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Abstract: The commonly quoted bistable Higgs potential is not a proper description of the Higgs

field because, among other technical reasons, one of its stable states acquires a negative expectation

value in vacuum. We rely on formal catastrophe theory to derive the form of the Higgs potential

that admits only one positive mean value in vacuum. No symmetry is broken during the ensuing

phase transition that assigns mass to the Higgs field; only gauge redundancy is “broken” by the

appearance of phase in the massive state, but this redundancy is not a true symmetry of the massless

field. Furthermore, a secondary, certainly amusing conclusion, is that, in its high-energy state, the

field oscillates about its potential minimum between positive and negative masses, but it is doubtful

that such evanescent states can survive below the critical temperature of 159.5 GeV, where the known

particles were actually created.

Keywords: cosmology; critical phenomena; Higgs production; non-equilibrium field theory; particle

astrophysics; first-order and second-order phase transitions

MSC: 31D05; 58K35; 81R40; 82B26; 82C26; 85-10

1. Introduction

Bistable potential wells possessing two minima separated by an energy barrier are
quite common in the natural sciences [1–6]. Despite their frequent use in descriptions of
discontinuous transitions occurring in physical, chemical, and biological systems and their
intimate connections to catastrophe theory, bifurcation theory, singularity theory, structural
stability, and phase transitions [4–9], the ensuing dynamical evolution is not understood
in virtually all cases, to the point that some famous accounts of transitions are not only
technically unphysical, but they are also visibly preposterous. The deeper reason for such
absurdities is the lack of temporal variables in Landau’s phase-transition theory and in
Thom’s catastrophe theory. These theories apply only to gradient systems [1,4–6], and the
notion of time-dependent phenomena is added ad hoc by describing arbitrarily drawn
paths in the control parameter space of the cusp and higher elementary catastrophes.

For instance, Landau’s phenomenological theory of second-order phase transitions
predicts the appearance of two minima of equal depth past the critical point, although we
know from experiments that only one stable state exists below the critical temperature Tc.
To work around this problem, the theory postulates, against the odds, that an evolving
system will arbitrarily choose to settle into one of these states. Even in this hypothetical
scenario, the model remains unphysical because these states continue to evolve and change
their mean values as the temperature T < Tc is lowered toward absolute zero. So, no
matter which minimum the system “chooses”, it finds itself out of equilibrium all the time;
thus, the system has to evolve again and again trying to catch up with the ever-changing
equilibrium state. In contemporary parlance, such a situation is described by the metaphor
“moving the goalposts” which has a negative connotation.
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Furthermore, it is well-known that an infinitesimal linear perturbation wipes out
entirely Landau’s second-order phase transition [6], which means that such transitions
should not occur in nature, or that the theory is wrong. All these absurdities come to
life because of the assumption that the system finds itself at a local maximum of the
potential as T crosses to just below Tc, where it sees two new minima opening up as the
control parameter becomes nonzero (negative, to be specific [1,5–7]). This assumption
places the system in an unstable initial state, a practice that is heavily at odds with basic
physics and with the stable stationary states that we describe in Section 2 below. It is also
mathematically puzzling how the initial potential minimum at T ≥ Tc changes directly to
an isolated maximum without passing through a degenerate inflection point (this procedure
builds a priori a discontinuity in the second derivative of the potential [1]).

The stability of the Higgs potential in particle physics [9–13] is another case in point.
The descriptions of how the Higgs field acquires mass are cursory and nonsensical at their
roots: At high energies, the massless Higgs field is supposed to be stripped of any and

all features, yet it is hypothesized to have “some high symmetry” (zero weak isospin?)1

supporting an even potential function. This is the symmetry that will be broken in the final
stationary state, when the unstable field will conveniently ignore the negative-minimum
state and it will choose against the odds to settle into the other available state of positive
vacuum expectation value (VEV). But how can such a symmetry be broken when the
potential continues to be an even function, just as prior to the transition? And how can the
system ever settle into either one of the low-energy states, when these states are not really
stationary but continue to move the goalposts (dotted curves in Figure 1) to different VEVs
all the time?
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Figure 1. Potential V(φ) = φ4 − m2φ2/2 for m = 0, 1, 2. For m 6= 0, three unphysical features

are observed: (a) The system suddenly finds itself at a local maximum. (b) Two global minima

are available, the one at φ0 < 0 with negative VEV. (c) The stable minima continue to relocate to

φ0 = ±m/2 (along the dotted curves) as m increases, throwing the system out of equilibrium all

the time and preventing its settling to a specific VEV, irrespective of which side it chooses to evolve.

These features appear because the perturbation (−m2φ2/2 + bφ) of the cusp catastrophe germ (φ4)

has been overconstrained by setting b ≡ 0.

All of the above descriptions should have been taken with a large grain of salt because,
after all, an infinitesimal linear perturbation at T = Tc eliminates the second-order phase
transition altogether. This occurs because Landau’s assumption of a “higher symmetry” in

the initial state [1] arbitrarily alters the perturbation2 (−m2φ2/2 + bφ) attached to Thom’s
cusp catastrophe germ (φ4; [4]); as a result, one control parameter is eliminated (b = 0; [6])
and the drawn ad hoc evolutionary path {m, b=0} in the control parameter space (m, b)
becomes incorrect and irreparable—even if an infinitesimal b 6= 0 perturbation is brought
back in. The reason for this structural instability is that m and b are related along the
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transition path; thus, the value of b cannot be chosen independently. The proof is given in
Section 2.1 below using polynomial theory.

