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Abstract. A static electric field has always been thought to play little role in the physics of
ideal conductors, since the screening effects of mobile carriers prevent it from penetrating deep
into the bulk of a metal. Very recently however, experimental evidence has been obtained which
indicates that static electric fields can be used to manipulate the superconductive properties
of metallic BCS superconducting thin films, weakening the critical current. In this paper I
will show how possible explanations to this striking effect can be found relying on the analogy
between Superconductivity and Quantum Electrodynamics noticed by Nambu and Iona-Lasinio
in the sixties. I will show that, following this parallelism, it is possible to predict a new
phenomenon: the superconducting Schwinger effect. Secondly I will explain how this new
microscopic effect can be connected to a modified Gizburg-Landau theory where additional
couplings between electric field and the superconductive condensate are taken into account.
Eventually I will connect these theoretical predictions to the experiments, proposing them as a
possible explanation of the weakening of superconductivity due to an external electric field.

1. Introduction

There is no electrostatic field in the bulk of an ideal conductor. The screening of the electric
field occurs due to the presence of mobile charge carriers which, under the external electric field,
redistribute themselves inside the conductor and generate an excess of the electric charge density
at its boundary. The redistributed charges create their own electric field which compensates for
the external field inside the conductor [1]. The static electric field falls off with an exponential
law, E(x) ~ E(0)e~*/* as one moves from the conductor boundary at z = 0 towards its bulk,
x > 0. The screening length A determines the width of a layer of the redistributed mobile charges
near the boundary. At high enough temperature T the charge carriers form a classical thermal
plasma characterized by the Debye screening length Ap. At low temperature, the system enters
the quantum regime of a non-relativistic Fermi gas characterized by the Thomas-Fermi screening
length Arr (typically of the order of few A), which is produced by density (rather than thermal)
effects.

The situation changes in a class of materials discovered in the last decade, whose low
energy properties are not described by the Fermi liquid theory but by mass-less relativistic
fermions instead. Renowned members of this class of materials are graphene [2] and Dirac
and Weyl semimetals [3]. In these systems the screening picture described above is not valid.
On the contrary, the properties of these systems are well described by mass-less Quantum
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Electrodynamics (QED) and, as in QED, the photon polarization function that encodes the
screening properties acquires a logarithmic dependence on the renormalization scale [4, 5],
making the effects of a static electric field inside these materials considerably more relevant.
Due to this fact, these materials have been proposed as test-beds to verify QED predictions
never measured such as Quantum Anomalies [6] and the Schwinger effect [7].

More surprisingly, and very recently [8], a sufficiently strong static electric field has been
demonstrated to be relevant even in systems where it was always thought to play no role, namely
Bardeen-Cooper-Schrieffer (BCS) superconductors [9, 10, 11, 12, 13, 14]. In [8] the authors
reported field-effect control of the supercurrent in all-metallic transistors made of different BCS
superconducting thin films. They found that, at low temperature, the field-effect transistors
presented a monotonic decay of the critical current under increasing electrostatic field. This
phenomenon is known as the Superconductive Field Effect (SFE) and the results have been
recently confirmed by other experimental groups [15, 16, 17, 18, 19, 20, 21, 22].

The microscopic origin of this phenomenon is unclear. All the materials [8, 16, 15, 17, 18,
19, 20, 21, 23] analyzed are well described by the conventional BCS theory and metallic in the
normal phase (hence it is surprising that the electrostatic field could play any role). It has been
suggested that energetic quasi-particle injection from the gate control [16, 17] or energy or phase
fluctuations [19] could be responsible for the observations. These ideas seem to be precluded by
recent ionic-gating experiments, where the electric field is generated by crystallized charges [24],
as there is no moving charge.

Several microscopic proposals have been suggested to explain the experimental results of
[8, 16, 15, 17, 18, 19, 20, 21]. These include electric-field induced spin-orbit polarization [25],
Rashba-like surface effects [26]. All these proposals lead to a weakening of superconductivity
but they do not fully explain other experimental results [8, 24, 27, 28, 29, 30, 31, 32] .

