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INTRODUCTION

The short bunch lengths and the associated high frequencies found in the latest
designs of linear colliders, superconducting linacs, FEL drivers, damping rings,
and synchrotron light sources have heightened the importance of understanding
the high-frequency behavior of the interaction of an accelerator beam with its
environment. This parametric domain is at the limits of both the numerical and
analytical tools which have been developed to date, and consequently there exists
some question as to the correct asymptotic frequency dependence. The resulting
uncertainty in the coupling of a particle beam to vacuum chamber discontinuities
has hindered evaluation of bunch lengthening in storage rings and transverse
beam blowup in linacs, and limits confidence in assessments of beam quality in
proposed designs. Another high-frequency phenomenon, which is of particular
concern in damping and storage rings, is the synchotron radiation process in the
presence of conductive boundaries. Estimates l have indicated that this effect can
provide the dominant limit on peak beam current in small, smooth-walled
machines, but this earlier work does not take into account fully the complex,
finite-Q resonance structure which is present. The charge to the August 1987
Impedance Beyond Cutoff Workshop at Lawrence Berkeley Laboratory was to
investigate these issues in some depth and to provide clarification of the main
features of the beam coupling impedance at frequencies well above the lowest
propagation frequency of the beam pipe. Subsequent papers in this volume
present the detailed results of the workshop participants. In this note the
motivation for this effort, an overview of the progress made, and a few remarks
on remaining questions are offered.

* Work supported by the U.S. Department of Energy under contract DE-AC05-84ER40150.
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1. BASIC NOTIONS OF IMPEDANCE AND WAKE POTENTIALS

A charged particle beam passing a discontinuity in its vacuum chamber can
deposit electromagnetic energy. Alternatively, a charged particle beam passing
through a bending magnet can synchrotron-radiate, again depositing energy. The
source term in either case can be the macroscopic charge distribution of a
bunched beam or the microscopic random currents, at essentially arbitrarily high
frequency (Schottky noise), of incipient beam instabilities. These beam-induced
electromagnetic fields act on the beam and create a potentially unstable feedback
loop which may limit beam current through instability and phase space dilution.
The notions of wake potential and coupling impedance provide a major tool in
the analysis of these processes. Consider a charged particle beam passing down
the center of a cylindrical beam pipe which has an isolated cavity-like structure.
The longitudinal current I(z, t) will generate a longitudinal electric field Ez(z, t)
which for a localized, time-independent structure will be of the form

EAz, t)== fdz' dt' fdkdk' dwG(k, k', w)eikZ-ik'z'-iw(t-t')I(z', t') (1)

where G(k, k', co) is the Fourier-transformed Green function which must satisfy
causality and relativistic locality. (In general, there is an additional term
describing the contribution of the charge density which will not be discussed
here.) Although it is this Green function G(k, k', co) which enters into a
complete beam stability calculation, if the motion of the particles is well
approximated by constant velocity trajectories during transit through the localized
structure, the simpler notions of impedance and wakefield provide sufficient
information for a sound analysis. Consider a test charge moving at a constant
velocity v along a trajectory r =0, z = --- s + vt of the cylindrical beam pipe. The
integrated longitudinal field W(s) seen by the test charge is

A 'f (Z +S )W(s) = dz dt D -v- --- t Ez(z, t)

On inserting (1) into (2) and integrating, we have

W(s) == (2.nl fdkdk'G(k, k', kv)l(k', kv)e- iks

(2)

(3)

where l(k, w) is the Fourier transform of the longitudinal current I. The time
dependence of the beam current is generated both through the gross motion of
the nonuniform spatial distribution of charge in the beam and through changes in
that distribution. For a quasi-stationary distribution of charge moving at a
velocity v-that is, when the transit time is short compared to the characteristic
time for changes in the distribution-the primary time dependence will be given
by I(z, t) = Io(z --- vt). With this approximation

I(k, w) = lo(k) D(w --- kv) (4)
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Inserting Eq. (4) into Eq. (3) yields

W(s) = (2Jr)3 Jdke-iksG(k, k, kv)io(k)
Ivl

(5)

(6)W(s) = (~:r Jdke-iksG(k, k, kv)

The wake potentiaIW(s) is defined by (5) for a delta-function exciting current;
that is,

(7)

The wake potential is the effective Green function for interaction with a vacuum
chamber component in the quasi-static limit. The Fourier conjugate of the wake
potential is the coupling impedance, which is given by the relation

Z(lO) = (~~)3 G(k, k, kV)lkV=W

A current I(w) yields a voltage

V(w) = I(w )Z(w) (8)

when averaged over the structure in the quasistatic limit. Similar considerations
are applicable for transverse coupling, where a transverse effective Green
function (the transverse wake potential) and conjugate impedance can be defined.

