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Abstract

The study of supersymmetric quantum field theories (SQFTs) has been of high interest in theoretical
physics for many years now. It has led to developments in the understanding of many topics such
as conformal field theories, the AdS/CFT correspondence and non-supersymmetric QFTs, to name
just a few. SQFTs may admit continuous families of vacua, and the continuous vacuum expectation
values (VEVSs) trace out a geometric space. The space traced out by physically distinct VEVs is
termed the moduli space of the theory. Geometric properties of a point on the moduli space of a
theory relate to physical properties of the theory in the corresponding vacuum state; one can explore
the physics of a theory by studying its moduli space as a mathematical object. The properties of
the moduli space that this note contributes to the understanding of are its global symmetry, and its
Poisson bracket.

We are concerned with the Coulomb branches of 3d N = 4 quiver gauge theories, at their IR fixed
point. In particular, the Coulomb branches we focus on have a global symmetry which is a product of
the SU(2)r R-symmetry and the topological global symmetry GS, and are symplectic singularities.
The symplectic form induces a Poisson structure, and degenerates at the singularities. The Coulomb
branch global symmetry and Poisson bracket are of interest because, as mentioned above, they cor-
respond to physical properties of the theory. In SQFT, particles are understood as excitations of the
vacuum state and are labelled by their charges under the global symmetries of the theory. The more
massless states that have been integrated out in a particular vacuum state, the more the Poisson
bracket degenerates at the corresponding point on the moduli space. This thesis is devoted to recent
developments made in the aid of being able to read off these properties from a given 3d N = 4 quiver
using only simple graph theory operations. In the case of the global symmetry, an attempt at such an
algorithm exists, but it does not work unanimously. We help to understand its failure, and suggest
an amendment which works on a wider set of quivers. In the case of the Poisson bracket, we provide a
conjecture for computing it for quivers of high rank, and in particular for magnetic quivers for certain

5 and 6d Higgs branches at infinite coupling.
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Chapter 1

Introduction

In this work, we present recent progress made in two areas: in finding a method for deciphering (a)
the global symmetry and (b) the Poisson brackets of a 3d A’ = 4 Coulomb branch C from its quiver
Q. The former is useful as the global symmetries of the Coulomb branch elicit conserved charges in
the theory [1], under which the particles in each vacuum state are labelled. The latter relates to the
symplectic form of the Coulomb branch, a key ingredient for categorising it as a symplectic singularity
[2, 3]. It is of interest to us to study Coulomb branches as mathematical entities, as the geometric
properties at a point on the Coulomb branch correspond to physical properties of the vacuum lying
at the point. In particular, we will study the IR fixed points’ of Coulomb branches of “good” or
“ugly” [4] 3d N =4 unitary quiver gauge theories with no mass parameters, such that said Coulomb

branches are symplectic singularities.

Before diving deeper into our specific area of study, we take a brief step back to ask why such a field
is of interest. At surface-level, we are concerned with the moduli spaces of supersymmetric gauge
theories. So, why supersymmetry? Why the moduli space?

Supersymmetry is the notion that every boson has a fermionic superpartner and vice versa. The su-
perpartner of a particle has identical mass to it but spin which differs by one half. Supersymmetry was
phenomenologically attractive early in its inception as it provided a solution to the so-called heirar-
chy problem of the standard model. It’s theoretically viable too, as it evades the Coleman-Mandula
postulates; it’s an allowed additional global symmetry of a Poincaré-invariant theory. Moreover, it
was actually predicted by string theory, the theory believed by many to be the best candidate for a
“theory of everything”. It’s clear from the lack of superpartners that supersymmetry is spontaneously
broken in the vacuum state of our world, but it is possible that it would emerge at higher energies.
As time goes on and evidence for supersymmetry is still yet to be found at higher and higher energies,
the hope of finding superpartners (and thus the phenomenological motivation for supersymmetry)
is dwindling. However, this does not mean there is a lack of motivation to study supersymmetric
theories. The mathematical structure behind supersymmetry is used in many areas of physics, mak-
ing it still of practical interest. Then there is the theoretical interest. Incorporating supersymmetry
simplifies many problems. Theories with it enjoy nice properties, such as the protection of certain
quantities under the renormalisation group (RG) flow. This makes supersymmetric theories good toy

models for their non-supersymmetric counterparts, helping us to learn of their behaviour in an arena

INote that having an infrared (IR) fixed point implies that the theory contains “sufficient matter” [4].
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in which we can actually perform computations.

The moduli space M of a theory is its set of gauge-inequivalent vacua. This is an important object
to study for many reasons, the most obvious of which is that it tells us the possible spectra. In many
quantum field theories (QFTs) M is trivial or rather uninteresting, but in supersymmetric gauge the-
ories there are often continuous families of vacua parameterising a moduli space with rich structure.
This is especially prevelant in gauge theories with eight supercharges, where the representations of
the superPoincaré algebra give a natural splitting of M into the Coulomb branch, Higgs branch and
possible mized branches. The Higgs branch at finite coupling remains classically exact all along the
RG flow, and is well understood. The Coulomb branch however receives quantum corrections, and in
general it’s not known how to practically deal with these. However, for the specific case of 3d N = 4
theories there is an alternative route that can be pursued to make progress: at the IR fixed point, the
Coulomb branch can be described by half-BPS dressed monopole operators. This thesis focuses on
using this viewpoint to contribute further developments to the study of 3d N = 4 Coulomb branches.
The only Higgs branches studied are those taken from 5 and 6d theories at infinite coupling, which
can be described by the Coulomb branch of a 3d A = 4 theory.

It was conjectured in [5] that 3d A/ = 4 Coulomb branches are symplectic singularities? in the sense
of [2]: roughly speaking, they are algebraic varieties with a symplectic form w containing zero or
more singular points at which w degenerates. Algebraic geometry then tells us that such an object is
described fully by the ring of holomorphic functions over it, which for 3d N' = 4 Coulomb branches
is believed to be isomorphic to the chiral ring. A chiral operator in a theory is an operator which
is annihilated by all supercharges of one chirality (it preserves half the supersymmetry). The chiral
ring is then the set of all gauge-invariant chiral operators which satisfy the vacuum constraints. It
is a commutative ring; the Coulomb branch can be categorised exactly as an algebraic variety if the
explicit form of the chiral operators generating it and any relations they satisfy can be found. This is
typically too challenging to do, but there are still good steps we can take towards fully categorising C
as a symplectic singularity, as we do have methods to compute many of its properties. Examples of
such properties that we take interest in are its dimension, Hilbert series, global symmetry, singularity

structure and symplectic form.

At the top of this introduction, we were far more specific with the moduli spaces that we study than
simply “3d N =4 Coulomb branches”. However, all the other caveats, for example that we consider
only gauge theories and not ones which incorporate gravity, are simply there because it is for these
theories that we have been able to develop techniques to successfully study them. Any progress
enabling us to drop any of these caveats, for example a method to study the Coulomb branch in
the infrared but not at the SCFT, would be most welcome, but for now we study what we have an

understanding of.

A tool which aids our studies is that of the quiver Q [6]. The information in many® 3d N = 4 gauge

?Note that there are caveats to this conjecture; there exist 3d A/ = 4 quivers for which the Coulomb branch is not a
symplectic singularity. For example, the Coulomb branches of many unitary quivers satisfying gcd(gauge node ranks) >
1. We don’t mention these caveats in the main text as we will exclude any quivers whose Coulomb branches are known
to not be symplectic singularities from our study.

3The first theories realised as quiver theories were those describing D-branes probing orbifolds, but the techniques

used have since been generalised to a wider set of theories.



11 CHAPTER 1. INTRODUCTION

theories can be entirely encoded in a quiver diagram; such theories are called quiver gauge theories.*

In cases where the quiver theory has a Lagrangian £, the quiver is entirely equivalent to £. However
there are quivers for which there is no Lagrangian interpretation; they can help us to study classically
inaccessible theories. The idea behind using quivers is to simplify problems by translating complex
traditional SQFT methods performed on L to simple graph theory computations performed on Q.
Indeed our end goal is to establish simple algorithms to read off any property of the Coulomb branch
from the quiver. In recent history many techniques have been developed in aid of this goal, but the
three we will employ the most heavily in this note are the monopole formula [7], the magnetic quiver
[8], and the Hasse diagram [9]. The methodology and results presented in this thesis in Chapters 3
and 4, based on our works [10] and [11] respectively, hopefully provide additional helpful steps along
the way to realising this goal for two particular properties of interest on C: the global symmetry and
the symplectic form.

The global symmetry of the Coulomb branch is the product of the SU(2)r R-symmetry and the
topological symmetry GS. In the UV, the topological symmetry of a theory with unitary gauge group
containing a unitary factors is U(1)%, but upon flowing to the infrared fixed point, this is often
enhanced to some larger group GS for whom this abelian symmetry is the maximal torus. The
monopole formula [7] allows us to compute the refined Hilbert series for the Coulomb branch, which
counts the operators lying on it graded by their weights under SU(2)r and GS. The #? term of this
(possibly after a fugacity map) gives the fundamental weight character of the adjoint representation
of GS [12].° Whilst this is a reliable method to find GS, it takes time to implement and for quivers
of sufficiently high rank it is too computationally intensive to do. We would like to realise GS simply
from looking at the quiver. By and large, this can be done by applying an algorithm [14] based on the
quiver’s balanced gauge nodes [4]. However, there are many quivers known for which this algorithm
only gives a strict subgroup of GS. We constructed the bulk of such quivers in [10], building on the
few already existing in the literature (see for example [15, 16]). Our findings of the failure of the
balance algorithm to always give the full GS group show that there is a need to make alterations
to it, and the method we used to construct the quivers for which the algorithm fails naturally leads
to one possible amendment. We detail this amended algorithm, which gives the correct GS for all

quivers that the previous algorithm worked for, and all quivers constructed in [10].°

The symplectic form w defines C as a symplectic singularity, and naturally induces a Poisson bracket
{*,-}¢. The Poisson brackets between the generators of C as a symplectic singularity, Ge, fix all Poisson
brackets on C due to the commutative nature of the chiral ring and the Leibniz and antisymmetric
properties of the Poisson bracket, and helps us to learn of the symplectic form. In particular, the
symplectic form and Poisson brackets degenerate at the same points, and thus {-,-}¢ provides key
information about the singularity structure of C. There has been previous progress with determining
Poisson brackets in the literature, see for instance [17, 3, 18, 19, 20]. In [11] we contribute to this by

4We will sometimes refer to quiver gauge theories simply as quiver theories or quivers for brevity.

5Note that weights only capture the local behaviour of a group; the global form of GS can be obtained from
studying the representations which generate the Hilbert series and their charges under the centre of GS (see comments
in Appendix A of [13], for example). In the rest of this thesis, we omit the “local form” caveat for brevity; whenever
we say global symmetry or GS, we really mean its local form. We do not include the global form as it will not be
important for our discussions or results.

6Note that there are still quivers that this amended algorithm does not cater for, but it is an improvement on what
existed previously.
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extending the methodology to certain unitary quivers of arbitrarily high rank, using representation

theory, conserved charges and the dressed monopole construction of the Coulomb branch.

This thesis is organised as follows. In Chapter 2, we provide a recap of the background material nec-
essary to follow the workings of and results in this note, and a summary of some key terminology and
notation used. Topics discussed are supersymmetry, quivers, categorising algebrogeometric objects,
3d N = 4 Coulomb branches, Hilbert series’, magnetic quivers and Hasse diagrams. Chapter 3 is
dedicated to the work of [10], constructing infinitely many quivers on which the algorithm for deter-
mining GS from the balance fails, and providing an amendment to the algorithm to fix this failing.
In Chapter 4 we detail the work of [11], giving the Poisson brackets between Coulomb branch opera-
tors for Klein singularities, nilpotent orbits and magnetic quivers of certain five and six dimensional
theories at infinite coupling. Finally, we summarise our results and discuss possible future directions
in Chapter 5. Appendices A and B cover two techniques needed to understand specific methodologies
used in Chapters 3 and 4: discrete projections and tensor, symmetric and antisymmetric products

respectively.

In the course of the following discussions, we often omit caveats that apply to all our statements to
avoid excessive repetition. For example, we may make a statement about Coulomb branches that
does not hold in general and is only intended to be taken for the specific quivers we study (which
are subject to several conditions, as mentioned in the first paragraph of this introduction), but not
explicitly state this. There are several such caveats that we will omit some or all of at different stages
in the remainder of this work, and so as to not mislead the reader we make an explicit summary here

clarifying the inherent omissions in the terminology used in the following chapters:

- When we talk about a “quiver” or “theory”, we mean a good or ugly 3d N = 4 unitary quiver
gauge theory with no mass parameters, such that its Coulomb branch at the IR fixed point is

a symplectic singularity.

- When we talk about a “Coulomb branch” for a quiver (see above point), we really mean the IR
fixed point of the Coulomb branch for this quiver.

- We rarely mention Higgs branches; unless specified otherwise, all objects that could belong to
the Coulomb or Higgs branch should be assumed to be referring to the Coulomb branch case.
For example “Hasse diagram” means “Coulomb branch Hasse diagram”, “global symmetry”

means “Coulomb branch global symmetry” and so on.

+ The Coulomb branch global symmetry of a quiver is a product of the SU(2)r R-symmetry
and the topological symmetry GS. However whenever we say global symmetry, unless specified
otherwise, we refer solely to the local form of the topological component; the global form will
not be important for our discussions or results (and can be determined from the Hilbert series
in any case), and the R-symmetry is already established and thus not worth mentioning. That
is, “global symmetry” and “GS” both refer to the Coulomb branch topological symmetry.

- We may refer to a quiver )7 as being “in the Hasse diagram” of another quiver Q)2. By this,
we mean that the Coulomb branch of @)y is the closure of some symplectic leaf in the Hasse

diagram of the Coulomb branch of Q5.

- We may refer to an algebraic variety V either as itself or as the quiver () whose Coulomb branch
is isomorphic to it (the Coulomb quiver). Similarly we may refer to a quiver @ as itself or as

the variety V that is isomorphic to its Coulomb branch.
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- For an unframed non-simply-laced quiver, the Coulomb branch we refer to is that obtained from

ungauging on a long node (the choice of which long node is irrelevant).

Each of these abbreviations will also be stated in the text at their natural introduction; we summarise
them here for the reader’s convenience. Chapter 2 should clarify any terminology unfamiliar to the

reader appearing in the above list.



Chapter 2

Background Material

As mentioned in Chapter 1, we exclusively study the IR fixed points of Coulomb branches of uni-
tary “good” and “ugly” 3d N =4 quiver gauge theories [4] with no mass parameters, such that said
Coulomb branches are symplectic singularities [2].> In particular, the new results presented in this
thesis in Chapters 3 and 4 pertain to the global symmetry of the Coulomb branch and the Poisson
brackets between the vacua at different points on it. This chapter serves as a recap of the necessary
prerequisite knowledge and techniques needed to understand our discussions. The author would like
to stress that there exist many more techniques to probe 3d N = 4 Coulomb branches than those
discussed in this section, see for example [21, 22, 23, 24, 25, 26, 27, 28, 29].

Section 2.1 kicks off with some basic supersymmetry, with particular focus to find the allowed rep-
resentations of the superPoincaré algebra in a 3d N = 4 gauge theory [30]. Many such theories are
completely encoded by their gauge group, matter content, and how the matter transforms under
the gauge group, and this information can be entirely summarised in a diagram called a quiver [6].
Section 2.2 is devoted to discussing how this is done. Here we will also introduce the notion of balance
[4], which will be crucial for Chapter 3. Once we have understood the Lagrangian content of these
theories we can then move on to discuss the moduli space, the topic of Section 2.3. Here we see the
moduli space in two lights: as the set of vacua of a physical theory, and as an algebrogeometric object.
Supersymmetric theories typically have much richer moduli spaces than a generic QFT, and in fact
the ones we study are HyperKdhler cones or symplectic singularities. We address some interesting
properties of such objects, and see how to categorise them. Section 2.4 then further specialises the
discussion of moduli spaces to the type that is the subject of this thesis, the 3d N = 4 Coulomb
branch, and details how it is described. The moduli space is naturally considered in the IR, where
the theories we study are strongly coupled. In Section 2.4.1 we see how the Coulomb branch of
the classical UV SCFT defined by the quiver theory receives quantum corrections upon flowing to
the IR. It is not known how to implement these corrections in general for a theory, but as we show
in Section 2.4.2, we are able to describe the quantum Coulomb branch at the IR fixed point using
dressed monopole operators [31, 32]. In Section 2.5 we discuss how we can use this viewpoint to find
properties of the Coulomb branch that are of interest, enabling us to make progress with categorising
C as a symplectic singularity. One tool which enables us to do this is the Hilbert series [33] of the
Coulomb branch, which can be computed using the monopole formula [7]. How to calculate and inter-
pret this is the topic of Section 2.6. The Hasse diagram of Coulomb branches (or of Higgs branches,
via their magnetic quiver [8]), which explores their singularity structure and gives hints about the

global symmetry, can be found using quiver subtraction [34]. Hasse diagrams, magnetic quivers and

14
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quiver subtraction are the final tools we’ll use in this thesis, and Section 2.7 is dedicated to their

review.

2.1 Supersymmetry

In this section we recap the necessary basics of supersymmetry to understand the physics discussed
and terminology used in the following chapters; it is aimed at readers already familiar with the topics
discussed, and is not intended as a comprehensive overview of the subject. For a thorough discussion

of the principles and derivation of supersymmetry, see for example [30].

Recall that the subject of our work is the space of half-BPS Coulomb branch vacua in 3d N = 4
gauge theories with no mass parameters. Particles in a theory are excitations of the vacuum and
must fit into representations of the global symmetry; the particles we consider lie in supermultiplets,
representations of the superPoincaré algebra. Vacua are necessarily Lorentz scalars (we will drop
the “Lorentz” from here on in for ease), hence for us it will be sufficient to limit our recap of
supersymmetry to the scalars that show up in the 3d A = 4 massless supermultiplets that have no
component whose absolute value of spin exceeds 1. We will arrive at this in Section 2.1.2.3, but in
order to properly understand what we find, we will briefly recap the idea of supersymmetry, the 4d

N =1 superPoincaré algebra, and the 4d A/ = 1,2 multiplets along the way.

2.1.1 The superPoincaré algebra

In a four-dimensional non-supersymmetric theory, Coleman-Mandula states (with a few caveats) that
the only non-internal symmetries allowed are that of the Poincaré group: translations and Lorentz
transformations, 7.SO(1,3). These are bosonic symmetries; their generators (P* and M" respec-
tively) form a purely-even Lie algebra, the Poincaré algebra. All particles in the theory, such as gauge
bosons, electrons, the Higgs boson etc. lie in representations of this algebra (for the listed examples

these are the vector, fundamental and trivial representation respectively).

When elevating such a theory to be supersymmetric, we want every particle from the non-supersymmetric
theory to have a superpartner, which has all the same conserved charges as the particle except for its
spin, which differs by a half. The name of the fermionic (bosonic) superpartner of a boson (fermion)
is obtained by adding “ino” to the end of the name (adding “s” to the front of the name). For
example, the superpartner of the electron is the selectron and the superpartner of the gauge boson is

the gaugino.

To successfully implement this symmetry between bosons and fermions, we need to introduce an

operator Q which acts on a fermion to give a boson, and vice versa:
Q |fermion) = [boson), Q |boson) = |fermion) . (2.1.1)

Such operators must satisfy certain constraints. They must be spin one-half operators, since they
change the spin of the operator on which they act by this amount. Additionally, to live in a Poincaré-
invariant space-time, they must additionally be part of a representation of the Poincaré algebra in our
four-dimensional theory. Thus the simplest way we can introduce these supersymmetry generators

L. INto our 1our dimensiona. eory 1s as two Spinors /o, an 9k in € representa ions 5
2.1.1) int four dimensional theory is as t i d Q% in th tat 1.0
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and (0, 3) of the Lorentz algebra so(1,3) = sl(2;C) = su(2) ® su(2)." We use su(2) @ su(2) charges
(41,72) to denote the representations of the Lorentz algebra, and sl(2;C) indices «, & = 1,2 to denote
the left and right (or chiral and anti-chiral) spinors respectively. These indices can be raised and

lowered using the sl(2; C)-invariant tensors eag, €,4-

We call the four combined components of Q, and Q¢ the four supercharges of the theory: the degrees
of freedom generating the supersymmetry. In four dimensions, a theory with four supercharges is
called a 4d N =1 theory.? Together with P* and M*" they form a superPoincaré algebra, a graded
algbera with a Lie bracket which acts on pairs of fermions as an anticommutator, but as a commutator
in all other instances. The only non-vanishing Lie bracket between the supercharges is between the

conjugates, which pair to give the momentum tensor:
{Qav@d} :2(Uu)adpu~ (212)

The o* that contract the vector indices are the Pauli matrices that generate sl(2;C):

1 1 —i 1
R ) TR L I L 1. (2.1.3)
01 10 i 0 0 -1

whose rows are labelled by spinor indices «, and columns by conjugate spinor indices &. The factor
of two in (2.1.2) is chosen by convention for ease. By matching indices and use of the Jacobi identity,

it also follows that the Lie brackets of the supercharges with the Poincaré generators are

[Qu, M*] = (6")" Qs
[Qéﬁ Mlu‘l/] = _(6’#V)BQQ67

2.1.4
[Qa, P*] =0, (21
[Qdapu] = 0)
where
(0")a" = $(0"5" - " 5")a",
. ‘Z’f . (2.1.5)
(") = Z(5“0” -a"a")%,
and
(6—N)da = (1’_0_17_0_27_0_3)010(. (216)

Much like how a particle in a non-supersymmetric theory lies in a representation of the Poincaré
algebra, a particle in a supersymmetric theory lies in a representation of the superPoincaré algebra.

These representations are called supermultiplets.

1 Our notation here is slightly sloppy: it is not true that so(1,3) = su(2) @ su(2), as the latter is compact while the
former is not. However this issue dissolves under complexification; certain complex linear combinations of su(2) ®su(2)
are isomorphic to s0(1, 3), and hence our discussion of Lorentz representations as (j1,j2) under su(2) ®su(2) is justified.

2This N refers to the quotient of the number of supercharges by the dimension of the spinor representation in
the given number of dimensions. In 4d the Lorentz algebra is so0(1,3) = s0(4) = su(2) @ su(2), and here the spinor
representation has dimension 4. Hence a four supercharge theory has N’ = 1. A four-dimensional theory with eight
supercharges, say {Q71,q, Q?, QrIl,a» Q?I}, will have A/ = 2. In three dimensions the Lorentz algebra is so(1,2) =
50(3) 2 su(2), the spinor representation of which has dimension 2, hence a three-dimensional theory with four or eight
supercharges has N =2 or N = 4, respectively.



17 CHAPTER 2. BACKGROUND MATERIAL

2.1.2 Constructing supermultiplets

To build representations of the superPoincaré algebra we start with projective irreducible representa-
tions of the Poincaré algebra, and act on them with supercharges to build supermultiplets containing
states of differing spin but identical mass.® The details of constructing supermultiplets differs slightly
in the massive case to the massless case, and since in our work we study only theories with no mass
parameters* we will discuss only the massless construction here. We focus first on the multiplets in
a 4d N = 1 theory, before extending our discussion to 4d N = 2, from which we can dimensionally

reduce to arrive at the desired multiplets of a 3d A/ = 4 theory.

2.1.2.1 4d N =1

The mass Casimir m? = P,P*# is used to label irreps of the Poincaré group. Consider a massless
particle. Then we can always boost and rotate to a frame in which all motion is in the 2% direction,
i.e. its momentum vector is

pu=(£,0,0,E). (2.1.7)

This clearly gives m? = 0, but upon fixing this p,, there is still an ISO(2) symmetry remaining as
we can either translate or rotate the 2! and z? dimensions and still leave p,, invariant. In theory,
the translations of this ISO(2) can be labelled by a continuous vector k = (k1,k2). If a non-trivial
translation is performed, then the SO(2) c I50(2) is no longer a symmetry, and in this case the
particle is labelled by |p,, k). However if k = 0, the SO(2) rotations of 2% and z%, M2, are still a
symmetry. Projective irreducible representations of this SO(2) 2 U(1) are labelled by half-integers:
the eigenvalues A of M'2. In nature, we do not observe massless particles with continuous spin k but
instead with half-integral spin A, hence we declare that k = 0 and see that massless particles must be

labelled with their momentum p,, and helicity® X %Z:

s A) - (2.1.8)

Note that (2.1.8) is specified by a single value A, but we know a massless particle has two polari-
sations. This is reconciled by completing (2.1.8) with its CPT conjugate [p,;-A). In summary, the
representation of a massless particle is comprised of two states:

|pu;>\>v |p#§_)\) . (2.1.9)

In SUSY, spin is no longer a Casimir of the global symmetry algebra, and a representation is built by
acting on a Poincaré state |p,; A\) with @ and @ to find the states with other helicities |p,,; 5\) living
in the same mulitplet. We can see that all states in a multiplet will have the same mass (i.e. P,P" is
still a Casimir of SUSY) by virtue of the fact that [Q, P] =0 = [@, P]. Since we’re considering a frame
in which our massless particles have momentum (2.1.7), we can see that for us the supersymmetry

algebra is
~ 4F 0
which immediately tells us
Q2=Q5=0, [Q1lpu;\)|>=4E. (2.1.11)

3Upon including supersymmetry, the mass Casimir P, P* of the Poincarré group is preserved, but the Pauli-Lubanski
Casimir W, W*# is not.
4The singularity of the 3d N = 4 Coulomb branches we study is resolved by the inclusion of mass parameters.

5Throughout this note, we often sloppily refer to helicity as spin.
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We can also see that ()1 lowers spin by %, Le. Q1lpuiA) o< [pus A — %)
M Q1 lps A) = ([M'2, Q1]+ QiM™) [ps \)
1
=5 Q1P A) + QAP A) (2.1.12)

==l

We can similarly show that Qi raises spin by % Thus Qi, 1 act as raising and lowering operators
we can use to build our supermultiplets; if we define

1
a=—=0,
2VE (2.1.13)
at=—Lt 0.
2WE "
then a,a’ satisfy the Clifford algebra
{a,a™} =1, a®=(a")?=0. (2.1.14)
Starting from a state |p,; A), all possible states in the supermultiplet are then
1
[4) = P A)s IB) = al b A) o< ps A+ ). (2.1.15)

There is no |C) = [p,; A - 1), because this would be related to | B) by two actions of a, but this vanishes
due to its nilpotency.® Since we are interested only in supersymmetric gauge theories (no gravity),
we will only be interested in supermultiplets containing spins with absolute value < 1. According to
building multiplets as in (2.1.15), this amounts to starting with a Poincaré rep of either spin A = 0 or

A= %, giving the chiral and vector multiplets respectively:

o
|pu;>\ =0) ——— |p,u;)‘ = %)
Chiral multiplet: ¢ J-r CPT J+ CPT ¢
= Sy = 1
Qi
PusA=35) —— lpus A =1)
Vector multiplet: X J+ CPT J-r CPT , A,
A=-1 A=-1
|p,ua 2) |pu7 > (2117)

The chiral multiplet contains one complex scalar ¢ and one Weyl fermion ¥, made up of the CPT
conjugate [p,; A = 0) and [p,; A = :t%) states in (2.1.16), respectively. The vector multiplet contains one
Weyl fermion x and one gauge boson A,,, made up of the CPT conjugate |p,; A = :I:%) and |pu; A = £1)
states in (2.1.17), respectively. Clearly each has two fermionic and two bosonic degrees of freedom

60bviously we could have instead chosen |p,;\) and |pu; X — %) to live in the same multiplet instead; the Clifford
algebra merely restricts to two states, and so the choice between this configuration and (2.1.15) is equivalent to declaring
|pu; A) as either the state highest or lowest spin in the multiplet.
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(on-shell);” indeed the symmetry between bosons and fermions has been realised.

We can see that the gauge degrees of freedom in the theory lie in the vector multiplet, whereas the
chiral multiplet encodes the matter content. Gauge symmetries commute with the supercharges; all
particles in a supermultiplet transform in the same way under the gauge symmetry G. Hence x is

constrained to be in the adjoint representation of G whereas ¢, can lie in any representation R.

2.1.2.2 4d N =2

The starting point for constructing massless 4d N = 2 supermultiplets is the same as for 4d N = 1:
the 4d massless Poincaré irreps |p,;A). The only difference now is that we add in two pairs of

supercharges, logically extending the supersymmetry algebra:
{Qa,Qd} =2(0")aa P67,
{Qa. Q5 =eap 27,
{Q.Q8) = 5 (Z1)2,
[Qa, M™] = (") QF, (2.1.18)
[Q4, M"™] = ("), QF,
(4, P']=
(@&, P =0,

for A,B =1,2 and Z4P the so-called central charges of the theory. As in Section 2.1.2.1, a massless

Poincaré state is comprised of |p,; +A) for p, = (E,0,0, E), but now we have

{Q4,Q5) = (4E 8) 545, (2.1.19)

(2.1.19) tells us that for massless states the central charges vanish, and everything is analogous to

the 4d N =1 case except for that we now have two mutually anticommuting sets of ladder operators

ots 0l (@i

for A=1,2, and thus in each multiplet we have four states,

i A, @) A) (@) A), (@) (@) b A, (2.1.21)

plus their CPT conjugates. For gauge theories then, there are two such multiplets, the hypermultiplet

A
2\/—62 (2.1.20)

and vector multiplet, obtained from starting with a state of helicity A = —% and A = 0 respectively:

|p;47 = _%)
Hypermultiplet: lpu; A =0) Ipu; A =0) )
DA

(2.1.22)

7Off-shell, there are additional auxiliary degrees of freedom.
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|pu; A= 0)

e

|p/u/\:%> ’

&

|pua )‘ - 1)

Vector multiplet: Du;A=3)

7

(2.1.23)

plus the CPT conjugate of each state. The hypermultiplet contains two Weyl spinors 11, ¥ and two
complex scalars ¢1, ¢2. The vectormultiplet contains one gauge boson A,,, two Weyl spinors x1, X2
and one complex scalar ¢. The vector multiplet again encodes the gauge degrees of freedom and is
constrained to the adjoint representation of the gauge group G, whereas the hypermultiplet is free to
lie in any representation R of G and encodes the matter content of the theory. We can see that the
4d N = 2 hypermultiplet is comprised of two 4d N =1 chiral multiplets in conjugate representations,
and the 4d N = 2 vector multiplet is comprised of one 4d N = 1 vector multiplet and one 4d N =1
chiral multiplet, each in the adjoint representation of G. As before, the bosonic and fermionic degrees

of freedom in each multiplet match, this time taking value 4.

2.1.2.3 3dN=4

Both 4d N = 2 theories and 3d N = 4 theories have the same amount of supersymmetry: 8 super-
charges. Thus to go from representations in 4d A =2 to 3d A =4 we simply need to decompose 4d
Poincaré irreps into 3d ones. This amounts to decomposing s0(1,3) = su(2) ® su(2) Lorentz repre-
sentations into so(1,2) = su(2) representations® (the translational component of the Poincaré group
plays the same role in three dimensions as in four, giving a conserved mass charge). The SO(1,3)
Lorentz irreps that appeared in our 4d A = 2 theory are those in (2.1.22) and (2.1.23): the vector
Ay in [1,1]su(2)@su(2); left and right Weyl spinors 1 and 1 in [1,0]su(z)@su(z) and [0, 1]su(2)@su(2)
respectively; and complex scalar ¢ in [0,0]s(2)@su(2)- These representations decompose as:

[L 1]su(z)®su(z) - [2]511(1) + [O]ﬁu(z)a
1,0 — 1 ,
[ ]5u(2)®5u(z) [ ]5u(z) (2-1.24)
[O» 1]5u(2)®5u(2) - [1]511(2)7
[070]511(2)@511(2) - [0]511(2)7
and hence the degrees of freedom in the 3d N = 4 supermultiplets are
Hypermultiplet Vector multiplet
Two complex scalars @1, @9 One gauge boson A,
Two spinors 1,1 One real scalar ¢, . (2.1.25)

One complex scalar ¢g + i¢3

Two spinors X1, X2

As we will see in Section 2.3 and beyond, in our studies we will be particularly interested in the scalar
elements of hypermultiplets and abelian vectormultiplets. The real scalar degrees of freedom in each

8Here resurfaces the sloppy notation for isomorphisms of algebras mentioned before!; the same caveat applies here.



21 CHAPTER 2. BACKGROUND MATERIAL

of these multiplets are as follows:

Hypermultiplet U(1) Vector multiplet

Four real scalars 1,2, @3, 04 | Three real scalars ¢1,¢2, d3 | , (2.1.26)

One dual photon v

where the dual photon v arises as the O-form which the Hodge dual of the field strength” is the
exterior derivative of [35]. It can take any VEV on the circle [36].

2.2 Quivers

Quivers Q0 are diagrams comprised of nodes and edges which encode and simplify the content
of a Lagrangian [6]: traditional Lagrangian SQFT calculations are translated into simple graph
theory operations on (). This section is primarily devoted to seeing how this works for 3d N = 4
gauge theories, but also illustrates how the notation decomposes into the 4-supercharge 3d N = 2
supermultiplets. We will also address the notions of excess and balance, which are needed both in
Section 2.4.2 to define “good” and “ugly” theories, and in the work of Chapter 3.

2.2.1 3d N =4 notation

Recall from Section 2.1 that in a 3d N = 4 gauge theory there are two types of representations of
the superPoincaré algebra, vectormultiplets and hypermultiplets (2.1.25). To build a Lagrangian
theory then, all we need to know is what gauge group G (vectormultiplets) we have, what matter
(hypermultiplets) we have, and the representation R of G that the hypermultiplets transform under.
To construct a quiver then, we just need a graphical notation for each of these things. We denote the

vectormultiplet for a gauge group G; by a circular node, called a gauge node, labelled by its name:

O
Gi (2.2.1)
In our case, since we will only consider unitary groups G; = U(n;), we will simplify the label to the

rank of the gauge group. That is, a gauge group G; = U(n;) is denoted by

O
i (2.2.2)

We denote a hypermultiplet with a line, called a (simply-laced) edge:*!
— (2.2.3)

Free hypermultiplets do not contribute interestingly to our discussions; we wish to depict hypermul-
tiplets in some representation R of the gauge group U(n;). We do this for k hypermultiplets by
connecting the edge denoting them to the gauge node U(n;) in question, possibly with some addi-
tional notation (depending on R), and terminating the other end of the edge at a square box called
a flavour node, labelled by the number of hypermultiplets k. If R is the fundamental representation

9% F is exact by virtue of the equation of motion for the field strength and the Poincaré lemma, assuming the theory
lives on a contractible topological space.

10From now on, Q will be used to denote quivers; an algebraic notation for supercharges will no longer be required.

H1We usually omit the “simply-laced”, and instead specify when an edge is non-simply laced (see below).
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of U(n;), we leave the edge plain. For example, suppose we have a U(n) gauge node, and wish to

add k hypermultiplets in its fundamental representation. Then our quiver is:

E k
n (2.2.4)

The quiver theory (2.2.4) has k identical hypermultiplets in the fundamental representation of U(n);
there is clearly a symmetry rotating them into each other. Such a symmetry is called a flavour
symmetry. In order to preserve the norm of the hypermultiplets, this symmetry must be unitary:
they are in the anti-fundamental representation of U(k).'> We can use the U(n) gauge symmetry to
scale the determinant of the U (k) matrices acting on the hypermultiplets; on the Higgs branch (see
Section 2.3) of this quiver theory there is an SU (k) symmetry. Sometimes flavour nodes are denoted

with this Higgs branch flavour symmetry instead of the number of hypermultiplets:
E SU (k)
U(n)

(2.2.4) and (2.2.5) are equivalent notation for the same quiver theory. We will stick to the former

(2.2.5)

in this thesis; we mention the latter only to make connection with other work in the literature, for
example [37, 38].

If R is the adjoint representation of a U(n) gauge node, no additional label is needed, but the edge

starts and ends on the node with no flavour box. For example, for k = 1:

Y.

n (2.2.6)

If R is some other representation the edge will need additional notation to specify what R is. Such
edges will not appear in this thesis, so we will not discuss them further. The only other type of edge

we will come across is a non-simply laced edge, which we will discuss shortly.

Suppose we want to build a theory whose gauge group is a product of two unitary groups, G =
U(ny) x U(ng). Then we can start with a U(n;) gauge group, add ny hypermultiplets into its
fundamental representation, giving (2.2.4) for k = ns, and then gauge the U(ny) flavour symmetry:

L.
e (2.2.7)

This gauging introduces new dynamical degrees of freedom: we now have n; x ng hypermultiplets in

the bifundamental representation'® of U(ny)xU(ng). We can continue in this way to construct much

I2Note that for they could have been in the fundamental representation of U(k), but we pick the anti-fundamental
so that when we construct bigger quivers, for example (2.2.8), each edge is in a fundamental x antifundamental
representation, rather than alternating between fundamental x fundamental and antifundamental x antifundamental.

I3Note that in general the bifundamental representation of G'1 x G can mean the fundamental or anti-fundamental
representation of both groups, or in the fundamental of one and the anti-fundamental of the other. For us, it will

always mean the latter.!?
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more complicated unitary quivers,'* for example

w
s O—(]
o
b

O
2

>0
o O

O O
8 2 (2.2.8)
Quivers containing one or more flavour nodes (e.g. (2.2.8)) are termed framed, while those containing

only gauge nodes (e.g. (2.2.7)) are unframed.

The final type of quiver notation we will come across in this thesis, as alluded to above, is the
non-simply-laced edge. This is when two “gauge” nodes are connected by two or more lines with a
directional arrow. The nodes on the “greater than” and “less than” side of the directional arrow are
known as long nodes and short nodes, respectively. The number of lines connecting the two nodes
is known as the multiplicity of the edge. A quiver containing one or more non-simply-laced edges is

called a non-simply-laced quiver. As an example, consider

%}—C;%? ' (2.2.9)

The edge connecting the two “gauge” nodes is non-simply-laced with multiplicity 3, represented by
the three lines. The direction of the arrow tells us that the U(2) node is the long node and the
U(1) node is the short node. Note the air quotes we have used around “gauge”. This is because, as
we’ll see in Section 2.6.4, short nodes have no gauge theoretic interpretation. However despite this,
non-simply-laced quivers still define meaningful Coulomb branches, which is why they appear in our

discussion.

2.2.2 3d N =2 notation

Recall that 3d A = 4 vectormultiplets and hypermultiplets decompose each into two A = 2 multi-
plets. The G-vectormultiplet decomposes as a G-vectormultiplet and a chiral multiplet in the adjoint
representation of GG, and the hypermultipelt in a representation R of G becomes one chiral and one
anti-chiral multiplet in representations R and R of G, respectively. Quiver notation for a chiral
multiplet is a line with a direction indicated by an arrow. An anti-chiral multiplet is denoted in the
same way, but with the arrow pointed in the reverse direction. A vectormultiplet is denoted again by

a circular node. Hence for the example (2.2.4), the 3d N =4 quiver becomes

ﬁ k
& (2.2.10)

in 3d N = 2 notation. This notation will not appear in our work, but it is helpful to visualise the

decomposition into the 4-supercharge subalgebra.

14 While we focus purely on unitary quiver theories, it is worth noting that there have been many studies into quivers
containing special-unitary or orthosymplectic gauge nodes, see for instance [38, 39, 40, 41, 13, 42, 43, 44, 45, 46, 47, 26].
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2.2.3 Balance

The final concepts we address in this section are ones which we will use heavily throughout the thesis:
excess and balance [4]. This notion will enable us to define “good” and “ugly” theories, which are
the focus of our work; it is for such theories that the techniques we discuss in Sections 2.3 — 2.7
can be used, as the Coulomb branch flows to its IR fixed point in a protected manner. Balance will
also play a major role in Chapter 3, as the balanced nodes in a quiver contribute vital information

to simply determine the Coulomb branch global symmetry from surface-level inspection of the quiver.