Given that the SFE persists in many different compounds with different experimental setups
and geometries [27, 28, 33, 34, 35, 36, 37|, in [38, 39] we suggested that the phenomenon is
a property of including the electric field in standard BCS theories. More precisely, in [38] we
demonstrated how the inclusion of a constant electric field into the BCS equations can lead to the
creation of Schwinger-like excitations which can destroy the superconductive condensate due to
decoherence of the ground state. Even though the result in [38] are promising, screening effect of
the electric field are not included, and consequently the model is valid only in a thin portion of the
sample near the boundary, where the electric field completely penetrates. To overcome this issue,
in [39] we followed an effective field theory approach, considering the effect of additional electric
field dependent terms in a Ginzburg-Landau model, and treating the electric field as a non-
dynamical field, with a fixed exponentially decaying profile. This phenomenological approach
allowed us to prove that, even considering screening effect, there is room for the electric field to
cause a phase transition of the superconductor to the normal metal phase.

The aim of this paper is to review the results of [38, 39] and to propose possible future
developments to join the microscopical analysis of [38] with the effective field theory description
of [39], which can lead to a complete theoretical understanding of the SFE.

2. The superconductive Sauter-Schwinger effect: decoherence at the boundary

One of the most remarkable predictions of QED is spontaneous particle production from the
vacuum in the presence of a strong electromagnetic field (for reviews, see Refs. [40, 41, 42]). This
surprising effect was first discovered by Sauter in 1931 [43]. Sauter’s idea was expanded later by
Heisenberg and Euler [44] and by Schwinger [45], who fully formulated the idea within quantum
field theory for the first time. Thus, the vacuum particle production by a strong electromagnetic
field is called the Schwinger mechanism. It is essentially an electric effect. In the presence of a
strong electric field, there occurs a level crossing between the Dirac sea and the positive energy
continuum. Then, an electron filling the Dirac sea can tunnel into the positive energy continuum,
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leaving a hole in the Dirac sea. An electron/positron pair is spontaneously produced, which can
be understood as the QED analogue of electrical breakdown or the Landau-Zener transition in
materials [46, 47, 48].

In [38] I proposed that an analogous mechanism can occur in superconductors. My proposal
relies on formalizing and extending a striking similarity between the Dirac equation and the
Bogoliubov-de Gennes equations describing the elementary excitations of a superconductor
[49, 50, 51, 52], noticed by Nambu and Jona-Lasinio in the Sixties. In fact, if one looks at
the two equations,

Dirac equations Bogoliuvov-de Gennes equations
By, =0 - kY +mypr Ekuz = (ep — 1) u,*; + Akv;:,
E¢R = —0 - ki"l/JR + m’l/JL Ekv;; = — (Ek, — ,u) 1);; + Aku,’g

it is easy to notice that they are formally identical if one identifies the Dirac particle with a
quasi-particle excitation in the superconductor and the fermion mass with the superconducting
energy gap [51], namely

P > ug
YR < Uy,
o k< (e —p)
m <« A
vacuum <+ Condensate

This makes the dynamics of superconductors very similar to massive QED. In the spirit
of the superconductor-QED analogy [49, 50, 51, 52], in [38], I proposed that superconductors
must present the same kind of vacuum instability, generating a phenomenon analogous to the
Schwinger effect, the Superconductive Schwinger effect (SSE).

In the Dirac vacuum the enormous electric field required to generate the Schwinger vacuum
instability is determined by the electron mass m. = 0.5 MeV/c? and the electron charge e [41],

E(EQED _ @ - 1018K ’
e m
making the QED Schwinger effect impossible to detect in a laboratory. However, if we replace
mec? with the superconducting gap A (~100 ueV — 1 meV for conventional superconductors),
we drastically reduce the critical electric field:

A? \%
EFF = — ~10%— .
ce m
ECSSE is an electrostatic field which, contrary to EgED, can be achieved in modern laboratories.

Most importantly, it is of the same order of magnitude of the one needed in [8] to suppress the
critical current. In the following sections, I will review how this effect can be seen to emerge
from the BCS equations and I will argue that the SSE can be the microscopic origin of the
phenomenon measured in [8].

2.1. General framework
To derive the dynamics of a superconductor immersed in an external electric field we start from
the usual effective BCS Hamiltonian [10]:

Hepp = /dr { Z [\I/T(ar)He(r)\I/(ar) + A(r)TT(x )Tl |)

NOMCNCE S (1)
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where « is the spin index, ¥ is the usual fermionic field and V' is the BCS coupling energy [10].
The superconductive gap is defined as:

Alr) = V(¥ )¥(rt) =V n)¥(rl)), (2)

and has to be computed self-consistently from the BCS equations.
We take H,(r) to be the single particle Hamiltonian:

1 e \2
He(x) = 5—(=ihV = SA) +Up(x) — s (3)
In the previous equation, p is the chemical potential which set the groundstate energy of
the single particle excitations, A is the electromagnetic vector potential and Uy(r) is a scalar
potential, which we assume to be independent on the particle spin.

