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ABSTRACT

Pion photo- (γp→ πN) and electroproduction (γ∗p→ πN) close to threshold have been

the subject of experimental and theoretical study since the 1950s. The predictions for

near threshold cross sections have been studied for momentum transfers Q2 < 1 GeV2/c2

theoretically via the Low Energy Theorems (LETs). Additionally, these LETs give pre-

dictions for the axial form factor GA(Q2) via the charged pion process near threshold.

The LETs provide transition amplitude predictions for both neutral and charged pion

reactions using chiral symmetry and current algebra arguments near threshold. Previous

experimental measurements from Saclay, Mainz and others have shown consistency with

the LET predictions at low momentum transfers Q2 < 1 GeV2/c2.

Recently, new extensions to these LETs at highQ2 have been introduced by Pobylista

et al (2001) and then by Braun et al (2008). In the work of Braun et al, the near thresh-

old pion electroproduction transition amplitudes are written in terms of new form factors.

These new generalized form factors GπN1 (Q2) and GπN2 (Q2) are obtained on the current

quark basis and have been predicted using light cone sum rules (LCSRs) in the chiral limit

(mπ → 0) for the reactions ep → eNπ in the Q2 range of 1 − 10 GeV2/c2. Additionally,

the predictions include a prescription to access the axial form factor GA near threshold at

these high momentum transfers for the charged pion reaction.

An experiment at Jefferson Lab was conducted using the CLAS detector to measure

near threshold neutral pion electroproduction ep→ epπ0 as a function of Q2. This is the

first measurement of this process in the near threshold region of W from 1.08 to 1.16 GeV

and at momentum transfers Q2 ≈ 2 − 5 GeV2/c2. The differential angle integrated cross

sections were measured and the associated structure functions and S-wave multipoles were

extracted. The cross section, extracted multipole amplitudes and generalized form factors

Gπ
0p

1 (Q2) and Gπ
0p

2 (Q2) are presented along with the predictions from Braun et al.
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1. Introduction and Historical Review

In this thesis, we will study the differential cross sections and the structure of the pion-

nucleon system for the reaction ep → epπ0. This reaction is studied using data collected

in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab) using the

CLAS1 detector. The e1-6 experiment measured the angular distribution of the process

in the near threshold region W ∈ (1.08, 1.16) GeV and at high Q2 ≈ 2− 5 GeV2/c2.

1.1 Formalism

1.1.1 Kinematic Definitions

The reaction of interest, shown schematically in Fig. 1.1(a), is

e(lµ) + p(Pµ)→ e(l′µ) +N(P ′µ) + π(kµ). (1.1)

Here, e and p refer to electron and proton target; N is either a neutron (n) or a proton

(p) and π is either neutral (π0) or charged (π+). So, we have two possible reactions:

e(lµ) + p(Pµ) → e(l′µ) + p(P ′µ) + π0(kµ) (1.2)

e(lµ) + p(Pµ) → e(l′µ) + n(P ′µ) + π+(kµ). (1.3)

In this thesis, we will focus on the analysis concerning only the neutral pion channel.

In this experiment, we assume the incident electron interacts with the target proton via

exchange of a single virtual photon. In this approximation, we also assume that the

electron mass is negligible (me ≈ 0) compared to the overall kinematics of the reaction.

The 4-momentum of the particles are defined using the Minkowski spacetime metric,

gµν = diag(1,−1,−1,−1). If we have two 4-vectors aµ = (Ea,pa) and bµ = (Eb,pb), their

inner product in this metric is a · b = aµbνgµν = aµbµ = a0b0 − a · b. We can also define

the invariant quantity a · a = aµaµ = E2
a − |pa|2 = m2

a, which is the mass of the particle

and is invariant under Lorentz transformations.

In the lab frame,

• lµ = (Ee, Eeẑ) is the 4-momentum of the incident electron beam

1Continuous Electron Beam Accelerator Facility’s (CEBAF) Large Acceptance Spectrometer

1
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• l′µ = (E′e,p
′
e) is the 4-momentum of the scattered electron with p′e = (p′e, θ

′
e, φ
′
e)

• Pµ = (Mp,0) is the 4-momentum of the target proton at rest with Mp as the mass

of the proton

• P ′µ = (E′p,p
′
p) is the 4-momentum of the recoiled nucleon (neutron or proton) with

p′p = (p′p, θ
′
p, φ
′
p)

• kµ = (Eπ,pπ) is the 4-momentum of the emitted pion (π0 or π+) with pπ =

(pπ, θπ, φπ)

• qµ = lµ − l′µ = (ω,q) is the 4-momentum of the virtual photon (γ∗).

Using the above kinematic definitions and approximations, we can define other kine-

matic quantities for the reaction. One of the quantities of interest is the 4-momentum

squared of the virtual photon, Q2, which defines the amount of 4-momentum transferred

from the incident electron to the target proton:

Q2 ≡ −q2 = −ω2 + |q|2 = 4EeE
′
e sin2(θ′e/2). (1.4)

Another kinematic quantity of interest is the invariant mass of the virtual photon-proton

system

s = W 2 = (q + p)2 = M2
p + 2ωMp −Q2. (1.5)

The threshold energy is the minimum energy required to create the particles in the final

state (pπ0) in this system and this energy is directly related to the quantity W = Mp+mπ.

1.1.2 Cross Section and Multipole Definitions

For neutral pion electroproduction ep → epπ0, the transition amplitude can be

separated in terms of the leptonic and hadronic currents, if one assumes a one-photon

exchange approximation:

T =
4πα

Q2
LµνM

µν (1.6)

where α is the electromagnetic fine-structure constant

α =
e2

4π~c
≈ 1

137
(1.7)

and

Lµν = [ū(l′)γµu(l)][ū(l)γν ū(l′)] (1.8)
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e(l) e(l′)

γ∗(q) = l − l′

p(P ) N(P ′)

π(k)

(a)

γ∗(q∗)

p(P ∗)

N(P ′∗)

π(k∗)

θ∗
π φ∗

π

(b)

Figure 1.1: (a) Schematic diagram of pion electroproduction. (b) Pion elec-
troproduction kinematics in virtual photon-proton center of mass system.
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is the tensor describing the interaction at the leptonic vertex. Here, u and ū represent

the Dirac spinors for the incoming and outgoing lepton, respectively, and γµ is the Dirac

matrix satisfying the Dirac equation [1].

For the hadronic interaction, we have

Mµν = 〈pπ|jµ(x)|p〉〈p|j†ν(x)|pπ〉 (1.9)

where we imply sum and average over polarizations; the electromagnetic current

jµ(x) = euū(x)γµu(x) + edd̄(x)γµd(x). (1.10)

In the above equation, u(x) and d(x) are Dirac spinors and eu and ed are fractional charges

for the up and down quarks, respectively.

We can then write the five-fold differential cross section for the reaction in terms

of the cross section for the subprocess γ∗p → pπ0 [2], which depends only on the matrix

elements of the hadronic interaction from Eq. 1.9:

d5σ

dE′edΩ′edΩ∗π
= Γ

d2σγ∗p→pπ0

dΩ∗π
. (1.11)

Here, dΩ′e = d cos θ′edφ
′
e is the differential solid angle for the scattered electron in the lab

frame; dΩ∗π = d cos θ∗πdφ
∗
π is the differential solid angle for the pion in the virtual photon-

proton (γ∗p) center of mass frame. The γ∗p center of mass (CM) system and associated

variables can be seen in Fig. 1.1(b). On the other side, we have

Γ =
α

2π2

E′e
Ee

W 2 −M2
p

2MpQ2

1

1− ε, (1.12)

which is the virtual photon flux and depends entirely on the matrix elements of the leptonic

interaction Eq. 1.8. The virtual photon flux depends on the transverse polarization of the

virtual photon

ε =

(
1 + 2

|q|2
Q2

tan2 θe
2

)−1

. (1.13)

Similarly, the longitudinal polarization of the virtual photon can be defined as

εL =
Q2

ω2
ε. (1.14)
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For unpolarized beam and target the reduced cross section from Eq. 1.11 can be

expanded in terms of the hadronic structure functions:

dσγ∗p→pπ0

dΩ∗π
=
p∗π
k∗γ

(
dσT
dΩ∗π

+ εL
dσL
dΩ∗π

+ ε
dσTT
dΩ∗π

cos 2φ∗π +
√

2εL(ε+ 1)
dσLT
dΩ∗π

cosφ∗π

)
. (1.15)

Here, p∗π is the pion momentum in the CM frame, and k∗γ is the virtual photon equivalent

energy in the CM frame that can be written as

k∗γ =
W 2 −M2

p

2W
. (1.16)

The structure functions are related to the hadronic matrix elements (Eq. 1.9).

• dσT /dΩ∗π is the structure function giving the part of the reaction cross section due

to the transverse component for unpolarized virtual photons,

• dσL/dΩ∗π is the structure function giving the part of the reaction cross section due

to the longitudinal component,

• dσTT /dΩ∗π is the structure function that describes the interference between the

transverse-transverse components of the virtual photon cross section,

• dσLT /dΩ∗π describes the interference between the longitudinal and transverse com-

ponents of the virtual photon cross section.

These structure functions can be expanded in terms of Legendre polynomials and fitted

to extract the Chew-Goldberger-Low-Nambu (CGLN) [3] multipoles. To understand the

nature of these multipoles, let us take a look at the differential cross sections from another

viewpoint. The reduced differential cross section can be written in terms of relativistic

invariant functions
dσ∗γ
dΩ∗π

=
p∗π
k∗γ
|εµMµ|2 (1.17)

where εµ is the polarization vector of the virtual photon andMµ are the transition matrix

elements. The general amplitude can be represented in terms of six invariant functions

Fn that are defined by the expansion [2]:

Mµε
µ =

6∑
n=1

Fn(W,Q2, cos θ∗π)In. (1.18)
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Here, the In are six basic scalars that are formed by the most general combinations of

all the vectors that can play a role in describing this meson-baryon reaction. These six

scalars are defined as:

I1 = iσ · b

I2 = (σ · q̂∗)(σ · k̂∗ × b)

I3 = i(σ · k̂∗)(b · q̂∗)

I4 = i(σ · q̂∗)(b · q̂∗)

I5 = −iσ · k̂∗b0
I6 = −iσ · q̂∗b0. (1.19)

In the above equations, k̂∗ and q̂∗ are the unit vectors defining the direction of the pion

and the virtual photon in the center of mass frame. Also, σ is a “vector” containing the

Pauli matrices σ = {σ1, σ2, σ3} and bµ contains the polarization vector dependence:

bµ = εµ − ε · q
∗

|q∗| q
µ. (1.20)

The coefficients of the expansion in Eq. 1.18, Fn, are the Lorentz invariant complex func-

tions that are known as the CGLN amplitudes. The F1, F2, F3 and F4 describe transitions

generated by transverse photons and F5 and F6 are those generated by longitudinal pho-

tons. They are functions of W , Q2 and cos θ∗π. These functions, in turn, can be expanded

in terms of the Legendre polynomials and the derivatives of Legendre polynomials:

F1 =
∑
l

[
P ′l+1(x)El+ + P ′l−1(x)El− + P ′l+1(x)Ml+ + (l + 1)P ′l−1(x)Ml−

]
F2 =

∑
l

[
(l + 1)P ′l (x)Ml+ + lP ′l (x)Ml−

]
F3 =

∑
l

[
P ′′l+1(x)El+ + P ′′l−1(x)El− − P ′′l+1(x)Ml+ + P ′′l−1(x)Ml−

]
F4 =

∑
l

[
−P ′′l (x)El+ − P ′′l (x)El− + P ′′l (x)Ml+ − P ′′l (x)Ml−

]
F5 =

∑
l

[
−(l + 1)P ′l (x)Sl+ + lP ′l (x)Sl−

]
F6 =

∑
l

[
(l + 1)P ′l+1(x)Sl+ − lP ′l−1(x)Sl−

]
. (1.21)

Above, P (x) are the Legendre polynomials and P ′(x) and P ′′(x) are the first and second
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derivatives of the Legendre polynomials, respectively, with x = cos θ∗π. The coefficients of

these Legendre polynomials are the CGLN multipoles El±, Ml± and Sl±, where E, M and

S describe the electric, magnetic and scalar multipoles, respectively. Also, l indicates the

orbital angular momentum of the pion-nucleon system and ± describes the proton spin

state such that the total spin of the final pion-nucleon state is l ± 1
2 .

These CGLN multipoles are functions of W and Q2 for a reaction. In this experi-

ment, we are particularly interested in the S-wave multipoles, i.e., E0+ and S0+ and will

be discussed in detail in the upcoming sections. In Chapter 6 a procedure to extract these

multipoles from the structure functions is discussed.

1.2 Historical Review

Pion photo- and electroproduction γN → πN , γ∗N → πN close to threshold has

been studied extensively since the 1950s both experimentally and theoretically. Exact

predictions for the threshold cross sections and the axial form factor were pioneered by

Kroll and Ruderman in 1954 for Q2 = 0, i.e., photo-production [4]. This was the first

of the low energy theorems (LETs) to appear but not without limitations. This LET

provided model independent predictions of cross sections for pion photoproduction in the

threshold region by applying gauge and Lorentz invariance [5]. The predictions of this

LET were restricted only to charged pions and the π0 contribution was shown to vanish

in the ‘soft pion’ limit (mπ ∼ pπ). Additionally, these cross section predictions were

limited to diagrams with contributions in the pion-nucleon mass ratio to O(mπ/mN ). In

later years, using vanishing pion mass chiral symmetry (mπ → 0) these predictions were

extended to pion electroproduction for both charged and neutral pions [6, 7].

To better understand the axial form factor one can first look at the electromagnetic

form factors for the proton. By probing the proton at rest with an electromagnetic current,

in the case of electron-proton scattering, one can study the charge distribution in the

proton. The Fourier transform of this charge distribution is the electromagnetic form

factor in the infinite momentum frame. Similarly, the axial form factor measures the axial

charge distribution in the proton. The axial form factor is normally accessed in neutrino

scattering experiments using a parity violating weak current as a probe.

Now of course, vanishing pion mass doesn’t relate to the observed mass of the pion

mπ/mN ∼ 1/7. So, higher order finite mass corrections to the LET were conducted

in late sixties and early seventies before the appearance of QCD. These also included
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contributions to the non-vanishing neutral pion amplitudes for the cross section.

In the late eighties and early nineties experiments at Saclay [8] and Mainz [9] ob-

tained threshold pion photo-production data on γp→ π0p. The theoretical predictions of

LETs at the time were inconsistent with the data at low photon energies. With the emer-

gence of chiral perturbation theory (χPT), the scattering amplitudes and other physical

observables were systematically expanded in the low energy limit in powers of pion mass

and momentum. Using this framework LETs were re-derived to include contributions to

the amplitudes from certain loop diagrams, which were lost in the expansion in the pion

mass in the earlier works [10, 11]. Further experiments at NIKHEF [12] on γ∗p→ π0p with

photon virtuality Q2 ∼ 0.05− 0.1 GeV2 provided good agreement with χPT predictions.2

These soft-pion theorems or LETs [4, 6, 7, 10, 11] are not applicable for Q2 �
Λ3
QCD/mπ, where ΛQCD ∼ 1 GeV is a typical hadronic scale. In the case of asymptotically

large momentum transfers (Q2 →∞) perturbative QCD (pQCD) factorization techniques

[13, 14, 15] have been used to obtain predictions for cross section amplitudes and axial

form factors near threshold. In this technique, ‘hard’ (Q2 � ΛQCD) and ‘soft’ (k ∼
ΛQCD) momentum contributions to the scattering amplitude can be separated cleanly and

each contribution can be theoretically calculated using pQCD and LETs, respectively, if

possible.

Furthermore, Braun et al in Refs. [16, 17] suggest a method to extract new baryon

form factors for Q2 ∼ 1 − 10 GeV2 using light cone sum rules (LCSR). Additionally, the

sum rules can be extended to the lower Q2 ∼ 1 GeV2 regime and the LET are recovered to

O(mπ) accuracy. This approach provides a bridge between the low and high Q2 regimes.

Predictions for the axial form factor and the generalized form factors are also obtained.

In the following paragraphs we take a closer look at chiral symmetry, low energy

theorems and the approach used by Braun et al. We will also look at some of the principles

and consequences of chiral symmetry such as the partial conservation of axial current

(PCAC) and the famous Goldberger-Treiman relation. These concepts are crucial in our

understanding of the predictions in the high Q2 regime.

1.2.1 Chiral Symmetry

Let us consider the SU(2)R×SU(2)L Lorentz group, where SU(2)R and SU(2)L are

spin (rotational) groups for the right and left handed fermions. The R and L generators

2For convenience, we use units where c = ~ = 1 throughout the document unless noted otherwise
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of these groups are defined as [18]

Ri =
1

2
(Ji + iKi)

Li =
1

2
(Ji − iKi) (1.22)

and they satisfy the following commutation relations

[Ri, Rj ] = iεijkRk

[Li, Lj ] = iεijkLk

[Li, Rj ] = 0. (1.23)

Here, Ji and Ki are the angular momentum and boost operators for the Lorentz group.

The right and left generators separately satisfy the angular momentum algebra. The

fundamental representations for these groups are given by the spinors χR ∼ (1
2 , 0) and

χL ∼ (0, 1
2). The rotation and boost generators can be written in terms of the left and

right handed generators

Ji = Ri + Li = σi/2

Ki = i(−Ri + Li) = −iσi/2 (1.24)

where σi are the Pauli matrices.

The Lagrangian for a free nucleon (p or n) in the Weyl representation can be written

in terms of the left and right handed spinors

L = iχ†Rσ
µ∂µχR + iχ†Lσ̄

µ∂µχL +m(χ†LχR + χ†RχL). (1.25)

Here, σµ = (1, σ), σ̄µ = (1,−σ), ∂µ is the derivative of a four-vector and m is the mass of

the nucleon. This Lagrangian is Hermitian, Lorentz invariant and conserves the fermion

number. It can be re-written in the standard form as

L = iψ̄γµ∂µψ +mψ̄ψ. (1.26)
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Here we have a four component spinor

ψ = ψR + ψL =

 χR

0

+

 0

χL

 =

 χR

χL

 (1.27)

with the four-component chiral fermions ψL and ψR.

A two-component isospinor for the fundamental representation of isospin group

SU(2) can be written for the two flavors u and d

ψ =

 u

d

 . (1.28)

Here, u and d are each four-component spinors such that

ψ = ψR + ψL =

 uR

dR

+

 uL

dL

 =

 uR + uL

dR + dL

 =


χuR

χuL

χdR

χdL

 . (1.29)

This gives us the free Lagrangian

L = ψ̄(i/∂ −m)ψ. (1.30)

In this representation, m is a diagonal 2× 2 mass matrix in the isospin space

m =

 mu 0

0 md

 . (1.31)

The right or left chiral transformations are written as

ψR → eirψR, ψL → eilψL (1.32)

with r = t · r and l = t · l; t = τ/2 are the generators of the SU(2) Lorentz group. One

can define isospin right and left currents that are associated with these transformations

Raµ = ψ̄Rγµt
aψR

Laµ = ψ̄Lγµt
aψL. (1.33)
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Figure 1.2: (a) Weak decay of the neutron. (b) Weak decay of the pion.

