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Introduzione

Tutti sanno che una cosa è impossibile da realizza-

re, finché arriva uno sprovveduto che non lo sa e la

inventa.

–A. Einstein–

Nel 1938 Stuckelberg osservava che sia il protone che il neutrone non
decadevano in nessuna particella leggera, come ad esempio l’elettrone o il
neutrino, suggerendo l’esistenza di una “legge di conservazione della carica
pesante” [1]:

[...]oltre la legge di conservazione della carica elettrica esi-
ste una ulteriore legge di conservazione: non è stata osser-
vata nessuna transizione in una trasformazione di materia di
una particella pesante in una particella leggera. Ciò richiede
l’esistenza di una legge di conservazione della carica pesante.

Lo stesso approccio fu seguito da Wigner più tardi [2]:

[..] è concepibile che una legge di conservazione del numero
di particelle pesanti sia responsabile della stabilità del protone
allo stesso modo di come la legge di conservazione della carica
sia responsabile della stabilità. Priva della legge di conser-
vazione in questione, il protone potrebbe disintegrarsi, sotto
l’emissione di un quanto leggero, in un positrone.

Le prime misure della vita media del protone arrivarono nel 1954 [3] e
successivamente nel 1967 [4]. Col passare del tempo, però, la situazione
cambiò. Da osservazioni sperimentali ci si accorse della netta presenza di
materia barionica su quella antibarionica, spiegabile, ad esempio, tramite
l’esistenza di processi di violazione del numero barionico. Nel 1967 ’t
Hooft, a causa delle anomalie di Bell-Jackiw in una teoria di gauge, di-
mostrava che effetti non perturbativi potevano dar luogo ad interazioni
che violano il numero barionico e leptonico∗ [5]; non molto tempo dopo
vide la luce il primo modello di teoria di grande unificazione basato sul
gruppo SU(5) [6], che a causa dei bosoni di gauge aggiuntivi e alla presen-
za del bosone di Higgs, comportava la violazione sia del numero leptonico
che di quello barionico. In questo contesto, tuttavia, maturava uno dei

∗Nella teorica elettrodebole tali processi sono soppressi da un fattore proporzionale
a exp(−16π2/g2) ∼= 10−37.
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Introduzione

maggiori successi della fisica degli ultimi decenni: la scoperta del Modello
Standard (SM).

Il modello standard è compatibile con le esperienze di fisica delle par-
ticelle elementari ed è libero da inconsistenze di natura matematica. Le
interazioni sono tutte descritte da teorie di gauge e quindi, la forma delle
costanti di accoppiamento e i bosoni mediatori sono determinati dall’e-
sistenza di simmetrie di gauge. A differenza di queste notevoli proprietà,
tuttavia, il modello standard è lontano da essere la teoria ultima delle par-
ticelle elementari. Infatti l’interazione forte ed elettrodebole sono forte-
mente indipendenti l’una dall’altra, rispecchiando il fatto che il gruppo
di gauge del modello standard è costruito ad hoc tramite il prodotto di-
retto di tre distinti gruppi di gauge, ognuno con una propria costante
di accoppiamento. Un altro problema risiede nel complicato schema, del
tutto arbitrario, con il quale si rappresentano i fermioni. Non è spiegato,
infatti, il motivo dell’esistenza di tre famiglie fermioniche o la violazione
della parità nelle interazioni deboli, ma non in quelle forti. Non è chiarita
la quantizzazione della carica elettrica dei fermioni. Infatti, non esiste
nessun motivo a priori perché i quark debbano avere carica frazionaria,
quando per i leptoni la carica è unitaria. Il modello standard possiede
anche molti parametri liberi completamente arbitrari come la massa dei
fermioni, gli angoli di mescolamento della matrice di Cabibbo-Kobayashi-
Maskawa (CKM), la massa del campo di Higgs, ecc.. Inoltre esso non
ingloba la quarta forza fondamentale: la gravità.

Un modo per determinare o limitare alcuni dei parametri liberi del
modello standard è prendere in considerazione teorie con un maggior nu-
mero di simmetrie. Mi riferisco in particolare allo studio di teorie di
grande unificazione (GUT), in cui l’interazione forte, debole ed elettro-
magnetica sono contenute in un unico gruppo di gauge con una singola
costante di accoppiamento. In generale le teorie di grande unificazione
hanno più generatori oltre quelli del modello standard che, associati alle
nuove simmetrie, possiedono la carica di colore. Ciò rende i nuovi media-
tori responsabili di processi di violazione del numero barionico contemp-
lando la possibilità del decadimento del protone o del neutrone legato. Un
meccanismo tipico è quello di un quark che si trasforma in un positrone
con l’emissione di uno dei nuovi mediatori (X), che, assorbito da un altro
quark, emette un antiquark. Ottenendo, ad esempio, un decadimento del
tipo p→ e+π◦ con una vita media proporzionale alla quarta potenza della
massa del mediatore (MX). Massa il cui valore è cruciale per qualsiasi
predizione e che è fortemente vincolata al modello di grande unificazione
considerato. In queste teorie le differenze esistenti tra le tre interazioni
fondamentali, ma anche tra gli stessi fermioni, sono dovute ad una rottura
spontanea del gruppo di gauge unificato in suoi sottogruppi. La filosofia
delle GUT è che se si potessero condurre esperimenti ad una scala degli
impulsi Q2 � M2