We assume the electric field to penetrate completely into the superconductor. This crucial
assumption implies that, considering a bulk superconductor, the validity of the model is
restricted to a thin portion of the sample near the boundary. possible generalizations and
extensions of this model will be described in section 3 and section 4. Without loss of generality
we consider an external electric field Ey applied along the z direction; i.e., the electric field vector
is Ef ={0,0, E;}. Eventually, we make a gauge choice such that A = 0 and Up(r) = eEyz.

Considering the usual modes decomposition of the fermionic fields in (1),

U(ra) = Zeik'raka

k
Uli(ra) = Ze_ik'raﬂa, (4)
k

the effective Hamiltonian reads:

Hepp = ) {hkf (t) (ajgaxt + af ax)) — Aafyal |~ A*akw—u} ()
k

where we have put k% = k2 + krz and A =V, (axra—_k))-

It is convenient to simplify the notation but, at the same time, keep track of the presence of
the vector potential A. For this reason, we introduce the kinetic energy hi_(t) = hi— < a(t) =
2 [P+ (ke + eBpt)?] — o

In the sum in Eq. (5) both positive and negative k contributions are present. We can separate
the negative terms like h_y_ aikTa,kT. We have

1
how = hoe g all) = o [BP2 + (B = e Bpt)?] — = ne, (6)

Thus, formally reversing the momentum is equivalent to change the charge to the particle.

The superconductor pair potential can be written as A = |Ale’X where y is the
superconduting phase. It is related to the gauge-invariant scalar ¢ and vector A potentials
by the equations [13]

he

A = A-——Vx
2e
B h Ox
o = V—i-%a. (7)
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These are related to the physical electric E and magnetic field h by the relations [13]

E = 194 - VvV
c Ot
h = VxA (8)

By setting ¢ = 0 and A = 0, i.e., no magnetic field, we obtain

2e
x=—5Eptz (9)

and A = {0,0, —cEyt} as above. Therefore, the superconducting phase, the pairing potential
(2) and the Hamiltonian (5) depends on the spatial coordinate z.

This gauge choice allows us to deal with a homogeneous problem where the spatial dependence
has vanished in Eq. (5). This is a great simplification because allows to use the standard
approach and techniques to describe the superconducting state and dynamics. The price to pay
for this simplification is to deal with a time-dependent Hamiltonian so that we are forced to
solve the time-dependent dynamics. The homogeneity of the system implies that only the (k, 1)
and (—k,|) are coupled, consistently simplifying the theoretical analysis.

We can collect the terms in Eq. (5) separating the k and the —k contributions. By using the
state ® = {ak%aT—u}v the relation h_y_ = hy, and the anti-commutation rules for fermionic

operators aL ., and ak, we can rewrite Eq. (5) in matrix form as

eff_zz( ) :£>—2ZBk zk_zz%k (10)

where 5 2.0
he +h R2E2 e B4t
=T 2 T (11)
2 2m 2m

= {—Re(A),—Im(A),&} is a pseudo-magnetic field and Xy = {7k, 7y x, 72k }. This is
nothing but the the Anderson pseudospin approach [53].

2.2. Quasi-particle creation: the Superconductive Schwinger effect

To make the dynamics of the superconductive Schwinger effect evident, it is convenient to
work in the basis which diagonalizes (10). Since the operator H; has the same form of the
standard homogeneous case, it can be analytically diagonalized [10]. Considering the original

{axs, af_ki} basis, the eigenvalues are te, = i\ /{,3 + ]A\Q and the ground and the excited states

are, [ (£)) = {vx(t), us(6)} and s+ (1)) = {ui (1), 03 (1)}, respectively, with
u _ = &C t) —zx(t
k(t> \/‘ fk t)
w(t) = —=[1- %0 o (12)

ex(t)

The diagonalizing operator Uy, (U,i?-lkuk = Hp) is time dependent, therefore the dynamics
is determined by the following Schroedinger equation

ihdy [1i(2)) = (Hp,x — ih ULOU) [r(2)) (13)

Notice that Eq. (13) depends on z. Thus, it gives us the dynamics of the k-th mode in
position z.
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2.2.1. Double excitations The unitary operators Uy (t) and Z/{Z(t) can be written as

*
ut v

U = (“’“ _”’“> (14)

* *
Vp Uy

with uy and vy as in Eq. (12). This leads to the transformation [10]

Tt = upaier — vgal g
’VT_ki = vpakt + ult:aT—kL
'y;LT = uZaLT — VLa_k|
Yok, = UWIT(T + upa_x|. (15)

These are the creation-annihilation operators for a quasiparticle that is a superposition of
electron and hole [10].

