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We report on our Ward identity determination of the O(0) improvement coefficient for the flavour
singlet scalar density, namely 6S, from three-flavour lattice QCD with Wilson-clover fermions
and the tree-level Symanzik improved gauge action. We employ five couplings, 62
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that cover the range used in large-volume CLS simulations. While 6S itself is for instance
relevant for the O(0) improvement of meson and baryon sigma terms, a relation to 1g, the O(0)
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1. Introduction

TheO(0) improvement parameter of the flavour singlet scalar density, termed 6S, is for instance
relevant for the full O(0) improvement of meson and baryon sigma terms, f@ = <@ 〈� |@̄@ |�〉, in
a setup with Wilson fermions, see [1]. The flavour singlet scalar density @̄@ of flavour @ enters in
the matrix element that is multiplied by the quark mass <@. |�〉 refers to the ground state of a
hadron �. So far 6S is only known from perturbation theory, see eq. (3) below; as it is expected
to be small it has been neglected in all sigma term calculations, as reported in [2, 3]. In [4] its
impact is estimated from perturbation theory to be of the order of −0.05 MeV on their estimate of
the pion-nucleon sigma term of fN

c = (43.6 ± 3.8)MeV. Thus in this case perturbation theory
indeed indicates that 6S can be neglected since its effect is smaller than the uncertainty’s.

However, for a more reliable estimation, a non-perturbative study of 6S is crucial and becoming
more relevant as the precision of sigma term computations increases. The aim of our work is to
perform a non-perturbative determination in the range of the CLS couplings, 62

0 ∈ [1.5, 1.77].
Furthermore, the 6S estimates may be used to obtain 1g via the relation [1]

1g = 262
06S . (1)

In a setup with Wilson fermions the O(0) improvement parameter of the gauge coupling, 1g,
is in principle required for full O(0) improvement at non-vanishing sea quark masses as 6̃2

0 =

62
0 · (1 + 016 (6

2
0)Tr"q/#f) [1], where "q denotes the sea quark mass matrix. For the action and

coupling range employed here, 1g is only known from one-loop perturbation theory [5, 6] as

1g = 0.012000(2) × #f 6
2
0 + O

(
64

0
)
. (2)

For a lower range of couplings, 62
0 ∈ [0.4, 1.5], there has been a recent non-perturbative determi-

nation [7] relevant for ALPHA’s decoupling strategy to determine the strong coupling [8]. Our
determination will be relevant for calculations using the CLS ensembles (see [9]) such as sigma
term determinations or other computations in the range of the CLS couplings withWilson fermions.

By inserting eq. (2) for 1g in eq. (1) we retrieve a lowest-order perturbative prediction for 6S,

6S = 0.012000(2) × #f/2 + O
(
62

0
)
. (3)

Note that this work’s non-perturbative 6S results cannot be used to extract 1g via eq. (1) and hence,
cannot be directly compared to the above perturbative expression: an additional term needs to be
included in the 6S Ward identity, used here, for the relation from eq. (1) to hold, see sect. (5). There,
we also detail the next steps necessary to obtain the adequate 6S estimates as to extract 1g via eq. (1).

2. Chiral Ward Identities

The well-known PCAC relation is derived from the general continuum axial Ward identity∫
R

d4G n0 (G)
[
m`

〈
�0` (G)O

〉
− 2< 〈%0 (G)O〉

]
= − 〈XAO〉 (4)

by choosing the operator O to be an exterior single operator Oext, i.e. located outside the region '
such that its axial variation is zero, 〈XAO〉 = 〈XAOext〉 = 0. Also, we always impose n0 (G) = n =

2
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const. for the smallness parameter so that the Ward identity reflects global chiral symmetry. �0`,
%0 and < denote the axial current, pseudo-scalar density and degenerate quark mass, respectively.
Here, we derive a Ward identity suggested in [1], see [10] for an earlier account of similar identities.