Additionally, one can define the isospin vector and axial-vector currents

V a
µ = Raµ + Laµ = ψ̄γµt

aψ

Aaµ = Raµ − Laµ = ψ̄γµγ5t
aψ. (1.34)

The currents Vµ and Aµ are exactly the electromagnetic and axial currents, respectively,

that are of interest in our experiment. By probing the nucleon via the electromagnetic

current, one has access to the electromagnetic form factors F1(Q2) and F2(Q2) and by

probing the nucleon via the axial current, one has access to the axial form factor GA(Q2).

In the chiral limit of m → 0, both of these currents are conserved under vector and

axial-vector transformations

ψ → eivψ =

 eivuR + eivuL

eivdR + eivdL


ψ → eiaγ5ψ =

 eiauR − eiauL
eiadR − eiadL

 . (1.35)

Here, v = t · v, a = t · a with vector and axial vector parameters v and a. For finite

masses, neither of these currents are conserved. But in the isospin limit, mu = md, only

the vector current is conserved, the axial-vector is not.

This broken approximate chiral symmetry entails the existence of an approximately

massless Goldstone boson with the same quantum numbers as the broken symmetry gen-

erator of the axial-current Aaµ. The pion satisfies this requirement as a state of negative

parity, spin zero, isospin one, and zero baryon number and strangeness.
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1.2.2 Goldberger-Treiman Relation and PCAC

Interestingly enough, the electromagnetic and axial currents V a
µ and Aaµ of our strong

interactions also appear in weak interactions such as the nuclear beta decay. For this

reaction, n → p + e− + ν̄, the nucleon matrix element of the axial-vector current can be

written as [19]

〈p|Aµ(x)|n〉 =
eiq·x

(2π)3
ūp
[
−iγµγ5f(q2) + qµγ5g(q2)

]
un. (1.36)

Here, up,n are the Dirac spinors for the proton and neutron, f(q2) and g(q2) are the two

form factors, and q = pn − pp. The f(q2) is known as the axial form factor and is usually

written as GA(q2). The relationship between f(q2) and g(q2) can be seen in the following

way. If we assume that we have exact SU(2)R×SU(2)L symmetry, then the conservation

of axial current requires that

qµ〈p|Aµ(x)|n〉 = 0. (1.37)

Using the Dirac equations for nucleons with mN as the mass of the nucleon

ūp(i/pp +mN ) = 0, (i/pn +mN )un = 0 (1.38)

one obtains

2mNf(q2) = q2g(q2). (1.39)

In the limit q2 → 0, f(0) is measured experimentally to be positive definite and is usually

called gA. It has a value of ≈ 1.26 [20, 21]. So, we have in Eq. 1.39 neither mN nor f(0)

to be small. This implies that for SU(2)R × SU(2)L symmetry to be exact g(q2) must

have a pole as q2 → 0:

g(q2)→ 2mNgA
q2

. (1.40)

A requirement of the spontaneous breaking of an exact SU(2)R×SU(2)L symmetry is the

creation of a massless pion that gives us this pole.

For the decay of a charged pion, π+ → µ+ + νµ, the primary interaction is via the

exchange of a weak boson (W+). But at low energies compared to the mass of the weak

boson, the interaction takes the form JµJ
µ with Jµ = Jµh + Jµl . Here, Jµl and Jµh refer

to the leptonic and hadronic currents, respectively. The transition matrix of this process
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can thus be written as

T ∼ 〈µν|JµJµ|π(k)〉 = 〈µν|J lµ|0〉〈0|Jµh |π(k)〉. (1.41)

The hadronic part of the process can be described by the axial-vector current Aaµ(x)

because the pion carries the negative parity for the process:

〈0|Aaµ(x)|πb(k)〉 = ikµδ
abfπ(k2)eik·x. (1.42)

Here, kµ is the four vector for the pion momentum and fπ(k2) is the pion form factor.

When k2 = m2
π, i.e. on mass shell, fπ(k2) is defined to be pion decay constant fπ. The

derivative of Eq. 1.42 is

〈0|∂µAaµ(x)|πb(k)〉 = −k2δabfπ(k2)eik·x. (1.43)

In the chiral limit, mπ = 0, the axial-vector current is conserved. But, when we have a

small pion mass, k2 = m2
π 6= 0, we can introduce a pion field φa(x) such that

〈0|φa(x)|πb(k)〉 = δabeik·x. (1.44)

This gives us the partially conserved axial current (PCAC) relation,

∂µAaµ(x) = −m2
πfπφ

a(x). (1.45)

To conserve the axial current Eq. 1.45 only vanishes if the pion decay constant fπ → 0

(a stable pion), or the pion field φa(x) vanishes, or if the pion has no mass. This PCAC

relation plays an important role in the derivation of the low energy theorems (next section).

Now, going back to our beta decay reaction, we can see that from Eq. 1.42

Aaµ = fπ∂µφ
a (1.46)

to lowest order in φa(x). This gives us

〈p|Aaµ(x)|n〉π−pole = ifπqµ〈p|φa(x)|n〉. (1.47)
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The strong coupling constant GπN (q2) can be defined by [19]

〈p|φa(x)|n〉 =
ieiq·x

(2π)3q2
GπN (q2)ūpγ5un. (1.48)

Hence,

〈p|Aaµ(x)|n〉π−pole = −fπ
eiq·x

(2π)3

qµ
q2
GπN (q2)ūpγ5un. (1.49)

Comparing the above equation with Eq. 1.36, we can see that one-pion exchange gives the

function g(q2) a pole

lim
q2→0

g(q2) =
GπNfπ
q2

(1.50)

and thus combining with Eq. 1.40

GπN =
2mNgA
fπ

. (1.51)

This is the famous Goldberger-Treiman relation [22]. The important thing to note here is

that the strong interaction coupling between the pion-nucleon GπN has been related to the

weak reaction coupling constant gA. The Goldberger-Treiman relation will appear later in

the description of the predictions by Braun et al for near threshold pion electroproduction

at high Q2.

1.2.3 Low Energy Theorem

In this section we take a look at one of the low energy theorems for photoproduction

that involves the Kroll-Ruderman contact term and the use of chiral symmetry and PCAC.

To lowest order in electromagnetic interaction, J , the transition matrix elements for the

pion photoproduction (Q2 = 0) reaction γ(q) +N(p)→ πa(k) +N(p′) is given by [5]

S ∼ −i
∫

d4x e−iqxεµ(q)〈N ′πa|Jµ(x)|N〉 (1.52)

where εµ is the photon’s polarization vector. Using translation invariance and other sim-

plification techniques such as PCAC (Eq. 1.45) one can write the scattering amplitudeM
for the reaction:

M =
k2 −m2

π

fπm2
π

∫
d4x eikx〈N ′|T (∂µAaµ(x)ε · J(0))|N〉. (1.53)
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Using integration by parts, we obtain two terms contributing to our amplitude

M =
k2 −m2

π

fπm2
π

∫
d4x eikx{δ(x0)〈N ′|[Aa0(x), ε · J(0)]|N〉

+ikµ〈N ′|T (Aaµ(x), ε · J(0))|N〉}. (1.54)

The first term in the above equation was obtained by differentiating on the plane wave and

the second by differentiating on the step functions (Θ(x0) and Θ(−x0)) that are contained

implicitly in the time ordering operator. Additionally, the first term, which contains the

equal time commutators (ETC) of the axial charge and the electromagnetic current, will

yield the Kroll-Ruderman term (Fig. 1.3(d)) that dominates the threshold production

for π± but vanishes for π0. This Kroll-Ruderman term describes the contact interaction

between the photon and the proton.

But we still have a problem with Eq. 1.54. The time ordering product term would

vanish in the limit k2 → m2
π for physical pions if it were not for the hidden pion pole term

in the product. To overcome this problem we first look at the contribution of the axial

current of the pion. The axial current for the hadronic system (pion and nucleon) is given

by some additional terms in Eq. 1.46

Aaµ = JN,aµ + fπ∂µφ
a + J int,a

µ = fπ∂µφ
a + J̃aµ , (1.55)

where J̃aµ contains contributions from the nucleon and interaction current. So, placing this

into Eq. 1.54 and integrating by parts we have

fπm
2
π

−k2 +m2
π

M =

∫
d4x eikx{δ(x0)〈N ′|[Aa0, ε · J ]|N〉 − iωπfπδ(x0)〈N ′|[φa, ε · J ]|N〉

+ikµ〈N ′|T (J̃aµε · J)|N〉+ fπk
2〈N ′|T (φaε · J)|N〉}. (1.56)

If one compares the above equation with Eq. 1.53 one may note that the last term on the

RHS of the above equation is simply M multiplied by fπk
2/(−k2 + m2

π). So, combining

this term with the LHS of above we get rid of the pole structure.

And we obtain our final result:

M =
1

fπ

∫
d4x eikx{δ(x0)〈N ′|[Aa0, ε · J ]|N〉 − iωπfπδ(x0)〈N ′|[φa, ε · J ]|N〉

+ikµ〈N ′|T (J̃aµε · J)|N〉}. (1.57)
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 1.3: Diagrams for pion photoproduction: (a) s-channel, (b) u-channel,
(c) t-channel, (d) Kroll-Ruderman term, (e)-(i) higher order diagrams. Dia-
grams (e) and (f) are the ones recovered from χPT.

Again, the first term is the Kroll-Ruderman term and the second term contributes to the

t-channel photoproduction at threshold. The third term, to lowest order gives us the s

and u-channel contributions to the pion nucleon coupling (Fig. 1.3). The higher order

contributions from this term, which can be computed perturbatively, give us one-loop

and higher corrections to threshold production and can be expressed in powers of pion

mass. These one loop contributions (Figs. 1.3 (e) and (f)) were exactly what were missing

from the naive expansion in pion mass in the earlier approaches to LET derivation. This

approach is known as the chiral perturbative approach (χPT).

The neutral pion photoproduction cross sections provide a good insight into the

validity of χPT derivation of the low energy theorems. This can be observed in the

data obtained from Saclay and Mainz [8, 23]. Data from Saclay indicated that the naive

expansion about the pion mass can lead to omission of certain one loop diagrams when

done to higher order [8].

A similar calculation can be performed to obtain the electroproduction cross sections

and predictions for the neutral pion reaction for Q2 < 1 GeV2 [24].

1.2.4 Braun et al Predictions

For the Q2 range of 1−10 GeV2, Braun et al [17] have a new prescription to describe

the threshold physics. For the γ∗p→ Nπ reaction, the transition matrix elements exactly

at threshold can be written as

〈N(P ′)π(k)|Jµ|p(P )〉 = − i

fπ
N̄(P ′)γ5

[
(γµq

2 − qµ/q)
GπN1 (Q2)

m2
N

− iσµνq
ν

2mN
GπN2 (Q2)

]
p(P ).

(1.58)

Here, Jµ is the electromagnetic interaction current for the reaction, N(P ′) and p(P ) are

the spinors for the nucleon in the final and initial state, respectively, fπ is the pion decay

constant, mN is the mass of the nucleon and q = P − P ′. Also, GπN1 (Q2) and GπN2 (Q2)
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Figure 1.4: The feynman diagrams describing the threshold pion electropro-
duction at high Q2 per Braun et al. (a) The total pion electroproduction
process that includes two terms: (b) the Kroll-Ruderman term and (c) the
nucleon pole term. The contributions from these terms are computed using
different techniques for different ranges of Q2.

are the generalized form factors for the pion-nucleon system that describe the ‘blob’ in

the Kroll-Ruderman process in Fig. 1.4(b).

The last term in this equation is the helicity non-conserving form factor and is

similar to the elastic electromagnetic form factor F2(Q2) for the nucleon. This is because

in the elastic scattering process ep→ ep, the matrix elements of the hadronic current are

related to [25]

〈N |Jµ|p〉 = eN̄

(
γµF1(Q2) +

iσµνq
ν

2mN
F2(Q2)

)
N. (1.59)

One may observe a parallel between the last term in Eq. 1.58 and Eq. 1.59. The

difference is only in the presence of γ5 and modulo a few factors. Both terms contain

the antisymmetric tensor σµν , which gives us the non-helicity conservation of the current.

Additionally, in the elastic case if the nucleon were a point particle, then the form factor

F2 = 0. Similarly, we can say that G2 = 0 if the nucleon were a point particle.

Also, now let’s take a look at the first term in both equations. We see a term

containing γµ and its associated form factors G1 and F1. This term is related to the

helicity conservation of the current. The difference comes in the presence of the additional

gauge term in Eq. 1.58, i.e., qµ/q. This is to make the overall axial-vector term γ5γµ gauge
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invariant.

With this in mind, we expect the generalized form factors to be somehow related to

the elastic electromagnetic form factors. We look at the neutral pion channel [17]:

Q2

m2
N

Gπ
0p

1 =
gA
2

Q2

(Q2 + 2m2
N )
GpM

Gπ
0p

2 =
2gAm

2
N

Q2 + 2m2
N

GpE . (1.60)

Here, gA is the axial coupling constant obtained from weak interactions and GpE and GpM

are the Sachs electromagnetic form factors for the proton that are linear combinations of

F1 and F2:

GE = F1 −
Q2

4m2
p

F2

GM = F1 + F2. (1.61)

For the charged pion case, π+, the generalized form factors can also be related to

the electromagnetic form factors for the neutron. Additionally, there is a way to access

the axial form factor GA via these form factors:

Q2

m2
N

Gπ
+n

1 =
gA√

2

Q2

(Q2 + 2m2
N )
GnM +

1√
2
GA

Gπ
+n

2 =
2
√

2gAm
2
N

Q2 + 2m2
N

GnE . (1.62)

Here, GnM and GnE are the Sachs form factors for the neutron.

Let’s examine Eq. 1.60 a little bit in detail. These expressions are obtained in the

chiral limit, mπ = 0 and are valid exactly at threshold. For low energies, i.e., Q2 → 0, we

observe

lim
Q2→0

Gπ
0p

1 =
gA
4
GpM

lim
Q2→0

Gπ
0p

2 = gAG
p
E . (1.63)

Although we expect a relationship between the elastic form factors and the generalized

form factors, we did not expect the involvement of the gA. As mentioned earlier, this

coupling constant is involved in weak interactions where we also see the presence of γ5.

So, we finally see the culprit here. The overall difference in the two currents comes from
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the presence of γ5. It changes the current in an axial manner, i.e., a chiral rotation.

It essentially takes an electromagnetic current and “chirally” rotates it. This γ5 object

describes the presence of the pion in the final state of the reaction.

These transition amplitudes or cross sections are directly related to the CGLN

multipoles as discussed in Section 1.1.2. In particular, at threshold, only the S-wave

multipoles E0+ and L0+ contribute to the cross sections [2, 17]:

dσ

dΩ∗π

∣∣∣∣
th

=
2p∗πW

W 2 −M2
p

[
|E0+|2 + ε

Q2

ω2
|L0+|2

]
. (1.64)

Here, p∗π is the pion momentum in the CM system, ε is the transverse polarization of

the virtual photon and ω is the virtual photon energy in the CM frame. Here 0 in the

subscript refers to the total angular momentum l = 0 of the pion relative to the proton

and + represents the spin of the proton +1
2 . Also, here the scalar multipole S0+ has been

redefined as L0+ = ω
|q∗|S0+ with |q∗| as the momentum of the virtual photon in the CM

frame. E0+ can be thought of as the transverse coupling of the virtual photon to the

nucleon spin and the L0+ as the longitudinal coupling of the same.

Only these two multipoles contribute in the electroproduction of the pion at thresh-

old and are known as the S-wave multipoles. These S-wave multipoles are in turn directly

related to the generalized form factors G1 and G2 at threshold for high Q2:

E0+ =

√
4πα

8πfπ

√
(2mN +mπ)2 +Q2

m3
N (mN +mπ)3

(
Q2GπN1 − mNmπ

2
GπN2

)
L0+ =

√
4πα

8πfπ

mN |ωthγ |
2

√
(2mN +mπ)2 +Q2

m3
N (mN +mπ)3

(
GπN2 +

2mπ

mN
GπN1

)
. (1.65)

Here, α is the electromagnetic coupling constant, fπ = 93 MeV is the pion decay constant

and ωthγ is the photon energy at threshold in the CM frame and is given by the following

relation:

ωthγ =
mπ(2mN +mπ)−Q2

2(mN +mπ)
. (1.66)

Once we start to move away from threshold, the P-wave multipoles (l = 1) start

contributing to the transition amplitude in addition to the S-wave multipoles. These

multipoles are related to the nucleon pole process shown in Fig. 1.4(c). In this process,

an off-shell nucleon interacts with the virtual photon, which then decays into an on-shell

nucleon and a pion. The interaction of the virtual photon and the nucleon is described by
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the electromagnetic form factors F1(Q2) and F2(Q2) represented by the first ‘blob’ in the

figure. So, the total transition amplitude matrix elements can be written as

〈N(P ′)π(k)|Jµ|p(P )〉 = − i

fπ
N̄γ5

[
(γµq

2 − qµ/q)
1

m2
N

GπN1 (Q2)− iσµνq
ν

2mN
GπN2 (Q2)

]
p

+
igA

2fπ[(P ′ + k)2 −m2
N ]
N̄/kγ5(/P

′
+mN )

[(
γµ −

qµ/q

q2

)
F p1 (Q2) +

iσµνq
ν

2mN
F p2 (Q2)

]
p.(1.67)

Above, in the second term, the strong coupling of the pion and the off-shell nucleon GπN

is described in terms of the axial coupling constant gA and the pion decay constant fπ

per the Goldberger-Treiman relation Eq. 1.51. This is represented by the second ‘blob’

in Fig. 1.4(c) that describes the decay of the off-shell proton into an on-shell proton and

a pion. Additionally, one sees the presence of the propagator to describe the off-shell

nucleon i/[(P ′+ k)2−m2
N ]. The presence of the γ5 object in front is included to conserve

the overall parity of the process.

These electromagnetic form factors F1 and F2 are well known from elastic scatter-

ing experiments. The associated P-wave multipoles include E1+, M1− and so on, which

contribute to the transition amplitude once one starts to move away from threshold. The

total process is shown in Fig. 1.4(a) that includes both S- and P-wave contributions.

These predictions for the transition amplitudes or cross sections only contain the S-

and P-wave contributions. All higher order contributions such as D-waves are neglected

in the predictions of Braun et al [17]. These multipole contributions can be related to

the structure functions for the differential cross section as in Eq. 1.15. The σT + εLσL

structure functions are directly related to the S-wave multipoles and these are expected

to dominate in the near threshold region. The S-wave is independent of φ∗π. The P-wave

multipoles are related to the σLT interference term and the contribution from this term

near threshold is predicted to be smaller than the S-wave. The D-wave multipoles are

related to the σTT interference term and it is neglected in the predictions.

