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Abstract

The study of supersymmetric quantum field theories (SQFTs) has been of high interest in theoretical

physics for many years now. It has led to developments in the understanding of many topics such

as conformal field theories, the AdS/CFT correspondence and non-supersymmetric QFTs, to name

just a few. SQFTs may admit continuous families of vacua, and the continuous vacuum expectation

values (VEVs) trace out a geometric space. The space traced out by physically distinct VEVs is

termed the moduli space of the theory. Geometric properties of a point on the moduli space of a

theory relate to physical properties of the theory in the corresponding vacuum state; one can explore

the physics of a theory by studying its moduli space as a mathematical object. The properties of

the moduli space that this note contributes to the understanding of are its global symmetry, and its

Poisson bracket.

We are concerned with the Coulomb branches of 3d N = 4 quiver gauge theories, at their IR fixed

point. In particular, the Coulomb branches we focus on have a global symmetry which is a product of

the SU(2)R R-symmetry and the topological global symmetry GS, and are symplectic singularities.

The symplectic form induces a Poisson structure, and degenerates at the singularities. The Coulomb

branch global symmetry and Poisson bracket are of interest because, as mentioned above, they cor-

respond to physical properties of the theory. In SQFT, particles are understood as excitations of the

vacuum state and are labelled by their charges under the global symmetries of the theory. The more

massless states that have been integrated out in a particular vacuum state, the more the Poisson

bracket degenerates at the corresponding point on the moduli space. This thesis is devoted to recent

developments made in the aid of being able to read off these properties from a given 3d N = 4 quiver

using only simple graph theory operations. In the case of the global symmetry, an attempt at such an

algorithm exists, but it does not work unanimously. We help to understand its failure, and suggest

an amendment which works on a wider set of quivers. In the case of the Poisson bracket, we provide a

conjecture for computing it for quivers of high rank, and in particular for magnetic quivers for certain

5 and 6d Higgs branches at infinite coupling.
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Chapter 1

Introduction

In this work, we present recent progress made in two areas: in finding a method for deciphering (a)
the global symmetry and (b) the Poisson brackets of a 3d N = 4 Coulomb branch C from its quiver

Q. The former is useful as the global symmetries of the Coulomb branch elicit conserved charges in

the theory [1], under which the particles in each vacuum state are labelled. The latter relates to the

symplectic form of the Coulomb branch, a key ingredient for categorising it as a symplectic singularity

[2, 3]. It is of interest to us to study Coulomb branches as mathematical entities, as the geometric

properties at a point on the Coulomb branch correspond to physical properties of the vacuum lying

at the point. In particular, we will study the IR fixed points1 of Coulomb branches of “good” or

“ugly” [4] 3d N = 4 unitary quiver gauge theories with no mass parameters, such that said Coulomb

branches are symplectic singularities.

Before diving deeper into our specific area of study, we take a brief step back to ask why such a field

is of interest. At surface-level, we are concerned with the moduli spaces of supersymmetric gauge

theories. So, why supersymmetry? Why the moduli space?

Supersymmetry is the notion that every boson has a fermionic superpartner and vice versa. The su-

perpartner of a particle has identical mass to it but spin which differs by one half. Supersymmetry was

phenomenologically attractive early in its inception as it provided a solution to the so-called heirar-

chy problem of the standard model. It’s theoretically viable too, as it evades the Coleman-Mandula

postulates; it’s an allowed additional global symmetry of a Poincaré-invariant theory. Moreover, it

was actually predicted by string theory, the theory believed by many to be the best candidate for a

“theory of everything”. It’s clear from the lack of superpartners that supersymmetry is spontaneously

broken in the vacuum state of our world, but it is possible that it would emerge at higher energies.

As time goes on and evidence for supersymmetry is still yet to be found at higher and higher energies,

the hope of finding superpartners (and thus the phenomenological motivation for supersymmetry)

is dwindling. However, this does not mean there is a lack of motivation to study supersymmetric

theories. The mathematical structure behind supersymmetry is used in many areas of physics, mak-

ing it still of practical interest. Then there is the theoretical interest. Incorporating supersymmetry

simplifies many problems. Theories with it enjoy nice properties, such as the protection of certain

quantities under the renormalisation group (RG) flow. This makes supersymmetric theories good toy

models for their non-supersymmetric counterparts, helping us to learn of their behaviour in an arena

1Note that having an infrared (IR) fixed point implies that the theory contains “sufficient matter” [4].
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in which we can actually perform computations.

The moduli spaceM of a theory is its set of gauge-inequivalent vacua. This is an important object

to study for many reasons, the most obvious of which is that it tells us the possible spectra. In many

quantum field theories (QFTs)M is trivial or rather uninteresting, but in supersymmetric gauge the-

ories there are often continuous families of vacua parameterising a moduli space with rich structure.

This is especially prevelant in gauge theories with eight supercharges, where the representations of

the superPoincaré algebra give a natural splitting ofM into the Coulomb branch, Higgs branch and

possible mixed branches. The Higgs branch at finite coupling remains classically exact all along the

RG flow, and is well understood. The Coulomb branch however receives quantum corrections, and in

general it’s not known how to practically deal with these. However, for the specific case of 3d N = 4
theories there is an alternative route that can be pursued to make progress: at the IR fixed point, the

Coulomb branch can be described by half-BPS dressed monopole operators. This thesis focuses on

using this viewpoint to contribute further developments to the study of 3d N = 4 Coulomb branches.

The only Higgs branches studied are those taken from 5 and 6d theories at infinite coupling, which

can be described by the Coulomb branch of a 3d N = 4 theory.

It was conjectured in [5] that 3d N = 4 Coulomb branches are symplectic singularities2 in the sense

of [2]: roughly speaking, they are algebraic varieties with a symplectic form ω containing zero or

more singular points at which ω degenerates. Algebraic geometry then tells us that such an object is

described fully by the ring of holomorphic functions over it, which for 3d N = 4 Coulomb branches

is believed to be isomorphic to the chiral ring. A chiral operator in a theory is an operator which

is annihilated by all supercharges of one chirality (it preserves half the supersymmetry). The chiral

ring is then the set of all gauge-invariant chiral operators which satisfy the vacuum constraints. It

is a commutative ring; the Coulomb branch can be categorised exactly as an algebraic variety if the

explicit form of the chiral operators generating it and any relations they satisfy can be found. This is

typically too challenging to do, but there are still good steps we can take towards fully categorising C
as a symplectic singularity, as we do have methods to compute many of its properties. Examples of

such properties that we take interest in are its dimension, Hilbert series, global symmetry, singularity

structure and symplectic form.

At the top of this introduction, we were far more specific with the moduli spaces that we study than

simply “3d N = 4 Coulomb branches”. However, all the other caveats, for example that we consider

only gauge theories and not ones which incorporate gravity, are simply there because it is for these

theories that we have been able to develop techniques to successfully study them. Any progress

enabling us to drop any of these caveats, for example a method to study the Coulomb branch in

the infrared but not at the SCFT, would be most welcome, but for now we study what we have an

understanding of.

A tool which aids our studies is that of the quiver Q [6]. The information in many3 3d N = 4 gauge

2Note that there are caveats to this conjecture; there exist 3d N = 4 quivers for which the Coulomb branch is not a

symplectic singularity. For example, the Coulomb branches of many unitary quivers satisfying gcd(gauge node ranks) >

1. We don’t mention these caveats in the main text as we will exclude any quivers whose Coulomb branches are known

to not be symplectic singularities from our study.

3The first theories realised as quiver theories were those describing D-branes probing orbifolds, but the techniques

used have since been generalised to a wider set of theories.
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theories can be entirely encoded in a quiver diagram; such theories are called quiver gauge theories.4

In cases where the quiver theory has a Lagrangian L, the quiver is entirely equivalent to L. However

there are quivers for which there is no Lagrangian interpretation; they can help us to study classically

inaccessible theories. The idea behind using quivers is to simplify problems by translating complex

traditional SQFT methods performed on L to simple graph theory computations performed on Q.

Indeed our end goal is to establish simple algorithms to read off any property of the Coulomb branch

from the quiver. In recent history many techniques have been developed in aid of this goal, but the

three we will employ the most heavily in this note are the monopole formula [7], the magnetic quiver

[8], and the Hasse diagram [9]. The methodology and results presented in this thesis in Chapters 3

and 4, based on our works [10] and [11] respectively, hopefully provide additional helpful steps along

the way to realising this goal for two particular properties of interest on C: the global symmetry and

the symplectic form.

The global symmetry of the Coulomb branch is the product of the SU(2)R R-symmetry and the

topological symmetry GS. In the UV, the topological symmetry of a theory with unitary gauge group

containing a unitary factors is U(1)a, but upon flowing to the infrared fixed point, this is often

enhanced to some larger group GS for whom this abelian symmetry is the maximal torus. The

monopole formula [7] allows us to compute the refined Hilbert series for the Coulomb branch, which

counts the operators lying on it graded by their weights under SU(2)R and GS. The t2 term of this

(possibly after a fugacity map) gives the fundamental weight character of the adjoint representation

of GS [12].5 Whilst this is a reliable method to find GS, it takes time to implement and for quivers

of sufficiently high rank it is too computationally intensive to do. We would like to realise GS simply

from looking at the quiver. By and large, this can be done by applying an algorithm [14] based on the

quiver’s balanced gauge nodes [4]. However, there are many quivers known for which this algorithm

only gives a strict subgroup of GS. We constructed the bulk of such quivers in [10], building on the

few already existing in the literature (see for example [15, 16]). Our findings of the failure of the

balance algorithm to always give the full GS group show that there is a need to make alterations

to it, and the method we used to construct the quivers for which the algorithm fails naturally leads

to one possible amendment. We detail this amended algorithm, which gives the correct GS for all

quivers that the previous algorithm worked for, and all quivers constructed in [10].6

The symplectic form ω defines C as a symplectic singularity, and naturally induces a Poisson bracket

{⋅, ⋅}C . The Poisson brackets between the generators of C as a symplectic singularity, GC , fix all Poisson

brackets on C due to the commutative nature of the chiral ring and the Leibniz and antisymmetric

properties of the Poisson bracket, and helps us to learn of the symplectic form. In particular, the

symplectic form and Poisson brackets degenerate at the same points, and thus {⋅, ⋅}C provides key

information about the singularity structure of C. There has been previous progress with determining

Poisson brackets in the literature, see for instance [17, 3, 18, 19, 20]. In [11] we contribute to this by

4We will sometimes refer to quiver gauge theories simply as quiver theories or quivers for brevity.

5Note that weights only capture the local behaviour of a group; the global form of GS can be obtained from

studying the representations which generate the Hilbert series and their charges under the centre of GS (see comments

in Appendix A of [13], for example). In the rest of this thesis, we omit the “local form” caveat for brevity; whenever

we say global symmetry or GS, we really mean its local form. We do not include the global form as it will not be

important for our discussions or results.

6Note that there are still quivers that this amended algorithm does not cater for, but it is an improvement on what

existed previously.
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extending the methodology to certain unitary quivers of arbitrarily high rank, using representation

theory, conserved charges and the dressed monopole construction of the Coulomb branch.

This thesis is organised as follows. In Chapter 2, we provide a recap of the background material nec-

essary to follow the workings of and results in this note, and a summary of some key terminology and

notation used. Topics discussed are supersymmetry, quivers, categorising algebrogeometric objects,

3d N = 4 Coulomb branches, Hilbert series’, magnetic quivers and Hasse diagrams. Chapter 3 is

dedicated to the work of [10], constructing infinitely many quivers on which the algorithm for deter-

mining GS from the balance fails, and providing an amendment to the algorithm to fix this failing.

In Chapter 4 we detail the work of [11], giving the Poisson brackets between Coulomb branch opera-

tors for Klein singularities, nilpotent orbits and magnetic quivers of certain five and six dimensional

theories at infinite coupling. Finally, we summarise our results and discuss possible future directions

in Chapter 5. Appendices A and B cover two techniques needed to understand specific methodologies

used in Chapters 3 and 4: discrete projections and tensor, symmetric and antisymmetric products

respectively.

In the course of the following discussions, we often omit caveats that apply to all our statements to

avoid excessive repetition. For example, we may make a statement about Coulomb branches that

does not hold in general and is only intended to be taken for the specific quivers we study (which

are subject to several conditions, as mentioned in the first paragraph of this introduction), but not

explicitly state this. There are several such caveats that we will omit some or all of at different stages

in the remainder of this work, and so as to not mislead the reader we make an explicit summary here

clarifying the inherent omissions in the terminology used in the following chapters:

⋅ When we talk about a “quiver” or “theory”, we mean a good or ugly 3d N = 4 unitary quiver

gauge theory with no mass parameters, such that its Coulomb branch at the IR fixed point is

a symplectic singularity.

⋅ When we talk about a “Coulomb branch” for a quiver (see above point), we really mean the IR

fixed point of the Coulomb branch for this quiver.

⋅ We rarely mention Higgs branches; unless specified otherwise, all objects that could belong to

the Coulomb or Higgs branch should be assumed to be referring to the Coulomb branch case.

For example “Hasse diagram” means “Coulomb branch Hasse diagram”, “global symmetry”

means “Coulomb branch global symmetry” and so on.

⋅ The Coulomb branch global symmetry of a quiver is a product of the SU(2)R R-symmetry

and the topological symmetry GS. However whenever we say global symmetry, unless specified

otherwise, we refer solely to the local form of the topological component; the global form will

not be important for our discussions or results (and can be determined from the Hilbert series

in any case), and the R-symmetry is already established and thus not worth mentioning. That

is, “global symmetry” and “GS” both refer to the Coulomb branch topological symmetry.

⋅ We may refer to a quiver Q1 as being “in the Hasse diagram” of another quiver Q2. By this,

we mean that the Coulomb branch of Q1 is the closure of some symplectic leaf in the Hasse

diagram of the Coulomb branch of Q2.

⋅ We may refer to an algebraic variety V either as itself or as the quiver Q whose Coulomb branch

is isomorphic to it (the Coulomb quiver). Similarly we may refer to a quiver Q as itself or as

the variety V that is isomorphic to its Coulomb branch.
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⋅ For an unframed non-simply-laced quiver, the Coulomb branch we refer to is that obtained from

ungauging on a long node (the choice of which long node is irrelevant).

Each of these abbreviations will also be stated in the text at their natural introduction; we summarise

them here for the reader’s convenience. Chapter 2 should clarify any terminology unfamiliar to the

reader appearing in the above list.



Chapter 2

Background Material

As mentioned in Chapter 1, we exclusively study the IR fixed points of Coulomb branches of uni-

tary “good” and “ugly” 3d N = 4 quiver gauge theories [4] with no mass parameters, such that said

Coulomb branches are symplectic singularities [2].2 In particular, the new results presented in this

thesis in Chapters 3 and 4 pertain to the global symmetry of the Coulomb branch and the Poisson

brackets between the vacua at different points on it. This chapter serves as a recap of the necessary

prerequisite knowledge and techniques needed to understand our discussions. The author would like

to stress that there exist many more techniques to probe 3d N = 4 Coulomb branches than those

discussed in this section, see for example [21, 22, 23, 24, 25, 26, 27, 28, 29].

Section 2.1 kicks off with some basic supersymmetry, with particular focus to find the allowed rep-

resentations of the superPoincaré algebra in a 3d N = 4 gauge theory [30]. Many such theories are

completely encoded by their gauge group, matter content, and how the matter transforms under

the gauge group, and this information can be entirely summarised in a diagram called a quiver [6].

Section 2.2 is devoted to discussing how this is done. Here we will also introduce the notion of balance

[4], which will be crucial for Chapter 3. Once we have understood the Lagrangian content of these

theories we can then move on to discuss the moduli space, the topic of Section 2.3. Here we see the

moduli space in two lights: as the set of vacua of a physical theory, and as an algebrogeometric object.

Supersymmetric theories typically have much richer moduli spaces than a generic QFT, and in fact

the ones we study are HyperKähler cones or symplectic singularities. We address some interesting

properties of such objects, and see how to categorise them. Section 2.4 then further specialises the

discussion of moduli spaces to the type that is the subject of this thesis, the 3d N = 4 Coulomb

branch, and details how it is described. The moduli space is naturally considered in the IR, where

the theories we study are strongly coupled. In Section 2.4.1 we see how the Coulomb branch of

the classical UV SCFT defined by the quiver theory receives quantum corrections upon flowing to

the IR. It is not known how to implement these corrections in general for a theory, but as we show

in Section 2.4.2, we are able to describe the quantum Coulomb branch at the IR fixed point using

dressed monopole operators [31, 32]. In Section 2.5 we discuss how we can use this viewpoint to find

properties of the Coulomb branch that are of interest, enabling us to make progress with categorising

C as a symplectic singularity. One tool which enables us to do this is the Hilbert series [33] of the

Coulomb branch, which can be computed using the monopole formula [7]. How to calculate and inter-

pret this is the topic of Section 2.6. The Hasse diagram of Coulomb branches (or of Higgs branches,

via their magnetic quiver [8]), which explores their singularity structure and gives hints about the

global symmetry, can be found using quiver subtraction [34]. Hasse diagrams, magnetic quivers and

14
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quiver subtraction are the final tools we’ll use in this thesis, and Section 2.7 is dedicated to their

review.

2.1 Supersymmetry

In this section we recap the necessary basics of supersymmetry to understand the physics discussed

and terminology used in the following chapters; it is aimed at readers already familiar with the topics

discussed, and is not intended as a comprehensive overview of the subject. For a thorough discussion

of the principles and derivation of supersymmetry, see for example [30].

Recall that the subject of our work is the space of half-BPS Coulomb branch vacua in 3d N = 4

gauge theories with no mass parameters. Particles in a theory are excitations of the vacuum and

must fit into representations of the global symmetry; the particles we consider lie in supermultiplets,

representations of the superPoincaré algebra. Vacua are necessarily Lorentz scalars (we will drop

the “Lorentz” from here on in for ease), hence for us it will be sufficient to limit our recap of

supersymmetry to the scalars that show up in the 3d N = 4 massless supermultiplets that have no

component whose absolute value of spin exceeds 1. We will arrive at this in Section 2.1.2.3, but in

order to properly understand what we find, we will briefly recap the idea of supersymmetry, the 4d

N = 1 superPoincaré algebra, and the 4d N = 1,2 multiplets along the way.

2.1.1 The superPoincaré algebra

In a four-dimensional non-supersymmetric theory, Coleman-Mandula states (with a few caveats) that

the only non-internal symmetries allowed are that of the Poincaré group: translations and Lorentz

transformations, ISO(1,3). These are bosonic symmetries; their generators (Pµ and Mµν respec-

tively) form a purely-even Lie algebra, the Poincaré algebra. All particles in the theory, such as gauge

bosons, electrons, the Higgs boson etc. lie in representations of this algebra (for the listed examples

these are the vector, fundamental and trivial representation respectively).

When elevating such a theory to be supersymmetric, we want every particle from the non-supersymmetric

theory to have a superpartner, which has all the same conserved charges as the particle except for its

spin, which differs by a half. The name of the fermionic (bosonic) superpartner of a boson (fermion)

is obtained by adding “ino” to the end of the name (adding “s” to the front of the name). For

example, the superpartner of the electron is the selectron and the superpartner of the gauge boson is

the gaugino.

To successfully implement this symmetry between bosons and fermions, we need to introduce an

operator Q which acts on a fermion to give a boson, and vice versa:

Q ∣fermion⟩ = ∣boson⟩ , Q ∣boson⟩ = ∣fermion⟩ . (2.1.1)

Such operators must satisfy certain constraints. They must be spin one-half operators, since they

change the spin of the operator on which they act by this amount. Additionally, to live in a Poincaré-

invariant space-time, they must additionally be part of a representation of the Poincaré algebra in our

four-dimensional theory. Thus the simplest way we can introduce these supersymmetry generators

(2.1.1) into our four dimensional theory is as two spinors Qα and Q̄α̇ in the representations (1
2
,0)
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and (0, 1
2
) of the Lorentz algebra so(1,3) ≅ sl(2;C) ≅ su(2) ⊕ su(2).1 We use su(2) ⊕ su(2) charges

(j1, j2) to denote the representations of the Lorentz algebra, and sl(2;C) indices α, α̇ = 1,2 to denote

the left and right (or chiral and anti-chiral) spinors respectively. These indices can be raised and

lowered using the sl(2;C)-invariant tensors ϵαβ , ϵα̇β̇ .

We call the four combined components of Qα and Q̄α̇ the four supercharges of the theory: the degrees

of freedom generating the supersymmetry. In four dimensions, a theory with four supercharges is

called a 4d N = 1 theory.2 Together with Pµ and Mµν they form a superPoincaré algebra, a graded

algbera with a Lie bracket which acts on pairs of fermions as an anticommutator, but as a commutator

in all other instances. The only non-vanishing Lie bracket between the supercharges is between the

conjugates, which pair to give the momentum tensor:

{Qα, Q̄α̇} = 2 (σµ)αα̇Pµ. (2.1.2)

The σµ that contract the vector indices are the Pauli matrices that generate sl(2;C):

σ0 =
⎛
⎝
1 0

0 1

⎞
⎠
, σ1 =

⎛
⎝
0 1

1 0

⎞
⎠
, σ2 =

⎛
⎝
0 −i
i 0

⎞
⎠
, σ3 =

⎛
⎝
1 0

0 −1
⎞
⎠
, (2.1.3)

whose rows are labelled by spinor indices α, and columns by conjugate spinor indices α̇. The factor

of two in (2.1.2) is chosen by convention for ease. By matching indices and use of the Jacobi identity,

it also follows that the Lie brackets of the supercharges with the Poincaré generators are

[Qα,Mµν] = (σµν)αβQβ ,

[Q̄α̇,Mµν] = −(σ̄µν)β̇ α̇Q̄β̇ ,

[Qα, Pµ] = 0,
[Q̄α̇, Pµ] = 0,

(2.1.4)

where

(σµν)αβ =
i

4
(σµσ̄ν − σν σ̄µ)αβ ,

(σ̄µν)α̇β̇ =
i

4
(σ̄µσν − σ̄νσµ)α̇β̇ ,

(2.1.5)

and

(σ̄µ)α̇α = (1,−σ1,−σ2,−σ3)α̇α. (2.1.6)

Much like how a particle in a non-supersymmetric theory lies in a representation of the Poincaré

algebra, a particle in a supersymmetric theory lies in a representation of the superPoincaré algebra.

These representations are called supermultiplets.

1 Our notation here is slightly sloppy: it is not true that so(1, 3) ≅ su(2) ⊕ su(2), as the latter is compact while the

former is not. However this issue dissolves under complexification; certain complex linear combinations of su(2)⊕su(2)

are isomorphic to so(1, 3), and hence our discussion of Lorentz representations as (j1, j2) under su(2)⊕su(2) is justified.

2This N refers to the quotient of the number of supercharges by the dimension of the spinor representation in

the given number of dimensions. In 4d the Lorentz algebra is so(1, 3) ≅ so(4) ≅ su(2) ⊕ su(2), and here the spinor

representation has dimension 4. Hence a four supercharge theory has N = 1. A four-dimensional theory with eight

supercharges, say {QI,α, Q̄α̇
I , QII,α, Q̄α̇

II}, will have N = 2. In three dimensions the Lorentz algebra is so(1, 2) ≅

so(3) ≅ su(2), the spinor representation of which has dimension 2, hence a three-dimensional theory with four or eight

supercharges has N = 2 or N = 4, respectively.
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2.1.2 Constructing supermultiplets

To build representations of the superPoincaré algebra we start with projective irreducible representa-

tions of the Poincaré algebra, and act on them with supercharges to build supermultiplets containing

states of differing spin but identical mass.3 The details of constructing supermultiplets differs slightly

in the massive case to the massless case, and since in our work we study only theories with no mass

parameters4 we will discuss only the massless construction here. We focus first on the multiplets in

a 4d N = 1 theory, before extending our discussion to 4d N = 2, from which we can dimensionally

reduce to arrive at the desired multiplets of a 3d N = 4 theory.

2.1.2.1 4d N = 1

The mass Casimir m2 = PµPµ is used to label irreps of the Poincaré group. Consider a massless

particle. Then we can always boost and rotate to a frame in which all motion is in the x3 direction,

i.e. its momentum vector is

pµ = (E,0,0,E). (2.1.7)

This clearly gives m2 = 0, but upon fixing this pµ there is still an ISO(2) symmetry remaining as

we can either translate or rotate the x1 and x2 dimensions and still leave pµ invariant. In theory,

the translations of this ISO(2) can be labelled by a continuous vector k = (k1, k2). If a non-trivial

translation is performed, then the SO(2) ⊂ ISO(2) is no longer a symmetry, and in this case the

particle is labelled by ∣pµ,k⟩. However if k = 0, the SO(2) rotations of x2 and x3, M12, are still a

symmetry. Projective irreducible representations of this SO(2) ≅ U(1) are labelled by half-integers:

the eigenvalues λ of M12. In nature, we do not observe massless particles with continuous spin k but

instead with half-integral spin λ, hence we declare that k = 0 and see that massless particles must be

labelled with their momentum pµ and helicity5 λ ∈ 1
2
Z:

∣pµ;λ⟩ . (2.1.8)

Note that (2.1.8) is specified by a single value λ, but we know a massless particle has two polari-

sations. This is reconciled by completing (2.1.8) with its CPT conjugate ∣pµ;−λ⟩. In summary, the

representation of a massless particle is comprised of two states:

∣pµ;λ⟩ , ∣pµ;−λ⟩ . (2.1.9)

In SUSY, spin is no longer a Casimir of the global symmetry algebra, and a representation is built by

acting on a Poincaré state ∣pµ;λ⟩ with Q and Q̄ to find the states with other helicities ∣pµ; λ̃⟩ living
in the same mulitplet. We can see that all states in a multiplet will have the same mass (i.e. PµP

µ is

still a Casimir of SUSY) by virtue of the fact that [Q,P ] = 0 = [Q̄, P ]. Since we’re considering a frame

in which our massless particles have momentum (2.1.7), we can see that for us the supersymmetry

algebra is

{Qα, Q̄α̇} =
⎛
⎝
4E 0

0 0

⎞
⎠
, (2.1.10)

which immediately tells us

Q2 = Q̄2̇ = 0, ∣Q1 ∣pµ;λ⟩ ∣2 = 4E. (2.1.11)

3Upon including supersymmetry, the mass Casimir PµPµ of the Poincarré group is preserved, but the Pauli-Lubański

Casimir WµWµ is not.

4The singularity of the 3d N = 4 Coulomb branches we study is resolved by the inclusion of mass parameters.

5Throughout this note, we often sloppily refer to helicity as spin.
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We can also see that Q1 lowers spin by 1
2
, i.e. Q1 ∣pµ;λ⟩ ∝ ∣pµ;λ − 1

2
⟩:

M12Q1 ∣pµ;λ⟩ = ([M12,Q1] +Q1M
12) ∣pµ;λ⟩

= −1
2
Q1 ∣pµ;λ⟩ +Q1λ ∣pµ;λ⟩

= (λ − 1

2
) ∣pµ;λ⟩ .

(2.1.12)

We can similarly show that Q̄1̇ raises spin by 1
2
. Thus Q̄1̇,Q1 act as raising and lowering operators

we can use to build our supermultiplets; if we define

a = 1

2
√
E
Q1,

a† = 1

2
√
E
Q̄1̇,

(2.1.13)

then a, a† satisfy the Clifford algebra

{a, a†} = 1, a2 = (a†)2 = 0. (2.1.14)

Starting from a state ∣pµ;λ⟩, all possible states in the supermultiplet are then

∣A⟩ = ∣pµ;λ⟩ , ∣B⟩ = a† ∣pµ;λ⟩ ∝ ∣pµ;λ +
1

2
⟩ . (2.1.15)

There is no ∣C⟩ = ∣pµ;λ − 1
2
⟩, because this would be related to ∣B⟩ by two actions of a, but this vanishes

due to its nilpotency.6 Since we are interested only in supersymmetric gauge theories (no gravity),

we will only be interested in supermultiplets containing spins with absolute value ≤ 1. According to

building multiplets as in (2.1.15), this amounts to starting with a Poincaré rep of either spin λ = 0 or

λ = 1
2
, giving the chiral and vector multiplets respectively:

Chiral multiplet:

∣pµ;λ = 0⟩

∣pµ;λ = 0⟩

∣pµ;λ = 1
2
⟩

∣pµ;λ = −1
2
⟩

Q̄1̇

+ CPT + CPTϕ ψ

(2.1.16)

Vector multiplet:

∣pµ;λ = 1
2
⟩

∣pµ;λ = −1
2
⟩

∣pµ;λ = 1⟩

∣pµ;λ = −1⟩

Q̄1̇

+ CPT + CPTχ Aµ

(2.1.17)

The chiral multiplet contains one complex scalar ϕ and one Weyl fermion ψ, made up of the CPT

conjugate ∣pµ;λ = 0⟩ and ∣pµ;λ = ±1
2
⟩ states in (2.1.16), respectively. The vector multiplet contains one

Weyl fermion χ and one gauge boson Aµ, made up of the CPT conjugate ∣pµ;λ = ±1
2
⟩ and ∣pµ;λ = ±1⟩

states in (2.1.17), respectively. Clearly each has two fermionic and two bosonic degrees of freedom

6Obviously we could have instead chosen ∣pµ;λ⟩ and ∣pµ;λ −
1
2
⟩ to live in the same multiplet instead; the Clifford

algebra merely restricts to two states, and so the choice between this configuration and (2.1.15) is equivalent to declaring

∣pµ;λ⟩ as either the state highest or lowest spin in the multiplet.
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(on-shell);7 indeed the symmetry between bosons and fermions has been realised.

We can see that the gauge degrees of freedom in the theory lie in the vector multiplet, whereas the

chiral multiplet encodes the matter content. Gauge symmetries commute with the supercharges; all

particles in a supermultiplet transform in the same way under the gauge symmetry G. Hence χ is

constrained to be in the adjoint representation of G whereas ϕ,ψ can lie in any representation R.

2.1.2.2 4d N = 2

The starting point for constructing massless 4d N = 2 supermultiplets is the same as for 4d N = 1:
the 4d massless Poincaré irreps ∣pµ;λ⟩. The only difference now is that we add in two pairs of

supercharges, logically extending the supersymmetry algebra:

{QAα , Q̄Bα̇ } = 2 (σµ)αα̇ Pµ δAB ,

{QAα ,QBβ } = ϵαβ ZAB ,

{Q̄Aα̇ , Q̄Bβ̇ } = ϵα̇β̇ (Z
†)AB ,

[QAα ,Mµν] = (σµν)αβQAβ ,

[Q̄Aα̇ ,Mµν] = (σµν)β̇ α̇ Q̄
A
β̇
,

[QAα , Pµ] = 0,

[Q̄Aα̇ , Pµ] = 0,

(2.1.18)

for A,B = 1,2 and ZAB the so-called central charges of the theory. As in Section 2.1.2.1, a massless

Poincaré state is comprised of ∣pµ;±λ⟩ for pµ = (E,0,0,E), but now we have

{QAα , Q̄Bα̇ } =
⎛
⎝
4E 0

0 0

⎞
⎠
δAB . (2.1.19)

(2.1.19) tells us that for massless states the central charges vanish, and everything is analogous to

the 4d N = 1 case except for that we now have two mutually anticommuting sets of ladder operators

aA = 1

2
√
E
QA1 , (aA)† = 1

2
√
E
Q̄A

1̇
(2.1.20)

for A = 1,2, and thus in each multiplet we have four states,

∣pµ;λ⟩ , (a1)† ∣pµ;λ⟩ , (a2)† ∣pµ;λ⟩ , (a1)†(a2)† ∣pµ;λ⟩ , (2.1.21)

plus their CPT conjugates. For gauge theories then, there are two such multiplets, the hypermultiplet

and vector multiplet, obtained from starting with a state of helicity λ = −1
2
and λ = 0 respectively:

Hypermultiplet:

∣pµ;λ = −1
2
⟩

∣pµ;λ = 0⟩ ∣pµ;λ = 0⟩

∣pµ;λ = 1
2
⟩

Q̄1̇ Q̄2̇

Q̄2̇ Q̄1̇

,

(2.1.22)

7Off-shell, there are additional auxiliary degrees of freedom.
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Vector multiplet:

∣pµ;λ = 0⟩

∣pµ;λ = 1
2
⟩ ∣pµ;λ = 1

2
⟩

∣pµ;λ = 1⟩

Q̄1̇ Q̄2̇

Q̄2̇ Q̄1̇

,

(2.1.23)

plus the CPT conjugate of each state. The hypermultiplet contains two Weyl spinors ψ1, ψ2 and two

complex scalars φ1, φ2. The vectormultiplet contains one gauge boson Aµ, two Weyl spinors χ1, χ2

and one complex scalar ϕ. The vector multiplet again encodes the gauge degrees of freedom and is

constrained to the adjoint representation of the gauge group G, whereas the hypermultiplet is free to

lie in any representation R of G and encodes the matter content of the theory. We can see that the

4d N = 2 hypermultiplet is comprised of two 4d N = 1 chiral multiplets in conjugate representations,

and the 4d N = 2 vector multiplet is comprised of one 4d N = 1 vector multiplet and one 4d N = 1
chiral multiplet, each in the adjoint representation of G. As before, the bosonic and fermionic degrees

of freedom in each multiplet match, this time taking value 4.

2.1.2.3 3d N = 4

Both 4d N = 2 theories and 3d N = 4 theories have the same amount of supersymmetry: 8 super-

charges. Thus to go from representations in 4d N = 2 to 3d N = 4 we simply need to decompose 4d

Poincaré irreps into 3d ones. This amounts to decomposing so(1,3) ≅ su(2) ⊕ su(2) Lorentz repre-

sentations into so(1,2) ≅ su(2) representations8 (the translational component of the Poincaré group

plays the same role in three dimensions as in four, giving a conserved mass charge). The SO(1,3)
Lorentz irreps that appeared in our 4d N = 2 theory are those in (2.1.22) and (2.1.23): the vector

Aµ in [1,1]su(2)⊕su(2); left and right Weyl spinors ψ and ψ̄ in [1,0]su(2)⊕su(2) and [0,1]su(2)⊕su(2)
respectively; and complex scalar ϕ in [0,0]su(2)⊕su(2). These representations decompose as:

[1,1]su(2)⊕su(2) Ð→ [2]su(2) + [0]su(2),
[1,0]su(2)⊕su(2) Ð→ [1]su(2),
[0,1]su(2)⊕su(2) Ð→ [1]su(2),
[0,0]su(2)⊕su(2) Ð→ [0]su(2),

(2.1.24)

and hence the degrees of freedom in the 3d N = 4 supermultiplets are

Hypermultiplet Vector multiplet

Two complex scalars φ1, φ2 One gauge boson Aµ

Two spinors ψ1, ψ2 One real scalar ϕ1

One complex scalar ϕ2 + iϕ3
Two spinors χ1, χ2

. (2.1.25)

As we will see in Section 2.3 and beyond, in our studies we will be particularly interested in the scalar

elements of hypermultiplets and abelian vectormultiplets. The real scalar degrees of freedom in each

8Here resurfaces the sloppy notation for isomorphisms of algebras mentioned before1; the same caveat applies here.
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of these multiplets are as follows:

Hypermultiplet U(1) Vector multiplet

Four real scalars φ1, φ2, φ3, φ4 Three real scalars ϕ1, ϕ2, ϕ3

One dual photon γ

, (2.1.26)

where the dual photon γ arises as the 0-form which the Hodge dual of the field strength9 is the

exterior derivative of [35]. It can take any VEV on the circle [36].

2.2 Quivers

Quivers Q10 are diagrams comprised of nodes and edges which encode and simplify the content

of a Lagrangian [6]: traditional Lagrangian SQFT calculations are translated into simple graph

theory operations on Q. This section is primarily devoted to seeing how this works for 3d N = 4

gauge theories, but also illustrates how the notation decomposes into the 4-supercharge 3d N = 2

supermultiplets. We will also address the notions of excess and balance, which are needed both in

Section 2.4.2 to define “good” and “ugly” theories, and in the work of Chapter 3.

2.2.1 3d N = 4 notation

Recall from Section 2.1 that in a 3d N = 4 gauge theory there are two types of representations of

the superPoincaré algebra, vectormultiplets and hypermultiplets (2.1.25). To build a Lagrangian

theory then, all we need to know is what gauge group G (vectormultiplets) we have, what matter

(hypermultiplets) we have, and the representation R of G that the hypermultiplets transform under.

To construct a quiver then, we just need a graphical notation for each of these things. We denote the

vectormultiplet for a gauge group Gi by a circular node, called a gauge node, labelled by its name:

Gi (2.2.1)

In our case, since we will only consider unitary groups Gi = U(ni), we will simplify the label to the

rank of the gauge group. That is, a gauge group Gi = U(ni) is denoted by

ni (2.2.2)

We denote a hypermultiplet with a line, called a (simply-laced) edge:11

(2.2.3)

Free hypermultiplets do not contribute interestingly to our discussions; we wish to depict hypermul-

tiplets in some representation R of the gauge group U(ni). We do this for k hypermultiplets by

connecting the edge denoting them to the gauge node U(ni) in question, possibly with some addi-

tional notation (depending on R), and terminating the other end of the edge at a square box called

a flavour node, labelled by the number of hypermultiplets k. If R is the fundamental representation

9
⋆F is exact by virtue of the equation of motion for the field strength and the Poincaré lemma, assuming the theory

lives on a contractible topological space.

10From now on, Q will be used to denote quivers; an algebraic notation for supercharges will no longer be required.

11We usually omit the “simply-laced”, and instead specify when an edge is non-simply laced (see below).
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of U(ni), we leave the edge plain. For example, suppose we have a U(n) gauge node, and wish to

add k hypermultiplets in its fundamental representation. Then our quiver is:

n

k
.

(2.2.4)

The quiver theory (2.2.4) has k identical hypermultiplets in the fundamental representation of U(n);
there is clearly a symmetry rotating them into each other. Such a symmetry is called a flavour

symmetry. In order to preserve the norm of the hypermultiplets, this symmetry must be unitary:

they are in the anti-fundamental representation of U(k).12 We can use the U(n) gauge symmetry to

scale the determinant of the U(k) matrices acting on the hypermultiplets; on the Higgs branch (see

Section 2.3) of this quiver theory there is an SU(k) symmetry. Sometimes flavour nodes are denoted

with this Higgs branch flavour symmetry instead of the number of hypermultiplets:

U(n)

SU(k)
.

(2.2.5)

(2.2.4) and (2.2.5) are equivalent notation for the same quiver theory. We will stick to the former

in this thesis; we mention the latter only to make connection with other work in the literature, for

example [37, 38].

If R is the adjoint representation of a U(n) gauge node, no additional label is needed, but the edge

starts and ends on the node with no flavour box. For example, for k = 1:

n
.

(2.2.6)

If R is some other representation the edge will need additional notation to specify what R is. Such

edges will not appear in this thesis, so we will not discuss them further. The only other type of edge

we will come across is a non-simply laced edge, which we will discuss shortly.

Suppose we want to build a theory whose gauge group is a product of two unitary groups, G =
U(n1) × U(n2). Then we can start with a U(n1) gauge group, add n2 hypermultiplets into its

fundamental representation, giving (2.2.4) for k = n2, and then gauge the U(n2) flavour symmetry:

n1

n2
.

(2.2.7)

This gauging introduces new dynamical degrees of freedom: we now have n1 × n2 hypermultiplets in

the bifundamental representation13 of U(n1)×U(n2). We can continue in this way to construct much

12Note that for they could have been in the fundamental representation of U(k), but we pick the anti-fundamental

so that when we construct bigger quivers, for example (2.2.8), each edge is in a fundamental × antifundamental

representation, rather than alternating between fundamental × fundamental and antifundamental × antifundamental.

13Note that in general the bifundamental representation of G1 ×G2 can mean the fundamental or anti-fundamental

representation of both groups, or in the fundamental of one and the anti-fundamental of the other. For us, it will

always mean the latter.12
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more complicated unitary quivers,14 for example

2 4 6 8 5

5

2

2

3 2

.

(2.2.8)

Quivers containing one or more flavour nodes (e.g. (2.2.8)) are termed framed, while those containing

only gauge nodes (e.g. (2.2.7)) are unframed.

The final type of quiver notation we will come across in this thesis, as alluded to above, is the

non-simply-laced edge. This is when two “gauge” nodes are connected by two or more lines with a

directional arrow. The nodes on the “greater than” and “less than” side of the directional arrow are

known as long nodes and short nodes, respectively. The number of lines connecting the two nodes

is known as the multiplicity of the edge. A quiver containing one or more non-simply-laced edges is

called a non-simply-laced quiver. As an example, consider

1 2 1

.
(2.2.9)

The edge connecting the two “gauge” nodes is non-simply-laced with multiplicity 3, represented by

the three lines. The direction of the arrow tells us that the U(2) node is the long node and the

U(1) node is the short node. Note the air quotes we have used around “gauge”. This is because, as

we’ll see in Section 2.6.4, short nodes have no gauge theoretic interpretation. However despite this,

non-simply-laced quivers still define meaningful Coulomb branches, which is why they appear in our

discussion.

2.2.2 3d N = 2 notation

Recall that 3d N = 4 vectormultiplets and hypermultiplets decompose each into two N = 2 multi-

plets. The G-vectormultiplet decomposes as a G-vectormultiplet and a chiral multiplet in the adjoint

representation of G, and the hypermultipelt in a representation R of G becomes one chiral and one

anti-chiral multiplet in representations R and R̄ of G, respectively. Quiver notation for a chiral

multiplet is a line with a direction indicated by an arrow. An anti-chiral multiplet is denoted in the

same way, but with the arrow pointed in the reverse direction. A vectormultiplet is denoted again by

a circular node. Hence for the example (2.2.4), the 3d N = 4 quiver becomes

n

k

(2.2.10)

in 3d N = 2 notation. This notation will not appear in our work, but it is helpful to visualise the

decomposition into the 4-supercharge subalgebra.