We consider a singlet composite operator O = (0Oext where the flavour singlet scalar density is
defined by (0(G) = ik̄(G))0k(G) , )0 = −i/

√
2#f1#f×#f in the (* (#f) flavour basis. The diagonal

flavour matrix )0 is introduced to handle flavour singlet quantities such as this one. With Oext lying
outside ', we have 〈X�O〉 = 〈[X�(0(H)]Oext〉 and obtain

X�(
0(H) = i

√
2#f

[
X�k̄(H)k(H) + k̄(H)X�k(H)

]
= −

√
2
#f
n0 (H)%0 (H) (5)

for the current under small axial variations n0 (G) of the action. Inserting our choice of operator in
eq. (4) and following the same notation and procedure as in [11] (for a non-singlet Ward identity to
obtain the parameter / , defined below eq. (9)), we transfer the Ward identity to the lattice:

/A/
0
S0

6
∑
x,y
〈
[
�00 (C2; x) − �00 (C1; x)

]
(0(H)O0〉 (6a)

−20</A/
0
S0

6
∑
x,y

C2∑
G0=C1

l(G0)〈%0 (G)(0(H)O0〉 (6b)

= −
√

2
#f
/P0

3
∑

y
〈%0 (H)O0〉 (6c)

where the external source was set to Oext = O0 as defined in [11] and /A, /0
S and /P are the

renormalisation parameters. The weight factor l(G0) is needed to implement the trapezoidal rule
for discretising integrals. Repeated flavour indices 0 are summed over and < is the PCAC mass.

We also consider another choice of operator for O in eq. (4), O = 1Oext = 1O0. The Ward
identity can be derived in the same fashion leading to

/A/
0
S0

6
∑
x,y
〈
[
�00 (C2; x) − �00 (C1; x)

]
O0〉〈(0(H)〉 (7a)

−20</A/
0
S0

6
∑
x,y

C2∑
G0=C1

l(G0)〈%0 (G)O0〉〈(0(H)〉 (7b)

= 0 (7c)

The main difference is that the r.h.s. of eq. (4) is zero in this case as 〈X�O〉 = 〈[X�1]Oext〉 +
〈1[X�Oext]〉 = 0: the flavour variation of the constant unity matrix is clearly zero (while the
variation is generally zero outside ' where Oext is again defined).

Now it will become clearer why these two Ward identities (6) and (7) are of use. Having
inserted the improvement pattern for all operators, a divergence cancels when the two equations are
subtracted. The (cubic) divergence lies in the 4S(62

0) term in the improvement pattern of the flavour
singlet scalar density [10] (see [1] for a notation more similar to the one applied here),

((I)0(G) = (0(G) + 1
√

2#f
0−34S(62

0)1 +
1
√

2#f
06S(62

0)T̃r[�`a (G)�`a (G)] + O(02) , (8)

where T̃r stands for the trace over colour indices. Note that the discretised form of the field strength,
T̃r[�`a (G)�`a (G)], must be local, symmetric w.r.t. the site where the bilinear (0 is placed and based
on the gauge action employed, see [1]. We write this discretised form as {T̃r[��] (G)}(g .

3
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We apply the improvement scheme to (0 in both Ward identities (6) & (7) and subtract the now
O(0) improved Ward identities from one another as to make use of the fact that 〈0−34S(62

0)1O〉 =
〈0−34S(62

0)1〉〈O〉. So all terms containing 4S(62
0) are the same in both equations and cancel. The

combined Ward identity simplifies to

06
∑
G,y
(XG0,C2 − XG0,C1)

{[〈
�00 (G)(

0(H)O0
〉
−

〈
�00 (G)O

0
〉〈
(0(H)

〉]
(9a)

+ 06S√
2#f

[〈
�00 (G){T̃r[��] (H)}(gO0

〉
−

〈
�00 (G)O

0
〉〈
{T̃r[��] (H)}(g

〉]
(9b)

+02AmG0

[〈
%0 (G)(0(H)O0

〉
−

〈
%0 (G)O0

〉〈
(0(H)

〉]}
(9c)

−06
∑
x,y

20<
C2∑
G0=C1

l(G0)
{[〈

%0 (G)(0(H)O0
〉
−

〈
%0 (G)O0

〉〈
(0(H)