It is suspected that in the experiment, the P-wave contribution may be higher than

is predicted by Braun et al. This is because the cross section predictions near threshold

do not include energy dependence of the generalized form factors generated by the final

state interaction. Additionally, it has not been tuned to include lower Q2 and higher W

experimental results [17].

The predictions for G1 and G2 are obtained in this high Q2 regime where ‘soft’

processes dominate. This kinematic region is beyond the regime of low energy theorems.
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Also, perturbative techniques (pQCD) cannot be used to compute the form factors. Using

a new approach, known as the Light Cone Sum Rules (LCSR) [14, 15, 26], Braun et al

compute contributions from the ‘soft’ processes for the form factors. This method is similar

to the Shifman-Vainshtein-Zakharov (SVZ) [27] sum rule approach. The generalized form

factors are as such computed using this technique but only in the chiral limit, mπ → 0.

These predictions are consistent with the low energy theorem predictions for Q2 → 0 GeV2.

Additionally, there are predictions for the axial form factor GA that can be extracted for

the charged pion reaction from the generalized form factors G1 and G2.

1.3 Experimental Goals

In this experiment, the neutral pion electroproduction reaction ep→ epπ0 is studied

for W = (1.08 − 1.16) GeV and Q2 = (2 − 5) GeV2. The aim of this experiment is to

measure the differential and integrated cross sections for the reduced process γ∗p→ pπ0.

The structure functions and the S-wave multipoles, E0+ and L0+, will be extracted from

the measured cross sections. Additionally, the generalized form factors Gπ
0p

1 (Q2) and

Gπ
0p

2 (Q2) will also be obtained. These form factors will then be compared with the

predictions of Braun et al.

In the following chapters, we will discuss the the CLAS detector and the experimen-

tal conditions. The analysis process of obtaining these form factors is detailed in chapters

3, 4 and 5. The results of the measured cross sections, structure functions, multipoles and

form factors along with the comparisons with the predictions are shown in chapter 6.



2. Experimental Apparatus

2.1 Overview of Experiment

The e1-6a experiment was conducted in Hall-B at Jefferson Lab. An incident elec-

tron beam with intensity of 7 nA and an average energy of 5.754 GeV was directed on a 5

cm long cylindrical liquid hydrogen target. A total charge of about 21 mC was collected

with an average beam polarization of 70%. The target was placed -4 cm upstream from

the CLAS center in the hall. In this chapter, we will describe the accelerator facility and

CLAS detector system that was used to run the experiment.

2.2 Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) provides upto 6 GeV

electron and photon beams to study the structure of atomic nuclei and other subatomic

particles. The electron beam can be sent simultaneously to three experimental Halls A,

B and C. The schematic design of the accelerator facility and the three Halls is shown in

Fig. 2.1 [28].

Two parallel superconducting continuous-wave (CW) linear accelerators are con-

nected with magnetic recirculation arcs. The parallel accelerators are composed of 338

five-cell superconducting niobium cavities that operate at an average temperature of about

2K. These cavities provide an average energy gain of 5 MeV/m.

The electron beam is introduced into the accelerator from the injector at one end

and is recirculated for up to five times. A radio frequency separator can be used to extract

every third bunch from each of the first four passes. This extracted electron beam with an

energy of
Npass

5 ×Emax can then be delivered to one of the three experimental halls. The

beam can be split into three parts at the end of the fifth pass to be simultaneously sent to

three halls. On average, the beam energy resolution of the facility is ∆E/E ≤ 10−4 and

the beam size is in the order of about a few hundred micrometers [29].

2.3 Beam Line Instrumentation

Three beam position monitors (BPMs) are used to continuously measure electron

beam position. The BPMs consist of three RF cavities and the monitors are placed 36.0,

24.6, and 8.2 m upstream of CLAS target. The measurements from the BPMs are used

22
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Figure 2.1: Schematic design of the CEBAF accelerator.

(a) (b)

Figure 2.2: (a) A slice of the CLAS detector shown cut through its midplane.
The electron beam enters from the left. (b) Another view of the CLAS detector
shown as a cut through the target. The cryostats of the superconducting
magnet are shown which slice the detector into six sectors. Also shown are
the mini-torus coils surrounding the target.
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Figure 2.3: A schematic layout of the Møller polarimeter.

to center the beam on the target.

A Faraday cup is used to measure the total charge collected for a given run period.

It is composed of 4000 kg lead (75 radiation lengths) and is located 29 m downstream of

the target. It is also used to measure the charge variation as a function of helicity for

experiments that require polarized electrons.

A Møller polarimeter is used to measure the beam polarization. It measures the

electron-electron (Møller) scattering asymmetry to determine the polarization. It is lo-

cated upstream of the bremsstrahlung tagging system and consists of a target chamber,

two quadrupole magnets and two detectors in the horizontal plane on either side of the

beamline as shown in Fig. 2.3. The target is made of 25 µm thick permendur foil. The

quadrupoles separate the scattered electrons from the unscattered beam. The electrons

are then received at two lead/scintillation fiber composites placed 7 m downstream of the

target. The polarization is determined to about 1% statistical uncertainty.

2.4 Cryogenic Target

The targets are positioned inside CLAS using support structures as in Fig. 2.4(a).

A superconducting magnet, the 1 K refrigerator, the microwave and NMR systems, and

the target module system comprise the target. These subsystems including the pumping

system are attached to a rail mounted cart that allows the entire assembly to be rolled in

and out of CLAS.

The e1-6a target (Fig. 2.4(b)) is a 5 cm long and 1.4 cm diameter Kapton cell. It is

positioned -4 cm upstream from the CLAS center and filled with liquid hydrogen.
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(a)

(b)

Figure 2.4: (a) A schematic overview of target position in relation to all major
CLAS systems. Dashed lines indicate projections of torus cryostats onto the
midplane. (b) The e1-6a target cell.
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(a) (b)

Figure 2.5: (a) Constant magnetic field contours for the CLAS toroid in the
midplane between two coils. The coil projections are shown for reference. (b)
The six magnetic coils shown along with their respective magnetic field vectors
transverse to the beam on a plane centered on the target.

2.5 Torus Magnet

Six superconducting coils arranged in a toroidal geometry are used to generate a

magnetic field around the electron beam line. The magnetic field bends the negatively (or

positively) charged particles toward (or away from) the beam line and the deflection of

the particle’s track is used to reconstruct its momentum.

The coils separate the CLAS detector into six sectors. Each of the coils is composed

of 4 layers of 54 turns of aluminum-stabilized NbTi/Cu conductor. The coils are kept

cool by supplying super-cool helium through cooling tubes located at the edges. The coils

are shaped like kidneys. The orientation and layout of the coils and the strength of the

generated magnetic fields is shown in Figs. 2.5(a)-2.5(b).

The coils are designed to handle upto 3860 A of current, which generates upto about

2.5 Tm magnetic field in the forward direction and as low as 0.6 Tm at the scattering angle

of 90◦. The primary component of the magnetic field is in the azimuthal φ direction, but

close to the coils there is contribution to the θ component. The effect of this contribution

is minimized by the circular inner shape of the coils [28].

2.6 Mini Torus

In addition to the main torus, CLAS also houses a mini torus that is not super-

conducting. It surrounds the target and prevents low momentum particles produced from

Møller scattering in the target from reaching the innermost drift chambers. This mini torus
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(a) (b)

Figure 2.6: (a) Three regions of drift chambers shown through a vertical cut
transverse to the beam line at the target. (b) Two superlayers of R3 sector
are shown. The sense wires are at the center of each hexagon and the field
wires are at the vertices. The fired drift cells are highlighted as the charged
particle passes through the superlayers. The Cerenkov detector is shown in
the upper right hand corner.

is installed only for use in electron beam experiments. For photon beam experiments, this

mini-torus is replaced by a scintillator start counter for triggering purposes. Figure 2.2(b)

shows the placement of the mini-torus with respect to other CLAS components.

2.7 Drift Chambers

The drift chambers (DC) in CLAS are designed primarily to track the trajectories

of charged particles. The charged particles are tracked as they are bent toward or away

from the beam axis, depending on the particle’s charge, due to the magnetic field created

by the toroidal magnet. The tracks are measured at three different locations in each of

the six sectors with an accuracy of 100 µm in the direction parallel to the magnetic field

plane and an accuracy of about 1 mm in the direction perpendicular to the magnetic field

plane. There are a total of 18 drift chambers with 3 regions in each sector.

The Region 1 (R1) drift chambers surround the target where the magnetic field is

low. The Region 2 (R2) drift chambers are larger and are between the magnetic coils.

They are in the region where the magnetic field strength is highest. The third region of

drift chambers, Region 3 (R3), is largest and lies outside the magnetic coils as seen in

Fig. 2.6(a).

The 130,000 wires in the drift chamber are arranged in layers of concentric circles,
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which are in turn grouped into two “superlayers” for redundancy in tracking and pattern

recognition. One of the superlayers is arranged in the direction parallel to the magnetic

field and the other is tilted at a 6◦ stereo angle around the radius of each layer for azimuthal

measurement. As shown in Fig. 2.6(b) six layers of drift cells usually comprise each

superlayer. The wires are arranged in a quasi-hexagonal pattern where six field wires

surround one 20-µm diameter gold-plated tungsten sense wire. The field wires are made

of 140-µm diameter gold-plated aluminum 5056 alloy.

This hexagonal configuration allows for measuring drift time and distances easily

for tracks entering at different angles. It also provides for a simpler sense wire location

resolution for individual tracks. Furthermore, the electrostatic forces are reduced, thereby

reducing the tensions in the wires, and thus requiring thinner endplates for support. The

thin endplates prevent material from the torus from projecting out of the torus shadow,

which affects the geometric acceptance of the spectrometer.

The drift chambers are filled with a 90% argon - 10% CO2 gas mixture. This mixture

provides low multiple scattering and has an operating voltage plateau of several hundred

volts before breakdown occurs.

Here, charged particle tracks are reconstructed in two stages: 1) hit-based tracking

and 2) time-based tracking. For hit-based tracking, within each superlayer the data are

combined into track segments that are linked together to form tracks across three drift

chamber regions in the sector. The momentum of the tracks can be reconstructed with

about 3-5% resolution. For the time-based tracking stage, the drift times are converted

to drift distances using a lookup table. For each drift cell the track positions are fit

to determine the final track parameters. The identities and speeds of the particles are

obtained from other detectors in CLAS. The average single-wire resolution in the middle

portion of the cell for each Region is about 200 to 250 µm at the time of construction.

The whole-cell average resolution is about 310, 315, and 380 µm for R1, R2, and R3,

respectively [30].

2.8 Cerenkov Detector

As an electron passes through a material where its speed is greater than the speed

of light in that medium it gives off radiation. This light (or Cerenkov radiation) can be

collected using Cerenkov detectors (CC) to trigger on electrons and separate electrons

from pions. For each sector these detectors provide polar angle coverage from θ = 8◦ to
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Figure 2.7: (a) A schematic diagram of the optical modules array in a sector for
the large angle Cerenkov detector. (b) Optical and light collection components
are shown for one of the optical modules in the Cerenkov detector. Light
from a typical electron track is shown as it bounces inside the mirrors and is
collected in the PMT. (c) A typical ADC spectrum from the e1-6a experiment.



30

45◦.

For each sector, the Cerenkov detector is divided into 18 regions of θ called seg-

ments. Each segment is divided in two modules along the midplane of the sector, i.e.,

bisecting the sector along the azimuthal φ direction. A “Winston” light collection cone

and photomultiplier tube (PMT) is placed at the end of each module. The light from

electrons is focused into the PMT using a series of mirrors arranged in a manner as shown

in Fig. 2.7(a) and Fig. 2.7(b).

The 216 PMTs are placed in the azimuthal regions obscured by the torus magnet

coils. To protect the PMTs from the magnetic fields produced by the coils, the PMTs are

surrounded with high permeability multi-layered magnetic shields.

The Cerenkov gas of choice is C4F10 (perfluorobutane) because of its high refraction

index of 1.00153 and its relative transparency to UV light (Cerenkov light is mostly in

this range). This provides for electrons giving off Cerenkov light with momentum as low

as 9 MeV while eliminating pions of momentum less than 2.5 GeV/c. This gives a nice

separation between electrons and pions, thereby providing a means to trigger on electrons.

Beyond the edges of the mirrors the optical collection efficiency for the Cerenkov

light drops rapidly. There are also spots along the midplane of the detector where the

efficiency is low because of large gaps between the mirrors and imperfect optics in those

regions. The electron efficiency in the region of fiducial acceptance is nominally about

99%. A typical ADC spectrum of the single photoelectron peak from a PMT is shown in

Fig. 2.7(c)[31].

2.9 Scintillation Counters

A scintillation counter (SC) measures ionization radiation. When a charged particle

strikes a scintillator, which is a transparent crystal (usually plastic), some of the atoms

in the material get excited and emit ionization radiation. This radiation is absorbed into

neighboring atoms which in turn get excited and emit multiple lower energy photons. This

process repeats until the light is collected into the PMTs at the edge of the material.

The scintillation counters are used to measure the time of flight of particles for

identification and triggering purposes. It can also be used for energy loss measurements

and velocity determination. Additionally, it can be used to determine energies for slow

moving particles such as the neutron. It is used primarily for timing, velocity, etc., and

only secondarily for energy loss of slow hadrons.
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(a)

(b)

Figure 2.8: (a) View of the time of flight counters in one sector showing the
groupings into four panels. (b) Time resolutions of TOF counters determined
using cosmic rays.
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The time of flight counters cover the entire azimuthal angle range φ and the polar

angle range from 8◦ and 142◦. They lie between the Cerenkov detectors and the electro-

magnetic calorimeters as shown in Fig. 2.2(a). Each scintillator is of uniform thickness of

5.08 cm and is positioned such that it forms a straight line from the central target posi-

tion. Each counter has an acceptance of 1.5◦ of scattering angle. The forward counters at

8◦ < θ < 45◦ are 15 cm wide and the rest are 22 cm wide. The ends of each scintillator

counter are capped with PMTs to collect the signal from ionization radiation (Fig. 2.8(a)).

The time resolution of each counter can be determined using cosmic ray studies

(Fig. 2.8(b)). The resolution depends on single photoelectron response of the scintillator

and PMT, path length variations in light collection, and the length of the counter itself;

it ranges from 100-200 ps [32].

2.10 Electromagnetic Calorimeters

The forward electromagnetic calorimeter (EC) works under the following principle.

The calorimeter contains alternating scintillator and lead sheets. When a hadron hits the

lead layer it creates a shower of secondary particles that are viewed in the scintillator layer

and collected in a PMT.

The forward electromagnetic calorimeter in CLAS serves three primary functions:

1) detection and triggering of electrons with energies greater than 0.5 GeV, 2) detection

of photons with energies more than 0.2 GeV and 3) detection of neutrons. The photon

detection is useful in reconstruction of π0 and η as these mesons primarily decay into 2γs.

The neutron is distinguished from the photon using time of flight measurements. For each

sector, the calorimeter can detect particles in the polar angle range of 8◦ < θ < 45◦.

The sampling calorimeter is composed of alternating scintillator and lead sheets

with a total thickness of 16 radiation lengths. Each CLAS sector module has 40 cm of

scintillator and and 8 cm of lead so that approximately one-third of the shower energy is

deposited on the scintillator. Nearly all of the shower originates in the lead and is viewed

in the scintillator.

Each lead-scintillator system is designed in an equilateral triangle shape. There are

39 layers of alternating 10 mm thick BC412 scintillator and 2.2 mm thick lead sheet. To

minimize shower leakage at the edges and to minimize dispersion in signal arrival times

that originate at different scintillator layers, each layer in the calorimeter has successively

increasing area, giving it a “projective geometry.”
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(a)

(b)

Figure 2.9: (a) Segmented view of one of the six CLAS electromagnetic
calorimeter modules. (b) Single event display of simulated EM shower in
EC. Energy deposition profile of a charged particle is shown along each of the
U, V, W views in the detector.
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Each scintillator layer has 36 strips that are parallel to one side of the triangle.

These strips are rotated by 120◦ for each successive layer so that we have three views

U, V, and W (Fig. 2.9(a)) that give us stereo information on the location of energy

deposition (Fig. 2.9(b)). So, we have a total of 13 layers for each view. Additionally, each

view is divided into an inner and an outer stack composed of 5 and 8 layers, respectively.

These stacks provide longitudinal sampling for better hadron identification, especially for

distinguishing minimum ionizing particles. For each module there are 216 PMTs to collect

the light from the showers. Overall, there are 1296 PMTs and 8424 scintillator strips for

the six EC modules.

This design provides a moderate resolution measurement of energy of particles. The

resolution of the energy measurement depends on the sampling fraction, i.e., the fraction

of the incident particle energy deposited in the scintillators. The primary contribution to

the energy resolution comes from fluctuations in the sampling of the number of secondary

particle tracks. The sampling fraction resolution, σfs, can be parameterized as

σfs
E
∝
√
ts
fs

(2.1)

where ts is the sampling thickness measured in radiation lengths. Simulation studies

estimate the resolution σfs/E = 6%/
√
E(GeV) [33].

2.11 Trigger and Data Acquisition

CLAS employs a two-level hierarchical trigger system to collect events of interest.

The Level 1 trigger system processes all PMT signals within 90 ns. These signals include

information about the general location of hits in TOF detector, the signals in Cerenkov

detector, and the energy deposited in the electromagnetic calorimeter. The signals from

these detectors are selected based on lookup tables that are preloaded into memory.

Sometimes a Level 1 trigger can be set by cosmic-rays that do not have trajectories

in the drift chambers. To reject these events, a Level 2 trigger system is used to find

correlation between the tracks in the drift chambers and Level 1 signal.

The signals from the Level 1 and 2 triggers are placed inside the Trigger Supervisor

(TS) board. There are 12 trigger inputs where the first eight are used for Level 1 triggers

that can be prescaled. The remaining four are used for calibration purposes.

The primary trigger for the e1-6a experiment is a coincidence between the Cerenkov

and the forward calorimeter (EC) to identify electrons. When this trigger is set the data
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acquisition system takes a electronic snapshot of all information from the detectors and

builds an “event” using the Event Builder system and passes it through the data pipelines

to be stored in RAID disks. The data from these disks are periodically transferred to the

computer center to be stored and accessed for analysis.



3. Data Analysis

3.1 Overview

In this chapter we discuss the particle identification procedures for the electron and

proton, elastic event selection, kinematic corrections, fiducial cuts, and the pion identifi-

cation process for the exclusive process ep→ epπ0.

3.2 Particle Identification

The event reconstruction process involves taking a file containing BOS banks3 that

are produced by the DAQ system and producing a “cooked” file containing higher level

information, such as four vectors. In addition to reconstruction of events, the cooking pro-

cedure also involves appropriate calibration of reconstructed data from different detector

systems [34]. This process also includes a preliminary particle identification based on the

reconstructed tracking information. To obtain a better identification of particles in our

process, we perform our own identification.

For this experiment, in each event we detect an electron and a proton using the infor-

mation from the CLAS detector. The pion is reconstructed by applying four-momentum

conservation. Fig. 3.1 shows a typical event with electron and proton tracks as detected

by CLAS. In the following paragraphs the electron and proton identification is discussed.