X , la rottura spontanea della simmetria prima citata,

2



Introduzione

potrebbe essere ignorata. Tutti i fermioni verrebbero visti allo stesso mo-
do e tutte le interazioni sarebbero simili. In particolare l’evoluzione delle
costanti di accoppiamento del Modello Standard si intersecherebbero in
corrispondenza di MX . Infatti, conoscendo la dipendenza delle costanti
di accoppiamento da Q2, è possibile individuare il valore di MX . Tut-
tavia, le grosse differenze a basse energie tra l’interazione debole, forte,
elettromagnetica e la dipendenza logaritmica delle loro costanti di accop-
piamento rispetto a Q2 determinano un enorme valore per MX , come
dimostreremo nei capitoli successivi. Vedremo che MX & 1015GeV , il che
rende la vita media del protone estremamente grande e quindi gli esperi-
menti molto complessi. Significa, infatti, usare apparecchiature di grandi
dimensioni e dover ridurre al minimo eventuali eventi spuri prodotti dai
raggi cosmici. Per questo tutti gli esperimenti di questo tipo si svolgono
sotto terra sfruttando la schermatura naturale offerta dal terreno contro
i raggi cosmici.

Forse, però, l’aspetto più interessante di queste teorie di unificazione
delle forze della natura si manifesta nella sua applicazione alla cosmolo-
gia. L’esistenza di un universo di materia è sempre stato un problema
di difficile soluzione per i cosmologi. Da uno stato iniziale di energia si
sarebbe dovuta formare una uguale quantità di materia ed antimateria;
tuttavia le nostre conoscenze attuali escludono la presenza di grosse quan-
tità di antimateria nel nostro universo. Infatti, se il numero barionico si
conserva, così come prescrive il Modello Standard, allora l’asimmetria
barionica deve essere pensata come conseguenza di un’asimmetria iniziale
del Big–Bang. Invece, se le teorie di grande unificazione sono corrette,
il netto affermarsi di materia barionica nell’universo può essere spiegato
dinamicamente con la violazione del numero barionico nei primi istan-
ti del Big–Bang. Quando la temperatura dell’universo in espansione è
scesa al di sotto di MX , producendo così la rottura della simmetria del
gruppo di gauge della GUT, è possibile che le particelle X sopravvis-
sute abbiano prodotto più quark che antiquark, e quindi più barioni che
antibarioni; questa ipotesi fu per la prima volta formulata dal fisico rus-
so Andrei Sakharov 1967 [7]. Molti dei modelli di GUT servono anche
a spiegare perché le masse dei neutrini seppure diverse da zero risulti-
no relativamente piccole. Il motivo è legato all’origine della violazione
del numero leptonico connesso ad una rottura spontanea della simmetria
che si verificherebbe a grande scala, simmetria che nel modello standard
è nascosta. Inoltre la presenza di un termine di massa per i neutrini
potrebbe contribuire, con un meccanismo diverso, alla spiegazione del-
l’eccesso di materia barionica esistente nel nostro universo [8]. Si tratta,
infatti, di interazioni deboli con violazione del numero barionico che si
potrebbero verificare per la presenza del termine di massa dei neutrini e
che risulterebbero particolarmente efficienti ad alte temperature.

L’importanza dello studio del decadimento del protone risiede nella

3



Introduzione

difficoltà di indagare direttamente le caratteristiche di una fisica tanto
estrema. Infatti, come già lo studio del decadimento β ha permesso la
comprensione dell’interazione elettrodebole, così l’analisi del decadimento
del nucleone potrebbe essere, forse, l’unico mezzo per comprende la fisica
delle GUT.

Tali teorie di grande unificazione non inglobano la forza gravitaziona-
le; inoltre, non si può escludere la possibiità che alcune proprietà di queste
teorie possano risultare inconsistenti con altri fatti sperimentali. Malgra-
do ciò, le potenzialità delle GUT sono molto interessanti tanto da renderle
oggetto di intensi studi e solo i riscontri sperimentali ne decreteranno il
successo o l’insuccesso.

4



Capitolo 1

Concetti fondamentali

Una cosa ho imparato nella mia lunga vita: che tutta

la nostra scienza è primitiva ed infantile, eppure è la

cosa più preziosa che abbiamo.

–A. Einstein–

Il Modello Standard dà una dettagliata descrizione dell’elettromag-
netismo e dell’interazione forte che è compatibile con tutte le osservazioni
sperimentali. Con questo capitolo ricostruiamo le principali proprietà del
MS, soffermandoci su una breve descrizione dei suoi limiti. Il motivo di
ciò è stabilire un punto di partenza su cui basare, nei capitoli successivi,
la nostra discussione. Per lo stesso motivo presentiamo anche un breve
excursus dei concetti fondamentali di un generico decadimento.