〉]
(9d)

+ 06S√
2#f

[〈
%0 (G){T̃r[��] (H)}(gO0

〉
−

〈
%0 (G)O0

〉〈
{T̃r[��] (H)}(g

〉]}
(9e)

= −
√

2
#f
03

∑
y
/Am〈%0 (H)O0〉 + O(0<, 02) , (9f)

having divided by /�/
0
(
and employed Am =

/S
/0
(

and / =
/P
/A/S

. Hence, the only unknown
quantity left is 6S; we already determined / and Am in [11] and 2A in [12]. Note that quark-line
disconnected diagrams appear in some of the three-point functions as a consequence of the flavour
singlet property of the Ward identity considered here. Our determinations of / and Am are based
on flavour non-singlet Ward identities; thus no such disconnected diagrams entered there.

3. Numerical Setup

!/0 V ^ #REP #sep [MDU] #cnfg 0<impr

12 3.4014 0.1368240 4 8 10466 0.00065(16)

16 3.5522 0.1371379 4 8 11992 0.000056(67)

20 3.6900 0.1371452 10 4 10000 0.000094(59)

24 3.8013 0.1370387 2 8 8000 −0.000008(35)

32 3.9764 0.1367450 2 4 10072 0.000011(14)

Table 1: Simulation parameters !(= )), V, ^, the number of replica #REP and #sep, the number of molecular
dynamics units, MDU, all configurations are separated by. The ensembles are labelled by their lattice extent
i.e. L12, L16, L20, L24, L32, and were originally generated as part of another study [13, 14]; we have
(approximately) doubled the statistics of the ensembles L12 and L16. For each ensemble we list the O(0)
improved PCAC mass 0<impr obtained by averaging over the local masses of the three central time slices.

We employ the tree-level Symanzik-improved gauge action with #f = 3 mass-degenerate O(0)
improved Wilson fermions. For the corresponding improvement coefficient 2sw we use the non-
perturbative determination of [15]. As for our earlier determination of / and Am [11] we impose

4
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Schrödinger functional boundary conditions at the temporal boundaries of the lattice since this setup
is well-suited for massless renormalisation schemes. All gauge field ensembles used in this study
are summarised in table 1 and lie on a precisely tuned line of constant physics (LCP), defined by
a fixed spatial and temporal extent of ! = ) ≈ 1 fm and (nearly) massless quarks, see table 1. For
the tuning, the gradient flow running coupling was kept constant, see [13, 14, 16]; the ensembles
were originally generated as part of another study [13, 14] and we have (approximately) doubled
the statistics of the ensembles L12 and L16. The LCP ensures that our estimates of 6S become
smooth functions of the lattice spacing, higher-order ambiguities vanishing monotonically. For all
ensembles we use one-loop boundary O(0) improvement for both the gauge and fermion fields (i.e.
the appropriate 2t, 2̃t values). For full O(0) improvement of the Schrödinger functional correlation
functions we additionally require the improvement coefficient 2A, non-perturbatively known from
[12]. Consequently, the quantity of interest, 6S, is the only unknown quantity in our numerical
calculations (based on eq. (10)) as we make use of our results for / and Am from [11].

Most of the needed correlation functions needed overlap with those already implemented and
evaluated in [11]. Due to the nowflavour singlet nature of theWard identities, two additional types of
correlation functions are relevant: we implement single propagator traces via stochastic estimators.
To reduce the variance at moderate cost we combine frequency splitting, to treat intermediatemodes,
and a hopping parameter expansion, to treat the high modes, as proposed in [17]. We incorporate
the necessary gluonic contributions in an openQCD based code [18], as anticipated below eq. (8),
including all contributing rectangles and plaquettes symmetrically w.r.t. the site of the bilinear.

The Markov chain Monte Carlo sampling of the gauge field configurations suffers from critical
slowing down of the topological charge for smaller lattice spacings. As in [11], we project the data
to the trivial topological sector (as suggested in [19]) so that the insufficient sampling of all sectors
is no longer relevant: Ward identities hold in one sector only as well, irrespective of the sector at
hand. The statistical error analysis is carried out with pyerrors, a python implementation [20] of
the Γ-method [21], combined with linear error propagation via automatic differentiation [22, 23].