3.2.1 Electron

An event for this experiment involves a trigger on electrons. A good electron can-

didate is required to have the following properties:

• negative charge

• coincidence between Cerenkov counter (CC) and forward calorimeter (EC) in the

same sector

• good geometrical hit status

• track in drift chambers (DC) for a negatively charged particle in the same sector

• hit in time of flight (TOF or SC) system in the same sector.

3Data banks containing raw hit information for each detector system for each event.

36
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Figure 3.1: A schematic representation of sectors 3 and 6 of the CLAS detector
showing the electron (top) and proton (bottom) tracks from a typical near
threshold event for the e1-6 experiment.

For an electron track to have a good status (stat > 0) it must have geometrical matching

in DC, EC and CC and also include viable timing information from SC. When information

from a detector is incomplete or is missing for a track the corresponding detector bank

value is set to zero. Please see Section 2.7 for track reconstruction procedures in DC.

The above requirements are necessary but not sufficient to clearly identify a track

as an electron. There is additionally a significant contamination of minimum ionizing par-

ticles (MIPs) to the electrons, i.e., π−s. These particles can be isolated using information

from EC.

As the electrons pass through EC they shower with a total energy deposition Etot

that is proportional to their momentum p. Because of incorrect calculation and comparison

with the drift chamber momentum this total energy is sometimes not equal to the sum of

the energies in the inner Ein and outer Eout part of the calorimeter. So, we take the total

energy as the one that is larger of either Ein + Eout and Etot.

The sampling fraction (Etot/p) is plotted as a function of momentum for each sector

after applying all the other electron identification cuts and preliminary cut on W < 1.3

GeV to focus on our kinematic region(s) of interest. Fig. 3.2(a) shows this distribution
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(a) (b)

(c) (d)

Figure 3.2: (a) The sampling fraction E/p is plotted as a function of the par-
ticle’s momentum p for electron candidates in Sector 4. The dashed curve
shows the mean parameterization and the two solid curves indicate the cuts
applied. (b) The sampling fraction E/p projections for different slices in elec-
tron momentum p for Sector 4. (c) Mean and (d) σ of the sampling fraction
for different momentum slices with associated fits (black curves).

for one of the CLAS sectors. In the figure, one can note the MIPs contamination near the

smaller values of E/p. The “good” electrons are mostly concentrated around E/p ≈ 0.3.

Ideally, the “good” electrons should not show any dependence on momentum, but in reality

there is a slight momentum dependence.

So, to isolate these electrons we plot the sampling fraction for different momentum

slices and fit with a Gaussian and a constant (Fig. 3.2(b)). The mean positions and

resolutions from this fit are in turn fit as a function of momentum using the following

parameterizations [35]:

µ(p) = α+
β

pγ
+ δp

σ(p) = α+
β

p1/2
. (3.1)
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Here, α, β, γ and δ are parameters of the fit and µ(p) and σ(p) are the mean and resolution

of the E/p distribution as a function of momentum. The results of these fits are shown

in Figs. 3.2(c) and 3.2(d) for one of the CLAS sectors. Using these parameters we select

electrons with 3σ < (E/p− µ(p)). Since the π−s are below the electrons we only apply a

cut to reject events from the bottom. Please refer to Appendix A.1 for a complete list of

all parameters and cuts for all sectors.

3.2.2 Proton

A good proton candidate has the following characteristics:

• it is positively charged,

• it has good geometrical hit status, and

• it has a hit in the TOF system.

Using this as a start, we select a particle to be a proton whose measured time is closest

to the time we expect for a real proton, i.e.,

∆t = tmeasured − tcalculated = tSC −
(
ttr +

l

βcalcc

)
. (3.2)

In the above equation, tSC is the time measured from the TOF counters after correction

(see Section 3.4.2), l is the distance from the target center to the TOF paddle of hit, and

ttr is the event start time calculated from the RF corrected electron time from the TOF

measurement:

ttr = te −
le + (ze − z0)

c
. (3.3)

Here, le is the path length of the electron track from its vertex, ze, to its TOF hit and

z0 = −4 cm is the position of the center of the target in the z-axis for the experiment.

Also, in Eq. 3.2

βcalc =
p√

M2
pdg + p2

. (3.4)

Here βcalc is computed using the PDG [36] value of the mass of the proton Mpdg and the

momentum of the particle p. Fig. 3.3(a) shows the measured β of all proton candidates

as a function of momentum for one of the sectors in CLAS.

We look at the ∆t as a function of momentum slices (Fig. 3.3(b)). These distribu-

tions are fit with a Gaussian and first degree polynomial. The resulting mean positions
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Figure 3.3: (a) Measured β as a function of p for all possible proton candidates
for sector 3. The dashed curve is the expected theoretical proton profile. (b)
∆t projections for selected p slices for sector 3 fitted with a Gaussian and a
first order polynomial. (c) ∆t as a function of p with curves of fit showing
±3.5σ cut (solid lines) from the mean fit (dashed line). (d) The measured β
as a function of p after proton selection for sector 3. The dashed curve is the
expected theoretical proton profile.

and resolutions are fit as a function of momentum using the following parameterization:

∆t(p) = a+
b

pc
. (3.5)

Here, p is the momentum of the proton candidates and a, b and c are the parameters of the

fit. Next we made a ±3.5σ cut on the above parameterization and obtained our protons

as shown in Fig. 3.3(c). We select the proton that has the minimum time difference with

the mean parameterization of the distributions. If no particles satisfy either of the above

conditions then the event is rejected. Fig. 3.3(d) shows the measured β distributions as a

function of momentum after proton selection. Please refer to Appendix A.2 for parameters

of the fits used in the selection and distributions for all sectors.
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Figure 3.4: The invariant mass, W , for ep→ eX reaction showing the kinematic
region of interest (red) flanked by the elastic and ∆(1232) resonance channels.
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γ∗(q)
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(c)

Figure 3.5: (a) Elastic process ep→ ep. (b) Pre-radiative and (c) Post-radiative
Bethe-Heitler process ep→ epγ.

3.3 Elastic Event Selection

In this section, we take a look at the elastic scattering process ep → ep and its

associated radiative process ep → epγ. The elastic process is very close to our kinematic

region of interest as shown in Fig. 3.4. This plot shows the invariant mass distribution,

W , for the inclusive process ep → eX where only the electron is detected in the final

state. The invariant mass distribution then shows us the two primary nucleon resonance

regions for the electron-proton scattering, viz., elastic (ep) and ∆(1232) (epπ0) with the

near threshold region sandwiched in between.

Fig. 3.5(a) shows the Feynman diagram of the elastic scattering process (ep → ep)

and Figs. 3.5(b) and 3.5(c) show the Feynman diagrams for the pre- and post-radiative

elastic Bethe-Heitler processes (ep → epγ). These two diagrams give the highest order

contributions to the radiative cross section amplitude. This radiative process is also the



42

 / ndf 2χ  534.2 / 38

Prob       0

Amp       6.238e+02± 1.951e+05 

Mean      0.0001± 0.9333 

Sigma     0.00007± 0.02334 

a0        15.9±  1267 

a1        1.513e+02± 1.311e+04 

a2        1.637e+03± 3.522e+04 

W (GeV)
0.7 0.8 0.9 1 1.1 1.2

C
ou

nt
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

 / ndf 2χ  534.2 / 38

Prob       0

Amp       6.238e+02± 1.951e+05 

Mean      0.0001± 0.9333 

Sigma     0.00007± 0.02334 

a0        15.9±  1267 

a1        1.513e+02± 1.311e+04 

a2        1.637e+03± 3.522e+04 

Sector 1

 / ndf 2χ   2305 / 75

Prob       0

Amp       4.565e+02± 1.985e+05 

Mean      0.0± 179.9 

Sigma     0.0011± 0.5563 

a0        1.9± 169.5 

a1        0.60± -6.79 

 (deg)
e-p

φ
174 176 178 180 182 184 186

C
ou

nt
s

0

2000

4000

6000

8000

10000

12000

14000

 / ndf 2χ   2305 / 75

Prob       0

Amp       4.565e+02± 1.985e+05 

Mean      0.0± 179.9 

Sigma     0.0011± 0.5563 

a0        1.9± 169.5 

a1        0.60± -6.79 

Sector 1

Figure 3.6: Kinematic cuts applied to select elastic events from sector 1: (Left)
(W −Mp) < 3.5σ and (Right) |φe−p − 180◦| < 3σ.

source of highest contamination for all electron scattering reactions, especially for near

threshold pion production. The Bethe-Heitler contamination subtraction is discussed in

Section 3.6 for this analysis.

To select elastic events, we select the electrons and protons as described in Sections

3.2.1 and 3.2.2 and we apply some cuts and constraints (Fig. 3.6):

1. (W −Mp) < 3.5σ GeV

2. |φe−p − 180◦| < 3σ

The first cut on W is used to select all events with 3.5σ from the expected elastic

peak position. For the elastic process, the scattered electron and the recoiled proton

are expected to be antiparallel (180◦) in the azimuthal direction. This provides us with

another constraint to select elastic events; we select events within 3σ of the azimuthal

angular difference between the electron and proton.

This constitutes our elastic event selection. These events will be used for making

kinematic and acceptance corrections in the following sections. Additionally, we will use

the same events for normalization studies in later chapters.



43

3.4 Kinematic Corrections

Even though the subsystems of CLAS detector have been calibrated certain recon-

structed kinematic quantities still have to be corrected to match up with expectations.

For example, we expect our detected particles to conserve 4-momentum in the appropriate

kinematic regime. In the following paragraphs we will describe

• vertex corrections for electrons and protons,

• time of flight corrections for protons,

• angle corrections for electrons and protons, and

• momentum corrections for electrons.

3.4.1 Vertex

For an ideal experiment, one would expect the incident electron beam to be centered

at (vx, vy) = (0, 0) cm at the target position. But due to misalignment the electron beam

was found to be at (0.090,−0.345) cm as shown in Fig. 3.7(a) [37]. The vertex position

(a) (b)

Figure 3.7: (a) The y versus x position of the vertex at the target window.
The beam spot is centered at (0.090,−0.345) cm. (b) The uncorrected vertex
position ~v of the track with momentum ~p is contained within the original
midplane (dashed). The corrected vertex position ~v′ is obtained by intersecting
the track with the midplane containing the measured beamline (0.090,−0.345, z)
cm (solid blue).

of each track has to be corrected to reflect this deviation. The new vertex position was

calculated by intersecting the track of particles with the midplane of a sector.
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Figure 3.8: Top: Vertex positions (vz) for electrons (left) and protons (right)
for 6 sectors before vertex correction. Bottom: Vertex positions for same after
vertex corrections. Red lines indicate the cuts applied after corrections.
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Figure 3.9: (a) Electron and proton z-vertex difference (∆vz) distribution
fitted with Gaussian and a polynomial of second order. Red lines indicate the
5.5σ cut applied. (b) Electron and proton z-vertex difference as a function of
electron z-vertex after corrections. Red lines indicate the cuts applied.
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The midplane of a sector is a plane that divides the sector in half with the beamline

at (0, 0, z). The vertex positions are shifted appropriately such that the midplanes contain

the measured beamline as shown in Fig. 3.7(b). The definitions of the original and new

midplanes are determined and the vertex is corrected by intersecting the track of the

particle of momentum p with these midplanes:

v′ = v + ∆v(p). (3.6)

Here v′ is the corrected vertex position 3-vector, v is the uncorrected vertex position

3-vector, and ∆v(p) is the correction factor that depends on the momentum of the track.

Fig. 3.8 shows the result of the correction on electrons and protons for each sector

in CLAS. To select events inside the target cell we introduce a cut on the z-vertex of

electrons and protons:

vz ∈ (−8.0,−0.8) cm. (3.7)

Additionally, we make a cut on the z-vertex difference between the electrons and protons

to ensure event coincidence.

|∆vz| < 1.6 cm. (3.8)

This is a 5.5σ cut based upon a Gaussian and polynomial fit on the z-vertex difference

distribution as shown in Fig. 3.9(a).

3.4.2 Proton Timing

For the kinematics of the process in consideration it is found that some of the

TOF paddles require corrections to properly identify a proton. For the possible proton

candidates we observe that some of the paddles do not have ∆t (Eq. 3.2) centered around

0 ns as shown for one of the paddles for Sector 6 in Fig. 3.10(b).

To correct this we project each of these distributions onto the Y-axis and fit it using

a Gaussian and a constant. The mean position of this peak is used as an offset to the

measured TOF to obtain corrected time:

tcorrected = tmeasured − toffset. (3.9)

To see the effect of this correction, we look at the mean position of the ∆t for differ-

ent p slices and the corresponding resolutions as functions of the particle’s momenta
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(a) (b)

Figure 3.10: (a) ∆t of proton candidates as a function of p for TOF paddle 26
in sector 6. (b) Projection of (a) on the Y-axis. This distribution has been
fitted with a Gaussian and a constant. The events in both plots at ∆t < −5 ns
are from π+ and are not included in the correction and proton identification
process. Note the shift in the proton peak from the expected value of 0 ns.
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Figure 3.11: (a) The mean and σ of ∆t as functions of particle momenta for
proton candidates in sector 6 for all TOF paddles before TOF corrections. (b)
The same distributions after TOF corrections.
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Figure 3.12: The mean position of the fits to the ∆t distributions for each
TOF paddle for each sector. Because of limited statistics offsets for some
TOF paddles are not computed. The mean values for each paddle are used as
offsets to the measured time for proton candidates.

(Fig. 3.11(a)). These distributions have been fit using the parameterization from Eq. 3.5.

One can observe that the distributions show fluctuations as functions of momenta. After

the corrections have been applied the fluctuations are minimized (Fig. 3.11(b)). For the

effect of corrections on all sectors, please see Appendix A.4. The offsets are obtained for

all TOF paddles for each sector as shown in Fig. 3.12.
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3.4.3 Electron and Proton Angle

The measured polar angles for the electron and proton in the lab frame, θe and θp,

should be independent of the azimuthal angle, φe and φp. However, due to misalignments

of the drift chambers in CLAS a dependence on the azimuthal angle is observed for these

kinematic variables. To study this dependence we look at events from elastic scattering

reaction, i.e., ep→ ep.

For elastic scattering, the electron and proton polar angles are theoretically corre-

lated via the incident electron beam energy, E:

Ecalc =
Mp

tan(θe/2) tan(θp)
−Mp. (3.10)

Fig. 3.13(a) shows this correlation for several incident electron beam energies. The red

curve shows the correlation for the nominal beam energy for the e1-6a experiment, E =

5.754 GeV.

This beam energy can be computed from the measured angles of the electron and

proton for each event. We can then look at the deviation of this calculated energy, ∆E,

from the nominal, Enom:

∆E = Enom − Ecalc (3.11)

and obtain a correction to apply to the angles. For a given measurement of θe and θp,

we can find the minimum distance to the theoretical curve as shown in Fig. 3.13(b). The

corresponding deviations, ∆θe and ∆θp, for electron and proton angles, respectively, can

thus be obtained and be used as corrections.

The correction, ∆θ, is parameterized as a function of θ and φ [38]:

∆θ =

4∑
i=0

ai(θ)φ
i (3.12)

where ai(θ) are polynomials of second order in θ. These parameterizations are obtained for

each CLAS sector and applied to the electron. Fig. 3.14 shows the effect of this correction

on ∆E as a function of φ for one of the CLAS sectors. One can observe that the φ

dependence is suppressed after corrections. Please refer to Appendix A.5 for a full list of

parameters and result of the corrections on other sectors.
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(a)

(b)

Figure 3.13: (a) Theoretical correlation between the electron and proton polar
angles for different values of incident electron beam energy, E. The nominal
beam energy from e1-6a experiment is shown as a red curve. (b) The angle
correction algorithm. The circle with center P shows the measured θe and θp
and C is the point on the theoretical curve that is closest to P . C is found by
minimizing the radius of the circle that intersects the theoretical curve.
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Figure 3.14: The deviation of the calculated beam energy from the nominal
value, ∆E, as a function of φe for sector 4 before (left) and after (right) the
electron θe corrections. Red line serves as a visual guide.
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Figure 3.15: W vs φe distribution for sector 1 before (left) and after (right)
electron momentum corrections. Red line indicates the expected elastic scat-
tering peak position (Mp). Both plots show values after electron and proton
angle corrections.
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3.4.4 Electron Momentum

For our reaction, ep → epπ0, the electron’s kinematics are very close to those of

the elastic scattering. As such, electrons have very high momenta depending on Q2; any

misalignments in the drift chambers and inaccurate values in the magnetic field maps

result in its poor reconstruction. This is reflected in calculated values such as W and

missing mass. Fig. 3.15 (left) shows the deviation of the elastic scattering peak from its

nominal position, i.e., the mass of the proton, Mp, for one of the CLAS sectors.

This dependence can be corrected via the following prescription [39]:

∆p = pmeas − pcalc
= pmeas −

E

1 + E(1− cos θe)/Mp
. (3.13)

Here, pmeas is the measured momentum of the electron in CLAS, E is the beam energy

for the experiment, Mp is the PDG mass of the proton, and θe is the polar angle of the

electron after angle corrections have been applied. This ∆p is parameterized as a function

of θe and φe [38]:

∆p =
3∑
i=0

ai(θe)φ
i
e, (3.14)

where ai(θe) are polynomials of second order in θe. These parameters are sector dependent.

The effect of this correction is shown in Fig. 3.15 for one of the CLAS sectors where

we see that the elastic peak’s azimuthal dependence, φe, is suppressed. Please refer to

Appendix A.6 for a full list of parameters and result of the correction on other sectors.

3.5 Fiducial Cuts

There are regions in our detectors where we find dead wires, inefficient PMTs,

detector edges, and regions where there are large variations in acceptance. In such regions

we don’t fully understand the geometrical acceptance of event reconstruction and consider

the information as unreliable. These regions are isolated and those events reconstructed

within are discarded. These cuts are known as fiducial cuts. In the following paragraphs

we look at the fiducial cuts applied to the electrons and protons in the

• Electromagnetic Calorimeter

• Cerenkov Counters, and

• Drift Chambers.
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Figure 3.16: (a)-(c) EC U , V and W coordinate distribution of hits for sector
5; shaded region indicates events retained after fiducial cuts (black lines). (d)
The distribution of hits projected on the EC plane for sector 5. Black points
indicate rejected events from applied fiducial cuts.

3.5.1 Electromagnetic Calorimeter

The electrons start losing energy as they enter the calorimeter. The EC has been

designed such that the electrons release all their energies in it. When the electrons shower

near the edge of the calorimeter their shower is not fully contained and so their energies

cannot be properly reconstructed. As such, we apply a fiducial cut on the track coordi-

nates U , V and W of the electrons on the EC plane. These coordinates reflect the three

orientations of the scintillator strips as discussed in Section 2.10. Please see Appendix B

for transformation from CLAS coordinates to EC plane coordinates (XEC , YEC , ZEC) and

(U, V,W ).

The cuts are selected to remove those tracks detected at the edge of the calorimeter.