The resulting overconstrained (b = 0) potential with one remaining control parameter,
V(φ) = φ4 − m2φ2/2, is illustrated in Figure 1. The phase-transition path highlighted by
the dotted curves is unphysical for the reasons discussed above; thus, naturally occurring
phase transitions (of first and second order) require a different mathematical approach.
We undertake this task for the Higgs field in Section 2, and we discuss our results for the
various types of phase transitions in Section 3. Finally, we summarize our conclusions
in Section 4. For the sake of completeness of the methodology, the two higher-order
elementary catastrophes (the swallowtail and the butterfly) are also analyzed in this work,
and their results are collected in Appendix A.

2. Derivation of the Higgs Potential from Catastrophe Theory

In cosmology and particle physics, the scalar Higgs field is massless and featureless at
the very high energies occurring right after the big bang [9,10,14–17]. When the universe
cools down to a critical temperature of Tc = 159.5 ± 1.5 GeV [16,17], the electroweak
phase transition takes place [9–11,16–20]. Lattice monte-carlo simulations indicate that the
cross-over of the Higgs field is smooth but fast, lasting for only ∆T ∼ 5 GeV [16,17], during
which the field settles down to a nonzero (positive) VEV of v = 246.22 GeV, where it has
remained until the present time. This value of the Higgs VEV is a natural constant [20],
and it is responsible for the corresponding particle, the Higgs boson, acquiring its observed
mass (125.25 GeV; [21–24]).

There are two methods by which we can derive the scalar Higgs potential at all
temperatures and observe the phase transition to the massive Higgs boson. The first
derivation is more tedious and requires more steps, but it is also transparent in justifying
the various assumptions being made; it further shows that the Higgs potential obeys Thom’s
theorem [4] for the cusp catastrophe. The second derivation is an astute shortcut, but it is
opaque and reveals no details; this formulation hides the influence of catastrophe theory,
so it could have been carried out at the time that Landau [1] presented his phase-transition
theory. We summarize both methods below.

2.1. Method 1: Relying on Catastrophe Theory and Stable Isolated States

For the Higgs potential V(φ) to generally exhibit three isolated extrema, its derivative
V′ must have the form

V′(φ; a, b, c) = 4(φ + a)(φ + b)(φ + c) , (1)

where a, b, c are interrelated control parameters to be constrained below. Then, V′(φ0) = 0
gives the extrema φ0 = −a,−b,−c. Integrating Equation (1), we find that

V(φ; a, b, c) = φ4 +
4

3
(a + b + c)φ3 + 2(ab + bc + ca)φ2 + (4abc)φ , (2)

where the integration constant has been dropped. In the neighborhood of the critical point
of the germ V = φ4, the Taylor expansion does not have a cubic term or terms higher than
O(φ4). These terms are eliminated by Thom’s inhomogeneous linear transformation and
his nonlinear transformation, respectively [4–6]. Thus, we must set

a + b + c = 0 , (3)

in which case we obtain the canonical form of the cusp catastrophe3

V(φ; a, b) = φ4 − 2
(

a2 + ab + b2
)

φ2 − 4ab(a + b)φ , (4)

with the extrema located at φ0 = −a,−b, (a + b). Note that if we arbitrarily choose b = 0,
then we obtain Landau’s [1] potential with extrema at φ0 = 0,±a (see also Section 2.2.2
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below). This choice is unjustifiable, and we are not going to adopt it. Instead, we shift V(φ)
by a to the right, in order to place the first listed extremum at φ0 = 0. The shift transforms
the cusp-catastrophe Function (4) to

V(φ; a, b) = φ4 − 4aφ3 + 2(a − b)(2a + b)φ2 , (5)

where an additive constant has been dropped (eliminated by a vertical shift). In this
function, the extrema have been shifted to φ0 = 0, (a − b), (2a + b). We shall see that
φ0 = 0 corresponds to a local minimum of V(φ; a, b), and we are prepared to assume that
the massless Higgs field occupies this minimum while waiting for a more stable state to
open up and become accessible. The subject of accessibility of a new global minimum is very
important in this regard; it is discussed further in Section 3 below.

Next, we fix the third listed extremum to always be located at φ0 = 1 by convention.
Then, we set

b = 1 − 2a , (6)

and Equation (5) takes the form

V(φ; a) = φ4 − 4aφ3 + 2(3a − 1)φ2 . (7)

The extrema are now located at φ0 = 0, (3a − 1), 1. When φ0 = 1 is a global minimum, it
represents the massive state of the Higgs field, and when this minimum becomes accessible
at a critical point in the control parameter plane (a, b), the field will make the transition to a
nonzero VEV (v = φ0 = 1). The phase-transition path is described by Equation (6). Thus,
the path is an oblique line that does not cross the apex a = b = 0 of the separatrix.

In a final step, we redefine the location of the second listed extremum φ0 = 3a − 1
by adopting

k ≡ 3a − 1 . (8)

This definition gives us a better handle on the location of this extremum. We want it to
correspond to a local maximum (the location of an energy barrier that obstructs the phase
transition for all k ∈ (0, 1]. As such, k should be located between the other two extrema, viz.

0 ≤ k ≤ 1 , (9)

and then Equation (7) is rewritten in the final form

V(φ; k) = φ4 − 4

3
(k + 1)φ3 + (2k)φ2 . (10)

Looking at this potential function, it is hard to imagine that it satisfies Thom’s cusp-
catastrophe theorem [4], but it does. Equation (10) is equivalent to the cusp-catastrophe
potential (4) shifted by a to the right, where a = (k + 1)/3 and b = (1 − 2k)/3.