14While we focus purely on unitary quiver theories, it is worth noting that there have been many studies into quivers

containing special-unitary or orthosymplectic gauge nodes, see for instance [38, 39, 40, 41, 13, 42, 43, 44, 45, 46, 47, 26].
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2.2.3 Balance

The final concepts we address in this section are ones which we will use heavily throughout the thesis:

excess and balance [4]. This notion will enable us to define “good” and “ugly” theories, which are

the focus of our work; it is for such theories that the techniques we discuss in Sections 2.3 – 2.7

can be used, as the Coulomb branch flows to its IR fixed point in a protected manner. Balance will

also play a major role in Chapter 3, as the balanced nodes in a quiver contribute vital information

to simply determine the Coulomb branch global symmetry from surface-level inspection of the quiver.

The concept of the balance of nodes in a quiver originated from quiver theories for which there exists

a brane system description [48]. The balance of a unitary node is related to the net charge difference

of the two NS5 branes which trap the D3 branes that form the gauge group corresponding to the

node. We will not discuss its stringy origin any further; for us, balance is of interest because it leads

to extra operators appearing as we flow to the infrared, which elicit more symmetries than seen in

the UV theory.

A node is termed balanced if its excess is equal to zero. The definitions of unbalanced nodes, and

more specifically overbalanced and underbalanced nodes, all follow naturally. The excess of a node i

in a quiver is given by the total number of flavours it sees, minus twice its rank. That is, if fi is the

number of flavours i sees and ri is its rank, then its excess ei is given by

ei = fi − 2ri. (2.2.11)

When we say the number of flavours i sees, we refer to the number of hypermultiplets transforming

under the gauge group represented by the node i in a quiver, if no other nodes were gauge nodes.

For example, in the quiver for (the closure of)15 the minimal nilpotent orbit of G2 [49], given by the

balanced affine Dynkin diagram of G2,

1

i1

2

i2

1

i3
,

(2.2.12)

the node on the left sees fi1 = 2 hypermultiplets in its fundamental representation and thus its excess

is ei1 = 2 − (2 × 1) = 0, the node in the centre sees fi2 = 1 + (3 × 1) = 4 hypermultiplets (in its

fundamental representation) and thus its excess is ei2 = 4−(2× 2) = 0, and the node on the right sees

fi3 = 2 hypermultiplets in its fundamental representation and thus its excess is ei3 = 2 − (2 × 1) = 0.
Because all gauge nodes in this quiver are balanced, we say the quiver is a balanced quiver.

2.3 The Moduli Space

As mentioned in Chapter 1, we study a subset of the moduli space of 3d N = 4 unitary quiver gauge

theories called the Coulomb branch C. In particular, we study the IR fixed point of C for quiver

theories Q such that C(Q) is a HyperKähler space, and thus also a symplectic singularity [2]. The

algebrogeometric properties of the Coulomb branch variety correspond to physical properties of the

vacua; Coulomb branches can be studied either as affine algebraic symplectic varieties, or as a set of

gauge-inequivalent vacua for a physical theory.

15We will largely omit this “closure of” when discussing varieties as nilpotent orbits in the future for ease.
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This section is devoted to gaining some intuition for these two ways of viewing a moduli space. In

order to arrive at symplectic 3d N = 4 Coulomb branches at low-energies in Section 2.4, we need to

first discuss the rough notion of a vacuum in quantum field theory. This is the topic of Section 2.3.1.

In Section 2.3.2, we illustrate how a 3d N = 4 moduli space defines an algebraic variety V, and see

how V can be described by the ring of holomorphic functions over it. We give a brief summary of the

important points regarding HyperKähler spaces and symplectic singularities that will be necessary

for this thesis.

2.3.1 Vacua in QFT

In a quantum field theory, states (including the particles which can be observed in the world) are

excitations of the vacuum ∣Ω⟩, a state which has minimal energy ⟨Ω∣Ĥ ∣Ω⟩. Any vacuum must be

Lorentz invariant; the only non-vanishing operators of a theory in its vacuum state must be Lorentz

scalars ϕ̂i. Therefore, a vacuum is defined by the set of expectation values ϕi that these scalars take

upon insisting the energy is minimised: ∣Ω⟩ = ∣ϕi⟩. The expectation value O = ⟨Ω∣Ô∣Ω⟩ is called the

vacuum expectation value, or VEV, of the operator Ô. The vacuum is naturally considered at low

energies (large-length) scales; we study vacua in the IR.

In many QFTs there is often only a finite number of possible sets of VEVs which minimise the energy

(noting the physical equivalence of any two vacua whose VEVs are related by a gauge transformation).

However, when supersymmetry is included, there are often continuous families of gauge-inequivalent

VEVs minimising the energy. These continuous vacua form a manifold, called the moduli spaceM.

Each point onM corresponds to a vacuum state for the theory.

Suppose in a theory there are n complex scalars, ϕ̂1, ..., ϕ̂n. Then a vacuum state is specified by their

VEVs, ∣Ω⟩ = ∣ϕ1⋯ϕn⟩. Unrestricted, the expectation values of these fields could take any complex

value: M≅ Cn. However, imposing the vacuum condition restricts these complex variables to the zero

set of a collection of equations: that all non-scalars vanish and that ⟨ϕ1⋯ϕn ∣H ∣ϕ1⋯ϕn ⟩ ∣
ψ,Aµ, ...=0

is

minimised. If there is enough supersymmetry – and it transpires that 8 supercharges is indeed enough

– these equations turn out to be algebraic. Hence moduli spaces for theories with 8 supercharges

are algebraic varieties. Recall that the Coulomb branches we study are actually a certain type of

algebraic variety: symplectic singularities. We now explore how to define and describe such objects.

2.3.2 Algebrogeometric objects

In this section, we briefly list some properties of algebraic varieties, HyperKähler spaces and sym-

plectic singularities needed for this thesis. For an introduction to the field of algebraic geometry, see

for example [33]. For a review of symplectic singularities in particular, see [50].

2.3.2.1 Algebraic varieties

A major result from algebraic geometry is that any algebraic variety V is fully described by the ring

of algebraic functions over it. In fact, for the varieties we study, this in turn is isomorphic to the

ring of holomorphic functions over it; our goal is to find the ring of holomorphic functions over the

Coulomb branch. In Section 2.4.2.1, we will learn exactly what these holomorphic functions are in
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terms of the physical degrees of freedom on C.

The ring of holomorphic functions over a variety is commutative. This means that an algebraic variety

is completely described by the generating holomorphic functions over it, and the relations they satisfy ;

to construct the rest of the ring, one just needs to take symmetric products of these (see Appendix

B). Therefore, a tool which constructs symmetric products of a function, or conversely tells us the

symmetric generators of a given function, would be very useful to us. Luckily, such tools exist: the

plethystic exponential and plethystic logarithm.

2.3.2.2 Plethystics

The functions we want to generate symmetric products of in our studies will always be of the form

f(t, z1, ..., zn) =
∞
∑
k=0

∞
∑

ki=−∞
ak1,...,kn,k z

k1
1 ⋯ zknn tk, (2.3.1)

where ∣t∣ < 1 counts the degree and ∣zi∣ = 1, and hence it is on such functions that we will define the

plethystic exponential and logarithm (PE and PL respectively).

The PE of a function f of the form (2.3.1) is defined as

PE[f(t, z1, ..., zn)] = exp(
∞
∑
k=1

f(tk, zk1 , ..., zkn) − f(0, ...,0)
k

) =
∞
∏
k=0

∞
∏

ki=−∞

1

(1 − zk11 ⋯ z
kn
n tk)ak1,...,kn,k

.

(2.3.2)

Conversely, given the set of functions in a commutative ring at all degrees t > 0, one can compute

the generators and relations using the inverse of the plethystic exponential, the plethystic logarithm,

defined on functions f of the form (2.3.1) as

PL[f(t, z1, ..., zn)] =
∞
∑
k=1

µ(k)
k

log(f(tk, zk1 , ..., zkn)), (2.3.3)

where µ(k) is the Möbius function:

µ(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+1 if k is square free with an even number of prime factors,

−1 if k is square free with an odd number of prime factors,

0 if k has a squared prime factor,

(2.3.4)

for any positive integer k.

The first term of PL should always be positive, and will encode the generators of lowest degree.

Subsequent positive terms encode higher degree generators. The first minus sign describes a relation

that some of the lower degree generators satisfy. Subsequent minus or plus signs encode further

generators and relations of higher orders that define the variety: syzygies. For complete intersections

(where dim(V) =#generators −#relations) this will be a polynomial in t of the form

PL[f(t, z1, ..., zn)] =
g

∑
k=1

gk(z1, ..., zn)tk −
r

∑
k=1

rk(z1, ..., zn)tk, (2.3.5)

where g is the polynomial degree of the highest generator, r is the polynomial degree of the highest

relation, gk are the generators at degree tk, and rk are the overcounted products of generators at tk

that are equivalent to others due to the relations among the generators. Both gk and rk are Laurent

polynomials in the zi. For non-complete intersections, the PL will be an infinite series with syzygies

of ever-increasing degree.
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Example For example, consider a commutative ring generated by three degree one variables a, b,

c, satisfying ab = c2. Then the functions of degree two in the ring are

{a2, b2, c2, ac, bc} = S2({a, b, c}). (2.3.6)

The symmetric product does the job of including only one of ac and ca, or bc and cb. The relation

ab = c2 explains the absence of ab or ba in (2.3.6). This is confirmed by the plethystic exponential:

PE[(a+b+c)t−abt2] = 1 − abt2
(1 − at)(1 − bt)(1 − ct) = 1+(a+b+c)t+(a

2+b2+c2+ac+bc)t2+O(t3). (2.3.7)

Alternatively, suppose we have the full list of functions on a variety, graded by their degree:

1 + (a + b + c)t + (a2 + b2 + c2 + ac + bc)t2 + (a3 + b3 + c3 + a2c + b2c + c2b + c2a + abc)t3 +O(t4). (2.3.8)

Then to find the generators and relations, we take the plethystic logarithm:

PL((2.3.8)) = (a + b + c)t − abt2 +O(t4). (2.3.9)

Note that (2.3.9) doesn’t tell us the explicit relation ab = c2: just that ab is related to one of the other

degree two polynomials in the generators. ◻

2.3.2.3 HyperKähler spaces

The Coulomb branches we will study are singular HyperKähler spaces. Essentially, a HyperKähler

space is the “quaternionic version” of a Kähler space. A Kähler space has compatible Riemannian,

complex and symplectic structures. The symplectic structure is related to the metric, and contributes

to defining the Kähler space. A HyperKähler space has a Riemannian metric g and three complex

structures, satisfying quaternionic relations, each of which are compatible with g and a corresponding

symplectic structure (i.e. each complex structure is Kähler with respect to g).

There is a natural SU(2) symmetry on all HyperKähler spaces which rotates the three complex struc-

tures. In order to define complex notions such as holomorphicity, one such structure must be chosen.

This breaks the SU(2) symmetry, and chooses a particular symplectic form on the remaining Kähler

space. That is, all HyperKähler spaces have a symplectic structure, which is explicitly determined

upon choosing a complex structure. This choice of structure then enables us to define holomorphic-

ity, find the holomorphic functions16 over the space, and categorise it as an algebraic variety. The

symplectic structure over this algebraic variety defines it as a symplectic singularity.

2.3.2.4 Symplectic singularities

Roughly speaking, in the sense of [2], a symplectic singularity is an algebraic variety on which there

exists a 2-form ω – the symplectic form – which degenerates at zero or more points. The symplec-

tic form defines a pairing on the tangent space at any point on the variety, and points where this

pairing degenerates are called singular. As stated many times previous, we only study quivers whose

Coulomb branches are symplectic singularities. From a physical perspective, moving to a point on

such a Coulomb branch where the degeneracy of the symplectic form increases corresponds to more

16Note that the functions on the full Coulomb branch – not the ”holomorphic portion” selected by this choice of

complex structure – are found by applying the SU(2) symmetry to the holomorphic ones on the Kähler subset.
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massless states having been integrated out in the corresponding vacuum (see Section 2.7 for further

elaboration).

The symplectic form defines a Poisson structure {⋅, ⋅} on a symplectic singularity, as we will see

in Section 4.1. Computing the Poisson brackets {⋅, ⋅} therefore helps us to further categorise the

singularity by shedding light on ω, and as mentioned in Section 2.3.2.3, in principle this could also

be used to find the metric. Chapter 4 is devoted to our work [11], in which we computed the Poisson

brackets for several Coulomb branches in aid of this goal.

2.4 The 3d N = 4 Coulomb branch

Now that we have seen the physical notion of a moduli space and how we can describe it using tech-

niques of algebraic geometry, we move on to nail down some specific details for the case of the 3d

N = 4 Coulomb branch.

In Section 2.4.1, we first lay out the construction of the moduli space of any supersymmetric gauge

theory with eight supercharges. Such an M naturally splits into the Coulomb, Higgs and mixed

branches, each of whose ring of holomorphic functions is isomorphic to its chiral ring, which we define

for a Coulomb branch. We see how these two branches behave under the RG flow, focusing on the

Coulomb branch. We discuss its UV and IR fixed points, and the classical Coulomb branch of the

UV SCFT. In Section 2.4.2 we discuss the quantum corrections this receives upon flowing to the IR

SCFT, arriving finally at our object of study. To explore the quantum-corrected Coulomb branch we

will need an alternative description of it, in terms of dressed monopole operators. These operators

are labelled by charges under the topological and R global symmetries of the theory. The operators

and these symmetries are the topics of Sections 2.4.2.1 and 2.4.2.2 respectively. This will lay the

foundations for understanding the properties of C that we choose to study and the methods we use

to do it, which will be discussed in Sections 2.5 and 2.6 – 2.7 respectively.

2.4.1 The classical 3d N = 4 moduli space and its RG flow

Classically the allowed vacua are those which minimise the scalar potential. In a supersymmetric the-

ory, this amounts to solving (setting to zero) the so-called F and D terms. As previously mentioned,

this typically yields a continuous set of gauge-inequivalent vacua. In a 3d N = 4 theory, each vacuum

will be labelled by a VEV for each scalar field in the theory: the dual photon, real scalar and complex

scalar of the vectormultiplet; and the two complex scalars of the hypermultiplet. There are often

many physically distinct sets of allowed VEVs in such theories, and we can simplify our study ofM
by considering different subsets of it. The subset in which all vectormultiplet scalar VEVs vanish and

the subset in which all hypermultiplet scalar VEVs vanish are called the Higgs branch H and Coulomb

branch C respectively. They each behave differently, as we’ll discuss below. Note that as H, C are just
M with further algebraic constraints imposed on the coordinates, they are also algebraic varieties. In-

fact the ones we study are HyperKähler, and thus also symplectic singularities (see Section 2.3.2.4) [3].

In each of these varieties, the ring of holomorphic functions over them is believed to be isomorphic to

the chiral ring of the theory. We define a chiral operator to be an operator O which is annihilated by
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half of the supercharges.17 Since we are discussing the moduli space of the theory, we also demand

that chiral operators are gauge-invariant and satisfy the vacuum conditions. Any product or linear

combination of such chiral operators is also a chiral operator, and they are bosonic; they form a

commutative ring. This ring is the so-called chiral ring mentioned above; the Coulomb and Higgs

branches are fully specified by their respective chiral rings.

We study quiver theories with enough matter so that the gauge coupling is inversely proportional

to the energy scale; they are UV-free, but strongly coupled at low energies, flowing to an SCFT

(superconformal field theory) both in the deep UV and deep IR [4]. It is natural to consider moduli

spaces at low energies, in the IR. As the gauge coupling increases, the interactions of virtual particles

erupting into and out of existence become more important, and quantum corrections need to be in-

troduced. This means our classical discussion thus far in terms of the UV quiver degrees of freedom

is insufficient to describe M; we need an IR description of our theory, that accounts for quantum

behaviour.

For the Higgs branch, this turns out to be no problem; its UV description holds all along the RG

flow18 due to the non-renormalisation of the superpotential in supersymmetric theories. On H, the
vectormultiplet scalars vanish, and so the only remaining vacuum constraints are those involving the

superpotential. Since this is not renormalised, the vacuum constraints for the Higgs branch remain

the same all along the RG flow.

The Coulomb branch is not so lucky; its metric does receive quantum corrections. Suppose the gauge

group of a theory is G. Then in the UV picture, the F -terms are automatically satisfied due to the

vanishing hypermultiplet scalars, and solving the D-terms amounts to

[ϕa, ϕb] = 0, (2.4.1)

where a, b = 1, ...,dim(G) labels the vectormultiplets of the theory, and ϕ any scalar in each vector-

multiplet (2.1.26). Clearly (2.4.1) says that any vectormultiplet scalar of the theory not lying in the

Cartan subalgebra (CSA) of G does not live on the Coulomb branch; only rank(G) of the dim(G)
vectormultiplets ϕa survive on C. Thus a generic VEV on C is generated by rank(G) vectormultiplets

lying in the CSA of G. Since in each vectormultiplet there are three real scalars and a periodic dual

photon [36], the classical Coulomb branch generically takes the form

Ccl = (R3 × S1)rank(G)/WG, (2.4.2)

where the quotient by the Weyl group of G ensures gauge invariance. The quaternionic and real di-

mensions of (2.4.2) are clearly dimH = rank(G) and dimR = 4 ⋅ rank(G) respectively. In this thesis we

will consider only unitary gauge groups, and for such G any element of the CSA can be diagonalised.

Thus a generic VEV of any ϕ on C will have rank(G) independent diagonal components: the gauge

group is broken to U(1)rank(G).

In principle, these remaining rank(G) abelian photons could then be dualised to scalars (see the

discussion following (2.1.26)) [35], and the quantum corrected low-energy metric on C could be found

17Note that the precise supercharges annihilating chiral operators differs from C to H, see for example [19].

18Note that in theories in other dimensions this is not the case in general. For example, the Higgs branches of 5 and

6d theories at infinite coupling are not classically exact.
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semi-classically by integrating out the massive W-bosons and hypermultiplets which gained a non-

zero VEV. However, this process is insufficient in practise for several reasons. Firstly because even for

fairly low ranks of gauge group, although it terminates at one-loop, integrating out the massive fields

becomes too difficult. Secondly, this semi-classical approach is a perturbative process and is thus

only valid in weakly coupled regions which, as discussed at the top of this section, is not the regime

of the IR 3d N = 4 Coulomb branches we study. Thirdly, certain VEVs taken by the vectormultiplet

scalars satisfying (2.4.1) actually preserve a greater, non-abelian subset of the gauge symmetry than

U(1)rank(G), and it is not known how to dualise a non-abelian vector multiplet. While there are other

indirect ways to study Coulomb branches, for example via string theory dualities such as mirror

symmetry (which relates the Coulomb branch of a quiver to the Higgs branch of its mirror quiver

[51, 52]), we would like a way to study them directly.

This motivated the search for an alternative method to find the chiral ring of the Coulomb branch,

and indeed such a method has been found for C at the superconformal fixed point. Here, C can be

viewed as the space of dressed monopole operators,19 as opposed to the space of dualised photons in

the quantum-corrected metric. This is a viewpoint uniquely valid in three dimensions, and enables

great progress to be made with understanding the Coulomb branch. In this thesis, we focus solely

on computations for Coulomb branches20; we take the discussion of the Higgs branch no further, and

move on to further elaborate on the dressed monopole description of C in the IR SCFT. From now

on, any time we mention the Coulomb branch, we will be referring to its IR fixed point.

2.4.2 The quantum Coulomb branch

In this section we aim to give a brief overview of the IR Coulomb branch, where quantum corrections

become important as the gauge coupling increases. As mentioned in Section 2.4.1, a description of C at
a generic point along the RG flow is hard to obtain in practise, as loop corrections are non-trivial and

are not always valid. However at the IR superconformal fixed point there is an alternative description

of the Coulomb branch available to us, as the space of dressed monopole operators [32, 53, 54, 4],

which allows us to explore C at this point along the RG flow. This section is devoted to detailing this

dressed monopole construction of the IR SCFT Coulomb branch and discussing its global symmetries

(the conserved charges of which can be used to label our chiral operators). Please note that this

section is not intended as a comprehensive review of 3d N = 4 gauge theories and their Coulomb

branches at low energies. We cover only the surface-level ideas of this vast topic needed to gain an

intuitive understanding of the physics employed in this thesis. For more details on the topics covered

in this section, see for example [31, 55, 56, 36, 32, 53, 54, 4].

2.4.2.1 Dressed monopole construction

In Section 2.4.1 we saw that a semi-classical description is not sufficient to describe the physics at

all points on the Coulomb branch. However it turns out there is an alternative approach which has

validity both in the UV and the IR. In the UV, we can define monopole operators in terms of the

19This terminology is common in the literature but is a slight abuse of language; what we really mean is that the

Coulomb branch, viewed as an affine algebraic variety, is the spectrum of the Coulomb branch chiral ring, which is

generated by dressed monopole operators. The Coulomb branch variety, its chiral ring, and the VEVs of operators on

C can be used interchangably in the literature, so it’s important to clarify the distinction.

20Note that some of our results will describe Higgs branches, but as a virtue of the computations being performed

on the Coulomb branch of their magnetic quiver. See Section 2.7.1 for more details.
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Coulomb branch degrees of freedom (2.1.26), following [4]. Recall from Section 2.1.2.3 that the N = 4
vectormultiplet for a gauge group G splits naturally into an N = 2 vectormultiplet and an N = 2

chiral multiplet, both of which lie in the adjoint representation of G, whose real scalars are γ,ϕ1 and

ϕ2, ϕ3 respectively. The N = 2 vectormultiplet degrees of freedom can be encoded in a UV monopole,

which is defined at a point via inserting a Dirac monopole singularity

F = m
2
⋆ d 1

r
(2.4.3)

in superspace, where r is the distance from the point of insertion and m ∈ g (the Lie algebra of G) is

the charge of the monopole. This monopole can then be written explicitly as an operator:

vm = e
m
g2
(ϕ1+iγ), (2.4.4)

where g is the gauge coupling of G. The other two Coulomb branch degrees of freedom from the

N = 2 chiral multiplet can be combined to form a complex scalar:

φ = ϕ2 + iϕ3. (2.4.5)

It is easy to see that because γ,ϕ1, ϕ2, ϕ3 are all chiral, linear combinations of products of v and φ

are chiral also. Operators formed from the product of only monopoles are called bare monopoles.

Operators formed from the product of monopoles with at least one complex scalar are called dressed

monopoles; the complex scalar is the “dressing”. Since vm and φ encode all the UV chiral operators

on C, they form the chiral ring.

However, this description no longer accurately describes a monopole when ϕ1 is small, or as g →∞.

That is, it only works classically in the UV, which seems to be no better than the situation we were

in before. However, the difference here is that we can directly define monopole operators in the IR

SCFT [32], and this description emerges consistently from the above one under the RG flow.

The gauge fields in the IR SCFT can be defined as spheres centered on Dirac monopole singularities

of the gauge field called ’t Hooft monopole operators [57]. Suppose the gauge group is G, with Lie

algebra g. Inserting an ’t Hooft monopole operator at a point elicits a gauge field surrounding it

whose northern and southern patches are described by

A± ∼
m

2
(±1 − cosθ)dϕ (2.4.6)

where m ∈ g, and (r, θ, ϕ) are spherical coordinates around the point of insertion. In order for the

transition function between the two patches to be smooth, it can be found that m must satisfy

e2πim = 1G, (2.4.7)

which is the criterion for m to belong to the weight lattice of the Langland’s dual of the gauge group:

m ∈ ΛG∨ . (2.4.8)

The magnetic charge labels the monopole. We denote a bare monopole with charge m as vm. Recall

that we are looking to construct the gauge-invariant chiral operators of C. The gauge group acts on

m through the Weyl group of G∨, WG∨ ; vm is not be gauge invariant unless the WG∨ orbit of m is

trivial. Thus gauge invariant bare monopoles Vm are given by

Vm = ∑
σ∈WG∨

vσ(m). (2.4.9)
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Note then that distinct monopoles are labelled by the magnetic charges m in one Weyl-chamber of

the magnetic lattice ΛG∨ :

m ∈ ΛG∨/WG∨ , (2.4.10)

as the Vm for any twom in the same Weyl orbit are gauge equivalent. Furthermore, enforcing chirality

(i.e. preserving half of the supersymmetry) amounts to imposing the boundary condition

ϕ1 ∼
m

2r
(2.4.11)

on the real scalar in the N = 2 vectormultiplet.

We study theories with only unitary gauge groups in this thesis. The magnetic charge for G = U(n),
m ∈ g = u(n), subjected to (2.4.10) and (2.4.11) is diagonalisable and integer-valued, hence we denote

it as a vector m = (m1, ...,mn) of its n integer eigenvalues. Since U(n) is Langlands self-dual and

has Weyl group Sn, a magnetic charge of U(n) takes the form

m ∈ {(m1, ...,mn) ∈ Zn ∣ m1 ≥m2 ≥ ⋯ ≥mn}. (2.4.12)

For a quiver with p unitary gauge nodes U(ni) i = 1, ..., p, a magnetic charge takes the form

m = (m1, ...,mp) ∈ { (m1,1, ...,m1,n1 , ...,mp,1, ...,mp,np) ∈
p

∏
i=1

Zni ∣ mi,1 ≥mi,2 ≥mi,ni ∀ i }.

(2.4.13)

These bare monopole operators, labelled by magnetic charge m, define the N = 2 vectormultiplet

(gauge) degrees of freedom in the IR SCFT moduli space. As in the UV, we can dress them with

a VEV for the complex scalar φm from the N = 2 chiral multiplet. However, it must satisfy some

conditions. Firstly, in order to preserve the chirality of a bare monopole under dressing, the VEV

taken by the complex scalar φm must commute with (i.e. be a Casimir of) the algebra hm ⊂ g of the

residual gauge group Hm unbroken by the VEV m ∈ g of the monopole. Secondly, it must be gauge

invariant. The former restricts the VEV of φm to the CSA of hm. In the theories we consider, G is

a product of unitary groups and therefore the unbroken gauge algebra for any m is of the form

hm = ⊕um

i=1 u(lm,i) , (2.4.14)

for some integer ranks lm,i, i = 1, ..., um. The CSAs of unitary groups can be diagonalised; let’s call

the eigenvalues of (2.4.14)

λ1,1 , ... , λ1,lm,1 , ... , λum,1 , ... , λum,lm,um
. (2.4.15)

Then since the gauge group acts on φm via the Weyl group ∏um

i=1 Slm,i
of Hm to permute its eigen-

values, imposing gauge invariance restricts the dressing factor to be of the form

φm =
um

∏
i=1

⎛
⎝

lm,i

∑
j=1

λi,j
⎞
⎠

km,i

, (2.4.16)

for some non-negative integers km,i. Note in particular that when the magnetic charge is zero (i.e.

when the adjoint scalar is not dressing a monopole operator), the whole gauge group U(n1)×⋯×U(np)
is preserved and the dressing factor is of the form

φ0 =
p

∏
i=1

⎛
⎝

ni

∑
j=1

λi,j
⎞
⎠

ki

. (2.4.17)
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for some non-negative integers ki.

In Section 4.2.1, these dressed monopole degrees of freedom and operators are discussed with more

precision, and several examples featuring them appear in Sections 4.2 – 4.5. Each VEV (point) on

our Coulomb branch describes a vacuum of the IR SCFT. To label the states in this vacuum, we turn

to Noether [1], and consider the conserved charges of the vacua under the global symmetries of the

Coulomb branch.

2.4.2.2 Global symmetries

The overall global symmetry of the Coulomb branch at the IR fixed point is not generally identical

to that present in the UV quiver theory. This is because, although the SU(2)R R-symmetry is

protected against quantum corrections, the topological symmetry appearing in the UV is typically

enhanced at the IR SCFT. We call this larger IR topological symmetry GS.21 States in the vacua of

the theory are labelled by their conserved charges under these symmetries [1], typically denoted ∆

and J respectively. In this section, we will discuss each of these symmetries, and how the operators

of Section 2.4.2.1 are charged under them for unitary quiver theories.

R-symmetry The UV Coulomb branch has an SU(2)R symmetry which the three complex struc-

tures form a triplet under: each operator on C in the UV has some weight under this symmetry. The

chiral operators however (the bare and dressed monopoles (2.4.4) and (2.4.5)) preserve only half the

supersymmetry, forcing the N = 4 algebra to break to an N = 2 subalgebra and the SU(2)R sym-

metry to break to U(1)R. From the “algebraic variety” point of view, picking an N = 2 subalgebra

corresponds to choosing one of the three complex structures on C, which enables us to define holo-

morphic functions on the variety. The specific N = 2 subalgebra is decided by the choice of monopole

construction, and this can be chosen such that the operators with the highest weight in each SU(2)R
representation are the chiral ones:

Operators in the chiral ring of C ←→ highest weights of SU(2)R representations, (2.4.18)

The other operators on C (whose weights under SU(2)R are not the highest in the representation

they belong to) are not in the chiral ring; they are not needed for our description of C as an algebraic

variety, as they correspond to non-holomorphic functions over it.

The choice of UV monopole operators given by (2.4.4), (2.4.5) are chiral and thus achieve (2.4.18);

under this construction, SU(2)R is broken to U(1)R.22

The charge of a bare monopole (2.4.4) in the UV SCFT under this U(1)R symmetry is given by

[4, 58, 59, 7]:

∆(m) = − ∑
α∈∆+

∣α(m)∣ + 1

2

H

∑
i=1
∑
ρi∈Ri

∣ρi(m)∣, (2.4.19)

where ∆+ is the set of positive roots of the gauge group G, H is the number of hypermultiplets, and

ρi are the weights in the representation Ri of the ith hypermultiplet. Since all the quiver theories we

study are unitary, we will focus on the precise presentation of (2.4.19) for a quiver with p unitary gauge

21When reporting results of the global symmetry “GS” and “global symmetry” are used synonymously even though

they are not the same, because the other factor of the global symmetry (SU(2)R) is known.

22Note that actually the global symmetry group is SO(2)R, of which U(1)R is the double cover.
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nodes G = U(n1) × ⋯ × U(np). Suppose that there are H hypermultiplets, and that hypermultiplet

h is a simply-laced edge between nodes nαh
and nβh

, clearly for αh, βh = 1, ..., p (i.e. h is in the

bifundamental representation of U(nαh
) ×U(nβh

)). If we write the magnetic charges for these nodes

as mαh
= (mαh,1, ...,mαh,nαh

) ∈ Znαh and mβh
= (mβh,1, ...,mβh,nβh

) ∈ Znβh respectively, then the

R-charge of a monopole operator of magnetic charge m in such a quiver is given by

∆(m) = −
p

∑
a=1

na

∑
i<j=1

∣ma,i −ma,j ∣ +
1

2

H

∑
h=1

nαh

∑
i=1

nβh

∑
j=1
∣mαh,i −mβh,j ∣. (2.4.20)

The R-charge of any single dressing factor is protected under the RG flow from the UV theory:

∆(adjoint scalar) = 1. (2.4.21)

Provided all operators on the low-energy Coulomb branch satisfy

∆ ≥ 1

2
, (2.4.22)

then (2.4.19) matches the conformal dimension of the monopole operator with charge m in the IR

SCFT [4]. All dressed monopole operators in the chiral ring of C then acquire a charge ∆ under U(1)R.

Quiver theories in which all Coulomb branch operators satisfy ∆ > 1
2
are termed “good”. Those in

which all operators satisfy (2.4.22) with at least one meeting the equality are called “ugly”. The

Coulomb branch of “ugly” theories factorises into a “good” part and a free part which is isomorphic

to some number of copies of the quaternionic plane and generated by free twisted hypermultiplets,

corresponding to the operators with ∆ = 1
2
. Theories in which at least one operator does not satisfy

(2.4.22) are termed “bad”; in these cases, the R-charge of a monopole operator in the UV SCFT

(2.4.20) is not equal to the one observed in the infrared. Quivers in which all nodes have excess

e > −1 (see (2.2.11) for the defintion of excess) describe good theories, and those in which one node

has e = −1 but all other nodes have e > −1 describe ugly theories. All quivers studied in this thesis fit

into one of these two groups; the conformal dimension of any operator on the low-energy Coulomb

branches we consider is given by (2.4.20).

Topological symmetry There is another global symmetry on the Coulomb branch which does not

remain constant along the RG flow. In the UV theory, for every abelian factor in the gauge group

there is an associated conserved current ∗F = dγ, and hence a U(1) global symmetry. UV monopoles

will be charged under this symmetry, while adjoint scalars will not. This can be seen schematically

by the fact that φ is independent of γ, whereas ∂γ e
ϕ1+iγ ∝ eϕ1+iγ . For the remaining non-abelian

factors in the gauge group, the conservation of such a current is prohibited by instantons [35]: for a

theory with a unitary gauge groups, the classical UV topological symmetry is

U(1)a. (2.4.23)

In the IR, this classical UV symmetry is often enhanced to some group whose maximal torus is

(2.4.23). The resultant (generally non-abelian) IR symmetry is the topological symmetry23 of the

Coulomb branch at the IR SCFT, and we denote it GS. The charge under this topological symmetry

is given the symbol J . Consider a unitary gauge theory G = U(n1)×⋯×U(np) with magnetic charges

23The name of this symmetry stems from the fact that it arises due to the construction of a gauge field in three

dimensional spacetime.
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m = (m1, ...,mp) (2.4.13). Since there are p unitary factors in the gauge group, the topological charge

is a vector of length p, and is given by:

J(m) = (J1, ..., Jp) = (
n1

∑
i=1
m1,i , ... ,

np

∑
i=1
mp,i ) . (2.4.24)

2.5 Properties of Interest

We have seen that the Coulomb branches we study are fully described by bare and dressed monopole

operators, and that such operators which are also gauge invariant and chiral form the chiral ring.

Section 2.4 told us that computing the chiral ring of monopole operators explicitly (i.e. the explicit

generators and relations they satisfy) would fully describe the Coulomb branch, but generally it is

not known how to do this. However, there are other properties of C that we can learn about which

help us to both categorise it as a variety and understand the physics of the theory. Among such

properties, that we will refer to much throughout this work, are the following:

1. Dimension. Recalling that at a generic point on the Coulomb branch the gauge group is broken

to U(1)rank(G), we can clearly see that there are rank(G) components labelling each VEV,

hence

dim(C) = rank(G). (2.5.1)

In terms of a unitary quiver, this is equal to the sum of the ranks of the gauge nodes (minus

one) for a framed (unframed) quiver.

2. Operator content graded by charges under global symmetries. While finding the explicit gener-

ators and relations of the Coulomb branch chiral ring is often too challenging, we can compute

its Hilbert series (for “good” or “ugly” theories [4]), which counts the operators on it graded

by their charges under the global symmetries of C. This is a helpful step in attempting to

categorise the Coulomb branch – two varieties with matching Hilbert series is an indication

that they could be the same, although it is by no means a guarantee.24 Section 2.6 will detail

how to compute and analyse the Coulomb branch Hilbert series. These notions will be used

extensively throughout this thesis.

3. Singularity structure. Analysing the Coulomb phase brane systems of quivers with a string the-

ory construction has lead to a deeper understanding of the singularity structure of C, presented
via its Hasse diagram. The Hasse diagram indicates transitioning from a generic point on

C to more and more singular (see Section 2.3.2.4) subsets of it. The points regarding Hasse

diagrams needed for this thesis will be reviewed in Section 2.7.

4. Global symmetry. The Hasse diagram has been conjectured to indicate a subset of the non-

abelian global symmetry of a quiver, but often this is a strict subset. A guaranteed method to

determine the local form of the full topological global symmetry GS of C with certainty is to

compute its Hilbert series and consult the t2 term (the global form can be determined from the

full Hilbert series), but as gauge group rank increases this quickly becomes too computationally

intensive. An easy and efficient algorithm for identifying the Coulomb branch global symme-

try directly from the quiver based on the balance of its gauge nodes – the balance global

symmetry (BGS) algorithm – has been proposed, and until recently was believed to work

24For example, subtle differences in the explicit forms of relations do not necessarily show up in the Hilbert series.
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unanimously. However, in [10] we were able to construct several families of quivers for which

this algorithm failed. This is the topic of Chapter 3: we discuss the construction of the quivers

for which the BGS algorithm fails, and provide an amended algorithm which corrects these

failings for the quivers listed.

5. Symplectic form. Recall that the symplectic form is a key ingredient for defining a symplectic

singularity. One can make progress with finding this symplectic form between points on C by

computing Poisson brackets between the corresponding vacua, as a symplectic form automat-

ically induces a Poisson structure. Finding these Poisson brackets (for certain theories) is the

topic of Chapter 4, based on [11].

The remaining sections in this chapter are devoted to the methods we will employ in this thesis to

analyse the above properties of interest for the quivers we study.

2.6 Hilbert Series

As mentioned in Section 2.5, although computing the exact form of the Coulomb branch chiral ring

generators and relations (and thus all other operators) is the optimal description for C as an algebraic

variety, it is not in general known how to achieve this. But something we do know how to do is

count how many chiral ring operators there are at each charge under the global symmetries [7]. The

function that performs this task is called the Hilbert series.

The Hilbert series is defined outside of Coulomb branches [33]. Typically, the Hilbert series for an

algebraic variety (which is defined by homogeneous equations) counts the holomorphic functions over

it, graded by degree. This grading is achieved through a fugacity (typically t); the coefficient of tk

is the number of holomorphic functions of degree k on the variety. Using the commutativity of the

ring of holomorphic functions, the Hilbert series can be used to find the number of generators and

relations at each degree. To see this explicitly, consider the following example.

Example Let’s find the Hilbert series for V = C2/Z2. We need to count the linearly independent

holomorphic functions over it at each degree. For V, the ring of such functions is C[z1, z2]/Z2 for

z1, z2 complex variables. Under the Z2 action, z1 → −z1, and z2 → −z2. The degree k holomorphic

functions on V then are generated by C-linear combinations of za1 z
b
2 with a + b = k, such that za1 z

b
2

is invariant under the Z2 action. Clearly for even and odd k, za1 z
b
2 → ±za1 zb2 respectively, hence no

holomorphic functions of odd degree lie on V but even ones do. For degree zero, the only linearly

independent holomorphic function is clearly just 1. For degree two there are three, z21 , z
2
2 and z1 z2;

for degree four there are five, z41 , z
3
1z2, z

2
1z

2
2 , z1z

3
2 , z

4
2 ; and so on:

Degree Holomorphic functions

0 1

2 z21 z1 z2 z22

4 z41 z31 z2 z21 z
2
2 z1 z

3
2 z42

6 z61 z51 z2 z41 z
2
2 z31 z

3
2 z21 z

4
2 z1 z

5
2 z62

⋮ ⋮

(2.6.1)

The Hilbert series HS(t) for V = C2/Z2 is a polynomial in a variable t which tells us how many

holomorphic functions there are at each degree; the coefficient of tk counts the number of independent
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generating monomials in V at degree k:

HS(t) = 1 + 3t2 + 5t4 + 7t6 +⋯

=
∞
∑
n=0
(2n + 1)t2n

= 1 − t4
(1 − t2)3 .

(2.6.2)

It is clear that C[z1, z2]/Z2 is generated by a = z21 , b = z22 and c = z1 z2, satisfying the relation ab = c2.
However even if it wasn’t obvious, the Hilbert series (2.6.2) can tell us the number of generators

and relations and their degrees (although not their explicit forms). Recall from Section 2.3.2.1 that

the plethystic logarithm (2.3.3) gives the generators and relations of such an input function. The

plethystic logarithm of our Hilbert series here is

PL(HS(t)) = 3t2 − t4. (2.6.3)

The positive term tells us there are three generators at degree two, and the subsequent negative

terms tells us that these generators satisfy one degree four relation. We could also have seen this

from inspection of (2.6.2), using that

PE[a tp − b tq] = (1 − t
q)b

(1 − tp)a . (2.6.4)

The expression (2.6.2) has only one fugacity t, counting the degree of the holomorphic functions. One

could also note that V inherits the SU(2) symmetry of C2, which rotates z1 and z2, and grade the

holomorphic functions by their charges under this symmetry too, in addition to their degree. Since

z1 and z2 form a doublet under this SU(2) they have respective charges (weights) ±1 under it: za1 z
b
2

has charge a− b. We introduce a new fugacity to keep track of the SU(2) charge of each holomorphic

function, z. Including this, we see the Hilbert series (2.6.2) becomes

HS(t) = 1 + (z2 + 1 + z−2)t2 + (z4 + z2 + 1 + z−2 + z−4)t4

+ (z6 + z4 + z2 + 1 + z−2 + z−4 + z−6)t6 +⋯

= 1 − t4
(1 − z2 t2)(1 − t2)(1 − z−2 t2) ,

(2.6.5)

and its plethystic logarithm

PL(HS(t, z)) = (z2 + 1 + z−2) t2 − t4. (2.6.6)

We can see that the generators of C2/Z2 form the adjoint representation of the SU(2) symmetry with

weights 2,0,−2 respectively, and that the relation transforms in the trivial representation of SU(2).
This Hilbert series, refined with these new fugacities z to keep track of additional information, is

what we will call the refined Hilbert series. The Hilbert series which is just a function of t, keeping

track of degree only, is called the unrefined Hilbert series.

Note additionally that this Hilbert series is not unique. Here we had a space generated by three

degree two functions, which we called a, b and c, satisfying ab = c2. However a space generated by

three degree two functions ã, b̃ and c̃, satisfying ãb̃ = c̃(c̃ + ξ) for some constant parameter ξ ≠ 0, will
clearly have the same Hilbert series, but describes a different variety; this one has no singularity at
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the origin.25 From the Hilbert series alone, we cannot distinguish between these two varieties. ◻

Recall from Section 2.4.1 that for C, the ring of holomorphic functions is thought to be isomorphic

to the chiral ring. Thus in the context of 3d N = 4 Coulomb branches, the Hilbert series counts

the operators in the chiral ring of the theory, graded this time by their charges under the global

symmetries of C. The role of the degree of holomorphic functions – the grading of t – is played by

twice the R-charge, as in the theories we study it takes only positive integer values. We can refine

the Hilbert series to include fugacities zi to keep track of topological charges. So, we need a formula

to count the bare and dressed monopole operators of a theory, graded by their ∆ and Ji. Such a

formula, the monopole formula, was found in [7].