They are also selected to ensure azimuthal symmetry of the overall distribution of the

tracks on the EC plane. The following cuts are made universally for all sectors to select
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Figure 3.17: The distribution of all hits in CC plane coordinates θcc and φcc
integrated over all sectors. Black curve indicates a naive cut applied to remove
the tracks entering the PMTs directly.

the electron tracks:

40 < U < 400 cm

V ≤ 363 cm

W ≤ 395 cm. (3.15)

Additionally, we also remove a “bad” scintillator strip in 80 < U < 110 cm for Sector 5

as shown in Fig. 3.16(a). The result of these cuts is shown in Fig. 3.16(d).

3.5.2 Cerenkov Counter

For the Cerenkov counters there is a similar problem to that of EC. Electrons give

off Cerenkov light in CC which is collected in the PMTs on either side of the counters

in each sector (Section 2.8). Sometimes, electrons hit the PMTs directly and their light

is absorbed along with others coming in after bouncing from the mirrors. Here we have

plotted the detected electron hits in “special-coordinates.” These angle coordinates are

measured from the center of CLAS and correspond to the intersection of the charged track

with the CC plane given by [40]:

1− 0.000784x− 0.00168z = 0. (3.16)
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Figure 3.18: (Top-Left) Sector 2 distribution of events on the CC plane with z-
axis showing the number of charged tracks N for each θcc and φcc bin. The black
points indicate rejected bins with N ≤ 50. (Top-Right) Sector 2 distribution of
average number of photoelectrons 〈Nphe〉 for each bin. (Bottom-Left) Sector 2
distribution of 〈Nphe〉 > 4 for each bin. Black curves are cuts applied to reject
bins in the fringe of CC. (Bottom-Right) Sector 2 distribution of 〈Nphe〉 > 4
after fringe cuts applied.

We can put a naive cut on this distribution to remove the edges as shown in Fig. 3.17:

θcc > 7.0 + 0.0032φcc + 0.0499φ2
cc. (3.17)

However, we still have a problem of dealing with inefficient bins on the CC plane.

Let’s take a look at the average number of photoelectrons for each θcc and φcc bin

(200x200 bins)

〈Nphe〉 =

N∑
i=1

nphei

N
. (3.18)

Here, nphei is the number of photoelectrons for each event i and N is the total number

of events (counts) for each bin. We want to look at those bins where we at least have 50
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Figure 3.19: (a) Number of photoelectrons (nphe× 10) after applying electron
selection (black), after EC fiducial cuts (red) and after CC cuts (green) inte-
grated over all sectors. (b) The efficiency of each θCC and φCC as a function of
the 〈Nphe〉 for nphe > 0.1 (green), nphe > 2.5 (red), and nphe > 5 (blue).

events so that we have good statistics to work with (Fig. 3.18 Top-Left).

This 〈Nphe〉 distribution is plotted for one of the sectors in CLAS (Sector 2) as

shown in Fig. 3.18 (Top-Right). One expects this distribution to be uniform for all bins.

But over time some PMTs lose their efficiency; these are seen as dark blue regions in the

plot. This non-uniformity arises due to variations of the 36 mirrors in each sector, viz.,

small optical misalignments, their overlap with each other and their shapes. We can make

a cut

〈Nphe〉 > 4 (3.19)

to remove those inefficient bins (Fig. 3.18 Bottom-Left). But, we still have some problems

with the edges where we see some fringes where our acceptance isn’t understood well. So,

we apply a set of cuts to exclude the edges:

(
θ − 45.5◦

34.5◦

)2

+

(
φ

21◦

)2

≤ 1,(
θ − 45.5◦

1.75◦

)2

+

(
φ

21◦

)2

> 1. (3.20)

So, we now have a 200x200 bin map of 〈Nphe〉 for each bin. We create similar maps for all

six sectors and setup a look-up table for each bin. Using this table events can be selected

that have 〈Nphe〉 > 4 for the corresponding θcc and φcc bin[41].

Typically, a cut on the number of photoelectrons is applied nphe > 2.5 to eliminate

the π− contamination. But after we apply our CC cuts, including both 〈Nphe〉 > 4 and
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Figure 3.20: The efficiency of CC at each φCC and θCC bin (a) before any
〈Nphe〉 cuts and (b) after 〈Nphe〉 > 4 cuts for sector 2 in CLAS.

Eq. 3.20, this cut on nphe is no longer necessary (Fig. 3.19(a)). However, we still need to

account for the inefficiency of the Cerenkov counters.

The nphe distribution for any θCC and φCC bin can be represented as a Poisson

distribution. So, one can theoretically determine the efficiency of each bin by

Eff =

∫∞
x0
P (x, ν)dx∫∞

0 P (x, ν)dx
(3.21)

where P (x, ν) is a Poisson distribution with the ν being the 〈nphe〉 and x0 is cut on the

nphe that is typically made in analysis, e.g., nphe > 2.5. In this analysis, an inherent

cut of nphe > 0.1 is present from hardware restrictions. Fig. 3.19(b) shows the computed

efficiency based on this prescription as a function of 〈Nphe〉 for three different cuts on

nphe distributions in analysis. As seen, if one has a cut on nphe > 0.1 and 〈nphe〉 > 4,

then the efficiency for each bin is about 99%. For a cut of nphe > 2.5 the efficiency is

∼ 80%.

Fig. 3.20(a) shows the efficiency for each θCC and φCC bin before any 〈Nphe〉 cuts

are applied. One can see regions on the CC plane where the efficiency is less than the

neighboring regions. These regions are removed after the cut on 〈Nphe〉 > 4 is made as

shown in Fig. 3.20(b).

3.5.3 Drift Chambers

To deal with edges, holes in drift chambers, and to remove dead or inefficient wires,

a fiducial cut for both electrons and protons is applied [39].
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Figure 3.21: Electron φe vs θe distribution for sector 4 integrated over pe (a)
after electron selection, (b) after EC fiducial cuts, (c) after CC fiducial cuts,
and (d) before and after DC fiducial cuts. Rejected tracks are shown in black.

3.5.3.1 Electrons

For each sector, we set up an empirical cut on electron’s azimuthal angle φ as a

function of electron momentum p and polar angle θ:

|φ| ≤ ∆φ(θ, p). (3.22)

The following fiducial cut parameterization was chosen to exploit the symmetry in φ:

∆φ = α

[
sin

(
θ −

(
β +

γ

p+ ρ

))]κpξ
. (3.23)

Here, α, β, γ, ρ, κ and ξ are parameters of the cut. Please see Appendix A.3.1 for a full

list of these parameters and their corresponding values for each sector.
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Figure 3.22: Electron sector 4 φe distribution for pe = 4.1 ± 0.1 GeV shown
for different θe slices. Blue curves show φe distribution after electron selection
and red curves show φe distribution after applying electron DC fiducial cuts.

Fig. 3.21 shows the φ versus θ distribution of electrons before and after the appli-

cation of the fiducial cut for one of the CLAS sectors. This distribution is shown for all

electrons within the kinematic region of interest, i.e., W ∈ (Wth, 1.16) GeV and is inte-

grated over all p. Fig. 3.22 shows the φ distributions for electrons with p = 4.1± 0.1 GeV

for different slices of θ. One can observe that these fiducial cuts keep those regions of φ

that are uniform.

3.5.3.2 Protons

As for electrons, we apply a fiducial on the proton’s azimuthal angle φ as a function

of its momentum p and polar angle θ. However, the edges of φ distributions are asymmetric

for different slices of θ. So, we parameterize this φ distribution for the protons using a

trapezoidal function for each θ and p slice as shown in Fig. 3.23(a).

From this parameterization we extract the upper and lower bound on the φ for the
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Figure 3.23: (a) The trapezoidal function used to fit the proton φ distribution.
The parameters, p1 and p2 provide the limits for the proton DC fiducial cuts.
(b) Proton φp vs θp distribution for sector 4 integrated over p for sector 4.
Rejected tracks are shown in black.

fiducial cut. These limits can, in turn, be parameterized as functions of θ and p:

φmin =
4∑
i=0

ai(p)θ
i

φmax =

4∑
i=0

bi(p)θ
i

φmin ≤ φ ≤ φmax. (3.24)

Here, φmin/max is parameterized as a function of θ to the fourth order polynomial and

its coefficients ai(p) and bi(p) are second order polynomials as function of momentum of

proton. Using this parameterization, we apply our fiducial cut. The result can be seen for

one of the CLAS sectors in Fig. 3.23(b). Please refer to Appendix A.3.2 for a full list of

the parameters for each sector.

3.6 Bethe-Heitler Subtraction

After the electron and proton has been selected for each event and all corrections

and cuts have been applied, we now identify the neutral pions in our event. To do so, we

use the conservation of 4-momentum and look at our missing mass squared distribution

of the detected particles:

M2
X(ep) = (l + P − l′ − P ′)2. (3.25)
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Figure 3.24: (Left): M2
X for events with W < 1.1 GeV. Elastic and associated

Bethe-Heitler events are centered around zero GeV2. Inset plot shows the
zoomed region with the neutral pion signal. (Right): M2

X for events with
1.08 < W < 1.1 GeV. Elastic Bethe-Heitler events are centered around zero
GeV2.

Here, l, P , l′ and P ′ are 4-momenta of the incident and scattered particles as described in

Section 1.1.1.

The plot of the M2
X for our events with W < 1.1 GeV is shown in Fig. 3.24 (Left). In

this plot, we have the elastic (ep→ ep) and the associated Bethe-Heitler events (ep→ epγ)

centered around zero GeV2. These events dominate the M2
X distribution and the π0 signal

near threshold is suppressed in comparison. A simple cut on W can eliminate the elastic

events as shown in Fig. 3.24 (Right). Here we have selected events for 1.08 < W < 1.1

GeV, which is the W bin closest to threshold. In this plot, the elastic events have been

eliminated but some Bethe-Heitler and some multiple soft photon events are still present

and centered around zero GeV2. These events need to be removed so only the pion signal

remains.

To do so, let’s take a look at the two dominating Feynman diagrams for the Bethe-

Heitler process ep → epγ. Fig. 3.25(a) shows the diagram with a pre-radiated photon

(emission from an incident electron) and Fig. 3.25(b) shows the diagram with a post-

radiated photon (emission from a scattered electron). These photons are emitted along the

direction of the incident and scattered electron, respectively, in the peaking approximation
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Figure 3.25: The Bethe-Heitler process ep → epγ diagrams for (a) a photon
emitted from an incident electron (pre-radiation) and for (b) a photon emitted
from a scattered electron (post-radiation).

[42, 43]. When these photons are emitted the incident and scattered electrons lose energies.

This feature of the Bethe-Heitler process can be exploited to our benefit.

For the elastic process ep → ep, the proton angle can be computed independently

of the incident and scattered electron energies:

tan θp1 =
1(

1 + E′

Mp−E′ cos θ′e

)
tan θ′e

2

(3.26)

tan θp2 =
1(

1 + E
Mp

)
tan θ′e

2

. (3.27)

Here, θp1 and θp2 are the proton angles computed independently of the incident and scattered

electron energies, respectively. Also, Mp is the mass of the proton, θ′e is the angle of the

scattered electron in the lab frame, and E and E′ are the energies of the incident and

scattered electron, respectively. We can calculate these angles for each event and look at

its deviation (∆θp1,2) from the measured value (θpmeas):

∆θp1,2 ≡ θp1,2 − θpmeas. (3.28)

Fig. 3.26(a) shows the M2
X plotted as a function of this deviation ∆θp1 for one of

the near threshold regions, W = 1.09± 0.02 GeV. In the plot, we see two red spots along

M2
X = 0 GeV2. The one on the left is centered along ∆θp1 = 0 deg and it corresponds to the

pre-radiated photon events. The other corresponds to the post-radiated photon events.

Additionally, these radiative events extend toward the positive M2
X as fringes. These are

the radiative events that we need to isolate from the pion signal as indicated by the red

line in the plot.
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Figure 3.26: (a) M2
X vs ∆θp1 for 1.08 < W < 1.1 GeV. The red line indicates the

expected pion peak position. The left red spot centered around zero degrees
corresponds to the pre-radiative events and the one on the right to the post-
radiative events. The two fringes extending toward positive M2

X are extensions
of these radiative events. The ellipse and linear polynomial indicate the cuts
applied to reject these events. (b) M2

X for events with 1.08 < W < 1.1 GeV.
Black curve shows events prior to any Bethe-Heitler subtraction cuts, blue
curve shows events rejected from the cuts and red curve shows those events
that survive the Bethe-Heitler subtraction cuts. Red line indicates expected
pion peak position.

To do so, we employ an elliptical and a linear polynomial as shown to reject these

events. These cuts are parameterized as a function of W and are defined as follows:

M2
X < b0(W ) + a0(W )∆θp1 (3.29)

1 <

(
∆θp1 − x0

r1(W )

)2

+

(
M2
X − y0

r2(W )

)2

. (3.30)

Here, b0 and a0 are linear functions of W and are parameters of the linear polynomial; x0

and y0 are the coordinates of the center of the ellipse and are independent of W ; r1 and r2

are the lengths of the semi-major and semi-minor axis of the ellipse and are parameterized

as linear functions of W . The result of these cuts is seen in Fig. 3.26(b) with the accepted

events after the cut shown in red as our pions and the rejected events in blue. Please see

Appendix A.7 for the parameterization of these cuts and plots for other regions in W .

After the Bethe-Heitler subtraction cuts are applied, we select our pions by making

a ±3σ cut on the M2
X from the mean position of the distribution.
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Figure 3.27: (a) The M2
X for W = 1.09 GeV, Q2 = 2.75 GeV2, φ∗X = 225◦ and

cos θ∗X = {−0.1, 0.1, 0.7, 0.9} bins showing rejected (red) and accepted (blue) sim-
ulated events. Green line indicates the expected pion peak position. (b) The
ratio of rejected events (M2

X < m2
π) to total events for W = 1.09 GeV and

Q2 = 2.75 GeV2 as a function of cos θ∗X and φ∗X for simulation. (c) The ratio
of pion loss for φ∗X = 225◦ plotted as a function of cos θ∗X . Statistical errors
are shown for each bin. (d) The ratio of pion loss for cos θ∗X = 0. plotted as a
function of φ∗X with statistical errors.

3.7 Pion Loss Estimation

The Bethe-Heitler cuts discussed in previous section might be too strong and might

result in the loss of pion events. To estimate such a loss we can look at simulated events4.

The process ep → epπ0γ is considered and we look at the ratio of events rejected by the

Bethe-Heitler subtraction cuts to those accepted.

Fig. 3.27(a) shows the simulated events that were rejected (red) and accepted (blue)

from the Bethe-Heitler subtraction cuts for a particular W , Q2, φ∗X and for a few cos θ∗X

4See Chapter 4 for discussion of simulated events
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bins. Here, φ∗X and cos θ∗X are angles for the missing particle (pion) in the virtual photon-

proton center of mass frame. We look at the ratio, R, of the rejected events to the total

events in the kinematic bin as shown in Fig. 3.27(b). When computing the ratio we

only consider those rejected events with M2
X < m2

π since the Bethe-Heitler events are only

expected to be in this kinematic region. This gives us an estimate on the pion loss because

of the subtraction cuts. This ratio is used as a correction on the cross section level and is

applied for each kinematic bin:

dσcor
dWdQ2dΩ∗π

=
dσ

dWdQ2dΩ∗π
(1 +R). (3.31)

Here, dσcor
dWdQ2Ω∗π

is the differential cross section after applying this correction. The correc-

tion is highest at the forward cos θ∗X and at φ∗X around 0 or 360 degrees. Figs. 3.27(c)

and 3.27(d) show corrections for a typical kinematic bin near threshold. The average

correction over all bins is ∼ 18%.



4. Simulation

4.1 Overview

For this experiment, we simulate the reaction, ep→ epπ0γ, using the standard CLAS

simulation and reconstruction software. The following steps are used in the procedure:

• Generate events

• Simulate detector geometry and interaction using GEANT (GSIM)

• Simulate additional detector inefficiencies and resolutions using GSIM Post Process-

ing (GPP)

• Reconstruct tracks.

These events are then sent through the same analysis process as the experimental data.

In the following paragraphs these procedures will be described.

4.2 Monte Carlo Simulation

To determine the cross section of the reaction ep → epπ0, it is necessary to do a

Monte Carlo (MC) study of what to expect from the experiment in the laboratory. As

such, a good description of the physics model and the detector geometry is required.

4.2.1 Event Generation

Using a MAID model [44] to describe the physics of our experiment, events are

generated for the reaction ep→ epπ0γ. A photon in the final state is generated additionally

to describe radiative effects in the cross section measurements and will be helpful later for

radiative corrections5.

The MAID2007 model is a Mainz unitary isobar model (UIM) [45] that describes

the single pion electroproduction reaction. It uses phenomenological fit to previous photo-

and electroproduction data. It describes nucleon resonances using Breit-Wigner forms

and non-resonant backgrounds are described using Born terms and t-channel vector-meson

exchange. To describe the threshold behavior, Born terms were included with a mixed

5See Section 5.4
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Variable Range Number of Bins Width

W (GeV) 1.08 : 1.16 4 0.020

Q2 (GeV2) 2.0 : 4.5 5 0.5

cos θ∗π -1 : 1 10 0.2

φ∗π (deg) 0 : 360 12 30

Table 4.1: Kinematic bin selection.

pseudovector6-pseudoscalar7 πNN coupling. While the pion electroproduction world data

in the resonance region goes up to Q2 ∼ 7 GeV2, there is no data near threshold for

Q2 > 1 GeV2. The cross section amplitudes for Q2 > 1 near threshold are described by

extrapolations to fits to these data in the MAID2007 model.

The physics events are generated using the AAO RAD software package that takes

the MAID2007 model for the cross sections as input. For each kinematic bin events are

thrown randomly in the azimuthal angle of the electron and proton in the lab frame since

the physics is independent of this variable. Each event is generated within the phase

space constraints. The total number of events in the bin is then normalized to the cross

section from MAID model. The “RAD” in AAO RAD stands for a radiated photon that

is generated in addition to the electron, proton and the neutral pion in the final state.

The energy of the radiated photon can be adjusted as an input to AOO RAD.

Events are generated to cover the entire kinematic range described in Table 4.1 and

a little bit beyond to account for resolution and bin migration effects. About 30 million

events are generated for the 2400 kinematic bins.