The concept of the balance of nodes in a quiver originated from quiver theories for which there exists
a brane system description [48]. The balance of a unitary node is related to the net charge difference
of the two NS5 branes which trap the D3 branes that form the gauge group corresponding to the
node. We will not discuss its stringy origin any further; for us, balance is of interest because it leads
to extra operators appearing as we flow to the infrared, which elicit more symmetries than seen in
the UV theory.

A node is termed balanced if its excess is equal to zero. The definitions of unbalanced nodes, and
more specifically overbalanced and underbalanced nodes, all follow naturally. The excess of a node ¢
in a quiver is given by the total number of flavours it sees, minus twice its rank. That is, if f; is the

number of flavours ¢ sees and r; is its rank, then its excess e; is given by
€; =fi—27'1'. (2211)

When we say the number of flavours ¢ sees, we refer to the number of hypermultiplets transforming
under the gauge group represented by the node i in a quiver, if no other nodes were gauge nodes.
For example, in the quiver for (the closure of)'® the minimal nilpotent orbit of Gy [49], given by the

balanced affine Dynkin diagram of G,

i1 12 i3
O—0O==0 -
21 (2.2.12)

the node on the left sees f;, =2 hypermultiplets in its fundamental representation and thus its excess
is e;, = 2-(2x1) =0, the node in the centre sees f;, = 1+ (3 x 1) = 4 hypermultiplets (in its
fundamental representation) and thus its excess is e;, =4 - (2x2) =0, and the node on the right sees
fis = 2 hypermultiplets in its fundamental representation and thus its excess is e;; =2 - (2x 1) = 0.

Because all gauge nodes in this quiver are balanced, we say the quiver is a balanced quiver.

2.3 The Moduli Space

As mentioned in Chapter 1, we study a subset of the moduli space of 3d N = 4 unitary quiver gauge
theories called the Coulomb branch C. In particular, we study the IR fixed point of C for quiver
theories @ such that C(Q) is a HyperKéhler space, and thus also a symplectic singularity [2]. The
algebrogeometric properties of the Coulomb branch variety correspond to physical properties of the
vacua; Coulomb branches can be studied either as affine algebraic symplectic varieties, or as a set of

gauge-inequivalent vacua for a physical theory.

15We will largely omit this “closure of” when discussing varieties as nilpotent orbits in the future for ease.
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This section is devoted to gaining some intuition for these two ways of viewing a moduli space. In
order to arrive at symplectic 3d A = 4 Coulomb branches at low-energies in Section 2.4, we need to
first discuss the rough notion of a vacuum in quantum field theory. This is the topic of Section 2.3.1.
In Section 2.3.2, we illustrate how a 3d A = 4 moduli space defines an algebraic variety V, and see
how V can be described by the ring of holomorphic functions over it. We give a brief summary of the
important points regarding HyperKahler spaces and symplectic singularities that will be necessary
for this thesis.

2.3.1 Vacua in QFT

In a quantum field theory, states (including the particles which can be observed in the world) are
excitations of the vacuum |Q2), a state which has minimal energy (Q|H|Q2). Any vacuum must be
Lorentz invariant; the only non-vanishing operators of a theory in its vacuum state must be Lorentz
scalars (ﬁl Therefore, a vacuum is defined by the set of expectation values ¢; that these scalars take
upon insisting the energy is minimised: Q) = |¢;). The expectation value O = (QO|) is called the
vacuum expectation value, or VEV| of the operator O. The vacuum is naturally considered at low

energies (large-length) scales; we study vacua in the IR.

In many QFTs there is often only a finite number of possible sets of VEVs which minimise the energy
(noting the physical equivalence of any two vacua whose VEVs are related by a gauge transformation).
However, when supersymmetry is included, there are often continuous families of gauge-inequivalent
VEVs minimising the energy. These continuous vacua form a manifold, called the moduli space M.

Each point on M corresponds to a vacuum state for the theory.

Suppose in a theory there are n complex scalars, (51, . én Then a vacuum state is specified by their
VEVs, Q) = |¢1:+¢,). Unrestricted, the expectation values of these fields could take any complex
value: M = C". However, imposing the vacuum condition restricts these complex variables to the zero
set of a collection of equations: that all non-scalars vanish and that ( ¢1--¢, | H | ¢1-+¢n ) |¢ . is
minimised. If there is enough supersymmetry — and it transpires that 8 supercharges is indeéd“e’ﬁ.(-)ugh
— these equations turn out to be algebraic. Hence moduli spaces for theories with 8 supercharges
are algebraic varieties. Recall that the Coulomb branches we study are actually a certain type of

algebraic variety: symplectic singularities. We now explore how to define and describe such objects.

2.3.2 Algebrogeometric objects

In this section, we briefly list some properties of algebraic varieties, HyperKéahler spaces and sym-
plectic singularities needed for this thesis. For an introduction to the field of algebraic geometry, see

for example [33]. For a review of symplectic singularities in particular, see [50].

2.3.2.1 Algebraic varieties

A major result from algebraic geometry is that any algebraic variety V is fully described by the ring
of algebraic functions over it. In fact, for the varieties we study, this in turn is isomorphic to the
ring of holomorphic functions over it; our goal is to find the ring of holomorphic functions over the

Coulomb branch. In Section 2.4.2.1, we will learn exactly what these holomorphic functions are in
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terms of the physical degrees of freedom on C.

The ring of holomorphic functions over a variety is commutative. This means that an algebraic variety
is completely described by the generating holomorphic functions over it, and the relations they satisfy;
to construct the rest of the ring, one just needs to take symmetric products of these (see Appendix
B). Therefore, a tool which constructs symmetric products of a function, or conversely tells us the
symmetric generators of a given function, would be very useful to us. Luckily, such tools exist: the

plethystic exponential and plethystic logarithm.

2.3.2.2 Plethystics

The functions we want to generate symmetric products of in our studies will always be of the form

k kn 4k
oy ool ke 210 20 T (2.3.1)

[}

f(tazla ,Zn) =

Nk
|I|M8

ke
Il
o

ki
where |t| < 1 counts the degree and |z;| = 1, and hence it is on such functions that we will define the

plethystic exponential and logarithm (PE and PL respectively).

The PE of a function f of the form (2.3.1) is defined as

PE[f(t,21,...,20)] = exp(i f(t’f’zf, 725) - f(0, ...70)) _ lo—o[ 1—[ 1
k=0,

k1 I{) 0 k;=—oo (1 _ Zfl Z’rlin tk)akl ..... kn,k ’
(2.3.2)

Conversely, given the set of functions in a commutative ring at all degrees ¢ > 0, one can compute

the generators and relations using the inverse of the plethystic exponential, the plethystic logarithm,
defined on functions f of the form (2.3.1) as

p(k)

p log(f(t*, 27, ..., 25)), (2.3.3)
1

Ngk

PL[f(t,21,...,2n)] =

k

where p(k) is the Mobius function:

+1 if k is square free with an even number of prime factors,
u(k) =4-1 if k is square free with an odd number of prime factors, (2.34)

0 if k has a squared prime factor,

for any positive integer k.

The first term of PL should always be positive, and will encode the generators of lowest degree.
Subsequent positive terms encode higher degree generators. The first minus sign describes a relation
that some of the lower degree generators satisfy. Subsequent minus or plus signs encode further
generators and relations of higher orders that define the variety: syzygies. For complete intersections
(where dim(V) = #generators — #relations) this will be a polynomial in ¢ of the form

T

g
PL[f(t, 21,y 2n)] = Z gx (21, ...,zn)tk - Z ri(z1, ...,zn)tk, (2.3.5)
k=1 k=1

where g is the polynomial degree of the highest generator, r is the polynomial degree of the highest
relation, gj are the generators at degree t*, and rj, are the overcounted products of generators at t*
that are equivalent to others due to the relations among the generators. Both g and ry are Laurent
polynomials in the z;. For non-complete intersections, the PL will be an infinite series with syzygies

of ever-increasing degree.
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Example For example, consider a commutative ring generated by three degree one variables a, b,

¢, satisfying ab = ¢2. Then the functions of degree two in the ring are
{a? b%, &2, ac, bey = S%*({a, b, c}). (2.3.6)

The symmetric product does the job of including only one of ac and ca, or bc and cb. The relation
ab = ¢ explains the absence of ab or ba in (2.3.6). This is confirmed by the plethystic exponential:
1 - abt?

PE[(a+b+c)t—abt?] = A a0 1+ (a+b+o)t+(a® +b%+ P +ac+be)t?* + O(%). (2.3.7)

Alternatively, suppose we have the full list of functions on a variety, graded by their degree:
L+ (a+b+o)t+(a®+0? + A +ac+be)t® + (a® +° + 3 + d®c + bPc+ b+ Pa+ abe)t® + O(th). (2.3.8)
Then to find the generators and relations, we take the plethystic logarithm:
PL((2.3.8)) = (a+ b+ )t — abt* + O(t). (2.3.9)

Note that (2.3.9) doesn’t tell us the explicit relation ab = ¢*: just that ab is related to one of the other

degree two polynomials in the generators. O

2.3.2.3 HyperKaihler spaces

The Coulomb branches we will study are singular HyperKéhler spaces. Essentially, a HyperKéahler
space is the “quaternionic version” of a Kéhler space. A Kéhler space has compatible Riemannian,
complex and symplectic structures. The symplectic structure is related to the metric, and contributes
to defining the Kéhler space. A HyperKéhler space has a Riemannian metric g and three complex
structures, satisfying quaternionic relations, each of which are compatible with g and a corresponding

symplectic structure (i.e. each complex structure is Kéhler with respect to g).

There is a natural SU(2) symmetry on all HyperKéhler spaces which rotates the three complex struc-
tures. In order to define complex notions such as holomorphicity, one such structure must be chosen.
This breaks the SU(2) symmetry, and chooses a particular symplectic form on the remaining Kéhler
space. That is, all HyperKahler spaces have a symplectic structure, which is explicitly determined
upon choosing a complex structure. This choice of structure then enables us to define holomorphic-
ity, find the holomorphic functions'® over the space, and categorise it as an algebraic variety. The
symplectic structure over this algebraic variety defines it as a symplectic singularity.

2.3.2.4 Symplectic singularities

Roughly speaking, in the sense of [2], a symplectic singularity is an algebraic variety on which there
exists a 2-form w — the symplectic form — which degenerates at zero or more points. The symplec-
tic form defines a pairing on the tangent space at any point on the variety, and points where this
pairing degenerates are called singular. As stated many times previous, we only study quivers whose
Coulomb branches are symplectic singularities. From a physical perspective, moving to a point on
such a Coulomb branch where the degeneracy of the symplectic form increases corresponds to more

16Note that the functions on the full Coulomb branch — not the "holomorphic portion” selected by this choice of
complex structure — are found by applying the SU(2) symmetry to the holomorphic ones on the Kéahler subset.
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massless states having been integrated out in the corresponding vacuum (see Section 2.7 for further

elaboration).

The symplectic form defines a Poisson structure {-,-} on a symplectic singularity, as we will see
in Section 4.1. Computing the Poisson brackets {-,-} therefore helps us to further categorise the
singularity by shedding light on w, and as mentioned in Section 2.3.2.3, in principle this could also
be used to find the metric. Chapter 4 is devoted to our work [11], in which we computed the Poisson

brackets for several Coulomb branches in aid of this goal.

2.4 The 3d N =4 Coulomb branch

Now that we have seen the physical notion of a moduli space and how we can describe it using tech-
niques of algebraic geometry, we move on to nail down some specific details for the case of the 3d
N =4 Coulomb branch.

In Section 2.4.1, we first lay out the construction of the moduli space of any supersymmetric gauge
theory with eight supercharges. Such an M naturally splits into the Coulomb, Higgs and mixed
branches, each of whose ring of holomorphic functions is isomorphic to its chiral ring, which we define
for a Coulomb branch. We see how these two branches behave under the RG flow, focusing on the
Coulomb branch. We discuss its UV and IR fixed points, and the classical Coulomb branch of the
UV SCFT. In Section 2.4.2 we discuss the quantum corrections this receives upon flowing to the IR
SCFT, arriving finally at our object of study. To explore the quantum-corrected Coulomb branch we
will need an alternative description of it, in terms of dressed monopole operators. These operators
are labelled by charges under the topological and R global symmetries of the theory. The operators
and these symmetries are the topics of Sections 2.4.2.1 and 2.4.2.2 respectively. This will lay the
foundations for understanding the properties of C that we choose to study and the methods we use

to do it, which will be discussed in Sections 2.5 and 2.6 — 2.7 respectively.

2.4.1 The classical 3d N =4 moduli space and its RG flow

Classically the allowed vacua are those which minimise the scalar potential. In a supersymmetric the-
ory, this amounts to solving (setting to zero) the so-called F' and D terms. As previously mentioned,
this typically yields a continuous set of gauge-inequivalent vacua. In a 3d N = 4 theory, each vacuum
will be labelled by a VEV for each scalar field in the theory: the dual photon, real scalar and complex
scalar of the vectormultiplet; and the two complex scalars of the hypermultiplet. There are often
many physically distinct sets of allowed VEVs in such theories, and we can simplify our study of M
by considering different subsets of it. The subset in which all vectormultiplet scalar VEVs vanish and
the subset in which all hypermultiplet scalar VEVs vanish are called the Higgs branch H and Coulomb
branch C respectively. They each behave differently, as we’ll discuss below. Note that as H, C are just
M with further algebraic constraints imposed on the coordinates, they are also algebraic varieties. In-

fact the ones we study are HyperKéahler, and thus also symplectic singularities (see Section 2.3.2.4) [3].

In each of these varieties, the ring of holomorphic functions over them is believed to be isomorphic to

the chiral ring of the theory. We define a chiral operator to be an operator O which is annihilated by
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half of the supercharges.!” Since we are discussing the moduli space of the theory, we also demand
that chiral operators are gauge-invariant and satisfy the vacuum conditions. Any product or linear
combination of such chiral operators is also a chiral operator, and they are bosonic; they form a
commutative ring. This ring is the so-called chiral ring mentioned above; the Coulomb and Higgs

branches are fully specified by their respective chiral rings.

We study quiver theories with enough matter so that the gauge coupling is inversely proportional
to the energy scale; they are UV-free, but strongly coupled at low energies, flowing to an SCFT
(superconformal field theory) both in the deep UV and deep IR [4]. It is natural to consider moduli
spaces at low energies, in the IR. As the gauge coupling increases, the interactions of virtual particles
erupting into and out of existence become more important, and quantum corrections need to be in-
troduced. This means our classical discussion thus far in terms of the UV quiver degrees of freedom
is insufficient to describe M; we need an IR description of our theory, that accounts for quantum

behaviour.

For the Higgs branch, this turns out to be no problem; its UV description holds all along the RG
flow'® due to the non-renormalisation of the superpotential in supersymmetric theories. On H, the
vectormultiplet scalars vanish, and so the only remaining vacuum constraints are those involving the
superpotential. Since this is not renormalised, the vacuum constraints for the Higgs branch remain

the same all along the RG flow.

The Coulomb branch is not so lucky; its metric does receive quantum corrections. Suppose the gauge
group of a theory is G. Then in the UV picture, the F-terms are automatically satisfied due to the
vanishing hypermultiplet scalars, and solving the D-terms amounts to

[¢a7¢b] =0, (241)

where a,b = 1,...,dim(G) labels the vectormultiplets of the theory, and ¢ any scalar in each vector-
multiplet (2.1.26). Clearly (2.4.1) says that any vectormultiplet scalar of the theory not lying in the
Cartan subalgebra (CSA) of G does not live on the Coulomb branch; only rank(G) of the dim(G)
vectormultiplets ¢, survive on C. Thus a generic VEV on C is generated by rank(G) vectormultiplets
lying in the CSA of GG. Since in each vectormultiplet there are three real scalars and a periodic dual

photon [36], the classical Coulomb branch generically takes the form
Ccl _ (RS % Sl)rank(G)/VvG7 (242)

where the quotient by the Weyl group of G ensures gauge invariance. The quaternionic and real di-
mensions of (2.4.2) are clearly dimy = rank(G) and dimg = 4 - rank(G) respectively. In this thesis we
will consider only unitary gauge groups, and for such G any element of the CSA can be diagonalised.
Thus a generic VEV of any ¢ on C will have rank(G) independent diagonal components: the gauge
group is broken to U(1) k()

In principle, these remaining rank(G) abelian photons could then be dualised to scalars (see the

discussion following (2.1.26)) [35], and the quantum corrected low-energy metric on C could be found

17Note that the precise supercharges annihilating chiral operators differs from C to H, see for example [19].
18Note that in theories in other dimensions this is not the case in general. For example, the Higgs branches of 5 and

6d theories at infinite coupling are not classically exact.
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semi-classically by integrating out the massive W-bosons and hypermultiplets which gained a non-
zero VEV. However, this process is insufficient in practise for several reasons. Firstly because even for
fairly low ranks of gauge group, although it terminates at one-loop, integrating out the massive fields
becomes too difficult. Secondly, this semi-classical approach is a perturbative process and is thus
only valid in weakly coupled regions which, as discussed at the top of this section, is not the regime
of the IR 3d N =4 Coulomb branches we study. Thirdly, certain VEVs taken by the vectormultiplet
scalars satisfying (2.4.1) actually preserve a greater, non-abelian subset of the gauge symmetry than
U(1)"2K(@) "and it is not known how to dualise a non-abelian vector multiplet. While there are other
indirect ways to study Coulomb branches, for example via string theory dualities such as mirror
symmetry (which relates the Coulomb branch of a quiver to the Higgs branch of its mirror quiver

[51, 52]), we would like a way to study them directly.

This motivated the search for an alternative method to find the chiral ring of the Coulomb branch,
and indeed such a method has been found for C at the superconformal fixed point. Here, C can be

9 as opposed to the space of dualised photons in

viewed as the space of dressed monopole operators,'
the quantum-corrected metric. This is a viewpoint uniquely valid in three dimensions, and enables
great progress to be made with understanding the Coulomb branch. In this thesis, we focus solely
on computations for Coulomb branches?’; we take the discussion of the Higgs branch no further, and
move on to further elaborate on the dressed monopole description of C in the IR SCFT. From now

on, any time we mention the Coulomb branch, we will be referring to its IR fixed point.

2.4.2 The quantum Coulomb branch

In this section we aim to give a brief overview of the IR Coulomb branch, where quantum corrections
become important as the gauge coupling increases. As mentioned in Section 2.4.1, a description of C at
a generic point along the RG flow is hard to obtain in practise, as loop corrections are non-trivial and
are not always valid. However at the IR superconformal fixed point there is an alternative description
of the Coulomb branch available to us, as the space of dressed monopole operators [32, 53, 54, 4],
which allows us to explore C at this point along the RG flow. This section is devoted to detailing this
dressed monopole construction of the IR, SCFT Coulomb branch and discussing its global symmetries
(the conserved charges of which can be used to label our chiral operators). Please note that this
section is not intended as a comprehensive review of 3d N = 4 gauge theories and their Coulomb
branches at low energies. We cover only the surface-level ideas of this vast topic needed to gain an
intuitive understanding of the physics employed in this thesis. For more details on the topics covered
in this section, see for example [31, 55, 56, 36, 32, 53, 54, 4].

2.4.2.1 Dressed monopole construction

In Section 2.4.1 we saw that a semi-classical description is not sufficient to describe the physics at
all points on the Coulomb branch. However it turns out there is an alternative approach which has

validity both in the UV and the IR. In the UV, we can define monopole operators in terms of the

9This terminology is common in the literature but is a slight abuse of language; what we really mean is that the
Coulomb branch, viewed as an affine algebraic variety, is the spectrum of the Coulomb branch chiral ring, which is
generated by dressed monopole operators. The Coulomb branch variety, its chiral ring, and the VEVs of operators on
C can be used interchangably in the literature, so it’s important to clarify the distinction.

20Note that some of our results will describe Higgs branches, but as a virtue of the computations being performed

on the Coulomb branch of their magnetic quiver. See Section 2.7.1 for more details.
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Coulomb branch degrees of freedom (2.1.26), following [4]. Recall from Section 2.1.2.3 that the N = 4

vectormultiplet for a gauge group G splits naturally into an A = 2 vectormultiplet and an N = 2

chiral multiplet, both of which lie in the adjoint representation of G, whose real scalars are v, ¢; and

@2, @3 respectively. The N = 2 vectormultiplet degrees of freedom can be encoded in a UV monopole,
which is defined at a point via inserting a Dirac monopole singularity

F = m * d1

r

5 (2.4.3)

in superspace, where r is the distance from the point of insertion and m € g (the Lie algebra of G) is

the charge of the monopole. This monopole can then be written explicitly as an operator:
Oy = €32 (P14 (2.4.4)

where g is the gauge coupling of G. The other two Coulomb branch degrees of freedom from the

N =2 chiral multiplet can be combined to form a complex scalar:

@ = g2 +1id3. (2.4.5)

It is easy to see that because v, @1, 2, ¢3 are all chiral, linear combinations of products of v and ¢
are chiral also. Operators formed from the product of only monopoles are called bare monopoles.
Operators formed from the product of monopoles with at least one complex scalar are called dressed
monopoles; the complex scalar is the “dressing”. Since v, and ¢ encode all the UV chiral operators

on C, they form the chiral ring.

However, this description no longer accurately describes a monopole when ¢ is small, or as g - oco.
That is, it only works classically in the UV, which seems to be no better than the situation we were
in before. However, the difference here is that we can directly define monopole operators in the IR

SCFT [32], and this description emerges consistently from the above one under the RG flow.

The gauge fields in the IR SCF'T can be defined as spheres centered on Dirac monopole singularities
of the gauge field called 't Hooft monopole operators [57]. Suppose the gauge group is G, with Lie
algebra g. Inserting an ’t Hooft monopole operator at a point elicits a gauge field surrounding it
whose northern and southern patches are described by

A, ~ %(ﬂ — cos0)d¢ (2.4.6)

where m € g, and (r,0,¢) are spherical coordinates around the point of insertion. In order for the

transition function between the two patches to be smooth, it can be found that m must satisfy
e2™m — 1g, (2.4.7)
which is the criterion for m to belong to the weight lattice of the Langland’s dual of the gauge group:
meAgv. (2.4.8)

The magnetic charge labels the monopole. We denote a bare monopole with charge m as v,,. Recall
that we are looking to construct the gauge-invariant chiral operators of C. The gauge group acts on
m through the Weyl group of G¥, Wgv; v, is not be gauge invariant unless the Wgv orbit of m is

trivial. Thus gauge invariant bare monopoles V,,, are given by

Vm: Z Uo(m)~ (249)

O'GWGV
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Note then that distinct monopoles are labelled by the magnetic charges m in one Weyl-chamber of

the magnetic lattice Agv:
m € Agv /ng, (2.4.10)

as the V,,, for any two m in the same Weyl orbit are gauge equivalent. Furthermore, enforcing chirality

(i.e. preserving half of the supersymmetry) amounts to imposing the boundary condition
b1 ~ (2.4.11)
2r

on the real scalar in the N = 2 vectormultiplet.

We study theories with only unitary gauge groups in this thesis. The magnetic charge for G = U(n),
m € g =u(n), subjected to (2.4.10) and (2.4.11) is diagonalisable and integer-valued, hence we denote
it as a vector m = (myq,...,m,,) of its n integer eigenvalues. Since U(n) is Langlands self-dual and

has Weyl group S, a magnetic charge of U(n) takes the form
me{(my,....my) €Z" | my2mg > >my}. (2.4.12)

For a quiver with p unitary gauge nodes U(n;) i = 1,...,p, a magnetic charge takes the form

p
n; .
m=(mq,...,mp) € { (M1,1, e, MLy ey M 1, ey Mp ) € H Z™ | mig>mio 2myp, Vi }

i=1
(2.4.13)

These bare monopole operators, labelled by magnetic charge m, define the N = 2 vectormultiplet
(gauge) degrees of freedom in the IR SCFT moduli space. As in the UV, we can dress them with
a VEV for the complex scalar ,, from the A = 2 chiral multiplet. However, it must satisfy some
conditions. Firstly, in order to preserve the chirality of a bare monopole under dressing, the VEV
taken by the complex scalar ¢, must commute with (i.e. be a Casimir of) the algebra b, c g of the
residual gauge group H,, unbroken by the VEV m € g of the monopole. Secondly, it must be gauge
invariant. The former restricts the VEV of ¢,, to the CSA of b,. In the theories we consider, G is
a product of unitary groups and therefore the unbroken gauge algebra for any m is of the form

B = © u(l i) (2.4.14)

for some integer ranks ln, ;, @ = 1,..., 4. The CSAs of unitary groups can be diagonalised; let’s call
the eigenvalues of (2.4.14)

AL s ooy Ans s s Aud 5 oees A (2.4.15)

um,lm,um .

Then since the gauge group acts on ¢, via the Weyl group IT;"7 S, , of Hy, to permute its eigen-

m,i

values, imposing gauge invariance restricts the dressing factor to be of the form

k .
Um, lmvi e
om =[] ( > /\zyj) ; (2.4.16)

i=1 \ j=1
for some non-negative integers ky, ;. Note in particular that when the magnetic charge is zero (i.e.
when the adjoint scalar is not dressing a monopole operator), the whole gauge group U (n1)x---xU(np)

is preserved and the dressing factor is of the form

ki
D Uz
eo=1] ( )\i,j) . (2.4.17)

i=1 \ j=1
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for some non-negative integers k;.

In Section 4.2.1, these dressed monopole degrees of freedom and operators are discussed with more
precision, and several examples featuring them appear in Sections 4.2 — 4.5. Each VEV (point) on
our Coulomb branch describes a vacuum of the IR SCFT. To label the states in this vacuum, we turn
to Noether [1], and consider the conserved charges of the vacua under the global symmetries of the

Coulomb branch.

2.4.2.2 Global symmetries

The overall global symmetry of the Coulomb branch at the IR fixed point is not generally identical
to that present in the UV quiver theory. This is because, although the SU(2)g R-symmetry is
protected against quantum corrections, the topological symmetry appearing in the UV is typically
enhanced at the IR SCFT. We call this larger IR topological symmetry GS.?! States in the vacua of
the theory are labelled by their conserved charges under these symmetries [1], typically denoted A
and J respectively. In this section, we will discuss each of these symmetries, and how the operators

of Section 2.4.2.1 are charged under them for unitary quiver theories.

R-symmetry The UV Coulomb branch has an SU(2) g symmetry which the three complex struc-
tures form a triplet under: each operator on C in the UV has some weight under this symmetry. The
chiral operators however (the bare and dressed monopoles (2.4.4) and (2.4.5)) preserve only half the
supersymmetry, forcing the A/ = 4 algebra to break to an A/ = 2 subalgebra and the SU(2)g sym-
metry to break to U(1)g. From the “algebraic variety” point of view, picking an N = 2 subalgebra
corresponds to choosing one of the three complex structures on C, which enables us to define holo-
morphic functions on the variety. The specific N’ = 2 subalgebra is decided by the choice of monopole
construction, and this can be chosen such that the operators with the highest weight in each SU(2) g
representation are the chiral ones:

Operators in the chiral ring of C <«—  highest weights of SU(2)g representations, (2.4.18)

The other operators on C (whose weights under SU(2)g are not the highest in the representation
they belong to) are not in the chiral ring; they are not needed for our description of C as an algebraic

variety, as they correspond to non-holomorphic functions over it.

The choice of UV monopole operators given by (2.4.4), (2.4.5) are chiral and thus achieve (2.4.18);
under this construction, SU(2)g is broken to U(1)g.%?

The charge of a bare monopole (2.4.4) in the UV SCFT under this U(1)g symmetry is given by
[4, 58, 59, 7]:

H
Bm) = = 3 Jo(m)] + %z > loutm)| (2.4.19)

where A, is the set of positive roots of the gauge group G, H is the number of hypermultiplets, and
p; are the weights in the representation R; of the i** hypermultiplet. Since all the quiver theories we

study are unitary, we will focus on the precise presentation of (2.4.19) for a quiver with p unitary gauge

)

21'When reporting results of the global symmetry “GS” and “global symmetry” are used synonymously even though
they are not the same, because the other factor of the global symmetry (SU(2)g) is known.

22Note that actually the global symmetry group is SO(2)g, of which U(1)R is the double cover.
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nodes G = U(ny) x--- x U(np). Suppose that there are H hypermultiplets, and that hypermultiplet
h is a simply-laced edge between nodes n,, and ng,, clearly for ap, By = 1,...,p (i.e. h is in the
bifundamental representation of U(ng, ) x U(ng,)). If we write the magnetic charges for these nodes
as Maqy, = (May, 15 May n,, ) € Z"n and mg, = (Mg, 1,...,Mp, n,, ) € L™ respectively, then the
R-charge of a monopole operator of magnetic charge m in such a quiver is given by

Na, ™

H , 'Bp,
Z Z Z |m0th,i - mﬂh7j|' (2'4'20)
h=1 i=1 j=1

n

p
A(m) = Z Za M — M| +
5.5

DN | =

The R-charge of any single dressing factor is protected under the RG flow from the UV theory:
A(adjoint scalar) = 1. (2.4.21)

Provided all operators on the low-energy Coulomb branch satisfy

1
A>=, (2.4.22)

2
then (2.4.19) matches the conformal dimension of the monopole operator with charge m in the IR
SCFT [4]. All dressed monopole operators in the chiral ring of C then acquire a charge A under U(1)g.

Quiver theories in which all Coulomb branch operators satisfy A > % are termed “good”. Those in
which all operators satisfy (2.4.22) with at least one meeting the equality are called “ugly”. The
Coulomb branch of “ugly” theories factorises into a “good” part and a free part which is isomorphic
to some number of copies of the quaternionic plane and generated by free twisted hypermultiplets,
corresponding to the operators with A = % Theories in which at least one operator does not satisfy
(2.4.22) are termed “bad”; in these cases, the R-charge of a monopole operator in the UV SCFT
(2.4.20) is not equal to the one observed in the infrared. Quivers in which all nodes have excess
e > -1 (see (2.2.11) for the defintion of excess) describe good theories, and those in which one node
has e = =1 but all other nodes have e > —1 describe ugly theories. All quivers studied in this thesis fit
into one of these two groups; the conformal dimension of any operator on the low-energy Coulomb

branches we consider is given by (2.4.20).

Topological symmetry There is another global symmetry on the Coulomb branch which does not
remain constant along the RG flow. In the UV theory, for every abelian factor in the gauge group
there is an associated conserved current *F' = dv, and hence a U(1) global symmetry. UV monopoles
will be charged under this symmetry, while adjoint scalars will not. This can be seen schematically
by the fact that ¢ is independent of v, whereas 0, e+ oc ¢2179Y For the remaining non-abelian
factors in the gauge group, the conservation of such a current is prohibited by instantons [35]: for a

theory with a unitary gauge groups, the classical UV topological symmetry is
Uu(n)*. (2.4.23)

In the IR, this classical UV symmetry is often enhanced to some group whose maximal torus is
(2.4.23). The resultant (generally non-abelian) IR symmetry is the topological symmetry®® of the
Coulomb branch at the IR SCFT, and we denote it GS. The charge under this topological symmetry
is given the symbol J. Consider a unitary gauge theory G = U(nq) x---xU(n,) with magnetic charges

23The name of this symmetry stems from the fact that it arises due to the construction of a gauge field in three

dimensional spacetime.
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m=(msq,...,mp) (2.4.13). Since there are p unitary factors in the gauge group, the topological charge

is a vector of length p, and is given by:

ni

J(m) = (Jl, ...,Jp) = (Zmu, vary %mp,i ) . (2424)

2.5 Properties of Interest

We have seen that the Coulomb branches we study are fully described by bare and dressed monopole
operators, and that such operators which are also gauge invariant and chiral form the chiral ring.
Section 2.4 told us that computing the chiral ring of monopole operators explicitly (i.e. the explicit
generators and relations they satisfy) would fully describe the Coulomb branch, but generally it is
not known how to do this. However, there are other properties of C that we can learn about which
help us to both categorise it as a variety and understand the physics of the theory. Among such

properties, that we will refer to much throughout this work, are the following:

1. Dimension. Recalling that at a generic point on the Coulomb branch the gauge group is broken
to U(1)™%() we can clearly see that there are rank(G) components labelling each VEV,
hence

dim(C) = rank(G). (2.5.1)

In terms of a unitary quiver, this is equal to the sum of the ranks of the gauge nodes (minus

one) for a framed (unframed) quiver.

2. Operator content graded by charges under global symmetries. While finding the explicit gener-
ators and relations of the Coulomb branch chiral ring is often too challenging, we can compute
its Hilbert series (for “good” or “ugly” theories [4]), which counts the operators on it graded
by their charges under the global symmetries of C. This is a helpful step in attempting to
categorise the Coulomb branch — two varieties with matching Hilbert series is an indication
that they could be the same, although it is by no means a guarantee.?* Section 2.6 will detail
how to compute and analyse the Coulomb branch Hilbert series. These notions will be used

extensively throughout this thesis.

3. Singularity structure. Analysing the Coulomb phase brane systems of quivers with a string the-
ory construction has lead to a deeper understanding of the singularity structure of C, presented
via its Hasse diagram. The Hasse diagram indicates transitioning from a generic point on
C to more and more singular (see Section 2.3.2.4) subsets of it. The points regarding Hasse

diagrams needed for this thesis will be reviewed in Section 2.7.

4. Global symmetry. The Hasse diagram has been conjectured to indicate a subset of the non-
abelian global symmetry of a quiver, but often this is a strict subset. A guaranteed method to
determine the local form of the full topological global symmetry GS of C with certainty is to
compute its Hilbert series and consult the t? term (the global form can be determined from the
full Hilbert series), but as gauge group rank increases this quickly becomes too computationally
intensive. An easy and efficient algorithm for identifying the Coulomb branch global symme-
try directly from the quiver based on the balance of its gauge nodes — the balance global
symmetry (BGS) algorithm — has been proposed, and until recently was believed to work

24For example, subtle differences in the explicit forms of relations do not necessarily show up in the Hilbert series.
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unanimously. However, in [10] we were able to construct several families of quivers for which
this algorithm failed. This is the topic of Chapter 3: we discuss the construction of the quivers
for which the BGS algorithm fails, and provide an amended algorithm which corrects these

failings for the quivers listed.

5. Symplectic form. Recall that the symplectic form is a key ingredient for defining a symplectic
singularity. One can make progress with finding this symplectic form between points on C by
computing Poisson brackets between the corresponding vacua, as a symplectic form automat-
ically induces a Poisson structure. Finding these Poisson brackets (for certain theories) is the
topic of Chapter 4, based on [11].

The remaining sections in this chapter are devoted to the methods we will employ in this thesis to
analyse the above properties of interest for the quivers we study.

2.6 Hilbert Series

As mentioned in Section 2.5, although computing the exact form of the Coulomb branch chiral ring
generators and relations (and thus all other operators) is the optimal description for C as an algebraic
variety, it is not in general known how to achieve this. But something we do know how to do is
count how many chiral ring operators there are at each charge under the global symmetries [7]. The

function that performs this task is called the Hilbert series.

The Hilbert series is defined outside of Coulomb branches [33]. Typically, the Hilbert series for an
algebraic variety (which is defined by homogeneous equations) counts the holomorphic functions over
it, graded by degree. This grading is achieved through a fugacity (typically t); the coefficient of t*
is the number of holomorphic functions of degree k on the variety. Using the commutativity of the
ring of holomorphic functions, the Hilbert series can be used to find the number of generators and

relations at each degree. To see this explicitly, consider the following example.

Example Let’s find the Hilbert series for V = C?/Z,. We need to count the linearly independent
holomorphic functions over it at each degree. For V, the ring of such functions is C[z1, 22]/Zy for
21, 29 complex variables. Under the Zs action, z; - —z1, and 23 - —25. The degree k holomorphic
functions on V then are generated by C-linear combinations of 2§ 25 with a + b = k, such that 2{ 25
is invariant under the Zy action. Clearly for even and odd k, 2% 28 — +2¢ 25 respectively, hence no
holomorphic functions of odd degree lie on V but even ones do. For degree zero, the only linearly
independent holomorphic function is clearly just 1. For degree two there are three, 22, 22 and z; z9;

for degree four there are five, 21, 2529, 2723, 2123, 23; and so on:

Degree Holomorphic functions
0 1
2 22 2z 22
4 2 2Ba 2222 oy 24 (26.1)
6 28 Bz 2122 2323 2223 225 A8

The Hilbert series HS(t) for V = C?/Zy is a polynomial in a variable ¢ which tells us how many

holomorphic functions there are at each degree; the coefficient of t* counts the number of independent
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generating monomials in )V at degree k:
HS(t) =1+3t% + 5t + 765 + -

— - n 2n
- 7;)(2 +1t (2.6.2)

o1-t
S (1-t2)3

It is clear that C[21, 22]/Z> is generated by a = 27, b= 22 and c = 21 29, satisfying the relation ab = c*.
However even if it wasn’t obvious, the Hilbert series (2.6.2) can tell us the number of generators
and relations and their degrees (although not their explicit forms). Recall from Section 2.3.2.1 that
the plethystic logarithm (2.3.3) gives the generators and relations of such an input function. The

plethystic logarithm of our Hilbert series here is
PL(HS(t)) = 3t> - t*. (2.6.3)

The positive term tells us there are three generators at degree two, and the subsequent negative
terms tells us that these generators satisfy one degree four relation. We could also have seen this
from inspection of (2.6.2), using that

(1-t1)

PE[at” - bt"] = 11—

(2.6.4)
The expression (2.6.2) has only one fugacity ¢, counting the degree of the holomorphic functions. One
could also note that V inherits the SU(2) symmetry of C?, which rotates z; and z, and grade the
holomorphic functions by their charges under this symmetry too, in addition to their degree. Since
z1 and z form a doublet under this SU(2) they have respective charges (weights) +1 under it: 2¢ 25
has charge a —b. We introduce a new fugacity to keep track of the SU(2) charge of each holomorphic

function, z. Including this, we see the Hilbert series (2.6.2) becomes

HS(t) =1+ (2 +1+2 )%+ (21 + 22+ 1+ 272+ 27 hHt!

6, 4, .2 -2 -4 _-6\,6
+(P+ 2+l 2 2O+ (2.6.5)
~ 1-¢!
T (1-2262)(1-12)(1 - 272¢2)’
and its plethystic logarithm
PL(HS(t,2)) = (22 +1+27%)t* - t*. (2.6.6)

We can see that the generators of C?/Z, form the adjoint representation of the SU(2) symmetry with
weights 2,0, -2 respectively, and that the relation transforms in the trivial representation of SU(2).
This Hilbert series, refined with these new fugacities z to keep track of additional information, is
what we will call the refined Hilbert series. The Hilbert series which is just a function of ¢, keeping

track of degree only, is called the unrefined Hilbert series.

Note additionally that this Hilbert series is not unique. Here we had a space generated by three

degree two functions, which we called a, b and ¢, satisfying ab = ¢?

. However a space generated by
three degree two functions a, b and ¢, satisfying ab = é(é+¢) for some constant parameter £ 0, will

clearly have the same Hilbert series, but describes a different variety; this one has no singularity at
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the origin.?® From the Hilbert series alone, we cannot distinguish between these two varieties. O

Recall from Section 2.4.1 that for C, the ring of holomorphic functions is thought to be isomorphic
to the chiral ring. Thus in the context of 3d A/ = 4 Coulomb branches, the Hilbert series counts
the operators in the chiral ring of the theory, graded this time by their charges under the global
symmetries of C. The role of the degree of holomorphic functions — the grading of ¢t — is played by
twice the R-charge, as in the theories we study it takes only positive integer values. We can refine
the Hilbert series to include fugacities z; to keep track of topological charges. So, we need a formula
to count the bare and dressed monopole operators of a theory, graded by their A and J;. Such a

formula, the monopole formula, was found in [7].