2.6.1 Monopole formula

In Section 2.4.2 we saw that the Coulomb branches of interest to us are spaces of dressed monopole

operators.19 That is, a point on C (equivalently a VEV of the IR SCFT) corresponds to a dressed

monopole operator with magnetic charge m ∈ ΛG∨/WG∨ and a dressing factor φm ∈ hm preserved by

the gauge group Hm unbroken by m. This operator has charges J and ∆ under the global topological

and R-symmetries respectively. Just as the fugacity t graded the degree of holomorphic functions in

the example of (2.6.2), here it will grade twice the R-charge of a dressed monopole operator. Since we

also want to grade by the topological charges J = (J1, ..., Jp) (2.4.24), we introduce p more fugacities

z = (z1, ..., zp) to keep track of them. The monopole formula then is

HS(t; z) = ∑
m ∈ΛG∨ /WG∨

PG(t,m) zJ(m) t2∆(m) (2.6.7)

This sums up over every possible dressed monopole operator. We choose to grade by twice the

conformal dimension to avoid fractional powers; 2∆ makes direct analogy with the degree of holo-

morphic functions. PG(t,m) is known as the classical dressing factor, and counts the number of

ways a monopole of charge m can be dressed by φm: it counts the number of Casimirs of hm. Such

Casimirs are always chargeless under the topological symmetry: no z fugacities appear in PG. The

Casimirs do however acquire an R-charge. To understand this, let’s turn to an example.

Example Consider a U(3) gauge theory. We wish to calculate the dressing factor PU(3)(t,m) for
a generic bare monopole m. Here, monopoles can take magnetic charges in

m ∈ ΛG∨/WG∨ = {(m1,m2,m3) ∈ Z3 ∣ m1 ≥m2 ≥m3} ⊂ u(3). (2.6.8)

Consider the bare monopole with m = (3,2,1). Embedded in g = u(3), this is

m =
⎛
⎜⎜
⎝

3 0 0

0 2 0

0 0 1

⎞
⎟⎟
⎠
. (2.6.9)

Clearly any element in u(3) that commutes with this must be diagonal; the remaining gauge group

unbroken by the VEV m is Hm = U(1)3, and hence the adjoint scalars allowed to dress vm are the

Casimirs of u(1)3.

25This is clear from the non-zero value of the partial derivative of the defining equation with respect to the generator

c at the origin.
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A Casimir of an algebra is an invariant of it. Since the adjoint representation of u(1) is trivial, any
element X transforming in the adjoint representation is an invariant of u(1). Thus there is just one

independent Casimir one can construct from X: itself. Recall that the R-charge of an adjoint scalar

is 1. Since the Casimir for u(1) is constructed out of just one group element, its R-charge is just one

too; for each U(1) factor in Hm, there is a single independent Casimir with ∆ = 1. In our Hilbert

series language each of these translate as 1 t2: for Hm = U(1)3, it is 3 t2. All other Casimirs will

be symmetric products of these generators; the dressing factors for monopoles with m = (3,2,1) are
encapsulated by

PU(3)(t, (3,2,1)) = PE[3 t2] =
1

(1 − t2)3 . (2.6.10)

Consider instead the bare monopole with charge m = (3,3,1). Now the unbroken gauge group is

U(2) ×U(1) ≅ SU(2) ×U(1)2. We get a contribution of 2 t2 inside PE from the two abelian factors,

but what about the SU(2)? Consider a generic element in su(2), X. This transforms under g ∈ su(2)
as X → gXg−1. In general, this is not invariant, but we can see that Tr(Xk) is. However, for k odd

this vanishes, and for k > 2 even it is proportional to the (k
2
)th power of Tr(X2): su(2) has just

one independent Casimir, Tr(X2), built out of two copies of X, hence ∆(Tr(X2)) = 2. Thus our

dressing factor here is

PU(3)(t, (3,3,1)) = PE[2 t2 + t4] =
1

(1 − t2)2 (1 − t4) . (2.6.11)

◻

In general, for a unitary gauge group G = U(n), a bare monopole can have d ≤ n distinct charges.

Let the distinctness of these charges be encoded in an ordered partition λ(m), a vector of length d.

That is, λ1(m) is the number of times the first entry of m is repeated, λi(m) is the number of times

the (∑i−1j=1 λj(m) + 1)th entry of m is repeated, i = 2, ..., d. For example, the charge m = (3,2,1) has
one charge with value three, one with value two and one with value one (all distinct), so the ordered

partition is λ((3,2,1)) = (1,1,1). For m = (3,3,1), there are two with value three and one with value

one, so λ((3,3,1)) = (2,1). For m = (3,3,3), λ(m) = (3). If we call γi the number of entries in λ

that take value i, then the dressing factor for the U(n) monopole with charge m is given by

PU(n)(t,m) =
n

∏
i=1

1

(1 − t2i)γi . (2.6.12)

The dressing factor for a bare monopole with charge m = (m1, ...,mp) under a product of unitary

gauge groups G = U(n1) ×⋯ ×U(np) is then

PU(n1)×⋯×U(np)(t,m) =
p

∏
i=1

ni

∏
j=1

1

(1 − t2j)γi,j , (2.6.13)

where γi,j is the number of entries taking value j in the ordered partition λi for charge mi =
(mi,1, ...,mi,ni).

Now that we have all the ingredients to the monopole formula (2.6.7), let’s illustrate how to use it to

compute a simple Coulomb branch Hilbert series.

Example Consider the quiver

1

2
.QA1 =

(2.6.14)
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We wish to calculate the Hilbert series of C(QA1). The ingredients we need are: the magnetic charges

to sum over, mi,j for j = 1, ..., ni and i = 1, ..., p; and the conformal dimension ∆, topological charge

J and dressing factor PU(1) as functions of these charges.

Here there is just one gauge group, U(1), hence p = 1 and m = m1,1 ≡ m is a vector of length one

containing only one magnetic charge, which can take values in Z (2.4.12).

The conformal dimension for this node is

∆(m) = 1

2
(∣m∣ + ∣m∣) = ∣m∣, (2.6.15)

found by using (2.4.20) for the H = 1 hypermultiplet connecting the U(n = 1) gauge group to a single

rank na = 2 flavour node (recall flavour nodes have no magnetic charge).

The topological charge for a bare monopole of a single gauge group with magnetic charge m is simply

the length one vector

J(m) =m, (2.6.16)

following (2.4.24) with p = 1, n1 = 1, and is graded by a single fugacity z.

The dressing factor counting the adjoint scalars at various R-charges that can dress Vm is simply

PU(1)(t,m) =
1

1 − t2 , (2.6.17)

following (2.6.13) with p = 1, n1 = 1.

Thus the Hilbert series is given by

HS(t, z) = 1

1 − t2
∞
∑

m=−∞
zm t2∣m∣

= 1 − t4
(1 − x2 t2) (1 − t2) (1 − x−2 t2)
= 1 + (x2 + 1 + x−2)t2 + (x4 + x2 + 1 + x−2 + x−4)t4

+ (x6 + x4 + x2 + 1 + x−2 + x−4 + x−6)t6 +O(t7),

(2.6.18)

where the map z → x2 was used to get from the first line to the second, and the final line is a Taylor

expansion of the second about t = 0. The z → x2 mapping is called a fugacity map. The reason for

the use of such maps is discussed first in Section 2.6.2, then again in 2.6.6 along with details on how

to find them. ◻

Now that we have understood how to use the monopole formula, we’ll move on to discuss what exactly

the Coulomb branch Hilbert series tells us about the physics of the theory.

2.6.2 Encoded infomation

In Section 2.6.1, we saw a formula (2.6.7) which enables us to calculate Hilbert series, and how to

use it. We now want to understand what it can tell us about the Coulomb branch.
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Operator content Firstly, it’s worth restating the inherent benefit of its design, as this already

provides a lot of information: the Hilbert series tells us the number of operators lying in the chiral

ring of the Coulomb branch at various charges under the global symmetries of the theory. The powers

of t give the charges under the U(1)R symmetry, and the powers of z give the charges under the

enhanced topological symmetry GS. Operators on C fit into representations of its global symmetries;

the coefficient of t2k will be a sum of characters of the representations of GS which have R-charge k

(possibly after some fugacity map, see Section 2.6.6).

Global symmetry Secondly, the t2 coefficient of the Hilbert series tells us the local form of GS: it

is the character of the adjoint representation of GS [12], after a possible fugacity map.26 For example

in (2.6.18), after the map z → x2, the coefficient of t2 is the fundamental weight character of the

adjoint representation of SU(2), hence GS = SU(2) (locally). Indeed, all other t2k coefficients are

other characters of SU(2), and this is the local form of our global symmetry. This can help us to write

the Hilbert series in an alternative form, as the highest weight generating function (HWG) [60], which

neatly captures the representations of GS present at each R-charge using notation corresponding

to their highest weights. The HWG is found by replacing each fundamental weight character in

the Hilbert series with Dynkin fugacities µ1, ..., µr, r = rank(GS), graded by the character’s highest

weight. Concretely, to obtain the HWG from the Hilbert series, a character with highest weight

[w1, ...,wr] is replaced by µw1

1 µw2

2 ⋯µwr
r . For instance, in the example of (2.6.18) the HWG reads:

HWG(t, µ) = 1 + µ2t2 + µ4t4 + µ6t6 +O(t7)

=
∞
∑
i=0
µ2it2i.

(2.6.19)

where µ1 ≡ µ is the single Dynkin fugacity for our rank one GS = SU(2). Note that from this HWG

we can see that no representations with odd highest weights appear on C: the global form of GS

is actually SO(3) ≅ SU(2)/Z2. In general the global form will be the local form quotiented by a

subgroup of its centre. It can be found from the HWG by analysis of the charges of all generating

representations (not just those at t2) under the centre of the local form of GS (as obtained from

the t2 term), but as previously mentioned this will not be of interest to us in this thesis, and in the

remaining chapters we only quote the local forms.

Generators and relations Thirdly, the plethystic logarithm of the Hilbert series can be used to

count the generators and relations of C. This is through virtue of the fact that the chiral ring is com-

mutative, and so the Hilbert series is the symmetric product of some set of generating representations

subject to relations. As a result, PL(HS) will give us these generating representations and relations,

as discussed in Section 2.3.2.1 and at the top of Section 2.6. Recall that the Coulomb branch as an

algebraic variety is defined by a set of generators and the relations they satisfy. While PL(HS) does
not give us the explicit form of the generators and relations, it does tell us how many there are and

in what representations of U(1)R ×GS they lie. For example, consider the Hilbert series (2.6.18) of

the Coulomb branch of (2.6.14). We find that

PL(HS(C(QA1)))(t, z) = (z2 + 1 + z−2) t2 − t4

= [2] t2 − [0] t4,
(2.6.20)

26Note that in an unrefined Hilbert series, the t2 coefficient is the dimension of GS. This is often enough to be pretty

certain of GS, although without the refinement there is still ambiguity: for example, 3t2 could mean GS = SU(2), but

could also mean GS = U(1)3, etc.
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where in the second line we use highest weight notation for the fundamental weight characters in

the first line. This tells us that the Coulomb branch chiral ring is generated by 3 generators which

form the adjoint representation of GS = SU(2), each with R-charge ∆ = 1, satisfying one relation

which transforms trivially under the SU(2) topological symmetry and under the U(1)R symmetry

with charge ∆ = 2. Note that this Hilbert series exactly matches that of C2/Z2 (2.6.6). As we saw

in the discussion following (2.6.6), on its own, this is not enough to indicate that C(QA1) ≅ C2/Z2.

In this case, equivalence of the two varieties can actually be proven either directly in the Coulomb

branch construction or via mirror symmetry [18, 51], but the details won’t be important for us here.

Note that we can also find the generators and relations of the HWG, but that they do not match

those of the Hilbert series in general. However, sometimes PL(HWG) is a simpler expression than

PL(HS), and so can be used as a nicer way to encapsulate the variety.

2.6.3 Perturbative Hilbert series

While knowing the exact form of the Hilbert series contains all the representation content we could

want, often just knowing the first few terms in its Taylor series is sufficient to learn what we would

like to. For example, if we are just after the local form of the global symmetry then computing to t2 is

sufficient. We find the Hilbert series to order t2Λ by evaluating the monopole formula perturbatively ;

by restricting any infinite sums over the mi,j in (2.6.7) to terminate at ±Λ.

Example Consider the example of the monopole formula for (2.6.14), (2.6.18). To obtain the

perturbative Hilbert series to order 2Λ = 6, we simply restrict the sum over m to run between

±Λ = ±3. If we do this, we indeed find

HS(t, z) = 1+(z2+1+z−2)t2+(z4+z2+1+z−2+z−4)t4 +(z6+z4+z2+1+z−2+z−4+z−6)t6+O(t7), (2.6.21)

as we did before when the sum was infinite. We can take the plethystic logarithm of this to find

generators and relations as before, again just making sure to terminate both the infinite sum in

(2.3.3) and the infinite sum in the Taylor expansion of the logarithm at the cut-off order 2Λ. Note

that the result will of course only be valid to this order; we will not learn of any generators or relations

at R-charges greater than ∆ = Λ.

2.6.4 Non-simply-laced quivers

Recall from Section 2.2.1 that we sometimes come across 3d N = 4 quivers with non-simply-laced

edges (for example (2.2.9)). To compute the monopole formula for such quivers, a modification needs

to be made to the conformal dimension of the non-simply-laced edge.

A short node is defined to have charges lying in a magnetic lattice scaled by the multiplicity k of its

edge; each subdivision of the lattice is split into a further k. In the monopole formula (see Section

2.6.3), this amounts to the following changes [61]:

⋅ In the formula for the conformal dimension of the non-simply-laced edge, the magnetic charges

for the long node are scaled by k. That is, for a non-simply-laced edge of multiplicity k

connecting a long node U(n1) to a short node U(n2), which have magnetic charge m1 and m2

respectively, the conformal dimension ∆ is

∆ = 1

2

n1

∑
i=1

n2

∑
j=1
∣km1,i −m2,j ∣. (2.6.22)
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⋅ Ensure any sum over the charges for a short node is running over k times the usual limits (e.g.

the upper limit for mi,1 in a perturbative calculation would be k ⋅Λ).

Under this definition, quivers with a short node cannot be interpreted as a supersymmetric gauge

theory Lagrangian in the standard way, as the lattice which the short magnetic charges are summed

over is not of the form ΛG∨/WG∨ for any semi-simple Lie group G. The reason for defining short

nodes in such a way is that it leads to natural extensions of results in simply-laced quivers that reflect

simply-laced Dynkin diagrams [61]. Coulomb branches of non-simply-laced quivers can also be seen

as folded versions of Coulomb branches of simply-laced Lagrangian quivers [62], although the details

of this won’t be important for this work. Before we move on, we’ll see an explicit calculation of the

monopole formula for the non-simply-laced quiver (2.2.9).

Example In (2.2.9), there are two gauge nodes: a U(2) and a U(1). We’ll call their magnetic

charges m1 = (m1,1,m1,2) and m2 = (m2,1) respectively. Suppose we wish to compute the monopole

formula to order t2Λ. Then the monopole formula will be:

HS(t, z1, z2) =
Λ

∑
m1,1=−Λ

m1,1

∑
m1,2=−Λ

3Λ

∑
m2,1=−3Λ

PU(2)×U(1)(t,m1,1,m1,2,m2,1) t2∆(m1,1,m1,2,m2,1) z
m1,1+m1,2

1 z
m2,1

2 ,

(2.6.23)

where

∆(m1,1,m1,2,m2,1) = −∣m1,1 −m1,2∣ +
1

2
(∣m1,1∣ + ∣m1,2∣ + ∣3m1,1 −m2,1∣ + ∣3m1,2 −m2,1∣) , (2.6.24)

and the dressing factors are as given in (2.6.13). For e.g. Λ = 5, we find HWG

HWG(t, µ1, µ2) = 1 + µ2 t
2 + µ2

2 t
4 + µ3

2 t
6 + µ4

2 t
8 + µ5

2 t
10 +O(t11), (2.6.25)

where µ1, µ2 are the Dynkin fugacities for the topological global symmetry GS = G2.

2.6.5 Ungauging

The two quivers we have computed the monopole formula for so far, (2.6.14) and (2.2.9), both have

flavour nodes; they are framed quivers. However recall from Section 2.2.1 that a quiver theory need

not have flavours, and in fact virtually all that we study in this thesis do not. To compute the

monopole formula for an unframed quiver, one additional action needs to be performed: ungauging.

This is because there is a diagonal U(1)d symmetry which acts trivially on the Coulomb branch of

unframed quivers, and left untreated this renders infinities in the monopole formula. In order to

compute the Hilbert series of the quivers we study, then, it is important we learn how to account for

this U(1)d and only count one operator in each of its orbits. The process of doing this is known as

ungauging.

Suppose we have a quiver theory with gauge groups U(ni) for i = 1, ..., p. Denote a generic element

in U(ni) as gi. Firstly, note that since the center of U(ni) is U(1), any U(1) transformation leaves

the vectormultiplets of the theory invariant. Any hypermultiplet Hij in an unframed quiver is in the

bifundamental representation of the two gauge groups it connects U(ni) ×U(nj). It transforms as

Hij → giHijg
−1
j . (2.6.26)

Consider the U(1)i subgroup of U(ni), given by qi ⋅ 1ni , for qi ∈ U(1) and 1ni the ni × ni identity
matrix. Then a generic bifundamental hypermultiplet transforms as

Hij → qi q
−1
j Hij . (2.6.27)
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Clearly if we choose qj = qi, then Hij is invariant under gauge transformations. Thus, every hyper-

multiplet is invariant provided all gauge groups act via the same U(1) transformation; this is why

U(1)d is termed diagonal. This justifies our claim that C is completely invariant under U(1)d.

But what does this mean for us? Recall that the monopole formula counts dressed monopole opera-

tors on C. This diagonal U(1)d in the gauge symmetry means that if the magnetic charge m̃ is equal

to the magnetic charge m with each entry shifted by the same constant value, then Vm̃ is identified

with Vm under this gauge symmetry. Thus, if we don’t ungauge this U(1)d we will count several

gauge equivalent states, overcounting the number of physical monopoles we have. This can be seen

directly from the monopole formula, which will give infinitely many operators at each R-charge if

nothing is done to mitigate this U(1)d, as m and m̃ give the same ∆ and PG. It is also clear why

framed quivers don’t face this worry: the flavour contributions to ∆ are of the form e.g. ∣m1∣ + ∣m2∣,
which are clearly not invariant under shifts.

To sidestep this overcounting for unframed quivers, we ungauge the U(1)d. The way we need to do

this, in order to give the correct gauge group,

p

∏
i=1
U(ni)/U(1)d, (2.6.28)

is to set one of the magnetic charges for one gauge node to zero [13]. Note that this means ungauging

on a U(1) gauge node essentially “turns it into” a flavour node of rank 1. For unframed non-simply-

laced quivers (see Section 2.2), the Coulomb branch of the quiver is defined as that given by ungauging

on a long node. Ungauging on a short node isn’t a meaningful notion, as we lack a gauge theoretic

interpretation to short nodes (as we saw in Section 2.6.4).27

2.6.6 Fugacity maps

We are used to working with characters which are given as fugacities graded by the weights of the

representation in question. We will call characters expressed in this way fundamental weight charac-

ters, and their fugacities fundamental weight fugacities xi. However, as mentioned in Sections 2.6.1

and 2.6.2, the coefficients of t appearing in the Hilbert series are not always immediately characters

of this form. Often, the zi of (2.6.7) must undergo some sort of mapping before becoming the fun-

damental weight fugacities xi so that the coefficients they form can be readily recognised as some

sum of fundamental weight characters of the relevant topological global symmetry group GS. Such a

mapping is called a fugacity map. Note that in an unframed quiver, the map can change depending

on where you ungauge. Recall that the t2 coefficient of the Hilbert series of a moduli space forms the

character for the adjoint representation of its global symmetry. This means that we can isolate just

the t2 term to find the fugacity map.

In the simplest cases, the t2 coefficient in the Hilbert series comes out as the character of the global

symmetry in terms of the simple roots (we will call such characters simple root characters28) without

any manipulation of fugacities. In these cases the fugacity map required is simply given by the

27Although note that in [63] it was found that ungauging on a short U(1) node produces an orbifold of the Coulomb

branch obtained from ungauging on a long node.

28Recall that characters encode a representation. Said representation contains certain weights, written in terms of

a linear combination of fundamental weights, and the coefficients in this linear combination are how we grade the

fundamental weight fugacities in the fundamental weight character. For the simple root character, the only difference
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Cartan matrix. This is the case for example for any affine Dynkin diagram (see Table 3.1.1) when

the ungauging is performed on the affine node.

Example Consider the affine A2 Dynkin diagram, which we know has global symmetry SU(3).
The ungauged quiver is

1

1

1

1

.

(2.6.29)

If we call the simple roots of SU(3) α1 and α2, then the full root system is

{α1, α2, α1 + α2, −α1, −α2, −α1 − α2}. (2.6.30)

Assigning fugacities z1 and z2 to the remaining gauge nodes, the Hilbert series of (2.6.29) can be

computed to t2 as

1 + (2 + z1 + z2 + z1z2 +
1

z1
+ 1

z2
+ 1

z1z2
) t2 +O(t4). (2.6.31)

The t2 term has unrefined dimension 8, and so we expect an SU(3) global symmetry. This can be

confirmed by inspecting the refined t2 coefficient: it is indeed the root decomposition of the algebra

of SU(3). The Cartan subalgebra is encoded in the constant term equal to rank(SU(3)) = 2, and
all positive and negative roots are encoded by the products of z1, z2 and their reciprocals: z1 and z2

are raised to the powers of the coefficients of the simple roots that are equal to these positive and

negative roots. That is, if one uses the identification

c1 α1 + c2 α2 ←→ zc11 zc22 , (2.6.32)

we see that the root system of SU(3) (2.6.30) and the two Cartan elements completely comprises the

t2 coefficient of the Hilbert series (2.6.31). This tells us that (2.6.31) is written in terms of simple

root characters of its global symmetry SU(3). To convert to the more familiar fundamental weight

characters then, we need to apply the Cartan matrix as our fugacity map:

⎛
⎝
z1

z2

⎞
⎠
= C
⎛
⎝
x1

x2

⎞
⎠

(2.6.33)

for C the Cartan matrix of SU(3)

C =
⎛
⎝
2 −1
−1 2

⎞
⎠
. (2.6.34)

Note that the matrix multiplication isn’t meant in the usual sense here: rather than the entries of

the matrix being coefficients of the vector they multiply, they are instead the powers that the vector

elements (that they would traditionally multiply) are raised to. Applying this map yields the Hilbert

series

1 + (2 + x
2
1

x2
+ x

2
2

x1
+ x1x2 +

x2
x21
+ x1
x22
+ 1

x1x2
) t2 +O(t4), (2.6.35)

the t2 coefficient of which we indeed recognise as the usual fundamental weight character of the ad-

joint representation of SU(3). This confirms the local form of GS as SU(3). ◻

is that the weights are written in terms of a linear combination of the simple roots instead. This linear combination

will clearly have different coefficients to the equivalent linear combination of fundamental weights, hence the different

character.



2.6. HILBERT SERIES 46

In most cases the fugacity maps are a bit trickier to find. However there are some well known tricks

that work in a lot of instances, and we will try to illustrate these in the following example, a quiver

that will appear in Chapter 3.

Example Consider the quiver:

2
z1

4
z2

6
z3

8
z4

5
z5

5 z6

2 z8

2
z7

,

(2.6.36)

and label the topological fugacities for each node as shown in red.29 The t2 coefficient in the unrefined

Hilbert series is 79, which is the dimension of SO(13)×U(1).30 Refined, it has virtually no fractional

terms, which means it can’t be in the form of the root system of this global symmetry.31 We have

two unbalanced nodes, which we don’t expect to contribute to the non-abelian global symmetry. A

nice trick that often works is to map a fugacity zi corresponding to an unbalanced node of rank ri

to the rthi root of the inverse of the product of all other fugacities raised to the power of their node

ranks:

zi Ð→ ri

¿
ÁÁÀ 1

∏j≠i z
rj
j

. (2.6.37)

In this case there are two unbalanced nodes: z7 and z8. We choose to pick z8 to be our zi of (2.6.37),

and thus our map here will be

z8 Ð→ 2

√
1

z21 z
4
2 z

6
3 z

8
4 z

5
5 z

5
6 z

2
7

. (2.6.38)

After applying this, the z7 fugacity also drops out of the Hilbert series, and so we have just z1, ..., z6

left. In the resulting Hilbert series there are terms of the form

√
z5 z6,

√
z5
z6

appearing, and we don’t have fractional powers in root systems. So a natural map to take next is

z5 Ð→
z9
z10

, z6 Ð→ z9 z10.

In fact we find that then just sending

z9 Ð→ z9 z10

gives us the root decomposition of SO(13) ×U(1),32 i.e. its simple root character. We can then just

note that the simple roots are given by the Cartan matrix acting on the fundamental weights to find

29The general intuition for doing this is that there is a balanced D6 Dynkin diagram, and so we label the nodes in

this with index corresponding to the weight that node represents in highest weight notation.

30The character of a product group irreducible representation is equal to the sum of the characters of the individual

irreducible representations of each group in the product.

31The weight system of a real representation is comprised of some set of weights and their inverses, and possibly

some trivial elements. The adjoint representation is real, and so here the weights are plus and minus the positive

root system, in addition to the Cartan elements. This means the refined t2 coefficient would have an even number of

fractional and non-fractional terms that would be inverses of one another.

32Recall the adjoint representation of U(1) is just the trivial representation.
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the more recognisable fundamental weight characters. Overall the fugacity map between the zi in the

monopole formula and the fundamental weight fugacities xi of B6 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

z2

z3

z4

z5

z6

z7

z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=M C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1

x2

x3

x4

x5

x6

f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.6.39)

where f is just some auxhiliary fugacity that disappears in the Hilbert series under this map, and M

and C are given by:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 2 0

0 0 0 0 0 0 1

−1 −2 −3 −4 −5 −5 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −2 0

0 0 0 0 −1 2 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.6.40)

M is the matrix used to multiply the simple roots to find the zi, C is the Cartan matrix of B6 (with

an extra trivial row tagged along to respect the auxiliary fugacity), and the fundamental weight

fugacities xi are indexed in the usual order corresponding to the B type Dynkin diagram:

x1 x2 x3 x4 x5 x6

.

(2.6.41)

◻

2.7 Hasse Diagrams

Hasse Diagrams [64, 65, 66] are another tool that have been adapted and developed to help us analyse

the moduli spaceM of 3d N = 4 theories [9, 67, 68]. We can stratify the vacua onM into sets such

that all vacua in each set have the same set of massless states.33 A Hasse diagram forM is a depiction

of this stratification. The more massless states there are at a point, the more the symplectic form

degenerates; the variety becomes more singular at that point. From the algebrogeometric perspective

then, the Hasse diagram depicts the increasingly singular subsets of the variety. A subset ofM with

a particular set of degeneracies of ω (or equivalently a particular set of massless states) is associated

to (the closure of) a symplectic leaf. The moduli which need to be tuned to move from one symplectic

leaf to another are called transverse slices. A transverse slice for two adjacent symplectic leaves is

called an elementary slice.

33A massless state in the low-energy vacuum has vanishing vacuum expectation value.
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In general, a Hasse diagram is simply a depiction of a partial ordering on a set (S,≤). For instance,
if S is comprised of three distinct elements a, b and c which are related under some partial ordering

as a ≤ b ≤ c (note that these are actually totally ordered), then the Hasse diagram for S would be:

c

b

a

.

(2.7.1)

For us, S will be the symplectic leaves, and the partial ordering ≤ will be an inclusion of closures.

That is, if one particular symplectic leaf (i.e. the set of vacua with one particular set of massless

states) L1 lies within the closure of another symplectic leaf L̄2, then L1 ≤ L2:

L2

L1

.

(2.7.2)

The transverse slice from L2 to L1 (the line connecting them) is the space inside the closure of L̄2

that is transverse to L1. It has dimension equal to the codimension of L1 inside L̄2. Note that any

transverse slice is also a symplectic singularity, as it defines a set of points inside the closure of the

higher symplectic leaf34 which are singular, via the symplectic form inherited from C.

The classical Higgs branch Hasse diagram can be determined from the bottom up [9], i.e. starting

at the most singular point where the gauge group is fully unbroken and all fields are massless. The

adjoint Higgs mechanism is then used to determine the massless hypermultiplets at each possible

breaking of the gauge group G, all the way up to where G is fully broken (a generic point on the

Higgs branch). However when the coupling is taken to infinity, the Higgs branch is non-classical and

no Lagrangian description is available, rendering the above technique invalid. To study such Higgs

branches, an alternative description is needed. The tool we opt to use to achieve this is called the

magnetic quiver ; a quiver whose 3d N = 4 Coulomb branch is equal to the Higgs branch in question.

Magnetic quivers feature in this thesis in Section 4.7 to describe the Higgs branches of certain 5 and

6d theories with UV/IR fixed points at infinite coupling (i.e. at their UV [69] and IR [70] fixed points,

respectively).

2.7.1 Magnetic Quivers

Suppose we are concerned with the Higgs branch of a quiver theory Q which we are unable to compute

classically. We’ll call Q the electric quiver. Then its magnetic quiver, Q′, is defined such that35

H(Q) = C(Q′). (2.7.3)

When the electric theory is a 5d quiver Q at infinite coupling, since the coupling is a parameter of

the theory and not a modulus or inherently specified by Q, we write

H∞(Q) = C(Q′). (2.7.4)

34The “higher leaf” is the leaf inside the closure of which the “lower leaf” lies. Here, the higher and lower leaves are

L2 and L1 respectively.

35The pair are called electric and magnetic quivers to reflect this duality between the Higgs and Coulomb branches

of their moduli spaces.
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One can find the magnetic quiver for an electric theory via analysis of its brane system [69, 48, 71, 72,

73, 40, 16, 74, 75, 76, 77, 78]. How this is done will not be important for understanding the results

we present; when we employ a magnetic quiver to help us calculate the non-classical Higgs branch of

an electric theory, it will simply be stated without proof.

We pause briefly to make a quick comment on terminology. The two phrases magnetic quiver and

Coulomb quiver are used many times during this thesis, and seem to mean the same thing: they

describe the quiver whose Coulomb branch is the object in question. The distinction in terminology

is important for context of the object. We use the term magnetic quiver when we are studying the

Higgs branch of some electric theory via the Coulomb branch of the magnetic quiver, whereas we use

the term Coulomb quiver when we are studying an algebraic variety of unspecified origin via a quiver

whose Coulomb branch is known to match it. Analogously to a Coulomb quiver, a Higgs quiver for

a variety V is a quiver whose Higgs branch is known to match V.

2.7.2 Quiver Subtraction

In this thesis, while we do study some Higgs branches (for example in Section 4.7), it is always via

the Coulomb branch of their magnetic quivers; we only need to learn of the techniques we use in

relation to Coulomb branches. In the context of Hasse diagrams, this means we only need to learn

how to explore the singularity structure of the Coulomb branch.

Recall that to explore a classical Higgs branch Hasse diagram, one starts from the origin of H where

the gauge group is fully unbroken and everything is massless, before Higgsing to climb up the Hasse

diagram to the most generic (and least singular) points of H. The technique developed to produce

the Coulomb branch Hasse diagram takes an opposing approach: top down. We start from the most

generic points on C (the least singular) and work down to find the singularities, using a method called

quiver subtraction [34].

Quiver subtraction was conceived by the authors based on their work with Kraft-Procesi transitions

[79] in the brane system [80, 39]. It was found that for brane systems of maximal nilpotent orbits,

one could reproduce the known Hasse diagram of the orbits for a specified algebra by aligning branes

in the Coulomb phase of the brane system and “un-Higgsing”. This corresponds to tuning moduli

to move from a leaf36 in C to another leaf with additional massless states. When a minimal number

of branes are aligned (or equivalently a minimal number of moduli are tuned) to move from one leaf

to another, the transverse slice corresponding to these moduli is called an elementary slice, and the

two leaves are adjacent (there exist no other intermittent leaves between them). From these mini-

mal transitions, all composite ones can be obtained. The process of aligning branes was translated

into quiver subtraction, a graph theoretic algorithm to be performed on a given quiver [34]. Here it

was conjectured that subtracting Coulomb quivers of elementary slices from the quiver of a theory

constructs its Coulomb branch Hasse diagram. This conjecture has not been proven generically, but

there are many cases for which it has been (for example through use of mirror symmetry [51] and

Higgsing), and no counterexamples have yet been found.37

36Here, as in many places throughout the thesis, we use “leaf” in place of “symplectic leaf” for the sake of brevity.

37Note that the precise form of the quiver subtraction algorithm has received updates along the way (for example in

[16]), and we anticipate it will continue to do so.
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Quiver subtraction starts from the quiver Q for a theory, which represents the top leaf L of the

Coulomb branch Hasse diagram. Each known elementary slice (note that this list is incomplete) has

a corresponding Coulomb quiver σ (or possibly several). One identifies all σi that “lie within” Q,

and for each one, subtracts Q−σi to give another quiver Q1,i which corresponds to a leaf L1,i on the

next level down from L in the Hasse diagram. If Q1,i is non-trivial, the process is repeated again for

each leaf L1,i, until no non-trivial quivers representing leaves are left. The Hasse diagram then takes

the form:

Q

Q1,i

⋯
Q1,1

⋯ ⋯

⋯ ⋯ ⋯

C(σ1) C(σi)

(2.7.5)

where the closure of a leaf is the Coulomb branch of the quiver associated to the leaf, and each edge

is labelled by the symplectic singularity that the moduli in the transverse slice form.

Importantly for us, it is conjectured that the product of the symmetries of the bottom-most ele-

mentary slices in a Hasse diagram is a subgroup of the non-abelian part of the topological global

symmetry GS. In Chapter 3, quiver subtraction and its reverse process, quiver addition [10], are ex-

ploited to find quivers with enhanced Coulomb branch global symmetry. Although quiver subtraction

was derived from brane systems, in the absence of a brane picture the rules for subtracting quivers

can often still be implemented, although a physical motivation for doing so is absent and the Hasse

diagram derived cannot be verified. Whilst this is the case for many quivers studied in Chapter 3,

in all cases we find evidence supporting the validity of using quiver subtraction. In particular, for all

Coulomb branches studied in Chapter 3, the symmetries of the bottom-most elementary slices of the

Hasse diagram agree with the non-abelian part of the correct GS as computed using the monopole

formula.

It’s now time to make the above discussion concrete and explicitly state the quiver subtraction

algorithm, presented so as to be of greatest use for our purposes. In particular, we state the algorithm

for unframed quivers only, as it is only such quivers whose Coulomb branch Hasse diagram we explore

(we are not concerned with the Hasse diagrams of the select few framed quivers appearing in this

thesis). The steps in the algorithm we are about to outline are all detailed in other papers [34, 9, 16],

but we compile them here for the readers convenience. It will be necessary to consider the Coulomb

quivers for all known elementary slices, and the complete up-to-date collection can be found by

compiling Table 1 of [81], and Table 3.1.2 of this note.

Quiver subtraction algorithm Consider an unframed unitary 3d N = 4 quiver Q. A valid

elementary slice that can be subtracted from Q is one whose Coulomb quiver σ has nodes that “lie
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within” Q. By this, we mean that a connected subset of the nodes in Q, Qσ, is in the shape of σ,38

and that the rank of each node in Qσ is greater than or equal to that of its corresponding nodes in

σ. Note that there may be many possible choices for Qσ for a given σ, and many choices of σ for a

given elementary slice: all such choices lead to different transverse slices in the Hasse diagram. The

following steps then show us how to perform the subtraction Q − σ for a particular Qσ.

1. Subtract. For each node in Qσ, subtract the rank of the corresponding node in σ.

2. Rebalance. Identify the nodes which have undergone a change in excess, as defined in (2.2.11),

due to the subtraction. Call the set of such nodes E, and define El as the subset of E that

are long nodes and Es as the subset of E that are short nodes. The nodes in E must be

“rebalanced” so that they have the same excess as before. This is done differently depending

on the scenario:

a) If the subtraction performed was not identical to the previous subtraction (i.e the same

slice σ being taken from exactly the same subset Qσ of Q), then add a U(1) node u to the

quiver, and connect it to the nodes in E in the following way:

i) Connect all nodes in El to u with sufficiently many simply laced edges such that the

excess of the nodes in El is restored to the values they took before the subtraction.

ii) Connect all nodes in Es to u with sufficiently many non-simply laced edges whose

multiplicity is equal to the “shortness” of the node in Es in question, such that u is

the long node and the excess of the nodes in Es is restored to the values they took

before the subtraction.

Note that the added U(1) node u need not be balanced; it may have excess eu ≠ 0. However

if a subsequent distinct subtraction39 is performed, the excess of u after this subtraction

will have to be restored to its value before the subtraction, eu.

b) If the subtraction performed was the nth (n ≥ 2) in a string of identical subtractions (i.e.

subtracting the same slice σ from precisely the same subset Qσ of Q multiple times in a

row), then, calling the U(1) node added to rebalance after the first such subtraction u,

apply the following:40

i) If n = 2, add an adjoint hypermultiplet to u, and increase the rank of this node to two.

ii) If n ≥ 3, u will already have an adjoint hypermultiplet from the n = 2 subtraction, so

simply raise the rank of u by one (this will mean its rank is n).

Example Consider the quiver

1
0

2
0

3
0

2
0

1
0

1
1

1
1

,

(2.7.6)

38More precisely, Qσ being in the shape of σ means that, up to some permutations of rows, the Cartan matrix

describing the links between nodes in Qσ contains the Cartan matrix describing the links between nodes in σ.

39By distinct subtraction, we mean any subtraction which is not subtracting σ from the exact same set of nodes Qσ .

40Note that the concept of decorated quivers has been introduced to keep track of multiple same slice subtractions

[16, 68, 82].
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where the ranks of the gauge nodes are given in black, and we’ve noted the excess of each node in

red. We can see that the central five nodes form the shape of the magnetic quiver for the d4 slice

and have appropriately large ranks, so this slice can be subtracted. No other slice is a subset of the

nodes of this quiver, so this is the only possible subtraction. Performing Step 1 gives

1
−1

1
0

1
0

1
0

1
−1

.

(2.7.7)

Here, the nodes which have changed excess are the two end nodes. They are both long nodes, and

so E = El (Es is empty). This means that in Step 2, we must follow option a)i).41 The nodes in E

both need just one extra flavour to restore their balance, and so we connect the new U(1) to either

end node with just a single simply laced edge:

1
0

1
0

1
0

1
0

1
0

10

.

(2.7.8)

We have coloured the rebalancing node u in blue for clarity. (2.7.8) is precisely the Coulomb quiver of

the elementary slice σ = a5, and so clearly this is all that can be subtracted. Doing so leaves nothing

left, and so this concludes the exploration of the foliation of the Coulomb branch of (2.7.6); its Hasse

diagram is

.
d4

a5

(2.7.9)

The interpretation here is if you pick a point on the Coulomb branch moduli space, it will lie on one of

the closures of the three leaves in the Hasse diagram (2.7.9), each of which correspond to a certain set

of massless states. The Coulomb branch of the quiver theory of (2.7.6) is obviously the closure of the

top leaf (the whole Hasse diagram), as this is the moduli space we’re studying. A generic point on this

Coulomb branch will have the maximal number of massless states: 10 massless vectormultiplets,42

and no massless hypermultiplets (by the BPS formula). All such points live on the top leaf, associated

to the quiver (2.7.6). There are then certain points on the Coulomb branch which have fewer massless

states: just 5 massless vectormultiplets now, plus a massless hypermultiplet.43 Such points lie on

the middle leaf of (2.7.9), and are associated to the quiver (2.7.8). The Coulomb branch of (2.7.8) is

then the closure of this middle leaf (i.e all points on this leaf and the bottom leaf). At one particular

point on the Coulomb branch all 20 vectormultiplets and 22 hypermultiplets are massless. This is

the origin of the Coulomb branch, and is the sole point which lives on the bottom leaf of (2.7.9). The

41An example of a quiver where one must instead follow Step 2)b) during the quiver subtraction process is (3.2.4).

42The number of massless vectormultiplets can be read from the quiver. The quaternionic dimension of the Coulomb

branch will be the number of monople operators we have, which is equal to the rank of the gauge group. The complex

or real dimension then is twice or four times this respectively.

43This massless hypermultiplet opens up Higgs branch directions in the Hasse diagram for the full moduli space as

it may now acquire a VEV [67]. That is, there is a set of moduli associated to this hypermultiplet which can be tuned

away from zero to explore the Higgs branch. It can be seen from the brane picture that these moduli correspond to

the d4 variety. Such a set of moduli is called a transverse slice, as discussed later in this paragraph.
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whole Hasse diagram obviously contains its bottom half, and so the Coulomb branch moduli space of

(2.7.6) contains that of (2.7.8). The transverse slice between these two Coulomb branches is d4, and

between the origin and the (2.7.8) Coulomb branch is a5. The transverse slices connecting two leaves

tell us the moduli that need tuning to or away from zero to move between the two corresponding

leaves. The lowest elementary slice is a5, and thus SU(6) must be at least a subgroup of the global

symmetry. Indeed this is confirmed upon computation of the Hilbert series, which tells us that the

global symmetry is SU(6) ×U(1). ◻



Chapter 3

Global Symmetry

In this chapter we present the work of [10], where we constructed many infinite families of quivers

for which the previously accepted algorithm for identifying GS from a quiver based on the balance

of its gauge nodes fails, giving only a subgroup,1 and provide a suggested amendment to this algo-

rithm to fix this. The content of this chapter relies heavily on the concepts of balance, the Coulomb

branch topological symmetry GS, fugacity maps, Hasse diagrams, quiver subtraction and discrete

projections. For a recap of these topics, see Sections 2.2.3, 2.4.2.2, 2.6.6, 2.7, 2.7.2, and Appendix A

respectively.

As discussed in Section 2.6.2, the GS for a quiver (recall we don’t concern ourselves with the global

form, although the generators of the Hilbert series can be used to determine this) can be determined

explicitly by computing the monopole formula and consulting the t2 term, after a possibly fugacity

map. However for quivers of sufficiently high rank, this method becomes too computationally inten-

sive to carry out, driving the want for an algorithm to determine GS from simple inspection of a

quiver. By and large, this can be done (for quivers containing only regular matter2) by applying an

algorithm [14] based on the quiver’s balanced gauge nodes [4]. We call the symmetry predicted by

this algorithm the balance global symmetry (BGS), and the algorithm itself the BGS algorithm.