The Higgs potential (10) is plotted across the transition path {k = 1 → 0} in Figure 2.
The critical points (φ0, V(φ0)) of the potential V(φ; k) are

φ0 = 0, V(0) = 0 ;

φ0 = k, V(k) = k3(2 − k)/3 ;

φ0 = 1, V(1) = (2k − 1)/3 .

(11)

Thus, the height of the energy barrier is ∆V = k3(2 − k)/3 and 0 ≤ ∆V ≤ 1/3. For
k ≤ 1/2, once at the top of the barrier, a system will dissipate an amount of energy equal to
∆E = (1 − k)3(1 + k)/3 during its settling to the global minimum on the right side. This
amount is maximized at the critical point k = 0 for which ∆Emax = 1/3.
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Figure 2. Cusp catastrophe in the potential V(φ; k) (Equation (10)) with 0 ≤ k ≤ 1 placing the energy

barrier between the other two extrema. The phase transition path is described by {k = 1 → 0}.

A system initially located at (0, 0) may undergo a phase transition to φ0 = 1 only when this state

becomes the global minimum (for 0 < k < 1/2) and (quantum tunneling aside) only if a finite

perturbation provides the free energy required for climbing over the top of the intervening energy

barrier. The critical point of the phase transition occurs for k = 0, when the diminishing barrier

finally disappears, and the system moves spontaneously to φ0 = 1. For k < 0 (dashed curve), a

new local minimum opens up at φ < 0, but the system remains at the global minimum φ0 = 1 for

all kmin < k < 0, where kmin represents the state at absolute zero—here, as usual, we think of k as

proportional to the temperature difference (T − Tc).

For k = 1/2, where the two minima have equal depth, the barrier height is ∆V = 1/16,
and an equal amount of energy, if gained from external perturbations, will be dissipated
away (∆E = 1/16) during the transition from the top of the barrier to one of the two
stable states. The k = 1/2 stage is important because it is the first instance along the
evolutionary path {k = 1 → 0}, where another stable state (φ0 = 1) becomes available to a
system located at φ0 = 0, although, barring a sufficiently strong nonlinear perturbation,
the new state is not dynamically accessible because of the intervening barrier [28–32]. In
Section 3, we discuss the types of viable phase transitions along the latter path segment
{k = 1/2 → 0}, where the energy barrier continues to diminish with decreasing k.

2.2. Method 2: Implementing a Shortcut

An alternative derivation of Equation (10) that dispenses with details and formalities
is as follows.

We return to Equation (1) for the derivative V′(φ), which we copy here for convenience:

V′(φ; a, b, c) = 4(φ + a)(φ + b)(φ + c) . (12)

Following Landau’s assumption (Cφ3 ≡ 0; [1]), we eliminate the quadratic term from
V′, in which case the sum of the three zeros is set to zero and c = −a − b:

V′(φ; a, b) = 4(φ + a)(φ + b)(φ − a − b) . (13)

We shift φ by a to the right to place one extremum always at φ0 = 0:

V′(φ; a, b) = 4φ(φ − a + b)(φ − 2a − b) . (14)

We constrain the control parameters by 2a + b = 1 (or by a − b = 1) to place another
extremum always at a fixed location φ0 = 1:

V′(φ; a) = 4φ(φ − 1)(φ − 3a + 1) . (15)



Axioms 2023, 12, 1093 6 of 18

We redefine −3a+ 1 by Equation (8) to simplify the location of the remaining extremum:

V′(φ; k) = 4φ(φ − 1)(φ − k) . (16)

Integrating with respect to φ, we obtain the form (10) for V(φ; k).

2.2.1. Utilizing a Familiarity Heuristic

Perhaps surprisingly, the steps taken in the shortcut above can all be avoided by
utilizing a familiarity heuristic [33].

The final result can be written down in just two steps, without proof or investigation of
its validity, by simply recalling that we are interested in static potentials which we can use
to demonstrate phase transitions. Such potentials must generally exhibit three extrema, two
fixed minima (φ0 = 0, 1) representing the initial and final stationary states, and a maximum
representing an obstacle or barrier that separates the two states. Therefore, Equation (16)
can be written down ab initio, and then it can be integrated to yield the potential V(φ; k)
shown in Equation (10).

The problem with this extremely fast, albeit heuristic approach is, of course, that
we cannot then formally justify the potential obtained by intuition and familiarity with
nature’s phase transitions [1–3]. This problem is solved by the lengthy derivation given in
Section 2.1 above.

2.2.2. Looking Back to Landau’s Theory of Phase Transitions

By contrast, Landau’s phase-transition theory can be formulated in the same context
(Equations (12)–(16)) as follows.

Control parameter c is replaced by −(a + b) in Equation (12) to eliminate the φ2 term
(no cubic term in the potential). Then, b is set to zero in Equation (13) (in disagreement
with catastrophe theory, which was not known at that time), resulting in the overcon-
strained form

V′(φ; a) = 4φ(φ2 − a2) . (17)

Integrating with respect to φ, we obtain the final form

V(φ; a) = φ4 − 2a2φ2 , (18)

which is depicted in Figure 1 for a = 0, 0.5, 1 (corresponding to m = 0, 1, 2; here, a = m/2).
As was discussed in Section 1 and summarized in the caption of Figure 1, these potential
curves do not form an evolutionary path in the control parameter plane (a, b) with varying
values of the remaining control parameter {|a| = 0 → 0.5 → 1 → · · · }.

3. Discussion of Phase Transitions

3.1. The Higgs Phase Transition

For the purposes of our discussion, we rewrite the canonical potential Function (4) of
the Higgs field in Thom’s equivalent form of a cusp catastrophe, viz.