2.6.1 Monopole formula

In Section 2.4.2 we saw that the Coulomb branches of interest to us are spaces of dressed monopole
operators.'® That is, a point on C (equivalently a VEV of the IR SCFT) corresponds to a dressed
monopole operator with magnetic charge m € Agv/Wev and a dressing factor ¢, € by, preserved by
the gauge group H,, unbroken by m. This operator has charges J and A under the global topological
and R-symmetries respectively. Just as the fugacity ¢ graded the degree of holomorphic functions in
the example of (2.6.2), here it will grade twice the R-charge of a dressed monopole operator. Since we
also want to grade by the topological charges J = (Ji,...,Jp) (2.4.24), we introduce p more fugacities

z = (z1,...,%p) to keep track of them. The monopole formula then is

HS(t;2) = S Pa(t,m) 27 2A0m) (2.6.7)

meA gy /Wev
This sums up over every possible dressed monopole operator. We choose to grade by twice the
conformal dimension to avoid fractional powers; 2A makes direct analogy with the degree of holo-
morphic functions. Pg(t,m) is known as the classical dressing factor, and counts the number of
ways a monopole of charge m can be dressed by ,,: it counts the number of Casimirs of §,,. Such
Casimirs are always chargeless under the topological symmetry: no z fugacities appear in Pg. The

Casimirs do however acquire an R-charge. To understand this, let’s turn to an example.

Example Consider a U(3) gauge theory. We wish to calculate the dressing factor Py (s)(t,m) for

a generic bare monopole m. Here, monopoles can take magnetic charges in
m € Agv/Wev = {(m1,ma,m3) € Z® | my >mg >ms} c u(3). (2.6.8)

Consider the bare monopole with m = (3,2,1). Embedded in g = u(3), this is

o N O

0
0]. (2.6.9)
1

3
Il
o O W

Clearly any element in u(3) that commutes with this must be diagonal; the remaining gauge group
unbroken by the VEV m is H,, = U(1)3, and hence the adjoint scalars allowed to dress v,, are the
Casimirs of u(1)3.

25This is clear from the non-zero value of the partial derivative of the defining equation with respect to the generator

¢ at the origin.
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A Casimir of an algebra is an invariant of it. Since the adjoint representation of u(1) is trivial, any
element X transforming in the adjoint representation is an invariant of u(1). Thus there is just one
independent Casimir one can construct from X: itself. Recall that the R-charge of an adjoint scalar
is 1. Since the Casimir for u(1) is constructed out of just one group element, its R-charge is just one
too; for each U(1) factor in H,,, there is a single independent Casimir with A = 1. In our Hilbert
series language each of these translate as 1t%: for H,, = U(1)3, it is 3t2. All other Casimirs will
be symmetric products of these generators; the dressing factors for monopoles with m = (3,2,1) are
encapsulated by

Py (t,(3,2,1)) = PE[3¢%] = ﬁ (2.6.10)
Consider instead the bare monopole with charge m = (3,3,1). Now the unbroken gauge group is
U(2) xU(1) 2 SU(2) x U(1)%. We get a contribution of 2¢* inside PE from the two abelian factors,
but what about the SU(2)? Consider a generic element in su(2), X. This transforms under g € su(2)
as X — gXg~!. In general, this is not invariant, but we can see that Tr(X¥) is. However, for k odd
this vanishes, and for k > 2 even it is proportional to the (g)th power of Tr(X?): su(2) has just
one independent Casimir, 7r(X?), built out of two copies of X, hence A(Tr(X?)) = 2. Thus our

dressing factor here is

Puesy(t,(3,3,1)) = PE[2£> + ] = Wlu—#) (2.6.11)

O

In general, for a unitary gauge group G = U(n), a bare monopole can have d < n distinct charges.
Let the distinctness of these charges be encoded in an ordered partition A(m), a vector of length d.
That is, A;(m) is the number of times the first entry of m is repeated, A;(m) is the number of times
the (Z;j Aj(m) + 1) entry of m is repeated, i = 2,...,d. For example, the charge m = (3,2,1) has
one charge with value three, one with value two and one with value one (all distinct), so the ordered
partition is A((3,2,1)) = (1,1,1). For m = (3,3, 1), there are two with value three and one with value
one, so A((3,3,1)) = (2,1). For m = (3,3,3), A(m) = (3). If we call v; the number of entries in A

that take value i, then the dressing factor for the U(n) monopole with charge m is given by

n
1
P t = | | —_—. 2.6.12
U(TL)( Vm) 1 (1 _th)'Yi ( 6 )

The dressing factor for a bare monopole with charge m = (m,...,mp) under a product of unitary

gauge groups G =U(ny) x---x U(n,) is then

P n; 1
Poor _ S 2.6.13
U(ny)x-xU( p)( m) gg(l—tzj)’“vﬂ' ( )

J

where ; ; is the number of entries taking value j in the ordered partition A; for charge m; =

(mi,l,...,miw).

Now that we have all the ingredients to the monopole formula (2.6.7), let’s illustrate how to use it to

compute a simple Coulomb branch Hilbert series.

Example Consider the quiver

2
on-"
1 (2.6.14)
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We wish to calculate the Hilbert series of C(Q 4, ). The ingredients we need are: the magnetic charges
to sum over, m; ; for j =1,...,n; and ¢ = 1, ..., p; and the conformal dimension A, topological charge
J and dressing factor Py ;) as functions of these charges.

Here there is just one gauge group, U(1), hence p =1 and m = m11 = m is a vector of length one
containing only one magnetic charge, which can take values in Z (2.4.12).

The conformal dimension for this node is
1
A(m) = 3 (] + ml) = ], (26.15)

found by using (2.4.20) for the H = 1 hypermultiplet connecting the U(n = 1) gauge group to a single
rank n, = 2 flavour node (recall flavour nodes have no magnetic charge).

The topological charge for a bare monopole of a single gauge group with magnetic charge m is simply
the length one vector

J(m) =m, (2.6.16)

following (2.4.24) with p =1, ny = 1, and is graded by a single fugacity z.

The dressing factor counting the adjoint scalars at various R-charges that can dress V,,, is simply

Pyy(t,m) = 1> (2.6.17)
following (2.6.13) with p=1, ny = 1.
Thus the Hilbert series is given by
HS(t,z) = L i 2™ g2
’ 1 - t2 m=—0o0
~ 1-¢4
T (1-222) (1-12) (1-2-2¢2) (2.6.18)

=1+ (P +1+2 )P+ (@t v 41422 427!
+ (@ +at 2+ 1+t v 2O O,

2

where the map z — £~ was used to get from the first line to the second, and the final line is a Taylor

expansion of the second about ¢t = 0. The z — 22

mapping is called a fugacity map. The reason for
the use of such maps is discussed first in Section 2.6.2, then again in 2.6.6 along with details on how

to find them. |

Now that we have understood how to use the monopole formula, we’ll move on to discuss what exactly
the Coulomb branch Hilbert series tells us about the physics of the theory.

2.6.2 Encoded infomation

In Section 2.6.1, we saw a formula (2.6.7) which enables us to calculate Hilbert series, and how to

use it. We now want to understand what it can tell us about the Coulomb branch.
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Operator content Firstly, it’s worth restating the inherent benefit of its design, as this already
provides a lot of information: the Hilbert series tells us the number of operators lying in the chiral
ring of the Coulomb branch at various charges under the global symmetries of the theory. The powers
of t give the charges under the U(1)r symmetry, and the powers of z give the charges under the
enhanced topological symmetry GS. Operators on C fit into representations of its global symmetries;
the coefficient of t?* will be a sum of characters of the representations of GS which have R-charge k

(possibly after some fugacity map, see Section 2.6.6).

Global symmetry Secondly, the t? coefficient of the Hilbert series tells us the local form of GS: it
is the character of the adjoint representation of GS [12], after a possible fugacity map.2® For example
in (2.6.18), after the map z — 22, the coefficient of ¢? is the fundamental weight character of the
adjoint representation of SU(2), hence GiS = SU(2) (locally). Indeed, all other #?* coefficients are
other characters of SU(2), and this is the local form of our global symmetry. This can help us to write
the Hilbert series in an alternative form, as the highest weight generating function (HWG) [60], which
neatly captures the representations of GS present at each R-charge using notation corresponding
to their highest weights. The HWG is found by replacing each fundamental weight character in
the Hilbert series with Dynkin fugacities p1, ..., -, 7 = rank(GS), graded by the character’s highest
weight. Concretely, to obtain the HWG from the Hilbert series, a character with highest weight

w1 UJQ.

[wi,...,w,] is replaced by g} puy?---p’. For instance, in the example of (2.6.18) the HWG reads:

HWG(t, ) = 1+ p26% + i t* + 1845 + Ot")
(2.6.19)

2it2i.

™

Il
(=)

I

K3

where p1 = p is the single Dynkin fugacity for our rank one G\S = SU(2). Note that from this HWG
we can see that no representations with odd highest weights appear on C: the global form of GS
is actually SO(3) = SU(2)/Zy. In general the global form will be the local form quotiented by a
subgroup of its centre. It can be found from the HWG by analysis of the charges of all generating
representations (not just those at %) under the centre of the local form of GS (as obtained from
the ¢? term), but as previously mentioned this will not be of interest to us in this thesis, and in the

remaining chapters we only quote the local forms.

Generators and relations Thirdly, the plethystic logarithm of the Hilbert series can be used to
count the generators and relations of C. This is through virtue of the fact that the chiral ring is com-
mutative, and so the Hilbert series is the symmetric product of some set of generating representations
subject to relations. As a result, PL(HS) will give us these generating representations and relations,
as discussed in Section 2.3.2.1 and at the top of Section 2.6. Recall that the Coulomb branch as an
algebraic variety is defined by a set of generators and the relations they satisfy. While PL(HS) does
not give us the explicit form of the generators and relations, it does tell us how many there are and
in what representations of U(1)r x GS they lie. For example, consider the Hilbert series (2.6.18) of
the Coulomb branch of (2.6.14). We find that

PL(HS(C(Qa)))(t,2) = (2 +1+272)t* ¢!

21 o] (2.6.20)

26Note that in an unrefined Hilbert series, the t? coefficient is the dimension of GS. This is often enough to be pretty
certain of GS, although without the refinement there is still ambiguity: for example, 3t> could mean G'S = SU(2), but
could also mean GS = U(1)3, etc.
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where in the second line we use highest weight notation for the fundamental weight characters in
the first line. This tells us that the Coulomb branch chiral ring is generated by 3 generators which
form the adjoint representation of GS = SU(2), each with R-charge A = 1, satisfying one relation
which transforms trivially under the SU(2) topological symmetry and under the U(1)r symmetry
with charge A = 2. Note that this Hilbert series exactly matches that of C?/Zy (2.6.6). As we saw
in the discussion following (2.6.6), on its own, this is not enough to indicate that C(Qa,) = C?/Z,.
In this case, equivalence of the two varieties can actually be proven either directly in the Coulomb

branch construction or via mirror symmetry [18, 51], but the details won’t be important for us here.

Note that we can also find the generators and relations of the HWG, but that they do not match
those of the Hilbert series in general. However, sometimes PL(HWG) is a simpler expression than

PL(HS), and so can be used as a nicer way to encapsulate the variety.

2.6.3 Perturbative Hilbert series

While knowing the exact form of the Hilbert series contains all the representation content we could
want, often just knowing the first few terms in its Taylor series is sufficient to learn what we would
like to. For example, if we are just after the local form of the global symmetry then computing to t2 is
sufficient. We find the Hilbert series to order t>* by evaluating the monopole formula perturbatively:

by restricting any infinite sums over the m; ; in (2.6.7) to terminate at £A.

Example Consider the example of the monopole formula for (2.6.14), (2.6.18). To obtain the
perturbative Hilbert series to order 2A = 6, we simply restrict the sum over m to run between
+A = +3. If we do this, we indeed find

HS(t,2) = 1+(22+1+2 D)2+ (2 + 224142 242Dt + (0422422414224 4279540 (1), (2.6.21)

as we did before when the sum was infinite. We can take the plethystic logarithm of this to find
generators and relations as before, again just making sure to terminate both the infinite sum in
(2.3.3) and the infinite sum in the Taylor expansion of the logarithm at the cut-off order 2A. Note
that the result will of course only be valid to this order; we will not learn of any generators or relations
at R-charges greater than A = A.

2.6.4 Non-simply-laced quivers

Recall from Section 2.2.1 that we sometimes come across 3d N = 4 quivers with non-simply-laced
edges (for example (2.2.9)). To compute the monopole formula for such quivers, a modification needs
to be made to the conformal dimension of the non-simply-laced edge.

A short node is defined to have charges lying in a magnetic lattice scaled by the multiplicity & of its
edge; each subdivision of the lattice is split into a further k. In the monopole formula (see Section
2.6.3), this amounts to the following changes [61]:

- In the formula for the conformal dimension of the non-simply-laced edge, the magnetic charges
for the long node are scaled by k. That is, for a non-simply-laced edge of multiplicity &
connecting a long node U(n1) to a short node U(ng), which have magnetic charge mi and ma
respectively, the conformal dimension A is

ny n2

A= % Z Z |k:m1’i —maj|. (2622)

i=1j=1
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- Ensure any sum over the charges for a short node is running over k times the usual limits (e.g.

the upper limit for m;; in a perturbative calculation would be k- A).

Under this definition, quivers with a short node cannot be interpreted as a supersymmetric gauge
theory Lagrangian in the standard way, as the lattice which the short magnetic charges are summed
over is not of the form Agv/Wegv for any semi-simple Lie group G. The reason for defining short
nodes in such a way is that it leads to natural extensions of results in simply-laced quivers that reflect
simply-laced Dynkin diagrams [61]. Coulomb branches of non-simply-laced quivers can also be seen
as folded versions of Coulomb branches of simply-laced Lagrangian quivers [62], although the details
of this won’t be important for this work. Before we move on, we’ll see an explicit calculation of the

monopole formula for the non-simply-laced quiver (2.2.9).

Example In (2.2.9), there are two gauge nodes: a U(2) and a U(1). We'll call their magnetic
charges mq = (mq,1,m1 2) and mg = (Mg 1) respectively. Suppose we wish to compute the monopole
formula to order t**. Then the monopole formula will be:

A mi, 1 3A
2A(m1.1,m1.2,m mi,1+my 2 M2 1
HS(t,z1,22) = ), > Y. Puexva)(t,mii,mig,man)t (m1,1,m1,2,mz.1) 7 2y
ml,lz—A mlyzi—A m2,1:—3A

(2.6.23)

where
A1, 20mz,0) =l =gl + 5 (ol + o]+ [3ma g = maal 4 3m = mal), - (26:24)
and the dressing factors are as given in (2.6.13). For e.g. A =5, we find HWG
HWG(t, puy, pig) = 1+ pot? + st + 5% + 3 t® + p5 10 + O ('), (2.6.25)

where 1, puo are the Dynkin fugacities for the topological global symmetry GS = Gs.

2.6.5 Ungauging

The two quivers we have computed the monopole formula for so far, (2.6.14) and (2.2.9), both have
flavour nodes; they are framed quivers. However recall from Section 2.2.1 that a quiver theory need
not have flavours, and in fact virtually all that we study in this thesis do not. To compute the
monopole formula for an unframed quiver, one additional action needs to be performed: ungauging.
This is because there is a diagonal U(1)4 symmetry which acts trivially on the Coulomb branch of
unframed quivers, and left untreated this renders infinities in the monopole formula. In order to
compute the Hilbert series of the quivers we study, then, it is important we learn how to account for
this U(1)4 and only count one operator in each of its orbits. The process of doing this is known as

ungauging.

Suppose we have a quiver theory with gauge groups U(n;) for i = 1,...,p. Denote a generic element
in U(n;) as g;. Firstly, note that since the center of U(n;) is U(1), any U(1) transformation leaves
the vectormultiplets of the theory invariant. Any hypermultiplet H;; in an unframed quiver is in the

bifundamental representation of the two gauge groups it connects U(n;) x U(n;). It transforms as
Hij — giHijg;" (2.6.26)

Consider the U(1); subgroup of U(n;), given by g¢; - 1,,, for ¢; € U(1) and 1,, the n; x n; identity
matrix. Then a generic bifundamental hypermultiplet transforms as

Hij — q;q;' Hij. (2.6.27)
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Clearly if we choose ¢; = g;, then H;; is invariant under gauge transformations. Thus, every hyper-
multiplet is invariant provided all gauge groups act via the same U(1) transformation; this is why

U(1)4 is termed diagonal. This justifies our claim that C is completely invariant under U(1)4.

But what does this mean for us? Recall that the monopole formula counts dressed monopole opera-
tors on C. This diagonal U(1)4 in the gauge symmetry means that if the magnetic charge m is equal
to the magnetic charge m with each entry shifted by the same constant value, then Vi, is identified
with V;,, under this gauge symmetry. Thus, if we don’t ungauge this U(1)y we will count several
gauge equivalent states, overcounting the number of physical monopoles we have. This can be seen
directly from the monopole formula, which will give infinitely many operators at each R-charge if
nothing is done to mitigate this U(1)4, as m and m give the same A and Pg. It is also clear why
framed quivers don’t face this worry: the flavour contributions to A are of the form e.g. |m1|+ |ms|,

which are clearly not invariant under shifts.

To sidestep this overcounting for unframed quivers, we ungauge the U(1)4. The way we need to do
this, in order to give the correct gauge group,

P

U(ni)/U(1)a, (2.6.28)
i=1

K3

is to set one of the magnetic charges for one gauge node to zero [13]. Note that this means ungauging
on a U(1) gauge node essentially “turns it into” a flavour node of rank 1. For unframed non-simply-
laced quivers (see Section 2.2), the Coulomb branch of the quiver is defined as that given by ungauging
on a long node. Ungauging on a short node isn’t a meaningful notion, as we lack a gauge theoretic
interpretation to short nodes (as we saw in Section 2.6.4).%"

2.6.6 Fugacity maps

We are used to working with characters which are given as fugacities graded by the weights of the
representation in question. We will call characters expressed in this way fundamental weight charac-
ters, and their fugacities fundamental weight fugacities x;. However, as mentioned in Sections 2.6.1
and 2.6.2, the coefficients of ¢t appearing in the Hilbert series are not always immediately characters
of this form. Often, the z; of (2.6.7) must undergo some sort of mapping before becoming the fun-
damental weight fugacities x; so that the coefficients they form can be readily recognised as some
sum of fundamental weight characters of the relevant topological global symmetry group GS. Such a
mapping is called a fugacity map. Note that in an unframed quiver, the map can change depending
on where you ungauge. Recall that the ¢ coefficient of the Hilbert series of a moduli space forms the
character for the adjoint representation of its global symmetry. This means that we can isolate just

the t? term to find the fugacity map.

In the simplest cases, the 2 coefficient in the Hilbert series comes out as the character of the global
symmetry in terms of the simple roots (we will call such characters simple root characters®®) without

any manipulation of fugacities. In these cases the fugacity map required is simply given by the

27 Although note that in [63] it was found that ungauging on a short U(1) node produces an orbifold of the Coulomb
branch obtained from ungauging on a long node.

28Recall that characters encode a representation. Said representation contains certain weights, written in terms of
a linear combination of fundamental weights, and the coefficients in this linear combination are how we grade the

fundamental weight fugacities in the fundamental weight character. For the simple root character, the only difference
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Cartan matrix. This is the case for example for any affine Dynkin diagram (see Table 3.1.1) when

the ungauging is performed on the affine node.

Example Consider the affine Ay Dynkin diagram, which we know has global symmetry SU(3).

7 3

! ! (2.6.29)

The ungauged quiver is

If we call the simple roots of SU(3) a; and o, then the full root system is
{Oél, Qg, 1 +Qg, —Q1, —Qg, —Q1 —042}. (2630)

Assigning fugacities z; and zo to the remaining gauge nodes, the Hilbert series of (2.6.29) can be

computed to t? as
1

1+(2+z1+22+zlzg+i+f+i)t2+0(t4). (2.6.31)
z1 z9 Z122

The t? term has unrefined dimension 8, and so we expect an SU(3) global symmetry. This can be

confirmed by inspecting the refined t? coefficient: it is indeed the root decomposition of the algebra

of SU(3). The Cartan subalgebra is encoded in the constant term equal to rank(SU(3)) = 2, and

all positive and negative roots are encoded by the products of z1, 2o and their reciprocals: z; and z5

are raised to the powers of the coefficients of the simple roots that are equal to these positive and

negative roots. That is, if one uses the identification
crag +cpag < 27t 27, (2.6.32)

we see that the root system of SU(3) (2.6.30) and the two Cartan elements completely comprises the
t? coefficient of the Hilbert series (2.6.31). This tells us that (2.6.31) is written in terms of simple
root characters of its global symmetry SU(3). To convert to the more familiar fundamental weight

characters then, we need to apply the Cartan matrix as our fugacity map:

(zl) -C (il) (2.6.33)

2 -1
C-= (_1 ) ) (2.6.34)

for C' the Cartan matrix of SU(3)

Note that the matrix multiplication isn’t meant in the usual sense here: rather than the entries of
the matrix being coefficients of the vector they multiply, they are instead the powers that the vector
elements (that they would traditionally multiply) are raised to. Applying this map yields the Hilbert

series

2 2
1
1+(2+ﬁ+ﬁ+x1x2+x—§+%+ Y2+ O(th), (2.6.35)

T2 T Ty Ty 1122

the t? coefficient of which we indeed recognise as the usual fundamental weight character of the ad-
joint representation of SU(3). This confirms the local form of GS as SU(3). i

is that the weights are written in terms of a linear combination of the simple roots instead. This linear combination
will clearly have different coefficients to the equivalent linear combination of fundamental weights, hence the different
character.
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In most cases the fugacity maps are a bit trickier to find. However there are some well known tricks
that work in a lot of instances, and we will try to illustrate these in the following example, a quiver

that will appear in Chapter 3.

Example Consider the quiver:

z8

Z6

O
2

= O

O ® -
5 2

ST O
& o0 O—0O—@

& o0

2 22 A (2.6.36)

and label the topological fugacities for each node as shown in red.?° The t? coefficient in the unrefined
Hilbert series is 79, which is the dimension of SO(13) xU(1).?° Refined, it has virtually no fractional
terms, which means it can’t be in the form of the root system of this global symmetry.>! We have
two unbalanced nodes, which we don’t expect to contribute to the non-abelian global symmetry. A
nice trick that often works is to map a fugacity z; corresponding to an unbalanced node of rank r;
to the rf-h root of the inverse of the product of all other fugacities raised to the power of their node

ranks:

(2.6.37)

In this case there are two unbalanced nodes: z7 and zs. We choose to pick zg to be our z; of (2.6.37),

and thus our map here will be

1
2
% — v s (2.6.38)
2] %o Zg %y Ry Zg &

After applying this, the z; fugacity also drops out of the Hilbert series, and so we have just z1, ..., 2g

left. In the resulting Hilbert series there are terms of the form

Z5
V 25 265 -
<6

appearing, and we don’t have fractional powers in root systems. So a natural map to take next is
29
Z5 —> —, Z6 —> Z9 Z10-
210
In fact we find that then just sending

29 > 29 210

gives us the root decomposition of SO(13) x U(1),?? i.e. its simple root character. We can then just
note that the simple roots are given by the Cartan matrix acting on the fundamental weights to find

29The general intuition for doing this is that there is a balanced Dg Dynkin diagram, and so we label the nodes in
this with index corresponding to the weight that node represents in highest weight notation.

30The character of a product group irreducible representation is equal to the sum of the characters of the individual
irreducible representations of each group in the product.

31The weight system of a real representation is comprised of some set of weights and their inverses, and possibly
some trivial elements. The adjoint representation is real, and so here the weights are plus and minus the positive
root system, in addition to the Cartan elements. This means the refined t? coefficient would have an even number of
fractional and non-fractional terms that would be inverses of one another.

32Recall the adjoint representation of U(1) is just the trivial representation.
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the more recognisable fundamental weight characters. Overall the fugacity map between the z; in the

monopole formula and the fundamental weight fugacities z; of Bg is given by

21

x1
Z2

X2
Z3

€3
24

=MC |y (2.6.39)

z5

x5
26

Te
27
z8 f

where f is just some auxhiliary fugacity that disappears in the Hilbert series under this map, and M

and C are given by:

(2.6.40)

SO O O O o O =
O O O O O = O
SO O O O = O O
SO O O O O O
S = R O O O O
SO N O O O O O
_ o O O O O O
_ O O O O O O

o O O O O

-1 -2 -3 4 -5 -5 -1

M is the matrix used to multiply the simple roots to find the z;, C' is the Cartan matrix of Bg (with
an extra trivial row tagged along to respect the auxiliary fugacity), and the fundamental weight

fugacities x; are indexed in the usual order corresponding to the B type Dynkin diagram:

O O O @; O——0
Ts5

@1 w2 x3 1 T (2.6.41)

2.7 Hasse Diagrams

Hasse Diagrams [64, 65, 66] are another tool that have been adapted and developed to help us analyse
the moduli space M of 3d N = 4 theories [9, 67, 68]. We can stratify the vacua on M into sets such
that all vacua in each set have the same set of massless states.®3> A Hasse diagram for M is a depiction
of this stratification. The more massless states there are at a point, the more the symplectic form
degenerates; the variety becomes more singular at that point. From the algebrogeometric perspective
then, the Hasse diagram depicts the increasingly singular subsets of the variety. A subset of M with
a particular set of degeneracies of w (or equivalently a particular set of massless states) is associated
to (the closure of) a symplectic leaf. The moduli which need to be tuned to move from one symplectic
leaf to another are called transverse slices. A transverse slice for two adjacent symplectic leaves is

called an elementary slice.

33 A massless state in the low-energy vacuum has vanishing vacuum expectation value.
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In general, a Hasse diagram is simply a depiction of a partial ordering on a set (.5,<). For instance,
if S is comprised of three distinct elements a, b and ¢ which are related under some partial ordering
as a < b < ¢ (note that these are actually totally ordered), then the Hasse diagram for S would be:

C

a (2.7.1)

For us, S will be the symplectic leaves, and the partial ordering < will be an inclusion of closures.
That is, if one particular symplectic leaf (i.e. the set of vacua with one particular set of massless

states) £; lies within the closure of another symplectic leaf Lo, then £ < Lo:

£2 [ ]
Ly i (2.7.2)

The transverse slice from Ly to £1 (the line connecting them) is the space inside the closure of Lo
that is transverse to £1. It has dimension equal to the codimension of £; inside £o. Note that any
transverse slice is also a symplectic singularity, as it defines a set of points inside the closure of the

higher symplectic leaf** which are singular, via the symplectic form inherited from C.

The classical Higgs branch Hasse diagram can be determined from the bottom up [9], i.e. starting
at the most singular point where the gauge group is fully unbroken and all fields are massless. The
adjoint Higgs mechanism is then used to determine the massless hypermultiplets at each possible
breaking of the gauge group G, all the way up to where G is fully broken (a generic point on the
Higgs branch). However when the coupling is taken to infinity, the Higgs branch is non-classical and
no Lagrangian description is available, rendering the above technique invalid. To study such Higgs
branches, an alternative description is needed. The tool we opt to use to achieve this is called the
magnetic quiver; a quiver whose 3d N = 4 Coulomb branch is equal to the Higgs branch in question.
Magnetic quivers feature in this thesis in Section 4.7 to describe the Higgs branches of certain 5 and
6d theories with UV/IR fixed points at infinite coupling (i.e. at their UV [69] and IR [70] fixed points,

respectively).

2.7.1 Magnetic Quivers

Suppose we are concerned with the Higgs branch of a quiver theory ) which we are unable to compute

classically. We'll call Q) the electric quiver. Then its magnetic quiver, Q', is defined such that°

H(Q) =C(Q"). (2.7.3)

When the electric theory is a 5d quiver @) at infinite coupling, since the coupling is a parameter of

the theory and not a modulus or inherently specified by @, we write

Hoo(Q) = C(Q). (2.7.4)

34The “higher leaf” is the leaf inside the closure of which the “lower leaf’ lies. Here, the higher and lower leaves are
Lo and L7 respectively.
35The pair are called electric and magnetic quivers to reflect this duality between the Higgs and Coulomb branches

of their moduli spaces.
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One can find the magnetic quiver for an electric theory via analysis of its brane system [69, 48, 71, 72,
73, 40, 16, 74, 75, 76, 77, 78]. How this is done will not be important for understanding the results
we present; when we employ a magnetic quiver to help us calculate the non-classical Higgs branch of

an electric theory, it will simply be stated without proof.

We pause briefly to make a quick comment on terminology. The two phrases magnetic quiver and
Coulomb quiver are used many times during this thesis, and seem to mean the same thing: they
describe the quiver whose Coulomb branch is the object in question. The distinction in terminology
is important for context of the object. We use the term magnetic quiver when we are studying the
Higgs branch of some electric theory via the Coulomb branch of the magnetic quiver, whereas we use
the term Coulomb quiver when we are studying an algebraic variety of unspecified origin via a quiver
whose Coulomb branch is known to match it. Analogously to a Coulomb quiver, a Higgs quiver for

a variety V is a quiver whose Higgs branch is known to match V.

2.7.2 Quiver Subtraction

In this thesis, while we do study some Higgs branches (for example in Section 4.7), it is always via
the Coulomb branch of their magnetic quivers; we only need to learn of the techniques we use in
relation to Coulomb branches. In the context of Hasse diagrams, this means we only need to learn

how to explore the singularity structure of the Coulomb branch.

Recall that to explore a classical Higgs branch Hasse diagram, one starts from the origin of H where
the gauge group is fully unbroken and everything is massless, before Higgsing to climb up the Hasse
diagram to the most generic (and least singular) points of H. The technique developed to produce
the Coulomb branch Hasse diagram takes an opposing approach: top down. We start from the most
generic points on C (the least singular) and work down to find the singularities, using a method called

quiver subtraction [34].

Quiver subtraction was conceived by the authors based on their work with Kraft-Procesi transitions
[79] in the brane system [80, 39]. It was found that for brane systems of maximal nilpotent orbits,
one could reproduce the known Hasse diagram of the orbits for a specified algebra by aligning branes
in the Coulomb phase of the brane system and “un-Higgsing”. This corresponds to tuning moduli
to move from a leaf®® in C to another leaf with additional massless states. When a minimal number
of branes are aligned (or equivalently a minimal number of moduli are tuned) to move from one leaf
to another, the transverse slice corresponding to these moduli is called an elementary slice, and the
two leaves are adjacent (there exist no other intermittent leaves between them). From these mini-
mal transitions, all composite ones can be obtained. The process of aligning branes was translated
into quiver subtraction, a graph theoretic algorithm to be performed on a given quiver [34]. Here it
was conjectured that subtracting Coulomb quivers of elementary slices from the quiver of a theory
constructs its Coulomb branch Hasse diagram. This conjecture has not been proven generically, but
there are many cases for which it has been (for example through use of mirror symmetry [51] and

Higgsing), and no counterexamples have yet been found.3”

36Here, as in many places throughout the thesis, we use “leaf” in place of “symplectic leaf” for the sake of brevity.

37Note that the precise form of the quiver subtraction algorithm has received updates along the way (for example in
[16]), and we anticipate it will continue to do so.
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Quiver subtraction starts from the quiver @ for a theory, which represents the top leaf £ of the
Coulomb branch Hasse diagram. Each known elementary slice (note that this list is incomplete) has
a corresponding Coulomb quiver o (or possibly several). One identifies all o; that “lie within” Q,
and for each one, subtracts Q) —o0; to give another quiver @)1 ; which corresponds to a leaf £; ; on the
next level down from £ in the Hasse diagram. If @)1 ; is non-trivial, the process is repeated again for
each leaf £; ;, until no non-trivial quivers representing leaves are left. The Hasse diagram then takes
the form:

(2.7.5)

where the closure of a leaf is the Coulomb branch of the quiver associated to the leaf, and each edge

is labelled by the symplectic singularity that the moduli in the transverse slice form.

Importantly for us, it is conjectured that the product of the symmetries of the bottom-most ele-
mentary slices in a Hasse diagram is a subgroup of the non-abelian part of the topological global
symmetry GS. In Chapter 3, quiver subtraction and its reverse process, quiver addition [10], are ex-
ploited to find quivers with enhanced Coulomb branch global symmetry. Although quiver subtraction
was derived from brane systems, in the absence of a brane picture the rules for subtracting quivers
can often still be implemented, although a physical motivation for doing so is absent and the Hasse
diagram derived cannot be verified. Whilst this is the case for many quivers studied in Chapter 3,
in all cases we find evidence supporting the validity of using quiver subtraction. In particular, for all
Coulomb branches studied in Chapter 3, the symmetries of the bottom-most elementary slices of the
Hasse diagram agree with the non-abelian part of the correct GS as computed using the monopole
formula.

It’s now time to make the above discussion concrete and explicitly state the quiver subtraction
algorithm, presented so as to be of greatest use for our purposes. In particular, we state the algorithm
for unframed quivers only, as it is only such quivers whose Coulomb branch Hasse diagram we explore
(we are not concerned with the Hasse diagrams of the select few framed quivers appearing in this
thesis). The steps in the algorithm we are about to outline are all detailed in other papers [34, 9, 16],
but we compile them here for the readers convenience. It will be necessary to consider the Coulomb
quivers for all known elementary slices, and the complete up-to-date collection can be found by
compiling Table 1 of [81], and Table 3.1.2 of this note.

Quiver subtraction algorithm Consider an unframed unitary 3d AN = 4 quiver Q. A valid

elementary slice that can be subtracted from @ is one whose Coulomb quiver ¢ has nodes that “lie
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within” Q. By this, we mean that a connected subset of the nodes in @, Q., is in the shape of ¢,3®
and that the rank of each node in @), is greater than or equal to that of its corresponding nodes in
o. Note that there may be many possible choices for @), for a given ¢, and many choices of ¢ for a
given elementary slice: all such choices lead to different transverse slices in the Hasse diagram. The

following steps then show us how to perform the subtraction @Q — o for a particular Q..
1. Subtract. For each node in @, subtract the rank of the corresponding node in o.

2. Rebalance. Identify the nodes which have undergone a change in excess, as defined in (2.2.11),
due to the subtraction. Call the set of such nodes F, and define E; as the subset of E that
are long nodes and F, as the subset of E that are short nodes. The nodes in E must be
“rebalanced” so that they have the same excess as before. This is done differently depending

on the scenario:

a) If the subtraction performed was not identical to the previous subtraction (i.e the same
slice o being taken from exactly the same subset @, of @), then add a U(1) node u to the

quiver, and connect it to the nodes in E in the following way:

i) Connect all nodes in E; to u with sufficiently many simply laced edges such that the
excess of the nodes in Fj is restored to the values they took before the subtraction.

it) Connect all nodes in Fy to u with sufficiently many non-simply laced edges whose
multiplicity is equal to the “shortness” of the node in F; in question, such that w is
the long node and the excess of the nodes in F; is restored to the values they took

before the subtraction.

Note that the added U(1) node u need not be balanced; it may have excess e,, # 0. However
if a subsequent distinct subtraction®® is performed, the excess of u after this subtraction
will have to be restored to its value before the subtraction, e,,.

b) If the subtraction performed was the n'" (n > 2) in a string of identical subtractions (i.e.
subtracting the same slice o from precisely the same subset @), of (2 multiple times in a
row), then, calling the U(1) node added to rebalance after the first such subtraction w,
apply the following:*°

i) If n =2, add an adjoint hypermultiplet to u, and increase the rank of this node to two.

it) If n > 3, u will already have an adjoint hypermultiplet from the n = 2 subtraction, so

simply raise the rank of w by one (this will mean its rank is n).

Example Consider the quiver

1 1
1v1
O )
1
0

N\
3
0

o w0
SENje)
o +~0

(2.7.6)

38More precisely, Q, being in the shape of o means that, up to some permutations of rows, the Cartan matrix
describing the links between nodes in QQ» contains the Cartan matrix describing the links between nodes in o.
39By distinct subtraction, we mean any subtraction which is not subtracting ¢ from the exact same set of nodes Q.

40Note that the concept of decorated quivers has been introduced to keep track of multiple same slice subtractions
(16, 68, 82].
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where the ranks of the gauge nodes are given in black, and we’ve noted the excess of each node in
red. We can see that the central five nodes form the shape of the magnetic quiver for the d4 slice
and have appropriately large ranks, so this slice can be subtracted. No other slice is a subset of the
nodes of this quiver, so this is the only possible subtraction. Performing Step 1 gives

O O O O O
1 1 1 1 1

Here, the nodes which have changed excess are the two end nodes. They are both long nodes, and
so E = F; (E, is empty). This means that in Step 2, we must follow option a)i).** The nodes in F
both need just one extra flavour to restore their balance, and so we connect the new U(1) to either
end node with just a single simply laced edge:

0 1

[an}
O =

O
=0
=0
S

(2.7.8)

We have coloured the rebalancing node u in blue for clarity. (2.7.8) is precisely the Coulomb quiver of
the elementary slice o = a5, and so clearly this is all that can be subtracted. Doing so leaves nothing
left, and so this concludes the exploration of the foliation of the Coulomb branch of (2.7.6); its Hasse

diagram is
[

dy

as
(2.7.9)

The interpretation here is if you pick a point on the Coulomb branch moduli space, it will lie on one of
the closures of the three leaves in the Hasse diagram (2.7.9), each of which correspond to a certain set
of massless states. The Coulomb branch of the quiver theory of (2.7.6) is obviously the closure of the
top leaf (the whole Hasse diagram), as this is the moduli space we’re studying. A generic point on this
Coulomb branch will have the maximal number of massless states: 10 massless vectormultiplets,*?
and no massless hypermultiplets (by the BPS formula). All such points live on the top leaf, associated
to the quiver (2.7.6). There are then certain points on the Coulomb branch which have fewer massless
states: just 5 massless vectormultiplets now, plus a massless hypermultiplet.*> Such points lie on
the middle leaf of (2.7.9), and are associated to the quiver (2.7.8). The Coulomb branch of (2.7.8) is
then the closure of this middle leaf (i.e all points on this leaf and the bottom leaf). At one particular
point on the Coulomb branch all 20 vectormultiplets and 22 hypermultiplets are massless. This is
the origin of the Coulomb branch, and is the sole point which lives on the bottom leaf of (2.7.9). The

41 An example of a quiver where one must instead follow Step 2)b) during the quiver subtraction process is (3.2.4).

42The number of massless vectormultiplets can be read from the quiver. The quaternionic dimension of the Coulomb
branch will be the number of monople operators we have, which is equal to the rank of the gauge group. The complex
or real dimension then is twice or four times this respectively.

43This massless hypermultiplet opens up Higgs branch directions in the Hasse diagram for the full moduli space as
it may now acquire a VEV [67]. That is, there is a set of moduli associated to this hypermultiplet which can be tuned
away from zero to explore the Higgs branch. It can be seen from the brane picture that these moduli correspond to
the d4 variety. Such a set of moduli is called a transverse slice, as discussed later in this paragraph.
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whole Hasse diagram obviously contains its bottom half, and so the Coulomb branch moduli space of
(2.7.6) contains that of (2.7.8). The transverse slice between these two Coulomb branches is dy, and
between the origin and the (2.7.8) Coulomb branch is as. The transverse slices connecting two leaves
tell us the moduli that need tuning to or away from zero to move between the two corresponding
leaves. The lowest elementary slice is a5, and thus SU(6) must be at least a subgroup of the global
symmetry. Indeed this is confirmed upon computation of the Hilbert series, which tells us that the
global symmetry is SU(6) x U(1). mi



Chapter 3

Global Symmetry

In this chapter we present the work of [10], where we constructed many infinite families of quivers
for which the previously accepted algorithm for identifying GS from a quiver based on the balance
of its gauge nodes fails, giving only a subgroup,' and provide a suggested amendment to this algo-
rithm to fix this. The content of this chapter relies heavily on the concepts of balance, the Coulomb
branch topological symmetry GS, fugacity maps, Hasse diagrams, quiver subtraction and discrete
projections. For a recap of these topics, see Sections 2.2.3, 2.4.2.2, 2.6.6, 2.7, 2.7.2, and Appendix A

respectively.