If the motion of both the source current and test particle is not simply linear
(for example, with synchrotron oscillations or betatron oscillation) the relation
kv = w between wave number and frequency breaks down. For example, with
synchrotron oscillations at Ws the kernel G(k, k', kv + I1Ws) for integer 11 is
needed. If for the strongest sidebands k + I1Ws = k' + vWs implies that k = k',
11 = v, then only G(k, k, kv + I1Ws) are necessary for analysis. In the limit of an
infinitesimally short structure at position x, the (k, k') dependence is simply
e«k-k')x) for finite (k, k'), and G(k, k, kv + I1Ws) follows immediately from the
knowledge of G(k, k, kv) for all k.

The full knowledge of G(k, k', w) is required in situations in which the
perturbation of trajectories by induced fields during transit across the impedance­
generating structure is essential to the correct physical picture. An example of
where the simplest notions of impedance and wake potential are inadequate is
found in the phenomenon of regenerative beam breakup2 induced by a single
transverse mode in an extended structure. Consider a bunch passing through the
center of a cavity which has a low-level excitation of a transverse deflecting mode.
The associated longitudinal electric field rises linearly from zero on axis. The
transverse deflection produces a finite, albeit small, deflection into a region of
longitudinal electric field which can couple energy out of the bunch longitudinal
motion and into the mode field energy. The time dependence of the trajectory
perturbation smears the relation between wand k, and in turn allows coupling of
k =1= k'. The feedback loop formed can go unstable at sufficiently high current,
when the excitation from the orbit perturbation exceeds inherent mode damping.
Although order-of-magnitude estimates of threshold current can be obtained
from knowledge of the transverse impedance, a correct treatment requires
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detailed information on the field pattern and phases of the mode. Since the
trajectory varies from linear in transit, the usual straight trajectory wakefields do
not provide sufficient information. In fact, the functional form appropriate inside
the extended structure is not the usual wakefield expansion.3 Similar considera­
tions may apply to instability driven by the synchrotron radiation impedance,
discussed in a subsequent section, where the fields and beam interact throughout
the vacuum chamber. Furthermore, transverse variation of the coupling across
the beam may be of significance.

2. PHENOMENA DRIVEN BY HIGH-FREQUENCY IMPEDANCES

The impedance of a variety of particle accelerators has been found in practice to
begin to roll off at frequencies of the order of the lowest waveguide cutoff,
typically a few gigahertz. Because of this, the dominant current limits for an
unbunched, continuous beam, which can be excited in a very narrow frequency
band, are dominated by antidamping modes of relatively low frequency content.
The very short bunched beams found in a number of current accelerator designs,
however, present a quite different picture. Consider the excitation of a localized
structure by coherent internal oscillations of a bunch of rms length i. Because of
the finite length, the frequency spectrum offered by an arbitrary perturbation of
the bunch has width of 1/2Jri and is centered about the typical frequency of the
perturbation. For example, a 1 mm bunch generates a corresponding frequency
bandwidth of about 50 GHz. Therefore, any successful model of internal bunch
stability for these short-bunch designs will include significant frequency smearing
over a range where there is considerable variation in the coupling impedance and
over frequencies well above typical cutoff frequencies of a beam pipe.

Internal bunch instabilities, both transverse and longitudinal, have provided a
fundamental limitation in the design of short-pulse-length synchrotron light
sources, high-phase-space-density damping rings, and single-pass FEL drivers.
Although several formalisms have been developed to describe this class of beam
instability, they share in a common structure. 4 A set of basis states (possibly
degenerate) is chosen which describes perturbations of the bunch phase space and
current, with the higher states corresponding roughly to shorter-wavelength
internal ripples. For each mode there is an associated eigenfrequency. The
impedance generates an additional interaction between the states, and the
determination of stability reduces to an infinite-dimensional eigenvalue problem.
The fundamental matrix is formed from the unperturbed eigenfrequency
spectrum and expectation values of the product of the impedance and beam
current with the basis set. Since the basis set represents modes on a bunch of
finite length i, the expectation values effectively average the impedance over a
frequency range l/i. In general, reactive impedance can couple a basis mode to
itself, yielding a frequency shift. On the other hand, resistive impedance provides
the primary coupling between neighboring states and acts to induce instability.