4.2.2 GSIM

After the physics events are generated, their passage through the detector must

be simulated using the GEANT based Monte Carlo (GSIM) program. This program

simulates the geometry of the CLAS detector during the experiment and the interaction

of the particles with the detector material. The program includes information on the

following CLAS detector components:

• Liquid hydrogen target cell including support structures

• Beam line geometry

• Mini-torus magnet and its shielding

6ψ̄γµγ5ψ
7ψ̄γ5ψ



67

 / ndf 2χ  69.99 / 66

Prob   0.3452

Amp       84.7±  1428 

Mean      0.00018± 0.01412 

Sigma     0.000205± 0.004454 

a0        1.64± 12.62 

a1        72.0± -702.6 

a2        5.904e+03± -4.517e+04 

)2 (GeV2
XM

-0.02-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

C
ou

nt
s

0

10

20

30

40

50

60

70

80

 / ndf 2χ  69.99 / 66

Prob   0.3452

Amp       84.7±  1428 

Mean      0.00018± 0.01412 

Sigma     0.000205± 0.004454 

a0        1.64± 12.62 

a1        72.0± -702.6 

a2        5.904e+03± -4.517e+04 

Data
 0.02 GeV±W = 1.09 

 / ndf 2χ   1146 / 67

Prob       0

Amp       3.697e+02± 3.841e+04 

Mean      0.00003± 0.01428 

Sigma     0.000032± 0.004213 

a0        7.0± 317.7 

a1        2.425e+02± -1.453e+04 

a2        2.58e+04± -1.06e+06 

)2 (GeV2
XM

-0.02-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

C
ou

nt
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

 / ndf 2χ   1146 / 67

Prob       0

Amp       3.697e+02± 3.841e+04 

Mean      0.00003± 0.01428 

Sigma     0.000032± 0.004213 

a0        7.0± 317.7 

a1        2.425e+02± -1.453e+04 

a2        2.58e+04± -1.06e+06 

MC
 0.02 GeV±W = 1.09 

Figure 4.1: Missing mass square for W = 1.09±0.02 GeV from experiment (red)
and simulation (blue). The resolutions for both distributions are similar.

• Main torus magnet and support structures

• Drift chambers

• Cerenkov counters

• Time of flight scintillators

• Electromagnetic calorimeters

• Structure of materials for all detectors

GSIM models the effects of multiple scattering of particles in the CLAS detector and geo-

metric mis-alignments. The information for all interactions with the detectors is recorded

in raw banks, which will be used for reconstruction of tracks later.

4.2.3 GSIM Post Processing

To incorporate the effects of tracking resolution in the drift chambers (DCs) and

timing resolution of the TOF, additional processing (GPP) must be done on the simulated

events. These effects are essential to incorporate into the simulation as they are tied to

kinematic quantities such as missing mass resolutions that are involved in cuts in the

analysis.

To include the effects of tracking resolution in the DCs, the distance-of-closest-

approach (DOCA8) for each hit wire is smeared according to a parameterized residual

function. These residuals are obtained from the CLAS data taken during the experiment.

8The distance from the sense wire to the track as determined from time based tracking.[46]
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Figure 4.2: The analysis process. Simulated events are generated, processed
through GSIM and GPP. These events are cooked using RECSIS similar to
experiment DATA and are analyzed to obtain the cross sections. The cross
sections are then fed back into the generator as a model and the process
repeats.

The smeared DOCA are then converted into drift time and TDC values based on cali-

bration. For the TOF, resolutions were incorporated into GPP using the fitting function

based on cosmic ray tests for all scintillators as shown in Fig. 2.8(b).

Fig. 4.1 shows the comparison between the M2
X resolution for experiment (σ =

0.0044 GeV2) and simulation (σ = 0.0042 GeV2). The resolutions are similar and so the

cuts on this variable can be consistently applied to both data and simulation.

In addition to the track resolutions, one also has to account for the dead wires in

the DC. These dead wires and inefficient regions contribute to holes in the geometrical

acceptance and reconstruction inefficiencies. During the run period these regions were

studied and a MAP was created to describe the efficiency for each DC regions [47]. These

maps are then supplied to GPP, which removes the dead channels and accounts for the

inefficiencies.

4.2.4 Reconstruction

The output of GSIM and GPP contains just raw ADC and TDC hit information for

each detector component. To obtain higher level information such as 4-momentum, posi-

tion, timing, and so on, this information must go through a cooking procedure (RECSIS)

that is exactly the same as for the experimental data as described in section 3.2.
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Figure 4.3: Bin migration effect shown for some of the W kinematic bins near
threshold. The left plot shows generated events for four different W bins and
the right column shows the reconstructed events after passing all analysis cuts.

After cooking, the simulated events are analyzed similarly to the experimental data

and are used for acceptance corrections and so on to obtain cross sections and higher

level physics information. The final measurements of the cross sections are then used as

a model for input to AOO RAD and the process repeats itself. Fig. 4.2 shows the process

of obtaining Monte Carlo simulations.

4.3 Bin Migration

Bin migration is the effect where events are generated in a finite bin but are re-

constructed in other neighboring bins. This can be a significant effect on the acceptance

corrections if the reconstructed MC distributions are not reasonably close to the experi-

mentally observed distributions.

An example of the bin migration effect can be observed in Fig. 4.3. The left column

shows events generated in a specific W bin using the MAID model. The right column

shows events after reconstruction that have passed through all the analysis cuts. Some

events from neighboring bins are reconstructed inside the generated bin and vice versa.

So, there is an exchange of events over the bins and if the simulation model is reasonable

then this should account for the same behavior as seen for the experiment.



5. Corrections and Normalizations

5.1 Overview

The simulated events are used to obtain the following corrections to the cross section:

• Acceptance corrections

• Bin Centering corrections

• Radiative corrections.

In addition to these corrections, we must check the consistency of our experiment with

other known cross sections such as elastic scattering ep→ ep and the ∆(1232) resonance.

These corrections and procedures will be discussed in the following sections.

5.2 Acceptance Corrections

Acceptance corrections are applied to the experimental data to obtain the cross

section for each kinematic bin. These corrections describe the geometrical coverage of the

CLAS detector, inefficiencies in hardware and software, and resolution effects from track

reconstruction.

By comparing the number of events in each kinematic bin from the physics generator

and the reconstruction process, the corrections can be obtained as:

A =
Nrec

Ngen
(5.1)

where Nrec corresponds to those events that have gone through the entire analysis process

including track reconstruction and all analysis cuts. Ngen are those events that were

generated using the physics generator AOO RAD. These corrections are then applied to

obtain the cross section

σ =
Nexp

A
(5.2)

where Nexp is the number of events as measured in experiment for each kinematic bin.

Fig. 5.1 shows the acceptance as a function of φ∗π for one of the kinematic bins in W , Q2

and cos θ∗π near threshold. One can see that it is symmetric in φ∗π. The error bars increase

for backward angles θ∗π because of smaller generated statistics. Similar corrections are

70
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Figure 5.1: Acceptance corrections for W = 1.09 GeV and Q2 = 2.75 GeV2 as a
function of φ∗π. Each subplot shows corrections for different cos θ∗π bin.

obtained for other bins. Acceptance corrections were obtained for all kinematic bins of

interest and there were no bins with zero corrections.

5.3 Bin Centering Corrections

The kinematic bins have been selected to maximize the measured amount of counts

within them. It is possible that the cross section might vary significantly within each

kinematic bin. In such cases, reporting the cross section at the center of the bin may not

be appropriate. Fig. 5.2(a) shows a typical kinematic binning where the average of the

measured cross section σ is not at the center of the bin but at x̄, i.e., the centroid for the

bin that can be defined as

x̄ =

∫ x2

x1

xσ(x)dx. (5.3)

Here, x corresponds to a typical W , Q2, cos θ∗π or φ∗π kinematic bin.

To account for this discrepancy, a correction is made for each kinematic bin. Using

a good model the centroid can be determined for each kinematic bin and the correction
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Figure 5.2: (a) A typical kinematic binning is shown. The measured cross
section σ is shown as a black point with error bars and the true value is shown
as a function σ(x). The average of the function is at x̄. (b) Bin centering
corrections for W = 1.09 GeV and Q2 = 3.25 GeV2 as a function of cos θ∗π and φ∗π.

factor R can be determined by the following prescription:

R(W,Q2, cos θ∗π, φ
∗
π) =

σcenter
σcentroid

. (5.4)

Here, σcenter is the cross section as measured at the center of the kinematic bin and σcentroid

is the value of the cross section determined at the centroid of the bin. The correction is

applied to the measured cross section:

σcor =
σmeas
R

. (5.5)

Here, σcor is the corrected cross section for a particular bin and σmeas is the measured

uncorrected cross section at the bin.

Fig. 5.2(b) shows corrections for one of the kinematic bins in W and Q2 as a function

of cos θ∗π and φ∗π. The correction is dependent on φ∗π and is largest at cos θ∗π → −1. At

backwards angle the cross section varies more rapidly than at other angles, which gives

a larger correction to the cross section. The average correction over all kinematic bins is

∼ 3%.
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(a) (b) (c) (d) (e)

Figure 5.3: Feynman diagrams contributing to the pion electroproduction
cross section. (a) Born process, (b) and (c) Brehmsstrahlung, (d) Vertex
correction, and (e) Vacuum polarization.

5.4 Radiative Corrections

In section 3.6 the elastic Bethe-Heitler events were subtracted from the neutral pion

process. However, additional corrections are required to the measured cross section to

obtain results for ep → epπ0 process. This is because in the laboratory we measure not

only the Born term, ep → epπ0, but also terms including the Bethe-Heitler ep → epπ0γ

and others as shown in Figs. 5.3(a)-(e).

These QED processes include radiation of photons that are not detected (Figs. 5.3(b)-

(c)), vacuum polarization (Fig. 5.3(e)) and lepton-photon vertex corrections (Fig. 5.3(d)).

The vacuum polarization refers to the process where the virtual photon temporarily cre-

ates and annihilates a lepton-anti-lepton pair. The lepton-photon vertex corrections are

for processes where a photon is emitted by the incoming electron and is absorbed by the

outgoing electron. These processes give the largest contribution to the cross section at

the next-order level. These contributions can be calculated exactly from QED and the

measured cross section can be corrected to extract the Born term [48]. These are the

radiative corrections, δ, for the experiment

σBorn =
σmeas
δ

. (5.6)

Here, σmeas is the observed cross section from experiment and σBorn is the desired cross

section after corrections.

The correction is obtained using the software package EXCLURAD [49] that takes

theoretical models, such as MAID, as input for the hadronic current. For this experiment,

the same MAID model is used to determine the radiative corrections as the one used to

generate the monte carlo events (Section 4.2.1). This is because the radiative corrections

are closely related to the acceptance corrections. For each kinematic bin the differential
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cross section can be written as:

σ =
Nmeas

LA
1

δ
(5.7)

where Nmeas/L is the number of events from experiment normalized by the integrated

luminosity (with appropriate factors) before acceptance and radiative corrections. Also,

A = NRAD
rec /NRAD

gen is the acceptance correction for the bin and δ is the radiative correction.

It should be noted that the events for the acceptance correction were generated with a

radiated photon in the final state using the MAID2007 model.

EXCLURAD uses the same model to obtain the correction δ = NRAD
gen /NNORAD

gen

where NNORAD
gen are events generated without a radiated photon in the final state. Thus

σ =
Nmeas

L

(
NRAD
gen

NRAD
rec

)
×
(
NNORAD
gen

NRAD
gen

)
. (5.8)

Using a good model such as MAID2007, one can expect the NRAD
gen terms to be identical

for both the acceptance and radiative corrections. As such we can expect the terms to

cancel each other in the above expression. But it might not be the case. To minimize

the dependence of the radiative correction on the model, a missing mass cut is used as a

parameter.

In the calculation of the correction, the missing mass cut restricts the maximum

energy of the radiated photon that would otherwise go to the outgoing hadronic system.

When no missing mass cut is applied, the cross section is computed by integrating from

threshold to the W bin of interest. For high enough W this could introduce dependence

on the model if no missing mass cut is applied. This missing mass cut parameter is known

as the vcut parameter and is defined as:

vcut = M2
X −m2

π (5.9)

where MX is the desired missing mass cut and mπ is the mass of pion. The corrections

are thus computed for each kinematic bin W , Q2, cos θ∗π and φ∗π.

Fig. 5.4(a) shows the radiative corrections calculated using vcut = 0.05 GeV2 for one

of the kinematic bins as a function of the pion angles in CM system. One can observe

that the corrections have a φ∗π dependence. This is because the Brehmsstrahlung process

only occurs on the leptonic plane, i.e., at angles 0 or 180 degrees with respect to the

hadronic plane. Also, one can notice that the correction increases with cos θ∗π → −1. This
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Figure 5.4: (a) The radiative corrections for W = 1.11 GeV and Q2 = 3.25 GeV2

as a function of cos θ∗π and φ∗π obtained from EXCLURAD using MAID2007
model with vcut = 0.05 GeV2. (b) The radiative corrections as a function of
φ∗π for W = 1.11 GeV, Q2 = 3.25 GeV2, and cos θ∗π = −0.5,−0.3, 0.3, 0.5 for various
values of vcut (different colors). The corrections are independent of vcut so the
curves lie on top of each other.
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is because the cross section is expected to approach zero at backwards angles and that is

the region where the Bethe-Heitler events dominate.

Fig. 5.4(b) shows the radiative corrections for the same kinematic bins as a function

of φ∗π calculated using various values of vcut: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08

and 0.09 GeV2. The curves for each vcut overlap and no dependence on this parameter is

observed for bins near threshold. This is because near threshold there isn’t enough phase

space for the photons to take energies away from the outgoing hadrons. So, for generality,

a vcut value of 0.05 GeV2 is used to compute the corrections for all bins in this experiment.

The average radiative correction over all kinematic bins is ∼ 25%.

5.5 Luminosity

The cross section of the reaction should be normalized to the integrated luminosity

L. Luminosity is the product of the number of particles hitting the target per unit area

and per unit time and the total number of particles within the beam area [50]. Integrated

luminosity is the integral of luminosity over the time of the experiment. The cross section

is thus normalized to the integrated luminosity:

σ =
Nexp

L (5.10)

where σ is the normalized cross section and Nexp is the number of events measured in a

particular kinematic bin. As such, L should have the dimensions of 1/cm2 or 1/nb.

To determine this quantity the total Faraday cup charge, QFCUP , collected during

the entire production run period is calculated. There are times when the DAQ is busy

recording an event and this fraction of the total time taken for the measurement is called

dead time. The live time then is the total time when the DAQ is actually recording events.

The total charge collected has to be factored by this live time to yield

QFCUP = 21.287 mC. (5.11)

This charge is then used in the following equation to compute the integrated luminosity:

L = NeNp =

(
QFCUP

e

)
×
(
Naltargetρ

amu

)
. (5.12)

Here, e is the charge of the electron in Coulombs, Na is Avogadro’s number in 1/mol,

ltarget is the length of the target (5.0 cm) and amu is conversion factor to convert the
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Figure 5.5: The electron z-vertex for (a) empty target and (b) production
runs integrated over all W .

density of the liquid hydrogen target ρ from g/cm3 to mol/cm3.

The density of the liquid hydrogen target is checked for any variations as a function

of temperature and pressure during the experiment. It was found that the density of the

target remained stable throughout the run period under variations of temperature and

pressure. The average density of the target was found to be 0.0708 g/cm3 [51]. With these

values the luminosity for the experiment was determined to be

L = 2.81× 1040 1/cm2. (5.13)

This value is then used in Eq. 5.10 for our absolute normalization of the cross section.

5.6 Target Cell Wall Contamination

It is expected that a fraction of events in the reaction ep → epπ0 are originating

from the target cell walls. The 5 cm long target cell walls are made of 0.0127 cm thick

Kapton. Even though the cell walls are thin they can be a source of contamination for

our reaction of interest.

To estimate the level of contamination from this source, we look at events collected

during the empty-target run period of the e1-6a experiment. These events are analyzed

using the same process as those for the production run period. Figs. 5.5(a) and (b) show

the electron z-vertex distribution for all events that passed through the analysis for both

empty target and production events, respectively. The ratio of these two distributions as
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Figure 5.6: The ratio of the events from empty target and production runs
(normalized to the total charge collected) as a function of W .

a function of W is shown in Fig. 5.6. The total number of events is normalized to the

total charge collected during the run periods:

R =
Nempty target

Nproduction

Qproduction

Qempty target
(5.14)

About 2.214 mC of total charge was collected for the empty target runs and about

21.287 mC for the production run period. The average contamination ranges from about

2-5% depending on the W kinematic bin. This ratio of contamination is then applied as

a correction factor to the measured cross section:

σcor = σ(1−R). (5.15)

Here, σcor is the corrected cross section and σ is the measured cross section for a particular

bin in W .

5.7 Elastic Cross Section

To ensure the quality of the experimental measurement, we compare the cross section

for the elastic scattering process (ep → ep) to known values, such as the Bosted Form

Factor parameterizations [52]. We study two topologies, (a) inclusive ep → eX and (b)

exclusive ep→ ep. Monte carlo events are generated for the reaction ep→ epγ to obtain

the cross sections. See Section 3.3 for a discussion on the elastic process.



79

(a) (b)

Figure 5.7: (a) The differential cross section (red) of the inclusive process
ep→ eX as a function of θe for sector 4. The blue curve is the expected cross
section. The y-axis is in log scale. (b) The ratio of measured to expected
differential cross section for sector 4. The thick black curve is the constant fit.

5.7.1 Inclusive ep→ eX

For this topology, we select only the electron in the final state using the same

procedure as Section 3.2.1. The appropriate angle and momentum corrections to the

electron are applied and finally a cut on W < 1.028 is made to select elastic events as

shown in Fig. 3.6 (left) for one of the CLAS sectors. The differential cross section for the

reaction is then obtained for each CLAS sector as a function of θe. These values are then

compared with the form factor parameterizations of the elastic cross section.

Fig. 5.7(a) shows the differential cross section for the inclusive process as a function

of θe for one of the CLAS sectors. The cross section shows fluctuations at high θe where

we have poor statistics. Fig. 5.7(b) shows the ratio of the measured cross section to the

expected values. The points are fitted with a constant to estimate the deviation from the

expected ratio of 1. For this sector the cross section measurement is consistent with the

expected value to within ±5%.

The large error bars in the ratio at higher angles can be attributed to small statistics

corresponding to higher Q2. The small variation from the nominal cross section value can

be attributed to inefficiencies in drift chambers and time of flight systems. But overall,

the agreement is good. Other sectors show similar distributions. Please see Appendix C

for distributions of other sectors.
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(a) (b)

Figure 5.8: (a) The differential cross section (red) of the exclusive process
ep → ep as a function of θe for sector 4. The blue curve is the expected cross
section. The y-axis is in log scale. (b) The ratio of measured to expected
differential cross section for sector 4. The thick black curve is the constant
polynomial fit.

5.7.2 Exclusive ep→ ep

For this topology, both electrons and protons are selected in the final state. All

corrections and cuts appropriate for the particles is applied in the same manner as for

the neutral pion process. Two cuts are applied to select the exclusive elastic events, viz.,

W < 1.028 and |φe−p−180◦| < 3σ as shown in Fig. 3.6 for one of the CLAS sectors. Once

again, differential cross sections are obtained and compared with known values.

Fig. 5.8(a) shows the differential cross section for the exclusive process as a function

of θe for one of the CLAS sectors. The cross section shows fluctuations at high θe where

we have poor statistics. Fig. 5.8(b) shows the ratio of the measured cross section to the

expected values. The points are fitted with a constant to estimate the deviation from the

expected ratio of 1.