As discussed in Section 2.6.2, the GS for a quiver (recall we don’t concern ourselves with the global
form, although the generators of the Hilbert series can be used to determine this) can be determined
explicitly by computing the monopole formula and consulting the t? term, after a possibly fugacity
map. However for quivers of sufficiently high rank, this method becomes too computationally inten-
sive to carry out, driving the want for an algorithm to determine GS from simple inspection of a
quiver. By and large, this can be done (for quivers containing only regular matter?) by applying an
algorithm [14] based on the quiver’s balanced gauge nodes [4]. We call the symmetry predicted by
this algorithm the balance global symmetry (BGS), and the algorithm itself the BGS algorithm.
However, there have been examples found in the past where the BGS algorithm only produces a
strict subgroup of GS, see for example [15, 16]. For these quivers, the true GS is an enhancement
of the BGS; we call the GS of such quivers the enhanced global symmetry (EGS). The failure
of the BGS algorithm to give the correct GS for all quivers indicates a need to improve it. In order
to decipher what the needed amendments are, we must first understand why it fails on the set of

examples found. This is precisely the concern of this chapter.

We make progress with this by considering the Coulomb branch Hasse diagrams of quivers with an
EGS. Recall from Section 2.7.2 that the symmetries of the bottom elementary slices in the Coulomb

branch Hasse diagram are conjectured to form a subgroup of GS. It turns out that the Hasse diagrams

I'When we say the BGS fails, we mean that it fails to give the full global symmetry. This is not technically a
failure of the BGS as it only claims to give a subgroup of the full global symmetry, but it is a failure of the BGS as an
algorithm to always give us the full global symmetry of a quiver, hence our use of the terminology.

2Regular matter is used to refer to that contained in quivers for which the Cartan matrix of any two connected
nodes, n; and nj, has either the ij or j¢ entry as —1. This is extended from the definition of just having bifundamental

matter to include non-simply laced edges.

54
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of quivers experiencing an EGS contain a symplectic leaf whose corresponding quiver® has an adjoint
hypermultiplet(s). In this chapter, we show that the presence in the Hasse diagram of balanced
quivers with adjoint matter,* which we call @, induce lowest elementary slices and thus (under the
above conjecture) a GS of greater dimension than expected.® In order to do this we start with these
quivers @,, many of whom’s Coulomb branches appear in the Kostant Brylinski classification [12],
and reverse-engineer the process of quiver subtraction to obtain infinitely many quivers with an EGS.
This process that undoes quiver subtraction is called quiver addition, and has been introduced before
in [81]. We amend the method given there to include how to perform quiver addition to remove the
adjoint matter in Q),. We then use the logic implemented to construct these quivers with an EGS to
give a modification to the BGS algorithm which corrects its previous failings for all quivers presented
in this chapter.

As far as we checked, using quiver addition on many non-balanced quivers with adjoint matter also
gives an EGS.% We restrict ourselves to the balanced subset @, in this paper as we cannot list all
quivers with an EGS (there are infinitely many of them), and this is a natural and fairly small subset

to focus on to illustrate the idea.

The chapter is organised as follows. In Section 3.1 we review the BGS algorithm, and see an example
for which it fails. In Section 3.2, we conjecture an amendment to the BGS for balanced quivers with
adjoint matter @Q,, provide a full list of such quivers, and give the method we use to perform quiver
addition on them. In Sections 3.3, 3.4, 3.5 and 3.6, the quivers with EGS which arise as the result of
performing quiver addition on the respective @, (given in Table 3.2.1 of Section 3.2.1) are listed. The
global symmetries predicted by the BGS algorithm in these sections contain a factor that is enhanced
to By, G2, D,, and A, respectively.” Finally, in Section 3.7 we give a modified BGS algorithm which
works not only on all quivers for which the previous BGS algorithm worked, but also on all those
constructed in Sections 3.3 — 3.6.

3.1 Balance Global Symmetry

We start by reviewing the algorithm previously established for determining (a subgroup of) the
Coulomb branch topological symmetry from a quiver. The concept of framing and balance both
feature; for a recap, see Sections 2.2.1 and 2.2.3 respectively. The other potentially unfamiliar ter-
minology used is the phrase sub-Dynkin diagram. If a quiver contains unbalanced gauge nodes, the
balanced nodes naturally split into connected subsets which each take the form of a Dynkin diagram

of some simple Lie algebra. We call these balanced sub-quivers sub-Dynkin diagrams.

3By the quiver corresponding to a symplectic leaf, we mean the quiver whose Coulomb branch is equal to the closure
of the symplectic leaf.

4See the bullet points at the end of Chapter 1 for clarification of this statement.

5We do not rule out the possibility to find more quivers with an EGS whose Hasse diagrams do not contain a leaf
corresponding to one of the Q.

6 Although note that we may need to use an adaptation of the quiver addition algorithm presented in Section 3.2.2
if the quiver with adjoint matter in question does not satisfy the necessary conditions stated.

"The algebraic and Dynkin names for Lie groups, for example B, and SO(2n + 1), will be used synonymously
throughout this paper.
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BGS algorithm

The balance global symmetry for a good quiver containing only regular matter,? @Q,, is computed as

follows:

1. If Q. is framed, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams D; of the

simple Lie groups G;, and k unbalanced nodes, then the BGS is given by

BGSE™ e =T] Gy xU(1)F. (3.1.1)

i=1
2. If @, is unframed, there are two scenarios:

a) If Q, is balanced, then it must be either the affine or twisted affine quiver for some simple

Lie group G (these quivers are given in Tables 3.1.1 and 3.1.2 respectively), in which case

BGSg, =G. (3.1.2)

b) If @, is unbalanced, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams

D; of the simple Lie groups G;, and k unbalanced nodes, then the BGS is given by

BGSErmed ~ ]Gy x U1 (3.1.3)
=1

where the definitions of s, G; and k are as in Step 1.
As noted in the introduction however, this algorithm does not always yield the full global symmetry.

To see this explicitly, consider the following example.

Example Consider the quiver

Q= O O O O O @
2 4 6 8 5 2 (3.1.4)

where the red indicates that the corresponding node is unbalanced. Here, there are two unbalanced
nodes and one balanced sub-Dg Dynkin diagram. Thus we read off the BGS

BGSo = SO(12) x U(1). (3.1.5)

However if we compute the refined Hilbert series perturbatively (see Section 2.6.3) to order t* for Q

we find that, after the appropriate fugacity map (see Section 2.6.6),
HSg=1+(1+[0,1,0,0,0,0],)t* + O(t*), (3.1.6)
which means that the global symmetry is actually enhanced to
EGSg =50(13) xU(1). (3.1.7)

Blue is used to highlight the factor of the global symmetry that is enhanced. Here we see explicitly
the failure of the BGS to give the full global symmetry. O
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Coulomb branch Affine Quiver
1
af A
1 1
\%/—/
k
1
i Q—ii
k>3 1 2 2 1
H/—/
k-2
Cr O——0— —CO==0
1 1 1 1
H/—/
k>2 k-1
1 1
" Q—ii 4E—Q
k>4 1 2 2 1
H/—/
k-3
1
€g 2
O O O O
1 2 3 2 1
2
(rd f
O O O O O O O
1 2 3 4 3 2 1
3
€g f
O O O O O O O
2 3 4 5 6 4 2
Q—Q—O@:@—O
J1 1 2 3 2 1
O—C==0
92 1 2 1

Table 3.1.1: Quivers of the affine Dynkin diagrams. The first column lists the Coulomb branch varieties,

which are all the minimal nilpotent orbits g of the simple Lie groups G, of the quivers in the second

column when ungauged on a long node. These quivers will be referred to as “affine g”.
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Coulomb Branch Twisted Affine Quiver
as O=0
2 1
1
a2k-1 O@:( —— —: i—(
2 2 2 1
Hf—/
k-2
a2k 2 2 2 1
\%/—/
k>2 k-1
d ()i@—o
4 37 2 1
Oi@( —— o —— )é:@
d+1 1 2 2 1
\%/—/
k>4 k-1
€6
O—O——0——0O0—o0
2 4 3 2 1
k>2

Table 3.1.2: Quivers of the twisted affine Dynkin diagrams. The first column lists the Coulomb branch
varieties, which are all the minimal nilpotent orbits g of the simple Lie groups Gy, of the quivers in the

second column when ungauged on a long node. These quivers will be referred to as “twisted affine g”.

Now that we have seen the BGS algorithm and seen an example quiver on which it fails (i.e. a quiver
that has an EGS), we are ready to move on to describe the method by which we construct infinitely
many quivers with an EGS. In Section 3.7, we will present a modified BGS algorithm which does
work on @ (and all other quivers constructed with an EGS which appear in Sections 3.3 — 3.6), and

see its success with @ illustrated explicitly in an example.

3.2 Constructing Quivers with Enhanced Global Symmetry

The gauging of discrete symmetries in supersymmetric quiver gauge theories has received much at-
tention in recent years. The notion of gauging continuous symmetries is a familiar one: introducing
fabricated degrees of freedom to elicit mathematical trickery in order to simplify problems. Many
theories also have global discrete symmetries, such as time reversal or charge conjugation, and so
exploring the potential to gauge these symmetries should be of equal interest. In the context of the
moduli spaces of supersymmetric quiver gauge theories, this has been explored in 71, 83, 84, 62], for
example. The outer automorphisms of the quiver itself are obvious discrete global symmetries of the
theory, and thus we could choose to gauge them. In the string theory picture, this corresponds to

moving branes on top of one another, inducing extra massless strings stretching between them. A
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result of this is the following conjecture:

=C : (3.2.1)

where C(Q) is used to denote the Coulomb branch of the quiver (). This conjecture has been proven
on the level of the Hilbert series [83], but this is not sufficient to prove for good that the two Coulomb
branches are the same.

Let’s be explicit about what this tells us. The quiver on the left hand side, which we’ll call A, has
an S, outer automorphism permuting the bouquet of n identical U(1) nodes, and so this S, is a
discrete global symmetry of the theory described by A. Upon gauging this symmetry, we add further
constraining relations to the ring of gauge invariant chiral operators on the Coulomb branch, and
thus the Coulomb branch of this gauged theory will be an S,, quotient of that of A. Moreover, the
Coulomb quiver for this discretely gauged theory is found by compiling the bouquet in A together
into one single U(n) node with a hypermultiplet in the adjoint representation, as shown in the quiver
on the right hand side of (3.2.1), which we’ll call B. The intuition for this comes from the brane
picture discussed above. From here on out, we refer to such a hypermultiplet (i.e. one that is in the
adjoint representation of some gauge group) as an adjoint hypermultiplet, or more vaguely as adjoint
matter. Adjoint matter is represented in the quiver by a loop going to and from the node that it is in
the adjoint representation of. The conjecture (3.2.1) has been shown to be true in many cases, and
a counterexample has not yet been found, so it is believed to be true in general. For details on how
to find an S, quotient of a moduli space in terms of its Hilbert series, see Appendix A in which an

example for n = 2 is illustrated.

In Section 3.2.1 we look at quivers with adjoint matter (whose Coulomb branches, by the above, can
be seen as discrete quotients of quivers containing only regular matter?) and see how to read their
BGS, before constructing the full set of balanced quivers for which each node has at most one adjoint
hypermultiplet. It is these quivers from which in the following sections we will construct, via quiver
addition, quivers with only regular matter that enjoy an EGS. The process of this construction is

outlined in Section 3.2.2.

3.2.1 Quivers with Adjoint Matter

The main result of this work is as follows: there are balanced quivers with adjoint matter which
we call Q,, listed in Table 3.2.1,% that induce an EGS. By this, we mean that we have found many
quivers, derived by performing quiver addition on @, to “absorb” the adjoint hypermultiplet (we
will see what this means more concretely in Section 3.2.2), which experience a symmetry that is
enhanced from that predicted by the BGS. Since the adjoint matter is absorbed in this process, the

resulting quivers are of type Q,.> The Hasse diagram of such a quiver @, will contain the Hasse

8Note that, as explained in the bullet points at the end of Section 3.2.1, the quiver with global symmetry SU(2n+1)
in Table 3.2.1 is not part of the set of quivers Q, which we study in this note, as it is unclear how to perform quiver
addition in this case.
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diagram of the quiver @, it was derived from, and so the global symmetry of Q, will be a subgroup
of the global symmetry of Q,., as explained in Section 2.7. This motivates us to study the quivers
Qa, and in particular their global symmetry. However, the above prescription for reading the BGS
does not specify what happens when there are gauge nodes with adjoint matter in the quiver. We
will call such gauge nodes a;, 7 = 1,..., L, where L € N is the number of nodes with adjoint matter.
One might naively think to just “ignore” the adjoint hypermultiplets (other than their contribution
to the balance of a;), and proceed with the algorithm given in Section 3.1. However, as the example
below shows, this leads to us identifying incorrect global symmetries. To correct this, we propose the
following extension to the BGS algorithm for balanced quivers containing an adjoint hypermultiplet.

Claim: @, BGS algorithm

Let Q, be a balanced® quiver which has L nodes that each have a single adjoint hypermultiplet, and
no nodes with more than one. Label these nodes a; and their ranks r4,, for 4 = 1,..., L. Furthermore,
impose that the nodes a; are only connected to other gauge nodes in @), via simply laced edges. Then
the global symmetry of ), can be determined by performing the following steps:

1. Replace the simply laced connections of the a; to other gauge node(s) of @, by a non-simply
laced edge of multiplicity r,, such that a; are the short nodes.

2. Remove the adjoint hypermultiplets attached to all nodes a;.
3. Set all v, = 1.

4. Call the resulting quiver after performing steps 1 -3 Q. The global symmetry of @, is then
given by implementing the previous BGS algorithm listed in Section 3.1 on Q.

The justification for this claim is found in examining the Hilbert series. For ), under the topological-
to-simple-root fugacity map, the topological fugacities for the nodes with adjoint matter a; correspond
to the simple root fugacities for the short nodes in Qa. This motivates the above algorithm, and
indeed gives the correct global symmetry for all quivers in Table 3.2.1. We illustrate the need for and

implementation of this claim below with the following example.

Example Consider the quiver

a 2 1

o O—O
O

2 O
2o O

1 (3.2.2)

This is a Coulomb quiver of the Kostant Brylinski classification [12], as its Coulomb branch is the
Zs quotient of the minimal nilpotent orbit of D7 [84]: the next to minimal nilpotent orbit of Bg
[62], O¢g,110y. Thus the global symmetry of (3.2.2) is Bs. Let’s check this against the initial BGS
algorithm we gave in Section 3.1, if we were to treat a as we would any other node. Since there are
no unbalanced nodes, and among the gauge nodes there is just one balanced sub-Dynkin diagram
which is in the shape of Ag, we would conclude that the global symmetry is SU(7), which is incorrect.

9This algorithm does also work for some unbalanced quivers with hypermultiplets as specified here. However it does
not work for all such quivers, and hence we restrict the validity of the algorithm to only the balanced subset.
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However, under the @, BGS algorithm above, to correctly read the global symmetry, the connection
of a to its adjacent node is replaced by a non-simply laced edge of multiplicity two such that a is the

short node, its adjoint hypermultiplet is removed, and its rank is set to one:

1T
o« O=<%=0—0—0—0—0 >
1 2

22 2 1 (3.2.3)

We then proceed with the original BGS algorithm. Since (3.2.3) is unframed and forms the affine
Dynkin diagram of Bg, hence we conclude that this is the global symmetry, which is indeed correct.
Note that although the quiver (3.2.3) has the same global symmetry as (3.2.2), it does not have the
same Coulomb branch. This algorithm should only be used to determine the global symmetry. O

It is worth noting that while this extension to the BGS algorithm is nice, it does not fulfill the
requirement of an all encompassing method for determining the global symmetry, as it still fails in
many cases. See for instance the example of (3.1.4), which is a quiver of type @, and therefore has

no adjoint hypermultiplet, so the previous BGS failure is not fixed by the above ammendment.

The reason we are interested in these quivers with adjoint matter is because, as is explained in Section
3.2.2, when quiver addition is performed on them to absorb the node(s) with the adjoint hypermul-

tiplet, the resulting quiver experiences an enhanced global symmetry.

There are many quivers with adjoint hypermultiplets which will elicit an EGS in quivers derived
from them via quiver addition, but in this work we restrict ourselves to just a subset: the family of
balanced quivers whose nodes each have at most one adjoint hypermultiplet. These are the quivers
we refer to as (),. They can be completely classified, and the full classification is listed in Table 3.2.1,
along with the Coulomb branch variety, enhanced global symmetry and HWG (see Section 2.6.2). It
is sufficient to, for now, restrict our study to these quivers, as they can be used to construct a healthy

range of examples for which the BGS fails. We proceed with proving the classification of these Q.

Theorem. The set of 3d N = 4 balanced unframed unitary quivers with L € N\{0} nodesa;, i =1, ..., L
that each have a single adjoint hypermultiplet but which otherwise only contain regular matter can be

completely classified, and the classification is given by Table 3.2.1.

Proof. First start by considering a single node a of rank r, with a single adjoint hypermultiplet, which
all such quivers in the theroem must contain. Note that r, > 1 because the adjoint representation of
U(1) is trivial. To be balanced, a must be attached to exactly two flavours. This limits us to: () one
rank two node attached via a simply laced edge; (ii) one rank two node with an adjoint hypermultiplet
attached via a simply laced edge; (ii7) two rank one nodes, each attached via a simply laced edge;
(iv) one short rank one node attached by a non-simply laced edge of multiplicity two; or (v) one long
rank two node attached by a non-simply laced edge of multiplicity two. Note that we cannot have
one rank one node connected to a via two simply laced hypermultiplets because for this node to be
balanced it would force 7, = 1. In the cases (ii), (4i7), (4v) and (v), for these new nodes added to

be balanced, and because r, # 1,'° it must be that r, = 2. Furthermore, this must be the end of the

10This constraint is relevant to mention because if r4 = 1 were allowed, the new node could have been balanced by

attaching further nodes to it.
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chain, as these final nodes added are already balanced so we cannot possibly add anything more to
them. In case (i) we have three possibilities, as r, < 4 otherwise the new node will be overbalanced,
and we know r, # 1. Call this new rank two node attached to a in (i) node T. If r, = 4, the chain
ends here as T is already balanced. If r, = 3, then T" must be connected to one flavour to be balanced,
and this ends the chain. If r, = 2, then in order for T to be balanced, it must connect to two flavours
also. This will again have the same options (4),(i%), (ii7), (iv) and (v) as above, and again if option
(i) is chosen the chain will continue, until at some point it must end by choosing one of the other
options. Running through all these possibilities gives the full list of quivers in Table 3.2.1. [

The balanced quivers with adjoint hypermultiplets in Table 3.2.1, except for the n = 2 cases of b, [Zs
and agy,—1/Zs, could also be derived in an alternative way. Readers who are confident in the material
may wish to skip this paragraph and proceed to the bullet-pointed remarks on Table 3.2.1 below, as
its main use is to clarify ideas already introduced. Recall that the lowest elementary slices of the
Hasse diagram reveal a subgroup of the global symmetry. We therefore try to construct the most
basic building block quivers with adjoint matter which induce an EGS.!! This can be done by finding
the quivers Q, for whom Q,, as named in the Q, BGS alogrithm given at the top of this section, is
an elementary slice. More complicated quivers with adjoint matter that induce an EGS can then be
derived from these. At the time of writing, the full list of Coulomb quivers of the known elementary
slices is comprised of Table 1 in [81] and Table 3.1.2 in this paper. Thus our building block quivers
Q. are found by identifying these quivers that have short rank one nodes a; each connected to a
single rank two node b; via a non-simply laced edge of multiplicity r,,, or to two rank one nodes b;,
and b;, both via non simply laced edges both of multiplicity r,,, and replacing these short nodes by
rank 7,, nodes with an adjoint hypermultiplet, connected to b; (or b;, and b;,) via a simply laced
edge. Looking at the elementary slices, the only ones whose Coulomb quivers satisfy these criteria

are the affine quivers b,,, co and g2, and the twisted affine quivers aqy, (for all k£ > 1) and dg1 (for k > 4).

There are several things worth noting regarding the quivers @, in Table 3.2.1:

- The quivers are ordered in such a way to best aid an illustration of the results in this paper. In
particular the first quiver yields the best illustration of the most basic quiver addition needed,
and the final quiver will not appear at all (it is unclear if it is possible to use quiver addition
to absorb the adjoint hypermultiplet on this node).

- We have been unable to find the fully refined Hilbert series and HWG for the b,,/Zs, dp41/(Z2 %
Zs), d4/Ss and asp-1/Zo quivers in Table 3.2.1. The reason is that in these cases, there are
not sufficient topological fugacities to apply the normal tricks we use to find fugacity maps.
However the partially refined Hilbert series can be found, which is the Hilbert series in terms of
the characters of some subgroup of the global symmetry. These partially refined Hilbert series
have been computed for all the quivers under discussion in this bullet point, but are not listed
as we were able to find the fully refined HWGs via other methods. We discuss these in turn,

labelling the quiver we're addressing in each case by its Coulomb branch variety:

— bp/Zo: Here the HWG can be obtained by noticing that the variety of b, /Zs is the next
to minimal nilpotent orbit of D,, [12], and so the Coulomb branch HWG can be computed

by applying the monopole formula to the unitary Coulomb quiver for this variety, given in
[38].

1 Note that the Coulomb branches of these building block quivers are not elementary slices themselves, rather they
are derived from them.
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— dp41/(Zo x Z3): Here we have found the HWG in two different ways. Firstly, we use
conjecture (3.2.1) to realise the Coulomb branch of this quiver as the Zs projection of
the next to minimal nilpotent orbit of B,. The fully refined HWG for n.min B,, can be
computed exactly by applying the monopole formula to the top quiver in Table 3.2.1. The
Zs projection of this can then be computed: see Appendix A for an example of how to
do this. We then (a) unrefined and (b) partially refined the HWG that resulted from this
projection, and confirmed that it agreed exactly with the unrefined and partially-refined
Hilbert series for the Coulomb quiver of d,.1/(Zs x Z3) given in Table 3.2.1. The second
way we checked this HWG was by computing the Higgs branch of the Higgs quiver for
dn+1/(Z2 x Zsy), given in Figure 17 of [84]. This has been done for several n, and the result
matches that obtained by the first method, providing as much evidence for the validity of
this result as is possible using the monopole formula.

— dy4/Ss: Again using conjecture (3.2.1), the HWG for this variety can be found by applying
an Sy projection to the minimal nilpotent orbit of D4. This has been done by Siyul Lee and
does indeed have a closed form, but it is rather lengthy and not particularly illuminating
to give here, so we list it to order 6. Again, the result of (3.2.1) in this case has been
checked by unrefining and partially refining the HWG computed for d4/S4 and comparing
with the unrefined and partially refined Hilbert series for the Coulomb quiver of dy/S;
given in Table 3.2.1.

— G2n-1/Z2: Here (3.2.1) tells us that this quiver is the Zy quotient of the twisted affine
Dynkin diagram for As,-1 (see Table 3.1.2). However this cannot be fully refined, so we
instead exploit the fact that the Coulomb branches of the twisted affine and affine quiver
for the same Lie algebra match: we perform the Z, projection on the HWG computed
from the affine quiver (which does fully refine). When unrefined, this result matches the

unrefined Hilbert series for the Coulomb quiver for ag,—1/Zs given in Table 3.2.1.

- This is not an exhaustive list of quivers with adjoint matter that induce an EGS, but it is an
exhaustive list of all balanced quivers with adjoint matter that induce EGS, and as such is rich
enough to provide us with many examples for which the BGS algorithm of Section 3.1 fails.

We now move on to discussing how to use quiver addition on the quivers in Table 3.2.1 to construct
quivers with only regular matter @), (remember that among other things this means without adjoint

matter) whose global symmetry is enhanced from that predicted by the BGS.

3.2.2 Quiver Addition

Recall that our goal is to find all possible quivers whose Hasse diagram'? has as the closure of one
of its lowest leaves the Coulomb branch of one of the quivers in Table 3.2.1, because this leads to
an enhancement of the BGS predicted by the algorithm outlined in Section 3.1. In order to do this,
quiver subtraction must be reverse engineered to “absorb” the nodes with adjoint hypermultiplets
appearing in Table 3.1. One notion of quiver addition is discussed in [81], but here we will develop a
new algorithm for the case when we add to absorb nodes with adjoint hypermultiplets from a quiver.
This will be done based on the quiver subtraction rule conjectured in Appendix C of [16]. For a review

of this rule, and all other necessary information on quiver subtraction for the present work, see Section

121n most cases that we will see in this chapter, the Hasse diagram we find will only be a conjecture. This is because,
as mentioned in Section 2.7.2, since we are unaware of a brane system, we have no way to physically motivate this

process of quiver subtraction or addition.
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Quiver with Coulomb Branch Global
PL(HWG)
Adjoint Matter Variety Symmetry
2 1 dn+1/Z2
pat? + pdtt, n=2
= SO(2n +1)
2 9 ,LL2t2 + M%t4, n>3
N 1 n.min B,
n-2
dy4/Ss
3
= Gy pnt? + p3tt + pSt® + S + g pdt'0 — pd St
9 1 sub-regular Gs
2 bn/Z2 (pi +p3)t?, n=2
O==0 = SO(2n) popst® + p3tt, n=3
2 2 1 . 2, 2,4
N . n.min D, pot® + uit®, n>4
n-2
2 2 (13 + )t + (L + pdpd )t + g pst® — pippt'?, =2
dns1/(Za x L) SO(2n) popst? + (1+2u)t* + 125 — pjt'?, n=3
2 2
N y pot? + (1 +2u2)t* + 3t — pft'?, n>4
n-—2
4 prapot® + (14 i + pa o + p3)t*+
da/S4 SU(3)
(L4 + i + papg + s + i3 + pipe)t® + O(t%)
2
2 SU(2n-1)
OO azn-1/Z2 x (L papan-2)t? + (" pif + g i3, p)t" = 33, ot°
2 2 2
- U(1)
n-—2

Table 3.2.1: The full list of balanced unframed unitary 3d N = 4 quivers with L € N\ {0} nodes
that each have a single adjoint hypermultiplet but which otherwise contain only regular matter. Upon

performing quiver addition to remove the adjoint hypermultiplet(s), the resulting quiver will elicit an

enhanced global symmetry. For all quivers that depend on the parameter n the quiver is valid for n > 2.

N.min is shorthand for the (closure of the) next to minimal nilpotent orbit of the corresponding algebra.

The p;, g in the PL(HWG) column are the Dynkin label fugacities of the corresponding Lie group and

abelian factors of the global symmetry group respectively.
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2.7.2. To illustrate how the process of quiver addition was developed by reverse engineering quiver
subtraction, we use the example of the quiver Q of (3.1.4) which was used to highlight the inadequacy

of the BGS algorithm in Section 3.1. Performing double eg quiver subtraction'® on @ gives

2
5
b O—O—O0—O0—0—=@
2 4 6 8 5 2
1
2
- O—O0—O0—0—=0
1 2 3 2 1
1
1l 3 (3.2.4)
b O—O0—O0—0—=e
2 3 4 5 3 1

|
O
NX@)

ORI
«wO—0O0—o0
O

O

S
N
2 O—O

b O O O
2 2 2 1

Blue nodes indicate those that were introduced in the rebalancing stage of quiver subtraction, red
nodes indicate unbalanced nodes, b is the node being rebalanced as a result of the subtractions (the
reason for this labelling is to make contact with the notation we introduce shortly in (3.2.6)), and as
before a is the name of the node with the adjoint hypermultiplet (that has arisen through multiple
same slice subtractions). From Table 3.2.1, we see that this quiver has the next to minimal nilpotent

orbit of Bg as a leaf in its Hasse diagram. The Hasse diagram of this orbit is

Ay

be
(3.2.5)

13Generally, when we say a g quiver subtraction, we mean the act of subtracting the Coulomb quiver for the g
variety (the minimal nilpotent orbit of G ). In this particular example, we are taking Gy = Fs.
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which can be derived using quiver subtraction on the Coulomb quiver for n.min Bg, found in [38].
As explained in Section 3.1, the BGS of @ is SO(12) x U(1), but the Hilbert series shows the true
global symmetry, the EGS, to be SO(13) x U(1). The quiver subtraction above illustrates why this
enhancement occurs: the Hasse diagram of @) contains bg among its bottom-most elementary slices,
and so this must be a subset of the global symmetry. The lowest slice is bg and not dg (which is
what was expected from the BGS) because of the appearance of the adjoint hypermultiplet in quiver

subtraction as opposed to an additional rebalancing U(1) node.

Note that although in this case these eg subtractions are the only possible ones that could be per-
formed, in other quivers that we find in this work multiple subtractions will be possible, leading to
bifurcations in the Hasse diagram. However, it is only subtracting the same slice twice in a row from
the same set of nodes in the quiver that leads to the arisal of a node with an adjoint hypermultiplet
and thus an EGS, and so it is only the “same slice twice” subtractions and additions we focus on, as

the other factors can be read accurately from the BGS algorithm.

From this example, we can see that the quiver subtraction algorithm which brings about these adjoint
hypermultiplets can be reverse engineered to find quivers with only regular matter which have an
EGS. In order to explain how this works, we will refer to the node with the adjoint hypermultiplet as

a of rank r,, the node adjacent to it b of rank 7, and any generic node adjacent to this ¢ of rank r:

Ta a

b Te
b . (3.2.6)

These will be the names of the nodes after quiver additions also: note in particular that this means
that after the penultimate quiver addition, a will not have an adjoint hypermultiplet attached, and

after the final addition a will no longer exist, as explained below.

In the “forward” process of quiver subtraction, an example of which was shown in (3.2.4), the adjoint
hypermultiplet arose as a result of rebalancing node b after multiple subsequent same slice subtrac-
tions. Thus to “absorb” the adjoint hypermultiplet in the reverse process, we will have to add the
same elementary slice mutliple subsequent times to node ¢ such that node b becomes overbalanced,
and thus the rebalancing process will involve removing a rank from a. With all this in mind, we are

ready to construct the algorithm for quiver addition.

Quiver addition algorithm

Let @, be a quiver with a single node a that has a single adjoint hypermultiplet, such that a is
connected to the remainder of the quiver via a single simply laced edge to node b, and with all other
nodes being linked by regular matter? only. Let Q, be a Coulomb quiver for a generic elementary
slice . Then adding some Q, to Q, that is going to be added multiple subsequent times can be

performed as follows:

1. First ensure that @), is balanced and contains as a subset the run of nodes connecting to and

including ¢ but excluding a and b (i.e. ¢ and the “--” next to it in (3.2.6)) in Q.

14Recall that the full list of these to date can be found by comprising Table 1 of [81] and Table 2 of this note.
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2. Line up Q, with @, so that one of the long rank 1 nodes of @), is superimposed upon ¢, and

the subset of the rest of the nodes of ), which is of the same form as the nodes connecting to

and including ¢ of @, (as described in Step 1) is aligned with these nodes.

. Add the ranks of the nodes in @, to those in @), that they line up with.

. Reduce the rank of a by one. Note that if this reduces the rank of a to one, the adjoint

hypermultiplet can be eliminated as the adjoint representation of U(1) is trivial, and if it

reduces the rank of a to zero, a itself can just be eliminated as it is now an “empty node”.

There are a few things to note here with regards to this algorithm:

- Firstly, the condition on @, of balance and needing a long rank one node restricts the possible

slices we can add to be just the affine quivers displayed in Table 3.1.1.

- Secondly, ¢ can be an existing node, as pictured in (3.2.6), or it could be an “empty node”. By

taking ¢ as an empty node, we mean that the quiver being added is superimposed on top of
currently non-existent nodes, but such that it is linked to node b. If we take ¢ to be an existing
node, we call such an addition adding to existing nodes. If we take ¢ to be an empty node, we
call such an addition adding to empty nodes. We call all possible options for the node c the

c-nodes of the quiver.

+ Thirdly, during such a process of quiver addition, extra unbalanced nodes that were not in the

original quiver may appear, but this is not a problem as long as throughout both additions no

nodes undergo a change in balance.

- Fourthly, this algorithm is modified for the ds/Zs, ba/Zs and dy41/(Zs x Z2) quivers in Table

3.2.1. In the d3/Zs case this is because we have two possible “b-nodes” which each need a
c-node, and so, among other modifications, any added slice must have two rank one long nodes.
In the b,/Zs case it is because a is attached to b via a non-simply laced edge of multiplicity
two. In the dy41/(Ze x Zs) case it is due to the fact that there are two nodes with adjoint
hypermultiplets, and so we need to be careful where we can add. These modifications will be
explained within the relevant sections of the paper: Section 3.3.1, Section 3.5.1 and Section

3.5.2 respectively.

- Finally, this is only the quiver addition process for the specific purpose outlined in this paper,

and not a general algorithm. When not adding the same slice twice to the same node, there are
often many possible ways to add a slice to a quiver. In Section 3.3.2 “single additions” will be
performed (just adding one slice once), so an example of the general algorithm for this type of
addition will be illustrated here.

For complete clarity regarding the execution of this algorithm, we provide here an example of an

incorrect addition (i.e. adding a slice o to a quiver @; to give a quiver Q2 from which performing

the reverse processs of subtraction does not give back Q1: Q2 — o # Q1), followed by the correct way

to execute it.
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Example Consider trying to add dy to the ezisting node in n.min Bs.'> The Coulomb quiver for
n.min Bjy is

)
(Y (Y
2
Cc

b (3.2.7)

where ¢ has been labelled as such as it is the only possible existing node we could add to.'® This
addition fits in with Step 1 in the algorithm, as d4 contains as a subset the nodes to the right of and
including ¢ in (3.2.7). So adding this slice could be valid, but we will perform the addition in a way
that violates step 2:

15To clarify the terminology one last time, here what we are actually saying is “consider trying to add the quiver
whose Coulomb branch is the closure of the minimal nilpotent orbit of D4, which we call d4, to the existing node of
the quiver whose Coulomb branch is the closure of the next to minimal nilpotent orbit of Bs, which we call n.min Bs.

16Note that we could have taken ¢ to be the empty nodes: the space to the left of b in (3.2.7), but for this case we
wouldn’t have been able to demonstrate this type of incorrect addition.
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a2
1
2 2 2

b c 1

1
1

“ + b 2
1

1

(3.2.8)

Here the d4 slice that was added was not superimposed correctly on top of the nodes next to and
including ¢ in n.min Bs that it “matched to” (i.e. that formed a subset of the d4’s nodes). We can
immediately see why this is an incorrect addition, because the final rank two node in n.min Bj has
changed balance during this process, and we know quiver subtraction always preserves the balance
of nodes. Thus if we subtract d4 from our result here, we see that both a and this node undergo a
change in balance, and so the rank one node added to rebalance must be attached to both. When
the subtraction is performed again, this node will then become a rank two node with an adjoint
hypermultiplet, and we will not have the quiver n.min Bsy, but instead

(3.2.9)
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and so the subtraction is invalid. The correct way to add d4 on to n.min B would be as follows:

a2
1
2 2 2
b c 1
1 1
+
1 2
1
1
a
1 9
(3.2.10)
2 3 4
b c 2
1 1
+
1 2
1
2 3
2 4 6
3

9

b

One can check that subtracting ds twice from the final quiver in (3.2.10) will indeed give n.min
Bs (3.2.7) as desired. The final quiver in (3.2.10), following the algorithm in Section 3.1, has BGS
SO(10). However, we have seen that the Hasse diagram contains SO(11), and thus this must be a
subgroup of the global symmetry. Indeed, upon Hilbert series computation, SO(11) is the confirmed
EGS. ]

This concludes the methodology needed for the results of this chapter. Throughout the paper the
results of quiver additions will be labelled with two parameters, n and k, pertaining to the Coulomb
branch variety of the base quiver from Table 3.2.1 we add to (or equivalently the rank of the global
symmetry factor experiencing enhancement) and the rank of the Coulomb branch variety of the slice
which we are adding twice, respectively. In some cases, the only valid way to add a slice restricts the
allowed values of n and/or k. Where relevant, these constraints will be indicated. We now proceed
to performing the quiver addition method discussed in this section one by one on the quivers from
Table 3.2.1,'7 to derive quivers with an EGS, before we use these results to propose a modification
to the BGS algorithm.

17Excluding the azan-1/Z2 case, as discussed in the bullet points following Table 3.2.1.
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3.3 Enhancement to SO(2n + 1)

In this section, we focus on deriving quivers with EGS from the first quiver in Table 3.2.1, the next

to minimal nilpotent orbit of B,,:

n-2 (3.3.1)

Using the @, BGS algorithm given in Section 3.2.1, one can see that the BGS of (3.3.1) is SO(2n+1).
Indeed, the Hasse diagram of (3.3.1) is

Ay

bn
(3.3.2)

which agrees with this, and this global symmetry is confirmed upon Hilbert series computation.
The quivers derived from using quiver addition on (3.3.1) to absorb a will therefore experience a
symmetry enhancement of this type. After considering all possible additions following the addition
algorithm listed in Section 3.2.2, two types of enhancement are found: SO(2n) - SO(2n + 1) and
SU(n)xU(1) > SO(2n+1). In all cases listed, except those where an eg is added twice, the EGS has
been verified via Hilbert series computation. In the cases where adding a slice gives a family of quivers
depending on one or two parameters, this EGS has been verified via Hilbert series computation for
several low values of the parameters. The results for all quivers not depending on parameters have
been confirmed too, except the eg cases which have proved too computationally complex to verify,
so the EGS in these cases remain as conjectures. Brane systems for a selection of the eg cases listed
both in this section and in subsequent sections are known and the construction is discussed in [73].
The result of the eg enhancement shown in Table 3.3.1 has been previously found in [85] through an
F-theory construction, and in [86] using 5d brane webs. Several of the quivers appearing in this work

also appear in the construction of so-called minimally unbalanced quivers in [14].

3.3.1 Enhancement from SO(2n) to SO(2n +1)

In this section, we see quivers whose BGS has as one of its factors a D,, type symmetry which

undergoes enhancements to B,,. That is,

[[GixSO@2n) - [[GixSO(2n+1) (3.3.3)

i i
for some simple Lie groups G;. Here we use blue to highlight the symmetry factor which experiences
enhancement, and this will continue to be used throughout the paper. There are two possible ways we
can construct these quivers by using quiver addition to absorb a of (3.3.1): by adding to its existing
nodes or its empty nodes (as discussed in the bullet points following the quiver addition algorithm of

Section 3.2.2). We explore each of these in turn now.
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3.3.1.1 Adding to existing nodes of n.min B,,

Let’s first investigate adding on to the existing nodes in (3.3.1). The case of n = 3 will be treated
separately. For the case of n =2, there are two b-nodes and no possible existing option for the node
¢ (taking b and ¢ nodes as defined in the quiver addition algorithm of Section 3.2.2), so we cannot
add on to existing nodes here. Note however that we can add on to empty nodes, and this will be
discussed in Section 3.3.1.2.

For adding to the existing nodes of (3.3.1) for n > 4, our ¢-node will be given by

n-2 (3.3.4)

The only slices that can be validly added to (3.3.4) according to the quiver addition algorithm in
Section 3.2.2 are ay, di, es, ey and eg. The method of addition for all slices can be easily extended
from the d4 example shown in (3.2.10). Adding each of these slices (ay, dg, €, €7 and eg) will fix
n in (3.3.1) to be a particular value, in order for the addition to obey Step 2 of our quiver addition
algorithm. The results of these additions are listed in Table 3.3.1. The second column gives the quiver
arrived at after twice adding the affine quiver corresponding to the slice listed in the first column of
(3.3.1) to the quiver (3.3.1) for the values of n listed. The third column shows the enhancement of
the BGS to the EGS, with the factor(s) that experience enhancement shown in blue. This will also
be the format of all future tables documenting results in this chapter.