In this representation the diagonal element of H p j, are associated to the ’YlJLT"YkT and ’yT_k 1=kl

On the contrary, the Ll,i@tl/{k off-diagonal terms are associated to 71T<T7Tfk¢ and y1y-k and,
therefore, create or annihilate simultaneously two quasiparticles with (k,1) and (—k,|). These
excitations must be distinguished by the conventional ”Bogoliubov quasiparticles” discussed in
literature [10] that are related to the destruction of a Cooper pair.

Using the Anderson pseudo-spin formalism is easy to understand the nature of the excited
state |¢,+). The pairing potential is defined as A = >, Ay with Ay = V(axra_x,). For the
ground state |¢, _), we obtain Ay = Vu,v} as expected [10]. For the excited state, we have
A = —Vu(t)vi(t) [12]. This can be seen as an additional phase factor €™ or, alternatively, a
7 shift in the superconducting phase associated to Ay due to the ground-excited transition.

We conclude that the excited k states preserve the superconductive feature. While the single
excitation states (Bogoliubov quasiparticles) are associated to a vanishing coherence factor, i.e.,
(akra—xy) = 0, the double excitation states |, ) are associated to the same coherent factor
with a minus sign. This means that a fully excited state, i.e., with all the k£ modes excited,
would have the same pairing potential and the same gap. This implies that the excited state
is still superconducting. This fact crucially differentiate the dynamics of the Schwinger-like
excitations generated by the external electric field from the thermal quasiparticle excitations.
In fact, contrary to the thermal excitations which have vanishing coherence factor, the state
generated by the SSE, i.e., the superposition of ground and excited state, is still superconductive.
But since the dynamics of the & modes is different, they accumulate a different phase factors.
The coherence factor Ay is in general a complex number with a time dependent phase. The
different phases can generate ”interference effects” in the sum A =), Ay, effectively leading to
a suppression of the pairing potential and the superconductivity as shown in Fig. 2b.

2.3. Numerical simulations and results
The pairing potential, A = >, Ay, is calculated self-consistently during the dynamics. In the
numerical simulations, we set 1 = 1 eV and the initial pairing potential to Ay = 100 peV [8].
Moreover we assumed the working temperature to be much smaller than superconducting critical
temperature T, eventually neglecting thermal excitations. For later convenience, we introduce
two reference scales: a time scale t5. = i/ and a characteristic electric field Ec = 5 108 V/m.
We suppose that a constant electric field is applied at time ¢;, = 0, and the dynamical
transients are negligible. The numerical simulations are performed in a finite time interval
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Figure 1. Figure from [38]. (a) Spectrum of the superconductor as a function of time ¢ .The
inset shows a zoom of the minimal gap region at ¢ = tyin. (b) Ground (cyan) and excited state
(blue) populations as a function of time. (c) Excited state population as a function of time
for k/kp = 0.99, 0.999 and 1. In the panels (a) and (b) numerical simulations are performed
setting k/krp = 0.999 and in (a), (b) and (c) setting Ef/Ec = 0.2. (d) Excited state final
population (at ¢ = t4) calculated as a function of k/kp for selected electric fields values,
E¢/Ec = 0.1,0.2,0.5,1. The curves are shifted for presentation purpose. Simulations are
performed setting =1 eV, A =100 peV and L = 2 nm and z/L = 0.5.

0 < t < tmaw, Where tpe: = mL/(h k) is the time needed for a particle of mass m and
momentum k to move from one side to the opposite of a sample of thickness L. This sets the
time scale for the numerical simulations. In the latter, we set L = 2 nm, so that we can assume
a complete penetration of the electric field [54].

The spectrum of the Hamiltonian (10) as a function of time is plotted in Fig. 1(a). The
minimum gap 2A is reached when the kinetic energy & in Eq. (5) vanishes, namely for

 V2Zum/1 = (kfkp)? (16)

tmin - €Ef .