For the exclusive process, we see a significant deviation (∼ 12%) from the expected

value for this sector. A similar deviation is observed in other sectors as well. This result

is quite surprising and its true nature is as of yet unknown. Previous CLAS analyses [53]

have seen deviations for the exclusive process to the order of ∼ 5% where such deviations

have been attributed to proton detection inefficiencies in TOF and DC. But here, we

observe twice the deviation for the same process.

To account for this discrepancy, we apply an overall normalization factor of Relastic =

0.89±0.02 to the differential cross section for every kinematic bin. This factor is obtained
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Figure 5.9: The differential cross section for ep → epπ0 process in the Delta
resonance region W = 1.23 GeV and Q2 = 2.75 GeV2 as a function of φ∗π. Each
subplot shows different bin in cos θ∗π. The blue curve represents the MAID2007
and the green curve represents Aznauryan et al (2009). Red points indicate
results from this experiment. Only statistical errors are shown.

as an average deviation for all the sectors and will account for our overall systematic

uncertainty in the final measurements. The differential cross section will be corrected as

follows

σcor = σ
1

Relastic
. (5.16)

This correction to the cross section also includes any detector inefficiencies and as such

these inefficiencies will not be accounted for separately. Please see Appendix C for distri-

butions of elastic cross section and ratios for other CLAS sectors.

5.8 Delta Resonance Cross Section

Another consistency check for the quality of the experiment is to look at the dif-

ferential cross at the ∆(1232) resonance production for the reaction ep → epπ0. This

reaction is similar to the near threshold neutral pion electroproduction except it has been

studied previously [54, 55].
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So, the analysis of the resonance process is the same and all cuts and corrections

are extended to the resonance region. Fig. 5.9 shows the differential cross section of the

reaction near the resonance region W = 1.23 GeV and for Q2 = 2.75 GeV2. The cross

section is shown for different cos θ∗π bins and is plotted as a function of φ∗π.

Along with the measurements from this experiment two curves are also plotted.

Both curves are fits to world data for this kinematic region. The blue curve represents

values from MAID2007 [44] and green curve shows values from the parameterization by

Aznauryan et al [55]. The parameterization by Aznauryan et al is also a unitary isobar

model (UIM) similar to MAID. To compute the amplitudes at high energies this model

uses a different parameterization and uses a different procedure to unitarize the amplitudes

[56, 57]. Only statistical errors are shown for the measured values. The measurements are

consistent with these parameterizations to within ±10%.



6. Results

6.1 Overview

In this chapter, the differential and integrated cross sections and structure functions

obtained from the experiment are shown along with theoretical predictions and extrap-

olations of fit to world data at higher W . A study of systematic uncertainties is also

presented.

6.2 Differential Cross Sections

The reduced differential cross section for the reaction are computed for each kine-

matic bin. This cross section includes all corrections and normalization factors discussed
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Figure 6.1: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 2.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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in the previous chapters.

Fig. 6.1 shows the differential cross section for the kinematic bin nearest threshold,

viz., W = 1.09 GeV and Q2 = 2.75 GeV2. The results from experiment are shown as

red points with statistical errors. One can observe that the cross section is more-or-less

symmetric in φ∗π but is reduced for backward angles in θ∗π. Some bins show large errors

because of small statistical yield from experiment. Some bins have a yield of zero events

from experiment but the acceptance is positive definite. For those bins an upper limit on

the statistical uncertainty is estimated by assuming a yield of one event. The cross section

for these bins is reported as zero with a statistical uncertainty for a experimental yield of

one event.

The predictions from Braun et al [17] are shown as the magenta curves in the figure.

The extrapolations of fit to world data at higher W from MAID2007 [44] and Aznauryan

et al [55] are shown as blue and green curves, respectively. One can observe a large

discrepancy with the predictions of Braun near φ∗π ∼ 180◦. This is because the predictions

do not include enough P-wave contribution to the cross section. This should be reflected

in the associated σLT structure functions that can be extracted from the differential cross

section via the following prescription as defined in Section 1.1.2:

dσ

dΩ∗π
=
p∗π
k∗γ

(
dσT
dΩ∗π

+ εL
dσL
dΩ∗π

+ ε
dσTT
dΩ∗π

cos 2φ∗π +
√

2εL(ε+ 1)
dσLT
dΩ∗π

cosφ∗π

)
. (6.1)

Using this prescription, the differential cross section can be fitted with the following pa-

rameterization:

dσ

dΩ∗π
=
p∗π
k∗γ

(
A+ εB cos 2φ∗π +

√
2εL(ε+ 1)C cosφ∗π

)
. (6.2)

Here, A, B and C are the parameters of the fit and are equivalent to σT + εLσL, σTT

and σLT , respectively. The result of the fit is shown as the red dashed curves in Fig. 6.1.

Please see Appendix D for differential cross sections for all kinematic bins in W and Q2.

Fig. 6.2 shows the χ2 distribution per number of degrees of freedom ν for the four

W bins near threshold obtained from the fitting result. The red curve is the expected

distribution [36] based on the degrees of freedom for each fit. The expected distribution

is a probability distribution function

f(x; ν) = N
xν/2−1e−x/2

2ν/2Γ(ν/2)
(6.3)
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Figure 6.2: The number of fits to the differential cross section using Eq. 6.2
are plotted as a function of the χ2/ν. The expected χ2 distribution for 50 fits
(5 Q2 bins and 10 cos θ∗π bins) and ν = 9 degrees of freedom is shown as the red
curve.

where x is the value of χ2, ν is the number of degrees of freedom and N is the normalization

constant for the distribution. The differential cross section is fit using 3 parameters for

each of the 10 cos θ∗π bins as a function of 12 φ∗π bins. So, a total of 200 functions are fitted

in W , Q2 and cos θ∗π bins with the number of degrees of freedom ν = 9 for each function.

6.3 Integrated Cross Sections

The integrated cross sections for the reduced process γ∗p → pπ0 is obtained by

integrating the fitted function Eq. 6.2 over the solid angle dΩ∗π. Fig. 6.3(a) shows the

integrated cross sections as a function Q2 for W = 1.09 GeV. The experimental results

are shown as red points with associated statistical error bars. The gray band at the bottom

shows the systematic error estimates for each kinematic bin. The predictions from Braun

et al are shown as the magenta curve. One can observe a large discrepancy with these

predictions. The extrapolations of fit to world data at higher W from MAID2007 (blue)
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Figure 6.3: (a) The integrated reduced cross sections are shown as a function
of Q2 for W = 1.09 GeV. (b) The integrated cross sections scaled by Q6 at
each bin. The results from experiment (red points) are shown along with
predictions from Braun et al (magenta) and extrapolations of fit to world
data at higher W from MAID2007 (blue) and Aznauryan et al (green). The
gray band at the bottom shows the systematic error estimates for each bin.
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Figure 6.4: The integrated reduced cross section as a function of W for dif-
ferent values of Q2. Experimental results (red points) are shown along with
predictions from Braun et al (magenta) and extrapolations of fit to world
data at higher W from MAID2007 (blue) and Aznauryan et al (green). Pre-
dictions from Braun et al are only applicable for the near threshold region.
The statistical errors are smaller than the data points.

and Aznauryan et al (green) are also shown. Also shown are the same integrated cross

sections scaled by Q6 in Fig. 6.3(b).

The integrated cross sections can also be observed in another manner. Fig. 6.4

shows the integrated reduced cross section as a function of W for various values of Q2.

For comparison predictions from Braun et al (magenta) and from MAID2007 (blue) and

Aznauryan et al (green) are also shown. The predictions from Braun et al are only plotted

up to W = 1.16 GeV as they are not applicable near the ∆(1232) resonance region. One

can observe good agreement of the measurements at higher W with the blue and green

curves.

Fig. 6.5 shows the same information as Fig. 6.4 but zoomed into the near threshold

region with each Q2 bin separated into subplots. For the W = 1.09 GeV bin, the agreement

with Braun et al is better than at higher W . One of the reasons could be the low estimation
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Figure 6.5: The integrated cross section plotted as a function of W for Q2 =
2.25 GeV2, (b) Q2 = 2.75 GeV2, (c) Q2 = 3.25 GeV2, (d) Q2 = 3.75 GeV2 and
(e) Q2 = 4.25 GeV2. Experimental results (red points) are shown along with
predictions from Braun et al (magenta) and extrapolations of fit to world
data at higher W from MAID2007 (blue) and Aznauryan et al (green). The
statistical errors are smaller than the data points. The gray band at the
bottom shows the systematic error estimates for each bin.
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of P-wave contribution to the cross section in the predictions.

6.4 Structure Functions

Now let us look at the extracted structure functions. Fig. 6.6 shows the structure

functions for W = 1.09 GeV and different Q2 bins. The left, middle and right columns

show dσT
dΩ +εL

dσL
dΩ , dσTTdΩ and dσLT

dΩ , respectively. The experimental results are shown in red

with statistical error bars. The gray box indicates the systematic uncertainty estimates

for each bin. The extrapolations of fit to world data at higher W from MAID2007 (blue)

and Aznauryan et al (green) are also shown.

In addition, predictions from Braun et al are shown as the magenta curves for

dσT
dΩ + εL

dσL
dΩ and dσLT

dΩ . Since Braun et al assume no D-wave contribution, the corre-

sponding structure function dσTT
dΩ predictions are assumed to be zero and are not shown

in the figure. One can observe that there is some dσTT
dΩ contribution present in our exper-

imental results. Also, the results for dσLT
dΩ , which correspond to the P-wave contributions,

show inconsistency with the magenta curves. As hypothesized, the P-wave contribution

predictions to the cross sections are smaller than observed.

6.5 Systematic Uncertainties

The systematic uncertainties are those uncertainties that are inherent in an exper-

iment and cannot be remedied by repeating the experiment. They depend on the types

of cuts used in the analysis to the calibration of the detectors. To determine these uncer-

tainties, the parameters of the likely sources of these errors are varied within reasonable

bounds and the sensitivity of the final result is checked against this variation. If the final

Source Average Size %

EC sampling fraction cuts 0.4

CC cuts 0.1

Vertex cuts 0.1

DC cuts 1

Proton ID 1.1

Bethe-Heitler subtraction ∼ 7

M2
X ∼ 5

Elastic normalization 5

Empty target 2

Table 6.1: The systematic errors for cross sections. The average size of the
errors is the final estimated error on the experimental result.
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Figure 6.6: The structure functions dσT
dΩ + εL

dσL
dΩ (left), dσTT

dΩ (middle) and dσLT
dΩ

(right) as a function of cos θ∗π in µb/sr for W = 1.09 GeV and different Q2 bins.
Experimental results (red) are shown along with predictions from Braun et al
(magenta) and extrapolations of fit to world data at higher W from MAID2007
(blue) and Aznauryan et al (green). The Braun et al predictions do not
include any σTT contribution, so they are not shown. The gray band shows
the systematic uncertainty estimates for each bin. Note the different scales
for the y-axis for each column.
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colors indicate the variation in the cut. The results from the original cut are
shown in red.
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result is not very sensitive to this variation then the systematic error due to this source

can be considered to be small.

The structure functions were looked for sensitivity to these sources of errors. The

results showed very little sensitivity to the sampling fraction cuts for the electromagnetic

calorimeters (EC), the Cerenkov counter (CC) cuts, the drift chambers (DC) cuts, the

cuts on the z-vertex of the electrons and protons, and the proton identification cuts.

On average, these cuts had a systematic uncertainty of around 1%. The Bethe-Heitler

subtraction cuts and the missing mass cuts were the sources of the largest errors in the

experiment. Table 6.1 shows a summary of the average uncertainties for each source.

The largest source of the systematic uncertainty comes from the Bethe-Heitler sub-

traction cuts. Fig. 6.7 shows the variation of these cuts for the nearest threshold bin

W = 1.09 GeV. The red curves are the nominal cuts. The result of the variation in these

cuts is shown at the structure function level in Fig. 6.8. In this figure, the structure

functions σT + εLσL are plotted for varying Bethe-Heitler subtraction cuts. There is some

kinematic dependence on this cut as can be observed from the plot. On average this cut

gives about a 7% systematic uncertainty in the result.

The other large source of systematic uncertainty comes from the cut on the M2
X

variable. The nominal cut is a ±3σ cut from the mean value of the distribution and is

a function of W and Q2. The cut is varied as shown in Fig. 6.9 for one of the W and

Q2 bins. The result of these variations is seen in the Fig. 6.10 where the σT + εLσL are

plotted for the same kinematic bin. Once again there is some kinematic dependence on

this cut. The average systematic uncertainty from this cut is about 5%.
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6.6 Multipoles

The parameters of the fit for the differential cross sections (Eq. 6.2) are functions

of cos θ∗π and can be expressed in terms of Legendre polynomials:

dσT
dΩ∗π

+ εL
dσL
dΩ∗π

= A(cos θ∗π) = A0 +A1P1(cos θ∗π) +A2P2(cos θ∗π)

dσTT
dΩ∗π

= B(cos θ∗π) = B0 sin2 θ∗π

dσLT
dΩ∗π

= C(cos θ∗π) = (C0 + C1 cos θ∗π) sin θ∗π (6.4)

The polynomials are expanded up to the second order to include terms only from l = 0

and l = 1 multipoles since these are the only multipoles expected to contribute in the near

threshold region. The coefficients of the polynomials from Eq. 6.4 can be associated with

these multipoles:

A0 = |E0+|2 + |M1−|2 +
5

2
|M1+|2 +

9

2
|E1+|2 − 3Re(E∗1+M1+) +Re((3E1+ +M1+)M∗1−)

+εL
Q2

|q∗|2 (|S0+|2 + |S1−|2 + 4|S1+|2 − 4Re(S1+S
∗
1−))

A1 = 2Re(E0+(3E1+ +M1+ −M1−)∗) + εL
Q2

|q∗|2 2Re(S0+(4S1+ + S1−)∗)

A2 = −3

2
|M1+|2 +

9

2
|E1+|2 + 9Re(E∗1+M1+)− 3Re((3E1+ +M1+)M∗1−)

+12εL
Q2

|q∗|2 (|S1+|2 +Re(S1+S
∗
1−))

B0 = −3

2
|M1+|2 +

9

2
|E1+|2 − 3Re(E∗1+M1+) + 3Re((E1+ −M1+)M∗1−)

C0 = −
√

2Q2

|q∗|2Re(S0+(3E1+ −M1+ +M1−)∗ − E0+(2S1+ − S1−)∗)

C1 = −6

√
2Q2

|q∗|2Re(S1+(E1+ −M1+ +M1−)∗ + S1−E
∗
1+). (6.5)

We are interested in extracting the E0+ and S0+ (l = 0) multipoles. Here, we have

associated the L0+ with the S0+ multipole

L0+ =
ω

|q∗|S0+ (6.6)

where ω and q∗ are the virtual photon energy and 3-momentum in the center of mass

frame.
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The S-wave multipoles were extracted by one of the CLAS collaborators, I. Aznau-

ryan. Fig. 6.11(a) and Fig. 6.11(b) show the extracted S-wave multipoles E0+ and S0+ as

a function of Q2 using three different methods. These multipoles have been normalized

to the dipole formula [50]:

GD(Q2) =
1(

1 + Q2

.71

)2 . (6.7)

The dipole formula is a fit to the electromagnetic form factors as a function of Q2 that

describes the shape for the charge distribution in the proton [58].

The three different fit methods include the following prescriptions. Only real parts

of E0+, S0+, M1−, S1−, E1+ and S1+ are involved in the fitting. The first method (red

points) includes a fit at all W ranges (W = 1.08 − 1.16 GeV, current experiment) but

M1−, S1−, M1+, E1+, and S1+ were fitted to world data at higher W . The second method

(blue points) includes a fit over all W range as in the first method and M1−, M1+ and S1+

were similarly obtained by fit to higher W data. However, the ranges of the amplitudes

S1− and E1+ are increased by a factor of two to see their effect on current results. The

third method (green points) is the same as the second one except that the fit is made

only for W = 1.09 and 1.11 GeV, i.e., very close to threshold. All three fit methods show

consistent results.

The error bars on the points include systematic and statistical uncertainties added

in quadrature. The systematic uncertainties are shown separately at the bottom of the

plots as a gray band, which assume all systematic errors for all data points are entirely cor-

related. So, this gives an upper limit on the overall systematic uncertainty. The plots also

show predictions from Braun et al as magenta curves. Braun et al have tried to minimize

the uncertainties in their LCSR based model calculations by including electromagnetic

form factor values known from experiment. The predictions from these calculations are

shown as solid curves in the figure. The “pure” LCSR based models where the calculation

uncertainties have not been minimized and the values for all form factors are obtained

entirely from theoretical calculations are shown as dashed curves in the figure. One can

observe that the experimental results for E0+ are consistent with the predictions of Braun

et al but there is discrepancy with the predictions for S0+.
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6.7 Generalized Form Factors G1 and G2

The S-wave multipoles E0+ and L0+ can be related to the generalized form factors

Gπ
0p

1 and Gπ
0p

2 via Eq. 1.65. These equations can be re-written to obtain expressions of the

generalized form factors in terms of the S-wave multipoles. The generalized form factors

are thus extracted and plotted for each of the three different methods used to obtain the

S-wave multipoles as discussed in the previous section.

Fig. 6.12(a) and (b) show the obtained form factors as a function of Q2. The red,

blue and green data points correspond to the three methods of fitting the multipoles. The

systematic uncertainties are shown separately at the bottom of the plots as a gray band,

which assume all systematic errors for all data points are entirely correlated. Also shown

are the predictions from Braun et al in magenta for these form factors obtained from his

LCSR based models. Similar to the predictions for the multipoles, the dashed curves reflect

the calculations where the uncertainties have not been minimized by using experimental

values of form factors and other parameters. The solid curves include predictions from

the LCSR based model with minimized uncertainties. Additionally, the LET predictions

in the chiral limit per Eq. 1.60 are also shown for comparison in blue where existing

parameterizations for the elastic form factors [59, 60] have been used.

One can observe that the experimental results for G1 are consistent with the predic-

tions from Braun et al, but the results for G2 show some discrepancy. In particular, one

can observe a faster fall off than the dipole form for both G1 and G2. However, the zero

crossing of G2 is not observed as predicted. This faster than dipole form falling of the

generalized form factors suggests a broadening of the spatial distribution of the correlated

pion-nucleon system. It suggests that the correlated pion-nucleon system is broader than

the nucleon itself because the nucleon follows the behavior of the dipole form factor.
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7. Discussion and Conclusions

In this thesis, we set out to study the reaction ep→ epπ0 in the near threshold region using

CLAS data. The differential and integrated cross sections for this reaction are obtained

for the reduced process γ∗p → pπ0. The associated structure functions have also been

extracted from the differential cross sections with appropriate systematic uncertainties

estimates. Additionally, the S-wave multipoles E0+ and L0+ are extracted for Q2 between

2− 5 GeV2 by I. Aznuaryan who is one of the CLAS collaborators. From these multipoles

the generalized form factors Gπ
0p

1 (Q2) and Gπ
0p

2 (Q2) are also extracted as prescribed by

Braun et al.