For the case of n = 3, there are two possible c-nodes

L& (3.3.5)

which we call ¢; and c¢o. However due to the Zy outer automorphism of (3.3.5), adding to either c-
node gives the same result, and so only one need be considered. Here there are more allowed quivers
that we can add to the c-node of (3.3.5) than there were for (3.3.4), because (3.3.5) has no nodes
connected to the c-node that we have to ensure the added slice contains as a subset. As a result,
we may add any affine quiver to the existing nodes of n.min B3. The resulting quivers are listed in
Tables 3.3.2 and 3.3.3.
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Added Slice Quiver Global Symmetry
as 3 SO(8)
2 }
n=4 2 4
3 50(9)
a SO(8) xU(k-3)
k-4 }
k>4, n=4
SO9) xU(k-3)
2
dy, I 3 SO(2n)
O O O !
k>4, n=k+1 2 4 6 6
[ 3 SO(2n+1)
k-3=n-4
2 SO(12) x U(1)
€6
g !
n==6
O—O0—0—0C—0C—@ SO(13) x U(1)
2 4 6 8 5 2
er T 5 SO(14) x SU(2)
7 O O O O O O @ O '
n =
2 4 6 8 10 7 4 2 SO(15) x SU(2)
es 7 SO(18)
) ) l
n = 9 O N\ N\ N N N\ N\ N\ '
2 4 6 8 10 12 14 9 4 S0(19)

Table 3.3.1: Quivers resulting from adding all possible elementary slices to the existing nodes of n.min
B, (3.3.1) to absorb a, n > 4.
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Added Slice

Quiver

Global Symmetry

SU(4)
O——O—0O—e
“ 1 2 3 2 l
SO(7)
2
ay /‘\O SU4) xU(k-1)
k>2 1 2 3 2 2 2
— SO(T)xU(k~-1)
k-2
2 2
dy : : i : SU((4) x SU(2) x SO(2k - 4)
k>4 1 2 3 4 4 2
| SO(7) x SU(2) x SO(2k - 4)
k-3
2 SU(4) x SU(6)
€6 4 i
O—O0—0—@—O0—0—20 SO(7) x SU(6)
1 2 3 4 6 4 2
4 SU(4) x SO(12)
er T J{
o—0O0—0—8—0O0—O—0—0—0
1 2 3 4 6 8 6 4 2 SO(7) x SO(12)
6 SU(4) X E7
es T J{
o—O0—0—8—0O0—0O0—0O0—0O0—0—0
1 2 3 4 6 8 10 12 8 4 SO(T) x Er

Table 3.3.2: Quivers

(3.3.5) to absorb a.

resulting from adding the possible simply laced elementary slices to n.min Bsg
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Added Slice Quiver Global Symmetry
2
by SU((4) x SU(2) x SO(2k - 3)
O—0—=0 L - —O0==0 !
k>3 1 2 3 4
- SO(7)x SU(2) x SO(2k - 3)
o - - g 0 SU((4) x Sp(k-1)
1 2 3 2 !
|
k>2
SO(7) x Sp(k-1)
SU(4) x Sp(3)
fa O O O @ O——0—-o0 !
1 2 3 4
SO(T7) x Sp(3)
SU(4) x SU(2)
O O O @ O
92 1 2 3 4 2 i
SO(7) x SU(2)

Table 3.3.3: Quivers resulting from adding the possible non-simply laced elementary slices to n.min

B3 (3.3.5) to absorb a.
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3.3.1.2 Adding to empty nodes of n.min B,

We now turn our attention to adding on to the empty nodes (as defined in the quiver addition
algorithm of Section 3.2.2) of (3.3.1). That is, we take the c-node to be empty:

ay2
1
b
c /L R
( 2 2
Hf—/ ]'
n-2 (3.3.6)

The dashed grey line indicates that ¢ is not really there, reinforced by its vanishing rank. Note that
in the n = 2 case there are two possible b-nodes, which we call b; and by, and their corresponding

empty c-nodes will be called ¢; and cs:

(3.3.7)

In order for the adjoint hypermultiplet to appear on the node a, which is connected to both b; and bs,
during quiver subtraction, c-nodes ¢; and ¢ must coincide so that an added slice is being “attached”
on to both b; and by. As a result, because the quiver addition algorithm of Section 3.2.2 requires any
slice which is added to have two long rank one nodes, the allowed slices which can be validly added
to 3.3.7 to absorb a are restricted to ay, b, ¢k, di, eg and e7. The results of these additions are given
in Table 3.3.4.

In the case of n > 3 there is only one b-node, so the above problem does not arise. Here c is still an
empty node, and so the requirement in Step 1 of the quiver addition algorithm in Section 3.2.2 that
the added slice must contain the nodes in (3.3.6) connected to and including ¢ becomes trivial, and
so we may add any affine slice. The results of adding these slices are given in Tables 3.3.5 and 3.3.6.
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Added Slice Quiver Global Symmetry
2
a SU(2)*x SU2) xU(k-1)
O ~—  —e O !
k>1 1 1
N SO(B)xSU(2)xU(k-1)
k
1
2 _
by 5 SU(2)? xSO(2k-1)xU(1)
2
k>3 O==0
4 SO(5) x SO(2k - 1) x U(1)
\%/—/
k-2
2
cx O—@==0— " —O=<-0—=0 SUQ@) > U(k)
1 2 2 2 2 1 !
\%/—/
k>2 k-1
SO(5) x U (k)
2
i SU(2)? x U(k)
O P i i P O !
k>4 1 2 2 1
— SO(5) x U(k)
k-3
2 SU(2)2 x SO(10) x U(1)
€6 4 J{
o—e &—O S0(5) x SO(10) x U(1
N 5 G 5 ; (5) x SO(10) x U(1)
A SU(2)? x Eg x U(1)
er f J{
O—e—O O—e—O
1 2 4 8 4 2 1

SO(5) x Eg xU(1)

Table 3.3.4: Quivers resulting from adding all possible elementary slices to n.min Bs (3.3.7) to absorb

Qa.
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Added Slice

Global Symmetry

SU(k+1) xS0(2n)

1)
E>1,n>3 2 2 2 2
[ R 1 SU(k+1)xSO(2n+1)
k n-2
9 2
d ) SO(2k) x SO(2n)
O i i PS O !
E>d4n=k+1 2 4 4 2 2 2
- | 1 SO(2k) x SO(2n +1)
k-3 n-—2
2
o 4 . E6 X SO(ZR)
1)
n>3 oO—O0—0O0—0—@ %
2 4 6 4 2 ) Eg x SO(2n +1)
f 4 E7 xSO(2n)
er O—O0—O0—0O0—0—0 % !
n>3 2 4 6 8 6 4 2
E; xSO(2n+1)
T 6 1 Eg x SO(2n)
“s o—O0——O0—0—0—0—0O—@—0O0— !
n>3 4 8 12 10 8 6 4 2 2 2
« _ 1

Es x SO(2n +1)

Table 3.3.5: Quivers resulting from adding all possible simply laced elementary slices to the empty

nodes of n.min B, (3.3.1) to absorb a, n > 3.
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Added Slice Quiver Global Symmetry
2
by T 1 SO(2k +1) x SO(2n)
O==0—-"~ O ® O |
k>3,n>3 2 4 4 2 2 2
— — 1 SO(2k+1)xSO(2n+1)
k-2 n-2
Ck 1 Sp(k) x SO(2n)
k>2,n>3 2 2 2 ) 2 2 1
>2,n>
TR T Sp(k) x SO(2n +1)
fa 1 Fy x SO(2n)
O—O0=<0—0—8—0 .
o3 2 4 6 4 2 2 2 1
n>
ﬁfz—/ Fyx 50(2n+1)
92 1 Gy x SO(2n)
O O @ Oo— .
53 2 4 2 2 2 .
n
T Ga x SO(2n +1)

Table 3.3.6: Quivers resulting from adding all possible non-simply laced elementary slices to the empty
nodes of n.min B, (3.3.1) to absorb a, n > 3.
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3.3.2 Enhancement from SU(n)xU(1) to SO(2n+1)

The results of Section 3.3.1 exhaust all possibilities of adding to (3.3.1) to immediately absorb a.
However we could also have first performed a “different sort” of quiver addition to absorb one of the
two rank one nodes of (3.3.1), and then have added to the resulting quiver from this to absorb a. This
“different” type of quiver addition does not quite follow the algorithm of Section 3.2.2: it is actually
a little simpler. Here, instead of “undoing” multiple same slice quiver subtractions that result in an
adjoint hypermultiplet of increasing rank, we instead “undo” just a single quiver subtraction. We
will not list this slightly different algorithm here, but for those interested it is derivable from reverse
engineering the basic quiver subtraction process that is given in following Steps 1 and 2)a) of Section
2.7.2 with E, being empty. An example of the result of such an addition will also be given below.
A key feature of this quiver addition worth mentioning is that, as before, in order for it to work
we must be adding a balanced elementary slice via a long rank one node, restricting us to adding
only the affine slices (whose Coulomb quivers live in Table 3.1.1). Such an addition is of interest
because, if the quiver addition algorithm of Section 3.2.2 is then used to absorb their remaining

adjoint hypermultiplet, we find quivers which experience a different type of BGS enhancement:

[1GixSUM)xU(1) > []GixSO(2n+1) (3.3.8)
for some simple Lie groups Gj;.

Let’s see an example of how this works. We choose to take the case of adding an A; = a; slice to

absorb one of the rank one nodes of (3.3.1). The resulting quiver will be

aij?
2 2 1
|

n-1 (3.3.9)

One can verify this is a valid addition by subtracting A; (see Section 2.7.2 for the quiver subtraction
algorithm) from the two rightmost nodes of (3.3.9) to find (3.3.1).

Working from (3.3.9) we can then perform the adjoint-hypermultiplet-absorbing quiver addition of
Section 3.2.2, as we did before on (3.3.1) in Section 3.3.1, to absorb a. At first glance, it seems
as though we can add to either existing or empty nodes to absorb a, but actually doing the former
doesn’t yield the enhancement above. The reason for this is that the additions possible on the existing
nodes are restricted to the n = 3 case, to which we may only add an A; to unbalance the node b in

the necessary way to absorb a:

O—O0—@
2 4 3
b ¢ (3.3.10)

But if we perform quiver subtraction on this quiver to find the Hasse diagram, we will find ourselves
performing three A; subtractions before arriving at the Coulomb quiver for the sub-regular nilpotent
orbit of G, the second quiver in Table 3.2.1. As a result, here we actually expect a factor of the BGS
to be enhanced to Ga, rather than SO(2n +1). This is indeed confirmed upon computation of the

Hilbert series, and actually this quiver appears later in our classification, in Table 3.4.1 of Section
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3.4. This result is actually more general: if @, is obtained by adding some affine slice gi to (3.3.1)
to absorb one of the rank one nodes, as shown above for g = A1, then any quiver derived from this
by using quiver addition on its existing nodes to absorb a will exhibit an EGS of type G5 as opposed
to SO(2n +1). This is because the only way to add to the existing nodes of @)y, to absorb a is by
adding gx when n = 3, so upon subtraction, we will be subtracting g three times, rather than two,
and so an adjoint hypermultiplet of rank three will arise from rebalancing. This explains why we are
left with the sub-regular nilpotent orbit of Gs, and why we have enhancement to G symmetry from
an apparent SU(3).

Although adding to existing nodes gives us nothing new, adding to the empty nodes on the left hand
side of b in (3.3.9) does yield quivers who experience the enhancement (3.3.8). Again the slices that
can be validly added are affine slices via a rank one long node. The resulting quivers for this process
are listed in Tables 3.3.7 and 3.3.8.

Recall that this was just one example of performing a single addition on (3.3.1) (that of adding an A;)
to find quivers with a new type of symmetry enhancement. This enhancement is actually exhibited
by infinitely many quivers: those obtained by performing further additions on the quiver (3.3.9), or
those constructed by adding a single slice other than A; to (3.3.1), and then adding to this and so
on. We restrict the list of examples provided to just the A; case, as we (obviously!) cannot list them
all, and these illustrate the enhancement. In conclusion, these infinitely many quivers, combined
with those in Tables 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6, 3.3.7 and 3.3.8 concludes the families of
quivers derived from quiver addition on the next to minimal nilpotent orbit of B,, (3.3.1) whose global
symmetry contains a factor which is enhanced to SO(2n + 1) from that predicted by the BGS.
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Added Slice Quiver Global Symmetry
2
a @) SU(k+1)xSU(n)xU(1)
k>1 2 2 2 2 1
S N SU(k+1)xSO(2n+1)
k n-1
2 2
d SO(2k) x SU(n) xU(1)
O i i e O o—e !
k>4 2 4 4 2 2 2 1
S N — SO(2k) x SO(2n +1)
k-3 n-1
2
4 Eg x SU(n) xU(1)
€6 !
O O O O @ Oo— " —0—0
2 4 6 4 2 2 2 1 EgxSO(2n+1)
\%/—/
n-1
4
f E; xSU(n)xU(1)
“r O—O0—O0—0—0—0—@—0— " —0—0 !
2 4 6 8 6 4 2 2 2
N E;xSO(2n+1)
n-1
6
f EgXSU(n)XU(l)
°s O—O0—0—0—0—0—0—0—0— " —0—0 l
4 8 12 10 8 6 4 2 2
U — Egx SO(2n+1)
n-1

Table 3.3.7: Quivers resulting from adding all possible simply laced elementary slices to the empty

nodes of (3.3.9) to absorb a.
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Added Slice Quiver Global Symmetry
2
by SO(2k+1) x SU(n) xU(1)
k>3 2 4 4 2 2
N - SO(2k +1) x SO(2n + 1)
k-2 n-1
cn O=>—0— " —O—<0—0— "~ —0O—0 Sp(k) < SU(n) > U (1)
2 2 2 2 2 .
Hf—/ Hf—/
k22 k-1 n-1
Sp(k) x SO(2n+1)
O—O0=<%0—0—@—0— " —0—=0 Fax 5Um) < U(1)
i 2 4 6 4 2 2 .
%/—/
n-1 FyxSO(2n+1)
1
o o ° Gox SU(n) xU(1)
. 2 4 2 2 2 .
Hf—/
n-1 Gy x SO(2n + 1)

Table 3.3.8: Quivers resulting from adding all possible non-simply laced elementary slice to the empty

nodes of (3.3.9) to absorb a.
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3.4 Enhancement to Go

We move on to focus on the second quiver in Table 3.2.1, the sub-regular nilpotent orbit of G2

2 1 (3.4.1)

The Hasse diagram of this quiver can be inferred from the Hasse diagram of the G nilpotent cone:

° (3.4.2)

It involves a non-normal slice m, which we make no further comment on here. In all quivers listed
in this section, which are a result of adding the same elementary slice three subsequent times to the
same node of (3.4.1), the BGS enhances as

[[GixSUB)—[]Gix G, (3.4.3)

for some simple Lie groups G;. The enhancements in global symmetry of the quivers in this section
were also found via a different approach in [15]. Note that here, the conjecture that the lowermost
leaves of the Hasse diagram forming a subgroup of the global symmetry does not force the enhance-
ment (but of course do not contradict it).

As before, following the quiver addition algorithm from Section 3.2.2, the only possible slices we can
add to the node c are the affine quivers via a rank one long node. Here, we can see that ¢ could either
be the existing rank one node to the right of b in (3.4.1)

2 1 (3.4.4)

or the empty node to its left

b

C

( 2 1 (3.4.5)
As before in Section 3.3, we call these ways to absorb a in (3.4.1) “adding to existing nodes” or
“adding to empty nodes” respectively. In these cases, since the set of nodes connected to c is either
{b} or the empty set, the condition that the affine quivers we add must contain ¢ and its connected

nodes as a subset is trivial, and so all affine quivers are allowed. The results for these additions are
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given in Tables 3.4.1 and 3.4.2 in the case where c is taken to be an existing node, as in (3.4.4),
and Tables 3.4.3 and 3.4.4 in the case where ¢ is taken to be an empty node, as in (3.4.5). As in
Section 3.3, in the cases where the quivers listed depend on a parameter, the EGS has been verified
via Hilbert series computation for small values of the parameter. In the cases with no parameter

dependence, every case except for that of eg has been verified.

Added Slice Quiver Global Symmetry

SU3)xU(1)! x SU(k-1)

ag l
GoxU(1)! x SU(k - 1),
k>1
L k22
0, k=1
a0 SU(3) x SU(2) x SO(2k - 4)
3 }
k>4
Ga x SU(2) x SO(2k - 4)
k-3 3
3 SU(3) x SU(6)
€6 6 J{
O O L O O O Go x SU(6)
2 4 6 9 6 3

SU(3) x SO(12)

6
er J{
12

O O L O O O O
2 4 6 9 9 6 3 Gy x SO(12)
9 SU(3) X E7
es T l
O O L O O O O O O
2 4 6 9 12 15 18 12 6 Go x Er

Table 3.4.1: Quivers resulting from adding all possible simply laced elementary slices to the existing

nodes of sub-regular G2 (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry
3
by SU((3) x SU(2) x SO(2k - 3)
%oi om0 !
k>3 2 4 6 6 3
S Go x SU(2) x SO(2k - 3)
k-2
o - g OO SU(3) x Sp(k-1)
2 4 3 3 3 |
Hf—/
k>2 k-1
GQ X Sp(kj - 1)
SU(3) x Sp(3)
fa O O L O——0—-"oO0 |
2 4 6 9 6 3
Go x Sp(3)
SU(3) x SU(2)
O O @ O
92 > 4 6 3 \
Go x SU(2)

Table 3.4.2: Quivers resulting from adding all possible non-simply laced elementary slices to the existing
nodes of sub-regular Gz (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry
o SU(k +1) x SU(3)
}
k>1
SU(k+1) xGa
dy SO(2k) x SU(3)
O }
k>4 1
SO(2k) x Ga
3
Eg x SU(3)
€g 6 l«
O O O O @ O O Eg x Gs
3 6 9 6 3 2 1
6 E; x SU(3)
e7 i l
O O O O O O o O O
3 6 9 12 9 6 3 2 1 E7 x Gy
9 Eg X SU(3)
e T )
O O O O O O O @ O O
6 12 18 15 12 9 6 3 2 1 Es x Gy

Table 3.4.3: Quivers resulting from adding all possible simply laced elementary slices to the empty
nodes of sub-regular G (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry
3
by SO(2k+1) x SU(3)
O==0— "~ i & —O0—O !
k>3 3 6 6 3 2 1
_ SO(2k+1) x G
k-2

Sp(k) x SU(3)

Hf—/ l
k>2 k-1
Sp(k) x G2
F4 X SU(3)
4 O—0O==0 O @ O O !
3 6 9 6 3 2 1
Fy x Gy
G2 X SU(3)
O O @ O O
92 3 6 3 2 1 i
G2 XG2

Table 3.4.4: Quivers resulting from adding all possible non-simply laced elementary slices to the empty
nodes of sub-regular Gz (3.4.1) to absorb a.
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As in the previous section, because of the rank one node in (3.4.1), we can also perform a single quiver
addition to absorb this node before absorbing a and find yet more quivers whose Hasse diagrams
contain (3.4.1) and therefore experience the SU(3) - G2 enhancement. Again, there are infinitely
many such quivers one could construct. However, unlike in the case of Section 3.3.2, here the actual
enhancement won’t be of a different type to that of the above quivers, and so won’t be of particular

interest to us. To illustrate this, consider the quiver after adding an Ay:

i‘
——QO
2 1 1

The reason that (3.4.6) gives us no new quivers of interest can be made explicit if we ungauge on the

(3.4.6)

rank one unbalanced node,'® in which case it becomes

2 1 2 (3.4.7)

The Coulomb branch moduli space of this quiver theory is then the product of A; and the sub-
regular nilpotent orbit of G3. We don’t worry about product moduli spaces, because if we understand
individual ones then we can construct and know everything about the products too. Indeed, if we for

example add ay thrice on to the empty nodes of (3.4.6) and again ungauge on the unbalanced rank

O/Q\-oaxo—{j
2

1 ! 2 (3.4.8)

one node, we get

The Coulomb branch of the quiver on the left is in the top row of Table 3.4.3, and the Coulomb
branch of the quiver on the right is the minimal nilpotent orbit of A, so we do indeed have nothing
new. Thus Tables 3.4.1 through to 3.4.4 conclude the list of quivers with a global symmetry factor
experiencing enhancement to G, that can be found as a result of performing quiver addition on the

sub-regular nilpotent orbit of G2 (3.4.1).

3.5 Enhancement to SO(2n)

There are two quivers in Table 3.2.1 with SO(2n) global symmetry, and so both can be used as a
base to construct quivers with a global symmetry factor which enhances to SO(2n). It is the BGS
factor that enhances which distinguishes the results from adding to the third or fourth quiver in Table
3.2.1. Section 3.5.1 addresses quivers derived from adding to the former, and Section 3.5.2 addresses

quivers derived from adding to the latter.

18Recall we always choose to ungauge on a long node, and ungauging on any long node is equivalent to ungauging

on any other.
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3.5.1 Enhancement from SO(2n-1) to SO(2n)

The next to minimal nilpotent orbit of D, for n > 2 is given by the third quiver in Table 3.2.1
[12, 84, 62],

ay2
b - —O=0
2 2 1
H/—/
n-2 (3.5.1)

Following the BGS algorithm for quivers with adjoint matter in Section 3.2.1, the global symmetry
of (3.5.1) is SO(2n). The Hasse diagram is

Ay

dy,
(3.5.2)

The bottom leaf of (3.5.2) matches the prediction of the global symmetry of (3.5.1) given by the Q,
BGS algorithm in Section 3.2.1, and this is confirmed by computing the Hilbert series. The quivers
which can be constructed by adding to (3.5.1) to absorb a experience an enhancement of their BGS
given by

[[GixSO(@2n-1) > [[Gi x SO(2n), (3.5.3)

for some simple Lie groups GG;. The n = 2 case needs to be treated separately from n > 3 because for
n =2, a is a short node.

For n > 4 and using the algorithm from Section 3.2.2, we can again either add to the existing nodes
of (3.5.1) by taking c¢ as the node to the right of b

n-2 (3.5.4)

or add to the empty nodes of (3.5.1) by taking ¢ to be some non-existent node to the left of b

axy2

e+ —0==0

0 2D 2 1
\%/—/

n-2 (3.5.5)

As previously, when adding to the empty nodes, there will be no restriction on the affine slices we
can add. Adding to the existing nodes requires that all nodes to the right of b in (3.5.1) be a subset
of the slice that is added. Thus we can only add by, ¢, and f; to the existing nodes, and doing so
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will fix the value of n for these cases. The results of all these additions may be found in Table 3.5.1

for the existing nodes addition, and Tables 3.5.2 and 3.5.3 for the empty nodes addition.

For n = 3, we can only add to the empty nodes due to absence of an existing long c-node. The results
of these additions are simply the n = 3 case of Table 3.5.2. In the case where n = 2, we are considering

the next to minimal nilpotent orbit of Ds,

NP

b )
1 (3.5.6)

the global symmetry of which can be computed to be SU(2)? using the Hilbert series. This quiver
is different to the previous cases from Table 3.2.1 that we’ve looked at thus far, in that here a is
connected to the other nodes in the quiver via a non-simply laced edge. Because of this, the BGS
algorithm given in Section 3.2.1 and the quiver addition algorithm given in Section 3.2.2 do not apply.
Because a is connected to b via a non-simply laced edge, if we view the adjoint hypermultiplet as
having arisen from a double same slice subtraction, b must have been becoming unbalanced by one
more each time and must have been a short node, in line with the rules for rebalancing on a short
node in Step 2)a)ii) in Section 2.7.2. Thus the only quivers we can add to this are those for which
there is a rank one node which is on the short end of a non-simply laced edge of multiplicity two.
The only quivers for elementary slices for which this is the case are affine by, ¢, and f; and twisted
affine ay, di, and eg. They all experience an enhancement from their BGS as

[1G: x SU2) - []G: x SU(2)?, (3.5.7)

3 K3

for some simple Lie groups G;. The quivers derived from these additions are displayed in Table 3.5.4.

For all cases n > 2 listed across this section, unlike before in Section 3.3.2, we cannot find more quivers
with such an enhancement by performing a different quiver addition on (3.5.1) prior to absorbing the

adjoint hypermultiplet as there are no long rank one nodes present.
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Added Slice Quiver Global Symmetry
2
by l SO(2n-1)
k=n-2 2 4 6 6 3
—_— 50(2n)
k-2=n-4

SO(7) x Sp(k - 2)

Hf—/ i
n=4 k-2
SO(8) x Sp(k - 2)
i SO(11)
2 4 6 8 5 2
n=>06
SO(12)

Table 3.5.1: Quivers resulting from adding all possible elementary slices to the existing nodes of n.min
D, (3.5.1) to absorb a for n > 4.
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Added Slice Quiver Global Symmetry
2
ar Q SU(k+1)x8S0(2n-1)
k>1,n>3 2 2 2 2 1
N N SU(k+1) xSO(2n)
k n-—2
2 2
dy i: (j SO(2k) x SO(2n-1)
v —O0—@—0O0— " —C=>=0 b
k>4 n=k+1 2 4 4 2 2 2 1
- N SO(2k) x SO(2n)
k-3 n-2
2
€6 4 EgxSO(2n-1)
}
n>3 O O O O @ O o —O—=—=0
2 4 6 4 2 2 2 1 Fg x SO(2n)
‘%/—/
n-—2
4<j E;xS50(2n-1)
N O—O0—0—0—O0—0—8—0— " —O=>0 !
n23 2 4 6 8 6 4 2 2 2 1
9 E7 X SO(QTL)
n—
6 EgxSO(2n-1)
N O—O0—0O0—0—0—0—0—8—0— " —0=0 |
n>3 4 8 12 10 8 6 4 2 2 2 1
no g Eg x SO(2n)

Table 3.5.2: Quivers resulting from adding all possible simply laced slices to the empty nodes of n.min

D, (3.5.1) to absorb a for n > 3.




3.5. ENHANCEMENT TO SO(2n) 94

Added Slice Quiver Global Symmetry
2
by i : SO(2k+1)xSO(2n-1)
k>3,n>3 2 4 4 2 2 2 1
| | SO(2k+1) x SO(2n)
k-2 n-—2
k 2n -1
cr O=—0 S—g O O=—0 Sp(k) x SO(2n-1)
2 2 2 2 2 2 1 |
Hf—/ Hf—/
k>2,n>3 k-1 n-2

Sp(k) x SO(2n)

FyxSO(2n-1)

fa O—O0=<%0—0O—@—0O— = —0O=0
2 4 6 4 2 2 2 1 .
\%/—/
n>3 n-2
F4XSO(27?,)
2n -1
92 O==0—@—0O0—  —0=>=0 G2 50(2n-1)
2 4 2 2 2 1 .
Hf—/
n>3

Ga x SO(2n)

Table 3.5.3: Quivers resulting from adding all possible non-simply laced slice to the empty nodes of
n.min D, (3.5.1) to absorb a for n >3
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Added Slice

Global Symmetry

b,

SU(2) x SO(2k)
¥
SU(2)? x SO(2k)

4i_©7 SU(2) x Sp(j) x Sp(k - j)

SU(2)* x Sp(j) x Sp(k - j)

Ja

SU(2) x SO(9)
!
SU(2)? x SO(9)

a2k-1

SU(2) x Sp(k)
i
SU(2)? x Sp(k)

SU(2) x SO(2k +1)
!
SU(2)2 x SO(2k +1)

€6

SU(2) X F4
!
SU(2)2 X F4

Table 3.5.4: Quivers resulting from adding all possible elementary slices to n.min Ds (3.5.6) to absorb

Qa.
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3.5.2 Enhancement from SU(n) xU(1) to SO(2n)

The final quiver we consider for enhancement to D-type symmetry is that of (3.3.1) with a further

Zs quotient taken, to combine the two spinor nodes into another rank two node with an adjoint

aliiQ QEiuz

bl b2
2 2
Hf—/

n-2 (3.5.8)

hypermultiplet [62]:

This quiver has SO(2n) global symmetry because under the modified BGS algorithm of Section 3.2.1
we see the shape of the twisted affine d,, quiver. As mentioned in Section 3.2.2, a modification on
the quiver addition algorithm is needed in this case. This is because if we take ¢; and co to be the
existing nodes the right and left of b; and by respectively, then one can check that it is impossible to
absorb a; and as by adding on to these nodes. Thus the only legitimate additions one can perform
here are by taking ¢; and ¢y to be the empty nodes to the left and right of b; and by respectively,

ar J2 20 az
¢ - e
0 2b b2 0
Hf—/
n-2 (3.5.9)

and adding some affine quiver g to ¢; and another affine quiver g; to ¢y, so that upon double
subtraction of both g; and g;, both a; and as must appear in order to rebalance. There will be 45

such quivers so we shall not list them all here, but they take the form

29k n-2 29 (3.5.10)
and will exhibit the enhancement from the BGS as
Grx SU(n-1)xU(1) x Gy » G x SO(2n) x G. (3.5.11)

To be explicit, we show an example of adding b3 to the left of node a1, and d4 to the right of node
az. That is, g, = b3 and g; = dy:

2i 2Q\4})2
o= o —O——0O—e O
2 2

N\ N\
4 2 2 2 4 2
Hf—/
n-2 (3.5.12)

The enhancements for several of these cases have been checked and confirmed via the Hilbert series.

Again, due to the lack of long rank one nodes present, a different addition prior to absorbing a; or

as cannot happen as it did in Section 3.3.2, and so the quivers given in Tables 3.5.1, 3.5.2, 3.5.3,
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3.5.4 and those encapsulated by the general form of (3.5.10) comprise the full list of quivers derived
from quiver addition on the next to minimal nilpotent orbit of D,, (3.5.1) and (3.5.8) whose global
symmetry contains a factor which is enhanced to SO(2n) from that predicted by the BGS.

3.6 Enhancement to SU(3)

The final quiver from Table 3.2.1 that we know how to perform quiver addition on is

2 (3.6.1)

Note that although the greatest common divisor of the ranks of the gauge nodes here is greater than
one, the Coulomb branch of this quiver is still a symplectic singularity. The Hasse diagram for (3.6.1)
is a question for future work. The amended BGS algorithm in Section 3.2.1 tells us that the global
symmetry of this quiver is SU(3), and indeed this is confirmed upon Hilbert series computation. As
a result, the quivers presented in this section all experience the enhancement in a factor of their BGS
to SU(3):

[1GixSU©2) - []GixSU(@3), (3.6.2)

for some simple Lie groups G;.

Following the terminology of the quiver addition algorithm in Section 3.2.2, there are no possible

existing c-nodes in (3.6.1), so the only available c-nodes here are empty:

20 (3.6.3)

A result of this is that, as before, we may add any affine slice. Since the node a is of rank four, to
absorb it the slice that we add g must be added four times. The results of performing these quiver
additions are given in Tables 3.6.1 and 3.6.2. For those quivers in these tables which depend on the
parameter k, for low values of k& Hilbert series computations have confirmed this enhancement. The
e¢ and go cases have also been confirmed, but we have been unable to compute the Hilbert series for
the e7, eg and fy cases, and so these enhancements remain as conjectures. Also, note that the greatest
common divisor of the node ranks of the quivers in Tables 3.6.1 and 3.6.2 is greater than one. As
mentioned in Chapter 1,2 this is often an indication of a diverging Hilbert series. Here the quivers are
too complex to confirm or deny this by computation, but since they are derived from (3.6.1) which

we know does not suffer this divergence, there is a strong possibility that these quivers are also exempt.

Again as with (3.5.1) and (3.5.8) of Section 3.5, since (3.6.1) has no long rank one nodes we cannot
add onto this quiver other than to absorb a, and so do not get further constructions as in Section
3.3.2. As aresult, Tables 3.6.1 and 3.6.2 conclude all possible quivers derived from performing quiver

addition on (3.6.1) to absorb a whose global symmetry contains a factor which is enhanced to SU(3).
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Added Slice Quiver Global Symmetry
4
a SU(2) x SU(k+1)
O— @&— - —0 !
k>1 2 4 4
S SU3)xSU(k+1)
k
4 4
ds f SU(2) x SO(2k)
O—@—0O— j—o !
k>4 2 4 8 8 4
S SU(3) x SO(2k)
k-3
4
SU(2) x Eg
€6 8 |
O @ O O O O SU(3) x Eg
2 4 8 12 8 4
3 SU(2) x Er
er i \
O L O O O O O O
2 4 8 12 16 12 8 4 SU(3) x Ey
es f }
O @ O O O O O O
2 4 8 12 16 20 24 16 8 SU(3) x Eg

Table 3.6.1: Quivers resulting from adding all possible simply laced elementary slices to (3.6.1) to

absorb a.
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Table 3.6.2: Quivers resulting from adding all possible non-simply laced elementary slices to (3.6.1) to

absorb a.

CHAPTER 3. GLOBAL SYMMETRY

Added Slice

Quiver

Global Symmetry

SU(2) x SO(2k +1)

4
) Q—O—& —0
k>3 2 4 8 8 4
N SU(3) x SO(2k + 1)
k-2
2 4 4 4 4 !
%/—/
k>2 k-1
SU(3) x Sp(k)
SU(2) XF4
i o—e 0==0—-0 .
2 4 8 12 8 4
SU(3) XF4
SU(Q) XG2
O @ O O
92 2 4 8 4 !
SU(3) x Gy
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3.7 Modified Global Symmetry Algorithm

In this chapter, we have seen a huge range of quivers for which the BGS algorithm of Section 3.1 fails
to give the full GS, and identified that this failure was due to the appearance of a quiver @, in the
Hasse diagram. As a result, we are now ready to present a modified version of the algorithm which
correctly gives the full GS for all quivers that the previous algorithm did in addition to all quivers in
this chapter. Note that it is not sufficient to compute GS for all quivers containing reqular matter;
for example, it does not cater for the quivers whose Hasse diagrams contain quivers with adjoint
matter that do not appear in Table 3.2.1. We present it here as a stepping-stone algorithm that we
hope can be built upon in aid of the goal to find an algorithm which works in all cases.

Modified BGS algorithm for quivers in this chapter

We say that a quiver () contains ¢ copies of an elementary slice'® whose Coulomb quiver is o if Q
has a set of connected nodes Q¢ in the shape of the nodes in o, such that the ranks of all nodes in
Q¢ are at least c times the ranks of the corresponding nodes in o, but at least one node of Q¢ is less
than c+1 times its corresponding node rank in 0. We use @), to denote quivers which contain regular
matter only and appear either in this chapter, or in the set of quivers for which the BGS algorithm
of Section 3.1 works. Suppose a quiver @, contains E Coulomb quivers for elementary slices, o;,

i=1,..., FE, and moreover contains ¢; copies of each. Then the GS for @, is given as follows:
1. If ¢; =1 for all 4, then follow the BGS algorithm of Section 3.1:

a) If @, is framed, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams D;
of the simple Lie groups G;, and k unbalanced nodes, then the BGS is given by

GSgrmed =T Gy x U(1)". (3.7.1)

i=1

b) If @, is unframed, there are two scenarios:

i) If @, is balanced, then it must be either the affine or twisted affine quiver for some
simple Lie group G (these quivers are given in Tables 3.1.1 and 3.1.2 respectively), in
which case

GSq, =G. (3.7.2)

it) If @, is unbalanced, and the gauge nodes in it comprise s balanced sub-Dynkin dia-
grams D; of the simple Lie groups G;, and k unbalanced nodes, then the BGS is given
by
BGSEmed - TGy < U(1)F, (3.7.3)
i=1
where the definitions of s, G; and k are as in Step 1.

2. If ¢; > 1 for at least one i =1, ..., E, then:?°

a) Colour in any unbalanced nodes.

9Recall the known elementary slices to date can be found in Table 1 of [81] and Table 3.1.2 of this note.

20Note that there is no appearance of the affine Dynkin diagram in this case. This is because the only way this could
happen is if there was several copies of a single affine diagram, and we do not consider such quivers as they do not fall
under the collection of those whose Coulomb branches are symplectic singularities.



101 CHAPTER 3. GLOBAL SYMMETRY

b) For each i = 1,..., E, perform ¢; identical subtractions of o; from @,.. For each 4, this will

give a quiver @); containing a node U(c¢;) with an adjoint hypermultiplet.
¢) In each Q;, label the adjoint node U(¢;) by a;, and the nodes of @); connected to a; as b; ;.
d) Each b; ; is also present in the quiver @),. Label these nodes in @, as b; ; also.
e) Attach each node a; (from @;, uncoloured) to all nodes b; ; in @, giving quiver Q..
)

f) Ignoring current node ranks and excess (adhere to the colouring of unbalanced nodes in
Step 2a to dictate which nodes are considered balanced), if the gauge nodes of Q, comprise
s balanced sub-Dynkin diagrams D; of the simple Lie groups G;, ¢ quivers (),,; appearing
in Table 3.2.1 with global symmetries G;, and k unbalanced nodes, then GS is given by:

[T, Gi x5 Gy x U(L)F if Q. framed

GSo. = ’ .
15, Gi x ITj1 G5 x U(1)*if Q, unframed

(3.7.4)

Example We'll illustrate this algorithm with the example @ of (3.1.4), for which we saw the BGS
algorithm of Section 3.1 fail:

Q= O
2

NG

oO—O0—0—=e
6 5 2 (3.7.5)

We can see that the only elementary slice whose Coulomb quiver lies within @ is eg, and there are two

copies of it: F' =1, 01 = eg and ¢; = 2. Since ¢; = 2, we use Step 2 of the above modified algorithm:
(a) The unbalanced nodes are already coloured in red in (3.7.5).

(b) There is just E = 1 subtraction to perform: taking o1 = eg away from @ c¢; = 2 times. This gives

the quiver Q1:

2 1 T
Q1= O—O0—0O0—=0
2 2 1 (3.7.6)

(¢) We can see the adjoint node U(c; = 2) is connected to just a single node in Q7. This means

there is just one by ;, b1,1, and we label this and the adjoint node a;:

a1 02 1 f
Q1= b1 O O O O
2 2 2 2 (3.7.7)

(d) We see that the corresponding node in @ is the left-hand rank two node, and label it as such:

(3.7.8)
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(e) We construct Q by attaching a; (uncoloured) to by ;:

2

ay 2 5
Q= b11 @; O O O L
2 4 6 8 5 2

(3.7.9)

(f) Q has only one balanced subsets of nodes (where remember the balance is indicated by the
colouring in Step (a); white nodes are balanced, red nodes are unbalanced) which form the
first quiver in Table 3.2.1 for n = 6, and two unbalanced nodes: s =0, t =1, Q4,,1 = n.min Bg,
G = SO(13), and k = 2. Thus, since @ is unframed, we find the Coulomb branch topological
symmetry to be:

GSg =50(13) xU(1). (3.7.10)

O



Chapter 4

Poisson Brackets

In this chapter, we present the work of [11] where we used various methods to determine the un-
ordered Poisson brackets {-,-}¢ on C between its generators Ge, {Gc,Gc}e. The antisymmetry and
Leibniz properties of the Poisson bracket and the ring structure of the Coulomb branch then fully fix
the Poisson brackets between any two operators on C. They are of interest as the Poisson structure
on the Coulomb branch relates its symplectic one, as briefly mentioned in Section 2.3.2.4 (and will
be further elaborated on in Section 4.1). In particular, the Poisson bracket and symplectic form
degenerate at the same points. There has been previous progress on determining Poisson brackets
for Coulomb branches in the literature (see for instance [17, 18, 3, 19, 20]); in this note we add to
this by providing explicit computations for a selected set of examples, including quivers with many

unitary gauge nodes of high rank.

So, given a quiver, how does one compute the Poisson brackets between the generators of its Coulomb
branch? We can answer this question in two ways, depending on how we choose to view C. The first
way will be the topic of Sections 4.2 — 4.5: we view the Coulomb branch as the space of dressed
monopole operators (see Section 2.4.2.1), and study the Poisson brackets between those that gener-
ate the variety. This method gives more explicit information, but has the drawbacks of being more
computationally intensive or requiring the exact description of the Coulomb branch as an algebraic
variety to be known'! (e.g. via mirror symmetry [51, 48]). The second viewpoint we can take, if the
representation content of C at low orders is known, is slightly more reductionist: we can characterise
the Coulomb branch simply as a space of representations of its topological global symmetry GS,
isolate those which generate the space and then conjecture the Poisson brackets between them based
on representation theoretic and operator content constraints. This viewpoint is discussed in Sections
4.6 — 4.7; it is a more abstract approach, but allows us to say something about the Poisson structure

of a wider set of Coulomb branches.