4. Analysis

We write down the 6S Ward identity introduced in eq. (9) in terms of the Schrödinger func-
tional correlation functions with explicit flavour indices 8, 9 not summed over; note that the Wick
contractions are not written out here. We obtain1[

5
8 9 ,con
AS (C2, H0) − #f 5

8 9 ,disc
AS (C2, H0)

]
−

[
5
8 9 ,con
AS (C1, H0) − #f 5

8 9 ,disc
AS (C1, H0)

]
(10a)

+
[
5
8 9

A (C2) − 5
8 9

A (C1)
]
#f 5

88
〈S〉 (H0) (10b)

−6S

{
2
[
5
8 9 ,disc
AE (C2, H0) − 5 8 9 ,disc

AE (C1, H0)
]
− 2[ 5 8 9A (C2) − 5

8 9

A (C1)] 5 〈E〉 (H0)
}

(10c)

+2A

{
0mC2

[
5
8 9 ,con
PS (C2, H0) − #f 5

8 9 ,disc
PS (C2, H0)

]
− 0mC1

[
5
8 9 ,con
PS (C1, H0) − #f 5

8 9 ,disc
PS (C1, H0)

]
(10d)

1Note that we no longer use the conventions from [1] but those employed in [7] because of the way correlation
functions are defined in our openQCD based codes. In the former a hermitian �`a is used while an anti-hermitian
definition is utilised in the latter case. We still label the improvement parameter of the flavour singlet density by 6S from
[1], as before, by replacing 3S, used in the latter convention [7], by −6B as 6S = −3S.

5
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+
[
0mC2 5

8 9

P (C2) − 0mC1 5
8 9

P (C1)
]
#f 5

88
〈S〉 (H0)

}
(10e)

−20<
{[
5̃
8 9 ,con
PS (C1, C2, H0) − #f 5̃

8 9 ,disc
PS (C1, C2, H0)

]
+ 5̃ 8 9P (C1, C2)#f 5

88
〈S〉 (H0) (10f)

− 6S · 2
[
5̃
8 9 ,disc
PE (C1, C2, H0) − 5̃ 8 9P (C1, C2) 5 〈E〉 (H0)

]}
(10g)

=−2/Am 5
8 9

P (H0) + O(0<, 02) , (10h)

where ‘disc’ refers to quark-line disconnected contributions. In this notation the explicit #f

dependence, a consequence of the flavour singlet nature of the identity, becomes apparent: Clearly,
only the quark-line disconnected diagrams are multiplied by #f , in particular those that involve (0

and not those that are purely gluonic ( 5 〈E〉). Thus, regarding the Wick contractions this can be
understood as an additional quark loop for each additional quark flavour. Except for the quark-line
and gluonic disconnected contributions, this flavour singlet identity is not that different from the
flavour non-singlet case considered in [11] for the determination of /: The connected correlation
functions are the same, i.e. with the sameWick contractions, disregarding different prefactors which
result from the different flavour structures. Thus the definitions of the above correlation functions
can be found in the appendices of [11]. Note that ‘con’ superscripts were not used then because of
the lack of disconnected contributions. We list the additional correlation functions needed here:

5
8 9 ,disc
AS (G0, H0) = −

1
2
012

!3

∑
x,y,u,v

〈〈
k̄8 (G)W0W5k 9 (G) · Z̄ 9 (u)W5Z8 (v)

〉
F
·
〈
k̄ 9 (H)1k 9 (H)

〉
F

〉
�

. (11)

Substituting W0W5 by W5 we define 5
8 9 ,con
PS (G0, H0) and 5

8 9 ,disc
PS (G0, H0) analogously. For the same

analysis, we also need to establish

5
8 9 ,disc
AE (G0, H0) = −

1
2
09

!3

∑
x,y,u,v

〈〈
k̄8 (G)W0W5k 9 (G) · Z̄ 9 (u)W5Z8 (v)