The dynamics of the populations of the ground and excited state |y |> and |9 +|? is shown
in Fig. 1(b) for a fixed k/kr and E;/E¢c, and presents a clear signature of the SSE. The k-
th mode undergoes a sudden transition to the excited state close to the minimal energy gap.
This corresponds to the superconducting Schwinger effect, and to the creation of two excited
quasiparticles, as discussed above.

The dynamics changes considerably for different initial particle momenta, as shown in Fig.
1(c). Away from the Fermi momentum, there is no quasi-particle excitation but moving closer
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Figure 2. Figure from [38]. (a) Time evolution of Ay, (solid blue), Ay, (dashed cyan) and
|Ag| (dotted green) for k/kr = 0.999 and E¢/Ec = 1. (b) The normalized order parameter
|A|/Ap as a function of z/L, and for different electric fields F¢/Ec = 0.02,0.2,0.4,1.

to kp the system is completely excited. In a small window very close to kr the system is only
partially excited.

A more complete picture can be inferred from Fig. 1(d) where the final population
of the excited state |t 4 (tmaz)> is shown as a function of the momentum for different
normalized electric fields Ef/Ec. For small electric field (Ef/Ec = 0.1), only a small
fraction of the particles around kp are excited. By increasing the electric field strength,
the excited population fraction increases up to a complete excitation for any £ < kp and
E¢/Ec = 1. These results suggest that the electric field at which the excitations are produced
is indeed close to E¢ and is remarkably similar to the one used in several recent experiments
8, 16, 15, 17, 18, 19, 20, 21, 23, 55, 56, 57, 58|.

The values of the critical field can be understood treating the SSE as a Landau-Zener
transition [59]. Imposing the condition that the minimal energy gap is reached later than ¢4,
i.e., tmin < tmae, the electric field needed to produce the excitations: is Ey/Ec = (2u)/(eEcL).
For L = 2 nm, we obtain Ey = 2F¢, namely close to E¢, as discussed before.

Turning to the superconductive gap A, our numerical analysis shows how the coexistence of
the ground state together with the double excited state discussed in the previous section creates
decoherence, eventually suppressing the gap. In the Anderson pseudo-spin formalism, the order
parameter for the k-th mode is Ay = Ag, + iAy,y = (7o k) + i(Ty k), where the average () is
calculated with state obtained by the dynamical evolution [53, 60, 61]. The numerical calculation
displayed in Fig. 2(a) shows that while |A| is constant, Ay, and Ay, change in time signaling
an accumulated phase. The pairing potential at ¢ = ¢4, is shown in Fig. 2(b) for different
electric field values. As the electric field increases the pairing potential is reduced because of
the interference effects. Despite the fact that the environmental effects are not included, this
already gives strong indications that the presence of a static electric field drastically weakens
superconductivity.

3. Tackling the screening problem: a Ginzburg-Landau approach

In the previous section we have proved that, within the BCS framework, a strong enough electric
field can activate Schwinger-like excitations, which eventually destabilize the superconducting
vacuum by means of decoherence. The electric field needed to activate this process is remarkably
similar to the one needed to suppress superconductivity in the experiments in [8]. The main
limitation of this analysis was certainly the neglection of screening effect of the electric field.
Or, said otherwise, the results described in the previous section are restricted to a thin portion
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of the sample near the boundary, where the electric field can be assumed to be constant and
of the same order of the external one. In our analysis we have set the maximum thickness of
the sample to be 2 nm. However, the superconductive films analyzed in the experiments [8]
are at least on coherence length thick (around 100 nm or more). Dealing with such a thick
sample it is unavoidable to take into account screening effect of the electric field. To do so at
the level of the BCS equation is a tough task. Yet, some insight can be achieved considering
an effective Ginzburg-Landau model. The goal of this section is to prove that if one includes in
the Ginzburg-Landau functional terms proportional to the electric field which are not typically
considered in the usual analysis, it is possible for a suitably strong electric field to suppress
superconductivity.

Ep

>
Z

Figure 3. Figure from [39]. Section of the setup. The superconductive film is extended in the
x and y direction and has thickness L along the z direction. The electric field E, pointing along
the direction of the small black arrows is applied to both sides of the film, by means of two
charge distributions A and B, taken to be equal. The penetration length is A >~ 1 nm.