However, there have been examples found in the past where the BGS algorithm only produces a

strict subgroup of GS, see for example [15, 16]. For these quivers, the true GS is an enhancement

of the BGS; we call the GS of such quivers the enhanced global symmetry (EGS). The failure

of the BGS algorithm to give the correct GS for all quivers indicates a need to improve it. In order

to decipher what the needed amendments are, we must first understand why it fails on the set of

examples found. This is precisely the concern of this chapter.

We make progress with this by considering the Coulomb branch Hasse diagrams of quivers with an

EGS. Recall from Section 2.7.2 that the symmetries of the bottom elementary slices in the Coulomb

branch Hasse diagram are conjectured to form a subgroup of GS. It turns out that the Hasse diagrams

1When we say the BGS fails, we mean that it fails to give the full global symmetry. This is not technically a

failure of the BGS as it only claims to give a subgroup of the full global symmetry, but it is a failure of the BGS as an

algorithm to always give us the full global symmetry of a quiver, hence our use of the terminology.

2Regular matter is used to refer to that contained in quivers for which the Cartan matrix of any two connected

nodes, ni and nj , has either the ij or ji entry as −1. This is extended from the definition of just having bifundamental

matter to include non-simply laced edges.

54
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of quivers experiencing an EGS contain a symplectic leaf whose corresponding quiver3 has an adjoint

hypermultiplet(s). In this chapter, we show that the presence in the Hasse diagram of balanced

quivers with adjoint matter,4 which we call Qa, induce lowest elementary slices and thus (under the

above conjecture) a GS of greater dimension than expected.5 In order to do this we start with these

quivers Qa, many of whom’s Coulomb branches appear in the Kostant Brylinski classification [12],

and reverse-engineer the process of quiver subtraction to obtain infinitely many quivers with an EGS.

This process that undoes quiver subtraction is called quiver addition, and has been introduced before

in [81]. We amend the method given there to include how to perform quiver addition to remove the

adjoint matter in Qa. We then use the logic implemented to construct these quivers with an EGS to

give a modification to the BGS algorithm which corrects its previous failings for all quivers presented

in this chapter.

As far as we checked, using quiver addition on many non-balanced quivers with adjoint matter also

gives an EGS.6 We restrict ourselves to the balanced subset Qa in this paper as we cannot list all

quivers with an EGS (there are infinitely many of them), and this is a natural and fairly small subset

to focus on to illustrate the idea.

The chapter is organised as follows. In Section 3.1 we review the BGS algorithm, and see an example

for which it fails. In Section 3.2, we conjecture an amendment to the BGS for balanced quivers with

adjoint matter Qa, provide a full list of such quivers, and give the method we use to perform quiver

addition on them. In Sections 3.3, 3.4, 3.5 and 3.6, the quivers with EGS which arise as the result of

performing quiver addition on the respective Qa (given in Table 3.2.1 of Section 3.2.1) are listed. The

global symmetries predicted by the BGS algorithm in these sections contain a factor that is enhanced

to Bn, G2, Dn and A2 respectively.7 Finally, in Section 3.7 we give a modified BGS algorithm which

works not only on all quivers for which the previous BGS algorithm worked, but also on all those

constructed in Sections 3.3 – 3.6.

3.1 Balance Global Symmetry

We start by reviewing the algorithm previously established for determining (a subgroup of) the

Coulomb branch topological symmetry from a quiver. The concept of framing and balance both

feature; for a recap, see Sections 2.2.1 and 2.2.3 respectively. The other potentially unfamiliar ter-

minology used is the phrase sub-Dynkin diagram. If a quiver contains unbalanced gauge nodes, the

balanced nodes naturally split into connected subsets which each take the form of a Dynkin diagram

of some simple Lie algebra. We call these balanced sub-quivers sub-Dynkin diagrams.

3By the quiver corresponding to a symplectic leaf, we mean the quiver whose Coulomb branch is equal to the closure

of the symplectic leaf.

4See the bullet points at the end of Chapter 1 for clarification of this statement.

5We do not rule out the possibility to find more quivers with an EGS whose Hasse diagrams do not contain a leaf

corresponding to one of the Qa.

6Although note that we may need to use an adaptation of the quiver addition algorithm presented in Section 3.2.2

if the quiver with adjoint matter in question does not satisfy the necessary conditions stated.

7The algebraic and Dynkin names for Lie groups, for example Bn and SO(2n + 1), will be used synonymously

throughout this paper.
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BGS algorithm

The balance global symmetry for a good quiver containing only regular matter,2 Qr, is computed as

follows:

1. If Qr is framed, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams Di of the

simple Lie groups Gi, and k unbalanced nodes, then the BGS is given by

BGSframed
Qr

=
s

∏
i=1
Gi ×U(1)k. (3.1.1)

2. If Qr is unframed, there are two scenarios:

a) If Qr is balanced, then it must be either the affine or twisted affine quiver for some simple

Lie group G (these quivers are given in Tables 3.1.1 and 3.1.2 respectively), in which case

BGSQr = G. (3.1.2)

b) If Qr is unbalanced, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams

Di of the simple Lie groups Gi, and k unbalanced nodes, then the BGS is given by

BGSunframed
Qr

=
s

∏
i=1
Gi ×U(1)k−1. (3.1.3)

where the definitions of s, Gi and k are as in Step 1.

As noted in the introduction however, this algorithm does not always yield the full global symmetry.

To see this explicitly, consider the following example.

Example Consider the quiver

Q =
2 4 6 8 5

5

2

2 (3.1.4)

where the red indicates that the corresponding node is unbalanced. Here, there are two unbalanced

nodes and one balanced sub-D6 Dynkin diagram. Thus we read off the BGS

BGSQ = SO(12) ×U(1). (3.1.5)

However if we compute the refined Hilbert series perturbatively (see Section 2.6.3) to order t2 for Q

we find that, after the appropriate fugacity map (see Section 2.6.6),

HSQ = 1 + (1 + [0,1,0,0,0,0]B6)t2 +O(t4), (3.1.6)

which means that the global symmetry is actually enhanced to

EGSQ = SO(13) ×U(1). (3.1.7)

Blue is used to highlight the factor of the global symmetry that is enhanced. Here we see explicitly

the failure of the BGS to give the full global symmetry. ◻
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Coulomb branch Affine Quiver

ak

1
⋯

1

1

k

bk

k ≥ 3 1 2
⋯

2 1

1

k − 2
ck

k ≥ 2
1 1

⋯
1 1

k − 1

dk

k ≥ 4 1 2
⋯

2 1

11

k − 3

e6

1 2 3 2 1

2

1

e7

1 2 3 4 3 2 1

2

e8

1 2 3 4 5 6 4 2

3

f4
1 2 3 2 1

g2
1 2 1

Table 3.1.1: Quivers of the affine Dynkin diagrams. The first column lists the Coulomb branch varieties,

which are all the minimal nilpotent orbits gk of the simple Lie groups Gk, of the quivers in the second

column when ungauged on a long node. These quivers will be referred to as “affine gk”.
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Coulomb Branch Twisted Affine Quiver

a2
2 1

a2k−1
2 2

⋯
2

1

1

k − 2

a2k

k ≥ 2

2 2
⋯

2 1

k − 1

d4
3 2 1

dk+1

k ≥ 4

1 2
⋯

2 1

k − 1

e6

k ≥ 2 2 4 3 2 1

Table 3.1.2: Quivers of the twisted affine Dynkin diagrams. The first column lists the Coulomb branch

varieties, which are all the minimal nilpotent orbits gk of the simple Lie groups Gk, of the quivers in the

second column when ungauged on a long node. These quivers will be referred to as “twisted affine gk”.

Now that we have seen the BGS algorithm and seen an example quiver on which it fails (i.e. a quiver

that has an EGS), we are ready to move on to describe the method by which we construct infinitely

many quivers with an EGS. In Section 3.7, we will present a modified BGS algorithm which does

work on Q (and all other quivers constructed with an EGS which appear in Sections 3.3 – 3.6), and

see its success with Q illustrated explicitly in an example.

3.2 Constructing Quivers with Enhanced Global Symmetry

The gauging of discrete symmetries in supersymmetric quiver gauge theories has received much at-

tention in recent years. The notion of gauging continuous symmetries is a familiar one: introducing

fabricated degrees of freedom to elicit mathematical trickery in order to simplify problems. Many

theories also have global discrete symmetries, such as time reversal or charge conjugation, and so

exploring the potential to gauge these symmetries should be of equal interest. In the context of the

moduli spaces of supersymmetric quiver gauge theories, this has been explored in [71, 83, 84, 62], for

example. The outer automorphisms of the quiver itself are obvious discrete global symmetries of the

theory, and thus we could choose to gauge them. In the string theory picture, this corresponds to

moving branes on top of one another, inducing extra massless strings stretching between them. A
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result of this is the following conjecture:

C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

k

1
⋯

1

⋮

n ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/Sn = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

k

n

⋮

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.2.1)

where C(Q) is used to denote the Coulomb branch of the quiver Q. This conjecture has been proven

on the level of the Hilbert series [83], but this is not sufficient to prove for good that the two Coulomb

branches are the same.

Let’s be explicit about what this tells us. The quiver on the left hand side, which we’ll call A, has

an Sn outer automorphism permuting the bouquet of n identical U(1) nodes, and so this Sn is a

discrete global symmetry of the theory described by A. Upon gauging this symmetry, we add further

constraining relations to the ring of gauge invariant chiral operators on the Coulomb branch, and

thus the Coulomb branch of this gauged theory will be an Sn quotient of that of A. Moreover, the

Coulomb quiver for this discretely gauged theory is found by compiling the bouquet in A together

into one single U(n) node with a hypermultiplet in the adjoint representation, as shown in the quiver

on the right hand side of (3.2.1), which we’ll call B. The intuition for this comes from the brane

picture discussed above. From here on out, we refer to such a hypermultiplet (i.e. one that is in the

adjoint representation of some gauge group) as an adjoint hypermultiplet, or more vaguely as adjoint

matter. Adjoint matter is represented in the quiver by a loop going to and from the node that it is in

the adjoint representation of. The conjecture (3.2.1) has been shown to be true in many cases, and

a counterexample has not yet been found, so it is believed to be true in general. For details on how

to find an Sn quotient of a moduli space in terms of its Hilbert series, see Appendix A in which an

example for n = 2 is illustrated.

In Section 3.2.1 we look at quivers with adjoint matter (whose Coulomb branches, by the above, can

be seen as discrete quotients of quivers containing only regular matter2) and see how to read their

BGS, before constructing the full set of balanced quivers for which each node has at most one adjoint

hypermultiplet. It is these quivers from which in the following sections we will construct, via quiver

addition, quivers with only regular matter that enjoy an EGS. The process of this construction is

outlined in Section 3.2.2.

3.2.1 Quivers with Adjoint Matter

The main result of this work is as follows: there are balanced quivers with adjoint matter which

we call Qa, listed in Table 3.2.1,8 that induce an EGS. By this, we mean that we have found many

quivers, derived by performing quiver addition on Qa to “absorb” the adjoint hypermultiplet (we

will see what this means more concretely in Section 3.2.2), which experience a symmetry that is

enhanced from that predicted by the BGS. Since the adjoint matter is absorbed in this process, the

resulting quivers are of type Qr.
2 The Hasse diagram of such a quiver Qr will contain the Hasse

8Note that, as explained in the bullet points at the end of Section 3.2.1, the quiver with global symmetry SU(2n+1)

in Table 3.2.1 is not part of the set of quivers Qa which we study in this note, as it is unclear how to perform quiver

addition in this case.
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diagram of the quiver Qa it was derived from, and so the global symmetry of Qa will be a subgroup

of the global symmetry of Qr, as explained in Section 2.7. This motivates us to study the quivers

Qa, and in particular their global symmetry. However, the above prescription for reading the BGS

does not specify what happens when there are gauge nodes with adjoint matter in the quiver. We

will call such gauge nodes ai, i = 1, ..., L, where L ∈ N is the number of nodes with adjoint matter.

One might naively think to just “ignore” the adjoint hypermultiplets (other than their contribution

to the balance of ai), and proceed with the algorithm given in Section 3.1. However, as the example

below shows, this leads to us identifying incorrect global symmetries. To correct this, we propose the

following extension to the BGS algorithm for balanced quivers containing an adjoint hypermultiplet.

Claim: Qa BGS algorithm

Let Qa be a balanced9 quiver which has L nodes that each have a single adjoint hypermultiplet, and

no nodes with more than one. Label these nodes ai and their ranks rai , for i = 1, ..., L. Furthermore,

impose that the nodes ai are only connected to other gauge nodes in Qa via simply laced edges. Then

the global symmetry of Qa can be determined by performing the following steps:

1. Replace the simply laced connections of the ai to other gauge node(s) of Qa by a non-simply

laced edge of multiplicity rai such that ai are the short nodes.

2. Remove the adjoint hypermultiplets attached to all nodes ai.

3. Set all rai = 1.

4. Call the resulting quiver after performing steps 1 − 3 Q̃a. The global symmetry of Qa is then

given by implementing the previous BGS algorithm listed in Section 3.1 on Q̃a.

The justification for this claim is found in examining the Hilbert series. For Qa, under the topological-

to-simple-root fugacity map, the topological fugacities for the nodes with adjoint matter ai correspond

to the simple root fugacities for the short nodes in Q̃a. This motivates the above algorithm, and

indeed gives the correct global symmetry for all quivers in Table 3.2.1. We illustrate the need for and

implementation of this claim below with the following example.

Example Consider the quiver

2a

2 2 2 2 1

1

(3.2.2)

This is a Coulomb quiver of the Kostant Brylinski classification [12], as its Coulomb branch is the

Z2 quotient of the minimal nilpotent orbit of D7 [84]: the next to minimal nilpotent orbit of B6

[62], O(3,110). Thus the global symmetry of (3.2.2) is B6. Let’s check this against the initial BGS

algorithm we gave in Section 3.1, if we were to treat a as we would any other node. Since there are

no unbalanced nodes, and among the gauge nodes there is just one balanced sub-Dynkin diagram

which is in the shape of A6, we would conclude that the global symmetry is SU(7), which is incorrect.

9This algorithm does also work for some unbalanced quivers with hypermultiplets as specified here. However it does

not work for all such quivers, and hence we restrict the validity of the algorithm to only the balanced subset.
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However, under the Qa BGS algorithm above, to correctly read the global symmetry, the connection

of a to its adjacent node is replaced by a non-simply laced edge of multiplicity two such that a is the

short node, its adjoint hypermultiplet is removed, and its rank is set to one:

1
a

2 2 2 2

1

1

,

(3.2.3)

We then proceed with the original BGS algorithm. Since (3.2.3) is unframed and forms the affine

Dynkin diagram of B6, hence we conclude that this is the global symmetry, which is indeed correct.

Note that although the quiver (3.2.3) has the same global symmetry as (3.2.2), it does not have the

same Coulomb branch. This algorithm should only be used to determine the global symmetry. ◻

It is worth noting that while this extension to the BGS algorithm is nice, it does not fulfill the

requirement of an all encompassing method for determining the global symmetry, as it still fails in

many cases. See for instance the example of (3.1.4), which is a quiver of type Qr and therefore has

no adjoint hypermultiplet, so the previous BGS failure is not fixed by the above ammendment.

The reason we are interested in these quivers with adjoint matter is because, as is explained in Section

3.2.2, when quiver addition is performed on them to absorb the node(s) with the adjoint hypermul-

tiplet, the resulting quiver experiences an enhanced global symmetry.

There are many quivers with adjoint hypermultiplets which will elicit an EGS in quivers derived

from them via quiver addition, but in this work we restrict ourselves to just a subset: the family of

balanced quivers whose nodes each have at most one adjoint hypermultiplet. These are the quivers

we refer to as Qa. They can be completely classified, and the full classification is listed in Table 3.2.1,

along with the Coulomb branch variety, enhanced global symmetry and HWG (see Section 2.6.2). It

is sufficient to, for now, restrict our study to these quivers, as they can be used to construct a healthy

range of examples for which the BGS fails. We proceed with proving the classification of these Qa.

Theorem. The set of 3d N = 4 balanced unframed unitary quivers with L ∈ N∖{0} nodes ai, i = 1, ..., L
that each have a single adjoint hypermultiplet but which otherwise only contain regular matter can be

completely classified, and the classification is given by Table 3.2.1.

Proof. First start by considering a single node a of rank ra with a single adjoint hypermultiplet, which

all such quivers in the theroem must contain. Note that ra > 1 because the adjoint representation of

U(1) is trivial. To be balanced, a must be attached to exactly two flavours. This limits us to: (i) one
rank two node attached via a simply laced edge; (ii) one rank two node with an adjoint hypermultiplet

attached via a simply laced edge; (iii) two rank one nodes, each attached via a simply laced edge;

(iv) one short rank one node attached by a non-simply laced edge of multiplicity two; or (v) one long
rank two node attached by a non-simply laced edge of multiplicity two. Note that we cannot have

one rank one node connected to a via two simply laced hypermultiplets because for this node to be

balanced it would force ra = 1. In the cases (ii), (iii), (iv) and (v), for these new nodes added to

be balanced, and because ra ≠ 1,10 it must be that ra = 2. Furthermore, this must be the end of the

10This constraint is relevant to mention because if ra = 1 were allowed, the new node could have been balanced by

attaching further nodes to it.
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chain, as these final nodes added are already balanced so we cannot possibly add anything more to

them. In case (i) we have three possibilities, as ra ≤ 4 otherwise the new node will be overbalanced,

and we know ra ≠ 1. Call this new rank two node attached to a in (i) node T . If ra = 4, the chain

ends here as T is already balanced. If ra = 3, then T must be connected to one flavour to be balanced,

and this ends the chain. If ra = 2, then in order for T to be balanced, it must connect to two flavours

also. This will again have the same options (i),(ii), (iii), (iv) and (v) as above, and again if option

(i) is chosen the chain will continue, until at some point it must end by choosing one of the other

options. Running through all these possibilities gives the full list of quivers in Table 3.2.1. ∎

The balanced quivers with adjoint hypermultiplets in Table 3.2.1, except for the n = 2 cases of bn/Z2

and a2n−1/Z2, could also be derived in an alternative way. Readers who are confident in the material

may wish to skip this paragraph and proceed to the bullet-pointed remarks on Table 3.2.1 below, as

its main use is to clarify ideas already introduced. Recall that the lowest elementary slices of the

Hasse diagram reveal a subgroup of the global symmetry. We therefore try to construct the most

basic building block quivers with adjoint matter which induce an EGS.11 This can be done by finding

the quivers Qa for whom Q̃a, as named in the Qa BGS alogrithm given at the top of this section, is

an elementary slice. More complicated quivers with adjoint matter that induce an EGS can then be

derived from these. At the time of writing, the full list of Coulomb quivers of the known elementary

slices is comprised of Table 1 in [81] and Table 3.1.2 in this paper. Thus our building block quivers

Qa are found by identifying these quivers that have short rank one nodes ai each connected to a

single rank two node bi via a non-simply laced edge of multiplicity rai , or to two rank one nodes bi1
and bi2 both via non simply laced edges both of multiplicity rai , and replacing these short nodes by

rank rai nodes with an adjoint hypermultiplet, connected to bi (or bi1 and bi2) via a simply laced

edge. Looking at the elementary slices, the only ones whose Coulomb quivers satisfy these criteria

are the affine quivers bn, c2 and g2, and the twisted affine quivers a2k (for all k ≥ 1) and dk+1 (for k ≥ 4).

There are several things worth noting regarding the quivers Qa in Table 3.2.1:

⋅ The quivers are ordered in such a way to best aid an illustration of the results in this paper. In

particular the first quiver yields the best illustration of the most basic quiver addition needed,

and the final quiver will not appear at all (it is unclear if it is possible to use quiver addition

to absorb the adjoint hypermultiplet on this node).

⋅ We have been unable to find the fully refined Hilbert series and HWG for the bn/Z2, dn+1/(Z2×
Z2), d4/S4 and a2n−1/Z2 quivers in Table 3.2.1. The reason is that in these cases, there are

not sufficient topological fugacities to apply the normal tricks we use to find fugacity maps.

However the partially refined Hilbert series can be found, which is the Hilbert series in terms of

the characters of some subgroup of the global symmetry. These partially refined Hilbert series

have been computed for all the quivers under discussion in this bullet point, but are not listed

as we were able to find the fully refined HWGs via other methods. We discuss these in turn,

labelling the quiver we’re addressing in each case by its Coulomb branch variety:

– bn/Z2: Here the HWG can be obtained by noticing that the variety of bn/Z2 is the next

to minimal nilpotent orbit of Dn [12], and so the Coulomb branch HWG can be computed

by applying the monopole formula to the unitary Coulomb quiver for this variety, given in

[38].

11Note that the Coulomb branches of these building block quivers are not elementary slices themselves, rather they

are derived from them.
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– dn+1/(Z2 × Z2): Here we have found the HWG in two different ways. Firstly, we use

conjecture (3.2.1) to realise the Coulomb branch of this quiver as the Z2 projection of

the next to minimal nilpotent orbit of Bn. The fully refined HWG for n.min Bn can be

computed exactly by applying the monopole formula to the top quiver in Table 3.2.1. The

Z2 projection of this can then be computed: see Appendix A for an example of how to

do this. We then (a) unrefined and (b) partially refined the HWG that resulted from this

projection, and confirmed that it agreed exactly with the unrefined and partially-refined

Hilbert series for the Coulomb quiver of dn+1/(Z2 × Z2) given in Table 3.2.1. The second

way we checked this HWG was by computing the Higgs branch of the Higgs quiver for

dn+1/(Z2 ×Z2), given in Figure 17 of [84]. This has been done for several n, and the result

matches that obtained by the first method, providing as much evidence for the validity of

this result as is possible using the monopole formula.

– d4/S4: Again using conjecture (3.2.1), the HWG for this variety can be found by applying

an S4 projection to the minimal nilpotent orbit of D4. This has been done by Siyul Lee and

does indeed have a closed form, but it is rather lengthy and not particularly illuminating

to give here, so we list it to order 6. Again, the result of (3.2.1) in this case has been

checked by unrefining and partially refining the HWG computed for d4/S4 and comparing

with the unrefined and partially refined Hilbert series for the Coulomb quiver of d4/S4

given in Table 3.2.1.

– a2n−1/Z2: Here (3.2.1) tells us that this quiver is the Z2 quotient of the twisted affine

Dynkin diagram for A2n−1 (see Table 3.1.2). However this cannot be fully refined, so we

instead exploit the fact that the Coulomb branches of the twisted affine and affine quiver

for the same Lie algebra match: we perform the Z2 projection on the HWG computed

from the affine quiver (which does fully refine). When unrefined, this result matches the

unrefined Hilbert series for the Coulomb quiver for a2n−1/Z2 given in Table 3.2.1.

⋅ This is not an exhaustive list of quivers with adjoint matter that induce an EGS, but it is an

exhaustive list of all balanced quivers with adjoint matter that induce EGS, and as such is rich

enough to provide us with many examples for which the BGS algorithm of Section 3.1 fails.

We now move on to discussing how to use quiver addition on the quivers in Table 3.2.1 to construct

quivers with only regular matter Qr (remember that among other things this means without adjoint

matter) whose global symmetry is enhanced from that predicted by the BGS.

3.2.2 Quiver Addition

Recall that our goal is to find all possible quivers whose Hasse diagram12 has as the closure of one

of its lowest leaves the Coulomb branch of one of the quivers in Table 3.2.1, because this leads to

an enhancement of the BGS predicted by the algorithm outlined in Section 3.1. In order to do this,

quiver subtraction must be reverse engineered to “absorb” the nodes with adjoint hypermultiplets

appearing in Table 3.1. One notion of quiver addition is discussed in [81], but here we will develop a

new algorithm for the case when we add to absorb nodes with adjoint hypermultiplets from a quiver.

This will be done based on the quiver subtraction rule conjectured in Appendix C of [16]. For a review

of this rule, and all other necessary information on quiver subtraction for the present work, see Section

12In most cases that we will see in this chapter, the Hasse diagram we find will only be a conjecture. This is because,

as mentioned in Section 2.7.2, since we are unaware of a brane system, we have no way to physically motivate this

process of quiver subtraction or addition.
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Quiver with

Adjoint Matter

Coulomb Branch

Variety

Global

Symmetry

PL(HWG)

2

2
⋯

2
1

1

n − 2

dn+1/Z2

=

n.min Bn

SO(2n + 1)
µ2
2t

2 + µ2
1t

4, n = 2

µ2t
2 + µ2

1t
4, n ≥ 3

3

2 1

d4/S3

=

sub-regular G2

G2 µ1t
2 + µ2

2t
4 + µ3

2t
6 + µ2

1t
8 + µ1µ

3
2t

10 − µ2
1µ

6
2t

20

2

2
⋯

2 1

n − 2

bn/Z2

=

n.min Dn

SO(2n)

(µ2
1 + µ2

2)t2, n = 2

µ2µ3t
2 + µ2

1t
4, n = 3

µ2t
2 + µ2

1t
4, n ≥ 4

2

2
⋯

2

2

n − 2

dn+1/(Z2 ×Z2) SO(2n)

(µ2
1 + µ2

2)t2 + (1 + µ2
1µ

2
2)t4 + µ2

1µ
2
2t

6 − µ4
1µ

4
2t

12, n = 2

µ2µ3t
2 + (1 + 2µ2

1)t4 + µ2
1t

6 − µ4
1t

12, n = 3

µ2t
2 + (1 + 2µ2

1)t4 + µ2
1t

6 − µ4
1t

12, n ≥ 4

4

2

d4/S4 SU(3)
µ1µ2t

2 + (1 + µ2
1 + µ1µ2 + µ2

2)t4+

(1 + µ3
1 + µ2

2 + µ1µ
2
2 + µ3

2 + µ2
1 + µ2

1µ2)t6 +O(t8)

2

2
⋯

2 2

n − 2

a2n−1/Z2

SU(2n − 1)

×

U(1)

(1 + µ1µ2n−2)t2 + (q4nµ2
1 + q−4nµ2

2n−2)t4 − µ2
1µ

2
2n−2t

8

Table 3.2.1: The full list of balanced unframed unitary 3d N = 4 quivers with L ∈ N ∖ {0} nodes

that each have a single adjoint hypermultiplet but which otherwise contain only regular matter. Upon

performing quiver addition to remove the adjoint hypermultiplet(s), the resulting quiver will elicit an

enhanced global symmetry. For all quivers that depend on the parameter n the quiver is valid for n ≥ 2.
N.min is shorthand for the (closure of the) next to minimal nilpotent orbit of the corresponding algebra.

The µi, q in the PL(HWG) column are the Dynkin label fugacities of the corresponding Lie group and

abelian factors of the global symmetry group respectively.
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2.7.2. To illustrate how the process of quiver addition was developed by reverse engineering quiver

subtraction, we use the example of the quiver Q of (3.1.4) which was used to highlight the inadequacy

of the BGS algorithm in Section 3.1. Performing double e6 quiver subtraction13 on Q gives

2
b

4 6 8 5

5

2

2

−
1 2 3 2 1

2

1

1

2
b

3 4 5 3

3

1

1

−
1 2 3 2 1

2

1

2a

2
b

2 2 2 1

1

(3.2.4)

Blue nodes indicate those that were introduced in the rebalancing stage of quiver subtraction, red

nodes indicate unbalanced nodes, b is the node being rebalanced as a result of the subtractions (the

reason for this labelling is to make contact with the notation we introduce shortly in (3.2.6)), and as

before a is the name of the node with the adjoint hypermultiplet (that has arisen through multiple

same slice subtractions). From Table 3.2.1, we see that this quiver has the next to minimal nilpotent

orbit of B6 as a leaf in its Hasse diagram. The Hasse diagram of this orbit is

,
A1

b6

(3.2.5)

13Generally, when we say a gk quiver subtraction, we mean the act of subtracting the Coulomb quiver for the gk
variety (the minimal nilpotent orbit of Gk). In this particular example, we are taking Gk = E6.
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which can be derived using quiver subtraction on the Coulomb quiver for n.min B6, found in [38].

As explained in Section 3.1, the BGS of Q is SO(12) × U(1), but the Hilbert series shows the true

global symmetry, the EGS, to be SO(13) ×U(1). The quiver subtraction above illustrates why this

enhancement occurs: the Hasse diagram of Q contains b6 among its bottom-most elementary slices,

and so this must be a subset of the global symmetry. The lowest slice is b6 and not d6 (which is

what was expected from the BGS) because of the appearance of the adjoint hypermultiplet in quiver

subtraction as opposed to an additional rebalancing U(1) node.

Note that although in this case these e6 subtractions are the only possible ones that could be per-

formed, in other quivers that we find in this work multiple subtractions will be possible, leading to

bifurcations in the Hasse diagram. However, it is only subtracting the same slice twice in a row from

the same set of nodes in the quiver that leads to the arisal of a node with an adjoint hypermultiplet

and thus an EGS, and so it is only the “same slice twice” subtractions and additions we focus on, as

the other factors can be read accurately from the BGS algorithm.

From this example, we can see that the quiver subtraction algorithm which brings about these adjoint

hypermultiplets can be reverse engineered to find quivers with only regular matter which have an

EGS. In order to explain how this works, we will refer to the node with the adjoint hypermultiplet as

a of rank ra, the node adjacent to it b of rank rb, and any generic node adjacent to this c of rank rc:

b c

⋯
rb

ra a

rc
⋯

. (3.2.6)

These will be the names of the nodes after quiver additions also: note in particular that this means

that after the penultimate quiver addition, a will not have an adjoint hypermultiplet attached, and

after the final addition a will no longer exist, as explained below.

In the “forward” process of quiver subtraction, an example of which was shown in (3.2.4), the adjoint

hypermultiplet arose as a result of rebalancing node b after multiple subsequent same slice subtrac-

tions. Thus to “absorb” the adjoint hypermultiplet in the reverse process, we will have to add the

same elementary slice mutliple subsequent times to node c such that node b becomes overbalanced,

and thus the rebalancing process will involve removing a rank from a. With all this in mind, we are

ready to construct the algorithm for quiver addition.

Quiver addition algorithm

Let Qa be a quiver with a single node a that has a single adjoint hypermultiplet, such that a is

connected to the remainder of the quiver via a single simply laced edge to node b, and with all other

nodes being linked by regular matter2 only. Let Qσ be a Coulomb quiver for a generic elementary

slice σ.14 Then adding some Qσ to Qa that is going to be added multiple subsequent times can be

performed as follows:

1. First ensure that Qσ is balanced and contains as a subset the run of nodes connecting to and

including c but excluding a and b (i.e. c and the “⋯” next to it in (3.2.6)) in Qa.

14Recall that the full list of these to date can be found by comprising Table 1 of [81] and Table 2 of this note.
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2. Line up Qσ with Qa so that one of the long rank 1 nodes of Qσ is superimposed upon c, and

the subset of the rest of the nodes of Qσ which is of the same form as the nodes connecting to

and including c of Qa (as described in Step 1) is aligned with these nodes.

3. Add the ranks of the nodes in Qσ to those in Qa that they line up with.

4. Reduce the rank of a by one. Note that if this reduces the rank of a to one, the adjoint

hypermultiplet can be eliminated as the adjoint representation of U(1) is trivial, and if it

reduces the rank of a to zero, a itself can just be eliminated as it is now an “empty node”.

There are a few things to note here with regards to this algorithm:

⋅ Firstly, the condition on Qσ of balance and needing a long rank one node restricts the possible

slices we can add to be just the affine quivers displayed in Table 3.1.1.

⋅ Secondly, c can be an existing node, as pictured in (3.2.6), or it could be an “empty node”. By

taking c as an empty node, we mean that the quiver being added is superimposed on top of

currently non-existent nodes, but such that it is linked to node b. If we take c to be an existing

node, we call such an addition adding to existing nodes. If we take c to be an empty node, we

call such an addition adding to empty nodes. We call all possible options for the node c the

c-nodes of the quiver.

⋅ Thirdly, during such a process of quiver addition, extra unbalanced nodes that were not in the

original quiver may appear, but this is not a problem as long as throughout both additions no

nodes undergo a change in balance.

⋅ Fourthly, this algorithm is modified for the d3/Z2, b2/Z2 and dn+1/(Z2 × Z2) quivers in Table

3.2.1. In the d3/Z2 case this is because we have two possible “b-nodes” which each need a

c-node, and so, among other modifications, any added slice must have two rank one long nodes.

In the bn/Z2 case it is because a is attached to b via a non-simply laced edge of multiplicity

two. In the dn+1/(Z2 × Z2) case it is due to the fact that there are two nodes with adjoint

hypermultiplets, and so we need to be careful where we can add. These modifications will be

explained within the relevant sections of the paper: Section 3.3.1, Section 3.5.1 and Section

3.5.2 respectively.

⋅ Finally, this is only the quiver addition process for the specific purpose outlined in this paper,

and not a general algorithm. When not adding the same slice twice to the same node, there are

often many possible ways to add a slice to a quiver. In Section 3.3.2 “single additions” will be

performed (just adding one slice once), so an example of the general algorithm for this type of

addition will be illustrated here.

For complete clarity regarding the execution of this algorithm, we provide here an example of an

incorrect addition (i.e. adding a slice σ to a quiver Q1 to give a quiver Q2 from which performing

the reverse processs of subtraction does not give back Q1: Q2 − σ ≠ Q1), followed by the correct way

to execute it.
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Example Consider trying to add d4 to the existing node in n.min B5.
15 The Coulomb quiver for

n.min B5 is

b c
2

2 a

2 2 1

1

,

(3.2.7)

where c has been labelled as such as it is the only possible existing node we could add to.16 This

addition fits in with Step 1 in the algorithm, as d4 contains as a subset the nodes to the right of and

including c in (3.2.7). So adding this slice could be valid, but we will perform the addition in a way

that violates step 2:

15To clarify the terminology one last time, here what we are actually saying is “consider trying to add the quiver

whose Coulomb branch is the closure of the minimal nilpotent orbit of D4, which we call d4, to the existing node of

the quiver whose Coulomb branch is the closure of the next to minimal nilpotent orbit of B5, which we call n.min B5.

16Note that we could have taken c to be the empty nodes: the space to the left of b in (3.2.7), but for this case we

wouldn’t have been able to demonstrate this type of incorrect addition.
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(3.2.8)

Here the d4 slice that was added was not superimposed correctly on top of the nodes next to and

including c in n.min B5 that it “matched to” (i.e. that formed a subset of the d4’s nodes). We can

immediately see why this is an incorrect addition, because the final rank two node in n.min B5 has

changed balance during this process, and we know quiver subtraction always preserves the balance

of nodes. Thus if we subtract d4 from our result here, we see that both a and this node undergo a

change in balance, and so the rank one node added to rebalance must be attached to both. When

the subtraction is performed again, this node will then become a rank two node with an adjoint

hypermultiplet, and we will not have the quiver n.min B5, but instead

2

2 2 2
1

1

(3.2.9)
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and so the subtraction is invalid. The correct way to add d4 on to n.min B5 would be as follows:

2a

2

b

2
c

2

1

1

+
1 2

1 1

1

1
a

2

b

3
c

4

2

2

1

+
1 2

1 1

1

2

b

4
c

6

3

3

2

(3.2.10)

One can check that subtracting d4 twice from the final quiver in (3.2.10) will indeed give n.min

B5 (3.2.7) as desired. The final quiver in (3.2.10), following the algorithm in Section 3.1, has BGS

SO(10). However, we have seen that the Hasse diagram contains SO(11), and thus this must be a

subgroup of the global symmetry. Indeed, upon Hilbert series computation, SO(11) is the confirmed

EGS. ◻

This concludes the methodology needed for the results of this chapter. Throughout the paper the

results of quiver additions will be labelled with two parameters, n and k, pertaining to the Coulomb

branch variety of the base quiver from Table 3.2.1 we add to (or equivalently the rank of the global

symmetry factor experiencing enhancement) and the rank of the Coulomb branch variety of the slice

which we are adding twice, respectively. In some cases, the only valid way to add a slice restricts the

allowed values of n and/or k. Where relevant, these constraints will be indicated. We now proceed

to performing the quiver addition method discussed in this section one by one on the quivers from

Table 3.2.1,17 to derive quivers with an EGS, before we use these results to propose a modification

to the BGS algorithm.

17Excluding the a2n−1/Z2 case, as discussed in the bullet points following Table 3.2.1.
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3.3 Enhancement to SO(2n + 1)

In this section, we focus on deriving quivers with EGS from the first quiver in Table 3.2.1, the next

to minimal nilpotent orbit of Bn:

2a

2
b ⋯

2
1

1

n − 2 (3.3.1)

Using the Qa BGS algorithm given in Section 3.2.1, one can see that the BGS of (3.3.1) is SO(2n+1).
Indeed, the Hasse diagram of (3.3.1) is

,
A1

bn

(3.3.2)

which agrees with this, and this global symmetry is confirmed upon Hilbert series computation.

The quivers derived from using quiver addition on (3.3.1) to absorb a will therefore experience a

symmetry enhancement of this type. After considering all possible additions following the addition

algorithm listed in Section 3.2.2, two types of enhancement are found: SO(2n) → SO(2n + 1) and
SU(n)×U(1) → SO(2n+1). In all cases listed, except those where an e8 is added twice, the EGS has

been verified via Hilbert series computation. In the cases where adding a slice gives a family of quivers

depending on one or two parameters, this EGS has been verified via Hilbert series computation for

several low values of the parameters. The results for all quivers not depending on parameters have

been confirmed too, except the e8 cases which have proved too computationally complex to verify,

so the EGS in these cases remain as conjectures. Brane systems for a selection of the e8 cases listed

both in this section and in subsequent sections are known and the construction is discussed in [73].

The result of the e8 enhancement shown in Table 3.3.1 has been previously found in [85] through an

F-theory construction, and in [86] using 5d brane webs. Several of the quivers appearing in this work

also appear in the construction of so-called minimally unbalanced quivers in [14].

3.3.1 Enhancement from SO(2n) to SO(2n + 1)

In this section, we see quivers whose BGS has as one of its factors a Dn type symmetry which

undergoes enhancements to Bn. That is,

∏
i

Gi × SO(2n) →∏
i

Gi × SO(2n + 1) (3.3.3)

for some simple Lie groups Gi. Here we use blue to highlight the symmetry factor which experiences

enhancement, and this will continue to be used throughout the paper. There are two possible ways we

can construct these quivers by using quiver addition to absorb a of (3.3.1): by adding to its existing

nodes or its empty nodes (as discussed in the bullet points following the quiver addition algorithm of

Section 3.2.2). We explore each of these in turn now.
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3.3.1.1 Adding to existing nodes of n.min Bn

Let’s first investigate adding on to the existing nodes in (3.3.1). The case of n = 3 will be treated

separately. For the case of n = 2, there are two b-nodes and no possible existing option for the node

c (taking b and c nodes as defined in the quiver addition algorithm of Section 3.2.2), so we cannot

add on to existing nodes here. Note however that we can add on to empty nodes, and this will be

discussed in Section 3.3.1.2.

For adding to the existing nodes of (3.3.1) for n ≥ 4, our c-node will be given by

2a

2
b

2

c
⋯

2
1

1

n − 2 (3.3.4)

The only slices that can be validly added to (3.3.4) according to the quiver addition algorithm in

Section 3.2.2 are ak, dk, e6, e7 and e8. The method of addition for all slices can be easily extended

from the d4 example shown in (3.2.10). Adding each of these slices (ak, dk, e6, e7 and e8) will fix

n in (3.3.1) to be a particular value, in order for the addition to obey Step 2 of our quiver addition

algorithm. The results of these additions are listed in Table 3.3.1. The second column gives the quiver

arrived at after twice adding the affine quiver corresponding to the slice listed in the first column of

(3.3.1) to the quiver (3.3.1) for the values of n listed. The third column shows the enhancement of

the BGS to the EGS, with the factor(s) that experience enhancement shown in blue. This will also

be the format of all future tables documenting results in this chapter.

For the case of n = 3, there are two possible c-nodes

2a

2
b

c11

1 c2

(3.3.5)

which we call c1 and c2. However due to the Z2 outer automorphism of (3.3.5), adding to either c-

node gives the same result, and so only one need be considered. Here there are more allowed quivers

that we can add to the c-node of (3.3.5) than there were for (3.3.4), because (3.3.5) has no nodes

connected to the c-node that we have to ensure the added slice contains as a subset. As a result,

we may add any affine quiver to the existing nodes of n.min B3. The resulting quivers are listed in

Tables 3.3.2 and 3.3.3.
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Added Slice Quiver Global Symmetry

a3

n = 4 2 4

3

2

3

SO(8)

↓

SO(9)

ak

k ≥ 4, n = 4 2 4

3

2

2

⋮

2

2

3

k − 4

SO(8) ×U(k − 3)

↓

SO(9) ×U(k − 3)

dk

k ≥ 4, n = k + 1 2 4 6
⋯

6

3

3

2

k − 3 = n − 4

SO(2n)

↓

SO(2n + 1)

e6

n = 6
2 4 6 8 5 2

5

2 SO(12) ×U(1)

↓

SO(13) ×U(1)

e7

n = 7
2 4 6 8 10 7 4 2

5
SO(14) × SU(2)

↓

SO(15) × SU(2)

e8

n = 9
2 4 6 8 10 12 14 9 4

7
SO(18)

↓

SO(19)

Table 3.3.1: Quivers resulting from adding all possible elementary slices to the existing nodes of n.min

Bn (3.3.1) to absorb a, n ≥ 4.
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Added Slice Quiver Global Symmetry

a1
1 2 3 2

SU(4)

↓

SO(7)

ak

k ≥ 2 1 2 3 2 2
⋯

2

2

k − 2

SU(4) ×U(k − 1)

↓

SO(7) ×U(k − 1)

dk

k ≥ 4 1 2 3 4
⋯

4 2

22

k − 3

SU(4) × SU(2) × SO(2k − 4)

↓

SO(7) × SU(2) × SO(2k − 4)

e6

1 2 3 4 6 4 2

4

2 SU(4) × SU(6)

↓

SO(7) × SU(6)

e7

1 2 3 4 6 8 6 4 2

4 SU(4) × SO(12)

↓

SO(7) × SO(12)

e8

1 2 3 4 6 8 10 12 8 4

6 SU(4) ×E7

↓

SO(7) ×E7

Table 3.3.2: Quivers resulting from adding the possible simply laced elementary slices to n.min B3

(3.3.5) to absorb a.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 1 2 3 4
⋯

4 2

2

k − 2

SU(4) × SU(2) × SO(2k − 3)

↓

SO(7) × SU(2) × SO(2k − 3)

ck

k ≥ 2
1 2 3 2

⋯
2 2

k − 1

SU(4) × Sp(k − 1)

↓

SO(7) × Sp(k − 1)

f4
1 2 3 4 6 4 2

SU(4) × Sp(3)

↓

SO(7) × Sp(3)

g2
1 2 3 4 2

SU(4) × SU(2)

↓

SO(7) × SU(2)

Table 3.3.3: Quivers resulting from adding the possible non-simply laced elementary slices to n.min

B3 (3.3.5) to absorb a.
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3.3.1.2 Adding to empty nodes of n.min Bn

We now turn our attention to adding on to the empty nodes (as defined in the quiver addition

algorithm of Section 3.2.2) of (3.3.1). That is, we take the c-node to be empty:

2a

2

b

0
c ⋯

2
1

1

.

n − 2 (3.3.6)

The dashed grey line indicates that c is not really there, reinforced by its vanishing rank. Note that

in the n = 2 case there are two possible b-nodes, which we call b1 and b2, and their corresponding

empty c-nodes will be called c1 and c2:

1

b1

0
c1

2
a

1

b2

0
c2.