V(φ) = φ4 + Aφ2 + Bφ , (19)

where the control parameters (A, B) are functions of two of the roots (a, b) of V′(φ) = 0,
viz. A ≡ −2(a2 + ab + b2) and B ≡ −4ab(a + b). The third root c is not independent, i.e.,
c = −(a+ b) (Equation (3)). If we set any one of these three roots to zero, then B = 0 and the
perturbation of the germ φ4 takes a specialized even form that cannot describe quantitatively
any phase transition since the phenomenon occurs naturally for general perturbations of
no particular symmetry. Moreover, B = 0 fixes the maximum of the bistable potential V(φ)
to point (0, 0), where the system finds itself at the onset of the phase transition. Thus, the

system is unstable and has no choice but to evolve. This setup is clearly problematic.4

Physical reasoning [2–4,7–9,15–17,26–32] formally requires that the system be located at
a stable minimum of the potential at all times before the second-order critical point Tc is
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reached, and that this minimum become degenerate for T = Tc (i.e., an inflection point)
and progressively a (no longer relevant) local maximum for T < Tc, as in Figure 2 (the case
T < Tc corresponds to the k = −0.25 curve). This figure also shows the physical reason
for the occurrence of the second-order phase transition for k = 0: the energy barrier that
separates the two stable states diminishes as T → T +

c (k → 0+) and disappears altogether
for T = Tc; in fact, it is the merging of this maximum with the minimum at φ0 = 0 that
makes the critical point T = Tc degenerate. This smooth process makes sense, as the
minimum that initially hosts the system switches gradually, first to an inflection point, and
then to a maximum.

The control parameters A and B do not vary independently along the evolutionary
path. Therefore, setting B = 0 for all values of A in Equation (19) (as in Landau’s theory)
is prohibited. This can be proven as follows: Using Equations (6) and (8), we express the
control parameters (A, B) of the canonical cusp catastrophe (19) as functions of k, viz.

A = −2

3

(

k2 − k + 1
)

, (20)

and

B = − 4

27
(2k − 1)(k + 1)(k − 2) ; (21)

we can see that B = 0 in k ∈ [0, 1] only for a single point, k = 1/2, for which A = −1/2.5

Now, eliminating k between these two equations, we find that the control parameters (A, B)
are related along the path {k = 1 → 0} by

4(A + 2)2(2A + 1) + 27B2 = 0 , (22)

where A ∈ [−2/3, −1/2] and B ∈ [−8/27, 8/27]. This curve effectively constrains the
evolutionary path in the (A, B) plane; the constraint reveals the presence of an integral of
motion (i.e., a conserved quantity) during the evolution, as was determined in astrophysical
first-order and second-order phase transitions [29–32].

Figure 3 shows the (A, B) plane of the cusp potential (19) and the evolutionary path
{k = 1 → 0} that lies entirely within the separatrix (the fold curve 8A3 + 27B2 = 0) and
terminates at the critical point k = 0, where the phase transition occurs spontaneously.
(Note the degenerate inflection point at φ0 = 0 in the inset of the Higgs potential V(φ; 0).)
For k = 0, the coordinates are (A, B) = (−2/3, −8/27). Because this point also lies on the
separatrix, this is the first demonstration of the so-called “delay convention” [3–6,37] in
a second-order phase transition. Except that the delay down to k = 0 does not occur by
convention here, it is a calculated outcome in the evolution of V(φ; k) depicted in Figure 2.

This brings the discussion to the other convention6 commonly used in catastrophe theory,
the so-called “Maxwell convention” [3,6,28,37] used in first-order phase transitions.

3.2. The Maxwell Convention and Chemical Reactions

The Maxwell convention singles out the point with k = 1/2 in the middle of the
path shown in Figure 3 as a viable phase-transition point because the two minima seen in
the V(φ; 0.5) inset have the same depth [37,38]. This is utter speculation that came about
because a system was thought to already be at the top of the energy barrier. From the top,
both minima are accessible with equal probabilities of transition, and the two stable states
coexist. This setup and assumptions are basically the same as in the Higgs field which
can also transition to the two stable states (one with negative VEV) with equal probability,
according to Landau’s theory [1]. But, as we explained above, placing a system at a local
maximum at the transition point is unphysical; so, we proceed to describe and clarify the
evolution of nonspontaneous first-order phase transitions and Maxwell’s rule under the
action of external perturbations in the control parameter plane of Figure 3.
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Figure 3. The evolutionary path {k = 1 → 0} on the control parameter plane (A, B) of the cusp

catastrophe, where A and B are the coefficients seen in Equations (4) and (19). The lower insets are

borrowed from the potential curves V(φ; k) of Figure 2. The separatrix 8A3 + 27B2 = 0 is shown in

blue color.

Maxwell’s rule [38] (the basis for the Maxwell convention) identifies the point (k = 1/2)
along the path {k = 1 → 0} in Figure 3, in which the two stable minima attain equal depths.
The system initially occupies the left minimum and, as the evolution proceeds along the
segment {k = 1/2 → 0}, it cannot generally access the other stable state because of
the intervening energy barrier. Thus, Maxwell’s rule simply captures the first instance
that another stable state becomes available, but not necessarily accessible. Only external
perturbations can induce such a nonspontaneous transition of system parts and sectors
for k ≤ 1/2, if they are sufficiently strong, and then the two phases will coexist. Thus,
chances are that such a discontinuous transition of sectors may occur at a value smaller
than k = 1/2 because the barrier height decreases along the segment k < 1/2 (Figure 2).