The outline of this chapter is as follows. Section 4.1 makes concrete our definition of a symplectic
singularity, and shows how the symplectic form induces a Poisson structure. In Sections 4.2 — 4.5 we
detail the computation of {G¢,Ge}e for Ge the explicit dressed monopole operators of the physical
theory: Section 4.2 explains the method used to do this for the cases where either the explicit variety

Here, by “an exact description” we mean an explicit realisation of the Coulomb branch as the space traced out by
some known set of generators which are expressed as holomorphic polynomials in some complex coordinates, and any

relations they are subject to.
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C =V is known, or the dimension of the Coulomb branch is sufficiently small; and Sections 4.3, 4.4
and 4.5 report the results for the examples of Coulomb branches which are free spaces, A and D
Klein singularities and small dimension nilpotent orbits respectively. Sections 4.6 — 4.7 cover the
alternative method of computing {G¢,Ge }¢ for generators Ge viewed abstractly as representations of
the global symmetry: Section 4.6 details the method, and Section 4.7 details the results for several

families of magnetic quivers for the Higgs branch of 5 or 6d theories at infinite coupling.

Before we begin by discussing the monopole construction of the Coulomb branch, we briefly list some

notation that will be used throughout:

- Gec, Gy and Gy are used to denote the generators for a Coulomb branch C, variety V and Higgs
branch H respectively.

- {",-}c and {-, -}y denote the Poisson bracket between any two Coulomb branch operators written
in terms of the Coulomb branch degrees of freedom and written in terms of the holomorphic
functions on the abstract variety we know the Coulomb branch to be respectively. When the

chosen degrees of freedom are clear, the subscripts will be dropped.

- Throughout, {---} is used to denote both a set and a Poisson bracket (the latter is only applicable
when there are two arguments), but the context should make clear in which sense it is being

used.

- We use m(-), J(-) and A(:) to denote the magnetic, topological and conformal dimension of

an operator respectively.

- In Sections 4.6 and 4.7, u, v and u; will be used both as an index labelling representation
generators that takes on certain specified values, and as the highest weight fugacities to denote
a representation. Its meaning in a given situation should be clear from context (i.e. whether it

lies in an exponent /subscript or not).

4.1 Symplectic Singularities and the Poisson Bracket

Recall from Chapter 1 that all Coulomb branches C of quivers we consider are symplectic singularities,
in the sense of Beauville [2]. In Section 2.3.2.4 we saw that in our languauge, this essentially means
they are algebraic varieties on which there exists a 2-form which degenerates at zero or more points.
This 2-form is called the symplectic form w, and defines a pairing on the tangent space at any point on

the variety. We see now how the symplectic form induces a Poisson structure on the Coulomb branch.

Recall from Sections 2.3 and 2.4 that the Coulomb branch chiral ring is thought to be isomorphic to
the ring of holomorphic functions over it, and hence completely captures C as an algebrogeometric
object. Since w maps two tangent vectors at a point p on C to C, it can be thought of as a map from

a tangent space at p to the cotangent space at p,
w:T,C - T,C. (4.1.1)

This induces a correspondence between one-forms and vector fields on C. Consider any holomorphic
function f (chiral operator) on C. Since it is differentiable, we can consider its differential df. Since this
is a one-form, the symplectic form then says that away from singularities (where the correspondence

(4.1.1) ceases to be bijective) this is equivalent to a vector field X;. Thus we can define the Poisson
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bracket of two chiral operators on the Coulomb branch isomorphic to holomorphic functions f and g

{f’g}zw(vaXg)' (4.1.2)

Example Take the concrete example of C2 = C[z1,22]. The holomorphic functions on this variety
are generated by the two complex coordinates over which it is formed, z; and z5. As a result, we can
find the Poisson bracket between any two functions on C? by postulating a relation between z; and
zo and then invoking the Leibniz behviour, bilinearity and antisymmetry of {-,-}. We postulate that
z1 and z9 satisfy

{z1,22} = 1, (4.1.3)

a direct analogue of that of phase space coordinates in classical mechanics. Leibniz can then be used

to see that the Poisson bracket between any two functions f and g on C? is

_9f 99 _Of 99
{f(21, 22), g(21, 22) } = D21 Doy 025 D1’ (4.1.4)

Note that the properties of the Poisson bracket — a bilinear map which obeys anticommutativity,
Leibniz and the Jacobi identity — match those of a Lie bracket, and this fact can be exploited in both
directions. For example, consider the generators Ge of a given Coulomb branch C. They lie in the
adjoint representation of the topological global symmetry algebra gs. If the structure constants of this
algebra are known, we can use them to conclude the Poisson brackets. If the structure constants are
unknown and we can compute the Poisson brackets, then we can use these to conclude the structure
constants. More generally, the form of the Poisson brackets between two operators can be inferred
by combining the imposition of conserved charges with constraints from other available information.
Two different approaches to doing this will be discussed in Sections 4.2 and 4.6 respectively. We start
with the approach which considers the Coulomb branch as the space of dressed monopole operators
O¢c, and use the Hilbert series or the known variety C =V to fix the Poisson brackets between Og¢.

4.2 Poisson Brackets for Dressed Monopole Operators

In this section, we write down the chiral operators on C as bare and dressed monopoles (as in Section
2.4.2), and compute the Poisson brackets between them. The method we present to do this is fairly
simple in principle:

Method

1. Explicitly write down the generators of the Coulomb branch in terms of its basic degrees of

freedom (bare monopoles and adjoint scalars).

2. Constrain the Poisson brackets by demanding the result have the expected conserved charges
under the global symmetries of the Coulomb branch. This will fix the results up to constant
factors.

3. a) If the Coulomb branch is known as a variety with coordinates on which there exists a
canonical Poisson bracket,? use the results of Step 2 to identify which dressed monopoles
correspond to which holomorphic functions on this variety, and declare that their Poisson

brackets are equal.

2We use the term canonical Poisson bracket to mean the one associated to a known algebraic symplectic variety.
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b) Otherwise, fix the constant factors by demanding that the Poisson bracket of the Cartan
elements of the Coulomb branch generators with any operator on the Coulomb branch

yield the correct weight under the global symmetry of the Coulomb branch.

As already alluded to, these steps are easier said than done: the number of quivers whose Coulomb
branch satisfies the condition of 3.a) is rather small; and even for quivers with fairly low-dimension
Coulomb branches there quickly become too many variables to actually find an explicit solution fol-
lowing the idea of 3.b) (at least using the methods we have so far). Essentially, there are many quivers
for which Step 3 becomes too hard to do and we cannot ascertain the Poisson relations between the
explicit dressed monopole operators of C. It is in these cases that we turn to an alternate viewpoint,
as discussed in Section 4.6 and executed in Section 4.7. In Sections 4.2.1, 4.2.2, 4.2.3.1 and 4.2.3.2
respectively we elaborate on each of the steps 1, 2, 3.a) and 3.b) in the method above (assuming that
the Coulomb branches we consider satisfy the above conditions of being either known exactly as a
variety or of low enough dimension), detailing exactly how to perform the relevant computations and
illustrating them in our favourite example of SQED with 2 electrons (2.6.14).

4.2.1 Writing down Coulomb branch generators

Recall from Section 2.4.2 that the Coulomb branch is the space of gauge invariant bare and dressed
monopole operators'? labelled by magnetic charges in the weight lattice of the GNO dual of the gauge
group. Before we see explicitly how to construct these, we make a brief remark on terminology. We
refer to gauge-invariant monopole operators which are not dressed by any adjoint scalars as physi-
cal bare monopoles, and the gauge-invariant supersymmetry-preserving dressing factors as physical
adjoint scalars or Casimirs. Together these form the physical Coulomb branch degrees of freedom
Dc. These degrees of freedom can then be used to construct the Coulomb branch operators O¢,
the dressed monopole operators, which we define as linear combinations of products of D¢ that have

matching conserved charges (topological charge and conformal dimension).

Physical bare monopoles Recall from Section 2.4.2.1 that a bare monopole operator for a gauge
group G with rank(G) = n has magnetic charge m = (my,...,m,) € Agv. We denote this bare
monopole operator Uy, = Upy, ...m,, . HHOWever v,, is not necessarily a physical degree of freedom D¢, as
it may not be gauge-invariant. The gauge group acts on the weights of GV via its Weyl group Wev,
and if m is not invariant under Wgv then this bare monopole operator v, is not physical. To rectify
this, for a given magnetic charge m we need to sum up the unphysical bare monopole operators with
magnetic charges in the Wgv orbit of m. We will call the physical bare monopole corresponding to
Um by the name V,,:

Vin=" Y. Us(m)- (4.2.1)

ceWgv

Note that in this notation we clearly have Vi = V() for any o € Wgv, and so if we write down
all the V,,, for every m € Agv, many will be identical and the duplicates will need deleting so as not
to overcount. To avoid these duplicates, we can just compute (4.2.1) for each m in a single Weyl

chamber of Agv to find the set of all physical bare monopole degrees of freedom D(‘Z/ :

DY = {Vin | m e Agv/Wev '} ={ Y. Uo(m)

geWgav

m e AG\//WG\/} . (422)
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Recall for a single unitary gauge group G = U(n) that Agv/Wgv = Z™/S,,. Then the physical bare

monopoles in this case are

D(‘Z/ = {Vm | me Zn/Sn} = { Z Vo(m) ‘ me Zn/Sn}a (4'2'3)

eSSy,

We could pick the Weyl chamber Z"/S,, to be
m = (my,...,my) € Z" such that mq > mg > - > m,,. (4.2.4)

By extension, the unphysical bare monopoles in a quiver with p unitary gauge nodes U(n;) i =1,...,p
are labelled by vectors m = (11, ...,mp) = (M1 1, ..., M1y, ooy Mp, 1, -0 My, ) Of length Y2 | n; with
integer entries: {vp, | m € [1%_; Z"}. The set of all physical bare monopole degrees of freedom is
then

p p
D(‘Z/ = {Vm ‘ me H Zm/Sm} = { Z Yo (m) ‘ me H Zm/Sm}' (4.2.5)
i=1 i=1

oell}; Sn;

Again, we could pick the Weyl chambers Z™/S,,, to be (4.2.4) for each m;, i =1,...,p.

Adjoint valued complex scalars Recall from Section 2.4.2.1 that a physical adjoint scalar dress-
ing factor ¢, for a bare monopole V,,, is a gauge-invariant linear combination of the eigenvalues of the
residual gauge algebra b, unbroken by the monopole VEV m € g. In particular, we saw that for an un-
broken gauge algebra by = @77 u(lm i) with eigenvalues A1 1, ooy A1ty s s il s oo s Mmoo 0

the dressing factor is (2.4.16). So the set of adjoint scalar degrees of freedom Df for a quiver with p
unitary gauge nodes U(n;) i =1,...,p is

lm,t p p
DY = { Zl Aig | i=1 0 Um, me 1‘! Z""/Sm} = {wmﬂ; |i=1, . um, me]] Z"i/Sm}. (4.2.6)
J= 1=

i=1

All physical degrees of freedom and operators We have seen that the complete list of physical
Coulomb branch degrees of freedom for a quiver with p unitary gauge nodes of ranks n; fori=1,...,p
is comprised of (4.2.5) and (4.2.6):

De =Dy u DY

p p
:{ Vim | me]] Z"'i/Sni} U {(pm,i | i=1, U, me[]Z")Sn,

i=1 i=1

} (4.2.7)

and so any Coulomb branch operator is some product of bare monopoles (4.2.5) and adjoint scalars
(2.4.16),

OC :{ H ( (Vm)l::m ﬁ ((pm7z)km7 ) | ];ma km,i € Z20}7 (428)

me I'[f=1 A /S"i

and linear combinations thereof, for any choice of non-negative integers K and k. i such that each
term in the linear combination has the same values for the conserved charges (from here on out we

will refer to such linear combinations as “consistent”).
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Generators To find which linear combinations of (4.2.8) have the correct charges to be generators
of the Coulomb branch in question, we first consult the plethystic logarithm of its Hilbert series. This
tells us the conformal dimension(s) at which the generators lie, which we’ll call A¥*" for i =1,...,d
where d is the number of distinct conformal dimensions of generators (note that clearly d must be
less than or equal to the number of generators). We then solve the d equations

A = A(Ge), (4.2.9)

to find which of the Coulomb branch operators O¢ (4.2.8) are the generators of the Coulomb branch,
Ge. To do this we need to know how to compute the conformal dimension of any Coulomb branch
operator. From (4.2.8) we see that any O¢ is some product of physical Coulomb branch degrees of
freedom (4.2.7). Its conformal dimension is then simply the sum of the conformal dimensions of each
of these degrees of freedom in the product, (2.4.20) and (2.4.21) for the bare monopoles and adjoint

scalars respectively.

Example Consider a U(1) gauge theory with 2 electrons, described by the quiver Qa, (2.6.14).
Since there is just one gauge group and it is Abelian, here m = m € Z is just a vector of length one,
and its Weyl group is trivial. The residual gauge group is always U (1), so for any value of m there is
just one adjoint scalar dressing ¢,, = A € C. The physical degrees of freedom on the Coulomb branch

here are then®
De ={Vm, A} (4.2.10)

The Coulomb branch operators then are

Oc = { [T (Van)Fr A} (4.2.11)

meZ

for non-negative integers k,, and k,,, and consistent linear combinations thereof.

Now let’s find the operators among O¢ which are generators. The plethystic logarithm of the Hilbert
series is

PL(HS(C(Qa,))) = [2]sut® -1, (4.2.12)

hence every generator has A& = 1. This means that the Coulomb branch generators Ge are the
operators O¢ (4.2.11) which have A(O¢) = 1. For this quiver theory, using (2.4.20) we see that the

conformal dimension of a bare monopole is
Aqyu, (m) =|m], (4.2.13)

and we know from (2.4.21) that
Aga, (M) =1, (4.2.14)

thus the generators of C(Q4,) are the bare monopoles V;; and the complex-valued adjoint scalar A:
Ge ={\, Vi1, V_1}, (4.2.15)

up to constants. More complex linear combinations are not allowed because (4.2.15) all have distinct
topological charges: 0, +1 and -1 respectively. All other physical Coulomb branch operators O¢
(4.2.11) can be formed from products of (4.2.15) and consistent linear combinations thereof. O

3Note that since here the only Weyl group is the trivial group S, the Vj, are equal to the vy, as vy, are already
physical.
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4.2.2 Fixing the form of Poisson bracket relations using charge conserva-
tion

In the refined Hilbert series we grade the Coulomb branch operators by their charges under two global
symmetries of the Coulomb branch: the conformal dimension A under SU(2)g ((2.4.20), (2.4.21)),
and the topological charge J under the topological symmetry (2.4.24). These charges must be logi-

cally conserved under action with the Poisson bracket.

We know the Poisson bracket of a variety acts like two derivatives with respect to the variety’s
coordinates (4.2.24): it has “weight” —2 with respect to the degree of any function in these coordinates
(see [20] for an intuitive physical reasoning for this). The Hilbert series counts the holomorphic
functions (chiral operators) on the Coulomb branch, graded by a power of ¢ equal to twice their
conformal dimension, so the conformal dimension of the Poisson bracket between two Coulomb branch

operators O and Oy should be
A({01,05}) = A(O1) + A(O3) - 1. (4.2.16)

The Poisson bracket is a structure defined on the variety, independent of any gauge theory construc-
tion, and thus the magnetic charge m of the Poisson bracket itself should be zero. The magnetic
charge of the result of a Poisson bracket between two Coulomb branch operators O; and Oy should

therefore be

J({O01,0:}) = J(O1) + J(O2). (4.2.17)

Using (4.2.16) and (4.2.17), we can constrain which operators can lie in the result of our Poisson

bracket, up to linear combinations.

Example As in Section 4.2.1, consider the example of the Coulomb branch of Q 4, (2.6.14). Recall

that here all the generators have conformal dimension 1

AN =1,
A(Viq) =1, (4.2.18)
A(V—l) = 1)

and therefore, using (4.2.16), the Poisson bracket between any two generators from (4.2.15) must

have conformal dimension

A({Gc,Ge}) = 1. (4.2.19)
The topological charges of the generators (4.2.15) are
J(X) =0,
J(Viy) = +1, (4.2.20)

J(Vo1) = -1,
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and so, using (4.2.17), the topological charges for all possible Poisson brackets between them are*

J{N, Vir}) = +1,
J({Aa V—l}) = _17 (4221)

J({Vi1, V1)) = 0.

Hence, using the constraints of (4.2.19) and (4.2.21), the Poisson brackets themselves must take the

form
Vi) = Vi,
ANVl =V, (4.2.22)
{Vir, Vo) = s A,

for some constants c¢1, ¢g, ¢3.° o

4.2.3 Fixing the remaining constants

Thus far we’ve discussed how to fix the general form of the Poisson brackets between generators
using charge conservation, but now we’d like to find the explicit constants of proportionality (e.g. the
c1,C2,c3 in (4.2.22)). We can do this in one of two ways depending on the situation, as detailed in
the Method at the start of Section 4.2: using the Poisson relations of the exact variety (if known), or

demanding that each operator has the correct weight under the global symmetry.

4.2.3.1 Using the Poisson relations of the variety

We start with determining the Poisson brackets in the situation where the Coulomb branch of the
quiver in question is a known variety V (i.e. C(Q) = V) that is equipped with a canonical Poisson
bracket. To establish the Poisson brackets between the generating monopoles in this case, we adhere
to the following steps:

1. Explicitly write down the generators Gy of ¥V as holomorphic polynomials in its coordinates.

2. Calculate the Poisson bracket between these generators using the canonical Poisson bracket on

the coordinates of V.

3. Compare these with the “rough form” of the Poisson brackets between the generating monopoles
found using the constraints of Section 4.2.2: identify which monopoles in G¢ correspond to which
holomorphic polynomials in Gy, and declare their Poisson brackets to be those found in Step 2
above.

4Remember that by antisymmetry, the Poisson bracket of anything with itself is zero and the only relevant Poisson
brackets to consider are those between all non-ordered pairs of distinct generators.
5These Poisson brackets indeed form a closed algebra as we would expect: {-,-} acts as the Lie bracket of the global

symmetry.
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Example Recall that for the Coulomb branch of Q 4, (2.6.14), G¢ were simply (4.2.15) or mulitples
thereof. In this case however, we also know (via mirror symmetry and the Higgs branch construction
[51, 48]) that

C(Qa,) =C?/Z,, (4.2.23)

i.e. here V = C?/Zy. The coordinates on this variety are just inherited from those on C?, z; and zy,
as is the canonical Poisson bracket
{2’1,22} =1. (4.2.24)

Let’s proceed with the steps above to find the Poisson brackets between G¢ by finding those between
Gy:

1. The variety V = C?/Zs is simply comprised of the elements of C? = C[2, z2] which are invariant

under the Zs action

Zzizl — —Z1

(4.2.25)
129 > =2y
Thus we can clearly see that V is generated by
Gy={A=22,B=2, C=2}} (4.2.26)

up to constant factors.

2. We can then use the Leibniz property of the Poisson bracket and the canonical relation (4.2.24)

to find the Poisson brackets between any pair of generators:

{A,B}=2B,
{A,C} =-2C, (4.2.27)
(B,C}=-4A.

3. Comparing (4.2.27) with (4.2.22), we can match the members of Gy, and G¢ as follows:

A=)
B=V.i, (4.2.28)
C= Vflv

and therefore we could conclude that
AV} =2V,
{\NV 1} =-2V_4, (4.2.29)
{Vi1, Vo ) =—4 A

Note that the constant factors here can be rescaled by redefining the generators by multiplication
by a constant: we will do this in Section 4.2.3.2 to make the equivalence between the methods

presented in that section and this one clear.
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4.2.3.2 Demanding correct global symmetry weights

We now turn to Coulomb branches for which the exact variety V, and canonical Poisson bracket
thereof, is not known. In these cases we make headway with constructing the Poisson brackets be-
tween Ge by inspecting the Hilbert series. We exploit the fact that the Poisson bracket acts on
representations of the global symmetry as the Lie bracket: a Cartan element of the global symme-
try is an eigenoperator of the Poisson bracket, with eigenvalue equal to the weight under the global
symmetry of the operator it acts on.® Note that since it’s an eigenoperator of {-,-}, a Cartan element
must have A =1 and J =0.

Suppose that after completing Step 2 of the Method (as explained in Section 4.2.2), we found that
a Poisson bracket between two generators was proportional to the Coulomb branch operator O (for
example, in the case of U(1) with 2 flavours we found that {\,V,;} was proportional to O = V,).
Then the method to constrain the constant of proportionality is as follows:

1. First, find which monomial in the refined Hilbert series corresponds to O.

2. Using an appropriate fugacity map (see Section 2.6.6), find which monomial in the character
of the Coulomb branch global topological symmetry GS that this corresponds to, and hence
deduce the weight of O under GS.

3. Define r = rank(GS) Cartan elements, C1, ..., C,., as linear combinations of all possible Coulomb
branch operators with A =1 and J =0.

4. Demand that the Poisson brackets {C1,0}, ..., {Crank(as), O} yield the correct weight of
O under GS (as found in Step 2), and solve for the constants in the problem (the constants
of proportionality in the postulated Poisson brackets based on charge conservation, and the

constants appearing in the linear combinations in C4, ..., C;.).

Example Recall the “rough” (i.e. up to constants) Poisson relations (4.2.22) for the Coulomb
branch generators (4.2.15) of Q4, (2.6.14) considered in the previous two subsections. To fix the
constants of proportionality ¢y, ca, c3 here, let’s follow the steps above.

1. First, we find the monomials in the refined Hilbert series corresponding to each of A\, V,q,V_q,
which all had A = 1. Recall the monopole formula (2.6.7); for this quiver theory, the A =1
contribution to the Hilbert series is (1+ 2+ 271) 2. Matching the topological charges, it is clear
that A, V.1, V.1 correspond to (up to constants) the monomials 1, 2,271 in the refined Hilbert

series.

2. The fugacity map
z - x?, (4.2.30)

takes (1+z+27")t? to the more familiar character of [2]sy(2) in the fundamental weight basis:
(1+2%+272) % Recall from Section 2.6.2 that the ¢* term gives the adjoint character of the
topological global symmetry: here GS = SU(2). Note that SU(2) is actually the local form
of GS; its global form is actually SU(2)/Z2, as can be seen from the fact that no fermionic

representations show up in the Hilbert series (4.2.12). As we do not make use of this global

6We thank the referee for pointing out that this also follows from the fact that the Casimir elements are the complex

moment maps for the topological symmetry.
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form, we refer to GS simply as its local form SU(2) in the subsequent discussion.” Under such
a map (4.2.30), the physical Coulomb branch generators A, V;; and V_; have charges 0, +2 and
-2 respectively under GS.

3. The rank of the global symmetry here is rank(SU(2)) = 1, and so we need to just define one
Cartan element Cy in the Lie algebra of GS, su(2). Only one Coulomb branch operator satisfies

A =1and m=0: A. So the Cartan operator here must be
Ci=al (4.2.31)
for some constant « € C.

4. Finally we need to demand that the Poisson bracket, which takes the role of the Lie bracket of
the complexification of the Lie algebra of the SU(2) global symmetry on the Coulomb branch
su(2)¢ = sl(2;C), yields the correct charges of our Coulomb branch generators under this global

symmetry (as determined in Step 2):
{C1,\} =0,
{C1,Vir} = +2Viy, (4.2.32)
{C1,V_1}=-2V,.

Substituting in our expression for the Cartan element (4.2.31) and using the solved Poisson
bracket results fixed up to constants found in Section 4.2.2 (4.2.22), we find that the first of

(4.2.32) is automatically satisfied, and solving the second two amounts to

a{\ Vit =+2Vii=ac Vi,
(4.2.33)
« {)\,V_l} =-2 V_l =QCy V_l,

i.e.

C1 = —Ca. (4234)

Several «,cq,c,cs satisfy this, but we will pick values so that we can make the following

identification of A, V.1, V_1 with the canonical symmetric generators of s[(2;C):

01 00 10
A= Vi = V= : 4.2.35

The Poisson bracket acts on these 2x 2 matrices as a commutator (see the discussion preceeding

(4.2.39) for more details), and so we can compute:
A Vit =2V,
MV} =-2V, (4.2.36)

{V+17 V_l} = _>\.

“Throughout the rest of this chapter, continuing the form of the whole thesis, we will not specify the global form
of the global symmetry G\S x SU(2)g. We provide the terminating PL(HS) or PL(HWG) of all quivers we study, and
this inherently contains the information of the global form of GSS x SU(2) g, as it tells us exactly what representations
show up. To write down the global form from this does not take much work, and since it will not be of use to us in

our study of Poisson brackets we opt not to include it.
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Thus we pick a,c1,ca,c3 to be
a=1, ¢ =+2, cg =-2, c3=-1, (4.2.37)

so that the Poisson brackets between the generators of our Coulomb branch (4.2.22) match

those between the generating symmetric matrices of sl(2;C) (4.2.36).

The Poisson brackets we have computed in this section (4.2.36) may look different from those in
Section 4.2.3.1 (4.2.29), but infact they are equivalent by a redefinition of generators: if in (4.2.29)
we rescale the generators as

A=A

1
Vi = 5 Vi, (4.2.38)

1
V- 3 Vo1,

then we recover the relations (4.2.36).

The form of the generators of sl(2;C) used in (4.2.35) is worth a comment. Often sl(2;C) is viewed
as the n = 2 version of sl(n; C); generated by traceless nxn matrices, which (4.2.35) obviously are not.
However, since the fundamental of sl(2;C) is pseudo-real, not complex, and the adjoint is the second
rank symmetric of the fundamental, not the product of the fundamental with the anti-fundamental
minus the trace (in s[(2;C) there is no concept of anti-fundamental, or “up vs down” indices), it is
more natural to think of s[(2;C) matrices as being 2 x 2 symmetric matrices instead. The obvious
generators for such matrices are (4.2.35). The only invariant of sl(2;C) when viewed in this way is
€ap (the ¢ invariant that exists for all s[(n;C) can be expressed in terms of the € for n = 2), and so
matrix multiplication is done with contraction by €. For example, the Poisson bracket between the
5[(2; C) matrices identified with A and V,q is:

{)\7V+1}o¢6 = [/\a V+1]a,3 = /\avevé(vﬂ)w - (V+1)avev5/\55' (4-2-39)

We now move on to detail the results of such calculations for Coulomb branches that are free, Klein
singularities and nilpotent orbits in Sections 4.3, 4.4 and 4.5 respectively. The former two use Step
3.a) in the Method at the top of Section 4.2 (the topic of Section 4.2.3.1), while the latter uses Step
3.b) (the topic of this section).

4.3 Free Spaces

The first type of Coulomb branches we consider are those which are free, in the sense that they are
some number of copies of the quaternionic plane: C = H*. These are the simplest cases to consider,
as the generators of H¥ = (C?)¥ are in the fundamental representation of the global symmetry Sp(k),
and the Poisson brackets between them are trivially inherited from those on each copy of C? (4.1.3).

We can logically extend this structure for the k=1 case to k > 1 by fixing a complex structure,

d
Hk = ((C2)k = HC[Zi,la ZLQ], (431)

i=1
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and equipping its 2k complex generators z; , for i =1,...,k and a = 1,2 with Poisson brackets
{Zi,aa Zj,b} = 6ij€ab- (4.3.2)

This notation is less useful however, as the ¢ and j indices are not antisymmetrised. It is more
convenient to label the 2k generators in the standard way for the fundamental representation of
Sp(k): with a single index taking values from 1,...,2k. The Poisson bracket between two such
generators z, and zg is then just

{20y 28} = Qags, (4.3.3)

where a, 8 =1,...,2k, and the 2k x 2k matrix 2,4 is the invariant skew-symmetric two-form of Sp(k),

Qap = ( 0 ]l), (4.3.4)

which we take to be

where each entry is a k x k block matrix.

4.3.1 Coulomb quivers for free spaces

A family of simple unframed quivers whose Coulomb branches are H* can be formed by removing the
affine node from the balanced affine Dynkin quiver of any Lie group G for which hY, = k +2.8 We call
such quivers Dynkin quivers of finite type, and denote the one corresponding to G with Dg. They
are drawn explicitly in Table 4.3.1.

The method to compute the Poisson brackets for the dressed monopole operators generating the
Coulomb branch G¢ is the same for all quivers in Table 4.3.1 and is fairly trivial. We illustrate the
process with one example, Dp,, to introduce and walk through some of the notions discussed in
Section 4.2.

4.3.2 Example: Hb=C(Dp,)

The Dp, quiver is given by”

, (4.3.5)

where the black labels are the ranks of the unitary gauge nodes and the blue labels are names to
distinguish between the nodes (we will make use of these shortly). The Coulomb branch here is
entirely free (H°), as showcased by its Hilbert series,

HS(C(Dp,)) = PE[[1,0,0,0,0,0]s,(6) - (4.3.6)

In particular, its only generators lie in the fundamental representation of Sp(6). The global symme-

try group expected from the balance of the quiver (the BGS [10]) is embedded inside the observed

8If G is a Lie group, hVG is called the dual coxeter number of G. It is equal to the sum of the entries of the vector
whose dot product with the simple roots of the corresponding Lie algebra g gives the highest root of g. Equivalently
hé is the sum of the node ranks on the affine quiver of G. The affine quiver of G is the quiver in the shape of the affine
Dynkin diagram of G, with node ranks equal to the smallest possible positive integers which render it balanced. The
affine quivers are listed for example in Table 1 of [10], where also the notion of balance is explained in Section 2.1.

9A red node indicates an unabalanced node. Here the excess is —1.
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Lie Group G Dynkin Quiver Dg Coulomb Branch
°® O O ®
Ay 11 11 -1
k
By, O—@&—0O0— " —O=0
122 2 1 2k-3
k>3 k-9
11 11 -1
k>2 k-1
1
Dy,
HQk—4
O PS O
k>4 1 2 2 2 1
k-3
2
E6 HlO
O O O O
1 2 3 2 1
2
E; f H'6
O O O O O L
1 2 3 4 3 2
3
B f s
@ O O O O O O
2 3 4 5 6 4 2
F, ‘—O@:@—O 7
2 3 2 1
Ga .iﬂ N H?

116

Table 4.3.1: Dynkin quivers of finite type. The quiver in the central column is the Dynkin quiver for

the Lie group in the left-hand column. The Coulomb branch variety of this quiver, after ungauging the

diagonal U(1)4 (see Section 2.6.5), is listed in the right hand column. Red nodes are those which are

unbalanced. All unbalanced nodes in this table have an excess of —1; they are all ugly quivers [4].
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global symmetry SU(2) x SU(4) < Sp(6). More generally, for Dp, (shown in the fourth row of Table
4.3.1), there is an embedding of the BGS SU(2) x SO(2k — 4) inside the observed global symmetry
Sp(2k - 4). The Coulomb branch of Dp, is H?*~*; we can deduce this quaternionic dimension 2k — 4
as half the complex dimension, given by the degrees of freedom in the unbalanced node. This node
is connected to the only node of the balanced SU(2) Dynkin diagram to its left and the vector node
of the balanced SO(2k —4) Dynkin diagram to its right; it lies in the representation formed from the
product of the fundamental of SU(2) and the vector of SO(2k —4), and thus has 2- (2k —4) =4k -8
complex degrees of freedom. The quaternionic dimension of the corresponding space is then half of
this: 2k — 4. In this case, kK = 5 and we see from the above that the quaternionic dimension of the
Coulomb branch is 2-5 — 4 = 6, which matches that of H° as expected.

We will concretely demonstrate how to compute the Poisson brackets for the generating Coulomb
branch operators of these theories, following steps 1,2,3.a) of the Method, as outlined in Sections
4.2.1 - 4.2.3.1.

4.3.2.1 Writing down G¢

We start with Step 1 of the Method: writing down the dressed monopole operators that generate the
Coulomb branch explicitly.

Recall from (4.3.6) that the generators all lie at order ¢ in the Hilbert series; they have conformal
dimension A = % This means no adjoint scalars can be generators as they have A = 1; physical bare
monopoles V generate C and the adjoint scalars are formed as bilinears in these V. Thus we need to
find which operators on the Coulomb branch of the quiver theory (4.3.5) have A = % The magnetic
charge of a monopole operator takes the form of (2.4.13) for p = 5, {ny,...,n5} = {1,2,2,1,1}: m =
(mq,ma,m3, Mg, ms) = (M1,1,M21,Ma2,M3,1,M32,M4.1,Ms51). Demanding the correct conformal
dimension of the generating bare monopole operators in this theory amounts to setting:

1 1

3 =A=—|ma1 —maa|—|ms1 —msa|+ §(|m1,1 —ma |+ M1 — Mmool +[ma1 —ms |

+ |m2,1 - m3,2| + |m2,2 - m3,1| + |m2,2 - m3,2| + |m3,1 - m4,1| + |m3,2 - m471| (4‘3'7)

+lmg1 —ms 1|+ |m3 2 —ms ),

and so we need to find the m which solve (4.3.7). The number of solutions can be reduced by the
restrictions we impose on m: recall that we need to (a) ungauge (see Section 2.6.5), and (b) only find
solutions to (4.3.7) in one Weyl chamber, as physical bare monopole operators V,, are the sum of all
unphysical bare monopoles v,; with magnetic charge m in the Weyl orbit of m (4.2.1). Explicitly,

the constraints these conditions impose on m are

(a) m11 =0,
(b) m11 20,
> Mo >0,
2,1 =122 (4.3.8)
m3,1 > mg2 >0,

my 20,

ms1 2 0,



4.3. FREE SPACES 118

respectively. The solutions to (4.3.7) satisfying (4.3.8) are

(0,-1,-1,-1,-1,-1)
(0,-1,0,-1,-1,-1)
(0,-1,0,-1,-1,0)
(0,-1,0,-1,0,-1)
(0,-1,0,-1,0,0)
(ma,1,ma2,2,M3,1,M3,2,M4,1,M51) = (0,-1,0,0,0,0) . (4.3.9)
(1,0,0,0,0,0)
(1,0,1,0,0,0)
(1,0,1,0,0,1)
(1,0,1,0,1,0)
(1,0,1,0,1,1)
(1,0,1,1,1,1)

This gives us twelve unphysical bare monopoles v,,, each in distinct Weyl orbits, and hence acting
with the Weyl group S x S3 x Sy x S1 (where S, is the finite symmetric group of order n) on each
of these will give us the twelve physical bare monopoles that generate the Coulomb branch. That is,

our twelve generators for C(Dp,) are:’

V100000 = V100000 *+ V0+10000

V41041000 = V£10+1000 + V02141000 + V£1004100 + V0+10+100

V10410041 = V£10£100+1 + V0£12100+1 + V21001041 + V021041041

Ge = , (4.3.10)
V41010410 = V£10£10210 + V0£1£10010 + V£100£1+10 + V0£10+1£10

V104104141 = V4104104141 + V02124104141 + V2100414141 T V0£10+14141

V1041414121 = V10412412141 + V0x1a1412141

up to constants. 1

4.3.2.2 Constraining Poisson brackets by charge conservation
Next we will constrain the results of the Poisson brackets between unordered pairs of these generators
using conservation of conformal dimension and magnetic charge, as discussed in Section 4.2.2.
Using (4.2.16), we see that imposing A-conservation tells us that for any V1, V5 € G,

AV, Va}) =0. (4.3.11)

This tells us that the Poisson brackets between any two of the G¢ must be proportional to operators

with charge A = 0 under the R-symmetry. The Hilbert series tells us that there is only one such

10Tn this case, ungauging on node 1, there are the exact same number of solutions to (4.3.7) as there are generators
(the coefficient of ¢ in the unrefined HS is indeed twelve), and so no two solutions (4.3.9) will give the same Vp,: there
are no duplicate solutions to delete. If we had chosen to ungauge on a different node however, there would have been
more than twelve solutions to (4.3.7) satisfying (4.3.8), yielding duplicates upon action by the Weyl group, all but one
of which we would then need to delete. Hence ungauging on node 1 is computationally simplest.

' No two operators in (4.3.10) have matching topological chargers, so the only valid linear combinations are multiples
of (4.3.10) by a constant.
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operator: the identity. So {Vj,V2} must be proportional to the identity. This agrees with (4.3.3)
which says that the brackets should have value either +1 or 0.

To determine which Poisson brackets vanish and which do not, we invoke the conservation of topo-
logical charge. Recalling the topological charge for a physical monopole operator (2.4.24), we can see

that the topological charges of our G¢ are
J (V100000) = (£1,0,0,0),
J(Viio0s1000) = (£1,+1,0,0),

J(Vitos10041) = (£1,£1,0,£1),
(4.3.12)
J(Vitos10:10) = (£1,£1,£1,0),

J(Viros10:11) = (21, £1,£1, £1),
J(Vitosrs1141) = (£1,£2, 21, £1).

Above, we saw that any non-zero result result of a Poisson bracket between two generators V; and V5
should be proportional to the identity operator and thus have zero topological charge. Thus we can
see from (4.2.17) that the only pairs of operators that can have non-zero Poisson pairing are those
with equal and opposite magnetic charges. That is

m.n = —C,m 1L M =-M

Vi, Vi } = g (4.3.13)

ifm+-m

for some antisymmetric constant ¢y, .

4.3.2.3 Fixing the constants using the Poisson brackets of (C?)°

We now compare the relations (4.3.13) to those we expect of H°, which recall are (4.3.3) for k = 6.
It is clear that |cym,—m| =1, but it is up to us which operator of V,, and V_,, to associate to with z,
for some « =1, ...,6, and which to associate with the corresponding z,.5. We’ll choose to assign each
m e Z8, in (4.3.9) a different o = 1,...,6. This fixes the corresponding —m € Z¢ to be assigned to
Za+6, and gives the following Poisson brackets for the generating dressed monopoles V,,, of Dp,:

1 ifm=-meZs,
Vi, Vim} =1-1 if m=-meZS, , (4.3.14)

0 otherwise

recovering the exact structure of H° given in (4.3.3).

4.4 Klein Singularities

We now turn our heads to Klein singularities. The results we arrive at here have previously been
deduced with alternative methods, see for example [87, 88, 89]. We rederive them here from our

perspective, using the method of Section 4.2.

Klein singularities are varieties V = C?/T'; they are quotients of C? by a finite subgroup of its global

symmetry I' ¢ SU(2). An exhaustive list of such subgroups are in one to one correspondence with
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the affine ADE Dynkin diagrams [90, 91] and as such we often denote C?/T" instead by the capital
letter of the ADE diagram it corresponds to, with its rank as subscript. In particular, the full list of

Klein singularities can be denoted as follows:
Ak, Dy, FEs, Er, Es. (4.4.1)

The generators Gr of the subgroups I' ¢ SU(2) are listed on page 14 of [92] as 2 x 2 matrices, which

we can think of as acting on the vector containing the complex coordinates of C2:

(?) . (4.4.2)

The elements of the corresponding Klein singualrity C?/T" (4.4.1) will then just be the elements of C?

(i.e. polynomials in z1,29) which are invariant under action by any product of these T’ generators.

The Hilbert series of these Klein singularities is also listed in [92]; the degree of their generators can
be found by taking the plethystic logarithm. We can then explicitly construct these generators Gy,
by finding the monomials of C? which are: invariant under the action of I'; of the correct polynomial
degree; and irreducible (i.e. not generated by a product of elements of C2/T" of lower degrees). Each
Klein singularity has 3 such generators

|Gv| =3, (4.4.3)

and they satisfy a relation which is termed the defining relation of the singularity, also given in [92].12
The Poisson brackets between these generators can be computed using {-,-}c2, the inherited canon-
ical Poisson bracket of C? (4.2.24). This can then be used to identify the Poisson brackets between
the dressed monopole generators G for the Coulomb quiver of V = C?/T', as in Step 3.a) of the Method.

We found that the Poisson brackets of Gy for all Klein singularities (4.4.1), including the Es 7 g cases,
can be summed up by the same succinct formula: if we call g1, g2, g3 the generators and F(g1, g2, 93)
the defining equation for C?/T, then

oF
9is 955 = €ijk - 4.44
{ ]} J 8gk» ( )
It is worth noting that the explicit form of a defining relation is not fixed inherently: a change of

variables would alter it. However, imposing the Poisson brackets (4.4.4) fully fixes the defining equa-

tion and vice versa.