(3.3.7)

In order for the adjoint hypermultiplet to appear on the node a, which is connected to both b1 and b2,

during quiver subtraction, c-nodes c1 and c2 must coincide so that an added slice is being “attached”

on to both b1 and b2. As a result, because the quiver addition algorithm of Section 3.2.2 requires any

slice which is added to have two long rank one nodes, the allowed slices which can be validly added

to 3.3.7 to absorb a are restricted to ak, bk, ck, dk, e6 and e7. The results of these additions are given

in Table 3.3.4.

In the case of n ≥ 3 there is only one b-node, so the above problem does not arise. Here c is still an

empty node, and so the requirement in Step 1 of the quiver addition algorithm in Section 3.2.2 that

the added slice must contain the nodes in (3.3.6) connected to and including c becomes trivial, and

so we may add any affine slice. The results of adding these slices are given in Tables 3.3.5 and 3.3.6.
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Added Slice Quiver Global Symmetry

ak

k ≥ 1 1 2
⋯

2 1

2

k

SU(2)2 × SU(2) ×U(k − 1)

↓

SO(5) × SU(2) ×U(k − 1)

bk

k ≥ 3
1 2 4

⋯
4 2

2

1

k − 2

SU(2)2 × SO(2k − 1) ×U(1)

↓

SO(5) × SO(2k − 1) ×U(1)

ck

k ≥ 2
1 2 2

⋯
2 2 1

k − 1

SU(2)2 ×U(k)

↓

SO(5) ×U(k)

dk

k ≥ 4 1 2 4
⋯

4 2 1

22

k − 3

SU(2)2 ×U(k)

↓

SO(5) ×U(k)

e6

1 2 4 6 4 2 1

4

2 SU(2)2 × SO(10) ×U(1)

↓

SO(5) × SO(10) ×U(1)

e7

1 2 4 6 8 6 4 2 1

4
SU(2)2 ×E6 ×U(1)

↓

SO(5) ×E6 ×U(1)

Table 3.3.4: Quivers resulting from adding all possible elementary slices to n.min B2 (3.3.7) to absorb

a.
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Added Slice Quiver Global Symmetry

ak

k ≥ 1, n ≥ 3 2
⋯

2 2
⋯

2

1

1

2

k n − 2

SU(k + 1) × SO(2n)

↓

SU(k + 1) × SO(2n + 1)

dk

k ≥ 4, n = k + 1 2 4
⋯

4 2 2
⋯

2

1

1

2 2

k − 3 n − 2

SO(2k) × SO(2n)

↓

SO(2k) × SO(2n + 1)

e6

n ≥ 3
2 4 6 4 2 2

⋯
2

1

1

4

2

n − 2

E6 × SO(2n)

↓

E6 × SO(2n + 1)

e7

n ≥ 3 2 4 6 8 6 4 2 2
⋯

2

1

1

4

n − 2

E7 × SO(2n)

↓

E7 × SO(2n + 1)

e8

n ≥ 3 4 8 12 10 8 6 4 2 2
⋯

2

1

1

6

n − 2

E8 × SO(2n)

↓

E8 × SO(2n + 1)

Table 3.3.5: Quivers resulting from adding all possible simply laced elementary slices to the empty

nodes of n.min Bn (3.3.1) to absorb a, n ≥ 3.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3, n ≥ 3 2 4
⋯

4 2 2
⋯

2

1

1

2

k − 2 n − 2

SO(2k + 1) × SO(2n)

↓

SO(2k + 1) × SO(2n + 1)

ck

k ≥ 2, n ≥ 3
2 2

⋯
2 2 2

⋯
2

1

1

k − 1 n − 2

Sp(k) × SO(2n)

↓

Sp(k) × SO(2n + 1)

f4

n ≥ 3
2 4 6 4 2 2

⋯
2

1

1

n − 2

F4 × SO(2n)

↓

F4 × SO(2n + 1)

g2

n ≥ 3
2 4 2 2

⋯
2

1

1

n − 2

G2 × SO(2n)

↓

G2 × SO(2n + 1)

Table 3.3.6: Quivers resulting from adding all possible non-simply laced elementary slices to the empty

nodes of n.min Bn (3.3.1) to absorb a, n ≥ 3.
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3.3.2 Enhancement from SU(n) ×U(1) to SO(2n + 1)

The results of Section 3.3.1 exhaust all possibilities of adding to (3.3.1) to immediately absorb a.

However we could also have first performed a “different sort” of quiver addition to absorb one of the

two rank one nodes of (3.3.1), and then have added to the resulting quiver from this to absorb a. This

“different” type of quiver addition does not quite follow the algorithm of Section 3.2.2: it is actually

a little simpler. Here, instead of “undoing” multiple same slice quiver subtractions that result in an

adjoint hypermultiplet of increasing rank, we instead “undo” just a single quiver subtraction. We

will not list this slightly different algorithm here, but for those interested it is derivable from reverse

engineering the basic quiver subtraction process that is given in following Steps 1 and 2)a) of Section
2.7.2 with Es being empty. An example of the result of such an addition will also be given below.

A key feature of this quiver addition worth mentioning is that, as before, in order for it to work

we must be adding a balanced elementary slice via a long rank one node, restricting us to adding

only the affine slices (whose Coulomb quivers live in Table 3.1.1). Such an addition is of interest

because, if the quiver addition algorithm of Section 3.2.2 is then used to absorb their remaining

adjoint hypermultiplet, we find quivers which experience a different type of BGS enhancement:

∏
i

Gi × SU(n) ×U(1) →∏
i

Gi × SO(2n + 1) (3.3.8)

for some simple Lie groups Gi.

Let’s see an example of how this works. We choose to take the case of adding an A1 = a1 slice to

absorb one of the rank one nodes of (3.3.1). The resulting quiver will be

2a

2
b ⋯

2 1

.

n − 1 (3.3.9)

One can verify this is a valid addition by subtracting A1 (see Section 2.7.2 for the quiver subtraction

algorithm) from the two rightmost nodes of (3.3.9) to find (3.3.1).

Working from (3.3.9) we can then perform the adjoint-hypermultiplet-absorbing quiver addition of

Section 3.2.2, as we did before on (3.3.1) in Section 3.3.1, to absorb a. At first glance, it seems

as though we can add to either existing or empty nodes to absorb a, but actually doing the former

doesn’t yield the enhancement above. The reason for this is that the additions possible on the existing

nodes are restricted to the n = 3 case, to which we may only add an A1 to unbalance the node b in

the necessary way to absorb a:

2 4 3

b c

.

(3.3.10)

But if we perform quiver subtraction on this quiver to find the Hasse diagram, we will find ourselves

performing three A1 subtractions before arriving at the Coulomb quiver for the sub-regular nilpotent

orbit of G2, the second quiver in Table 3.2.1. As a result, here we actually expect a factor of the BGS

to be enhanced to G2, rather than SO(2n + 1). This is indeed confirmed upon computation of the

Hilbert series, and actually this quiver appears later in our classification, in Table 3.4.1 of Section
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3.4. This result is actually more general: if Qgk is obtained by adding some affine slice gk to (3.3.1)

to absorb one of the rank one nodes, as shown above for gk = A1, then any quiver derived from this

by using quiver addition on its existing nodes to absorb a will exhibit an EGS of type G2 as opposed

to SO(2n + 1). This is because the only way to add to the existing nodes of Qgk to absorb a is by

adding gk when n = 3, so upon subtraction, we will be subtracting gk three times, rather than two,

and so an adjoint hypermultiplet of rank three will arise from rebalancing. This explains why we are

left with the sub-regular nilpotent orbit of G2, and why we have enhancement to G2 symmetry from

an apparent SU(3).

Although adding to existing nodes gives us nothing new, adding to the empty nodes on the left hand

side of b in (3.3.9) does yield quivers who experience the enhancement (3.3.8). Again the slices that

can be validly added are affine slices via a rank one long node. The resulting quivers for this process

are listed in Tables 3.3.7 and 3.3.8.

Recall that this was just one example of performing a single addition on (3.3.1) (that of adding an A1)

to find quivers with a new type of symmetry enhancement. This enhancement is actually exhibited

by infinitely many quivers: those obtained by performing further additions on the quiver (3.3.9), or

those constructed by adding a single slice other than A1 to (3.3.1), and then adding to this and so

on. We restrict the list of examples provided to just the A1 case, as we (obviously!) cannot list them

all, and these illustrate the enhancement. In conclusion, these infinitely many quivers, combined

with those in Tables 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6, 3.3.7 and 3.3.8 concludes the families of

quivers derived from quiver addition on the next to minimal nilpotent orbit of Bn (3.3.1) whose global

symmetry contains a factor which is enhanced to SO(2n + 1) from that predicted by the BGS.
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Added Slice Quiver Global Symmetry

ak

k ≥ 1 2
⋯

2

2

2
⋯

2 1

n − 1k

SU(k + 1) × SU(n) ×U(1)

↓

SU(k + 1) × SO(2n + 1)

dk

k ≥ 4 2 4

2

⋯
4

2

2 2
⋯

2 1

n − 1k − 3

SO(2k) × SU(n) ×U(1)

↓

SO(2k) × SO(2n + 1)

e6

2 4

4

6 4

2

2 2
⋯

2 1

n − 1

E6 × SU(n) ×U(1)

↓

E6 × SO(2n + 1)

e7

2 4 6

4

8 6 4 2 2
⋯

2 1

n − 1

E7 × SU(n) ×U(1)

↓

E7 × SO(2n + 1)

e8

4 8 12

6

10 8 6 4 2 2
⋯

2 1

n − 1

E8 × SU(n) ×U(1)

↓

E8 × SO(2n + 1)

Table 3.3.7: Quivers resulting from adding all possible simply laced elementary slices to the empty

nodes of (3.3.9) to absorb a.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 2 4
⋯

4

2

2 2
⋯

2 1

n − 1k − 2

SO(2k + 1) × SU(n) ×U(1)

↓

SO(2k + 1) × SO(2n + 1)

ck

k ≥ 2
2 2

⋯
2 2 2

⋯
2 1

n − 1k − 1

Sp(k) × SU(n) ×U(1)

↓

Sp(k) × SO(2n + 1)

f4 2 4 6 4 2 2
⋯

2 1

n − 1

F4 × SU(n) ×U(1)

↓

F4 × SO(2n + 1)

g2 2 4 2 2
⋯

2 1

n − 1

G2 × SU(n) ×U(1)

↓

G2 × SO(2n + 1)

Table 3.3.8: Quivers resulting from adding all possible non-simply laced elementary slice to the empty

nodes of (3.3.9) to absorb a.
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3.4 Enhancement to G2

We move on to focus on the second quiver in Table 3.2.1, the sub-regular nilpotent orbit of G2

3a

2
b

1

.

(3.4.1)

The Hasse diagram of this quiver can be inferred from the Hasse diagram of the G2 nilpotent cone:

.

d4

m

A1

(3.4.2)

It involves a non-normal slice m, which we make no further comment on here. In all quivers listed

in this section, which are a result of adding the same elementary slice three subsequent times to the

same node of (3.4.1), the BGS enhances as

∏
i

Gi × SU(3) →∏
i

Gi ×G2, (3.4.3)

for some simple Lie groups Gi. The enhancements in global symmetry of the quivers in this section

were also found via a different approach in [15]. Note that here, the conjecture that the lowermost

leaves of the Hasse diagram forming a subgroup of the global symmetry does not force the enhance-

ment (but of course do not contradict it).

As before, following the quiver addition algorithm from Section 3.2.2, the only possible slices we can

add to the node c are the affine quivers via a rank one long node. Here, we can see that c could either

be the existing rank one node to the right of b in (3.4.1)

3a

2
b

1
c ,

(3.4.4)

or the empty node to its left

3a

2

b

10
c .

(3.4.5)

As before in Section 3.3, we call these ways to absorb a in (3.4.1) “adding to existing nodes” or

“adding to empty nodes” respectively. In these cases, since the set of nodes connected to c is either

{b} or the empty set, the condition that the affine quivers we add must contain c and its connected

nodes as a subset is trivial, and so all affine quivers are allowed. The results for these additions are
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given in Tables 3.4.1 and 3.4.2 in the case where c is taken to be an existing node, as in (3.4.4),

and Tables 3.4.3 and 3.4.4 in the case where c is taken to be an empty node, as in (3.4.5). As in

Section 3.3, in the cases where the quivers listed depend on a parameter, the EGS has been verified

via Hilbert series computation for small values of the parameter. In the cases with no parameter

dependence, every case except for that of e8 has been verified.

Added Slice Quiver Global Symmetry

ak

k ≥ 1 2 4

3

⋮

3

k

SU(3) ×U(1)l × SU(k − 1)

↓

G2 ×U(1)l × SU(k − 1),

l =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, k ≥ 2
0, k = 1

dk

k ≥ 4 2 4 6
⋯

6

3

3

3

k − 3

SU(3) × SU(2) × SO(2k − 4)

↓

G2 × SU(2) × SO(2k − 4)

e6

2 4 6 9 6 3

6

3 SU(3) × SU(6)

↓

G2 × SU(6)

e7

2 4 6 9 12 9 6 3

6
SU(3) × SO(12)

↓

G2 × SO(12)

e8

2 4 6 9 12 15 18 12 6

9
SU(3) ×E7

↓

G2 ×E7

Table 3.4.1: Quivers resulting from adding all possible simply laced elementary slices to the existing

nodes of sub-regular G2 (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 2 4 6
⋯

6 3

3

k − 2

SU(3) × SU(2) × SO(2k − 3)

↓

G2 × SU(2) × SO(2k − 3)

ck

k ≥ 2
2 4 3

⋯
3 3

k − 1

SU(3) × Sp(k − 1)

↓

G2 × Sp(k − 1)

f4
2 4 6 9 6 3

SU(3) × Sp(3)

↓

G2 × Sp(3)

g2
2 4 6 3

SU(3) × SU(2)

↓

G2 × SU(2)

Table 3.4.2: Quivers resulting from adding all possible non-simply laced elementary slices to the existing

nodes of sub-regular G2 (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry

ak

k ≥ 1

3

⋮

3
3 2 1

k

SU(k + 1) × SU(3)

↓

SU(k + 1) ×G2

dk

k ≥ 4 3 6

3

⋯
6

3

3 2 1

k − 3

SO(2k) × SU(3)

↓

SO(2k) ×G2

e6

3 6

3

9 6

6

3 2 1

E6 × SU(3)

↓

E6 ×G2

e7

3 6 9 12

6

9 6 3 2 1

E7 × SU(3)

↓

E7 ×G2

e8

6 12 18 15 12

9

9 6 3 2 1

E8 × SU(3)

↓

E8 ×G2

Table 3.4.3: Quivers resulting from adding all possible simply laced elementary slices to the empty

nodes of sub-regular G2 (3.4.1) to absorb a.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 3 6
⋯

6 3 2 1

3

k − 2

SO(2k + 1) × SU(3)

↓

SO(2k + 1) ×G2

ck

k ≥ 2
3 3

⋯
3 3 2 1

k − 1

Sp(k) × SU(3)

↓

Sp(k) ×G2

f4
3 6 9 6 3 2 1

F4 × SU(3)

↓

F4 ×G2

g2
3 6 3 2 1

G2 × SU(3)

↓

G2 ×G2

Table 3.4.4: Quivers resulting from adding all possible non-simply laced elementary slices to the empty

nodes of sub-regular G2 (3.4.1) to absorb a.
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As in the previous section, because of the rank one node in (3.4.1), we can also perform a single quiver

addition to absorb this node before absorbing a and find yet more quivers whose Hasse diagrams

contain (3.4.1) and therefore experience the SU(3) → G2 enhancement. Again, there are infinitely

many such quivers one could construct. However, unlike in the case of Section 3.3.2, here the actual

enhancement won’t be of a different type to that of the above quivers, and so won’t be of particular

interest to us. To illustrate this, consider the quiver after adding an A1:

3

2 1 1

.

(3.4.6)

The reason that (3.4.6) gives us no new quivers of interest can be made explicit if we ungauge on the

rank one unbalanced node,18 in which case it becomes

3

2 1
×

1 2

.

(3.4.7)

The Coulomb branch moduli space of this quiver theory is then the product of A1 and the sub-

regular nilpotent orbit of G2. We don’t worry about product moduli spaces, because if we understand

individual ones then we can construct and know everything about the products too. Indeed, if we for

example add a2 thrice on to the empty nodes of (3.4.6) and again ungauge on the unbalanced rank

one node, we get

3 3 2 1
×

1 2

3

.

(3.4.8)

The Coulomb branch of the quiver on the left is in the top row of Table 3.4.3, and the Coulomb

branch of the quiver on the right is the minimal nilpotent orbit of A1, so we do indeed have nothing

new. Thus Tables 3.4.1 through to 3.4.4 conclude the list of quivers with a global symmetry factor

experiencing enhancement to G2 that can be found as a result of performing quiver addition on the

sub-regular nilpotent orbit of G2 (3.4.1).

3.5 Enhancement to SO(2n)

There are two quivers in Table 3.2.1 with SO(2n) global symmetry, and so both can be used as a

base to construct quivers with a global symmetry factor which enhances to SO(2n). It is the BGS

factor that enhances which distinguishes the results from adding to the third or fourth quiver in Table

3.2.1. Section 3.5.1 addresses quivers derived from adding to the former, and Section 3.5.2 addresses

quivers derived from adding to the latter.

18Recall we always choose to ungauge on a long node, and ungauging on any long node is equivalent to ungauging

on any other.
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3.5.1 Enhancement from SO(2n − 1) to SO(2n)

The next to minimal nilpotent orbit of Dn for n ≥ 2 is given by the third quiver in Table 3.2.1

[12, 84, 62],

2a

2
b ⋯

2 1

.

n − 2 (3.5.1)

Following the BGS algorithm for quivers with adjoint matter in Section 3.2.1, the global symmetry

of (3.5.1) is SO(2n). The Hasse diagram is

,
A1

dn

(3.5.2)

The bottom leaf of (3.5.2) matches the prediction of the global symmetry of (3.5.1) given by the Qa

BGS algorithm in Section 3.2.1, and this is confirmed by computing the Hilbert series. The quivers

which can be constructed by adding to (3.5.1) to absorb a experience an enhancement of their BGS

given by

∏
i

Gi × SO(2n − 1) →∏
i

Gi × SO(2n), (3.5.3)

for some simple Lie groups Gi. The n = 2 case needs to be treated separately from n ≥ 3 because for

n = 2, a is a short node.

For n ≥ 4 and using the algorithm from Section 3.2.2, we can again either add to the existing nodes

of (3.5.1) by taking c as the node to the right of b

2a

2
b

2

c
⋯

2 1

,

n − 2 (3.5.4)

or add to the empty nodes of (3.5.1) by taking c to be some non-existent node to the left of b

c
0

2a

2 b
⋯

2 1

.

n − 2 (3.5.5)

As previously, when adding to the empty nodes, there will be no restriction on the affine slices we

can add. Adding to the existing nodes requires that all nodes to the right of b in (3.5.1) be a subset

of the slice that is added. Thus we can only add bk, ck and f4 to the existing nodes, and doing so



91 CHAPTER 3. GLOBAL SYMMETRY

will fix the value of n for these cases. The results of all these additions may be found in Table 3.5.1

for the existing nodes addition, and Tables 3.5.2 and 3.5.3 for the empty nodes addition.

For n = 3, we can only add to the empty nodes due to absence of an existing long c-node. The results

of these additions are simply the n = 3 case of Table 3.5.2. In the case where n = 2, we are considering
the next to minimal nilpotent orbit of D2,

2a

1
b ,

(3.5.6)

the global symmetry of which can be computed to be SU(2)2 using the Hilbert series. This quiver

is different to the previous cases from Table 3.2.1 that we’ve looked at thus far, in that here a is

connected to the other nodes in the quiver via a non-simply laced edge. Because of this, the BGS

algorithm given in Section 3.2.1 and the quiver addition algorithm given in Section 3.2.2 do not apply.

Because a is connected to b via a non-simply laced edge, if we view the adjoint hypermultiplet as

having arisen from a double same slice subtraction, b must have been becoming unbalanced by one

more each time and must have been a short node, in line with the rules for rebalancing on a short

node in Step 2)a)ii) in Section 2.7.2. Thus the only quivers we can add to this are those for which

there is a rank one node which is on the short end of a non-simply laced edge of multiplicity two.

The only quivers for elementary slices for which this is the case are affine bk, ck and f4 and twisted

affine ak, dk, and e6. They all experience an enhancement from their BGS as

∏
i

Gi × SU(2) →∏
i

Gi × SU(2)2, (3.5.7)

for some simple Lie groups Gi. The quivers derived from these additions are displayed in Table 3.5.4.

For all cases n ≥ 2 listed across this section, unlike before in Section 3.3.2, we cannot find more quivers

with such an enhancement by performing a different quiver addition on (3.5.1) prior to absorbing the

adjoint hypermultiplet as there are no long rank one nodes present.
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Added Slice Quiver Global Symmetry

bk

k = n − 2 2 4 6
⋯

6 3

2

k − 2 = n − 4

SO(2n − 1)

↓

SO(2n)

ck

n = 4
2 4 3 2

⋯
2 2

k − 2

SO(7) × Sp(k − 2)

↓

SO(8) × Sp(k − 2)

f4

n = 6 2 4 6 8 5 2

SO(11)

↓

SO(12)

Table 3.5.1: Quivers resulting from adding all possible elementary slices to the existing nodes of n.min

Dn (3.5.1) to absorb a for n ≥ 4.
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Added Slice Quiver Global Symmetry

ak

k ≥ 1, n ≥ 3 2
⋯

2 2
⋯

2 1

2

k n − 2

SU(k + 1) × SO(2n − 1)

↓

SU(k + 1) × SO(2n)

dk

k ≥ 4, n = k + 1 2 4
⋯

4 2 2
⋯

2 1

2 2

k − 3 n − 2

SO(2k) × SO(2n − 1)

↓

SO(2k) × SO(2n)

e6

n ≥ 3
2 4 6 4 2 2

⋯
2 1

4

2

n − 2

E6 × SO(2n − 1)

↓

E6 × SO(2n)

e7

n ≥ 3 2 4 6 8 6 4 2 2
⋯

2 1

4

n − 2

E7 × SO(2n − 1)

↓

E7 × SO(2n)

e8

n ≥ 3 4 8 12 10 8 6 4 2 2
⋯

2 1

6

n − 2

E8 × SO(2n − 1)

↓

E8 × SO(2n)

Table 3.5.2: Quivers resulting from adding all possible simply laced slices to the empty nodes of n.min

Dn (3.5.1) to absorb a for n ≥ 3.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3, n ≥ 3 2 4
⋯

4 2 2
⋯

2 1

2

k − 2 n − 2

SO(2k + 1) × SO(2n − 1)

↓

SO(2k + 1) × SO(2n)

ck

k ≥ 2, n ≥ 3
2 2

⋯
2 2 2

⋯
2 1

k − 1 n − 2

Sp(k) × SO(2n − 1)

↓

Sp(k) × SO(2n)

f4

n ≥ 3
2 4 6 4 2 2

⋯
2 1

n − 2

F4 × SO(2n − 1)

↓

F4 × SO(2n)

g2

n ≥ 3
2 4 2 2

⋯
2 1

n − 2

G2 × SO(2n − 1)

↓

G2 × SO(2n)

Table 3.5.3: Quivers resulting from adding all possible non-simply laced slice to the empty nodes of

n.min Dn (3.5.1) to absorb a for n ≥ 3
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 1 2 4
⋯

4 2

2

k − 2

SU(2) × SO(2k)

↓

SU(2)2 × SO(2k)

ck

k ≥ 2 2 2
⋯

2 2
⋯

2 2

1

k − j − 1j

SU(2) × Sp(j) × Sp(k − j)

↓

SU(2)2 × Sp(j) × Sp(k − j)

f4
1 2 4 6 4 2

SU(2) × SO(9)

↓

SU(2)2 × SO(9)

a2k−1

k ≥ 3 1 2 4
⋯

4 4

2

k − 2

SU(2) × Sp(k)

↓

SU(2)2 × Sp(k)

dk+1

k ≥ 2
1 2 4

⋯
4 2

k − 1

SU(2) × SO(2k + 1)

↓

SU(2)2 × SO(2k + 1)

e6
1 2 4 6 8 4

SU(2) × F4

↓

SU(2)2 × F4

Table 3.5.4: Quivers resulting from adding all possible elementary slices to n.min D2 (3.5.6) to absorb

a.
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3.5.2 Enhancement from SU(n) ×U(1) to SO(2n)

The final quiver we consider for enhancement to D-type symmetry is that of (3.3.1) with a further

Z2 quotient taken, to combine the two spinor nodes into another rank two node with an adjoint

hypermultiplet [62]:

2a1

2
b1 ⋯

2
b2

2 a2

n − 2 (3.5.8)

This quiver has SO(2n) global symmetry because under the modified BGS algorithm of Section 3.2.1

we see the shape of the twisted affine dn quiver. As mentioned in Section 3.2.2, a modification on

the quiver addition algorithm is needed in this case. This is because if we take c1 and c2 to be the

existing nodes the right and left of b1 and b2 respectively, then one can check that it is impossible to

absorb a1 and a2 by adding on to these nodes. Thus the only legitimate additions one can perform

here are by taking c1 and c2 to be the empty nodes to the left and right of b1 and b2 respectively,

0
c1

2a1

2 b1

⋯
2b2

2 a2

0
c2,

n − 2 (3.5.9)

and adding some affine quiver gk to c1 and another affine quiver g̃l to c2, so that upon double

subtraction of both gk and g̃l, both a1 and a2 must appear in order to rebalance. There will be 45

such quivers so we shall not list them all here, but they take the form

⋯ ⋯
2 2

⋯
2 2

⋯ ⋯

2 gk n − 2 2 g̃l (3.5.10)

and will exhibit the enhancement from the BGS as

Gk × SU(n − 1) ×U(1) × G̃l → Gk × SO(2n) × G̃l. (3.5.11)

To be explicit, we show an example of adding b3 to the left of node a1, and d4 to the right of node

a2. That is, gk = b3 and g̃l = d4:

2 4 2

2

2
⋯

2 2 4 2

2 2

n − 2 (3.5.12)

The enhancements for several of these cases have been checked and confirmed via the Hilbert series.

Again, due to the lack of long rank one nodes present, a different addition prior to absorbing a1 or

a2 cannot happen as it did in Section 3.3.2, and so the quivers given in Tables 3.5.1, 3.5.2, 3.5.3,
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3.5.4 and those encapsulated by the general form of (3.5.10) comprise the full list of quivers derived

from quiver addition on the next to minimal nilpotent orbit of Dn (3.5.1) and (3.5.8) whose global

symmetry contains a factor which is enhanced to SO(2n) from that predicted by the BGS.

3.6 Enhancement to SU(3)

The final quiver from Table 3.2.1 that we know how to perform quiver addition on is

4a

2
b .

(3.6.1)

Note that although the greatest common divisor of the ranks of the gauge nodes here is greater than

one, the Coulomb branch of this quiver is still a symplectic singularity. The Hasse diagram for (3.6.1)

is a question for future work. The amended BGS algorithm in Section 3.2.1 tells us that the global

symmetry of this quiver is SU(3), and indeed this is confirmed upon Hilbert series computation. As

a result, the quivers presented in this section all experience the enhancement in a factor of their BGS

to SU(3):
∏
i

Gi × SU(2) →∏
i

Gi × SU(3), (3.6.2)

for some simple Lie groups Gi.

Following the terminology of the quiver addition algorithm in Section 3.2.2, there are no possible

existing c-nodes in (3.6.1), so the only available c-nodes here are empty:

0
c

4a

2 b

,

(3.6.3)

A result of this is that, as before, we may add any affine slice. Since the node a is of rank four, to

absorb it the slice that we add gk must be added four times. The results of performing these quiver

additions are given in Tables 3.6.1 and 3.6.2. For those quivers in these tables which depend on the

parameter k, for low values of k Hilbert series computations have confirmed this enhancement. The

e6 and g2 cases have also been confirmed, but we have been unable to compute the Hilbert series for

the e7, e8 and f4 cases, and so these enhancements remain as conjectures. Also, note that the greatest

common divisor of the node ranks of the quivers in Tables 3.6.1 and 3.6.2 is greater than one. As

mentioned in Chapter 1,2 this is often an indication of a diverging Hilbert series. Here the quivers are

too complex to confirm or deny this by computation, but since they are derived from (3.6.1) which

we know does not suffer this divergence, there is a strong possibility that these quivers are also exempt.

Again as with (3.5.1) and (3.5.8) of Section 3.5, since (3.6.1) has no long rank one nodes we cannot

add onto this quiver other than to absorb a, and so do not get further constructions as in Section

3.3.2. As a result, Tables 3.6.1 and 3.6.2 conclude all possible quivers derived from performing quiver

addition on (3.6.1) to absorb a whose global symmetry contains a factor which is enhanced to SU(3).
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Added Slice Quiver Global Symmetry

ak

k ≥ 1 2 4

4

⋯
4

k

SU(2) × SU(k + 1)

↓

SU(3) × SU(k + 1)

dk

k ≥ 4 2 4 8
⋯

8 4

44

k − 3

SU(2) × SO(2k)

↓

SU(3) × SO(2k)

e6

2 4 8 12 8 4

8

4 SU(2) ×E6

↓

SU(3) ×E6

e7

2 4 8 12 16 12 8 4

8
SU(2) ×E7

↓

SU(3) ×E7

e8

2 4 8 12 16 20 24 16 8

12
SU(2) ×E8

↓

SU(3) ×E8

Table 3.6.1: Quivers resulting from adding all possible simply laced elementary slices to (3.6.1) to

absorb a.
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Added Slice Quiver Global Symmetry

bk

k ≥ 3 2 4 8
⋯

8 4

4

k − 2

SU(2) × SO(2k + 1)

↓

SU(3) × SO(2k + 1)

ck

k ≥ 2
2 4 4

⋯
4 4

k − 1

SU(2) × Sp(k)

↓

SU(3) × Sp(k)

f4
2 4 8 12 8 4

SU(2) × F4

↓

SU(3) × F4

g2
2 4 8 4

SU(2) ×G2

↓

SU(3) ×G2

Table 3.6.2: Quivers resulting from adding all possible non-simply laced elementary slices to (3.6.1) to

absorb a.
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3.7 Modified Global Symmetry Algorithm

In this chapter, we have seen a huge range of quivers for which the BGS algorithm of Section 3.1 fails

to give the full GS, and identified that this failure was due to the appearance of a quiver Qa in the

Hasse diagram. As a result, we are now ready to present a modified version of the algorithm which

correctly gives the full GS for all quivers that the previous algorithm did in addition to all quivers in

this chapter. Note that it is not sufficient to compute GS for all quivers containing regular matter ;

for example, it does not cater for the quivers whose Hasse diagrams contain quivers with adjoint

matter that do not appear in Table 3.2.1. We present it here as a stepping-stone algorithm that we

hope can be built upon in aid of the goal to find an algorithm which works in all cases.

Modified BGS algorithm for quivers in this chapter

We say that a quiver Q contains c copies of an elementary slice19 whose Coulomb quiver is σ if Q

has a set of connected nodes Qcσ in the shape of the nodes in σ, such that the ranks of all nodes in

Qcσ are at least c times the ranks of the corresponding nodes in σ, but at least one node of Qcσ is less

than c+1 times its corresponding node rank in σ. We use Qr to denote quivers which contain regular

matter only and appear either in this chapter, or in the set of quivers for which the BGS algorithm

of Section 3.1 works. Suppose a quiver Qr contains E Coulomb quivers for elementary slices, σi,

i = 1, ...,E, and moreover contains ci copies of each. Then the GS for Qr is given as follows:

1. If ci = 1 for all i, then follow the BGS algorithm of Section 3.1:

a) If Qr is framed, and the gauge nodes in it comprise s balanced sub-Dynkin diagrams Di

of the simple Lie groups Gi, and k unbalanced nodes, then the BGS is given by

GSframed
Qr

=
s

∏
i=1
Gi ×U(1)k. (3.7.1)

b) If Qr is unframed, there are two scenarios:

i) If Qr is balanced, then it must be either the affine or twisted affine quiver for some

simple Lie group G (these quivers are given in Tables 3.1.1 and 3.1.2 respectively), in

which case

GSQr = G. (3.7.2)

ii) If Qr is unbalanced, and the gauge nodes in it comprise s balanced sub-Dynkin dia-

grams Di of the simple Lie groups Gi, and k unbalanced nodes, then the BGS is given

by

BGSunframed
Qr

=
s

∏
i=1
Gi ×U(1)k−1. (3.7.3)

where the definitions of s, Gi and k are as in Step 1.

2. If ci > 1 for at least one i = 1, ...,E, then:20

a) Colour in any unbalanced nodes.

19Recall the known elementary slices to date can be found in Table 1 of [81] and Table 3.1.2 of this note.

20Note that there is no appearance of the affine Dynkin diagram in this case. This is because the only way this could

happen is if there was several copies of a single affine diagram, and we do not consider such quivers as they do not fall

under the collection of those whose Coulomb branches are symplectic singularities.



101 CHAPTER 3. GLOBAL SYMMETRY

b) For each i = 1, ...,E, perform ci identical subtractions of σi from Qr. For each i, this will

give a quiver Qi containing a node U(ci) with an adjoint hypermultiplet.

c) In each Qi, label the adjoint node U(ci) by ai, and the nodes of Qi connected to ai as bi,j .

d) Each bi,j is also present in the quiver Qr. Label these nodes in Qr as bi,j also.

e) Attach each node ai (from Qi, uncoloured) to all nodes bi,j in Qr, giving quiver Q̃r.

f ) Ignoring current node ranks and excess (adhere to the colouring of unbalanced nodes in

Step 2a to dictate which nodes are considered balanced), if the gauge nodes of Q̃r comprise

s balanced sub-Dynkin diagrams Di of the simple Lie groups Gi, t quivers Qa,i appearing

in Table 3.2.1 with global symmetries G̃i, and k unbalanced nodes, then GS is given by:

GSQr =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏si=1Gi ×∏tj=1 G̃j ×U(1)k if Qr framed

∏si=1Gi ×∏tj=1 G̃j ×U(1)k−1 if Qr unframed
. (3.7.4)

Example We’ll illustrate this algorithm with the example Q of (3.1.4), for which we saw the BGS

algorithm of Section 3.1 fail:

Q =
2 4 6 8 5

5

2

2

.

(3.7.5)

We can see that the only elementary slice whose Coulomb quiver lies within Q is e6, and there are two

copies of it: E = 1, σ1 = e6 and c1 = 2. Since c1 = 2, we use Step 2 of the above modified algorithm:

(a) The unbalanced nodes are already coloured in red in (3.7.5).

(b) There is just E = 1 subtraction to perform: taking σ1 = e6 away from Q c1 = 2 times. This gives

the quiver Q1:

Q1 =

2

2 2 2 2 1

1

.

(3.7.6)

(c) We can see the adjoint node U(c1 = 2) is connected to just a single node in Q1. This means

there is just one b1,j , b1,1, and we label this and the adjoint node a1:

Q1 =

2a1

2
b1,1

2 2 2 1

1

.

(3.7.7)

(d) We see that the corresponding node in Q is the left-hand rank two node, and label it as such:

Q =
2

b1,1
4 6 8 5

5

2

2

.

(3.7.8)
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(e) We construct Q̃ by attaching a1 (uncoloured) to b1,1:

Q̃ =

2a1

2
b1,1

4 6 8 5

5

2

2

.

(3.7.9)

(f) Q̃ has only one balanced subsets of nodes (where remember the balance is indicated by the

colouring in Step (a); white nodes are balanced, red nodes are unbalanced) which form the

first quiver in Table 3.2.1 for n = 6, and two unbalanced nodes: s = 0, t = 1, Qa1,1 = n.min B6,

G̃1 = SO(13), and k = 2. Thus, since Q is unframed, we find the Coulomb branch topological

symmetry to be:

GSQ = SO(13) ×U(1). (3.7.10)

◻



Chapter 4

Poisson Brackets

In this chapter, we present the work of [11] where we used various methods to determine the un-

ordered Poisson brackets {⋅, ⋅}C on C between its generators GC , {GC ,GC}C . The antisymmetry and

Leibniz properties of the Poisson bracket and the ring structure of the Coulomb branch then fully fix

the Poisson brackets between any two operators on C. They are of interest as the Poisson structure

on the Coulomb branch relates its symplectic one, as briefly mentioned in Section 2.3.2.4 (and will

be further elaborated on in Section 4.1). In particular, the Poisson bracket and symplectic form

degenerate at the same points. There has been previous progress on determining Poisson brackets

for Coulomb branches in the literature (see for instance [17, 18, 3, 19, 20]); in this note we add to

this by providing explicit computations for a selected set of examples, including quivers with many

unitary gauge nodes of high rank.

So, given a quiver, how does one compute the Poisson brackets between the generators of its Coulomb

branch? We can answer this question in two ways, depending on how we choose to view C. The first

way will be the topic of Sections 4.2 – 4.5: we view the Coulomb branch as the space of dressed

monopole operators (see Section 2.4.2.1), and study the Poisson brackets between those that gener-

ate the variety. This method gives more explicit information, but has the drawbacks of being more

computationally intensive or requiring the exact description of the Coulomb branch as an algebraic

variety to be known1 (e.g. via mirror symmetry [51, 48]). The second viewpoint we can take, if the

representation content of C at low orders is known, is slightly more reductionist: we can characterise

the Coulomb branch simply as a space of representations of its topological global symmetry GS,

isolate those which generate the space and then conjecture the Poisson brackets between them based

on representation theoretic and operator content constraints. This viewpoint is discussed in Sections

4.6 – 4.7; it is a more abstract approach, but allows us to say something about the Poisson structure

of a wider set of Coulomb branches.

The outline of this chapter is as follows. Section 4.1 makes concrete our definition of a symplectic

singularity, and shows how the symplectic form induces a Poisson structure. In Sections 4.2 – 4.5 we

detail the computation of {GC ,GC}C for GC the explicit dressed monopole operators of the physical

theory: Section 4.2 explains the method used to do this for the cases where either the explicit variety

1Here, by “an exact description” we mean an explicit realisation of the Coulomb branch as the space traced out by

some known set of generators which are expressed as holomorphic polynomials in some complex coordinates, and any

relations they are subject to.
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C = V is known, or the dimension of the Coulomb branch is sufficiently small; and Sections 4.3, 4.4

and 4.5 report the results for the examples of Coulomb branches which are free spaces, A and D

Klein singularities and small dimension nilpotent orbits respectively. Sections 4.6 – 4.7 cover the

alternative method of computing {GC ,GC}C for generators GC viewed abstractly as representations of

the global symmetry: Section 4.6 details the method, and Section 4.7 details the results for several

families of magnetic quivers for the Higgs branch of 5 or 6d theories at infinite coupling.

Before we begin by discussing the monopole construction of the Coulomb branch, we briefly list some

notation that will be used throughout:

⋅ GC , GV and GH are used to denote the generators for a Coulomb branch C, variety V and Higgs

branch H respectively.

⋅ {⋅, ⋅}C and {⋅, ⋅}V denote the Poisson bracket between any two Coulomb branch operators written

in terms of the Coulomb branch degrees of freedom and written in terms of the holomorphic

functions on the abstract variety we know the Coulomb branch to be respectively. When the

chosen degrees of freedom are clear, the subscripts will be dropped.

⋅ Throughout, {⋯} is used to denote both a set and a Poisson bracket (the latter is only applicable

when there are two arguments), but the context should make clear in which sense it is being

used.

⋅ We use m(⋅), J(⋅) and ∆(⋅) to denote the magnetic, topological and conformal dimension of

an operator respectively.

⋅ In Sections 4.6 and 4.7, µ, ν and µi will be used both as an index labelling representation

generators that takes on certain specified values, and as the highest weight fugacities to denote

a representation. Its meaning in a given situation should be clear from context (i.e. whether it

lies in an exponent/subscript or not).

4.1 Symplectic Singularities and the Poisson Bracket

Recall from Chapter 1 that all Coulomb branches C of quivers we consider are symplectic singularities,

in the sense of Beauville [2]. In Section 2.3.2.4 we saw that in our languauge, this essentially means

they are algebraic varieties on which there exists a 2-form which degenerates at zero or more points.

This 2-form is called the symplectic form ω, and defines a pairing on the tangent space at any point on

the variety. We see now how the symplectic form induces a Poisson structure on the Coulomb branch.

