'gs{ [ﬁ'{;’“’“(n,rz, Yo) = Nefile (11, 12, yo)] + (tl,tz)fofé>()’0)} (16)

similar to eq. (10a) and eq. (10f), respectively, i.e. with the clover term like part from eq. (14)
instead of S° and with an additional factor, namely gs. Despite its gluonic component, ficy(yo) can
be evaluated similarly to f (ié>(y0) (cf. sect. 3) since the expectation value can be rearranged such
that the same single propagator trace S(x, x) appears,
3 a 3

f<c)(x0) ~ —% Z <S(x,x)g$ (vaFﬁti’ver)(; (x)> — _% <nk’ (O'va;lf,)ver)kl D_lnl> 17)
where 1% (') is the k({)th (colour, Dirac) component of a stochastic noise source, k(1) = 1, ..., 12
and a, b denote colour and &, 8 Dirac indices. The term ((J‘WFZlf,"’er ) is a 12x12 matrix (3x3 colour
matrix times 4 X 4 Dirac matrix). In practice this clover Dirac-colour matrix is computed on every
lattice point and multiplied by the stochastic estimator, which the inverse Dirac operator, D™, is
applied to before. This implementation is the most challenging part and is currently being tested; the
coding of the other additional diagrams is more straight forward. Once all these additional diagrams
are implemented, we plan to redetermine gs from the altered Ward identity. The new gg estimates
are expected to differ from the former in cut-off effects. We then plan to apply b, = 2g(2) gs to extract
non-perturbative b, estimates in the range of the CLS couplings, g(z) € [1.5,1.77]. Ultimately, we
then intend to fit b (gg) as a smooth function of g% including the one-loop perturbative constraint
from eq. (2) as to arrive at an interpolation formula. We plan to repeat the same procedure for the
altered gs using the perturbative constraint from eq. (3).
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