This is precisely what takes place in the chemical reactions that use catalysts [39–43];
catalysts lower the so-called activation energy barrier, thereby increasing the reaction rates
(i.e., they induce a first-order phase transition in parts of the reactants), without actually
being consumed. Lowering the energy barrier is a mechanism used in catalyzed chemical
reactions. An alternative mechanism is to perturb the reactants by supplying excess heat.
In this pathway, the barrier remains intact, but the reactants absorb the energy, and more
constituents go over the top of the barrier to the other state that hosts the products of
the reaction.

3.3. Overcoming the Energy Barrier

The above chemical reaction mechanisms fit rigorously into our framework of first-
and second-order phase transitions (Figures 2 and 3). A spontaneous reaction occurs when
there is no barrier (k = 0); and a catalyzed reaction or a heat-driven barrier jump occurs for
k ≤ 1/2, but only under the action of perturbations supplying the necessary energy. An
example is shown in Figure 4 for k = 0.4 in Equation (10). We consider a system oscillating
initially about minimum I under the action of external perturbations. Since k < 1/2, the
second minimum S that became available for k = 1/2 is now the global minimum and the
energy barrier ∆V has decreased in height past the Maxwell point.

We distinguish three cases in the free-energy diagram sketched in Figure 4:

(a) If the Gibbs free energy ∆E gained by the parts of the system is not sufficient to
push any part up to at least point P (or B), then the perturbed system remains in the
neighborhood of point I.

(b) If, on the other hand, ∆E = ∆V in some parts, then these parts displaced to point P
can overcome barrier B and roll over to the new global stable state S [2,3,28–32]. Then,
the two phases, I and S, coexist [34–36].
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(c) Furthermore, if ∆E > ∆V in some perturbed parts (displaced, e.g., up to point J), then
these parts no longer recognize barrier B and collapse to the deep minimum S on a
dynamical time [3,44,45].

In most physical systems undergoing phase transitions, the evolutionary paths just
outlined cannot be obtained analytically as functions of time because the partial differential
equations of motion cannot be solved analytically [46,47]. For this reason, researchers in
the past have approached the subject either by studying only the stationary minima of the
potentials (e.g., [28–31]), thereafter assuming that quasistatic evolution takes place between
the stable states; or by relating the stationary states to analytic non-dissipative solitary-wave
solutions conserving localized finite energy (the topological method of “orbits”; [47–49]);
or by numerical simulations (e.g., [2,16,17,46]).

3.4. Star-Forming Phase Transitions

Although the outcome of the above evolutionary scenarios is the same in Figure 4
(the settling of at least parts of a system into stable state S), the dynamics is quite different.
The difference was recognized long ago in the context of star formation in giant molecular
clouds, first by Whitworth [28] and subsequently by Tohline [2,3,29–31], although the same
ideas had been previously explored in various related contexts [50–52]. Whitworth [28]
described a perturbed diffuse molecular cloud region bound by external pressure, that
reaches over time [3] (point P in Figure 4, as “preunstable,” a condition that differentiates
it from a region strongly compressed and displaced to point J, where it becomes Jeans
unstable [44] and subject to dynamical collapse down to the compact (high-density) stellar
state (point S in Figure 4). Tohline [30] recognized that the path (PIBS in Figure 4) highlights
a slower phase transition (distinct from dynamical Jeans collapse) capable of producing
stars of much lower masses (albeit over much longer timescales [3]), as compared to the
famous Jeans critical mass [44], the hallmark of dynamical star formation since 1902 and
for years to come [53].

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Whitworth (1981) 
 Jeans (1902)

Figure 4. Bistable potential (Equation (10) with k = 0.4) in which a system is displaced from

equilibrium and oscillates about the local minimum I under the action of external perturbations.

If the system gets displaced to P, it gains enough energy (∆E = ∆V) to roll over the top of barrier

B and down to the global minimum state S, as indicated by the arrows. Thus, the system at P

is “preunstable” [28] and undergoes a first-order phase transition [2,3,29–31]). If the system gets

displaced to any point of higher energy (e.g., at J), then it becomes dynamically (Jeans) unstable [44]

(it no longer recognizes the energy barrier at B), and collapses to the global minimum state S. If the

system never gains enough energy to overcome the barrier, then it will remain near point I until k = 0,

where the barrier disappears. Then, points I and B merge to an inflection point and the second-order

phase transition to S is spontaneous [5,29,45].
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3.5. Peculiar λ-Transitions

To complete the discussion of the various types of phase transitions encountered in na-
ture, we should mention that some phase transitions do not fit into the modern classification
scheme [35,36]. Most puzzling among them are the so-called λ-transitions [8,32,34–36,54,55]
that may or may not [8,35] have infinite specific heat at the critical point (e.g., at the λ-point
Tc = 2.18 K of the superfluid liquid 4He [34–36] or at the order–disorder critical point
Tc = 739 K of the β-brass Cu-Zn alloy [34,56]). Bose–Einstein condensation of an ideal
Bose gas [34] and astrophysical binary fission and ring formation [32] are also types of
λ-transitions, and the various types are all linked together only by spontaneous breaking of
the topology [8,32] (the symmetry may break or not, and the specific heat may diverge or
not [8,35,54–56]).

From the viewpoint of the energetics of discontinuous λ-transitions, we know that
a total of five extrema (not all of them isolated) are involved in the Gibbs free-energy
function [32], which places these transitions along paths in the higher-order butterfly
catastrophe [55], if the free energy is a continuous function of the order parameter [32]. The main
characteristic of the underlying potential function is an energy barrier that progressively
becomes taller as T → T +

c , and then, it suddenly disappears just past the critical point
T = Tc (see, e.g., Figures 3–5 in Ref. [32]). This astonishing behavior of the free-energy
barrier in astrophysical systems exhibiting topology-breaking phase transitions [57–63]
remains under investigation to this day (see Refs. [2,3,8,29–32] for more details).