Recall from Sections 2.3 and 2.4 that the Coulomb branch chiral ring is thought to be isomorphic to

the ring of holomorphic functions over it, and hence completely captures C as an algebrogeometric

object. Since ω maps two tangent vectors at a point p on C to C, it can be thought of as a map from

a tangent space at p to the cotangent space at p,

ω ∶ TpC → T ∗p C. (4.1.1)

This induces a correspondence between one-forms and vector fields on C. Consider any holomorphic

function f (chiral operator) on C. Since it is differentiable, we can consider its differential df . Since this

is a one-form, the symplectic form then says that away from singularities (where the correspondence

(4.1.1) ceases to be bijective) this is equivalent to a vector field Xf . Thus we can define the Poisson
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bracket of two chiral operators on the Coulomb branch isomorphic to holomorphic functions f and g

as

{f, g} ≡ ω(Xf ,Xg). (4.1.2)

Example Take the concrete example of C2 ≅ C[z1, z2]. The holomorphic functions on this variety

are generated by the two complex coordinates over which it is formed, z1 and z2. As a result, we can

find the Poisson bracket between any two functions on C2 by postulating a relation between z1 and

z2 and then invoking the Leibniz behviour, bilinearity and antisymmetry of {⋅, ⋅}. We postulate that

z1 and z2 satisfy

{z1, z2} = 1, (4.1.3)

a direct analogue of that of phase space coordinates in classical mechanics. Leibniz can then be used

to see that the Poisson bracket between any two functions f and g on C2 is

{f(z1, z2), g(z1, z2)} =
∂f

∂z1

∂g

∂z2
− ∂f

∂z2

∂g

∂z1
. (4.1.4)

Note that the properties of the Poisson bracket – a bilinear map which obeys anticommutativity,

Leibniz and the Jacobi identity – match those of a Lie bracket, and this fact can be exploited in both

directions. For example, consider the generators GC of a given Coulomb branch C. They lie in the

adjoint representation of the topological global symmetry algebra gs. If the structure constants of this

algebra are known, we can use them to conclude the Poisson brackets. If the structure constants are

unknown and we can compute the Poisson brackets, then we can use these to conclude the structure

constants. More generally, the form of the Poisson brackets between two operators can be inferred

by combining the imposition of conserved charges with constraints from other available information.

Two different approaches to doing this will be discussed in Sections 4.2 and 4.6 respectively. We start

with the approach which considers the Coulomb branch as the space of dressed monopole operators

OC , and use the Hilbert series or the known variety C = V to fix the Poisson brackets between OC .

4.2 Poisson Brackets for Dressed Monopole Operators

In this section, we write down the chiral operators on C as bare and dressed monopoles (as in Section

2.4.2), and compute the Poisson brackets between them. The method we present to do this is fairly

simple in principle:

Method

1. Explicitly write down the generators of the Coulomb branch in terms of its basic degrees of

freedom (bare monopoles and adjoint scalars).

2. Constrain the Poisson brackets by demanding the result have the expected conserved charges

under the global symmetries of the Coulomb branch. This will fix the results up to constant

factors.

3. a) If the Coulomb branch is known as a variety with coordinates on which there exists a

canonical Poisson bracket,2 use the results of Step 2 to identify which dressed monopoles

correspond to which holomorphic functions on this variety, and declare that their Poisson

brackets are equal.

2We use the term canonical Poisson bracket to mean the one associated to a known algebraic symplectic variety.
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b) Otherwise, fix the constant factors by demanding that the Poisson bracket of the Cartan

elements of the Coulomb branch generators with any operator on the Coulomb branch

yield the correct weight under the global symmetry of the Coulomb branch.

As already alluded to, these steps are easier said than done: the number of quivers whose Coulomb

branch satisfies the condition of 3.a) is rather small; and even for quivers with fairly low-dimension

Coulomb branches there quickly become too many variables to actually find an explicit solution fol-

lowing the idea of 3.b) (at least using the methods we have so far). Essentially, there are many quivers

for which Step 3 becomes too hard to do and we cannot ascertain the Poisson relations between the

explicit dressed monopole operators of C. It is in these cases that we turn to an alternate viewpoint,

as discussed in Section 4.6 and executed in Section 4.7. In Sections 4.2.1, 4.2.2, 4.2.3.1 and 4.2.3.2

respectively we elaborate on each of the steps 1, 2, 3.a) and 3.b) in the method above (assuming that

the Coulomb branches we consider satisfy the above conditions of being either known exactly as a

variety or of low enough dimension), detailing exactly how to perform the relevant computations and

illustrating them in our favourite example of SQED with 2 electrons (2.6.14).

4.2.1 Writing down Coulomb branch generators

Recall from Section 2.4.2 that the Coulomb branch is the space of gauge invariant bare and dressed

monopole operators19 labelled by magnetic charges in the weight lattice of the GNO dual of the gauge

group. Before we see explicitly how to construct these, we make a brief remark on terminology. We

refer to gauge-invariant monopole operators which are not dressed by any adjoint scalars as physi-

cal bare monopoles, and the gauge-invariant supersymmetry-preserving dressing factors as physical

adjoint scalars or Casimirs. Together these form the physical Coulomb branch degrees of freedom

DC . These degrees of freedom can then be used to construct the Coulomb branch operators OC ,
the dressed monopole operators, which we define as linear combinations of products of DC that have

matching conserved charges (topological charge and conformal dimension).

Physical bare monopoles Recall from Section 2.4.2.1 that a bare monopole operator for a gauge

group G with rank(G) = n has magnetic charge m = (m1, ...,mn) ∈ ΛG∨ . We denote this bare

monopole operator vm = vm1⋯mn . However vm is not necessarily a physical degree of freedom DC , as
it may not be gauge-invariant. The gauge group acts on the weights of G∨ via its Weyl group WG∨ ,

and if m is not invariant under WG∨ then this bare monopole operator vm is not physical. To rectify

this, for a given magnetic charge m we need to sum up the unphysical bare monopole operators with

magnetic charges in the WG∨ orbit of m. We will call the physical bare monopole corresponding to

vm by the name Vm:

Vm = ∑
σ∈WG∨

vσ(m). (4.2.1)

Note that in this notation we clearly have Vm = Vσ(m) for any σ ∈ WG∨ , and so if we write down

all the Vm for every m ∈ ΛG∨ , many will be identical and the duplicates will need deleting so as not

to overcount. To avoid these duplicates, we can just compute (4.2.1) for each m in a single Weyl

chamber of ΛG∨ to find the set of all physical bare monopole degrees of freedom DVC :

DVC = {Vm ∣ m ∈ ΛG∨/WG∨} =
⎧⎪⎪⎨⎪⎪⎩
∑

σ∈WG∨

vσ(m)

RRRRRRRRRRR
m ∈ ΛG∨/WG∨

⎫⎪⎪⎬⎪⎪⎭
. (4.2.2)
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Recall for a single unitary gauge group G = U(n) that ΛG∨/WG∨ ≅ Zn/Sn. Then the physical bare

monopoles in this case are

DVC = {Vm ∣ m ∈ Zn/Sn} =
⎧⎪⎪⎨⎪⎪⎩
∑
σ∈Sn

vσ(m)

RRRRRRRRRRR
m ∈ Zn/Sn

⎫⎪⎪⎬⎪⎪⎭
, (4.2.3)

We could pick the Weyl chamber Zn/Sn to be

m = (m1, ...,mn) ∈ Zn such that m1 ≥m2 ≥ ⋯ ≥mn. (4.2.4)

By extension, the unphysical bare monopoles in a quiver with p unitary gauge nodes U(ni) i = 1, ..., p
are labelled by vectors m = (m1, ...,mp) = (m1,1, ...,m1,n1 , ...,mp,1, ...,mp,np) of length ∑

p
i=1 ni with

integer entries: {vm ∣ m ∈ ∏pi=1Zni}. The set of all physical bare monopole degrees of freedom is

then

DVC = {Vm ∣ m ∈
p

∏
i=1

Zni/Sni} =
⎧⎪⎪⎨⎪⎪⎩

∑
σ ∈∏p

i=1 Sni

vσ(m) ∣ m ∈
p

∏
i=1

Zni/Sni

⎫⎪⎪⎬⎪⎪⎭
. (4.2.5)

Again, we could pick the Weyl chambers Zni/Sni to be (4.2.4) for each mi, i = 1, ..., p.

Adjoint valued complex scalars Recall from Section 2.4.2.1 that a physical adjoint scalar dress-

ing factor φm for a bare monopole Vm is a gauge-invariant linear combination of the eigenvalues of the

residual gauge algebra hm unbroken by the monopole VEVm ∈ g. In particular, we saw that for an un-

broken gauge algebra hm = ⊕um

i=1 u(lm,i) with eigenvalues λ1,1 , ... , λ1,lm,1 , ... , λum,1 , ... , λum,lm,um
,

the dressing factor is (2.4.16). So the set of adjoint scalar degrees of freedom DφC for a quiver with p

unitary gauge nodes U(ni) i = 1, ..., p is

DφC =
⎧⎪⎪⎨⎪⎪⎩

lm,i

∑
j=1

λi,j ∣ i = 1, ..., um, m ∈
p

∏
i=1

Zni/Sni

⎫⎪⎪⎬⎪⎪⎭
≡ {φm,i ∣ i = 1, ..., um, m ∈

p

∏
i=1

Zni/Sni} . (4.2.6)

All physical degrees of freedom and operators We have seen that the complete list of physical

Coulomb branch degrees of freedom for a quiver with p unitary gauge nodes of ranks ni for i = 1, ..., p
is comprised of (4.2.5) and (4.2.6):

DC = DVC ∪ DφC

= { Vm ∣ m ∈
p

∏
i=1

Zni/Sni} ∪ { φm,i ∣ i = 1, ..., um, m ∈
p

∏
i=1

Zni/Sni} ,
(4.2.7)

and so any Coulomb branch operator is some product of bare monopoles (4.2.5) and adjoint scalars

(2.4.16),

OC =
⎧⎪⎪⎨⎪⎪⎩

∏
m ∈∏p

i=1 Zni /Sni

( (Vm)k̃m
um

∏
i=1
(φm,i)km,i ) ∣ k̃m, km,i ∈ Z≥0

⎫⎪⎪⎬⎪⎪⎭
, (4.2.8)

and linear combinations thereof, for any choice of non-negative integers k̃m and km,i such that each

term in the linear combination has the same values for the conserved charges (from here on out we

will refer to such linear combinations as “consistent”).
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Generators To find which linear combinations of (4.2.8) have the correct charges to be generators

of the Coulomb branch in question, we first consult the plethystic logarithm of its Hilbert series. This

tells us the conformal dimension(s) at which the generators lie, which we’ll call ∆gen
i for i = 1, ..., d

where d is the number of distinct conformal dimensions of generators (note that clearly d must be

less than or equal to the number of generators). We then solve the d equations

∆gen
i =∆(GC), (4.2.9)

to find which of the Coulomb branch operators OC (4.2.8) are the generators of the Coulomb branch,

GC . To do this we need to know how to compute the conformal dimension of any Coulomb branch

operator. From (4.2.8) we see that any OC is some product of physical Coulomb branch degrees of

freedom (4.2.7). Its conformal dimension is then simply the sum of the conformal dimensions of each

of these degrees of freedom in the product, (2.4.20) and (2.4.21) for the bare monopoles and adjoint

scalars respectively.

Example Consider a U(1) gauge theory with 2 electrons, described by the quiver QA1 (2.6.14).

Since there is just one gauge group and it is Abelian, here m = m ∈ Z is just a vector of length one,

and its Weyl group is trivial. The residual gauge group is always U(1), so for any value of m there is

just one adjoint scalar dressing φm = λ ∈ C. The physical degrees of freedom on the Coulomb branch

here are then3

DC = {Vm, λ}. (4.2.10)

The Coulomb branch operators then are

OC = { ∏
m ∈Z
(Vm)k̃m λkm} (4.2.11)

for non-negative integers k̃m and km, and consistent linear combinations thereof.

Now let’s find the operators among OC which are generators. The plethystic logarithm of the Hilbert

series is

PL(HS(C(QA1))) = [2]SU(2)t2 − t4, (4.2.12)

hence every generator has ∆gen = 1. This means that the Coulomb branch generators GC are the

operators OC (4.2.11) which have ∆(OC) = 1. For this quiver theory, using (2.4.20) we see that the

conformal dimension of a bare monopole is

∆QA1
(m) = ∣m∣, (4.2.13)

and we know from (2.4.21) that

∆QA1
(λ) = 1, (4.2.14)

thus the generators of C(QA1) are the bare monopoles V±1 and the complex-valued adjoint scalar λ:

GC = {λ, V+1, V−1}, (4.2.15)

up to constants. More complex linear combinations are not allowed because (4.2.15) all have distinct

topological charges: 0, +1 and −1 respectively. All other physical Coulomb branch operators OC
(4.2.11) can be formed from products of (4.2.15) and consistent linear combinations thereof. ◻

3Note that since here the only Weyl group is the trivial group S1, the Vm are equal to the vm, as vm are already

physical.
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4.2.2 Fixing the form of Poisson bracket relations using charge conserva-

tion

In the refined Hilbert series we grade the Coulomb branch operators by their charges under two global

symmetries of the Coulomb branch: the conformal dimension ∆ under SU(2)R ((2.4.20), (2.4.21)),

and the topological charge J under the topological symmetry (2.4.24). These charges must be logi-

cally conserved under action with the Poisson bracket.

We know the Poisson bracket of a variety acts like two derivatives with respect to the variety’s

coordinates (4.2.24): it has “weight” −2 with respect to the degree of any function in these coordinates

(see [20] for an intuitive physical reasoning for this). The Hilbert series counts the holomorphic

functions (chiral operators) on the Coulomb branch, graded by a power of t equal to twice their

conformal dimension, so the conformal dimension of the Poisson bracket between two Coulomb branch

operators O1 and O2 should be

∆({O1,O2}) =∆(O1) +∆(O2) − 1. (4.2.16)

The Poisson bracket is a structure defined on the variety, independent of any gauge theory construc-

tion, and thus the magnetic charge m of the Poisson bracket itself should be zero. The magnetic

charge of the result of a Poisson bracket between two Coulomb branch operators O1 and O2 should

therefore be

J({O1,O2}) = J(O1) + J(O2). (4.2.17)

Using (4.2.16) and (4.2.17), we can constrain which operators can lie in the result of our Poisson

bracket, up to linear combinations.

Example As in Section 4.2.1, consider the example of the Coulomb branch of QA1 (2.6.14). Recall

that here all the generators have conformal dimension 1

∆(λ) = 1,

∆(V+1) = 1,

∆(V−1) = 1,

(4.2.18)

and therefore, using (4.2.16), the Poisson bracket between any two generators from (4.2.15) must

have conformal dimension

∆({GC ,GC}) = 1. (4.2.19)

The topological charges of the generators (4.2.15) are

J(λ) = 0,

J(V+1) = +1,

J(V−1) = −1,

(4.2.20)
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and so, using (4.2.17), the topological charges for all possible Poisson brackets between them are4

J({λ,V+1}) = +1,

J({λ,V−1}) = −1,

J({V+1, V−1}) = 0.

(4.2.21)

Hence, using the constraints of (4.2.19) and (4.2.21), the Poisson brackets themselves must take the

form

{λ,V+1} = c1 V+1,

{λ,V−1} = c2 V−1,

{V+1, V−1} = c3 λ,

(4.2.22)

for some constants c1, c2, c3.
5 ◻

4.2.3 Fixing the remaining constants

Thus far we’ve discussed how to fix the general form of the Poisson brackets between generators

using charge conservation, but now we’d like to find the explicit constants of proportionality (e.g. the

c1, c2, c3 in (4.2.22)). We can do this in one of two ways depending on the situation, as detailed in

the Method at the start of Section 4.2: using the Poisson relations of the exact variety (if known), or

demanding that each operator has the correct weight under the global symmetry.

4.2.3.1 Using the Poisson relations of the variety

We start with determining the Poisson brackets in the situation where the Coulomb branch of the

quiver in question is a known variety V (i.e. C(Q) ≡ V) that is equipped with a canonical Poisson

bracket. To establish the Poisson brackets between the generating monopoles in this case, we adhere

to the following steps:

1. Explicitly write down the generators GV of V as holomorphic polynomials in its coordinates.

2. Calculate the Poisson bracket between these generators using the canonical Poisson bracket on

the coordinates of V.

3. Compare these with the “rough form” of the Poisson brackets between the generating monopoles

found using the constraints of Section 4.2.2: identify which monopoles in GC correspond to which

holomorphic polynomials in GV , and declare their Poisson brackets to be those found in Step 2

above.

4Remember that by antisymmetry, the Poisson bracket of anything with itself is zero and the only relevant Poisson

brackets to consider are those between all non-ordered pairs of distinct generators.

5These Poisson brackets indeed form a closed algebra as we would expect: {⋅, ⋅} acts as the Lie bracket of the global

symmetry.
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Example Recall that for the Coulomb branch of QA1 (2.6.14), GC were simply (4.2.15) or mulitples

thereof. In this case however, we also know (via mirror symmetry and the Higgs branch construction

[51, 48]) that

C(QA1) = C2/Z2, (4.2.23)

i.e. here V = C2/Z2. The coordinates on this variety are just inherited from those on C2, z1 and z2,

as is the canonical Poisson bracket

{z1, z2} = 1. (4.2.24)

Let’s proceed with the steps above to find the Poisson brackets between GC by finding those between

GV :

1. The variety V = C2/Z2 is simply comprised of the elements of C2 = C[z1, z2] which are invariant

under the Z2 action

Z2 ∶ z1 → −z1
∶ z2 → −z2

(4.2.25)

Thus we can clearly see that V is generated by

GV = {A = z1z2 , B = z22 , C = z21} (4.2.26)

up to constant factors.

2. We can then use the Leibniz property of the Poisson bracket and the canonical relation (4.2.24)

to find the Poisson brackets between any pair of generators:

{A,B} = 2B,

{A,C} = −2C,

{B,C} = −4A.

(4.2.27)

3. Comparing (4.2.27) with (4.2.22), we can match the members of GV and GC as follows:

A = λ,

B = V+1,

C = V−1,

(4.2.28)

and therefore we could conclude that

{λ,V+1} = 2V+1,

{λ,V−1} = −2V−1,

{V+1, V−1} = −4λ.

(4.2.29)

Note that the constant factors here can be rescaled by redefining the generators by multiplication

by a constant: we will do this in Section 4.2.3.2 to make the equivalence between the methods

presented in that section and this one clear.

◻
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4.2.3.2 Demanding correct global symmetry weights

We now turn to Coulomb branches for which the exact variety V, and canonical Poisson bracket

thereof, is not known. In these cases we make headway with constructing the Poisson brackets be-

tween GC by inspecting the Hilbert series. We exploit the fact that the Poisson bracket acts on

representations of the global symmetry as the Lie bracket: a Cartan element of the global symme-

try is an eigenoperator of the Poisson bracket, with eigenvalue equal to the weight under the global

symmetry of the operator it acts on.6 Note that since it’s an eigenoperator of {⋅, ⋅}, a Cartan element

must have ∆ = 1 and J = 0.

Suppose that after completing Step 2 of the Method (as explained in Section 4.2.2), we found that

a Poisson bracket between two generators was proportional to the Coulomb branch operator O (for

example, in the case of U(1) with 2 flavours we found that {λ,V+1} was proportional to O = V+1).
Then the method to constrain the constant of proportionality is as follows:

1. First, find which monomial in the refined Hilbert series corresponds to O.

2. Using an appropriate fugacity map (see Section 2.6.6), find which monomial in the character

of the Coulomb branch global topological symmetry GS that this corresponds to, and hence

deduce the weight of O under GS.

3. Define r = rank(GS) Cartan elements, C1, ...,Cr, as linear combinations of all possible Coulomb

branch operators with ∆ = 1 and J = 0.

4. Demand that the Poisson brackets {C1,O} , . . . , {Crank(GS),O} yield the correct weight of

O under GS (as found in Step 2), and solve for the constants in the problem (the constants

of proportionality in the postulated Poisson brackets based on charge conservation, and the

constants appearing in the linear combinations in C1, ...,Cr).

Example Recall the “rough” (i.e. up to constants) Poisson relations (4.2.22) for the Coulomb

branch generators (4.2.15) of QA1 (2.6.14) considered in the previous two subsections. To fix the

constants of proportionality c1, c2, c3 here, let’s follow the steps above.

1. First, we find the monomials in the refined Hilbert series corresponding to each of λ,V+1, V−1,

which all had ∆ = 1. Recall the monopole formula (2.6.7); for this quiver theory, the ∆ = 1

contribution to the Hilbert series is (1+ z + z−1) t2. Matching the topological charges, it is clear

that λ,V+1, V−1 correspond to (up to constants) the monomials 1, z, z−1 in the refined Hilbert

series.

2. The fugacity map

z → x2, (4.2.30)

takes (1+ z + z−1) t2 to the more familiar character of [2]SU(2) in the fundamental weight basis:

(1 + x2 + x−2) t2. Recall from Section 2.6.2 that the t2 term gives the adjoint character of the

topological global symmetry: here GS = SU(2). Note that SU(2) is actually the local form

of GS; its global form is actually SU(2)/Z2, as can be seen from the fact that no fermionic

representations show up in the Hilbert series (4.2.12). As we do not make use of this global

6We thank the referee for pointing out that this also follows from the fact that the Casimir elements are the complex

moment maps for the topological symmetry.
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form, we refer to GS simply as its local form SU(2) in the subsequent discussion.7 Under such

a map (4.2.30), the physical Coulomb branch generators λ, V+1 and V−1 have charges 0, +2 and

−2 respectively under GS.

3. The rank of the global symmetry here is rank(SU(2)) = 1, and so we need to just define one

Cartan element C1 in the Lie algebra of GS, su(2). Only one Coulomb branch operator satisfies

∆ = 1 and m = 0: λ. So the Cartan operator here must be

C1 = αλ (4.2.31)

for some constant α ∈ C.

4. Finally we need to demand that the Poisson bracket, which takes the role of the Lie bracket of

the complexification of the Lie algebra of the SU(2) global symmetry on the Coulomb branch

su(2)C = sl(2;C), yields the correct charges of our Coulomb branch generators under this global

symmetry (as determined in Step 2):

{C1, λ} ≡ 0,

{C1, V+1} ≡ +2V+1,

{C1, V−1} ≡ −2V−1.

(4.2.32)

Substituting in our expression for the Cartan element (4.2.31) and using the solved Poisson

bracket results fixed up to constants found in Section 4.2.2 (4.2.22), we find that the first of

(4.2.32) is automatically satisfied, and solving the second two amounts to

α {λ,V+1} = +2V+1 = αc1 V+1,

α {λ,V−1} = −2V−1 = αc2 V−1,
(4.2.33)

i.e.

c1 = −c2. (4.2.34)

Several α, c1, c2, c3 satisfy this, but we will pick values so that we can make the following

identification of λ, V+1, V−1 with the canonical symmetric generators of sl(2;C):

λ =
⎛
⎝
0 1

1 0

⎞
⎠
, V+1 =

⎛
⎝
0 0

0 1

⎞
⎠
, V−1 =

⎛
⎝
1 0

0 0

⎞
⎠
. (4.2.35)

The Poisson bracket acts on these 2×2 matrices as a commutator (see the discussion preceeding

(4.2.39) for more details), and so we can compute:

{λ,V+1} = 2V+1,

{λ,V−1} = −2V−1,

{V+1, V−1} = −λ.

(4.2.36)

7Throughout the rest of this chapter, continuing the form of the whole thesis, we will not specify the global form

of the global symmetry GS × SU(2)R. We provide the terminating PL(HS) or PL(HWG) of all quivers we study, and

this inherently contains the information of the global form of GS ×SU(2)R, as it tells us exactly what representations

show up. To write down the global form from this does not take much work, and since it will not be of use to us in

our study of Poisson brackets we opt not to include it.
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Thus we pick α, c1, c2, c3 to be

α = 1, c1 = +2, c2 = −2, c3 = −1, (4.2.37)

so that the Poisson brackets between the generators of our Coulomb branch (4.2.22) match

those between the generating symmetric matrices of sl(2;C) (4.2.36).

◻

The Poisson brackets we have computed in this section (4.2.36) may look different from those in

Section 4.2.3.1 (4.2.29), but infact they are equivalent by a redefinition of generators: if in (4.2.29)

we rescale the generators as

λ→ λ,

V+1 →
1

2
V+1,

V−1 →
1

2
V−1,

(4.2.38)

then we recover the relations (4.2.36).

The form of the generators of sl(2;C) used in (4.2.35) is worth a comment. Often sl(2;C) is viewed
as the n = 2 version of sl(n;C); generated by traceless n×n matrices, which (4.2.35) obviously are not.

However, since the fundamental of sl(2;C) is pseudo-real, not complex, and the adjoint is the second

rank symmetric of the fundamental, not the product of the fundamental with the anti-fundamental

minus the trace (in sl(2;C) there is no concept of anti-fundamental, or “up vs down” indices), it is

more natural to think of sl(2;C) matrices as being 2 × 2 symmetric matrices instead. The obvious

generators for such matrices are (4.2.35). The only invariant of sl(2;C) when viewed in this way is

ϵαβ (the δ invariant that exists for all sl(n;C) can be expressed in terms of the ϵ for n = 2), and so

matrix multiplication is done with contraction by ϵ. For example, the Poisson bracket between the

sl(2;C) matrices identified with λ and V+1 is:

{λ,V+1}αβ = [λ,V+1]αβ = λαγϵγδ(V+1)δβ − (V+1)αγϵγδλδβ . (4.2.39)

We now move on to detail the results of such calculations for Coulomb branches that are free, Klein

singularities and nilpotent orbits in Sections 4.3, 4.4 and 4.5 respectively. The former two use Step

3.a) in the Method at the top of Section 4.2 (the topic of Section 4.2.3.1), while the latter uses Step

3.b) (the topic of this section).

4.3 Free Spaces

The first type of Coulomb branches we consider are those which are free, in the sense that they are

some number of copies of the quaternionic plane: C = Hk. These are the simplest cases to consider,

as the generators of Hk = (C2)k are in the fundamental representation of the global symmetry Sp(k),
and the Poisson brackets between them are trivially inherited from those on each copy of C2 (4.1.3).

We can logically extend this structure for the k = 1 case to k > 1 by fixing a complex structure,

Hk ≅ (C2)k ≅
d

∏
i=1

C[zi,1, zi,2], (4.3.1)
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and equipping its 2k complex generators zi,a for i = 1, ..., k and a = 1,2 with Poisson brackets

{zi,a, zj,b} = δijϵab. (4.3.2)

This notation is less useful however, as the i and j indices are not antisymmetrised. It is more

convenient to label the 2k generators in the standard way for the fundamental representation of

Sp(k): with a single index taking values from 1, ...,2k. The Poisson bracket between two such

generators zα and zβ is then just

{zα, zβ} = Ωαβ , (4.3.3)

where α,β = 1, ...,2k, and the 2k × 2k matrix Ωαβ is the invariant skew-symmetric two-form of Sp(k),
which we take to be

Ωαβ =
⎛
⎝
0 1

−1 0

⎞
⎠
, (4.3.4)

where each entry is a k × k block matrix.

4.3.1 Coulomb quivers for free spaces

A family of simple unframed quivers whose Coulomb branches are Hk can be formed by removing the

affine node from the balanced affine Dynkin quiver of any Lie group G for which h∨G = k+2.8 We call

such quivers Dynkin quivers of finite type, and denote the one corresponding to G with DG. They

are drawn explicitly in Table 4.3.1.

The method to compute the Poisson brackets for the dressed monopole operators generating the

Coulomb branch GC is the same for all quivers in Table 4.3.1 and is fairly trivial. We illustrate the

process with one example, DD5 , to introduce and walk through some of the notions discussed in

Section 4.2.

4.3.2 Example: H6
= C(DD5)

The DD5 quiver is given by9

DD5 =
1

1

2

2

2

3

1
4

1
5

, (4.3.5)

where the black labels are the ranks of the unitary gauge nodes and the blue labels are names to

distinguish between the nodes (we will make use of these shortly). The Coulomb branch here is

entirely free (H6), as showcased by its Hilbert series,

HS(C(DD5)) = PE[ [1,0,0,0,0,0]Sp(6) t ]. (4.3.6)

In particular, its only generators lie in the fundamental representation of Sp(6). The global symme-

try group expected from the balance of the quiver (the BGS [10]) is embedded inside the observed

8If G is a Lie group, h∨G is called the dual coxeter number of G. It is equal to the sum of the entries of the vector

whose dot product with the simple roots of the corresponding Lie algebra g gives the highest root of g. Equivalently

h∨G is the sum of the node ranks on the affine quiver of G. The affine quiver of G is the quiver in the shape of the affine

Dynkin diagram of G, with node ranks equal to the smallest possible positive integers which render it balanced. The

affine quivers are listed for example in Table 1 of [10], where also the notion of balance is explained in Section 2.1.

9A red node indicates an unabalanced node. Here the excess is −1.
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Lie Group G Dynkin Quiver DG Coulomb Branch

Ak 1 1
⋯

1 1

k

Hk−1

Bk

k ≥ 3
1 2 2

⋯
2 1

k − 2
H2k−3

Ck

k ≥ 2
1 1

⋯
1 1

k − 1
Hk−1

Dk

k ≥ 4 1 2 2
⋯

2 1

1

k − 3

H2k−4

E6

1 2 3 2 1

2

H10

E7

1 2 3 4 3 2

2

H16

E8

2 3 4 5 6 4 2

3

H28

F4
2 3 2 1

H7

G2
2 1

H2

Table 4.3.1: Dynkin quivers of finite type. The quiver in the central column is the Dynkin quiver for

the Lie group in the left-hand column. The Coulomb branch variety of this quiver, after ungauging the

diagonal U(1)d (see Section 2.6.5), is listed in the right hand column. Red nodes are those which are

unbalanced. All unbalanced nodes in this table have an excess of −1; they are all ugly quivers [4].
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global symmetry SU(2)×SU(4) ↪ Sp(6). More generally, for DDk
(shown in the fourth row of Table

4.3.1), there is an embedding of the BGS SU(2) × SO(2k − 4) inside the observed global symmetry

Sp(2k − 4). The Coulomb branch of DDk
is H2k−4; we can deduce this quaternionic dimension 2k − 4

as half the complex dimension, given by the degrees of freedom in the unbalanced node. This node

is connected to the only node of the balanced SU(2) Dynkin diagram to its left and the vector node

of the balanced SO(2k − 4) Dynkin diagram to its right; it lies in the representation formed from the

product of the fundamental of SU(2) and the vector of SO(2k − 4), and thus has 2 ⋅ (2k − 4) = 4k − 8
complex degrees of freedom. The quaternionic dimension of the corresponding space is then half of

this: 2k − 4. In this case, k = 5 and we see from the above that the quaternionic dimension of the

Coulomb branch is 2 ⋅ 5 − 4 = 6, which matches that of H6 as expected.

We will concretely demonstrate how to compute the Poisson brackets for the generating Coulomb

branch operators of these theories, following steps 1,2,3.a) of the Method, as outlined in Sections

4.2.1 - 4.2.3.1.

4.3.2.1 Writing down GC

We start with Step 1 of the Method: writing down the dressed monopole operators that generate the

Coulomb branch explicitly.

Recall from (4.3.6) that the generators all lie at order t in the Hilbert series; they have conformal

dimension ∆ = 1
2
. This means no adjoint scalars can be generators as they have ∆ = 1; physical bare

monopoles V generate C and the adjoint scalars are formed as bilinears in these V . Thus we need to

find which operators on the Coulomb branch of the quiver theory (4.3.5) have ∆ = 1
2
. The magnetic

charge of a monopole operator takes the form of (2.4.13) for p = 5, {n1, ..., n5} = {1,2,2,1,1}: m =
(m1,m2,m3,m4,m5) = (m1,1,m2,1,m2,2,m3,1,m3,2,m4,1,m5,1). Demanding the correct conformal

dimension of the generating bare monopole operators in this theory amounts to setting:

1

2
=∆ = − ∣m2,1 −m2,2∣ − ∣m3,1 −m3,2∣ +

1

2
(∣m1,1 −m2,1∣ + ∣m1,1 −m2,2∣ + ∣m2,1 −m3,1∣

+ ∣m2,1 −m3,2∣ + ∣m2,2 −m3,1∣ + ∣m2,2 −m3,2∣ + ∣m3,1 −m4,1∣ + ∣m3,2 −m4,1∣

+ ∣m3,1 −m5,1∣ + ∣m3,2 −m5,1∣),

(4.3.7)

and so we need to find the m which solve (4.3.7). The number of solutions can be reduced by the

restrictions we impose on m: recall that we need to (a) ungauge (see Section 2.6.5), and (b) only find

solutions to (4.3.7) in one Weyl chamber, as physical bare monopole operators Vm are the sum of all

unphysical bare monopoles vm̃ with magnetic charge m̃ in the Weyl orbit of m (4.2.1). Explicitly,

the constraints these conditions impose on m are

(a) m1,1 = 0,

(b) m1,1 ≥ 0,
m2,1 ≥m2,2 ≥ 0,
m3,1 ≥m3,2 ≥ 0,
m4,1 ≥ 0,
m5,1 ≥ 0,

(4.3.8)
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respectively. The solutions to (4.3.7) satisfying (4.3.8) are

(m2,1,m2,2,m3,1,m3,2,m4,1,m5,1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,−1,−1,−1,−1,−1)
(0,−1,0,−1,−1,−1)
(0,−1,0,−1,−1,0)
(0,−1,0,−1,0,−1)
(0,−1,0,−1,0,0)
(0,−1,0,0,0,0)
(1,0,0,0,0,0)
(1,0,1,0,0,0)
(1,0,1,0,0,1)
(1,0,1,0,1,0)
(1,0,1,0,1,1)
(1,0,1,1,1,1)

. (4.3.9)

This gives us twelve unphysical bare monopoles vm each in distinct Weyl orbits, and hence acting

with the Weyl group S2 × S2 × S1 × S1 (where Sn is the finite symmetric group of order n) on each

of these will give us the twelve physical bare monopoles that generate the Coulomb branch. That is,

our twelve generators for C(DD5) are:10

GC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V±100000 = v±100000 + v0±10000
V±10±1000 = v±10±1000 + v0±1±1000 + v±100±100 + v0±10±100
V±10±100±1 = v±10±100±1 + v0±1±100±1 + v±100±10±1 + v0±10±10±1
V±10±10±10 = v±10±10±10 + v0±1±100±10 + v±100±1±10 + v0±10±1±10
V±10±10±1±1 = v±10±10±1±1 + v0±1±10±1±1 + v±100±1±1±1 + v0±10±1±1±1
V±10±1±1±1±1 = v±10±1±1±1±1 + v0±1±1±1±1±1

, (4.3.10)

up to constants.11

4.3.2.2 Constraining Poisson brackets by charge conservation

Next we will constrain the results of the Poisson brackets between unordered pairs of these generators

using conservation of conformal dimension and magnetic charge, as discussed in Section 4.2.2.

Using (4.2.16), we see that imposing ∆-conservation tells us that for any V1, V2 ∈ GC ,

∆({V1, V2}) = 0. (4.3.11)

This tells us that the Poisson brackets between any two of the GC must be proportional to operators

with charge ∆ = 0 under the R-symmetry. The Hilbert series tells us that there is only one such

10In this case, ungauging on node 1, there are the exact same number of solutions to (4.3.7) as there are generators

(the coefficient of t in the unrefined HS is indeed twelve), and so no two solutions (4.3.9) will give the same Vm: there

are no duplicate solutions to delete. If we had chosen to ungauge on a different node however, there would have been

more than twelve solutions to (4.3.7) satisfying (4.3.8), yielding duplicates upon action by the Weyl group, all but one

of which we would then need to delete. Hence ungauging on node 1 is computationally simplest.

11No two operators in (4.3.10) have matching topological chargers, so the only valid linear combinations are multiples

of (4.3.10) by a constant.
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operator: the identity. So {V1, V2} must be proportional to the identity. This agrees with (4.3.3)

which says that the brackets should have value either ±1 or 0.

To determine which Poisson brackets vanish and which do not, we invoke the conservation of topo-

logical charge. Recalling the topological charge for a physical monopole operator (2.4.24), we can see

that the topological charges of our GC are

J(V±100000) = (±1,0,0,0),

J(V±10±1000) = (±1,±1,0,0),

J(V±10±100±1) = (±1,±1,0,±1),

J(V±10±10±10) = (±1,±1,±1,0),

J(V±10±10±1±1) = (±1,±1,±1,±1),

J(V±10±1±1±1±1) = (±1,±2,±1,±1).

(4.3.12)

Above, we saw that any non-zero result result of a Poisson bracket between two generators V1 and V2

should be proportional to the identity operator and thus have zero topological charge. Thus we can

see from (4.2.17) that the only pairs of operators that can have non-zero Poisson pairing are those

with equal and opposite magnetic charges. That is

{Vm, Vm̃} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cm,m̃ = −cm̃,m if m = −m̃
0 if m ≠ −m̃

(4.3.13)

for some antisymmetric constant cm,m̃.

4.3.2.3 Fixing the constants using the Poisson brackets of (C2)6

We now compare the relations (4.3.13) to those we expect of H6, which recall are (4.3.3) for k = 6.
It is clear that ∣cm,−m∣ = 1, but it is up to us which operator of Vm and V−m to associate to with zα

for some α = 1, ...,6, and which to associate with the corresponding zα+6. We’ll choose to assign each

m ∈ Z6
≥0 in (4.3.9) a different α = 1, ...,6. This fixes the corresponding −m ∈ Z6

≤0 to be assigned to

zα+6, and gives the following Poisson brackets for the generating dressed monopoles Vm of DD5 :

{Vm, Vm̃} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if m = −m̃ ∈ Z6
≥0

−1 if m = −m̃ ∈ Z6
≤0

0 otherwise

, (4.3.14)

recovering the exact structure of H6 given in (4.3.3).

4.4 Klein Singularities

We now turn our heads to Klein singularities. The results we arrive at here have previously been

deduced with alternative methods, see for example [87, 88, 89]. We rederive them here from our

perspective, using the method of Section 4.2.

Klein singularities are varieties V = C2/Γ; they are quotients of C2 by a finite subgroup of its global

symmetry Γ ⊂ SU(2). An exhaustive list of such subgroups are in one to one correspondence with
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the affine ADE Dynkin diagrams [90, 91] and as such we often denote C2/Γ instead by the capital

letter of the ADE diagram it corresponds to, with its rank as subscript. In particular, the full list of

Klein singularities can be denoted as follows:

Ak, Dk, E6, E7, E8. (4.4.1)

The generators GΓ of the subgroups Γ ⊂ SU(2) are listed on page 14 of [92] as 2 × 2 matrices, which

we can think of as acting on the vector containing the complex coordinates of C2:

⎛
⎝
z1

z2

⎞
⎠
. (4.4.2)

The elements of the corresponding Klein singualrity C2/Γ (4.4.1) will then just be the elements of C2

(i.e. polynomials in z1, z2) which are invariant under action by any product of these Γ generators.

The Hilbert series of these Klein singularities is also listed in [92]; the degree of their generators can

be found by taking the plethystic logarithm. We can then explicitly construct these generators GV
by finding the monomials of C2 which are: invariant under the action of Γ; of the correct polynomial

degree; and irreducible (i.e. not generated by a product of elements of C2/Γ of lower degrees). Each

Klein singularity has 3 such generators

∣GV ∣ = 3, (4.4.3)

and they satisfy a relation which is termed the defining relation of the singularity, also given in [92].12

The Poisson brackets between these generators can be computed using {⋅, ⋅}C2 , the inherited canon-

ical Poisson bracket of C2 (4.2.24). This can then be used to identify the Poisson brackets between

the dressed monopole generators GC for the Coulomb quiver of V = C2/Γ, as in Step 3.a) of the Method.

We found that the Poisson brackets of GV for all Klein singularities (4.4.1), including the E6,7,8 cases,

can be summed up by the same succinct formula: if we call g1, g2, g3 the generators and E(g1, g2, g3)
the defining equation for C2/Γ, then

{gi, gj} = ϵijk
∂E

∂gk
. (4.4.4)

It is worth noting that the explicit form of a defining relation is not fixed inherently: a change of

variables would alter it. However, imposing the Poisson brackets (4.4.4) fully fixes the defining equa-

tion and vice versa.

Since it is only the cases of Ak and Dk for which Coulomb quivers are known, it is just these that we

will restrict our study to in the remainder of this chapter. The Higgs quivers for E6,7,8 are known,

and the Poisson brackets of the generators of the Higgs branch of these quivers can be found, but we

do not cover this here as our goal is to focus on the Poisson brackets of Coulomb branch generators.

In Section 4.4.1, we spell out the full steps of this process and derive the GC Poisson brackets for the

Coulomb quiver of Ak. In Section 4.4.2, we jump straight to the result for the Coulomb quiver of Dk.

4.4.1 A type

The cyclic subgroup Γ = Zk+1 ⊂ SU(2) corresponds to the affine Ak Dynkin diagram, and hence

C2/Zk+1 = Ak is referred to as the A type Klein singularity. Analogously to how the Coulomb quiver

12Note that by a change of variables the precise form of this equation can be modified.
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for C2/Z2 = A1 was QA1 (2.6.14), the Coulomb quiver of Ak (k ≥ 1) is given by SQED with k + 1
electrons, QAk

:13

QAk
=

1 k + 1
. (4.4.5)

We will first derive the Poisson brackets of the generators GV of the abstract variety V = Ak as de-

scribed at the top of Section 4.4, before using this to do the same for the generating dressed monopoles

GC of the Coulomb quiver (4.4.5).

4.4.1.1 Poisson brackets for the abstract variety

Here we simply view Ak as the set of polynomials in two complex variables invariant under action by

Zk+1.

The first step is to find the generators of Ak. By taking the plethystic logarithm of the Hilbert series

listed in [92], we can see that the three generators are of degrees 2, k + 1 and k + 1:

PL(HS(Ak)) = t2 + (q +
1

q
)tk+1 − t2k+2. (4.4.6)

In general to find the holomorphic functions corresponding to the degree d generators of C2/Γ, we
take all monomials in our complex coordinates z1, z2 of degree d, and for each one we total the results

of the action on them by each Γ group element. This construct invariants of Γ in C2, and thus of

C2/Γ. A vanishing result tells us the starting monomial was not an invariant.