Since it is only the cases of A and Dy, for which Coulomb quivers are known, it is just these that we
will restrict our study to in the remainder of this chapter. The Higgs quivers for Fs 7 g are known,
and the Poisson brackets of the generators of the Higgs branch of these quivers can be found, but we
do not cover this here as our goal is to focus on the Poisson brackets of Coulomb branch generators.
In Section 4.4.1, we spell out the full steps of this process and derive the Ge Poisson brackets for the
Coulomb quiver of A. In Section 4.4.2, we jump straight to the result for the Coulomb quiver of Dj.

4.4.1 A type

The cyclic subgroup I" = Zg1 c SU(2) corresponds to the affine Ay Dynkin diagram, and hence
C?%/Zy41 = Ay, is referred to as the A type Klein singularity. Analogously to how the Coulomb quiver

12Note that by a change of variables the precise form of this equation can be modified.
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for C?/Zy = A; was Qa, (2.6.14), the Coulomb quiver of A (k > 1) is given by SQED with & + 1
electrons, Qa,:"?
Qa,=0—0 - (4.4.5)
1 k+1
We will first derive the Poisson brackets of the generators Gy of the abstract variety V = Ay as de-

scribed at the top of Section 4.4, before using this to do the same for the generating dressed monopoles
Ge of the Coulomb quiver (4.4.5).

4.4.1.1 Poisson brackets for the abstract variety

Here we simply view Ay as the set of polynomials in two complex variables invariant under action by

Zk+1-

The first step is to find the generators of A;. By taking the plethystic logarithm of the Hilbert series

listed in [92], we can see that the three generators are of degrees 2, k+1 and k + 1:
1
PL(HS(AR)) =t2 + (q+ =)tFt —¢2++2, (4.4.6)
q

In general to find the holomorphic functions corresponding to the degree d generators of C2/I', we
take all monomials in our complex coordinates z1, zo of degree d, and for each one we total the results
of the action on them by each I' group element. This construct invariants of I' in C2, and thus of

C2%/I. A vanishing result tells us the starting monomial was not an invariant.

To find the holomorphic functions corresponding to the degree d generators of Ay, we construct the

degree d monomials in z1, zo which are invariant under Zg,,. The generator of Zj,1 is
w 0
C = k+1 I (4.4.7)
0 Wei1

2mi

where wy = e & , and thus under the Z;,1 action,

27

2] = ek+lzy,

. (4.4.8)
2o —> € K+l 2o,
The irreducible invariants under this action at degree 2 and k + 1 are
gv = {21 20, Zk+1, Zk+1
¢ o J (4.4.9)
={91, 92, 95},
and so these are our generators.'* The generators g}, g, g clearly satisfy the equation
E'(gi,95.95) = 91" — gh g =0. (4.4.10)

13You may also see this quiver with the flavour node labelled as SU(k+1): recall from Section 2.2 that this is because
there is an SU(k + 1) symmetry rotating the k + 1 identical hypermultiplets. This is a symmetry of the Higgs branch,
so it does not play a part in our discussion.

14We use primed variables here as we will have to redefine them by a constant to achieve the relation (4.4.4), and
we will use the corresponding unprimed variable for these to match with those used in that relation.
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The Poisson brackets between these generators can easily be calculated using (4.2.24):
{91,95} = =(k+1) g5,
{91,905} = (k+1) g5, (4.4.11)
k
{9295} = (k+1)*g}".

We can see that if we rescale our generators to the following g1, g2, g3

1, 1
= = z 2,'7
9 k;+lg1 E+1 '™
_ 1 I _ 1 k+1
BTy F R ey E (4.4.12)
1 1
93 i”): c+1 Z§+1’

then we find they satisfy the same defining equation as the gi:

E(91,92,93) = E'(91,92,93) = g1"" = gags = 0, (4.4.13)
and indeed that
0
{9i,9;} = €z‘jk87E(g1,gz,g3) (4.4.14)
9k

as claimed in (4.4.4).

4.4.1.2 Poisson brackets for the dressed monopoles of the Coulomb quiver
We now make a connection with physics: we view Ay, as the Coulomb branch of @ 4, (4.4.5) and find

the Poisson brackets {-,-}¢ of G¢ following Steps 1 - 3.a) of the Method.

For Step 1, we need the generating dressed monopoles Ge. Recall that the Hilbert series for C(Q 4, )

has plethystic logarithm given by (4.4.6). In particular, the generating dressed monopoles G¢ have

conformal dimensions 1, % and % Following the same method as in Section 4.2.1, we find that

the gauge invariant dressed monopoles generating the Coulomb branch are
Ge ={\, Vi1, Voub, (4.4.15)

up to constant multiples.

Step 2 then tells us to constrain the {Gc, G }e via charge conservation. Following the same ideas as

illustrated in previous examples, this tells us
{)\7 V+1} x V+17

{A Vo) o Vog, (4.4.16)
{(Vi1, Vi) o AR,
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Finally, we fix {-,-}¢ by comparing G¢ (4.4.15) with the generators of the abstract variety Gy (4.4.12).
We can see that if we declare that

{)\7V+1} = V+13
{)‘7 V—l} = _V—la
4.4.17
(Vi1 Vo) = AP, ( )
>\k+1
ViaVor = Ck+1

(which are consistent with (4.2.16) and (4.2.17)), then the following linear combinations of G
g1=-A,
2= (-1)*VE+1Viy, (4.4.18)
g5 = (-1)>Vk+1V_y,

satisfy the same defining equation (4.4.13) and Poisson bracket relations (4.4.4) as Gy: our declaration
of the Poisson brackets between generators (4.4.17) for this Coulomb branch is valid. The Poisson

bracket between any two operators on C(Qa4, ) can then be deduced from (4.4.17).

4.4.2 D type

The Coulomb quiver for the D type Klein singularity Dy, is:'°

@p,= O—11, (4.4.19)
SU((2) k

for k > 4. Note that this is not a unitary quiver, so many formulae given in Chapter 2 and elsewhere
do not apply here. For example, there is no UV U(1) topological symmetry (2.4.23), and one must
use (2.4.19) as opposed to (2.4.20) for computing the conformal dimension. Since this is the only
non-unitary quiver upon which we perform Coulomb branch computations and its Hilbert series is
given in [92], we do not detail how to compute the monopole formula for this quiver and instead just
report the result, but the details are not hard to work out. The plethystic logarithm of the Hilbert
series of C(Qp, ) = Dy, is given by

PL(HS(C(Qp,))) = t* + 12k~ 4 42k=2 _ k=4 (4.4.20)
The lack of UV U(1) topological symmetry means that in Step 2 of the Method, the only conserva-

tion of charge we need to impose under the Poisson bracket is that of the conformal dimension (4.2.16).

We won’t go through the details here as they are very similar to those of Section 4.4.1, but the
generators of the Klein D type singularity V = Dy, are

~ 2} 23 1 2k-4 k 2k-4
gV - {_ (2]€—4)2 ) 2(2k—4)k_2 (Zl +(_1) 22 ) )
Z1 22 _ _ _
sk e G D) (442D
= {917 g2, 93}5

15You may also see this quiver with the flavour node labelled as SO(2k): here the k identical hypermultiplets are
in a pseudo-real representation, and so there is an SO(2k) symmetry rotating them. This is a symmetry of the Higgs

branch, so it does not play a part in our discussion.
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and they satisfy the defining equation

E(g1,92.95) = 9195 + g3 - g+ =0, (4.4.22)

with Poisson bracket relations as stated before in (4.4.4).

As in the case of the Ay, Coulomb quiver, since there is just one gauge group of rank one, a (un)physical
bare monopole is labelled by a single integer (v,,) Vin,. There is also a single adjoint valued complex
scalar \ everywhere, as the residual gauge group is always rank one. This time the Weyl group
W(SU(2)) = Zs is non-trivial; it acts on m and \ as

Zo: m — —m,

4.4.23
Ao A, (4.4.23)

meaning that unlike before the basic degrees of freedom v,, and A are not physical. From the
Hilbert series (4.4.20), we see that the Coulomb branch generators have conformal dimensions A = 2,
Ay =k -2 and Az = k-1. One can check that the physical Coulomb branch operators with these
dimensions are

DR VAN (4.4.24)
respectively, where

.
Vil = v+,

(4.4.25)
Vi =v41 —v_g.
Note that under action by the Weyl group, V;* is invariant and Vi — -V;.
Step 2 of the Method tells us that
{)\Qan} < AV,
NV o AV, (4.4.26)
(VAT b= A e (V)2 + e (V)2
for some constants ¢;. If we declare that the constants of proportionality are as follows
2V} =200
N2V} = 2227, (4.4.27)
{Vf, AV} = (V1+)2 -(k-1) AZRA
and demand that the three generators (4.4.24) satisfy
(V)2 = A2F=4 (V)2 (4.4.28)
then can we can see that if we identify
g1 =X,
g2 =V, (4.4.29)
gs=AVy,

then the declared brackets (4.4.27) and defining equation (4.4.28) between the generators reproduce
the brackets and defining equation for the Dy, Klein singularity (4.4.4) and (4.4.22) respectively.
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4.5 Nilpotent Orbits

Closures of nilpotent orbits of Lie algebras g as moduli spaces of quiver gauge theories [38, 49] have
been studied intensively (see for example [80, 39, 93]) due to their nice properties: they are classifi-
able, and entirely generated by the adjoint representation of g. Since the explicit construction of these
moduli spaces is fully known in the math literature, it makes their Higgs and Coulomb quivers (see
Section 2.7.1) good candidates on which to explore new techniques or properties of interest. This is
precisely our intention here. Since all generators in these moduli spaces are at order ¢? in the Hilbert
series, and since operators at weight 2 form a closed algebra under the symplectic form [12], we know
a-priori that the results of the Poisson brackets between generators must be the structure constants
of the global symmetry algebra, as mentioned in Section 4.1. This has been previously discussed, see

for example [17].

Actually computing these constants in practise however can be quite tricky. Since there is no C? (or
equivalent) Poisson bracket to be inherited on these spaces, like there was in the cases of free spaces
and Klein singularities (as shown in Sections 4.3 and 4.4 respectively), we must turn to Step 3.b) in
the Method and use the refined Coulomb branch Hilbert series to find the Poisson brackets between
Ge, as outlined in Section 4.2.3.2. We demonstrate our successful execution of this method in the
case of the closure of the minimal nilpotent orbit of Ay, denoted as, below. We have not provided
Poisson brackets for closures of other nilpotent orbits in this way because the excess of unconstrained
constants quickly becomes too many variables to deal with when the complexity'® of the quiver is

increased.

4.5.1 Minimal A,
The Coulomb quiver for as is

1 1
QCLQ = i—j . (451)

1 1
To find the Poisson brackets we’ll follow Steps 1,2 and 3.b) of the Method.

Step 1 The global symmetry of C(Q,,) is SU(3) and all generators lie in the adjoint representation,
at A = 1. The adjoint of SU(3) has dimension 8, and thus we have 8 generators:'”

Ge={c'i M+ da, chadi+c®ada, Vira, Vig, Voor, Vou b Vio, Vial, (4.5.2)

where Vj,,,m, are the bare monopole operators with magnetic charge'® m; € Z under the first U(1)
gauge group and mq € Z under the second; A1, Ao € C are the adjoint scalars of the first and second

gauged U(1) groups respectively; and cij e C are constants.

16Here we consider a quiver more complex if its Coulomb branch has higher dimension (which scales with the sum
of the gauge group ranks).

17 As with previous cases where the only gauge groups were Abelian (e.g. Section 4.4.1), the Coulomb branch degrees
of freedom v are automatically gauge invariant, and so the v and V' of Section 4.2.1 are interchangeable.

18For monopole operators in an abelian theory, the magnetic charge coincides with the topological charge.
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Step 2 (4.2.16) then tells us that the Poisson brackets between Ge will give another operator with
A = 1; another element in the adjoint of SU(3). This is what we expect, as the Poisson bracket acts
on representations of the global symmetry SU(3) as the Lie bracket of SU(3), under the action of
which the adjoint representation is closed. Schematically,

{Gc,Gc} = Ge- (4.5.3)

On top of this, the conservation of topological charge (4.2.17) implies that the Poisson bracket between
any two Ge, for which the componentwise sum of the vectors of their magnetic charges is not the

magnetic charge of any other G¢, must vanish:
Vo1, Voo } =0,

Voo, Vo1 ) =0,

{Vlla VlO} = 07
(4.5.4)
{Vlla VOl} = 07
{Vio, Vo-1} =0,
{‘/017 V—IO} = 07
and fully fixes the others up to constants. For example,'?
{V_1-1,Vio} = a_1-1001000 Vo-1.
(4.5.5)

1 2
{Vo1, Vo-1} = @ 01000-100 M1 + @ 01000-100 A2-

Step 3 We then fix the constants of proportionality o/? 4peqge fgn in the relations found in Step 2 by
demanding consistency with global symmetry charges. To do this, we first find what global symmetry
charge each generator G¢ has. We can see that the topological charges J(m) = (mq,m2) of G¢ (4.5.2)

respectively are:

{(070) ) (0»0) ) (_17_1) ) (_170) ’ (07_1) ) (071) ’ (1’0) ) (171)}' (4'5'6)

Under the appropriate fugacity map (see Section 2.6.6), which one can find to be

J(m) = (nmt) — J(m) = (ﬂm;) = (_21 _21) : (;n;) (4.5.7)

we see that (4.5.2) have charges J under the global symmetry given respectively by:

{(0,0), (0,0), (-1,-1), (-2,1), (1,-2), (-1,2), (2,-1), (1,1)}. (4.5.8)

Since {-,-} acts as the Lie bracket of SU(3), which has rank 2, there are 2 Cartan elements C; and Cs
which act as eigenoperators of the Poisson bracket with eigenvalue equal to the weight under SU(3)

of the adjoint operator it acts on. For G¢, the weights are J:

{Ci,Ge} = Ji Ge (4.5.9)

9The horrible looking subscript on the constants of proportionality a(i)abcdefgh = —a(i)gfghabed € C (the bracket
around the upper index is to indicate that it is not always present) was chosen to reflect the arguments in the Poisson
bracket in question: with no upper index, it is the constant of proportionality for {Vgp A{ )\g y Ver )\g )\}21} Upper
indices 1 and 2 are included in the cases where the result must have topological charge zero, because there are two

operators (A1 and A2) which have this charge and they do not necessarily have the same coefficient.
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for i = 1,2. Thus we must ensure the brackets between each generator and the Cartan elements give the
correct global symmetry charges (4.5.8). The Cartan elements must lie in the adjoint representation
of the SU(3) global symmetry and have charge (0,0) under it, and thus they are precisely our two
chargeless generators from (4.5.2):
Cr=cl'iA + 1),
(4.5.10)
Cs = ctod + 2o\,
We can then demand that (4.5.9) holds and substitute in (4.5.10) for C;, and implement the results
of the Poisson brackets we derived in Step 2 (for example (4.5.4) and (4.5.5)). Then using the
bilinearity, antisymmetry and Jacobi identity of the Poisson bracket, we can solve for the constants
D pede fgn and Cij. This is where the computational difficulty comes in: for higher dimensional
Coulomb branches, there are simply too many unknown constants of proportionality «,c introduced

to solve for. However in this case we can do it, and find that the Cartans are

C1 =M1,
(4.5.11)
Cy = A1+ g,
with Poisson brackets between the generators given by
C1|Co| Vg V.10 Vo-1 Vor | Vio V11
Ch 0| 0| -Vooa | —2Voio | Vo-r | =Vor | 2Vio Vi
Cs : 0 | =Voioa | Voo | =2Vt | 2Vor | =Vao Vi
Vo | - : 0 0 0 Voo | Voor | C1+Ch
Vi | - : : 0 Vo1 0 Ch Vor - (4.5.12)
Vo-1 | - . . . 0 -CY 0 Vio
Vor . ) . ) ) 0 Viy 0
Vio ) ) ) ) ) ) 0 0
Vit ) ) ) ) ) ) ) 0

All dots in the table (4.5.12) are fixed by the negative of their transpose entries due to antisymmetry
of the Poisson bracket.

4.6 Poisson Brackets for Generating Representations

In Sections 4.3 — 4.5 we used the Method of Section 4.2 to explicitly compute Poisson bracket relations
for Coulomb branch monopole operators, but noted that this method cannot be performed on most
quivers. While we do not by any means rule out the existence of more effective methods to perform
computations and find the Poisson brackets explicitly for a generic quiver, we would like to conjecture
the results in the cases that are currently too difficult to find using the Method of Section 4.2. In this
section, we illustrate how this is possible for families of quivers for which the representation content
of the Coulomb branch is known (from the HWG) to low orders: we forget about the monopole con-
struction of the Coulomb branch, viewing it simply as a space of representations, and then conjecture
the Poisson bracket relations between the generating representations using purely the known HWG,
the antisymmetric property of the Poisson bracket, and representation theory. Section 4.7 will see us
detail the results for a small number of families of quivers derived from 5 and 6 dimensional physics,

which have just one or two generating representations other than the adjoint.

The explicit outline of the approach to conjecture the relevant Poisson brackets is as follows:
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. Identify the generating representations by taking the plethystic logarithm of the Hilbert series.

. Use the tensor/antisymmetric product of the generating representations to constrain the possible

result of the Poisson brackets between generators.

. Use the representations appearing at the appropriate degree in the HWG (according to (4.2.16))

to constrain the possible result of the Poisson brackets between generators.

. Find the simplest representation common to the constraints from Step 2 and Step 3, and find

constants to contract relevant indices.

Insert appropriate flavour symmetry invariants to ensure consistency in conformal dimension.

reason for Step 2 is that the Poisson bracket is antisymmetric, hence when taking the Poisson

bracket of a representation with itself, the result will lie in the second rank antisymmetric product

of this representation. For the Poisson bracket of two different representations, the result will lie in

the tensor product of these two representations (see Appendix B for a more thorough discussion of

tensor and antisymmetric products of representations). Step 3 is there to ensure that the result of

the Poisson bracket between two generators actually lies on the particular Coulomb branch variety

we are studying. To clarify any uncertainties in Steps 2, 3, 4 and 5, we turn to an example.

Example We will use the same example @4, (2.6.14) as in Sections 4.2.1 — 4.2.3.2 to illustrate

the success of this more representation-theoretic and less monopole-focused approach. We follow the

steps above:

1.

We have already seen before in (4.2.12) that the generators of this Coulomb branch are simply
in the adjoint representation ;3 of SU(2) with conformal dimension A = 1. The 3 generators lie
in the complexification of the global symmetry algebra su(2)c = sl(2;C): a® for i = 1,2, 3. Since
the adjoint of sl(2;C) is the second rank symmetric of the fundamental, these three generators
can be encapsulated in a symmetric 2 x 2 “matrix of generators” aqg for a, 5 = 1,2 symmetric
indices labelling which generator is which. The only Poisson bracket we need to determine is
then

{aas, ays}. (4.6.1)

Then we can ask what possible representations (4.6.1) could actually be in. Here it is trivial as
we know the adjoint representation is closed under the Lie (and hence Poisson) bracket and so
the result must also lie in the adjoint representation. This can also be seen by noting that the

second rank antisymmetric product of the adjoint representation is just itself:2"

N2(13) = 123, (4.6.2)

and since the Poisson structure antisymmetrises comparable arguments, the result of (4.6.1)
must lie in (4.6.2).

If (4.6.2) had contained multiple representations, we could have further constrained the repre-
sentations that (4.6.1) could lie in by examining the HWG. Using (4.2.16), the result must have
conformal dimension 1+1-1 =1, i.e. lie at #? in the Hilbert series. For C(Q.4,), the HWG is

HWG(C(Qa,)) = PE[pit?]. (4.6.3)

20Note that we will use p or p; both as an index labelling generators that takes on certain specified values, and as

the highest weight fugacities to denote a representation. Its meaning in a given situation should be clear from context

(i.e. whether it lies in an exponent/subscript or not).
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We can therefore see easily that the only representation at 2 on this Coulomb branch is indeed
the adjoint, and so this enforces that the Poisson bracket of the adjoint generators lies again in
the adjoint:

{a,a} «<a. (4.6.4)

We see that in this case either the available Coulomb branch operators or possible represen-
tations would be sufficient to deduce (4.6.4), but in more complicated cases they will work in

tandem to help postulate the brackets.

4. Finally, we aim to get rid of the proportionality sign in (4.6.4) and make an explicit conjecture.
To do this, we note that on the left-hand side of (4.6.4) there will be indices labelling the
generators (say for instance a,,7,0 as in (4.6.1)) which must be matched on the right hand
side. Two of these indices will be held by the “a” on the right-hand side, which leaves two
remaining indices for the equation to be consistent. In the algebra of sl(2;C), the only thing
that makes sense to go here is the epsilon invariant (the delta invariant of sl(n;C) can be
constructed from the epsilon invariant in the n = 2 case). So we expect (4.6.4) to take form
along the lines of {ang, ay5} ~ A(€asy8 + €850ya + €ays3 + €34054 ); the relative signs chosen
to ensure the result is antisymmetric upon simultaneously exchanging « <> v and 8 < 4, and
symmetric upon exchanging «a < 8 or v < 6. The overall constant A is fixed by the way in
which we identify the anp with the symmetric generators of s(2;C). For example, we could use
the representation of the generators of sl(2;C) given in (4.2.35). Then if we identify a5 = A,
a1 =2V_1 and ase = 2V,1, a positive overall sign:

{@ap, ays} = €asryp + €850ya + €ayAs3 + €37 050 (4.6.5)
for «, 8,7,6 = 1,2 would recover the appropriate Poisson brackets (4.2.36) of (4.2.35).

5. Our result (4.6.5) is already consistent with conformal dimension: the left hand side has A =
1+1-1=1, which matches the A =1 of the right hand side.

Although the example above did not illustrate it, non-trivial ammendments can be made in Step 5,
causing the need for a scale to be introduced in the form of some invariant of the global symmetry.
In such cases, there is an operator which spontaneously breaks the conformal and R-symmetry but
preserves the flavour symmetry. We will see this explicitly in the examples of Section 4.7, where we

will discuss its physical significance in more detail.

Structure constants for s{(n > 2;C) Note that, as mentioned in the discussion preceeding (4.2.39),
in sl(2; C) the fundamental representation is pseudo-real, not complex, and all non-trivial represen-
tations are symmetric products of this. Hence all indices are lowered and we can write the structure
constants in the special form of (4.6.5). For sl(n > 2;C) the fundamental representation is complex,
so the structure constants here must be written in a more general form; we cannot generalise (4.6.5)
to all sl(n > 2;C). The adjoint of sl(n > 2;C) lies in the tensor product of the fundamental and anti-
fundamental (the complex conjugate and dual of the fundamental) representations, hence the matrix
of generators is given by one upper and one lower index a*, for u,v = 1,..., n traceless labelling which
generator is which. In this case, taking into account the upper and lower indices that appear on the
left and right side of (4.6.4), we have two spare indices on the right hand side that do not accompany

W, .,

a”: one upper and one lower. The only invariant of sl(n > 2;C) with this structure is 6,, and so
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we find that the structure constants of sl(n;C) are
{a*,, a5} = 6" af, =07 ,a" 5, (4.6.6)

where analogously to Step 5 above, the overall sign was determined by ensuring that the result
matched the expected result for the n = 2 case, if we took the generators to be sl(n = 2; C) matrices.
Because here we are viewing sl(n = 2;C) as the n = 2 case of sl(n;C), we take the generators to be
the canonical generators for 2 x 2 traceless complex matrices (unlike in Step 1 above, or in (4.2.35),

where it was more natural to view them as symmetric complex matrices):

xz(l 0), m:(o 1), v_1:(0 0). (4.6.7)
0 -1 0 0 1 0

The Poisson bracket acts on two such generators by matrix multiplication, using contraction with ¢§
(rather than e as we did when we were treating sl(2; C) separately from sl(n;C), for example in the

discussion preceeding (4.2.39)). We see that this gives
{\ Vi) =2V,
ANV} =-2V,, (4.6.8)
Vi, Vaiy =\

If we identify our a*, generators as

a11 - a22 = )\,
a'y =V, (4.6.9)
a21 = V—la

for the A, Vi1, V.1 of (4.6.7), then we see that (4.6.6) with its positive overall sign matches (4.6.8).
With this identification, we can see that (4.6.6) are the structure constants for sl(n > 2;C).

We can see that the approach to determine Poisson brackets outlined in this section is slightly more
abstract than that detailed in the previous three sections, and in the case of this example is actually
somewhat redundant; since the moduli space is solely generated by the adjoint representation at
A =1 — a closed algebra — we could have said without any calculations or thought that the Poisson
brackets had to be given by the structure constants. The method outlined in Sections 4.2.1 — 4.2.3.2
uncovered additional information that we did not know a-priori: in particular, the Poisson bracket
relations for the specific monopole operators on the Coulomb branch. That explicit construction is
clearly preferable, but is not accessible for many of the quivers for which the approach in this section
can be used, hence the utility of this more abstract method. We will now move on to illustrate

examples of such cases.

4.7 Higgs Branches of Certain 5d and 6d Theories at Infinite
Coupling

It is in this section that we finally study Higgs branches at infinite coupling. As explained in Section

2.7.1, up until recently it was not known how to make progress with these Higgs branches as they
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could not be computed classically. This was overcome for wide families of such theories with the
discovery of their magnetic quivers, and the study of their Coulomb branches. In this section we
exploit this; we find the Poisson brackets between the Higgs branch generators {Gy;, Gy }# of certain
5 and 6 dimensional theories at infinite coupling by computing {G¢, Ge }¢ for their magnetic quivers.

This task sees the utility of the method outlined in Section 4.6; the families we study have one or
two generating representations other than the adjoint, hence the Poisson brackets cannot be trivially
concluded to be the structure constants a-priori (as they could have been in the example of Section
4.6). In some cases, Step 4 of Section 4.6 finds many representations, the set of which we call Ry,
that are common to both the tensor/antisymmetric product of the input representations for a given
Poisson bracket and the operators on the Coulomb branch at the appropriate conformal dimension.
With these constraints alone, we can only say for certain that the Poisson bracket in question would
be some undetermined linear combination of Ry, but we conjecture that the principle of Occam’s
razor applies: the coefficients of all representations other than the simplest vanish. We call this
simplest representation Rgimp € Rimule, and in all cases studied it turns out to be either the trivial or
the adjoint representation of the global symmetry. The motivation for such a conjecture is that the
moduli spaces we study are fairly simple spaces; there is no reason to expect that the symplectic form
should take unecessarily elaborate values. To check this conjecture and verify the exact coefficients

would require further analysis of the 5 and 6 dimensional physics, a task we leave for future work.

The breaking of conformality In all the 5 and 6 dimensional theories studied, we find that the
Higgs branch Poisson brackets between representations other than the adjoint include a Casimir to
some non-zero power to ensure consistency of conformal dimension. This Casimir takes some nu-
merical value: it is a scale. This tells us that on the Higgs branch of these theories, the conformal
symmetry at infinite coupling is spontaneously broken. This sounds like nothing new; any VEV will
break the conformal symmetry in the vacuum. However the difference between this scale and other
VEVs is that other VEVs also break the Coulomb branch flavour symmetry, whereas this Casimir
scale preserves it. This is a powerful statement and is worth unpacking a little, but we should be
careful to distinguish between 5 and 6 dimensions. In 5d, the gauge coupling is a parameter of the
theory, and so the Poisson brackets we find below in Section 4.7.5 tell us that while conformal sym-
metry is spontaneously broken in SQCD theories taken at infinite coupling, the flavour symmetry is
preserved. In 6d, the inverse gauge coupling g% is a modulus, not a parameter. If we look at the
Higgs branch at finite coupling (i.e. the Higgs branch over a generic point of the tensor branch), g%
is an obvious scale and so conformal symmetry is broken. If we look at the Higgs branch at infinite
coupling (i.e. the Higgs branch over the origin of the tensor branch), the scale g% disappears, but
the Poisson brackets we find in Sections 4.7.1 tell us that another one emerges, Cs. That is, as we
move towards the origin of the tensor branch the scale which breaks conformal symmetry transitions
from g%, a scalar in the tensormultiplet, to C5, a scalar in the hypermultiplet which preserves the
flavour symmetry. It would be interesting to see how observables (e.g. correlation functions) in the
6d theory lying close to the origin of the tensor branch (i.e. when the gauge coupling is very large

but not infinite) vary as a function of these two scales, g% and Cj.

For the first family of theories we consider (the subject of Section 4.7.1), we go through in detail the
method used to obtain the Coulomb branch Poisson brackets {Ge, Ge¢ }e of the magnetic quiver. One
Poisson bracket on this Coulomb branch — the bracket of the generating spinor representation with

itself — fits into the categories of brackets discussed above for which the methods of Section 4.6 do not
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constrain the result to lie in a single representation. We detail the full list of representations it could
lie in (Rmuls), and then end with the conjecture that it actually lies in the simplest (Rgimp). For the
remaining families (the subjects of Sections 4.7.2 - 4.7.5.4) we simply state the conjectured results
(and in particular give only R, and not the full list Ry, for any brackets which the methods of
Section 4.6 fail to constrain to a single representation), skipping the method. The quivers in Sections
4.7.1 — 4.7.4 are taken from [69], and those in Section 4.7.5 from [72] and an unpublished work by
Hanany and Zhong.

4.7.1 Eg, family

The first family we discuss is that arising from the Higgs branch of the 6d theory of Sp(n) gauge

group and 2n + 8 flavours at infinite coupling [70, 76], or equivalently the Higgs branch of the 5d

theory of SU(n +2) gauge group with Chern Simons level k = =1 and 2n + 7 flavours at infinite

coupling [69] for n > 0. The magnetic quiver in question for these theories is [69, 76, 94]

fn+3
O O O O @
1 2 2n+6 n+4 2

(4.7.1)

The right hand rank 2 node is coloured red to indicate that it is unbalanced (for n # 0). Generically,
we can read off that this quiver has global symmetry SO(4n +16) [10]. For n = -1 however, (4.7.1) is
the Dynkin quiver of E; (Dg,, as discussed in Section 4.3.1) hence the global symmetry is enhanced
to Sp(16) > SO(12) and the Poisson brackets are those given in Section 4.3. For n =0, (4.7.1) is the
affine Eg quiver; the global symmetry is enhanced to Eg 2 . SO(16), and the Poisson brackets are the
structure constants of Fg. For all n > 1 the global symmetry of the Coulomb branch is SO(4n + 16)

and there are 2 generating representations, as can be found from the HWG:2!

1
T (1) (1~ pr2nss 72) (1 — ponas t74) TP (1 - o 120)

HWG (4.7.2)
where g1, ..., ion+s are highest weight fugacities of the global symmetry Day,.s = SO(4n + 16). The
Poisson brackets in the n > 1 case are thus not so trivial; we must proceed with Steps 1 -4 of Section
4.6 to determine them. To illustrate these steps we start by carrying them out for the simplest case
of n =0, viewing the representations of the global symmetry Eg in terms of the SO(16) subalgebra,

and then use this to help us find the Poisson brackets for general n > 1.

4.7.1.1 n=0

In this case, (4.7.1) morphs into the affine Dynkin diagram of Eg and hence its Coulomb branch is
the corresponding minimal nilpotent orbit closure, eg. Since here the global symmetry enhances to
Eg, we could write the HWG in terms of representations of Eg as PE[jizt?] (for fiy,..., fig highest
weight fugacities of Eg), however it will be more useful to write it as the n = 0 case of (4.7.2) — i.e.

in terms of SO(16) c Eg representations — so that we can use our results to generalise to higher n:

HWG = PE[(pg + pug)t* + (1 + g + pg)t* + pugt®]. (4.7.3)

21 Recall from Section 2.6.2 that the HWG and Hilbert series are different objects. In particular, their generators are
not the same. This is clear here: the HWG has more than two generating representations, it is the Hilbert series which
has two. But the HWG can be used to help us see this; from the HWG we can find the Hilbert series, and then take
the plethystic logarithm to find the generators.
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Recall from Section 4.6 that the first step to finding {G¢, G} is to write down the generating repre-
sentations G¢ themselves. This can be done by converting (4.7.3) into a Hilbert series and taking the
plethystic logarithm [95]. It turns out that all generators here lie at order #* (i.e. have A = 1), and
fall into the adjoint a,,*? (12 in Dynkin labels) and spinor s,* (us in Dynkin labels) representations
of the SO(16) c Eg global symmetry. We collect this information on the generators in the following

table:

Generator | A | SO(16) representation
A 1 adjoint . (4.7.4)

Sa 1 spinor

Note that both of these representations are real; we don’t need to worry about raising or lowering
indices. This is Step 1 of the method in Section 4.6 accomplished. We then carry out Steps 2 —4 for
each of the Poisson brackets we need to calculate:

{ap,ap0t, {au,5a}, {50,858} (4.7.5)

Adjoint with adjoint, {a, a}

2. {a,a} generates a representation in the second rank antisymmetric product of the adjoint. One
can calculate this to be

A2(M2) = 2 T 13, (4.7.6)

and thus conclude that the Poisson bracket of two a’s must lie in one of the following represen-
tations of SO(16):

M2y H1U3 - (4.7.7)

3. Using (4.2.16) and (4.7.4), we see that {a,a} must have conformal dimension A = 1, and
therefore lie in a representation in the Hilbert series appearing at ¢2. This constrains {a,a} to

lie in one of the following representations:
M2, U8 . (478)

4. The only overlap between (4.7.7) and (4.7.8) is us. That is, under the Poisson bracket the
adjoint representation is closed. Schematically, this means

{a,a} ~a. (4.7.9)

To make this rigorous, we need to put the indices in and contract appropriately. Suppose on
the left hand side we choose indices as follows:

{a/ulha'po'}) (4710)

On the right hand side all these indices must remain, and since the Poisson bracket is just the

Lie bracket on the SO(16) algebra, the result is determined by the structure constants:
{ap, a0} = 00pauo = 0,p000 + 0uetup = Ouelyp. (4.7.11)

5. Our result (4.7.11) is already consistent with conformal dimension: the left hand side has
A=1+1-1=1, which matches the A =1 of the right hand side.

22In the 16d analogy to the Lorentz transformations, p,v = 1,...,16 are antisymmetrised.

. 16
23Fach spinor s, is a 128 dimensional representation, and @ =1,...,22 ~! = 128 is a spinor index.
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Note the use of 6, as apposed to 7,,: we are not using representations of Minkowski SO(1,15)
spacetime, but rather representations of SO(16) whose indices are Euclidean in nature. (4.7.11) are
the structure constants for all SO(2k), with all indices ranging from 1, ..., 2k. Note how the result is
antisymmetric under the three index permutations (a) p < v, (b) p < o, and (¢) pu < p, v < 0, as

expected.

Adjoint with spinor, {a,s}

2. The tensor product of us with ug restricts this Poisson bracket to lie in the following represen-

tations:

Mg, H1JT 5 fh2pls - (4.7.12)

3. Since A =1 for the spinor representation also, again {a,s} must lie at ¢> in the Hilbert series,

and so must lie among (4.7.8).

4. This time the only overlap between (4.7.12) and (4.7.8) is ug, and so schematically we have
{a,s} ~s (4.7.13)

Again we could have known this a-priori as any representation is an “eigenrepresentation” of
the adjoint under action by the Lie bracket, with eigenvalue equal to its weight. To put in the
indices, we need something on the right hand side to contract the two vector indices of a, leaving
just the spinor index of s, which transforms compatibly under SO(16). A natural candidate
is the generator of the spinor representation: v,, = i['yﬂ,fy,,],24 where v, are the Euclidean

gamma matrices, satisfying the Clifford algebra {v,,7,} = 25W.25 Concretely,?°
{auua Sa} = (’Yuu)aﬁ Sg- (4714)

5. Our result (4.7.14) is already consistent with conformal dimension: the left hand side has
A=1+1-1=1, which matches the A =1 of the right hand side.

Spinor with spinor, {s,s}

2. The Poisson bracket lying in the second rank antisymmetric of the spinor representation s
constrains {s, s} to lie among
He 5 U2 . (4715)

3. Again, the conformal dimension of {s, s} must be 1, meaning that again it must lie among the

representations of (4.7.8).

4. The only representation common to (4.7.15) and (4.7.8) is p2, so schematically

{s,s} ~a. (4.7.16)

24This factor of % is typical in the literature, to ensure the vy, satisfy the structure constants of the SO algebra
(4.7.11). Here it is also convenient to use as it results in no factors of i in the results of the Poisson brackets (4.7.32).

25Note that confusingly, unlike in the rest of the paper, here in the Clifford algebra {-,-} denotes the anticommutator.

26Note that the indices pu and v are labelling which gamma matrix we are referring to of the possible 120 =
dim(SO(16)), and the spinor indices o and (3 label the matrix components of -y, (spinor indices remind us that
so transforms as a spinor, not a vector, and that the (yuv)ag act on spinors and satisfy the Clifford algebra).



135 CHAPTER 4. POISSON BRACKETS

On the left hand side there are two spinor indices, on the right hand side there are two antisym-
metrised vector indices. A constant with matching spinor indices must contract these vector

indices. Again v, is the natural candidate:
{80,868} = (Vv )ap au- (4.7.17)

5. As in the previous two cases, our result (4.7.17) is already consistent with conformal dimension.

4.7.1.2 n2x0

Now that we have seen the explicit working for the n = 0 case, it is easy to follow the same logic and
arrive at a postulate of the Poisson brackets for the generating operators of the C(4.7.1) for general
n>0.

For generic n, the generators are a slightly non-trivial generalisation of (4.7.4), found in the same

way as described in Section 4.7.1.1:

Generator | A | SO(4n + 16) representation
A 1 adjoint ) (4.7.18)

Se %2 spinor

Note that both of these representations are real (or pseudo-real in the case of the spinor representation
for odd n); we don’t need to worry about raising or lowering indices. The form of the {a,a} and {a, s}
Poisson brackets do not change from those discussed in the n = 0 case of Section 4.7.1.1: (4.7.11)
and (4.7.14) hold for all n > 0, with u,r and p, o pairs of antisymmetrised vector indices going from

1,...,4n + 16 and «, 8 spinor indices going from 1, ..., 21, However, the Poisson bracket between

two spinors depends on whether n is odd or even.

Even n

2. In the case of even n, the second rank antisymmetric of the spinor is (see Appendix B for more
details)?”

A% (fi2n+8) = fan+e + Hansa + - + iz, (4.7.19)

and so {s,s} must lie in some combination of the following representations of SO(4n + 16):
H2n+6 5 MU2n+25 -« 5 HU2. (4720)

3-4. The spinor appears at t"*2 in the Hilbert series, i.e. has A = 5 +1, hence (4.2.16) tells us that
{s, s} must have A =n+1. The representations with this conformal dimension on the Coulomb
branch in question are those which appear at order ¢>"*2 in the HWG. The only overlap between

such representations and (4.7.20) are

Rpuit = {fan+2 s Mon-2, -5 H2}, (4.7.21)

and so the Poisson brackets must take the form

n

2
{Sa, 5,3} ~ (fYMV)a,@ Auy + Z (7#1“'#4“2 )QB le"'N4'i+2’ (4'7'22)
i=1

27Note that this shows that the spinor representation of SO(4n +16) is real for even n, because the lack of the singlet
in A%(s) means it must lie in the second rank symmetric product S2(s).
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where the indices on b are completely antisymmetrised to reflect the (4i—2)*" rank antisymmetric
of the vector representation of SO(4n + 16), and each term has some coefficient preceeding it.
As stated at the start of Section 4.7, to explicitly determine these coefficients would require
analysis of the physics in the 6d theory from which these states originate. We leave this as a
challenge for future work, but we conjecture that the solution should be the simplest: that the

coefficients of all terms other than the first of (4.7.22) are zero (i.e. Rsimp = pi2),
{Saa Sﬁ} ~ ("Yuu)ozﬁ Apy- (4723)

5. As it stands in (4.7.23), the conformal dimension of the right hand side does not match what

it should do: the left hand side has A = "T” + "TJ“Q —1 =mn+1, but the right hand side only

has A = 1. The right hand side should be in the adjoint representation of SO(4n + 16) with
A =n+1: an additional factor which is an SO(4n + 16) invariant with A = n must be included.