〉
F
·
〈
� (H)

〉
F

〉
�

. (12)

and the purely gluonic case of 5 〈E〉 (H0) = 04/2 ∑
y〈T̃r[��] (H)〉� . The correlation functions

5̃
8 9 ,con
PS (C1, C2, H0), 5̃ 8 9 ,disc

PS (C1, C2, H0) and 5̃ 8 9 ,disc
PE (C1, C2, H0) are defined by

5̃ 8 9 (C1, C2, H0) =
C2∑
G0=C1

l(G0) 5 8 9 (G0, H0) where l(G0) =
{

1
2 , for G0 = C1, C2

1, otherwise
(13)

setting, e.g. 5 8 9 (G0, H0) = 5
8 9 ,con
PS (C1, C2, H0) for 5̃ 8 9 ,con

PS (C1, C2, H0). The single propagator trace
contributing is defined by 5 88〈S〉 (H0) = 03 ∑

y
〈
k̄8 (H)1k8 (H)

〉
.

We evaluate the Ward identity for #f = 3 on the ensembles summed up in table 1: by working
close to the chiral limit with (nearly) vanishing quark masses (see table 1), O(0<) effects may
be safely neglected and the Ward identity becomes valid up to O(02) cut-off effects. In [11] we
found that for our / Ward identity the term above proportional to the current quark mass <, which
can in principle be discarded in the chiral limit, still stabilises the chiral extrapolation (also found
in refs. [24–27] previously). Thus we prefer to keep it here too (even though we do not perform
chiral extrapolations here but extract the Ward identity in the (nearly) chiral limit). We evaluate the
operators %0 and (0 at C1 ≈ )/3 and C2 ≈ 2)/3 (labelled by )/3) respectively, or alternatively at
C1 ≈ )/4 and C2 ≈ 3)/4 (labelled by )/4). In practice, we round C1 and C2 to the nearest integer

6
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1.50 1.55 1.60 1.65 1.70 1.75
g2

0

0.02

0.01

0.00

0.01

0.02

0.03

0.04

g S

Nf = 3 pert. T/3 T/4

Figure 1: 6S results obtained via eq. (10) for #f = 3 using our / and Am interpolation formulas from [11] to
construct the /Am values at the given couplings needed. The perturbative prediction from eq. (3) (dashed red
line) cannot be directly compared to the 6S data points, see text below. The time interval [C1, C2] (in eq. (10))
is set to [)/4, 3)/4] (labelled by T/4) or [)/3, 2)/3] (labelled by T/3) as shown by different colours.

when )/3 and )/4 are not integers. We made the same choices previously for the determination of
/ in [11]. We extract the necessary PCAC mass plateaus by averaging over the local mass results
of the three central time slices, see table 1 for the results at each coupling.

Putting everything together and solving the Ward identity for 6S, we obtain 6S estimates at
five lattice spacings and for two choices of the time interval labelled )/3 and )/4, shown in fig. 1.
We find that both 6S estimates approach zero for small couplings and are even compatible with
zero within their respective 1f-errors at the two smallest couplings available; 6S at the next higher
coupling is close to zero as well. We also display the prediction from perturbation theory. Note that
this perturbative prediction needs to be treated with caution in the present context since it is derived
by applying 1g = 262

06S to the perturbative prediction of 1g, cf. eq. (3). As we will discuss in the
next section the 6S estimates here cannot be used in this relation to obtain 1g: for eq. (1) to hold
our non-perturbative definition of 6S through eq. (10) needs an additional term, which is merely an
O(0) ambiguity for 6S. Therefore, the perturbative prediction can only give us an idea of the order
of magnitude of 6S; as can be inferred from fig. 1 our 6S estimates differ from the perturbative
prediction but the order of magnitude agrees well.