To find the holomorphic functions corresponding to the degree d generators of Ak, we construct the

degree d monomials in z1, z2 which are invariant under Zk+1. The generator of Zk+1 is

C =
⎛
⎝
ωk+1 0

0 ω−1k+1

⎞
⎠
, (4.4.7)

where ωk = e
2πi
k , and thus under the Zk+1 action,

z1 → e
2πi
k+1 z1,

z2 → e−
2πi
k+1 z2.

(4.4.8)

The irreducible invariants under this action at degree 2 and k + 1 are

GV = {z1 z2, zk+11 , zk+12 }
≡ {g′1, g′2, g′3},

(4.4.9)

and so these are our generators.14 The generators g′1, g
′
2, g

′
3 clearly satisfy the equation

E′(g′1, g′2, g′3) = g′1
k+1 − g′2 g′3 = 0. (4.4.10)

13You may also see this quiver with the flavour node labelled as SU(k+1): recall from Section 2.2 that this is because

there is an SU(k + 1) symmetry rotating the k + 1 identical hypermultiplets. This is a symmetry of the Higgs branch,

so it does not play a part in our discussion.

14We use primed variables here as we will have to redefine them by a constant to achieve the relation (4.4.4), and

we will use the corresponding unprimed variable for these to match with those used in that relation.
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The Poisson brackets between these generators can easily be calculated using (4.2.24):

{g′1, g′2} = −(k + 1) g′2,

{g′1, g′3} = (k + 1) g′3,

{g′2, g′3} = (k + 1)2 g′1
k
.

(4.4.11)

We can see that if we rescale our generators to the following g1, g2, g3

g1 =
1

k + 1 g
′
1 =

1

k + 1 z1 z2,

g2 =
1

(k + 1) k+1
2

g′2 =
1

(k + 1) k+1
2

zk+11 ,

g3 =
1

(k + 1) k+1
2

g′3 =
1

(k + 1) k+1
2

zk+12 ,

(4.4.12)

then we find they satisfy the same defining equation as the g′i:

E(g1, g2, g3) = E′(g1, g2, g3) = gk+11 − g2g3 = 0, (4.4.13)

and indeed that

{gi, gj} = ϵijk
∂

∂gk
E(g1, g2, g3) (4.4.14)

as claimed in (4.4.4).

4.4.1.2 Poisson brackets for the dressed monopoles of the Coulomb quiver

We now make a connection with physics: we view Ak as the Coulomb branch of QAk
(4.4.5) and find

the Poisson brackets {⋅, ⋅}C of GC following Steps 1 − 3.a) of the Method.

For Step 1, we need the generating dressed monopoles GC . Recall that the Hilbert series for C(QAk
)

has plethystic logarithm given by (4.4.6). In particular, the generating dressed monopoles GC have

conformal dimensions 1, k+1
2

and k+1
2
. Following the same method as in Section 4.2.1, we find that

the gauge invariant dressed monopoles generating the Coulomb branch are

GC = {λ, V+1, V−1}, (4.4.15)

up to constant multiples.

Step 2 then tells us to constrain the {GC ,GC}C via charge conservation. Following the same ideas as

illustrated in previous examples, this tells us

{λ,V+1} ∝ V+1,

{λ,V−1} ∝ V−1,

{V+1, V−1} ∝ λk.

(4.4.16)
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Finally, we fix {⋅, ⋅}C by comparing GC (4.4.15) with the generators of the abstract variety GV (4.4.12).

We can see that if we declare that
{λ,V+1} = V+1,

{λ,V−1} = −V−1,

{V+1, V−1} = λk,

V+1V−1 = −
λk+1

k + 1

(4.4.17)

(which are consistent with (4.2.16) and (4.2.17)), then the following linear combinations of GC

g1 = −λ,

g2 = (−1)
k
2

√
k + 1V+1,

g3 = (−1)
k
2

√
k + 1V−1,

(4.4.18)

satisfy the same defining equation (4.4.13) and Poisson bracket relations (4.4.4) as GV : our declaration
of the Poisson brackets between generators (4.4.17) for this Coulomb branch is valid. The Poisson

bracket between any two operators on C(QAk
) can then be deduced from (4.4.17).

4.4.2 D type

The Coulomb quiver for the D type Klein singularity Dk is:15

QDk
=
SU(2) k

, (4.4.19)

for k ≥ 4. Note that this is not a unitary quiver, so many formulae given in Chapter 2 and elsewhere

do not apply here. For example, there is no UV U(1) topological symmetry (2.4.23), and one must

use (2.4.19) as opposed to (2.4.20) for computing the conformal dimension. Since this is the only

non-unitary quiver upon which we perform Coulomb branch computations and its Hilbert series is

given in [92], we do not detail how to compute the monopole formula for this quiver and instead just

report the result, but the details are not hard to work out. The plethystic logarithm of the Hilbert

series of C(QDk
) ≅Dk is given by

PL(HS(C(QDk
))) = t4 + t2k−4 + t2k−2 − t4k−4. (4.4.20)

The lack of UV U(1) topological symmetry means that in Step 2 of the Method, the only conserva-

tion of charge we need to impose under the Poisson bracket is that of the conformal dimension (4.2.16).

We won’t go through the details here as they are very similar to those of Section 4.4.1, but the

generators of the Klein D type singularity V =Dk are

GV = {−
z21 z

2
2

(2k − 4)2 ,
1

2(2k − 4)k−2 (z
2k−4
1 + (−1)kz2k−42 ) ,

z1 z2
2(2k − 4)k−1 (z

2k−4
1 + (−1)k−1z2k−42 )}

≡ {g1, g2, g3},

(4.4.21)

15You may also see this quiver with the flavour node labelled as SO(2k): here the k identical hypermultiplets are

in a pseudo-real representation, and so there is an SO(2k) symmetry rotating them. This is a symmetry of the Higgs

branch, so it does not play a part in our discussion.
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and they satisfy the defining equation

E(g1, g2, g3) = g1 g22 + g23 − gk−11 = 0, (4.4.22)

with Poisson bracket relations as stated before in (4.4.4).

As in the case of the Ak Coulomb quiver, since there is just one gauge group of rank one, a (un)physical

bare monopole is labelled by a single integer (vm) Vm. There is also a single adjoint valued complex

scalar λ everywhere, as the residual gauge group is always rank one. This time the Weyl group

W(SU(2)) = Z2 is non-trivial; it acts on m and λ as

Z2 ∶ m→ −m,
λ→ −λ,

(4.4.23)

meaning that unlike before the basic degrees of freedom vm and λ are not physical. From the

Hilbert series (4.4.20), we see that the Coulomb branch generators have conformal dimensions ∆1 = 2,
∆2 = k − 2 and ∆3 = k − 1. One can check that the physical Coulomb branch operators with these

dimensions are

λ2, V +1 , λV −1 (4.4.24)

respectively, where

V +1 = v+1 + v−1,
V −1 = v+1 − v−1.

(4.4.25)

Note that under action by the Weyl group, V +1 is invariant and V −1 → −V −1 .

Step 2 of the Method tells us that

{λ2, V +1 } ∝ λV −1 ,

{λ2, λV −1 } ∝ λV−,

{V +1 , λV −1 } = c1 λ2k−4 + c2 (V +1 )2 + c3 (V −1 )2,

(4.4.26)

for some constants ci. If we declare that the constants of proportionality are as follows

{λ2, V +1 } = 2λV −1 ,

{λ2, λV −1 } = −2λ2 V +1 ,

{V +1 , λV −1 } = (V +1 )2 − (k − 1)λ2k−4

(4.4.27)

and demand that the three generators (4.4.24) satisfy

(V −1 )2 = λ2k−4 − (V +1 )2, (4.4.28)

then can we can see that if we identify

g1 = λ2,

g2 = V +1 ,

g3 = λV −1 ,

(4.4.29)

then the declared brackets (4.4.27) and defining equation (4.4.28) between the generators reproduce

the brackets and defining equation for the Dk Klein singularity (4.4.4) and (4.4.22) respectively.
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4.5 Nilpotent Orbits

Closures of nilpotent orbits of Lie algebras g as moduli spaces of quiver gauge theories [38, 49] have

been studied intensively (see for example [80, 39, 93]) due to their nice properties: they are classifi-

able, and entirely generated by the adjoint representation of g. Since the explicit construction of these

moduli spaces is fully known in the math literature, it makes their Higgs and Coulomb quivers (see

Section 2.7.1) good candidates on which to explore new techniques or properties of interest. This is

precisely our intention here. Since all generators in these moduli spaces are at order t2 in the Hilbert

series, and since operators at weight 2 form a closed algebra under the symplectic form [12], we know

a-priori that the results of the Poisson brackets between generators must be the structure constants

of the global symmetry algebra, as mentioned in Section 4.1. This has been previously discussed, see

for example [17].

Actually computing these constants in practise however can be quite tricky. Since there is no C2 (or

equivalent) Poisson bracket to be inherited on these spaces, like there was in the cases of free spaces

and Klein singularities (as shown in Sections 4.3 and 4.4 respectively), we must turn to Step 3.b) in
the Method and use the refined Coulomb branch Hilbert series to find the Poisson brackets between

GC , as outlined in Section 4.2.3.2. We demonstrate our successful execution of this method in the

case of the closure of the minimal nilpotent orbit of A2, denoted a2, below. We have not provided

Poisson brackets for closures of other nilpotent orbits in this way because the excess of unconstrained

constants quickly becomes too many variables to deal with when the complexity16 of the quiver is

increased.

4.5.1 Minimal A2

The Coulomb quiver for a2 is

Qa2 =
1 1

1 1

. (4.5.1)

To find the Poisson brackets we’ll follow Steps 1,2 and 3.b) of the Method.

Step 1 The global symmetry of C(Qa2) is SU(3) and all generators lie in the adjoint representation,

at ∆ = 1. The adjoint of SU(3) has dimension 8, and thus we have 8 generators:17

GC = {c11 λ1 + c21 λ2 , c12 λ1 + c22 λ2 , V−1−1 , V−10 , V0−1 , V01 , V10 , V11}, (4.5.2)

where Vm1m2 are the bare monopole operators with magnetic charge18 m1 ∈ Z under the first U(1)
gauge group and m2 ∈ Z under the second; λ1, λ2 ∈ C are the adjoint scalars of the first and second

gauged U(1) groups respectively; and cij ∈ C are constants.

16Here we consider a quiver more complex if its Coulomb branch has higher dimension (which scales with the sum

of the gauge group ranks).

17As with previous cases where the only gauge groups were Abelian (e.g. Section 4.4.1), the Coulomb branch degrees

of freedom v are automatically gauge invariant, and so the v and V of Section 4.2.1 are interchangeable.

18For monopole operators in an abelian theory, the magnetic charge coincides with the topological charge.
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Step 2 (4.2.16) then tells us that the Poisson brackets between GC will give another operator with

∆ = 1; another element in the adjoint of SU(3). This is what we expect, as the Poisson bracket acts

on representations of the global symmetry SU(3) as the Lie bracket of SU(3), under the action of

which the adjoint representation is closed. Schematically,

{GC ,GC} = GC . (4.5.3)

On top of this, the conservation of topological charge (4.2.17) implies that the Poisson bracket between

any two GC , for which the componentwise sum of the vectors of their magnetic charges is not the

magnetic charge of any other GC , must vanish:

{V−1−1, V−10} = 0,

{V−1−1, V0−1} = 0,

{V11, V10} = 0,

{V11, V01} = 0,

{V10, V0−1} = 0,

{V01, V−10} = 0,

(4.5.4)

and fully fixes the others up to constants. For example,19

{V−1−1, V10} = α−1−1001000 V0−1,

{V01, V0−1} = α1
01000−100 λ1 + α2

01000−100 λ2.
(4.5.5)

Step 3 We then fix the constants of proportionality α(i)abcdefgh in the relations found in Step 2 by

demanding consistency with global symmetry charges. To do this, we first find what global symmetry

charge each generator GC has. We can see that the topological charges J(m) = (m1,m2) of GC (4.5.2)

respectively are:

{(0,0) , (0,0) , (−1,−1) , (−1,0) , (0,−1) , (0,1) , (1,0) , (1,1)}. (4.5.6)

Under the appropriate fugacity map (see Section 2.6.6), which one can find to be

J(m) =
⎛
⎝
m1

m2

⎞
⎠
→ J̃(m̃) =

⎛
⎝
m̃1

m̃2

⎞
⎠
=
⎛
⎝
2 −1
−1 2

⎞
⎠
⋅
⎛
⎝
m1

m2

⎞
⎠
, (4.5.7)

we see that (4.5.2) have charges J̃ under the global symmetry given respectively by:

{(0,0) , (0,0) , (−1,−1) , (−2,1) , (1,−2) , (−1,2) , (2,−1) , (1,1)}. (4.5.8)

Since {⋅, ⋅} acts as the Lie bracket of SU(3), which has rank 2, there are 2 Cartan elements C1 and C2

which act as eigenoperators of the Poisson bracket with eigenvalue equal to the weight under SU(3)
of the adjoint operator it acts on. For GC , the weights are J̃ :

{Ci,GC} = J̃i GC (4.5.9)

19The horrible looking subscript on the constants of proportionality α(i)abcdefgh = −α(i)efghabcd ∈ C (the bracket

around the upper index is to indicate that it is not always present) was chosen to reflect the arguments in the Poisson

bracket in question: with no upper index, it is the constant of proportionality for {Vab λ
c
1 λ

d
2 , Vef λg

1 λ
h
2}. Upper

indices 1 and 2 are included in the cases where the result must have topological charge zero, because there are two

operators (λ1 and λ2) which have this charge and they do not necessarily have the same coefficient.
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for i = 1,2. Thus we must ensure the brackets between each generator and the Cartan elements give the

correct global symmetry charges (4.5.8). The Cartan elements must lie in the adjoint representation

of the SU(3) global symmetry and have charge (0,0) under it, and thus they are precisely our two

chargeless generators from (4.5.2):

C1 = c11λ1 + c21λ2,

C2 = c12λ1 + c22λ2.
(4.5.10)

We can then demand that (4.5.9) holds and substitute in (4.5.10) for Ci, and implement the results

of the Poisson brackets we derived in Step 2 (for example (4.5.4) and (4.5.5)). Then using the

bilinearity, antisymmetry and Jacobi identity of the Poisson bracket, we can solve for the constants

α(i)abcdefgh and cij . This is where the computational difficulty comes in: for higher dimensional

Coulomb branches, there are simply too many unknown constants of proportionality α, c introduced

to solve for. However in this case we can do it, and find that the Cartans are

C1 = λ1,

C2 = λ1 + λ2,
(4.5.11)

with Poisson brackets between the generators given by

C1 C2 V−1−1 V−10 V0−1 V01 V10 V11

C1 0 0 −V−1−1 −2V−10 V0−1 −V01 2V10 V11

C2 ⋅ 0 −V−1−1 V−10 −2V0−1 2V01 −V10 V11

V−1−1 ⋅ ⋅ 0 0 0 V−10 V0−1 C1 +C2

V−10 ⋅ ⋅ ⋅ 0 V−1−1 0 C1 V01

V0−1 ⋅ ⋅ ⋅ ⋅ 0 −C2 0 V10

V01 ⋅ ⋅ ⋅ ⋅ ⋅ 0 V11 0

V10 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0

V11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

. (4.5.12)

All dots in the table (4.5.12) are fixed by the negative of their transpose entries due to antisymmetry

of the Poisson bracket.

4.6 Poisson Brackets for Generating Representations

In Sections 4.3 – 4.5 we used the Method of Section 4.2 to explicitly compute Poisson bracket relations

for Coulomb branch monopole operators, but noted that this method cannot be performed on most

quivers. While we do not by any means rule out the existence of more effective methods to perform

computations and find the Poisson brackets explicitly for a generic quiver, we would like to conjecture

the results in the cases that are currently too difficult to find using the Method of Section 4.2. In this

section, we illustrate how this is possible for families of quivers for which the representation content

of the Coulomb branch is known (from the HWG) to low orders: we forget about the monopole con-

struction of the Coulomb branch, viewing it simply as a space of representations, and then conjecture

the Poisson bracket relations between the generating representations using purely the known HWG,

the antisymmetric property of the Poisson bracket, and representation theory. Section 4.7 will see us

detail the results for a small number of families of quivers derived from 5 and 6 dimensional physics,

which have just one or two generating representations other than the adjoint.

The explicit outline of the approach to conjecture the relevant Poisson brackets is as follows:
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1. Identify the generating representations by taking the plethystic logarithm of the Hilbert series.

2. Use the tensor/antisymmetric product of the generating representations to constrain the possible

result of the Poisson brackets between generators.

3. Use the representations appearing at the appropriate degree in the HWG (according to (4.2.16))

to constrain the possible result of the Poisson brackets between generators.

4. Find the simplest representation common to the constraints from Step 2 and Step 3, and find

constants to contract relevant indices.

5. Insert appropriate flavour symmetry invariants to ensure consistency in conformal dimension.

The reason for Step 2 is that the Poisson bracket is antisymmetric, hence when taking the Poisson

bracket of a representation with itself, the result will lie in the second rank antisymmetric product

of this representation. For the Poisson bracket of two different representations, the result will lie in

the tensor product of these two representations (see Appendix B for a more thorough discussion of

tensor and antisymmetric products of representations). Step 3 is there to ensure that the result of

the Poisson bracket between two generators actually lies on the particular Coulomb branch variety

we are studying. To clarify any uncertainties in Steps 2, 3, 4 and 5, we turn to an example.

Example We will use the same example QA1 (2.6.14) as in Sections 4.2.1 – 4.2.3.2 to illustrate

the success of this more representation-theoretic and less monopole-focused approach. We follow the

steps above:

1. We have already seen before in (4.2.12) that the generators of this Coulomb branch are simply

in the adjoint representation µ2
1 of SU(2) with conformal dimension ∆ = 1. The 3 generators lie

in the complexification of the global symmetry algebra su(2)C = sl(2;C): ai for i = 1,2,3. Since
the adjoint of sl(2;C) is the second rank symmetric of the fundamental, these three generators

can be encapsulated in a symmetric 2 × 2 “matrix of generators” aαβ for α,β = 1,2 symmetric

indices labelling which generator is which. The only Poisson bracket we need to determine is

then

{aαβ , aγδ}. (4.6.1)

2. Then we can ask what possible representations (4.6.1) could actually be in. Here it is trivial as

we know the adjoint representation is closed under the Lie (and hence Poisson) bracket and so

the result must also lie in the adjoint representation. This can also be seen by noting that the

second rank antisymmetric product of the adjoint representation is just itself:20

Λ2(µ2
1) = µ2

1, (4.6.2)

and since the Poisson structure antisymmetrises comparable arguments, the result of (4.6.1)

must lie in (4.6.2).

3. If (4.6.2) had contained multiple representations, we could have further constrained the repre-

sentations that (4.6.1) could lie in by examining the HWG. Using (4.2.16), the result must have

conformal dimension 1 + 1 − 1 = 1, i.e. lie at t2 in the Hilbert series. For C(QA1), the HWG is

HWG(C(QA1)) = PE[µ2
1t

2]. (4.6.3)

20Note that we will use µ or µi both as an index labelling generators that takes on certain specified values, and as

the highest weight fugacities to denote a representation. Its meaning in a given situation should be clear from context

(i.e. whether it lies in an exponent/subscript or not).



129 CHAPTER 4. POISSON BRACKETS

We can therefore see easily that the only representation at t2 on this Coulomb branch is indeed

the adjoint, and so this enforces that the Poisson bracket of the adjoint generators lies again in

the adjoint:

{a , a} ∝ a. (4.6.4)

We see that in this case either the available Coulomb branch operators or possible represen-

tations would be sufficient to deduce (4.6.4), but in more complicated cases they will work in

tandem to help postulate the brackets.

4. Finally, we aim to get rid of the proportionality sign in (4.6.4) and make an explicit conjecture.

To do this, we note that on the left-hand side of (4.6.4) there will be indices labelling the

generators (say for instance α,β, γ, δ as in (4.6.1)) which must be matched on the right hand

side. Two of these indices will be held by the “a” on the right-hand side, which leaves two

remaining indices for the equation to be consistent. In the algebra of sl(2;C), the only thing

that makes sense to go here is the epsilon invariant (the delta invariant of sl(n;C) can be

constructed from the epsilon invariant in the n = 2 case). So we expect (4.6.4) to take form

along the lines of {aαβ , aγδ} ∼ A (ϵαδaγβ + ϵβδaγα + ϵαγaδβ + ϵβγaδα); the relative signs chosen

to ensure the result is antisymmetric upon simultaneously exchanging α ↔ γ and β ↔ δ, and

symmetric upon exchanging α ↔ β or γ ↔ δ. The overall constant A is fixed by the way in

which we identify the aαβ with the symmetric generators of sl(2;C). For example, we could use

the representation of the generators of sl(2;C) given in (4.2.35). Then if we identify a12 = λ,
a11 = 2V−1 and a22 = 2V+1, a positive overall sign:

{aαβ , aγδ} = ϵαδaγβ + ϵβδaγα + ϵαγaδβ + ϵβγaδα (4.6.5)

for α,β, γ, δ = 1,2 would recover the appropriate Poisson brackets (4.2.36) of (4.2.35).

5. Our result (4.6.5) is already consistent with conformal dimension: the left hand side has ∆ =
1 + 1 − 1 = 1, which matches the ∆ = 1 of the right hand side.

Although the example above did not illustrate it, non-trivial ammendments can be made in Step 5,

causing the need for a scale to be introduced in the form of some invariant of the global symmetry.

In such cases, there is an operator which spontaneously breaks the conformal and R-symmetry but

preserves the flavour symmetry. We will see this explicitly in the examples of Section 4.7, where we

will discuss its physical significance in more detail.

Structure constants for sl(n > 2;C) Note that, as mentioned in the discussion preceeding (4.2.39),

in sl(2;C) the fundamental representation is pseudo-real, not complex, and all non-trivial represen-

tations are symmetric products of this. Hence all indices are lowered and we can write the structure

constants in the special form of (4.6.5). For sl(n > 2;C) the fundamental representation is complex,

so the structure constants here must be written in a more general form; we cannot generalise (4.6.5)

to all sl(n > 2;C). The adjoint of sl(n > 2;C) lies in the tensor product of the fundamental and anti-

fundamental (the complex conjugate and dual of the fundamental) representations, hence the matrix

of generators is given by one upper and one lower index aµν for µ, ν = 1, ..., n traceless labelling which

generator is which. In this case, taking into account the upper and lower indices that appear on the

left and right side of (4.6.4), we have two spare indices on the right hand side that do not accompany

“a”: one upper and one lower. The only invariant of sl(n > 2;C) with this structure is δµν , and so
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we find that the structure constants of sl(n;C) are

{aµν , aρσ} = δµσaρν − δρνaµσ, (4.6.6)

where analogously to Step 5 above, the overall sign was determined by ensuring that the result

matched the expected result for the n = 2 case, if we took the generators to be sl(n = 2;C) matrices.

Because here we are viewing sl(n = 2;C) as the n = 2 case of sl(n;C), we take the generators to be

the canonical generators for 2 × 2 traceless complex matrices (unlike in Step 1 above, or in (4.2.35),

where it was more natural to view them as symmetric complex matrices):

λ̃ =
⎛
⎝
1 0

0 −1
⎞
⎠
, Ṽ+1 =

⎛
⎝
0 1

0 0

⎞
⎠
, Ṽ−1 =

⎛
⎝
0 0

1 0

⎞
⎠
. (4.6.7)

The Poisson bracket acts on two such generators by matrix multiplication, using contraction with δ

(rather than ϵ as we did when we were treating sl(2;C) separately from sl(n;C), for example in the

discussion preceeding (4.2.39)). We see that this gives

{λ̃, Ṽ+1} = 2 Ṽ+1,

{λ̃, Ṽ−1} = −2 Ṽ−1,

{Ṽ+1, Ṽ−1} = λ̃.

(4.6.8)

If we identify our aµν generators as

a11 − a22 = λ̃,

a12 = Ṽ+1,

a21 = Ṽ−1,

(4.6.9)

for the λ̃, Ṽ+1, Ṽ−1 of (4.6.7), then we see that (4.6.6) with its positive overall sign matches (4.6.8).

With this identification, we can see that (4.6.6) are the structure constants for sl(n > 2;C).

We can see that the approach to determine Poisson brackets outlined in this section is slightly more

abstract than that detailed in the previous three sections, and in the case of this example is actually

somewhat redundant; since the moduli space is solely generated by the adjoint representation at

∆ = 1 – a closed algebra – we could have said without any calculations or thought that the Poisson

brackets had to be given by the structure constants. The method outlined in Sections 4.2.1 – 4.2.3.2

uncovered additional information that we did not know a-priori: in particular, the Poisson bracket

relations for the specific monopole operators on the Coulomb branch. That explicit construction is

clearly preferable, but is not accessible for many of the quivers for which the approach in this section

can be used, hence the utility of this more abstract method. We will now move on to illustrate

examples of such cases.

4.7 Higgs Branches of Certain 5d and 6d Theories at Infinite

Coupling

It is in this section that we finally study Higgs branches at infinite coupling. As explained in Section

2.7.1, up until recently it was not known how to make progress with these Higgs branches as they
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could not be computed classically. This was overcome for wide families of such theories with the

discovery of their magnetic quivers, and the study of their Coulomb branches. In this section we

exploit this; we find the Poisson brackets between the Higgs branch generators {GH,GH}H of certain

5 and 6 dimensional theories at infinite coupling by computing {GC ,GC}C for their magnetic quivers.

This task sees the utility of the method outlined in Section 4.6; the families we study have one or

two generating representations other than the adjoint, hence the Poisson brackets cannot be trivially

concluded to be the structure constants a-priori (as they could have been in the example of Section

4.6). In some cases, Step 4 of Section 4.6 finds many representations, the set of which we call Rmult,

that are common to both the tensor/antisymmetric product of the input representations for a given

Poisson bracket and the operators on the Coulomb branch at the appropriate conformal dimension.

With these constraints alone, we can only say for certain that the Poisson bracket in question would

be some undetermined linear combination of Rmult, but we conjecture that the principle of Occam’s

razor applies: the coefficients of all representations other than the simplest vanish. We call this

simplest representation Rsimp ∈ Rmult, and in all cases studied it turns out to be either the trivial or

the adjoint representation of the global symmetry. The motivation for such a conjecture is that the

moduli spaces we study are fairly simple spaces; there is no reason to expect that the symplectic form

should take unecessarily elaborate values. To check this conjecture and verify the exact coefficients

would require further analysis of the 5 and 6 dimensional physics, a task we leave for future work.

The breaking of conformality In all the 5 and 6 dimensional theories studied, we find that the

Higgs branch Poisson brackets between representations other than the adjoint include a Casimir to

some non-zero power to ensure consistency of conformal dimension. This Casimir takes some nu-

merical value: it is a scale. This tells us that on the Higgs branch of these theories, the conformal

symmetry at infinite coupling is spontaneously broken. This sounds like nothing new; any VEV will

break the conformal symmetry in the vacuum. However the difference between this scale and other

VEVs is that other VEVs also break the Coulomb branch flavour symmetry, whereas this Casimir

scale preserves it. This is a powerful statement and is worth unpacking a little, but we should be

careful to distinguish between 5 and 6 dimensions. In 5d, the gauge coupling is a parameter of the

theory, and so the Poisson brackets we find below in Section 4.7.5 tell us that while conformal sym-

metry is spontaneously broken in SQCD theories taken at infinite coupling, the flavour symmetry is

preserved. In 6d, the inverse gauge coupling 1
g2

is a modulus, not a parameter. If we look at the

Higgs branch at finite coupling (i.e. the Higgs branch over a generic point of the tensor branch), 1
g2

is an obvious scale and so conformal symmetry is broken. If we look at the Higgs branch at infinite

coupling (i.e. the Higgs branch over the origin of the tensor branch), the scale 1
g2

disappears, but

the Poisson brackets we find in Sections 4.7.1 tell us that another one emerges, C2. That is, as we

move towards the origin of the tensor branch the scale which breaks conformal symmetry transitions

from 1
g2
, a scalar in the tensormultiplet, to C2, a scalar in the hypermultiplet which preserves the

flavour symmetry. It would be interesting to see how observables (e.g. correlation functions) in the

6d theory lying close to the origin of the tensor branch (i.e. when the gauge coupling is very large

but not infinite) vary as a function of these two scales, 1
g2

and C2.

For the first family of theories we consider (the subject of Section 4.7.1), we go through in detail the

method used to obtain the Coulomb branch Poisson brackets {GC ,GC}C of the magnetic quiver. One

Poisson bracket on this Coulomb branch – the bracket of the generating spinor representation with

itself – fits into the categories of brackets discussed above for which the methods of Section 4.6 do not
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constrain the result to lie in a single representation. We detail the full list of representations it could

lie in (Rmult), and then end with the conjecture that it actually lies in the simplest (Rsimp). For the

remaining families (the subjects of Sections 4.7.2 - 4.7.5.4) we simply state the conjectured results

(and in particular give only Rsimp and not the full list Rmult for any brackets which the methods of

Section 4.6 fail to constrain to a single representation), skipping the method. The quivers in Sections

4.7.1 – 4.7.4 are taken from [69], and those in Section 4.7.5 from [72] and an unpublished work by

Hanany and Zhong.

4.7.1 E8,n family

The first family we discuss is that arising from the Higgs branch of the 6d theory of Sp(n) gauge
group and 2n + 8 flavours at infinite coupling [70, 76], or equivalently the Higgs branch of the 5d

theory of SU(n + 2) gauge group with Chern Simons level k = ±1
2
and 2n + 7 flavours at infinite

coupling [69] for n ≥ 0. The magnetic quiver in question for these theories is [69, 76, 94]

1 2
⋯

2n + 6 n + 4 2

n + 3

(4.7.1)

The right hand rank 2 node is coloured red to indicate that it is unbalanced (for n ≠ 0). Generically,

we can read off that this quiver has global symmetry SO(4n+16) [10]. For n = −1 however, (4.7.1) is

the Dynkin quiver of E7 (DE7 , as discussed in Section 4.3.1) hence the global symmetry is enhanced

to Sp(16) ⊃ SO(12) and the Poisson brackets are those given in Section 4.3. For n = 0, (4.7.1) is the
affine E8 quiver; the global symmetry is enhanced to E8 ⊃ SO(16), and the Poisson brackets are the

structure constants of E8. For all n ≥ 1 the global symmetry of the Coulomb branch is SO(4n + 16)
and there are 2 generating representations, as can be found from the HWG:21

HWG = 1

(1 − t4)(1 − µ2n+8 tn+2)(1 − µ2n+8 tn+4)∏n+3i=1 (1 − µ2i t2i)
, (4.7.2)

where µ1, ..., µ2n+8 are highest weight fugacities of the global symmetry D2n+8 = SO(4n + 16). The

Poisson brackets in the n ≥ 1 case are thus not so trivial; we must proceed with Steps 1−4 of Section

4.6 to determine them. To illustrate these steps we start by carrying them out for the simplest case

of n = 0, viewing the representations of the global symmetry E8 in terms of the SO(16) subalgebra,
and then use this to help us find the Poisson brackets for general n ≥ 1.

4.7.1.1 n = 0

In this case, (4.7.1) morphs into the affine Dynkin diagram of E8 and hence its Coulomb branch is

the corresponding minimal nilpotent orbit closure, e8. Since here the global symmetry enhances to

E8, we could write the HWG in terms of representations of E8 as PE[µ̃7 t
2] (for µ̃1, ..., µ̃8 highest

weight fugacities of E8), however it will be more useful to write it as the n = 0 case of (4.7.2) – i.e.

in terms of SO(16) ⊂ E8 representations – so that we can use our results to generalise to higher n:

HWG = PE[(µ2 + µ8)t2 + (1 + µ4 + µ8)t4 + µ6t
6]. (4.7.3)

21Recall from Section 2.6.2 that the HWG and Hilbert series are different objects. In particular, their generators are

not the same. This is clear here: the HWG has more than two generating representations, it is the Hilbert series which

has two. But the HWG can be used to help us see this; from the HWG we can find the Hilbert series, and then take

the plethystic logarithm to find the generators.
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Recall from Section 4.6 that the first step to finding {GC ,GC} is to write down the generating repre-

sentations GC themselves. This can be done by converting (4.7.3) into a Hilbert series and taking the

plethystic logarithm [95]. It turns out that all generators here lie at order t2 (i.e. have ∆ = 1), and
fall into the adjoint aµν

22 (µ2 in Dynkin labels) and spinor sα
23 (µ8 in Dynkin labels) representations

of the SO(16) ⊂ E8 global symmetry. We collect this information on the generators in the following

table:
Generator ∆ SO(16) representation

aµν 1 adjoint

sα 1 spinor

. (4.7.4)

Note that both of these representations are real; we don’t need to worry about raising or lowering

indices. This is Step 1 of the method in Section 4.6 accomplished. We then carry out Steps 2 − 4 for

each of the Poisson brackets we need to calculate:

{aµν , aρσ} , {aµν , sα} , {sα, sβ} . (4.7.5)

Adjoint with adjoint, {a,a}

2. {a, a} generates a representation in the second rank antisymmetric product of the adjoint. One

can calculate this to be

Λ2(µ2) = µ2 + µ1µ3, (4.7.6)

and thus conclude that the Poisson bracket of two a’s must lie in one of the following represen-

tations of SO(16):
µ2 , µ1µ3 . (4.7.7)

3. Using (4.2.16) and (4.7.4), we see that {a, a} must have conformal dimension ∆ = 1, and

therefore lie in a representation in the Hilbert series appearing at t2. This constrains {a, a} to
lie in one of the following representations:

µ2 , µ8 . (4.7.8)

4. The only overlap between (4.7.7) and (4.7.8) is µ2. That is, under the Poisson bracket the

adjoint representation is closed. Schematically, this means

{a, a} ∼ a. (4.7.9)

To make this rigorous, we need to put the indices in and contract appropriately. Suppose on

the left hand side we choose indices as follows:

{aµν , aρσ}, (4.7.10)

On the right hand side all these indices must remain, and since the Poisson bracket is just the

Lie bracket on the SO(16) algebra, the result is determined by the structure constants:

{aµν , aρσ} = δνρaµσ − δµρaνσ + δµσaνρ − δνσaµρ. (4.7.11)

5. Our result (4.7.11) is already consistent with conformal dimension: the left hand side has

∆ = 1 + 1 − 1 = 1, which matches the ∆ = 1 of the right hand side.

22In the 16d analogy to the Lorentz transformations, µ, ν = 1, ...,16 are antisymmetrised.

23Each spinor sα is a 128 dimensional representation, and α = 1, ...,2
16
2
−1
= 128 is a spinor index.
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Note the use of δµν as apposed to ηµν : we are not using representations of Minkowski SO(1,15)
spacetime, but rather representations of SO(16) whose indices are Euclidean in nature. (4.7.11) are

the structure constants for all SO(2k), with all indices ranging from 1, ...,2k. Note how the result is

antisymmetric under the three index permutations (a) µ↔ ν, (b) ρ↔ σ, and (c) µ↔ ρ, ν ↔ σ, as

expected.

Adjoint with spinor, {a, s}

2. The tensor product of µ2 with µ8 restricts this Poisson bracket to lie in the following represen-

tations:

µ8 , µ1µ7 , µ2µ8 . (4.7.12)

3. Since ∆ = 1 for the spinor representation also, again {a, s} must lie at t2 in the Hilbert series,

and so must lie among (4.7.8).

4. This time the only overlap between (4.7.12) and (4.7.8) is µ8, and so schematically we have

{a, s} ∼ s (4.7.13)

Again we could have known this a-priori as any representation is an “eigenrepresentation” of

the adjoint under action by the Lie bracket, with eigenvalue equal to its weight. To put in the

indices, we need something on the right hand side to contract the two vector indices of a, leaving

just the spinor index of s, which transforms compatibly under SO(16). A natural candidate

is the generator of the spinor representation: γµν = 1
4
[γµ, γν],24 where γµ are the Euclidean

gamma matrices, satisfying the Clifford algebra {γµ, γν} = 2δµν .25 Concretely,26

{aµν , sα} = (γµν)αβ sβ . (4.7.14)

5. Our result (4.7.14) is already consistent with conformal dimension: the left hand side has

∆ = 1 + 1 − 1 = 1, which matches the ∆ = 1 of the right hand side.

Spinor with spinor, {s, s}

2. The Poisson bracket lying in the second rank antisymmetric of the spinor representation s

constrains {s, s} to lie among

µ6 , µ2 . (4.7.15)

3. Again, the conformal dimension of {s, s} must be 1, meaning that again it must lie among the

representations of (4.7.8).

4. The only representation common to (4.7.15) and (4.7.8) is µ2, so schematically

{s, s} ∼ a. (4.7.16)

24This factor of 1
4

is typical in the literature, to ensure the γµν satisfy the structure constants of the SO algebra

(4.7.11). Here it is also convenient to use as it results in no factors of 1
4
in the results of the Poisson brackets (4.7.32).

25Note that confusingly, unlike in the rest of the paper, here in the Clifford algebra {⋅, ⋅} denotes the anticommutator.

26Note that the indices µ and ν are labelling which gamma matrix we are referring to of the possible 120 =

dim(SO(16)), and the spinor indices α and β label the matrix components of γµν (spinor indices remind us that

sα transforms as a spinor, not a vector, and that the (γµν)αβ act on spinors and satisfy the Clifford algebra).
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On the left hand side there are two spinor indices, on the right hand side there are two antisym-

metrised vector indices. A constant with matching spinor indices must contract these vector

indices. Again γµν is the natural candidate:

{sα, sβ} = (γµν)αβ aµν . (4.7.17)

5. As in the previous two cases, our result (4.7.17) is already consistent with conformal dimension.

4.7.1.2 n ≥ 0

Now that we have seen the explicit working for the n = 0 case, it is easy to follow the same logic and

arrive at a postulate of the Poisson brackets for the generating operators of the C(4.7.1) for general
n ≥ 0.

For generic n, the generators are a slightly non-trivial generalisation of (4.7.4), found in the same

way as described in Section 4.7.1.1:

Generator ∆ SO(4n + 16) representation
aµν 1 adjoint

sα
n+2
2

spinor

. (4.7.18)

Note that both of these representations are real (or pseudo-real in the case of the spinor representation

for odd n); we don’t need to worry about raising or lowering indices. The form of the {a, a} and {a, s}
Poisson brackets do not change from those discussed in the n = 0 case of Section 4.7.1.1: (4.7.11)

and (4.7.14) hold for all n ≥ 0, with µ, ν and ρ, σ pairs of antisymmetrised vector indices going from

1, ...,4n+ 16 and α,β spinor indices going from 1, ...,2
4n+16

2 −1. However, the Poisson bracket between

two spinors depends on whether n is odd or even.

Even n

2. In the case of even n, the second rank antisymmetric of the spinor is (see Appendix B for more

details)27

Λ2(µ2n+8) = µ2n+6 + µ2n+2 +⋯+ µ2, (4.7.19)

and so {s, s} must lie in some combination of the following representations of SO(4n + 16):

µ2n+6 , µ2n+2 , . . . , µ2. (4.7.20)

3–4. The spinor appears at tn+2 in the Hilbert series, i.e. has ∆ = n
2
+ 1, hence (4.2.16) tells us that

{s, s} must have ∆ = n+1. The representations with this conformal dimension on the Coulomb

branch in question are those which appear at order t2n+2 in the HWG. The only overlap between

such representations and (4.7.20) are

Rmult = {µ2n+2 , µ2n−2 , . . . , µ2}, (4.7.21)

and so the Poisson brackets must take the form

{sα, sβ} ∼ (γµν)αβ aµν +
n
2

∑
i=1
(γµ1⋯µ4i+2)αβ bµ1⋯µ4i+2 , (4.7.22)

27Note that this shows that the spinor representation of SO(4n+16) is real for even n, because the lack of the singlet

in Λ2
(s) means it must lie in the second rank symmetric product S2

(s).
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where the indices on b are completely antisymmetrised to reflect the (4i−2)th rank antisymmetric

of the vector representation of SO(4n + 16), and each term has some coefficient preceeding it.

As stated at the start of Section 4.7, to explicitly determine these coefficients would require

analysis of the physics in the 6d theory from which these states originate. We leave this as a

challenge for future work, but we conjecture that the solution should be the simplest: that the

coefficients of all terms other than the first of (4.7.22) are zero (i.e. Rsimp = µ2),

{sα, sβ} ∼ (γµν)αβ aµν . (4.7.23)

5. As it stands in (4.7.23), the conformal dimension of the right hand side does not match what

it should do: the left hand side has ∆ = n+2
2
+ n+2

2
− 1 = n + 1, but the right hand side only

has ∆ = 1. The right hand side should be in the adjoint representation of SO(4n + 16) with
∆ = n+ 1: an additional factor which is an SO(4n+ 16) invariant with ∆ = n must be included.

The HWG tells us that, on this Coulomb branch, the only generating singlet of SO(4n+16) lies
at t4 (or equivalently ∆ = 2). The only invariant with this dimension is the second Casimir:28

C2 = Tr(a2), (4.7.24)

and hence we see that all other SO(4n + 16) invariants are powers of C2.
29 Consequently, the

only candidate to include in (4.7.23) to rectify the current inconsistency in conformal dimension

is the (n
2
)th power of C2:

{sα, sβ} = C2
n
2 (γµν)αβ aµν . (4.7.25)

Odd n

2. For odd n, the second rank antisymmetric of the spinor is30

Λ2(µ2n+8) = µ2n+6 + µ2n+2 +⋯+ µ4 + 1, (4.7.26)

hence {s, s}must transform in some combination of the following representations of SO(4n+16):

µ2n+6 , µ2n+2 , . . . , 1 . (4.7.27)

3–4. As in the even case, the result lies at t2n+2 in the Hilbert series. The representations under the

SO(4n + 16) global symmetry at this order which overlap with (4.7.27) are

Rmult = {µ2n+2 , µ2n−2 , . . . , 1}, (4.7.28)

and so we find that the Poisson bracket must take the form

{sα, sβ} ∼ Ωαβ +
n+1
2

∑
i=1
(γµ1⋯µ4i)αβ bµ1⋯µ4i , (4.7.29)

for Ωαβ the skew-symmetric form of Sp(k = 22n+6) as in (4.3.4). As above the indices of b are

antisymmetrised and each term has some coefficient preceeding it, but we conjecture that the

coefficients of all terms other than the first of (4.7.29) are zero (i.e. that Rsimp = 1):

{sα, sβ} ∼ Ωαβ (4.7.30)

28Here, as above, a schematically represents any matrix in the adjoint of the SO(4n + 16) algebra in question.