4. Conclusions

(a) Figure 1 shows the potential functions for Landau’s phenomenological theory of
second-order phase transitions [1], including that ascribed to the Higgs field. As the
control parameter is increased (to simulate time evolution), the potential develops
two features that render it unphysical: two symmetric stable global minima appear on
either side of the local maximum at φ = 0, and they both continue to move away from
φ = 0 in time.
Thus, assuming an initial state at φ = 0, as usual [4–6], the phase transition does not
produce a unique or a universal final state. But these properties are required for the
Higgs field at present [9–13,20]; and uniqueness of the final state is required for many
phase transitions in solids and fluids [8,29–32,34–36,45,54].

(b) Figure 2 shows how to get around the problems highlighted above. The potential
functions of the cusp catastrophe [4] are all shifted so that one minimum is always at
φ = 0 (representing the initial state) and another minimum is constrained to always
be at φ = 1, making this (final) state universal [20]. The linear term of the cusp
catastrophe (Equation (4)) precludes the appearance of another minimum at φ < 0
before the second-order critical point at k = 0 is reached; and when such a minimum
finally appears for k < 0, it is incapable of influencing the dynamics of the phase
transition that took place spontaneously already for k = 0.
The maximum that appears for 0 < k < 1 represents a free-energy barrier between
the two isolated stable states. External perturbations may drive a system from φ = 0
to φ = 1, if they supply the requisite energy to overcome the intervening barrier (a
first-order phase transition [2,3,30,31]), otherwise the system remains oscillating about
φ = 0. As the control parameter decreases toward k = 0 (Figure 2), the barrier becomes
shorter (just as in catalyzed chemical reactions [39–43]), and a second-order phase
transition appears at k = 0, where the barrier disappears [29,32,45]. We believe that
such a transition occurred in the massless Higgs field when it acquired its uniquely
positive universal VEV [16,17,20] because we cannot imagine vacuum perturbations
strong enough to overcome the energy barrier in the interval 0 < k ≤ 1/2.
Before the phase transition occurs, the Higgs field is induced to executing small
amplitude oscillations about the minimum at φ = 0 that represents the equilibrium
VEV of the massless state. Such oscillations generate evanescent particles with both
positive and negative masses that do not survive long into the future. The observed
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particles of our times were all assigned masses after the Higgs field had settled to its
universal VEV of 246.22 GeV [20,64].

(c) Figure 3 shows the evolutionary path in the control plane of the cusp catastrophe. The
path remains within the fold lines of the separatrix at all times (even for 0 > k > 1),
and exhibits a Maxwell critical point [37,38] for k = 1/2 and a second-order critical
point for k = 0.
As the green curve in Figure 2 shows, a first-order stable minimum at φ = 1 becomes
available for k = 1/2, but it is not necessarily accessible to a system located at φ = 0
via a first-order phase transition due to the intervening energy barrier. For the Higgs
field, such a continuous line of first-order phase transitions was observed in the
past (before the discovery of the Higgs boson and the measurement of its mass; see
Refs. [16,17,46] and references therein); although the lattice simulations were using
Landau’s even-symmetric potential and a Higgs mass of no more than 73.3 ± 6.4 GeV.
For higher Higgs masses in non-perturbative simulations, the second-order critical
point was replaced by a smooth crossover to the final massive state [16,17,46]. These
doubtful results must have their origin in the unphysical potential used, and new
simulations are needed to revisit the true nature of the Higgs phase transition.

(d) Figure 4 shows a schematic illustration of the various aspects of first-order phase
transitions capable of overcoming the intervening energy barrier [3]. Basically, there
are two separate evolutionary modes depending on the amount of energy deposited
by acting external perturbations over time: (i) a strongly perturbed system (point J
in Figure 4) is not impeded by the barrier any longer and makes the transition to the
final equilibrium state S on a dynamical time [30,31,44]; and (ii) a system oscillating
about point I, and perturbed gradually upward to point P (or B), gains enough energy
to jump over the top of the barrier B and down to the final equilibrium state S [28–30].
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Appendix A. The Potentials of Higher-Order Catastrophes

We have carried out the derivation described in Section 2.2 for the swallowtail and
butterfly catastrophes as well. To dissociate these types of potentials from the Higgs field,
we use here x for the order parameter instead of φ. The resulting potential functions and
some of their phase-transition properties are summarized below.

Appendix A.1. Swallowtail Potentials

The swallowtail catastrophe V(x) has the germ x5 and a perturbation of O(x3). The
x4 term is missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the
zeroes −a,−b,−c,−d becomes −d = a + b + c and V′(x) takes the form

V′ = 5(x + a)(x + b)(x + c)(x − a − b − c) . (A1)

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c = 1),
we find that

V′ = 5x(x − 1)(x − k)(x − ℓ) , (A2)
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where k ≡ a − b and ℓ ≡ 3a + b − 1. Integrating Equation (A2) with respect to x, we find
the potential function

V(x) = x5 − 5

4
(k + ℓ+ 1)x4 +

5

3
(kℓ+ k + ℓ)x3 − 5

2
(kℓ)x2 . (A3)

We see now that the choice of x0 = 1 has limited the control space to only two
independent parameters (k, ℓ). This choice, which has been overlooked for generations,
is necessary to create and define another stable state, so that we can apply this potential
to actual physical systems. (The initial stable state created by the shift is also fixed at
x0 = 0.) We must say at this point that any arbitrary paths drawn in the deceiving general
three-dimensional swallowtail control space are meaningless, in the sense that physical
systems do not evolve unconstrained along such paths that keep moving the goalposts (see
Section 1).