The HWG tells us that, on this Coulomb branch, the only generating singlet of SO(4n+16) lies

at t* (or equivalently A =2). The only invariant with this dimension is the second Casimir:2®

Cy = Tr(a?), (4.7.24)

and hence we see that all other SO(4n + 16) invariants are powers of C5.2Y Consequently, the
only candidate to include in (4.7.23) to rectify the current inconsistency in conformal dimension
h
is the (%)t power of Cly:
{sa,s8}=Co® (Vuv)ap G- (4.7.25)

Odd n

2. For odd n, the second rank antisymmetric of the spinor is*°

A*(p9n+8) = fan+e + fansa + - + fig + 1, (4.7.26)

hence {s, s} must transform in some combination of the following representations of SO (4n+16):
Hon+6 s MU2n+2,5 -« 1. (4727)

3-4. As in the even case, the result lies at t2"*2 in the Hilbert series. The representations under the
SO(4n +16) global symmetry at this order which overlap with (4.7.27) are

Rt = {Ht2n+2, Han-2, -+, 1}, (4.7.28)

and so we find that the Poisson bracket must take the form

n+l

e
{sa:56} ~ Qap + 2 (Vrpa ) by opaais (4.7.29)

i=1
for Q.5 the skew-symmetric form of Sp(k = 22"*%) as in (4.3.4). As above the indices of b are
antisymmetrised and each term has some coefficient preceeding it, but we conjecture that the
coefficients of all terms other than the first of (4.7.29) are zero (i.e. that Rgimp = 1):

{SOHSB} ~ Qaﬁ (4730)

28Here, as above, a schematically represents any matrix in the adjoint of the SO(4n + 16) algebra in question.

29This is another indicator, along with the Hasse diagram, that this Coulomb branch is “very close” to being a
nilpotent orbit.

30Note that this shows that the spinor representation of SO(4n + 16) is pseudo-real for odd n, as the singlet lies in
the second rank antisymmetric product.
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5. As above, in (4.7.30) the right hand side should have A =n + 1, but it currently has A =0. To
rectify this, an SO(4n + 16) invariant factor with A =n + 1 must be included. Following the

ntl
2

same logic as above, the only possibility is Cs " The Poisson brackets are

n+l

{sa,s8} =Ca % Qags. (4.7.31)

4.7.1.3 Summary of conjectured brackets

We collect the results derived in this section. We conjecture that the Poisson bracket relations for
the Coulomb branch generators of the Eg,, family (4.7.1) for n > 0 are given by:

{aum apo} = 5Vpaua - 5upaua + 5u0a1/p - Jyaaup v n,

{a;wvsa} = (’Y,uu)ocﬁ sg Vo,

(4.7.32)
Cy? (Yur)ap @, if n even
{5047 5,3} =
n+1l
Cy 2 Qup if n odd
where a and (8 spinor indices going from 1, ...,24”2“6’1; any other indices are vector indices going

from 1,...,4n + 16, antisymmetrised with those appearing with them in a given subscript; Q5 is
the skew-symmetric two form of Sp(k = 22"*¢) (4.3.4); and Cy = Tr(a?) is the second Casimir of
SO(4n +16), which is normalised to give no numerical coefficient in the final bracket of (4.7.32).

4.7.2 E;, family

The Higgs branch of a 5d SU(n) gauge theory with Chern Simons level 0 and 2n + 2 flavours at
infinite coupling (i.e. at its UV fixed point) has magnetic quiver [69, 94]

1 n+2 1 (4.7.33)

for n > 1. The rank 2 node is coloured red to indicate that it is unbalanced (for n # 2). Generically,
we can read off that this quiver has global symmetry SU(2n + 4). For n = 1 however, (4.7.33) is the
Dynkin quiver of Fg (Dg,, as discussed in Section 4.3.1) hence the global symmetry is enhanced to
Sp(10) o> SU(6) and the Poisson brackets are those given in Section 4.3. For n =2, (4.7.33) is the
affine F7 quiver; the global symmetry is enhanced to E7 2 SU(8), and the Poisson brackets are the
structure constants of E7. For all n > 3 the global symmetry of the Coulomb branch is SU(2n +4)
and there are 2 generating representations, as can be found from the HWG:

1

HWG = — .
(I =t1)(1 = pnr2 t™) (1 = a2 t"*2) TIZ (1 = pi propea—i 12°)

(4.7.34)

where p1, ..., ion+s are the highest weight fugacities for the SU(2n + 4) global symmetry. Explicitly,
the generators are:

Generator | A | SU(2n +4) representation
at, 1 adjoint , (4.7.35)
prainz | 2l (n+2)™ rank antisymmetric
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where all indices involving g and v range from 1,...,2n + 4, and any indices on b are completely

antisymmetrised. We conjecture that the Poisson brackets of (4.7.35) are given by:
{a“w apo} = &Laapu - 5pyaug’

{a*,, bty = slea b#?“'ll«n+2]#’

(4.7.36)
—2
02 Lz (epul"'un+2[v2"'l/n+2 a”l]p + 6/)Vl"'Vn+2[,uz"'un+2 aul]p) if n even,
{bﬂr"ltmz bl/1~~l/n+2} -
3

-1
Co BT M1 2V Une2 if n odd,

where Cy = Tr(a?) is the only non-zero SU(2n +4) Casimir invariant of this moduli space, which is
normalised to give no numerical coefficient in the final bracket of (4.7.36).

4.7.3 Eévn family

The Higgs branch UV fixed point of a 5d SU(n) gauge theory with Chern Simons level i% and 2n+1
flavours has magnetic quiver [94, 69]

1
2
1 n+1 1 (4.7.37)

for n > 1. The rank 2 node is coloured red to indicate that it is unbalanced (for n # 2). Generically, we
can read off that this quiver has global symmetry SU(2n+2)xSU(2). For n =1, (4.7.37) is the Dynkin
quiver of D5 (Dp,, as discussed in Section 4.3.1) and so the global symmetry is enhanced to Sp(6)
and the Poisson brackets are those given in Section 4.3. For n = 2, (4.7.37) is the affine Eg quiver;
the global symmetry is enhanced to Fg 5> SU(6) x SU(2), and the Poisson brackets are the structure
constants of Fg. For all n > 3 the global symmetry of the Coulomb branch is SU(2n + 2) x SU(2)

and there are 3 generating representations, as can be found from the HWG:

1- 12 M?Ln £2n+4

HWG= —— T 2y’
(1=2282)(1 =) (1 = v pns1 ) (1 = v ppn t742) TEZY (1 = i prns2-i t27)

(4.7.38)

where g1, ..., pian+1 and v are the highest weight fugacities for the SU(2n + 2) and SU(2) factors in
the global symmetry respectively. Explicitly, the generators are:

Generator | A SU(2n +2) x SU(2) representation
A+ 1 adjoint x trivial
- - o : (4.7.39)
aap 1 trivial x adjoint
Brutnn 2 (n+ 1)*" rank antisymmetric x fundamental

where all indices involving p and v are SU(2n + 2) indices ranging from 1,...,2n + 2 and those that
appear in exponent of B are antisymmetrised among themselves; and indices involving « and 3 are
SU(2) indices ranging from 1,2. We conjecture that the non-zero Poisson brackets of (4.7.39) are
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given by:

"
{AMlVNAqu} - 5/41V2AM2V1 — of 2V1AM1V2’
{aa151 s aa252} = €a1B20asB1 T €818 0azar T €a1an@Bapy T €B1020B2015
{AH, BriBns Y = 5[M1VBH2'”Mn+1],U«a,

{aaﬁ’Bﬂl'“Mnual} _ Bul"'ﬂn+1(ﬁ €ayans

n—2
- M1 Pn+1V1 Vn+tl

02 2 (6 n+ e+ €a1 [0 Blay T €aB "

1I n even,
Vv Unat (B2 lne1 AR1] v fins1 (V2 Vnetr A1)
{Bﬂl“'unﬂ BV1"'Vn+1IB} - (6 A vTEe 4 v
s
C2 3 €ap M1 A+t V1 Vil ifn Odd,
(4.7.40)

where (-)/[] indicates a symmetrisation/antisymmetrisation over the enclosed indices with no nu-
merical prefactor; and Cs is the second and only non-zero Casimir for SU(2n + 2) x SU(2) on this
Coulomb branch, which is normalised to give no numerical coefficient in the final bracket of (4.7.40).
The second Casimir Cs of the product group SU(2n+2)xSU(2) is proportional to the second Casimir
of each individual group (SU(2n +2) and SU(2) respectively).?! All other Poisson brackets between
(4.7.39) that are not listed in (4.7.40) vanish.

4.7.4 LBl family

The Higgs branch UV fixed point of a 5d SU(n) gauge theory with Chern Simons level :t% and 2n+1
flavours has magnetic quiver [94, 69|

1
n

O -

1 2n—-1 1 1 (4.7.41)

for n > 1. The two rank 1 nodes are coloured red to indicate that they are unbalanced (for n # 2).
Generically, we can read off that this quiver has global symmetry SO(4n +2) x U(1). For n = 1,
(4.7.41) is Dynkin quiver of A5 (D 4., as discussed in Section 4.3.1) and hence the global symmetry
is enhanced to Sp(4) > SO(6) x U(1), and the Poisson brackets are given in Section 4.3. For n = 2,
(4.7.41) is the affine Eg quiver; the global symmetry is enhanced to Eg o SO(10) x U(1), and the
Poisson brackets are the structure constants of Fg. For all n > 3 the global symmetry of the Coulomb

31The 24 Casimirs of SU(2n +2) and SU(2), Ca,5U(2n+2) = Tr(A?) and Ca.5U(2) = Tr(a?) respectively, both have
conformal dimension 2. The HWG tells us that there is just a single invariant of the Coulomb branch global symmetry,
and that it has A = 2. This means that some linear combination of the individual Casimirs C5 g17(2n+2) and Cs sy (2),
say B1 Cy,su(2n+2) + B2 Ca s5u/(2), must vanish, and all Casimirs of the flavour symmetry SU(2n +2) x SU(2) on this
Coulomb branch must be proportional to an orthogonal linear combination, say Cz = a1 Ca sy (an+2) + @2 Ca su(2)-
The vanishing linear combination tells us that Co sy7(2n+2) and Cy sy (2) are proportional, and so we can see that the
second Casimir of the product group C2 is proportional to either of the second Casimirs of the individual groups.
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branch is SO(4n +2) x U(1) and there are 4 generating representations, as can be found from the

HWG:
1

(- 12) (1 - 2 ) (1 - g gy ) T (1 = pra 127)

where pi1, ..., tton+1 are the highest weight fugacities for SO(4n +2) and ¢ is the fugacity for the U(1)

HwWG

(4.7.42)

charge. Explicitly, the generators are:

Generator | A | SO(4n +2) x U(1) representation
Ay 1 adjoint x (0)
c, 1 trivial x (0) : (4.7.43)
s 5 left spinor x (+1)
Sa 5 right spinor x (-1)

where o and 3 are spinor indices going from 1, ...,2%"; and any other indices are vector indices going
from 1,...,4n+2, antisymmetrised with those appearing alongside them in a given subscript. C; is the
invariant of the U(1) factor in the flavour symmetry, so-called to make connection with the notation
for the flavour symmetry invariants in the Coulomb branches of Sections 4.7.1 — 4.7.3. This U(1) is
formed from a linear combination of the two U(1) symmetries in the classical (finite coupling) Higgs
branch of the 5d theory in question: the U(1)p c U(2n+ 1) baryon symmetry associated to the trace
of the meson matrix M, and the U(1); instanton symmetry associated to the gaugino bilinear S
one can construct.>? The orthogonal linear combination of these U(1) symmetries is combined with
the SU(2n + 1) factor in the classical flavour symmetry, enhancing it to the SO(4n +2) we see at
infinite coupling. The left and right spinors of SO(4n + 2) are complex representations which are
conjugate to one another, hence the raised and lowered indices respectively. This makes matching
the indices in the Poisson brackets (Step 4 of Section 4.6) slightly more complicated in this case. The
matrices ¢ and +,, are spinor valued (i.e. their entries are labelled by two spinor indices o and ),
and lie in the trivial (1) and adjoint (ug) representations of SO(4n + 2) respectively. To see what
form their spinor indices take, it is therefore important to ascertain whether these representations
lie in the second rank symmetric/antisymmetric of one of the spinors or in the tensor product of
the two conjugate spinors. It turns out that both 1 and pus lie in the tensor product ps, ® tion+1,

and hence have one upper and one lower spinor index labelling their matrix entries: 6% and (7, )® 5

We conjecture that the non-zero Poisson brackets of (4.7.43) are given by:
{auua apa} = (;Vpap,a - 5/14)@1/0 + 6;4(7an - 6u0'aup7
{au,,,sa} = (’Yuu)ag 3'8>
{auw, 50} =38 ('Ym/)ﬁa»
(4.7.44)
{C1,8%} =+s°

{Clvsa} =~ Sa

{5a7 Sﬂ} = Cln_l 504[57

32By “associated”, we mean that M and S are the scalar superpartners of the conserved currents associated to these

symmetries. We use this association because, for study of the moduli space, it is the scalars which we are interested in.
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where C is normalised such that there are no additional numerical coefficients in (4.7.44). All other
Poisson brackets between (4.7.43) that are not listed in (4.7.44) vanish.

4.7.5 Magnetic quivers for 5d N =1 SQCD

The following four sections are based on magnetic quivers [73] found for certain cones of the Higgs
branch at infinite coupling of 5d N = 1 special unitary SQCD theories with UV fixed points [72].
Such a 5d theory is specified by three parameters: the number of colours N, of the gauge group; the
number of flavours Ny transforming in its fundamental representation; and the Chern-Simons level
k;

SU(Ne) gy O—O Ny . (4.7.45)

To have a UV fixed point, these three parameters must satisfy the following inequality [96]:

N
k| < N, - Tf +2. (4.7.46)

In these instances, we can investigate the case of infinite coupling.

In [72], the authors split (4.7.46) into four regions and computed the magnetic quivers — plural as
each Higgs branch is the union of various cones — for the various Higgs branches in each region. In
an unpublished work by Zhenghao Zhong and Amihay Hanany, the HWG for each of these magnetic
quivers was computed. We will use these HWGs to derive the Poisson brackets for the Coulomb
branch generators of these magnetic quivers. Many of the quivers appearing in [72] either only have
generators in the adjoint representation or have already appeared in Sections 4.7.1 — 4.7.4. We will
omit the Poisson brackets for these quivers as they have been covered in previous sections, but will
give a brief comment noting the relevant ones in each of Sections 4.7.5.1 — 4.7.5.4. The remaining
quivers (bar certain exceptional cases of the Chern Simons coupling in regions 2 and 4) fall into four
families: the so-called trapezium, pyramid, kite and truck families. The first two such families are
specified by three parameters, Ny -1, n and o, and the latter two families by just n and o. Each
of these parameters is a function of the parameters of the 5d theory, Ny, N. and k, and one can
check the original paper [72] for the specific relationship (the new parameters n and o have been
introduced to encapsulate multiple cones by the same quiver: the only difference between cones being
the dependence of n and ¢ on Ny, N. and k). The structure of each family of quivers restricts the
values that n and o can take (for example, for the Trapezium family (4.7.48) can only have n = 1
for Ny =2 or 3). In Sections 4.7.5.1 — 4.7.5.4 we will explore the Poisson brackets for the Coulomb

branch generators of each of these four families in turn.

4.7.5.1 Trapezium family

The trapezium family encapsulates the magnetic quivers for two cones which make up the Higgs
branch of 5d N' =1 SQCD with parameters satisfying the following subsets of (4.7.46), “region 1”
and “region 3”7 of [72] respectively:

Ny Ny

|k| < N, and  |k|=N.- -t 1. (4.7.47)

Note that there is an additional cone comprising the Higgs branch of each of these regions (4.7.47)

with a magnetic quiver that does not conform to the structure of (4.7.48), but they are closures
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nilpotent orbits.?> The family is given by

1 5 1
12 n n 2 1

Ny-1

(4.7.48)

for Nt > 2, where a red node indicates that it is unbalanced, and o indicates the multiplicity of the
hypermultiplet linking the two unbalanced U(1) nodes. Generically, we can read off that this quiver
has global symmetry SU(Ny) x U(1). Note that this is less than in the classical case. In the case
where n = ¢ = 1 however, the two red nodes are actually balanced and this quiver becomes the affine
Ay, quiver; the global symmetry is enhanced to SU(Ny +1) > SU(Ny) x U(1), and the Poisson
brackets are the structure constants of SU(Ny +1). From the structure of the quiver, one can see
that we must necessarily have 1 <n < [%J When we don’t have n = 0 = 1, there are 4 generating

representations, as can be found from the HWG:

1-— [t KN -n t2(n+o’)
(1=t2)(1 = pn qt*) (1 = B2 87+ ) [T (1= g v, - t27)

HWG = (4.7.49)

where g1, ..., un,-1 are the highest weight fugacities for SU(Ny), and q is the fugacity for the U(1)

charge. Explicitly, the generators are:3*

Generator | A SU(Ny) x U(1) representation
at, 1 adjoint x (0)
Cy 1 trivial x (0) , (4.7.50)
N n'" rank antisymmetric x (+1)
Apyooi | 5% | (Nf — n)t" rank antisymmetric x (-1)

where all indices involving p and v range from 1, ..., N¢; those on b are completely antisymmetrised;
and (1 is the invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details).
The parameter n takes different values with regards to the parameters V., Ny and k on each of the
Higgs branch cones whose magnetic quiver is encapsulated by (4.7.48). The specific expression for n
will dictate the physical states of b and d, hence their generic names.

33For the exceptional cases of k = % and k = 0 in region 3, the magnetic quiver does not take the form of (4.7.48),
and instead takes the form of (4.7.37) for Ny = 2n + 1 and (4.7.33) for Ny = 2n + 2 respectively (where this n is that
used in (4.7.37) and (4.7.33) respectively, not to be confused with the n of (4.7.48)).

34The (Ny 7n)”‘ rank antisymmetric could be written with Ny —n upper antisymmetrised indices, but the invariance
of "' N¢ means we can also write it with n lower antisymmetrised indices instead. This choice of notation makes
clear the fact that it is the conjugate to the nt? rank antisymmetric representation.
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We conjecture that the non-zero Poisson brackets of (4.7.50) are given by:
{aﬂm apa} = (5#(.,&'0,, - 5puaﬂcn

{ak, bty = slua prainlp

{a"y, dur“un} = 5“[#1 du2-~-un]w

(4.7.51)
{Ch, bty = g b

{Clv dltl"'ltn } == dll«l"‘#n )

{le'“Mn ’ dVl"'Vn } = Cln+071 6[”1 [v1 7 6#7»]1/”] :

where C is normalised such that there are no additional numerical coefficients in (4.7.51). In one of
the cones n = Ny — N, meaning b and d are the baryons that we would expect to show up (due to
Cy acting as the baryon number: the U(1)p baryon symmetry is preserved). In the other cone, we
expect b and d to be instanton operators. All other Poisson brackets between (4.7.50) that are not
listed in (4.7.51) vanish.

4.7.5.2 Pyramid family

The pyramid family are magnetic quivers for one cone which makes up the Higgs branch of 5d A =1
SQCD with parameters satisfying the following subset of (4.7.46), “region 2” of [72]:

N
El=N, - —L. 4.7.52
2

Note that there is an additional Higgs branch cone with a magnetic quiver that does not conform to
the structure of (4.7.53), but it is the closure of a nilpotent orbit or a product thereof (depending on
the values of the parameters).*® The family is given by

Ny-1

/ (4.7.53)
for Nt > 2, where a red node indicates that it is unbalanced, and o indicates the multiplicity of the
hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that
this quiver has global symmetry SU(Ny) x SU(2) x U(1). The structure of the quiver means that
we must necessarily have 1 <n < [%J There are 5 generating representations, as can be found from

the HWG:

1- 1/2 Lin NNf—n t?(n+o’+1)

HWG = ,
(1=#2)(L=1282) (1 = v pay g1 ) (1 = i e ) T (1= g - 1)

(4.7.54)

35Note also that for the exceptional case of k = 0 in (4.7.52), the magnetic quiver does not take the form of (4.7.53).
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where v and pp, ..., iy, -1 are the highest weight fugacities for SU(2) and SU(Ny) respectively, and
q is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator | A SU(Ny) x SU(2) x U(1) representation
A+, 1 adjoint x trivial x (0)
Qap 1 trivial x adjoint x (0) (4.7.55)
4 1 trivial x trivial x (0) ’

Brarin,, | nrgil n'" rank antisymmetric x fundamental x (+1)

Dy o | 2 | (Ny = n)™" rank antisymmetric x fundamental x (1)

where all indices involving 1 and v are SU(Ny) indices ranging from 1, ..., Ny, and those that appear
in exponents or subscripts of B or D are antisymmetrised among themselves; indices involving «
and 8 are SU(2) indices ranging from 1,2; and C} is the invariant of the U(1) factor in the flavour
symmetry (see Section 4.7.4 for more details). We conjecture that the non-zero Poisson brackets of
(4.7.55) are given by:

{Aﬂlyl,A“2y2} — 5#11/2 A#Q o 5#2,,1 A#lu2’

{aalﬁl ) a‘a252} = €a1B20asB1 T €B1B20azar T €ayan@B2B1 T €B1a20Brar)

{AF, BFHn Y = 5[H1VBM2'“Mn]Ma

)

{Auw D,ulmun, oc} = 5IL[H1D[L2"'}LTL] vao

{aap, B o, } = BM (o €gyay s (4.7.56)

{aag, Dm---un 041} = Dul"'ﬂn(ﬁ €a)aq s

{Cy, BMHn ) = 4 BHYHn

{Clv Du1~~'una} = _Dulmunav

{B”l"'“"a,Dyl...l,ﬂﬂ} =0 5[#1[111 (wn]yn] €aps

where (-)/[-] indicates a symmetrisation/antisymmetrisation over the enclosed indices with no nu-
merical prefactor; and C; is normalised such that there are no additional numerical coefficients in
(4.7.56). All other Poisson brackets between (4.7.55) that are not listed in (4.7.56) vanish.

4.7.5.3 Kite family

The kite family are magnetic quivers for one cone in the Higgs branch of 5d N' = 1 SQCD with
parameters satisfying the following subset of (4.7.46), “region 4” of [72]:

N
2 <|k|= N, - 7f +2, (4.7.57)

with Ny even. There is an additional Higgs branch cone with a magnetic quiver that does not conform
to the structure of (4.7.58) for Ny > 2, but it is the closure of a nilpotent orbit.*® The family is given

36Note also that for the exceptional case of k = 1, the magnetic quiver does not take the form of (4.7.58).
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by
n-1
1
o—O— o
1 2 n-2 1
1 (4.7.58)

for n > 2, where a red node indicates that it is unbalanced, and o indicates the multiplicity of the
hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that
this quiver has global symmetry SO(4n) x U(1). There are 4 generating representations, as can be
found from the HWG:

2 t2(n+a)

HWG = ; Lt m — _ (4.7.59)
(= P)(1 183, ) (1 o gt (1~ 52 0150 T (1 i )

where pi1, ..., 1o, are the highest weight fugacities for the SO(4n) factor in the global symmetry, and
q is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator | A | SO(4n) x U(1) representation
Ay 1 adjoint (0)
Cy 1 trivial x (0) , (4.7.60)
st e spinor x (+1)
s, e spinor x (1)

where a and 3 spinor indices going from 1, ...,22"7!; any other indices are vector indices going from
1,...,4n, antisymmetrised with those appearing alongside them in a given subscript; and C; is the
invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details). The spinor
representation of SO(4n) is real/pseudo-real for even/odd n. We conjecture that the non-zero Poisson
brackets of (4.7.60) are given by:

{auz/; apa} = 6Vpa/,u,(7 - 6upau0 + 6MO'a/l/p - 5uaaup7
{alwvsz} = (’Yuu)a,ﬁ 5;»

{Clv 52} =% 527
(4.7.61)

n+o-2 .
G (Y )ap auw  if neven,

{S;’ s_} =
o, if n odd,

where C is normalised such that there are no additional numerical coefficients in (4.7.61); and Qg is
the invariant skew-symmetric two form of Sp(k = 22"72?) (4.3.4). All other Poisson brackets between
(4.7.60) that are not listed in (4.7.61) vanish.

4.7.5.4 Truck family

The truck family is the magnetic quiver for the Higgs branch of 5d N/ = 1 SQCD with parameters
satisfying the same subset of (4.7.46) as the kite family, (4.7.57) (“region 4” of [72]), but with Ny
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0dd.?” The family is given by

n 1
BERS
1 2 2n-1 1N 1

for n > 2, where a red node indicates that it is unbalanced, and ¢ indicates the multiplicity of the

(4.7.62)

hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that
this quiver has global symmetry SO(4n + 2) x U(1). There are 4 generating representations, as can
be found from the HWG:

1 — pion fon t2(n+a)
HWG lu’2 /’LQ +1

(1= 82)(1 = prap pransr £77) (1= o q 7+ ) (1 = 2250 g4 ) [T (1 = prgy £20)

(4.7.63)

where pi1, ..., fion+1 are the highest weight fugacities for the SO(4n+2) factor in the global symmetry,
and g is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator | A | SO(4n +2) x U(1) representation

p 1 adjoint (0)
1 1 trivial x (0) , (4.7.64)
s¢ e left spinor x (+1)

n+o
2

Sa right spinor x (-1)

where o and 3 spinor indices going from 1,...,2%"; any other indices are vector indices going from
1,...,4n+ 2, antisymmetrised with those appearing alongside them in a given subscript; and C} is the
invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details). The left
and right spinors of SO(4n+2) are complex representations, and conjugate to one another, hence the
raised and lower indices respectively. We conjecture that the non-zero Poisson brackets of (4.7.64)
are given by:

{auy; apa} = 6Vpaua - 5upaua + 6uaayp - 5u0'a'up7
{au, s} = (’Yuu)ag s”,
{auw;sa} =55 ('Vuu)ﬂaa
(4.7.65)
{C,5%} =+,
{Cla Sa} == Sa;,

{Sa,Sﬁ} _ Clnﬂ-;fl 5aﬁ7

where the spinor indices on the 7,, and ¢ are determined as in Section 4.7.4; and C; is normalised
such that there are no additional numerical coefficients in (4.7.65). All other Poisson brackets between
(4.7.64) that are not listed in (4.7.65) vanish.

37Note that for k = %, the magnetic quiver does not take the form (4.7.62), and instead takes the form of (4.7.1) for
Ny =2n+7 (where this n is that used in (4.7.1), not to be confused with the n of (4.7.62).



Chapter 5

Conclusion

The author hopes that this thesis serves as a helpful and pedagogical introduction to the study of
3d N =4 Coulomb branches C; in particular, to the use of existing tools (such as magnetic quivers,
Hasse diagrams and the monopole formula) along with new techniques developed by the author and
Amihay Hanany (such as quiver addition and the amendment to the BGS algorithm) to make progress
with determining the topological global symmetry and Poisson brackets of C. The methods discussed
combine the physical and mathematical interpretation of C, utilising and developing the bridge be-
tween these two fields to draw conclusions about both symplectic singularities and the physics of the

underlying theory.

In principle, a quiver should encode everything about a theory. The ideal result of the avenues of
study discussed would be an algorithm to determine the global symmetry and Poisson brackets via
simple graph theory computations using the quiver data. The works of [10] and [11], the subjects
of this thesis, make progress towards this. The former, presented in Chapter 3, helps to understand
the failings of a previous algorithm to find the global symmetry of certain Coulomb branches from
their Coulomb quivers, and provides an amended algorithm which solves these failures in the cases
discussed. This not only sheds light on some underlying physics, but takes a step closer to finding
an algorithm which works unfailingly to find the full global symmetry for all quivers. The latter,
presented in Chapter 4, computes Poisson brackets for certain Coulomb branches. These brackets
relate to the symplectic form on C and help us to learn of the singularity structure; the Poisson
bracket vanishes along a singular subset of the variety. We hope that Chapter 2 provides a concise
and understandable introduction to all the ideas and concepts needed to understand the results pre-

sented in Chapters 3 and 4.

There are many further directions that can (and the author hopes will) be explored, developing on
the contributions of this thesis. We first discuss some possible directions stemming from the results of
Chapter 3. Firstly, the notion of experiencing an enhanced symmetry is noteworthy in itself; it would
be interesting to investigate the properties of these quivers further and see if they hold any other
surprising or fruitful properties. Those with simple Hasse diagrams' would be obvious candidates to
start with, as a simple singularity structure can be an indicator of a simpler symplectic singularity.

Secondly, the amended algorithm to find the global symmetry from the quiver (presented in Section

IWe computed the Hasse diagrams for many of the quivers in Chapter 3 but chose not to include them in [10] or

this note, as they were not pertinent to the main message.
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3.7) still does not work for every quiver that we are interested in studying, but is a good stepping-stone
to the end goal of an algorithm which does. It would be nice to build on our amendment to continue
to make progress towards this goal. Thirdly, the conjectured symmetries present in this chapter can
be used to provide support for future developments of brane systems for more complicated quivers,
and their corresponding quiver subtraction rules.

Chapter 4 is the first to display the Poisson brackets for lengthy magnetic quivers of 5 and 6d theories
at infinite coupling; in the literature, Poisson brackets are largely computed for Coulomb branches
of abelian or low rank gauge theories. The conjecture prescribed in Chapter 4 allows us to compute
them in any theory for which the generators and relations of the Hilbert series are known. In this
thesis we did this for a certain subset of such quivers, but there are many others one could com-
pute. In particular, it would be interesting to compute the brackets of quivers lying lower down in
the Hasse diagram of the quivers in Chapter 4. Analysis of these brackets in comparison to those
for the original quiver can help us to understand where the degeneracies in the symplectic form occur.

With that we conclude the outlook, and the thesis. Cheers for reading.



Appendix A

Discrete Projections

As mentioned in Section 3.2.1 (and at multiple subsequent points in Chapter 3) the Coulomb branches
of quivers containing nodes with an adjoint hypermultiplet can be realised as discrete quotients of the
Coulomb branches of quivers with a bouquet of U(1) nodes (3.2.1) [71, 83, 84, 62]. In this appendix,
we explain how this can be verified, and see it in practise with an example.

Suppose we have two quivers A and B which are conjectured to satisfy the relation
C(B)/S, =C(A), (A.0.1)

due to B having some S,, outer automorphism. The way we prove this conjecture to the best of our
ability is to show the equality of Hilbert series. This is done by calculating the Hilbert series for
C(B), and finding some S,, action on its generators and relations that obtains the Hilbert series of
C(A). To be more precise, on the left hand side of (A.0.1) we are trying to calculate the S, gauged
Coulomb branch of B. This Coulomb branch should be S,, invariant, and so this gauging is realised
by finding some action of S,, on the Coulomb branch and performing the corresponding Molien sum
on the Hilbert series of C(B) to find the Hilbert series of C(B)/S,, such that it matches the Hilbert

series of C(A), which can just be computed in the usual manner using the monopole formula.

Schematically, this Molien sum (which is responsible for making an object gauge invariant) over our

discrete group G =S, goes like

L sy mse)). (A.0.2)

HSEB)C) = 150 5

where HS stands for Hilbert series and - is an action of G. The action of G on a Hilbert series is
fully determined by the action on its generators and relations. Each element of G will in general act
differently, and the contributions from each of these actions are summed together before their total
is divided by the cardinality of G. To find the action of GG, we need to analyse and understand its
representations and characters. This is just an exercise in the theory of finite groups. The example
we show here will be that of G = S5 = Zs, for which the game is a bit easier as there are just two one
dimensional representations. However the method can be extended and applied to any finite group,

provided the representations and characters are known and understood.
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Example Consider the magnetic quiver of the next to minimal nilpotent orbit of Bs:

2
1
2
1 (A.0.3)
In this case, the conjecture (3.2.1) tells us that
1 1 2
c 2. = ¢ L (A.0.4)
2
1 1 2

Let’s see how to show this. First, let’s compute the Hilbert series of the quiver on the right hand side,
which we call Qn.minB;, 50 We know what we are looking to obtain from the left hand side via the
discrete quotient. We can find the HWG of QnminB,, which completely encodes the refined Hilbert

series, to be

1
HWG nming. ) = PE[ust? + 12t4] = , A.0.5
B3 (Q . BS) [IU’Q + Ml ] (1 _ ”2t2)(1 _ M%tﬁl) ( )

where the Bj subscript on HWG is used to illustrate that {p1, s, s} are the Dynkin label (i.e.

highest weight) fugacities for Bs.

Now it’s time to realise this as the Zs quotient of the minimal nilpotent orbit of d4, which is the
Coulomb branch of the quiver on the left hand side of (A.0.4), that we'll call Qninp,. The HWG of

this quiver can be easily computed to be

1

HWGD4(QminD4) = PE[ﬂQtQ] =—,
1 - figt

(A.0.6)

where as before the Dy subscript on HW G tells us that {1, fie, fi3, ft4 } are the Dynkin label fugacities
for Dy. The goal now is to find a Zy action on (A.0.6) that will reproduce (A.0.5). However in order
to do this, we need to have (A.0.6) in terms of the same fugacities as (A.0.5); we must decompose the
adjoint representation of D, into irreducible representations of Bs.! Writing the characters of D, in
terms of fundamental weight fugacities {x1,z2, 3,24} and those of Bs in terms of {x1, 2,23}, one
finds that under the fugacity map x4 — x3 the adjoint representation of D, decomposes into the sum
of the adjoint and fundamental representations of Bj:
/12 = o + . (AO?)
Based on this, we guess that the HWG of the minimal nilpotent orbit of dy, i.e. C(Qminp, ), in terms
of B3 Dynkin label fugacities is
1
HWGp,(Quminp,) = PE[ (2 + p1)t*] = . A.0.8
BS(Q D4) [(lu’2 /J’l) ] (1—M2t2)(1—lult2) ( )

We need to check that this is correct, as it could be that these representations of B3 will actually

overcount the representations of D, we wanted, and to correct this we’d need to impose relations.

IThe tabulations of the branching rules, among many other useful for results, for several Lie groups can be found
in [97].
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The way to check for this is to turn (A.0.8) into a refined or unrefined Hilbert series, and compare it
to that obtained from using the monopole formula on Quinp, (after the appropriate fugacity map in
the refined case). Here, under performing this check we see that (A.0.6) and (A.0.8) yield the same
Hilbert series, and so (A.0.8) is indeed the correct HWG for the minimal nilpotent orbit of Dy in

terms of B3 fugacities.

Now all that’s left to do is find the Zy action that when used in a Molien sum on (A.0.8) will yield
(A.0.5). The action on the generators will fully determine the action everywhere, and we can see
here our generators are p1t% and pgt?. The group Zs has two elements: the identity and some other

element which squares to the identity, e.g. {1,-1}. So our Molien sum looks like

HWG5,(Quinp, )22 = = Y PE[g-mt* +g- pat?]. (A.0.9)

ge{1,-1}
The representations of Zs that pu; and ps are in determine the action of Zs on them. There are
just two representations of Zs: the trivial representation and the sign representation. The trivial
representation is obviously invariant under all group elements, and the sign representation is mapped
to plus or minus itself by the elements 1 or —1 of Zs respectively. It turns out that if p; is in the sign

representation and s is in the trivial representation, we reproduce (A.0.5):

1
HWG(Qminp,)/Z2 = 2 (PE[L- mt® + 1- pat®] + PE[-1- punt® + =1 pot?])
1
= 5 (PE[nt® + pot*] + PE[-nt® + pot*]) (A.0.10)
= PE[uat® + pit']
= HWG(Qnmang)

This completes the proof of the equality of Hilbert series for C(Qminp,)/S2 and C(Qn.minBs ), and
hence validating the conjecture (A.0.4) to the best of our ability.? ]

2We say only to the best of our ability as the Hilbert series is not a complete characterisation of the Coulomb branch

moduli space, but at present it is the most complete encapsulation that we have.



Appendix B

Tensor, Symmetric and

Antisymmetric Products

In Sections 4.6 — 4.7, we use the antisymmetric property of the Poisson bracket to constrain the

representations that the output can lie in. In this appendix, we outline how this works in practise.

Suppose we want to find the Poisson bracket between two generators g; and gs, which lie in the repre-
sentations Ry and Ry of some group G respectively. Appropriate indices on g; and go will reflect the
components of the respective representations. The Poisson bracket in some sense intertwines g; and
go2, and so the result must lie in the tensor product representation R ® Ry in all cases. If Ry = Ry, the
antisymmetry of the Poisson bracket means that the result {g1, g2} not only lies in the tensor product
Ry ® Ry, but in fact in the second rank antisymmetric product of Ry: A2(R;) = A(Ri®R1) c Ri®R;.
But how do we compute this?

In general R; ® Ry is not an irreducible representation. The weights lying in Ry ® Ry are those
obtained by adding all weights of Ry to each weight of R;. These weights form several irreducible
representations of GG, and this is the tensor product decomposition of Ry ® Ry. That is, if the weights
of the representation R are denoted by wF for i = 1,...,dg = dim(R), then

{sz1®R2

. R R
i=1,..,dg, dRQ} = {wj ttw,?

j=1,...dn,, k:1,...,d32} (B.0.1)

and we write

Ri® Ry = @ R; (BOQ)

where ¢; are non-negative integer coefficients, to illustrate how the tensor product representation
decomposes into the irreducible representations R; of G. Sometimes the direct sum symbol is dropped

and we just write

R1® Ry = Z ci R;. (B03)

152



153 APPENDIX B. TENSOR, SYMMETRIC AND ANTISYMMETRIC PRODUCTS

Example Consider G = SU(2), Ry = pu' whose weights are {w!'} = {(1), (-1) }, and Ry = u? whose
2
weights are {w!" } ={(2), (0), (-2) }. The tensor product u ® u? then contains the weights

{wg‘wz ‘i=1,...,6}={w;+w52 ‘j=1,2, k=1,23}

(B.0.4)
={®), 1), (1), 1), (-1),(-3)},
and thus we see that
p®p? =+ p. (B.0.5)
m

In the case where Ry = Re = R, we can consider the symmetric and antisymmetric parts of such a

product. We can see that in this case the weights of the tensor product can be decomposed as follows:

{wf+w,§‘j,k:1,...,dR} {w +wi |j<k 1,. dR} {w +wi |j>k 1,. dR}

= {wfz(R) ‘ 1= 1 dsz(R)} { A2(R) | 1= 1,...,dA2(R)},

and under these definitions of the second rank symmetric product S?(R) and the second rank anti-
symmetric product A%(R) that

(B.0.6)

R® R =S*(R) + A*(R). (B.0.7)

One can see that the dimensions of the second rank symmetric and antisymmetric products are

dR(dR + 1)

ds2(r) = — 5
(B.0.8)

d _dr(dr-1)

AZ(R) = 72 .

Example Consider G = SU(2) and R = 2. If we label the weights w;.‘z for j =1,2,3 without loss
of generality as
2 2 2
wi =(2), wh =(0), wy =(-2), (B.0.9)

then the second rank symmetric product is specified by the weights

w0 2wl vt (B.0.10)
for
(i,7)={(1,1), (1,2), (1,3), (2,2), (2,3), (3,3) }, (B.0.11)
giving
wy, 0 ={(@), (2), (0), (0). (-2), (). (B.0.12)
Similarly the second rank antisymmetric product is specified by the weights
wl ¢ = wf (B.0.13)
for
(6,5)={(21),(3,1),(3,2) }, (B.0.14)

IHere we use the Dynkin label notation for a representation: see Section 2.6.2.
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giving
A2 2
wy U ={(2),0), (-2}, (B.0.15)
Thus we conclude from (B.0.12) and (B.0.15) that
SP(p?) = pt+1,

A (p?) = .

(B.0.16)
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