5. Conclusion and Outlook

We were able to determine non-perturbative estimates for 6S for the first time. They were
determined employing the tree-level Symanzik-improved gauge action with #f = 3mass-degenerate
O(0) improved Wilson fermions and lie in the range of the CLS couplings, 62

0 ∈ [1.5, 1.77].
As to be able to make use of the 6S–1g relation and extract 1g estimates from our 6S estimates

additional steps are necessary. As derived in appendix A of [7] via gradient flow observables
the derivative of the full lattice action w.r.t. the coupling 62

0 enters the derivation of the 6S–1g

relation. In the action used here not only the gauge action depends on the coupling but also the
O(0) improved fermionic part of the action, through the improvement coefficient 2sw(62

0). This
introduces an additional term ∝ 2sw(62

0) in the derivation which was possibly overlooked in the
original publication [1]. For the 6S–1g relation to be preserved in the O(0) improved theory, this
term must also be taken into account in the choice of discretisation used for Tr(�`a�`a) (G) in the

7
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improvement of the flavour singlet density, introduced in eq. (8). This amounts to [7]

T̃r[�`a (G)�`a (G)] →
(
{T̃r[��] (G)}(g + 062

0 ×
m2sw(62

0)
m62

0

i
2
Oclover(G)

)
(14)

where {T̃r[��] (G)}(g is the discretisation only based on the gauge action, used to determine 6S

here. The additional term is the derivative w.r.t. 62
0 of the fermionic part of the full O(0) improved

action used here, introducing a dependence on the clover term.
Therefore, so that the 6S estimates can be related to 1g via 1g = 262

06S the additional, clover term
like expression needs to be included too, i.e. the Ward identity from eq. (9) needs to be reevaluated
with {T̃r[��] (G)}(g replaced by eq. (14). More precisely, we add to the l.h.s. of eq. (10) two terms
of the form (where ‘C’ stands for the insertion of the clover term like expression)

−6S

{ [
5
8 9 ,con(C2,H0)
AC − #f 5

8 9 ,disc
AC (C2, H0)

]
−

[
5
8 9 ,con
AC (C1, H0) − #f 5

8 9 ,disc
AC (C1, H0)

] }
, (15)

+20< · 6S

{ [
5̃
8 9 ,con
PC (C1, C2, H0) − #f 5̃

8 9 ,disc
PC (C1, C2, H0)

]
+ 5̃ 8 9P (C1, C2)#f 5

88
〈C〉 (H0)

}
(16)

similar to eq. (10a) and eq. (10f), respectively, i.e. with the clover term like part from eq. (14)
instead of (0 and with an additional factor, namely 6S. Despite its gluonic component, 5 〈C〉 (H0) can
be evaluated similarly to 5 88〈S〉 (H0) (cf. sect. 3) since the expectation value can be rearranged such
that the same single propagator trace ((G, G) appears,

5 〈C〉 (G0) ∼ −
03

2

∑
x

〈
((G, G)10VU

(
f`a�

clover
`a

)01
UV
(G)

〉
= −0

3

2

∑
x

〈
[: ,

(
f`a�

clover
`a

) :;
�−1[;

〉
(17)

where [: ([;) is the : (;)th (colour, Dirac) component of a stochastic noise source, : (;) = 1, ..., 12
and 0, 1 denote colour and U, VDirac indices. The term

(
f`a�

clover
`a

)
is a 12×12matrix (3×3 colour

matrix times 4 × 4 Dirac matrix). In practice this clover Dirac-colour matrix is computed on every
lattice point and multiplied by the stochastic estimator, which the inverse Dirac operator, �−1, is
applied to before. This implementation is the most challenging part and is currently being tested; the
coding of the other additional diagrams is more straight forward. Once all these additional diagrams
are implemented, we plan to redetermine 6S from the altered Ward identity. The new 6S estimates
are expected to differ from the former in cut-off effects. We then plan to apply 1g = 262

06S to extract
non-perturbative 1g estimates in the range of the CLS couplings, 62

0 ∈ [1.5, 1.77]. Ultimately, we
then intend to fit 1g(62

0) as a smooth function of 62
0 including the one-loop perturbative constraint

from eq. (2) as to arrive at an interpolation formula. We plan to repeat the same procedure for the
altered 6S using the perturbative constraint from eq. (3).
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