We also choose the extremum x0 = k to be between 0 and 1, that is, to serve as an
energy barrier between the two stable states. Thus, 0 ≤ k ≤ 1, allowing for N = 3 possible
k locations in the interval k ∈ [0, 1] (0, 1, and in-between). Now, ℓ can be located anywhere
on the x-axis, so there are N = 17 possible locations for the pair (k, ℓ). Of those, the extrema
x0 = 0, 1 are local minima in only one case, in which ℓ < 0 (N = 3 cases, if we also
count the degeneracies k = 0, 1). Therefore, only the case ℓ < 0 is of interest to phase
transitions along the path {k = 1 → 0}. Now, the isolated extremum x0 = ℓ < 0 is always
a local maximum, and it can vary just as k varies within its own interval. But variation
in ℓ does not change the qualitative properties of the transition, so we can assume here
for demonstration purposes that ℓ is a negative constant along the considered transition
path. In a physical system, however, the variation in ℓ will have to be determined from the
physical parameters of the system itself.

Phase transitions.—An illustration with constant ℓ = −1 (fixed) is shown in Figure A1.
The transition proceeds on the right half of this diagram just as it does for the cusp potential
in the main text. The second-order critical point appears for k2 = 0 (the inflection point
at x0 = 0 on the magenta curve). The first-order critical point appears for k1 = 8/15
(two equal-depth minima on the green curve), as determined from the equation

k1 =
5ℓ− 3

10ℓ− 5
, (A4)

for ℓ = −1 (note that k1 → 1/2 as ℓ → ±∞, and the cusp catastrophe is fully recovered).
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-0.5

0

0.5
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Figure A1. Swallowtail potential functions for the phase-transition path {k = 1 → 0}. Parameter k
controls the location of the right barrier which disappears for k2 = 0. Parameter ℓ controls the left

barrier, which we have fixed at x0 = −1 for simplicity. The left barrier becomes shorter as ℓ → 0−. A

system that somehow is induced to overcome this barrier before it manages to settle to the x0 = 1

minimum will fall apart.
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Left energy barrier.—Point ℓ = −1 marks the location of another energy barrier on the
left side of the diagram, and this barrier may be important in some applications concerned
with systems falling apart: Assuming that a system (initially executing small-amplitude
oscillations about x0 = 0) can somehow be induced to climb over the top of this barrier
(before it settles to the stable minimum x0 = 1), then this system is doomed; it will certainly
be destroyed since there is no other minimum of the potential available in the region x < ℓ.
This path is however of no interest in customary applications of the swallowtail catastrophe,
in which researchers are studying phase transitions terminating at stable states [4–7,65–68],
such as x0 = 1 in Figure A1.

Appendix A.2. Butterfly and Triple-Point Potentials

The butterfly catastrophe V(x) has the germ x6 and a perturbation of O(x4). The x5

term is missing, so the sum of the zeroes of the derivative V′(x) is zero. Then, one of the
zeroes −a,−b,−c,−d,−e becomes −e = a + b + c + d and V′(x) takes the form

V′ = 6(x + a)(x + b)(x + c)(x + d)(x − a − b − c − d) . (A5)

Shifting V′ by a to the right and setting one of its zeroes to x0 = 1 (i.e., 2a + b + c + d = 1),
we find that

V′ = 6x(x − 1)(x − k)(x − ℓ)(x − m) , (A6)

where k ≡ a − b, ℓ = a − c, and m ≡ 3a + b + c − 1. Integrating Equation (A6) with
respect to x, we find the potential function

V(x) = x6 − 6
5 (k + ℓ+ m + 1)x5 + 3

2

[

(k(ℓ+ m + 1) + ℓm + ℓ+ m
]

x4

− 2
[

(k(ℓm + ℓ+ m) + ℓm
]

x3 + 3(kℓm)x2 .
(A7)

We see now that the choice of x0 = 1 has limited the control space to only three
independent parameters (k, ℓ, m). Once again, this choice, which has been overlooked for
generations, is necessary to create and define the second stable state, so that we can apply
this potential to actual physical systems. (The initial stable state created by the shift is also
fixed at x0 = 0). We reiterate that arbitrary paths drawn in the deceiving general four-
dimensional swallowtail space are meaningless because physical systems do not evolve
unconstrained along such paths that keep moving the goalposts (see Section 1).

We choose again k ∈ [0, 1] to provide an energy barrier between the minima x0 = 0, 1.

Based on the analysis in Appendix A.1, we also limit this investigation to ℓ < 0.7 Then,
there are N = 23 possible locations of the new extremum m, of which only N = 3 are
worthy of further consideration (because x0 = 0, 1 are local minima), all of them having
m < 0. Now, Equation (A7) shows that ℓ and m are interchangeable parameters. If we
choose ℓ = m, then the two extrema merge into a degenerate inflection point (at x < 0)
of no particular interest. But if ℓ 6= m, then another barrier appears at x0 = max(ℓ, m)
and a new local minimum opens up at x0 = min(ℓ, m). These two cases are illustrated in
Figures A2 and A3, respectively, where the locations of ℓ, m < 0 were fixed without loss
of generality. We note that the left barrier at x0 = ℓ < 0 in Figure A3 becomes shorter as
ℓ → 0−.