In order to do this, we will analyze the setup depicted in Figure 3, a superconductive thin
film extended in the x and y directions and with thickness L in the z direction. The electric
field is applied along the z direction by means of two charge distributions (A and B in Figure 3)
placed in the vicinity of the surfaces of the film. This setup is similar to the one realized in the
experiments [29]. In what follows the charges A and B are assumed to be equal. This implies
that the direction of the electric field is reversed as we cross the middle of the channel at z = L/2
(see Fig. 3). The physical results do not depend appreciably on the sign of the charges and on
such a symmetric configuration [29] whose purpose is simplifying numerical computations. We
include screening effects in our model by assuming that they are set at the level of the normal
metal phase. Due to the reduced thickness of the sample we assume the electric field generated
by the charges A and B inside the material to be along the z-direction. Hence we fix the applied
electric field E to be non-dynamical with a decreasing exponential profile at the ends (z = 0
and z = L) of the film i.e.

., _L L_,
E = —0.¢(2)2 = 2Ege” 2k sinh 2A £ (17)
E

We take the penetration length, A\g, to be ~ 1 nm which is compatible with normal metals [62].
Note that the above formula for the electric field implies that the sample is charged, this however
is an artifact of the simple screening model, as we are considering a charged-neutral film. Since
the film is much larger than the penetration length, the spurious charge distribution in the bulk
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that would make it overall neutral will give rise to negligible effects and we consequently ignore
it.

3.1. The model

Now consider the mean field description [11, 63] of this configuration. We use the usual complex
scalar superconductive order parameter written in polar form W(7) = A(7)exp [i0(7)] where
A(7) and 0(7) are the amplitude and the phase of the order parameter, respectively. Having
fixed the electric field profile, we focus on time independent configurations. Consequently, the
resulting time-independent GL free energy is

R? - h? - o) ! elA] [dp\?
— 3, ) 2, A2 2 &2 2, Q4 aq C12] (0¥
F_/dr{2m||8A|| + 5 A2 0] +(2! +ap) A + Aty 5 <dz> booas)

where m, ¢ are the mass and charge of the Cooper pair respectively, ¢(z) is defined in (17) and
|Z|| is the vector norm of Z.

Our free energy (18) differs from the usual GL free energy [11, 63] by allowing the electric
permittivity to depend on the condensate density A. We will assume the following functional
dependence on A:

E[A] = €p (1+B1A2+52A4+) R (19)

where 51 and (o are phenomenological parameters. These additional couplings respect all the
symmetries of the system and are at most quartic in the gap and quadratic in derivatives. It
is consequently natural to include them within a GL functional approach. The conditions for
the expansion (19) to be consistent are 1A% < 1, f2A} < 1 where AZ = —3a2/2a4 is a
homogeneous condensate density in absence of an electric field.

Analogous terms in the electric permittivity (19) already occur in the BCS context [64]
due to perturbative loop corrections around the (constant, spatially independent) BCS ground
state. The same perturbative approach has been followed in [65]. We however consider a
new, inhomogeneous (coordinate dependent) ground state generated by solving the full GL
equations in the presence of an external electric field. Moreover, we promote the corrections to
the permittivity found in [64] to be interactions of the bare GL functional (18). This corresponds
to finding a complete non-perturbative solution to the Ginzburg Landau equation including
interactions between the order parameter and the electric field. Qualitatively our results agree
with [64, 65] when the applied electric field is sufficiently small. Moreover, in what follows we will
prove that even parametrically small coupling constants 81 and 2 have dramatic consequences
on the order parameter A, when the external electric field cannot be treated as a perturbative
correction (as in [64]).

3.2. Driving the phase transition
The minimal energy solutions for the equations of motion resulting from (18) have constant
phase 0 as can be seen by examining the equation of motion,

a. (M?e) -0,

and minimizing the contribution of the second integrand in (18) to the free energy. The equation
for A then reduces to

h? 2 dp\ ay dp\*\ 13
—0°A — | ag + 2qp + €01 | — A— | — +2¢B [ — A°=0. (20)
m dz 3! dz
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This equation has to be solved imposing the usual boundary conditions at the edges of the
material A’(0) = A’(L) = 0 [63]. The z-dependent profile for the electric field in (17) makes the
solution of (20) depend on z as well. Since we are interested in global observables (e.g. the critical

current of the full thin film) the relevant quantity will be the averaged gap Aay. = T fOL dz A(z).
We refer to the Appendix for technical details about the numerical solution of equation (20).