29This is another indicator, along with the Hasse diagram, that this Coulomb branch is “very close” to being a

nilpotent orbit.

30Note that this shows that the spinor representation of SO(4n + 16) is pseudo-real for odd n, as the singlet lies in

the second rank antisymmetric product.
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5. As above, in (4.7.30) the right hand side should have ∆ = n + 1, but it currently has ∆ = 0. To
rectify this, an SO(4n + 16) invariant factor with ∆ = n + 1 must be included. Following the

same logic as above, the only possibility is C2
n+1
2 . The Poisson brackets are

{sα, sβ} = C2
n+1
2 Ωαβ . (4.7.31)

4.7.1.3 Summary of conjectured brackets

We collect the results derived in this section. We conjecture that the Poisson bracket relations for

the Coulomb branch generators of the E8,n family (4.7.1) for n ≥ 0 are given by:

{aµν , aρσ} = δνρaµσ − δµρaνσ + δµσaνρ − δνσaµρ ∀ n,

{aµν , sα} = (γµν)αβ sβ ∀ n,

{sα, sβ} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C2
n
2 (γµν)αβ aµν , if n even

C2
n+1
2 Ωαβ if n odd

(4.7.32)

where α and β spinor indices going from 1, ...,2
4n+16

2 −1; any other indices are vector indices going

from 1, ...,4n + 16, antisymmetrised with those appearing with them in a given subscript; Ωαβ is

the skew-symmetric two form of Sp(k = 22n+6) (4.3.4); and C2 = Tr(a2) is the second Casimir of

SO(4n + 16), which is normalised to give no numerical coefficient in the final bracket of (4.7.32).

4.7.2 E7,n family

The Higgs branch of a 5d SU(n) gauge theory with Chern Simons level 0 and 2n + 2 flavours at

infinite coupling (i.e. at its UV fixed point) has magnetic quiver [69, 94]

1
⋯

n + 2
⋯

1

2

(4.7.33)

for n ≥ 1. The rank 2 node is coloured red to indicate that it is unbalanced (for n ≠ 2). Generically,

we can read off that this quiver has global symmetry SU(2n + 4). For n = 1 however, (4.7.33) is the

Dynkin quiver of E6 (DE6 , as discussed in Section 4.3.1) hence the global symmetry is enhanced to

Sp(10) ⊃ SU(6) and the Poisson brackets are those given in Section 4.3. For n = 2, (4.7.33) is the

affine E7 quiver; the global symmetry is enhanced to E7 ⊃ SU(8), and the Poisson brackets are the

structure constants of E7. For all n ≥ 3 the global symmetry of the Coulomb branch is SU(2n + 4)
and there are 2 generating representations, as can be found from the HWG:

HWG = 1

(1 − t4)(1 − µn+2 tn)(1 − µn+2 tn+2)∏n+1i=1 (1 − µi µ2n+4−i t2i)
. (4.7.34)

where µ1, ..., µ2n+3 are the highest weight fugacities for the SU(2n + 4) global symmetry. Explicitly,

the generators are:

Generator ∆ SU(2n + 4) representation
aµν 1 adjoint

bµ1⋯µn+2 n
2
(n + 2)th rank antisymmetric

, (4.7.35)
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where all indices involving µ and ν range from 1, ...,2n + 4, and any indices on b are completely

antisymmetrised. We conjecture that the Poisson brackets of (4.7.35) are given by:

{aµν , aρσ} = δµσaρν − δρνaµσ,

{aµν , bµ1⋯µn+2} = δ[µ1
ν b

µ2⋯µn+2]µ,

{bµ1⋯µn+2 , bν1⋯νn+2} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C2
n−2
2 (ϵρµ1⋯µn+2[ν2⋯νn+2 aν1]ρ + ϵρν1⋯νn+2[µ2⋯µn+2 aµ1]

ρ) if n even,

C2
n−1
2 ϵµ1⋯µn+2ν1⋯νn+2 if n odd,

(4.7.36)

where C2 = Tr(a2) is the only non-zero SU(2n + 4) Casimir invariant of this moduli space, which is

normalised to give no numerical coefficient in the final bracket of (4.7.36).

4.7.3 EI
6,n family

The Higgs branch UV fixed point of a 5d SU(n) gauge theory with Chern Simons level ±1
2
and 2n+1

flavours has magnetic quiver [94, 69]

1
⋯

n + 1
⋯

1

2

1

(4.7.37)

for n ≥ 1. The rank 2 node is coloured red to indicate that it is unbalanced (for n ≠ 2). Generically, we

can read off that this quiver has global symmetry SU(2n+2)×SU(2). For n = 1, (4.7.37) is the Dynkin

quiver of D5 (DD5 , as discussed in Section 4.3.1) and so the global symmetry is enhanced to Sp(6)
and the Poisson brackets are those given in Section 4.3. For n = 2, (4.7.37) is the affine E6 quiver;

the global symmetry is enhanced to E6 ⊃ SU(6) ×SU(2), and the Poisson brackets are the structure

constants of E6. For all n ≥ 3 the global symmetry of the Coulomb branch is SU(2n + 2) × SU(2)
and there are 3 generating representations, as can be found from the HWG:

HWG = 1 − ν2 µ2
n+1 t

2n+4

(1 − ν2 t2)(1 − t4)(1 − ν µn+1 tn)(1 − ν µn+1 tn+2)∏n+1i=1 (1 − µi µ2n+2−i t2i)
, (4.7.38)

where µ1, ..., µ2n+1 and ν are the highest weight fugacities for the SU(2n + 2) and SU(2) factors in

the global symmetry respectively. Explicitly, the generators are:

Generator ∆ SU(2n + 2) × SU(2) representation
Aµν 1 adjoint × trivial

aαβ 1 trivial × adjoint

Bµ1⋯µn+1
α

n
2
(n + 1)th rank antisymmetric × fundamental

, (4.7.39)

where all indices involving µ and ν are SU(2n + 2) indices ranging from 1, ...,2n + 2 and those that

appear in exponent of B are antisymmetrised among themselves; and indices involving α and β are

SU(2) indices ranging from 1,2. We conjecture that the non-zero Poisson brackets of (4.7.39) are
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given by:

{Aµ1
ν1 ,A

µ2
ν2} = δµ1

ν2A
µ2
ν1 − δµ2

ν1A
µ1
ν2 ,

{aα1β1 , aα2β2} = ϵα1β2aα2β1 + ϵβ1β2aα2α1 + ϵα1α2aβ2β1 + ϵβ1α2aβ2α1 ,

{Aµν ,Bµ1⋯µn+1
α} = δ[µ1

νB
µ2⋯µn+1]µ

α,

{aαβ ,Bµ1⋯µn+1
α1} = Bµ1⋯µn+1

(β ϵα)α1
,

{Bµ1⋯µn+1
α,B

ν1⋯νn+1
β} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C2
n−2
2 (ϵµ1⋯µn+1ν1⋯νn+1 ϵα1 [α aβ]α1

+ ϵαβ

(ϵνν1⋯νn+1[µ2⋯µn+1 Aµ1]
ν + ϵνµ1⋯µn+1[ν2⋯νn+1 Aν1]ν))

if n even,

C2
n−1
2 ϵαβ ϵ

µ1⋯µn+1ν1⋯νn+1 if n odd,

(4.7.40)

where (⋅)/[⋅] indicates a symmetrisation/antisymmetrisation over the enclosed indices with no nu-

merical prefactor; and C2 is the second and only non-zero Casimir for SU(2n + 2) × SU(2) on this

Coulomb branch, which is normalised to give no numerical coefficient in the final bracket of (4.7.40).

The second Casimir C2 of the product group SU(2n+2)×SU(2) is proportional to the second Casimir

of each individual group (SU(2n+ 2) and SU(2) respectively).31 All other Poisson brackets between

(4.7.39) that are not listed in (4.7.40) vanish.

4.7.4 EII
6,n family

The Higgs branch UV fixed point of a 5d SU(n) gauge theory with Chern Simons level ±3
2
and 2n+1

flavours has magnetic quiver [94, 69]

1
⋯

2n − 1 n 1

n

1

(4.7.41)

for n ≥ 1. The two rank 1 nodes are coloured red to indicate that they are unbalanced (for n ≠ 2).
Generically, we can read off that this quiver has global symmetry SO(4n + 2) × U(1). For n = 1,

(4.7.41) is Dynkin quiver of A5 (DA5 , as discussed in Section 4.3.1) and hence the global symmetry

is enhanced to Sp(4) ⊃ SO(6) × U(1), and the Poisson brackets are given in Section 4.3. For n = 2,
(4.7.41) is the affine E6 quiver; the global symmetry is enhanced to E6 ⊃ SO(10) × U(1), and the

Poisson brackets are the structure constants of E6. For all n ≥ 3 the global symmetry of the Coulomb

31The 2nd Casimirs of SU(2n+ 2) and SU(2), C2,SU(2n+2) = Tr(A2
) and C2,SU(2) = Tr(a2) respectively, both have

conformal dimension 2. The HWG tells us that there is just a single invariant of the Coulomb branch global symmetry,

and that it has ∆ = 2. This means that some linear combination of the individual Casimirs C2,SU(2n+2) and C2,SU(2),
say β1 C2,SU(2n+2) + β2 C2,SU(2), must vanish, and all Casimirs of the flavour symmetry SU(2n + 2) × SU(2) on this

Coulomb branch must be proportional to an orthogonal linear combination, say C2 = α1 C2,SU(2n+2) + α2 C2,SU(2).
The vanishing linear combination tells us that C2,SU(2n+2) and C2,SU(2) are proportional, and so we can see that the

second Casimir of the product group C2 is proportional to either of the second Casimirs of the individual groups.
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branch is SO(4n + 2) × U(1) and there are 4 generating representations, as can be found from the

HWG:

HWG = 1

(1 − t2)(1 − µ2n+1 tn

q
)(1 − q µ2n tn)∏n−1i=1 (1 − µ2i t2i)

, (4.7.42)

where µ1, ..., µ2n+1 are the highest weight fugacities for SO(4n+2) and q is the fugacity for the U(1)
charge. Explicitly, the generators are:

Generator ∆ SO(4n + 2) ×U(1) representation
aµν 1 adjoint × (0)
C1 1 trivial × (0)
sα n

2
left spinor × (+1)

sα
n
2

right spinor × (−1)

, (4.7.43)

where α and β are spinor indices going from 1, ...,22n; and any other indices are vector indices going

from 1, ...,4n+2, antisymmetrised with those appearing alongside them in a given subscript. C1 is the

invariant of the U(1) factor in the flavour symmetry, so-called to make connection with the notation

for the flavour symmetry invariants in the Coulomb branches of Sections 4.7.1 – 4.7.3. This U(1) is
formed from a linear combination of the two U(1) symmetries in the classical (finite coupling) Higgs

branch of the 5d theory in question: the U(1)B ⊂ U(2n+1) baryon symmetry associated to the trace

of the meson matrix M , and the U(1)I instanton symmetry associated to the gaugino bilinear S

one can construct.32 The orthogonal linear combination of these U(1) symmetries is combined with

the SU(2n + 1) factor in the classical flavour symmetry, enhancing it to the SO(4n + 2) we see at

infinite coupling. The left and right spinors of SO(4n + 2) are complex representations which are

conjugate to one another, hence the raised and lowered indices respectively. This makes matching

the indices in the Poisson brackets (Step 4 of Section 4.6) slightly more complicated in this case. The

matrices δ and γµν are spinor valued (i.e. their entries are labelled by two spinor indices α and β),

and lie in the trivial (1) and adjoint (µ2) representations of SO(4n + 2) respectively. To see what

form their spinor indices take, it is therefore important to ascertain whether these representations

lie in the second rank symmetric/antisymmetric of one of the spinors or in the tensor product of

the two conjugate spinors. It turns out that both 1 and µ2 lie in the tensor product µ2n ⊗ µ2n+1,

and hence have one upper and one lower spinor index labelling their matrix entries: δαβ and (γµν)αβ .

We conjecture that the non-zero Poisson brackets of (4.7.43) are given by:

{aµν , aρσ} = δνρaµσ − δµρaνσ + δµσaνρ − δνσaµρ,

{aµν , sα} = (γµν)αβ s
β ,

{aµν , sα} = sβ (γµν)βα,

{C1, s
α} = + sα

{C1, sα} = − sα

{sα, sβ} = C1
n−1 δαβ ,

(4.7.44)

32By “associated”, we mean that M and S are the scalar superpartners of the conserved currents associated to these

symmetries. We use this association because, for study of the moduli space, it is the scalars which we are interested in.
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where C1 is normalised such that there are no additional numerical coefficients in (4.7.44). All other

Poisson brackets between (4.7.43) that are not listed in (4.7.44) vanish.

4.7.5 Magnetic quivers for 5d N = 1 SQCD

The following four sections are based on magnetic quivers [73] found for certain cones of the Higgs

branch at infinite coupling of 5d N = 1 special unitary SQCD theories with UV fixed points [72].

Such a 5d theory is specified by three parameters: the number of colours Nc of the gauge group; the

number of flavours Nf transforming in its fundamental representation; and the Chern-Simons level

k;

SU(Nc)±∣k∣ Nf .
(4.7.45)

To have a UV fixed point, these three parameters must satisfy the following inequality [96]:

∣k∣ ≤ Nc −
Nf

2
+ 2. (4.7.46)

In these instances, we can investigate the case of infinite coupling.

In [72], the authors split (4.7.46) into four regions and computed the magnetic quivers – plural as

each Higgs branch is the union of various cones – for the various Higgs branches in each region. In

an unpublished work by Zhenghao Zhong and Amihay Hanany, the HWG for each of these magnetic

quivers was computed. We will use these HWGs to derive the Poisson brackets for the Coulomb

branch generators of these magnetic quivers. Many of the quivers appearing in [72] either only have

generators in the adjoint representation or have already appeared in Sections 4.7.1 – 4.7.4. We will

omit the Poisson brackets for these quivers as they have been covered in previous sections, but will

give a brief comment noting the relevant ones in each of Sections 4.7.5.1 – 4.7.5.4. The remaining

quivers (bar certain exceptional cases of the Chern Simons coupling in regions 2 and 4) fall into four

families: the so-called trapezium, pyramid, kite and truck families. The first two such families are

specified by three parameters, Nf − 1, n and σ, and the latter two families by just n and σ. Each

of these parameters is a function of the parameters of the 5d theory, Nf , Nc and k, and one can

check the original paper [72] for the specific relationship (the new parameters n and σ have been

introduced to encapsulate multiple cones by the same quiver: the only difference between cones being

the dependence of n and σ on Nf , Nc and k). The structure of each family of quivers restricts the

values that n and σ can take (for example, for the Trapezium family (4.7.48) can only have n = 1

for Nf = 2 or 3). In Sections 4.7.5.1 – 4.7.5.4 we will explore the Poisson brackets for the Coulomb

branch generators of each of these four families in turn.

4.7.5.1 Trapezium family

The trapezium family encapsulates the magnetic quivers for two cones which make up the Higgs

branch of 5d N = 1 SQCD with parameters satisfying the following subsets of (4.7.46), “region 1”

and “region 3” of [72] respectively:

∣k∣ < Nc −
Nf

2
and ∣k∣ = Nc −

Nf

2
+ 1. (4.7.47)

Note that there is an additional cone comprising the Higgs branch of each of these regions (4.7.47)

with a magnetic quiver that does not conform to the structure of (4.7.48), but they are closures
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nilpotent orbits.33 The family is given by

1 2
⋯

n
⋯

n
⋯

2 1

1 1σ

Nf − 1 (4.7.48)

for Nf ≥ 2, where a red node indicates that it is unbalanced, and σ indicates the multiplicity of the

hypermultiplet linking the two unbalanced U(1) nodes. Generically, we can read off that this quiver

has global symmetry SU(Nf) × U(1). Note that this is less than in the classical case. In the case

where n = σ = 1 however, the two red nodes are actually balanced and this quiver becomes the affine

ANf
quiver; the global symmetry is enhanced to SU(Nf + 1) ⊃ SU(Nf) × U(1), and the Poisson

brackets are the structure constants of SU(Nf + 1). From the structure of the quiver, one can see

that we must necessarily have 1 ≤ n ≤ ⌊Nf

2
⌋. When we don’t have n = σ = 1, there are 4 generating

representations, as can be found from the HWG:

HWG =
1 − µn µNf−n t

2(n+σ)

(1 − t2)(1 − µn q tn+σ)(1 − µn

q
tn+σ)∏ni=1(1 − µi µNf−i t

2i) . (4.7.49)

where µ1, ..., µNf−1 are the highest weight fugacities for SU(Nf), and q is the fugacity for the U(1)
charge. Explicitly, the generators are:34

Generator ∆ SU(Nf) ×U(1) representation
aµν 1 adjoint × (0)
C1 1 trivial × (0)

bµ1⋯µn n+σ
2

nth rank antisymmetric × (+1)
dµ1⋯µn

n+σ
2

(Nf − n)th rank antisymmetric × (−1)

, (4.7.50)

where all indices involving µ and ν range from 1, ...,Nf ; those on b are completely antisymmetrised;

and C1 is the invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details).

The parameter n takes different values with regards to the parameters Nc, Nf and k on each of the

Higgs branch cones whose magnetic quiver is encapsulated by (4.7.48). The specific expression for n

will dictate the physical states of b and d, hence their generic names.

33For the exceptional cases of k = 1
2

and k = 0 in region 3, the magnetic quiver does not take the form of (4.7.48),

and instead takes the form of (4.7.37) for Nf = 2n + 1 and (4.7.33) for Nf = 2n + 2 respectively (where this n is that

used in (4.7.37) and (4.7.33) respectively, not to be confused with the n of (4.7.48)).

34The (Nf −n)
th rank antisymmetric could be written with Nf −n upper antisymmetrised indices, but the invariance

of ϵ
µ1⋯µNf means we can also write it with n lower antisymmetrised indices instead. This choice of notation makes

clear the fact that it is the conjugate to the nth rank antisymmetric representation.
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We conjecture that the non-zero Poisson brackets of (4.7.50) are given by:

{aµν , aρσ} = δµσaρν − δρνaµσ,

{aµν , bµ1⋯µn} = δ[µ1
ν b

µ2⋯µn]µ

{aµν , dµ1⋯µn} = δµ[µ1
dµ2⋯µn]ν ,

{C1, b
µ1⋯µn} = + bµ1⋯µn ,

{C1, dµ1⋯µn} = −dµ1⋯µn ,

{bµ1⋯µn , dν1⋯νn} = C1
n+σ−1 δ[µ1

[ν1 ⋯ δµn]
νn].

(4.7.51)

where C1 is normalised such that there are no additional numerical coefficients in (4.7.51). In one of

the cones n = Nf −Nc, meaning b and d are the baryons that we would expect to show up (due to

C1 acting as the baryon number: the U(1)B baryon symmetry is preserved). In the other cone, we

expect b and d to be instanton operators. All other Poisson brackets between (4.7.50) that are not

listed in (4.7.51) vanish.

4.7.5.2 Pyramid family

The pyramid family are magnetic quivers for one cone which makes up the Higgs branch of 5d N = 1
SQCD with parameters satisfying the following subset of (4.7.46), “region 2” of [72]:

∣k∣ = Nc −
Nf

2
. (4.7.52)

Note that there is an additional Higgs branch cone with a magnetic quiver that does not conform to

the structure of (4.7.53), but it is the closure of a nilpotent orbit or a product thereof (depending on

the values of the parameters).35 The family is given by

1 2
⋯

n
⋯

n
⋯

2 1

1 1

1

σ

Nf − 1 (4.7.53)

for Nf ≥ 2, where a red node indicates that it is unbalanced, and σ indicates the multiplicity of the

hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that

this quiver has global symmetry SU(Nf) × SU(2) × U(1). The structure of the quiver means that

we must necessarily have 1 ≤ n ≤ ⌊Nf

2
⌋. There are 5 generating representations, as can be found from

the HWG:

HWG =
1 − ν2 µn µNf−n t

2(n+σ+1)

(1 − t2)(1 − ν2 t2)(1 − ν µn q tn+σ+1)(1 − ν µn

q
tn+σ+1)∏ni=1(1 − µi µNf−i t

2i) , (4.7.54)

35Note also that for the exceptional case of k = 0 in (4.7.52), the magnetic quiver does not take the form of (4.7.53).
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where ν and µ1, ..., µNf−1 are the highest weight fugacities for SU(2) and SU(Nf) respectively, and
q is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator ∆ SU(Nf) × SU(2) ×U(1) representation
Aµν 1 adjoint × trivial × (0)
aαβ 1 trivial × adjoint × (0)
C1 1 trivial × trivial × (0)

Bµ1⋯µn
α

n+σ+1
2

nth rank antisymmetric × fundamental × (+1)
Dµ1⋯µn α

n+σ+1
2

(Nf − n)th rank antisymmetric × fundamental × (−1)

, (4.7.55)

where all indices involving µ and ν are SU(Nf) indices ranging from 1, ...,Nf , and those that appear

in exponents or subscripts of B or D are antisymmetrised among themselves; indices involving α

and β are SU(2) indices ranging from 1,2; and C1 is the invariant of the U(1) factor in the flavour

symmetry (see Section 4.7.4 for more details). We conjecture that the non-zero Poisson brackets of

(4.7.55) are given by:

{Aµ1
ν1 ,A

µ2
ν2} = δµ1

ν2 A
µ2
ν1 − δµ2

ν1 A
µ1
ν2 ,

{aα1β1 , aα2β2} = ϵα1β2aα2β1 + ϵβ1β2aα2α1 + ϵα1α2aβ2β1 + ϵβ1α2aβ2α1 ,

{Aµν ,Bµ1⋯µn
α} = δ[µ1

νB
µ2⋯µn]µ

α,

{Aµν ,Dµ1⋯µn α} = δµ[µ1
Dµ2⋯µn]ν α,

{aαβ ,Bµ1⋯µn
α1} = Bµ1⋯µn

(α ϵβ)α1
,

{aαβ ,Dµ1⋯µn α1} =Dµ1⋯µn(β ϵα)α1
,

{C1,B
µ1⋯µn

α} = +Bµ1⋯µn
α,

{C1,Dµ1⋯µnα} = −Dµ1⋯µnα,

{Bµ1⋯µn
α,Dν1⋯νnβ} = C1

n+σ δ[µ1
[ν1 ⋯ δµn]

νn] ϵαβ ,

(4.7.56)

where (⋅)/[⋅] indicates a symmetrisation/antisymmetrisation over the enclosed indices with no nu-

merical prefactor; and C1 is normalised such that there are no additional numerical coefficients in

(4.7.56). All other Poisson brackets between (4.7.55) that are not listed in (4.7.56) vanish.

4.7.5.3 Kite family

The kite family are magnetic quivers for one cone in the Higgs branch of 5d N = 1 SQCD with

parameters satisfying the following subset of (4.7.46), “region 4” of [72]:

2 < ∣k∣ = Nc −
Nf

2
+ 2, (4.7.57)

with Nf even. There is an additional Higgs branch cone with a magnetic quiver that does not conform

to the structure of (4.7.58) for Nf ≥ 2, but it is the closure of a nilpotent orbit.36 The family is given

36Note also that for the exceptional case of k = 1, the magnetic quiver does not take the form of (4.7.58).
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by

1 2
⋯

2n − 2 n

1

1

n − 1

σ

(4.7.58)

for n ≥ 2, where a red node indicates that it is unbalanced, and σ indicates the multiplicity of the

hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that

this quiver has global symmetry SO(4n) × U(1). There are 4 generating representations, as can be

found from the HWG:

HWG = 1 − µ2
2n t

2(n+σ)

(1 − t2)(1 − µ2
2n t

2n)(1 − µ2n q tn+σ)(1 − µ2n

q
tn+σ)∏n−1i=1 (1 − µ2i t2i)

, (4.7.59)

where µ1, ..., µ2n are the highest weight fugacities for the SO(4n) factor in the global symmetry, and

q is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator ∆ SO(4n) ×U(1) representation
aµν 1 adjoint (0)
C1 1 trivial × (0)
s+α

n+σ
2

spinor × (+1)
s−α

n+σ
2

spinor × (−1)

, (4.7.60)

where α and β spinor indices going from 1, ...,22n−1; any other indices are vector indices going from

1, ...,4n, antisymmetrised with those appearing alongside them in a given subscript; and C1 is the

invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details). The spinor

representation of SO(4n) is real/pseudo-real for even/odd n. We conjecture that the non-zero Poisson

brackets of (4.7.60) are given by:

{aµν , aρσ} = δνρaµσ − δµρaνσ + δµσaνρ − δνσaµρ,

{aµν , s±α} = (γµν)αβ s±β ,

{C1, s
±
α} = ± s±α,

{s+α, s−β} =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C1
n+σ−2 (γµν)αβ aµν if n even,

C1
n+σ−1Ωαβ if n odd,

(4.7.61)

where C1 is normalised such that there are no additional numerical coefficients in (4.7.61); and Ωαβ is

the invariant skew-symmetric two form of Sp(k = 22n−2) (4.3.4). All other Poisson brackets between

(4.7.60) that are not listed in (4.7.61) vanish.

4.7.5.4 Truck family

The truck family is the magnetic quiver for the Higgs branch of 5d N = 1 SQCD with parameters

satisfying the same subset of (4.7.46) as the kite family, (4.7.57) (“region 4” of [72]), but with Nf
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odd.37 The family is given by

1 2
⋯

2n − 1 n 1

n 1

σ

(4.7.62)

for n ≥ 2, where a red node indicates that it is unbalanced, and σ indicates the multiplicity of the

hypermultiplet stretching between the two unbalanced U(1) nodes. Generically, we can read off that

this quiver has global symmetry SO(4n + 2) × U(1). There are 4 generating representations, as can

be found from the HWG:

HWG = 1 − µ2n µ2n+1 t
2(n+σ)

(1 − t2)(1 − µ2n µ2n+1 t2n)(1 − µ2n q tn+σ)(1 − µ2n+1

q
tn+σ)∏n−1i=1 (1 − µ2i t2i)

, (4.7.63)

where µ1, ..., µ2n+1 are the highest weight fugacities for the SO(4n+2) factor in the global symmetry,

and q is the fugacity for the U(1) charge. Explicitly, the generators are:

Generator ∆ SO(4n + 2) ×U(1) representation
aµν 1 adjoint (0)
C1 1 trivial × (0)
sα n+σ

2
left spinor × (+1)

sα
n+σ
2

right spinor × (−1)

, (4.7.64)

where α and β spinor indices going from 1, ...,22n; any other indices are vector indices going from

1, ...,4n+2, antisymmetrised with those appearing alongside them in a given subscript; and C1 is the

invariant of the U(1) factor in the flavour symmetry (see Section 4.7.4 for more details). The left

and right spinors of SO(4n+2) are complex representations, and conjugate to one another, hence the

raised and lower indices respectively. We conjecture that the non-zero Poisson brackets of (4.7.64)

are given by:

{aµν , aρσ} = δνρaµσ − δµρaνσ + δµσaνρ − δνσaµρ,

{aµν , sα} = (γµν)αβ s
β ,

{aµν , sα} = sβ (γµν)βα,

{C1, s
α} = + sα,

{C1, sα} = − sα,

{sα, sβ} = C1
n+σ−1 δαβ ,

(4.7.65)

where the spinor indices on the γµν and δ are determined as in Section 4.7.4; and C1 is normalised

such that there are no additional numerical coefficients in (4.7.65). All other Poisson brackets between

(4.7.64) that are not listed in (4.7.65) vanish.

37Note that for k = 1
2
, the magnetic quiver does not take the form (4.7.62), and instead takes the form of (4.7.1) for

Nf = 2n + 7 (where this n is that used in (4.7.1), not to be confused with the n of (4.7.62).



Chapter 5

Conclusion

The author hopes that this thesis serves as a helpful and pedagogical introduction to the study of

3d N = 4 Coulomb branches C; in particular, to the use of existing tools (such as magnetic quivers,

Hasse diagrams and the monopole formula) along with new techniques developed by the author and

Amihay Hanany (such as quiver addition and the amendment to the BGS algorithm) to make progress

with determining the topological global symmetry and Poisson brackets of C. The methods discussed

combine the physical and mathematical interpretation of C, utilising and developing the bridge be-

tween these two fields to draw conclusions about both symplectic singularities and the physics of the

underlying theory.

In principle, a quiver should encode everything about a theory. The ideal result of the avenues of

study discussed would be an algorithm to determine the global symmetry and Poisson brackets via

simple graph theory computations using the quiver data. The works of [10] and [11], the subjects

of this thesis, make progress towards this. The former, presented in Chapter 3, helps to understand

the failings of a previous algorithm to find the global symmetry of certain Coulomb branches from

their Coulomb quivers, and provides an amended algorithm which solves these failures in the cases

discussed. This not only sheds light on some underlying physics, but takes a step closer to finding

an algorithm which works unfailingly to find the full global symmetry for all quivers. The latter,

presented in Chapter 4, computes Poisson brackets for certain Coulomb branches. These brackets

relate to the symplectic form on C and help us to learn of the singularity structure; the Poisson

bracket vanishes along a singular subset of the variety. We hope that Chapter 2 provides a concise

and understandable introduction to all the ideas and concepts needed to understand the results pre-

sented in Chapters 3 and 4.

There are many further directions that can (and the author hopes will) be explored, developing on

the contributions of this thesis. We first discuss some possible directions stemming from the results of

Chapter 3. Firstly, the notion of experiencing an enhanced symmetry is noteworthy in itself; it would

be interesting to investigate the properties of these quivers further and see if they hold any other

surprising or fruitful properties. Those with simple Hasse diagrams1 would be obvious candidates to

start with, as a simple singularity structure can be an indicator of a simpler symplectic singularity.

Secondly, the amended algorithm to find the global symmetry from the quiver (presented in Section

1We computed the Hasse diagrams for many of the quivers in Chapter 3 but chose not to include them in [10] or

this note, as they were not pertinent to the main message.
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3.7) still does not work for every quiver that we are interested in studying, but is a good stepping-stone

to the end goal of an algorithm which does. It would be nice to build on our amendment to continue

to make progress towards this goal. Thirdly, the conjectured symmetries present in this chapter can

be used to provide support for future developments of brane systems for more complicated quivers,

and their corresponding quiver subtraction rules.

Chapter 4 is the first to display the Poisson brackets for lengthy magnetic quivers of 5 and 6d theories

at infinite coupling; in the literature, Poisson brackets are largely computed for Coulomb branches

of abelian or low rank gauge theories. The conjecture prescribed in Chapter 4 allows us to compute

them in any theory for which the generators and relations of the Hilbert series are known. In this

thesis we did this for a certain subset of such quivers, but there are many others one could com-

pute. In particular, it would be interesting to compute the brackets of quivers lying lower down in

the Hasse diagram of the quivers in Chapter 4. Analysis of these brackets in comparison to those

for the original quiver can help us to understand where the degeneracies in the symplectic form occur.

With that we conclude the outlook, and the thesis. Cheers for reading.



Appendix A

Discrete Projections

As mentioned in Section 3.2.1 (and at multiple subsequent points in Chapter 3) the Coulomb branches

of quivers containing nodes with an adjoint hypermultiplet can be realised as discrete quotients of the

Coulomb branches of quivers with a bouquet of U(1) nodes (3.2.1) [71, 83, 84, 62]. In this appendix,

we explain how this can be verified, and see it in practise with an example.

Suppose we have two quivers A and B which are conjectured to satisfy the relation

C(B)/Sn = C(A), (A.0.1)

due to B having some Sn outer automorphism. The way we prove this conjecture to the best of our

ability is to show the equality of Hilbert series. This is done by calculating the Hilbert series for

C(B), and finding some Sn action on its generators and relations that obtains the Hilbert series of

C(A). To be more precise, on the left hand side of (A.0.1) we are trying to calculate the Sn gauged

Coulomb branch of B. This Coulomb branch should be Sn invariant, and so this gauging is realised

by finding some action of Sn on the Coulomb branch and performing the corresponding Molien sum

on the Hilbert series of C(B) to find the Hilbert series of C(B)/Sn such that it matches the Hilbert

series of C(A), which can just be computed in the usual manner using the monopole formula.

Schematically, this Molien sum (which is responsible for making an object gauge invariant) over our

discrete group G = Sn goes like

HS(C(B)/G) = 1

∣G∣ ∑g∈G
g ⋅HS(C(B)). (A.0.2)

where HS stands for Hilbert series and ⋅ is an action of G. The action of G on a Hilbert series is

fully determined by the action on its generators and relations. Each element of G will in general act

differently, and the contributions from each of these actions are summed together before their total

is divided by the cardinality of G. To find the action of G, we need to analyse and understand its

representations and characters. This is just an exercise in the theory of finite groups. The example

we show here will be that of G = S2 = Z2, for which the game is a bit easier as there are just two one

dimensional representations. However the method can be extended and applied to any finite group,

provided the representations and characters are known and understood.
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Example Consider the magnetic quiver of the next to minimal nilpotent orbit of B3:

2

2
1

1

.

(A.0.3)

In this case, the conjecture (3.2.1) tells us that

C
⎛
⎜⎜⎜⎜
⎝ 2

1

1

1

1

⎞
⎟⎟⎟⎟
⎠
/Z2 = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝ 2

2
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (A.0.4)

Let’s see how to show this. First, let’s compute the Hilbert series of the quiver on the right hand side,

which we call Qn.minB3 , so we know what we are looking to obtain from the left hand side via the

discrete quotient. We can find the HWG of QnminB3 , which completely encodes the refined Hilbert

series, to be

HWGB3(Qn.minB3) = PE[µ2t
2 + µ2

1t
4] = 1

(1 − µ2t2)(1 − µ2
1t

4) , (A.0.5)

where the B3 subscript on HWG is used to illustrate that {µ1, µ2, µ3} are the Dynkin label (i.e.

highest weight) fugacities for B3.

Now it’s time to realise this as the Z2 quotient of the minimal nilpotent orbit of d4, which is the

Coulomb branch of the quiver on the left hand side of (A.0.4), that we’ll call QminD4 . The HWG of

this quiver can be easily computed to be

HWGD4(QminD4) = PE[µ̃2t
2] = 1

1 − µ̃2t2
, (A.0.6)

where as before the D4 subscript on HWG tells us that {µ̃1, µ̃2, µ̃3, µ̃4} are the Dynkin label fugacities

for D4. The goal now is to find a Z2 action on (A.0.6) that will reproduce (A.0.5). However in order

to do this, we need to have (A.0.6) in terms of the same fugacities as (A.0.5); we must decompose the

adjoint representation of D4 into irreducible representations of B3.
1 Writing the characters of D4 in

terms of fundamental weight fugacities {x1, x2, x3, x4} and those of B3 in terms of {x1, x2, x3}, one
finds that under the fugacity map x4 → x3 the adjoint representation of D4 decomposes into the sum

of the adjoint and fundamental representations of B3:

µ̃2 → µ2 + µ1. (A.0.7)

Based on this, we guess that the HWG of the minimal nilpotent orbit of d4, i.e. C(QminD4), in terms

of B3 Dynkin label fugacities is

HWGB3(QminD4) = PE[(µ2 + µ1)t2] =
1

(1 − µ2t2)(1 − µ1t2)
. (A.0.8)

We need to check that this is correct, as it could be that these representations of B3 will actually

overcount the representations of D4 we wanted, and to correct this we’d need to impose relations.

1The tabulations of the branching rules, among many other useful for results, for several Lie groups can be found

in [97].
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The way to check for this is to turn (A.0.8) into a refined or unrefined Hilbert series, and compare it

to that obtained from using the monopole formula on QminD4 (after the appropriate fugacity map in

the refined case). Here, under performing this check we see that (A.0.6) and (A.0.8) yield the same

Hilbert series, and so (A.0.8) is indeed the correct HWG for the minimal nilpotent orbit of D4 in

terms of B3 fugacities.

Now all that’s left to do is find the Z2 action that when used in a Molien sum on (A.0.8) will yield

(A.0.5). The action on the generators will fully determine the action everywhere, and we can see

here our generators are µ1t
2 and µ2t

2. The group Z2 has two elements: the identity and some other

element which squares to the identity, e.g. {1,−1}. So our Molien sum looks like

HWGB3(QminD4])/Z2 =
1

2
∑

g∈{1,−1}
PE[g ⋅ µ1t

2 + g ⋅ µ2t
2]. (A.0.9)

The representations of Z2 that µ1 and µ2 are in determine the action of Z2 on them. There are

just two representations of Z2: the trivial representation and the sign representation. The trivial

representation is obviously invariant under all group elements, and the sign representation is mapped

to plus or minus itself by the elements 1 or −1 of Z2 respectively. It turns out that if µ1 is in the sign

representation and µ2 is in the trivial representation, we reproduce (A.0.5):

HWG(QminD4)/Z2 =
1

2
(PE[1 ⋅ µ1t

2 + 1 ⋅ µ2t
2] + PE[−1 ⋅ µ1t

2 + −1 ⋅ µ2t
2])

= 1

2
(PE[µ1t

2 + µ2t
2] + PE[−µ1t

2 + µ2t
2])

= PE[µ2t
2 + µ2

1t
4]

=HWG(QnminB3).

(A.0.10)

This completes the proof of the equality of Hilbert series for C(QminD4)/S2 and C(Qn.minB3), and
hence validating the conjecture (A.0.4) to the best of our ability.2 ◻

2We say only to the best of our ability as the Hilbert series is not a complete characterisation of the Coulomb branch

moduli space, but at present it is the most complete encapsulation that we have.



Appendix B

Tensor, Symmetric and

Antisymmetric Products

In Sections 4.6 – 4.7, we use the antisymmetric property of the Poisson bracket to constrain the

representations that the output can lie in. In this appendix, we outline how this works in practise.

Suppose we want to find the Poisson bracket between two generators g1 and g2, which lie in the repre-

sentations R1 and R2 of some group G respectively. Appropriate indices on g1 and g2 will reflect the

components of the respective representations. The Poisson bracket in some sense intertwines g1 and

g2, and so the result must lie in the tensor product representation R1⊗R2 in all cases. If R1 = R2, the

antisymmetry of the Poisson bracket means that the result {g1, g2} not only lies in the tensor product

R1⊗R1, but in fact in the second rank antisymmetric product of R1: Λ
2(R1) = Λ(R1⊗R1) ⊂ R1⊗R1.

But how do we compute this?

In general R1 ⊗ R2 is not an irreducible representation. The weights lying in R1 ⊗ R2 are those

obtained by adding all weights of R2 to each weight of R1. These weights form several irreducible

representations of G, and this is the tensor product decomposition of R1⊗R2. That is, if the weights

of the representation R are denoted by wRi for i = 1, ..., dR = dim(R), then

{wR1⊗R2

i ∣ i = 1, ..., dR1 dR2} = {wR1

j +w
R2

k ∣ j = 1, ..., dR1 , k = 1, ..., dR2} (B.0.1)

and we write

R1 ⊗R2 = ⊕
i
ci R̃i (B.0.2)

where ci are non-negative integer coefficients, to illustrate how the tensor product representation

decomposes into the irreducible representations R̃i of G. Sometimes the direct sum symbol is dropped

and we just write

R1 ⊗R2 = ∑
i

ciRi. (B.0.3)
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Example Consider G = SU(2), R1 = µ1 whose weights are {wµi } = { (1) , (−1) }, and R2 = µ2 whose

weights are {wµ
2

i } = { (2) , (0) , (−2) }. The tensor product µ⊗ µ2 then contains the weights

{wµ⊗µ
2

i ∣ i = 1, ...,6} = {wµj +w
µ2

k ∣ j = 1,2, k = 1,2,3}

= { (3) , (1) , (−1) , (1) , (−1) , (−3) } ,
(B.0.4)

and thus we see that

µ⊗ µ2 = µ3 + µ. (B.0.5)

◻

In the case where R1 = R2 = R, we can consider the symmetric and antisymmetric parts of such a

product. We can see that in this case the weights of the tensor product can be decomposed as follows:

{wRj +wRk ∣ j, k = 1, ..., dR} = {wRj +wRk ∣ j ≤ k = 1, ..., dR} + {wRj +wRk ∣ j > k = 1, ..., dR}

≡ {wS
2(R)

i ∣ i = 1, ..., dS2(R)} + {wΛ2(R)
i ∣ i = 1, ..., dΛ2(R)} ,

(B.0.6)

and under these definitions of the second rank symmetric product S2(R) and the second rank anti-

symmetric product Λ2(R) that
R⊗R = S2(R) +Λ2(R). (B.0.7)

One can see that the dimensions of the second rank symmetric and antisymmetric products are

dS2(R) =
dR(dR + 1)

2
,

dΛ2(R) =
dR(dR − 1)

2
.

(B.0.8)

Example Consider G = SU(2) and R = µ2. If we label the weights wµ
2

j for j = 1,2,3 without loss

of generality as

wµ
2

1 = (2), wµ
2

2 = (0), wµ
2

3 = (−2), (B.0.9)

then the second rank symmetric product is specified by the weights

w
S2(µ2)
ij ≡ wµ

2

i +w
µ2

j (B.0.10)

for

(i, j) = { (1,1) , (1,2) , (1,3) , (2,2) , (2,3) , (3,3) }, (B.0.11)

giving

w
S2(µ2)
ij = { (4) , (2) , (0) , (0) , (−2) , (−4) }. (B.0.12)

Similarly the second rank antisymmetric product is specified by the weights

w
S2(µ2)
ij ≡ wµ

2

i +w
µ2

j (B.0.13)

for

(i, j) = { (2,1) , (3,1) , (3,2) }, (B.0.14)

1Here we use the Dynkin label notation for a representation: see Section 2.6.2.
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giving

w
Λ2(µ2)
ij = { (2) , (0) , (−2) }. (B.0.15)

Thus we conclude from (B.0.12) and (B.0.15) that

S2(µ2) = µ4 + 1,

Λ2(µ2) = µ2.
(B.0.16)

◻
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