Determination of the threshold current for longitudinal and transverse in­
stability requires solution of an infinite-dimensional-matrix eigenvalue problem.
In practice, the matrix is truncated, and certain general features which determine
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(9)

(10)

instability onset are observed. Heuristically, the off-diagonal matrix elements
(through the resistive component) provide a potential growth rate; the reactive
component yields frequency shifts which can either increase or decrease the
eigenfrequency spacing for basis states which are of the correct class to couple.
Instability (antidamping eigenfrequencies) is observed when the potential growth
rate exceeds the mode spacing. A reactive impedance that is large when averaged
over the mode spectrum can reduce mode spacing and allow a relatively small
resistive coupling to induce instability. As the current is increased the modes can
cross and stability can be restored, yielding a stopband structure in current.
Therefore, the threshold for this instability becomes a sensitive function of the
averaged reactive impedance. For short bunches this average is carried from the
low-frequency inductive impedance through to the high-frequency capacitive
impedance of the tail, and estimates of stability can become extremely sensitive to
both the assumed value of the transition (i.e., cut-off) frequency between
inductive and capacitive behavior and the functional form in frequency of the
high-frequency rolloff. Longitudinal impedance models invoking so-called "Spear
scaling" (with an implicit £0-

0
.
7 dependence) and a "Q = 1 resonator" (with an

implicit £0-
1 dependence) have been widely used. As will be described later in

more detail, the primary discussion of the Impedance Beyond Cutoff Workshop
centered about whether the high frequency rolloff of the longitudinal coupling
impedance is dominantly £0-

1/2 or £0-3/2. For short bunches the choice of model
can significantly affect stability estimates. Similarly, assumptions with regard to
the 'cutoff' angular frequency where rolloff begins-for example, at cia or 2.4 cia
(the TM cutoff in a circular pipe of radius a)-ean yield either bunch lengthening
or shortening in some parameter regimes.

The maintenance of beam quality for the short, highly charged bunches found
in proposed linear colliders,5 multipass superconducting beauty factories, and
FEL drivers is a second issue which is intimately tied to the high frequency
behavior of the transverse and longitudinal coupling impedances. Since the
longitudinal wake potential is related to the coupling impedance by a Fourier
transform, an W-

1I2 asrmptotic form implies that the D-function wake W(s)
diverges at s = 0 as I/Vs whereas an £0-

3/2 dependence yields a finite limit. The
functional dependence of the transverse wake varies typically as the integral of
the longitudinal wake, which implies S1l2 or s behavior, respectively, in the
neighborhood of s = o.

The longitudinal loss factor ke(a) is defined by the relation

Q2ke = L+oo
oo

d1'I(1') roo dtI(t)W(1' - t),

and Q2ke gives the total energy loss of a bunch of charge Q for a current
distribution I. For reasonable charge distributions, 2Qke gives the approximate
head-to-tail energy variation induced by the longitudinal wake. The transverse
loss factor kt is defined by

Q
2
kt = L:

oo
dtI(1') roo dtI(t)l¥r( l' - t)
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where ~(r) is the transverse wake potential and Qkt gives the averaged induced
transverse kick. If W-

1I2 asymptotic behavior as discussed above is assumed, then
for a Gaussian bunch of sufficiently small rms length a,

and
(11)

k t rx a 1l2
•

If, on the other hand, W-
3/2 behavior is assumed, then

ke rx constant
and

(12)

(13)

(14)

As is clear from Eqs. (11-14), in extrapolating either measurements performed
with relatively long bunches or numerical estimates at the limits of computer
capacity with shorter bunches, one again is faced with substantial differences
which depend on the asymptotic form of the high-frequency coupling impedance
and can strongly affect the evaluation of performance.

3. EARLIER RESULTS FOR HIGH-FREQUENCY ROLLOFF

The behavior of the longitudinal impedance at very high frequencies has been
investigated by several authors. Two models which have been used extensively
are the diffraction model of Lawson6 and the optical resonator model. In the
diffraction model, the power lost by a charge traveling along a beam pipe which
opens to form a resonator is estimated. For a relativistic particle, the field looks
very much like a plane wave, and the approximation is made that diffraction of
this wave occurs at the pipe edge. The energy that is diffracted outside the beam
pipe radius is reflected at the far side of the resonator and is lost. The primary
result, from the point of view of this workshop, is that the energy loss of a point
particle increases as y1l2. The relativistic distortion of the electric field to an
opening angle 1/yc provides a high frequency cutoff of order cy/a of the field
spectrum of a point charge at the pipe radius a. Thus, the y1l2 dependence of the
loss factor in the diffraction model translates into an W-

1/2 asymptotic behavior in
frequency.