To have a direct comparison with the experiments, we consider the devices used in [8].
We take T. ~ 410 mK, London penetration length Ay ~ 900 nm and the coherence length
& ~ 100 nm. We also assume the usual GL temperature scalings for the relevant parameters,
so that ag = —K(1 — T/T¢.) with K = 6.104 x 1072° kg m? s~2 and a4 = 6.356 x 10~°° kg m®
s72.

The parameters §; and (2 in (19) are phenomenological, and, in order to fix them, we rely on
experimental observations [8]. To qualitatively understand their effect, suppose we can ignore the
kinetic energy. This is certainly true in films thin enough such that the electric field penetrates
deeper in the bulk. In this case one can define new effective GL parameters as and a4 averaged
over the system: & = oo + 2qpay. + 6051E§V. and &y = oy + 126062E§V., where @,,. and E,,. are
the space averages of the scalar potential and the electric field respectively. As in the standard
GL model, the phase is consequently determined by the sign of a4y (negative for superconducting,
positive for metal) [11]. If 51 > 0 is chosen carefully, since ay < 0, we can set &g = 0 for some
critical averaged electric field EY, , which determines the critical point. Similarly, a4 affects the
form of the potential energy (e.g. position of minima) and, therefore, the dependence of A on
E,. It does not, however, affect the value of Ef,, .

Focusing on samples with thickness of the order of the coherence length (L ~ &), from the
experimental data [8], it turns out that §; has a linear dependence on T,

61:[A+B(1—£>] m? | (21)

with A = 1.208 x 1073 and B = 5.947 x 10728. The presence of the positive constant
A ensures that in the limit of T — 7., (1 remains positive. This means that when the
superconductor is in the normal phase but close to T, the electric field cannot induce a
phase transition to the superconducting state. With this information (21) we can estimate
the correction to the critical temperature due to the (; coupling. In particular, ay(0) =
(1 = T/Te)(—=K + eoB(ES, )?) + e0A(ES, )?. Assuming ES, ~ 10® V/m as in [8], we can solve
the above equation for s = 0, obtaining a new critical temperature T¢ e, and a variation
AT. = Tenew — Tc o< 3 —4 mK. This is a rough estimate but is compatible with the full
numerical simulations and the absence of variation of 7, observed in the experiments [27].

Finally, the second parameter (s, is obtained as the best fit of experimental data. As it is
a best fit parameter and the temperature range of the experimental data is small, it is difficult
to extract a precise temperature dependence. Nevertheless we find that this parameter has a
mild temperature dependence, with —4 x 107 m® < By < —6 x 107> m® for the range of
temperatures examined.

We are now in position to discuss the numerical results derived from the solution of the full
GL equation (20), which are presented in Fig. 4. Fig. 4 a) displays the critical current of the
wire, i.e. the maximal current that the superconductor can sustain [11], Z. against the applied
electric field at the material boundaries, Ey, for various temperatures. In GL theory, Z, oc A3;
in our inhomogeneous situation, we take Z. o (A,y.)® 1. As displayed, the presence of a strong
electric field weakens superconductivity and eventually leads to a vanishing Z. which corresponds
to a superconducting to normal phase transition (i.e. A(z) — 0). The numerical simulations
reproduce the qualitative behavior of the experiments [8] at low temperatures. This should be

1 (Aa\,,)3 is almost equivalent to (A3)av,, as the profiles are weakly dependent on z.
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Figure 4. Figure from [39]. a): Numerical computation of the averaged critical current Z
normalized against its values at 7 = 5 mK, Z, as a function of the applied electric field Ej
(see (17)) normalized against the 5 mK critical electric field E.. The curves are the numerical
simulations and the dots are the experimental data from [8]. The values of Z. at different
temperatures are taken from the experiments. The parameters 81 and (G, are fixed as discussed
in the text. b): The suppression of the electric field effect as a function of the thickness of the

film L for T =5 mK and E = E.. The red dots are the experimental data from [8].

expected, since the GL approach to superconductivity is expected to be accurate for T < T¢.
For larger temperatures, our GL model is only expected to reproduce the qualitative features of
superconductive transport, as seen in Fig. 4 a).

From the numerical data for Z. we observe a small asymmetry in the critical electric field
between positive and negative choices for the electrodes. This is evident from the equation of
motion for the gap (20) as the chemical potential term, g, is not symmetric under Ey — —Ej.
Such an asymmetry also seems to be present in the experimental data, but the effect is
significantly stronger than what we predict. It remains to be demonstrated experimentally
whether this is a real effect, as this would point to additional terms missing from our modified
GL free energy (18).