The primary aim of the experiment was to test the applicability of the low energy

theorems at high Q2 per predictions of Braun et al. The structure functions are compared

with these predictions. It is noted that the P-wave contribution to the near threshold

transition amplitude is quite significant but its contribution is under-estimated by these

predictions. The D-wave contribution near threshold was found to be negligible as pre-

dicted by Braun et al. The measured E0+ and Gπ
0p

1 are consistent with the predictions

from Braun et al. However, L0+ and Gπ
0p

2 show discrepancy with these predictions. The

faster than dipole form fall off is observed for both these form factors suggesting the

broadening of the spatial distribution of the pion-nucleon system.
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APPENDIX A

Parameters and Plots

A.1 Electron Sampling Fraction Parameters

The following table includes the parameterization used in Eqn. 3.1 for data.

Parameters Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

α -0.343817 -0.335113 -0.105147 -0.530865 -0.717546 -0.539888
β 0.621658 0.624218 0.419801 0.827726 0.983963 0.819236
γ -0.058496 -0.198127 -0.424243 -0.072115 -0.062856 -0.208550
δ -0.007746 -0.041702 -0.084225 -0.021155 -0.012791 -0.058973

Table A.1: The parameter values for the fit to the mean EC sampling fraction
as a function of momentum as in Eq. 3.1 for experimental data.

Parameters Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

α 0.008597 0.002634 0.004722 -0.003629 0.025761 0.002631
β 0.017859 0.037942 0.024008 0.038488 -0.003984 0.032449

Table A.2: The parameter values for the fit to the σ EC sampling fraction as
a function of momentum as in Eq. 3.1 for experimental data.

A.2 Proton Identification Parameters

The following table includes the parameterization used in Eqn. 3.5 for data.

Sector Mean (ns) σ (ns)

a b c a b c
1 -0.00402265 0.00551451 3.71989 0.2688910 0.1152970 2.009410
2 -0.04468180 0.07991310 1.26776 0.2504400 0.0958828 2.259890
3 -0.01711960 0.03245160 2.36276 0.2424720 0.1023070 2.087400
4 0.00217212 0.00767888 3.37383 0.2114360 0.1663010 1.689670
5 -0.00169582 0.00109138 4.82923 0.1922650 0.1839430 1.613480
6 0.00840152 0.00253274 4.39880 0.0911354 0.4030660 0.918139

Table A.3: The parameter values for the mean and sigma as in Eq. 3.5 used
for proton ID for each sector for experimental data.
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Figure A.1: Sampling fraction E/p for electron candidates plotted as a function
of their momentum p for the six sectors. The mean parameterization is shown
as dashed curves and the solid curves indicate the cuts applied.
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A.3 DC Fiducial Cut Parameters

A.3.1 DC Electron Fiducial Cuts

The following parameter values were used for electron fiducial cuts:

Sector α β γ ρ κ ξ

1 12.0 20.0 0.32 32.0 0.416667 0.14
2 12.0 20.7 0.36 34.0 0.416667 0.14
3 12.0 20.2 0.32 32.0 0.416667 0.14
4 12.0 20.5 0.32 32.0 0.416667 0.14
5 12.0 20.5 0.29 32.0 0.416667 0.14
6 12.0 20.0 0.32 32.0 0.416667 0.14

Table A.4: The electron fiducial cut parameters for each sector.
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Figure A.4: Electron DC fiducial cuts for all sectors integrated over all mo-
mentum. Rejected tracks are shown in black.

A.3.2 DC Proton Fiducial Cuts

The momentum dependent coefficients for the φmin and φmax are given by

ai(p) = c0 + c1p+ c2p
2

bi(p) = d0 + d1p+ d2p
2. (A.1)

The following parameter values were used for proton fiducial cuts:
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Figure A.5: Proton DC fiducial cuts for all sectors integrated over all momen-
tum. Rejected tracks are shown in black.

A.4 Proton Timing Correction Effects

The timing information for proton candidates in TOF paddles are corrected for all

sectors. The effect of this correction is observed for each sector in Figs. A.6 and A.7.
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i c0 d0 c1 d1 c2 d2

0 39.4471 -1.42891 -4.28941 -20.8695 0.0910672 4.85237
1 -5.95718 -0.40323 -0.0915413 4.15143 0.113486 -0.873097
2 0.233019 0.0877448 0.010272 -0.206594 -0.00585689 0.0422065
3 -0.0043921 -0.00209527 -4.57015e-05 0.0038365 8.66512e-05 -0.000787643
4 3.22474e-05 1.40471e-05 -1.63838e-06 -2.40801e-05 -2.99613e-07 5.06479e-06

Table A.5: Sector 1 parameters used for proton fiducial cuts.

i c0 d0 c1 d1 c2 d2

0 44.2525 4.94857 -8.53036 -20.3406 0.481749 4.03726
1 -6.9053 -1.97407 0.769652 4.2043 0.00638363 -0.753544
2 0.281855 0.184416 -0.0321893 -0.218929 -0.000844245 0.0372669
3 -0.00536168 -0.0045072 0.000722783 0.00432631 1.03893e-05 -0.000703947
4 3.88746e-05 3.6027e-05 -6.23593e-06 -3.06811e-05 1.41789e-08 4.85139e-06

Table A.6: Sector 2 parameters used for proton fiducial cuts.

i c0 d0 c1 d1 c2 d2

0 48.8643 13.224 -13.6046 -22.7071 1.54434 3.47116
1 -8.14818 -2.07311 1.59337 3.88685 -0.16267 -0.529604
2 0.370884 0.177999 -0.0920444 -0.193177 0.01175 0.0225649
3 -0.00764513 -0.00419906 0.00230433 0.00365751 -0.000322689 -0.000357837
4 5.84148e-05 3.1048e-05 -2.01461e-05 -2.34094e-05 2.93282e-06 1.75395e-06

Table A.7: Sector 3 parameters used for proton fiducial cuts.

i c0 d0 c1 d1 c2 d2

0 42.7907 -14.6804 0.557686 -4.28155 -1.93386 0.545166
1 -7.06612 2.32197 -0.589287 0.811594 0.366981 -0.0287077
2 0.301463 -0.0327651 0.0330414 -0.0501169 -0.0179363 -0.000611366
3 -0.00580282 -0.000419906 -0.000743318 0.00126087 0.000384465 2.22975e-05
4 4.16703e-05 8.18104e-06 5.97558e-06 -1.03781e-05 -3.01804e-06 -2.27518e-07

Table A.8: Sector 4 parameters used for proton fiducial cuts.

i c0 d0 c1 d1 c2 d2

0 52.0838 4.57043 -15.8603 -17.2084 1.38223 2.43805
1 -8.31577 -0.143877 3.14067 2.7247 -0.389671 -0.325088
2 0.393192 0.0654633 -0.22493 -0.1203 0.0333465 0.00937443
3 -0.00862513 -0.00157316 0.00610496 0.00175928 -0.000950539 1.01077e-05
4 7.12059e-05 1.11448e-05 -5.65199e-05 -7.58069e-06 8.93644e-06 -1.50299e-06

Table A.9: Sector 5 parameters used for proton fiducial cuts.
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i c0 d0 c1 d1 c2 d2

0 66.7155 -4.17306 -22.5136 -17.1484 4.17892 3.71364
1 -10.6179 -0.407384 4.06603 4.34246 -0.859252 -0.834831
2 0.47953 0.122555 -0.249083 -0.258914 0.0558406 0.0479698
3 -0.00970942 -0.00360644 0.00620864 0.00583929 -0.00141667 -0.00107312
4 7.30481e-05 3.08354e-05 -5.37051e-05 -4.52976e-05 1.23011e-05 8.33686e-06

Table A.10: Sector 6 parameters used for proton fiducial cuts.
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A.5 Electron and Proton Angle Corrections

The coefficients of the electron angle correction are given by

ai(θ) = c0 + c1θ + c2θ
2. (A.2)

The parameters of the correction are

i c0 c1 c2

0 -2.09355677 -3.31684806E-02 -1.13440559E-03
1 1.31174283 2.07143724E-01 6.37836137E-04
2 -2.44489241 -1.221424E-01 -5.16479755E-03
3 -2.8053815E-01 2.24826958E-01 2.72359806E-03
4 4.07094475E-01 4.20764036E-02 -5.1299142E-03

Table A.11: The parameters for electron angle corrections for sector 1.

i c0 c1 c2

0 5.64114112E-01 1.2504244E-02 4.10083333E-03
1 -5.1219438E-01 -4.2716178E-02 -3.910457E-04
2 -1.0028315 5.6957746E-02 8.16171478E-04
3 1.66281611 9.0687908E-02 -1.8383547E-03
4 -6.89544888E-02 -1.61183679E-01 -2.0352014E-03

Table A.12: The parameters for electron angle corrections for sector 2.

i c0 c1 c2

0 -7.70204323E-01 -5.12792186E-02 1.1502628E-02
1 3.5334639E-01 1.09249069E-01 1.17432835E-03
2 -2.7030428E-01 -6.00117927E-02 -3.45627949E-03
3 3.4657869 1.7845019E-02 1.71147716E-03
4 5.47101163E-01 -4.27954855E-01 -2.826383E-04

Table A.13: The parameters for electron angle corrections for sector 3.

i c0 c1 c2

0 -1.14963156 -3.6355055E-02 8.71534207E-03
1 1.62542337E-01 1.0517602E-01 7.9181789E-04
2 -9.95714015E-01 -1.39340483E-02 -2.6545698E-03
3 2.3246248 8.09892278E-02 8.92225567E-05
4 4.23272698E-01 -3.10226155E-01 -1.58515365E-03

Table A.14: The parameters for electron angle corrections for sector 4.
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i c0 c1 c2

0 -5.01741685E-01 -1.08187405E-01 6.3294693E-04
1 -1.77085757 -2.003366E-02 2.44439224E-03
2 -6.3760666E-01 1.72421567E-01 1.33297453E-03
3 4.5728914E-02 4.9708738E-02 -4.205488E-03
4 1.20123351 -1.8280028E-02 -9.6490117E-04

Table A.15: The parameters for electron angle corrections for sector 5.

i c0 c1 c2

0 -1.83039564 -7.9916894E-03 1.38427978E-02
1 9.3981116E-01 1.59486435E-01 3.71918054E-05
2 -6.0376152E-01 -1.28512835E-01 -3.70724347E-03
3 4.00965538 4.63797833E-02 3.39126187E-03
4 1.41910734E-01 -5.06583454E-01 -8.60422808E-04

Table A.16: The parameters for electron angle corrections for sector 6.
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A.6 Electron Momentum Corrections

The coefficients of the electron momentum correction are given by

ai(θe) = c0 + c1θe + c2θ
2
e . (A.3)

The parameters of the correction are

i c0 c1 c2

0 1.0176579118581E-02 -7.9599239534114E-06 9.5112707858653E-08
1 -0.20495101625537 7.9655917387783E-03 -6.9400370675523E-05
2 -0.15348562918845 1.0743244205188E-02 -1.8086561701112E-04
3 0.11761993283213 -7.9967328974761E-03 1.3019443527636E-04

Table A.17: The parameters of electron momentum corrections for sector 1.

i c0 c1 c2

0 1.0087801836821E-02 -5.6599480422299E-06 1.0033722952831E-07
1 -0.22412829804132 1.1661447536158E-02 -1.5960488468465E-04
2 -0.15076163008159 1.0942470368942E-02 -1.8929500388527E-04
3 0.11317471787380 -7.6499984847730E-03 1.2506972055652E-04

Table A.18: The parameters of electron momentum corrections for sector 2.

i c0 c1 c2

0 1.0073933449548E-02 -5.0800069598611E-06 1.0797150380251E-07
1 -1.0019870422334E-01 1.1211638296420E-02 -2.1899832926782E-04
2 -9.9580311244930E-02 6.8099881808583E-03 -1.1416945384378E-04
3 -1.2820491669835E-04 2.5650746001025E-04 -7.3395343512598E-06

Table A.19: The parameters of electron momentum corrections for sector 3.

i c0 c1 c2

0 1.0221497899831E-02 -1.1728924887767E-05 1.7100120165989E-07
1 -2.0318433751035E-02 2.4612021589962E-03 -6.3507481408119E-05
2 -7.6365686745569E-02 5.2998598339562E-03 -9.1297828333589E-05
3 4.7326314122685E-04 4.7628893452639E-04 -1.4020818540861E-05

Table A.20: The parameters of electron momentum corrections for sector 4.
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i c0 c1 c2

0 1.0110107335248E-02 -2.4757597510374E-06 1.3082672597941E-08
1 -0.11955549846234 6.1878054901081E-03 -9.3393940238598E-05
2 -9.6360858729669E-02 6.8477708809656E-03 -1.1784209351117E-04
3 3.9383613408158E-02 -2.7046265634257E-03 4.4662480048095E-05

Table A.21: The parameters of electron momentum corrections for sector 5.

i c0 c1 c2

0 1.0112945449548E-02 -5.3018979653485E-06 8.7085945937647E-08
1 -1.8772394756644E-02 4.6198689235790E-03 -1.0356199140906E-04
2 3.1792598257448E-02 -3.2324591761590E-03 5.3194937440755E-05
3 2.6160738941275E-02 -1.3819042499386E-03 1.8214642092420E-05

Table A.22: The parameters of electron momentum corrections for sector 6.
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A.7 Bethe-Heitler Subtraction Parameters

We first define a variable to indicate the offset from the lower edge of the first W

bin:

W0 = W − 1.08 (A.4)

such that the parameters for the linear polynomial are:

b0(W ) = 0.01 + 0.125W0 (A.5)

a0(W ) = 0.25 + 3.0W0. (A.6)

Also, the parameters for the ellipse are:

r1(W ) = 0.07 + 0.04W0 (A.7)

r2(W ) = 0.025 + 0.015W0 (A.8)

with the center fixed at

x0 = 0.025 (A.9)

y0 = −0.015. (A.10)

Fig. A.10 shows the effect of the Bethe-Heitler subtraction cuts for all bins near

threshold, W ∈ (1.08, 1.16) GeV.
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Figure A.10: M2
X vs ∆θp1 (a, c, e, g) for all near threshold bins in W ∈ (1.08, 1.16)

GeV and the corresponding M2
X projections (b, d, f, h) showing accepted and

rejected cuts after Bethe-Heitler subtraction cuts.



APPENDIX B

EC Coordinates

The transformation from CLAS coordinates (X,Y, Z) of tracks on the EC plane to native

EC coordinates (U, V,W ) or (XEC , YEC , ZEC) is described as follows.

First we obtain a rotation matrix R to rotate from CLAS coordinates to EC plane

coordinates:

R =


cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ

 . (B.1)

Here θ = 25◦ is the polar angle from the CLAS center to the EC plane and φ is the

azimuthal angle to the center of the EC plane for a given sector. The azimuthal separation

between the center of any two neighboring EC sectors is 60◦. This rotation matrix is

thus different for each sector of CLAS and needs to be constructed on an event-by-event

basis. We use this matrix to rotate the CLAS coordinates (X,Y, Z) to the EC coordinates

(XEC , YEC , ZEC):

~XEC = R ~X. (B.2)

After the rotation, we still need to translate the Z-coordinate to the EC plane. So,

ZEC → ZEC − 510.32 cm. (B.3)

Here, 510.32 cm is the distance from the CLAS center to the EC plane.

Now, we can get the (U, V,W ) coordinates for the tracks. These coordinates in

essence give us the distance from the corner of the scintillator in the EC to the point of

hit for each of the three different orientations of the scintillators. On the EC plane, the

minimum and maximum value of YEC from the center is (−182.974, 189.956) cm. Using

this range and the angular separation of ρ = 62.889◦ between each side of the EC triangle

these distances can be computed using the following prescription:

U =
YEC − YMIN

sin ρ

V =
YMAX − YMIN

tan ρ
−XEC +

YMAX − YEC
tan ρ

W =
YMAX − YMIN

tan ρ
+XEC +

YMAX − YEC
2 cos ρ tan ρ

. (B.4)
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Figure C.1: Differential cross section for the inclusive reaction ep → eX as a
function of θe for each of the CLAS sectors. Measured cross section is shown
in red and the blue curve shows the expected cross section.
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Figure C.2: The ratio of the measured to expected cross section as a function
of θe for each of the CLAS sectors for the inclusive reaction ep → eX. Thick
black line shows the zeroth polynomial fit to the points.
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Figure C.3: Differential cross section for the exclusive reaction ep → ep as a
function of θe for each of the CLAS sectors. Measured cross section is shown
in red and the blue curve shows the expected cross section.
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Figure C.4: The ratio of the measured to expected cross section as a function
of θe for each of the CLAS sectors for the exclusive reaction ep → ep. Thick
black line shows the zeroth polynomial fit to the points.
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Differential Cross Sections
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Figure D.1: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 2.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.2: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 2.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.3: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 3.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.4: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 3.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.5: The differential cross sections in µb/sr for W = 1.09 GeV and
Q2 = 4.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.6: The differential cross sections in µb/sr for W = 1.11 GeV and
Q2 = 2.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.



135

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: -0.9θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: -0.7θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: -0.5θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: -0.3θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: -0.1θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: 0.1θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: 0.3θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: 0.5θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: 0.7θcos

b/sr]µ [Ω/dσd

 (deg)φ
0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4
W: 1.11 GeV

2: 2.75 GeV2Q
: 0.9θcos

b/sr]µ [Ω/dσd

Figure D.7: The differential cross sections in µb/sr for W = 1.11 GeV and
Q2 = 2.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.8: The differential cross sections in µb/sr for W = 1.11 GeV and
Q2 = 3.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.9: The differential cross sections in µb/sr for W = 1.11 GeV and
Q2 = 3.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.10: The differential cross sections in µb/sr for W = 1.11 GeV and
Q2 = 4.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.11: The differential cross sections in µb/sr for W = 1.13 GeV and
Q2 = 2.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.12: The differential cross sections in µb/sr for W = 1.13 GeV and
Q2 = 2.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.13: The differential cross sections in µb/sr for W = 1.13 GeV and
Q2 = 3.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.14: The differential cross sections in µb/sr for W = 1.13 GeV and
Q2 = 3.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.15: The differential cross sections in µb/sr for W = 1.13 GeV and
Q2 = 4.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.16: The differential cross sections in µb/sr for W = 1.15 GeV and
Q2 = 2.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.17: The differential cross sections in µb/sr for W = 1.15 GeV and
Q2 = 2.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.18: The differential cross sections in µb/sr for W = 1.15 GeV and
Q2 = 3.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.19: The differential cross sections in µb/sr for W = 1.15 GeV and
Q2 = 3.75 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.
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Figure D.20: The differential cross sections in µb/sr for W = 1.15 GeV and
Q2 = 4.25 GeV2. Each subplot shows cross section for various cos θ∗π bin as
a function of φ∗π. Experimental points (red) are shown with statistical errors
only. The red dashed curve is a fit to the cross section as in Eq. 6.2. Predictions
from Braun et al (magenta) as well as extrapolations of fit to world data at
higher W from MAID2007 (blue) and Aznauryan et al (green) are shown.