Phase transitions.—In Figures A2 and A3, the phase transitions proceed on the right
halves of these diagrams, just as they do for the cusp potential in the main text. The
second-order critical point appears for k2 = 0 in both figures. The first-order critical points
appear for k = k1, as determined from the equation

k1 =
5ℓm − 3(ℓ+ m) + 2

10ℓm − 5(ℓ+ m) + 3
. (A8)

Triple point.—In the diagram of Figure A3, the two minima do not have the same
depth for any value of k ∈ [0, 1] because of the arbitrary choices for ℓ and m. So, there is no
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triple point along this phase-transition path. Then, it is easy to recognize that the control
parameters (k, ℓ, m) must be related for a triple point to appear in the potential (A7). Their
relationships are expressed by the conditions that

V(ℓ) = V(1) ≡ 0 . (A9)

Here, ℓ and m are interchangeable parameters, so we chose the third minimum to be located
at x0 = ℓ. The V ≡ 0 equal-depth conditions (A9) then require that

ℓ = −1 and m = −k = −1/
√

3 , (A10)

where now k and m are interchangeable (but we break the symmetry by choosing 0 ≤ k ≤ 1,
as usual). It is easy to prove then that V(x) at the triple point is an even function of x,
and this is why the third minimum (x0 = ℓ or m) must be located at x0 = −1. In fact, the
potential V(x) at the triple point takes the simple form

V(x) = x6 − 2x4 + x2

= x2(x2 − 1)2 .
(A11)
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Figure A2. Butterfly potential functions for the phase-transition path {k = 1 → 0} with ℓ = m = −1.

Parameter k controls the location of the barrier, which disappears for k2 = 0. Parameters ℓ, m < 0

control extrema that develop in the x < 0 region. In the ℓ = m case shown here, the extrema

degenerate to an inflection point at x0 = −1. The height of this inflection point decreases as

ℓ = m → 0−.
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Figure A3. As in Figure A2, but for butterfly potentials with ℓ 6= m and a second barrier at x < 0

which we have fixed at ℓ = −1 for simplicity. The two extrema in the region x < 0 are now isolated,

and a new local minimum opens up at x0 = m = −3/2 (again, fixed for simplicity). The height of the

left barrier decreases as ℓ → 0−.
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This reduced butterfly potential that exhibits a triple point (i.e., three minima of equal
depth) is illustrated in Figure A4, where we chose k > 0 and ℓ = −1. The choice m = −1 is
of course an alternative, and then the labels ℓ and m switch places in Figure A4. With the
equal-depth minima set at x0 = 0,±1, then the extrema x0 = k, m represent energy barriers
of equal height.
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-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure A4. Triple point of a butterfly potential with ℓ 6= m. The potential is now an even function

(Equation (A11)) with no independent control parameter (Equation (A10)). With x0 = k chosen to lie

in (0, 1) to provide a barrier, then interchangeable parameters ℓ, m < 0 provide the locations of the

two isolated extrema on the left side (i.e., x0 = ℓ and x0 = m).

Finally, for an evolutionary path {k = 1 → 0} that exhibits a triple point, the following
general relations hold along the path:

ℓ = 3km and m = −k ; (A12)

so, only one of the control parameters (k, ℓ, m) of the butterfly turns out to be independent
in this model. The triple point occurs for ℓ = −1 along this path which, in terms of ℓ,
is described by {ℓ = −3 → 0} and terminates at the second-order critical point ℓ = 0.
Figure A5 provides an illustration of this phase transition. The control parameters of the
potential Function (A7) have been reduced to functions of k by using the relations (A12),
viz. ℓ = −3k2 and m = −k, and then k is the only independent parameter along the
evolutionary path.
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Figure A5. As in Figure A3, but for an evolutionary path {k = 1 → 0} (equivalently, {ℓ = −3 → 0})

in the butterfly catastrophe that exhibits a triple point for ℓ = −1 and k = −m = 1/
√

3 (green curve).
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Notes

1 In contrast, Landau [1] was not thinking about isospin or null quantities when he formulated his theory. To him, symmetries

were visible in the arrangement of atoms in a crystal or in the (mis)alignment of magnetic moments in magnetic materials.
2 In all fairness to Landau [1], Thom’s catastrophe theory [4] did not exist in Landau’s time, so he did not know that his Taylor

expansion of the potential was not formally correct near the degenerate critical point. In fact, he was apparently lucky to get

the rest of the perturbation (Aη2) right when he correctly eliminated the cubic term (Cη3 ≡ 0), albeit based on an inconclusive

argument (that, for C 6= 0, the curve of phase transitions degenerates to a single point in the (P, T) plane, where P is pressure);

the counterargument is that functions A(P, T) and C(P, T) may have the same zeroes [5] and/or that C ∝ A.
3 Also a special case of the so-called parabolic umbilic catastrophe V(x, y) = x4 + Ax2 + Bx + (x + C)y2 + Dy [4,5,25–27] for

evolutionary paths constrained to unfold on to the y = 0 plane; such paths are controlled by only two (A, B) of the four

parameters (A to D) involved in the most general case.
4 Landau’s theory has also been criticized and found inadequate from several other perspectives by Huang ([34]; §§ 17.1, 17.4),

Pippard ([35]; Chapter 9), and Stanley ([36]; § 10.4).
5 The point k = 1/2 or (A, B) = (−1/2, 0) is where the evolutionary path {k = 1 → 0} crosses the B-axis in the control parameter

plane (see Figure 3).
6 Recall that catastrophe theory is applicable only to gradient systems [6], so it does not account for time, and qualitative conventions

have been invented to describe actual time evolution before and after a phase transition (or “catastrophe”).
7 Thus, not all butterfly phase-transition paths are covered in the present investigation.
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