An important feature of the experimental data which has not yet been explained in the
literature is the emergence of the coherence length scale in the dependence of the SFE on film
thickness. To examine this issue, we set T'= 5 mK and Fy = E. ~ 102 V m~! and consider
films with different thicknesses L. Plots for other temperatures are qualitatively similar. The
numerical results are sketched in Figure 4 b). For L < &y the electric field causes a complete
phase transition to the metallic phase. As L > £ is increased, one finds that the same external
electric field does not completely suppress the gap. The effect becomes completely irrelevant
if the sample is thicker than 7 — 8 coherence lengths. This behavior matches the experimental
observations [8, 16, 15] (shown with the red dots in the figure).

This latter observation strongly supports the idea that the SFE emerges from an interplay
between the small electric field penetration length Ag and the much larger superconducting
coherence length &;. This has an interesting interpretation in terms of the renormalization
group. The naive scaling dimension of the couplings 87 and 2 shows that these terms are
marginal in d = 2 dimensions and irrelevant for d > 2. When L ~ &, and the material is
effectively two dimensional, there can be a phase transition as the S-corrections are important
for defining the low energy behavior of the Effective Field Theory (EFT). This numerical and
theoretical analysis also explains why these kinds of phase transition have never been seen in
extended three dimensional samples.
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4. Conclusions
In this paper we have reviewed the results of [38, 39], in which the effects of a strong electric
field in a superconductor are analyzed.

From the microscopic side, in [38] the electric field is assumed to completely penetrates the
sample and the BCS equations are eventually solved numerically. Consequently, the analysis
is restricted to very thin films (a few nanometers thick) or, said otherwise, to a very narrow
portion near the boundary of a bulk material. This is due to the fact that screening effects in
superconductors should be comparable to the ones occurring in a normal metal, and the electric
field should not penetrate inside the material more than 2-3 nm. In any case, the numerical
analysis of [38] shows that a suitably strong electric field can activate the creation of a very
peculiar kind of excitations, in which two quasi-particles are created from the BCS vacuum.
This mechanism has a strong analogy with the QED Schwinger effect, so that this effect has
been named the Superconductive Schwinger Effect. The excitations created in this manner are
still in the superconductive space. This means that the expectation value of the superconductive
order parameter on this excited state has the same absolute value of the ground-state one, but
with a shift of the phase by a factor w. This implies that the coexistence of the ground state
together with this Schwinger-like excited state can create decoherence, eventually suppressing
superconductivity. Remarkably, the order of magnitude of the electric field needed to activate
the Superconductive Schwinger effect is exactly the same as the one needed in the experiments
of [8] to suppress the supercurrent.

However, to make contact with the experiments and to propose the Superconductive
Schwinger Effect as the microscopic origin of the phenomenon measured in [8], screening effects
must be taken into account. To include them in the BCS framework is a tough task, and
in [39] the effective Ginzburg Landau approach has been preferred instead. In this paper,
additional higher derivatives terms proportional to the electric field have been added to the
conventional textbook Ginzburg-Landau free energy [11]. In an effective field theory approach,
these additional terms, being higher derivatives corrections, can be typically neglected, except
when the electric field becomes parametrically large. The screening effects have been included
in the model by considering a fixed exponentially decaying profile for the electric field, with
a penetration length of 1 nm, the same of a normal metal. The model shows that a strong
enough electric field can destroy superconductivity even considering screening effects. Various
observables have been computed, finding a remarkable agreement with the experiments in [8].
The main problem of this analysis is that the additional coupling constants considered in the
Ginzburg-Landau theory have been fixed phenomenological, by imposing that the electric field
needed to suppress superconductivity is the same found in the experiments [8]. Consequently,
the model proves that the phenomenon measured in [8] can be explained as a phase transition
from a superconductor to a normal metal driven by the electric field, but does not provide a
microscopic origin for the additional coupling constants considered in the analysis.

The next step in the program would be to make contact between the microscopic boundary
analysis of [38] and the effective field theory analysis of [39]. A first step in this direction
should be to include an external electric field in the Gork’ov equations [66], and to solve them
numerically. This will give us the full set of correlators in the presence of an external electric
field. In particular, this analysis will make it possible to compute the density of states of the
system, and to design new obersvables which can be measured to further test the hypothesis of
[38]. To do so however, a stationary states must be found, and consequently dissipation effects
must be included in the Gork’ov equations.
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