The optical resonator model provides an alternative description of energy loss
based on the work of Vainshtein.7

,8 The analogy is drawn between a set of infinite
plates with circular holes and the pair of circular mirrors with infinite reflections
of the optical resonator. In this model, the energy loss for large y is found to be
independent of y, and indicates that the asymptotic form of the impedance at
high frequencies must be fast enough to yield convergent integrals. Detailed
analysis of this model yields an asymptotic dependence of W -3/2.

Both models describe the energy loss mechanism in terms of diffraction; the
fundamental distinction is that the Lawson diffraction model treats a single,
isolated cavity, whereas the optical resonator model more immediately addresses
a periodic array. Keil's9 work which numerically evaluates the losses in an
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infinitely long sequence of accelerating cavities. suggests that the distinction drawn
between single, isolated structures versus periodic structures is of particular
significance. The work finds that the energy loss is strongly y-dependent at low
energies, but y-independent at high energies. Since, as the energy is increased,
higher frequencies are generated, this result would indicate the validity of the
optical resonator model for truly periodic structures. At lower energies, the
frequency spectrum has not entered the asymptotic regime. The work of
Hazeltine, Rosenbluth, and Sessler9 for the energy loss of a charged rod which
moves at a constant speed past an infinite set of parallel semi-infinite conducting
plates shows an even more benign behavior for a periodic structure, with the
energy loss ultimately falling with increasing y. However, the semi-infinite
geometry itself reduces the dimensionality of the problem and may provide
additional regularization of the beam-structure coupling.

4. WORKSHOP CONJECTURES

The efforts of the theory group of the Impedance Beyond Cutoff Workshop
entered on two primary issues. First, whether w-1I2 was indeed the correct
asymptotic behavior for an isolated cavity, and secondly, for how long (if ever)
must a structure repeat before the w -3/2 behavior characteristic of the optical
resonator model sets in. Results for an isolated pillbox cavity are presented in
papers of the workshop proceedings by Dome, Heifets and Kheifets, Bane and
Sands, and Henke. In addition, Palmer presents a diffractive model in the spirit
of Lawson's work which indicates the possible nature of the transition between
the single cavity and periodic limits.

Dome's model is based on the assumption that, for a pillbox cavity with beam
pipe of radius a, the field pattern within the cavity at radii greater than a are­
undistorted from the closed cavity solutions. With this approximation and
summing over modes with appropriate time delays, he obtains an w- 1I2 behavior.
The work of Heifets and Kheifets provides an iterative solution of Maxwell's
equations for a pillbox with beam pipe. The leading term agrees with the result of
Dome. In addition, it is shown that the next term in the expansion is "small" with
respect to the leading term. Thus, although convergence is not assured, there is
evidence that the iteration is well behaved. Bane and Sands have investigated the
high-frequency behavior using Weiland's TBCI and have compared these results
with their version of the Lawson diffraction model. For short bunches the TBCI
computations are found to approach the predictions of this model, and are
therefore consistent with w -112 rolloff. Finally, in the work of Henke the field
problem is solved with a mode matching technique. It is found from numerical
solution that the longitudinal impedance for a radial line behaves as w- I12• In
summary, a variety of independent techniques, including analytic iterative
methods, time-domain and frequency-domain numerical solution to Maxwell's
equations, and diffractive approximations agree on the asymptotic form of the
longitudinal impedance for an isolated cavity excited by an infinite-energy beam.
Of course, iterative methods may not converge, and truncation of matrices and
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finite mesh size may introduce spurious behavior, but the preponderance of
evidence from this workshop points to an asymptotic rolloff of W-

112
•

Unfortunately, a rigorous result, without approximation, for some closed
geometry with beam pipe has yet to be achieved. Palumbo, however, does give an
analytic solution for a single step which shows a rolloff that is even slower than
W -112.

The discussion of the second issue-the nature of transition between single-cell
and periodic behavior-yielded a scale-length conjecture which followed from a
rather simple interference picture. Consider a length of structure L formed by a
series of many cavities with beam pipe of radius a. When viewed from the axis,
the path length difference between the first and the last cavity is given by

82

D= L - L cos 8 ~ L ­
2 '

(15)

with 8 approximately equal to a/L. The condition for maximal coherence of the
diffracted radiation on axis is when Dis of the order of the wavelength or

L ~ ka2
, (16)

where k = w / c. Palmer's paper derives an equivalent scale factor from his
diffractive model. Thus, for a given k, there is a minimal length of structure
required before the structure looks infinitely periodic. There appears to be both a
high and low frequency bound to this periodic behavior. For small enough k, L
may be less than a single cavity length, and the system is not well modeled by
multiple interference. For high enough frequency, on the other hand, the
structure is not long enough for full coherence to be established. Thus from this
argument it would appear that for any finite length structure, at sufficiently high
frequency, w -112 behavior can be expected, but that typically there would be a
middle region which would mimic w -3/2 behavior. In the limit of an infinitely long
structure, this middle region would extend out to infinite frequency. It is
important to recognize that this picture represents a conjecture of the workshop
made with the hope of stimulating a deeper investigation of the nature of the
transition, if it indeed does occur, between single-cavity and periodic-structure
rolloff. A multiple of length scales appear in the problem-k-t, total length,
aperture radius, cavity radius, cell length, and cell separation-all of'which may
be involved in the determination of asymptotic behavior.

5. SYNCHROTRON RADIATION IMPEDANCE

For small storage rings there appears to be another important source of
interaction of the beam with its environment-the synchrotron radiation process.
The effect of synchrotron radiation in a bend of radius p, and angle 8 may be
expressed in terms of a machine impedance of magnitude11

(
np )1I3( 8 )IZ(n)1 = 354 Ii 2n ohms. (17)
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at harmonic n relative to the machine circumference 2:rcR. However, the
synchotron radiation in the bend magnets is suppressed at frequencies below a
cutoff value many times the TM-mode cutoff. For a "vacuum" chamber consisting
of two, infinite parallel plates separated by 2h, the synchrotron radiation will be
fully unshielded only for harmonics n satisfying

n > ~ (;:r2

• (18)

The peak value of the coupling resistive component of the coupling impedance is
found to be well-approximated by12

h
Re(Z(n)) == 300-.

R
(19)

For small machines (radius less than 100 m) this effect can apparently provide the
dominant source of high-frequency impedance. Random currents (Schottky
noise) which exist at arbitrarily high frequencies on a bunched beam can in
principle self-couple through this mechanism and generate internal bunch
instabilities. However, the parallel plate geometry for which Eqs. (17) and (18)
apply is open and does not exhibit the full resonant structure that would be found
in a closed, toroidal vacuum chamber. Thus, although it can be expected that Eq.
(19) holds in some averaged sense, there is the need to clarify the resonance
structure, including widths. This analysis is the topic of the contribution of
Warnock and Morton. Lee addresses the transverse counterpart and shows the
importance of chromatic effects. It should be noted that application of the
longitudinal impedance should not be naively applied to standard bunch­
lengthening formulas because the frequency, phase, and spatial character of the
synchrotron-radiation impedance are quite different from those which have
generated instabilities in existing rings-rings which are less smooth than those
that are now being proposed. In particular, since the structure is not short
compared to the wavelengths of interest, stability analysis is entirely in a transient
regime.

6. FUTURE DIRECTIONS

Although the results of this workshop indicate strongly that the longitudinal
impedance of an isolated cavity-like structure has an (J) -112 rolloff, a rigorous
proof has yet to be achieved. Finite-length systems as presented by this isolated
cavity problem or by bunched-beam stability analysis have proven intractable in
the exact sense, with most work relying on truncation of an essentially
infinite-dimensional problem. Any progress in this area would not only yield
possible confirmation of the various approximate results of this workshop
proceedings, but also would offer a powerful tool with which to address a variety
of accelerator beam-dynamics questions. An issue which was only addressed in
passing during the workshop is the effect of tapering on reducing the coupling of
the beam to vacuum-chamber discontinuities. To date there have been no clear
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analytic results on the scaling, with bunch length and taper angle, of the
impedance reduction offered by tapering.

The results of Warnock and Morton and also of Ng (in this Proceedings) clearly
indicate that, in a closed geometry, there is a self-interaction of the beam through
the synchrotron radiation process which is not of negligible strength. In fact, the
estimated impedance values estimated demand further study to ensure that the
phase-space densities desired in damping rings for linear colliders and high­
brightness synchrotron light sources are obtained. This work should include both
theoretical beam-dynamics calculations and experiments on small electron storage
rings. Unfortunately, the combination of discontinuity cleanliness and small
radius required to observe synchrotron-radiation-induced instability may be hard
to find in the older generation of machines, and an small experimental machine
dedicated to this study may be needed. Such a device would also be of use in
evaluating component impedances (cavities, bellows, steps, slotted vacuum
chambers) at frequencies too high for confident wire or bead pull measurements.
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