1.1 Il Modello Standard

Il Modello Standard è una teoria di campo quantizzato che descrive l’in-
terazione forte ed elettrodebole dei quark e dei leptoni. Queste sono i due
tipi di particelle elementari oggi note che formano la materia. La pecu-
liarità di questo modello è che le forze sono introdotte come interazioni
di gauge [9]. Possiamo distinguere tre settori: il primo è il settore mate-
ria, definito dai campi fermionici; il secondo è caratterizzato dai bosoni
vettori; il terzo è il cosiddetto settore della rottura spontanea della sim-
metria. Quest’ultimo descrive un meccanismo per generare la massa dei
fermioni e dei bosoni, ma non è ben definito, esistendo più di un modello
possibile. Il più noto è quello con un solo doppietto di autointerazione e
il modello standard corrispondente acquista l’attributo di minimale.

Il settore materia è descritto da fermioni organizzati in tre famiglie
sia per i leptoni che per i quark, come mostrato nella (1.1).

(
νe

e

) (
νµ

µ

) (
ντ

τ

)

(
u
d

) (
c
s

) (
t
b

) (1.1)
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§1.1 – Il Modello Standard

Il settore dei bosoni di gauge si può suddividere in due parti caratteriz-
zate da un tipo di interazione, l’interazione forte e l’interazione elettrode-
bole. L’interazione forte è introdotta nel Modello Standard tramite un
vettore di una teoria di gauge SU(3) [10, 11, 12], chiamata cromodinamica
quantistica (QCD). Tutti i quark trasformano come una rappresentazione
fondamentale di SU(3),

qα −→
(
e−i λaθa

2

)αβ

qβ (1.2)

quindi l’indice α nella (1.2), chiamato colore va da 1 a Nc = 3. I bosoni
mediatori responsabili dell’interazione forte sono chiamati gluoni e sono
in numero di otto per via del numero di generatori del gruppo SU(3)c e
per questo dotati di colore. Di conseguenza l’interazione forte agisce solo
sui quark.

L’interazione elettrodebole, invece, è basata su un gruppo di gauge
SU(2)L ⊗ U(1)Y , noto come modello Glashow–Weinberg–Salam (GWS).
La strada percorsa per la determinazione del modello GWS è molto af-
fascinante, per questo la riportiamo in breve. Nel 1957 Schwinger [13]
propose un modello con un tripletto carico W±0 di bosoni vettori, identi-
ficando il W 0 con il fotone e il W± coi bosoni mediatori dell’interazione
debole, ma privi di accoppiamento assiale. Nel 1958 Bludman [14] pro-
pose una teoria di gauge con un gruppo SU(2) per descrivere l’interazione
debole. Bludman identifica il nuovo bosone di gauge neutro come una nuo-
va corrente neutra. Nel 1961 Glashow [15] unifica l’interazione debole ed
elettromagnetica con una teoria di gauge SU(2)⊗U(1). Un modello sim-
ile fu sviluppato anche da Salam e Ward [16]. Successivamente Weinberg
[17] e Salam [18] perfezionarono il modello suggerendo la possibilità che i
bosoni vettori possano acquistare massa tramite il meccanismo di Higgs
[19]. Weinberg suggeriva che la teoria può essere rinormalizzata, ma la
dimostrazione della rinormalizzabilità fu data solo molti anni dopo da ’t
Hooft, Veltman, Lee e Zinn–Justin [20]–[24]. Originariamente il modello
di Weinberg e Salam descriveva solo l’interazione elettrodebole per i lep-
toni. In seguito Weinberg [25, 26] mostra la possibilità di incorporare gli
adroni nel modello arricchendolo con un meccanismo ideato da Glashow,
Iliopoulos e Maiani (GIM) [27]. Tale meccanismo suggeriva l’introduzione
di un quarto quark, chiamato charm e prediceva la conservazione della
stranezza nelle interazioni di corrente neutra. Inoltre nel 1973 Kobayashi
e Maskawa [28] dimostravano che, supponendo l’esistenza di tre famiglie
fermioniche per i quark ed introducendo la matrice di CKM, il modello
non risultava invariante per trasformazioni CP∗.

Chiusa questa breve parentesi storica ritorniamo alla discussione del
Modello Standard, con la descrizione del modello GWS, modello costituito

∗Questo, ad esempio, è il motivo delle violazioni di CP osservate nel sistema K–K̄.
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§1.1 – Il Modello Standard

da quark e leptoni organizzati in doppietti “left” e singoletti “right” di
SU(2)L, supponendo la non esistenza del neutrino “right”. I generatori
del gruppo SU(2)L ⊗ U(1)Y sono quattro a cui corrispondono quattro
campi di gauge comunemente indicati con W µ

1 , W µ
2 , W µ

3 e Bµ. Grazie ad
una opportuna combinazione lineare di essi si individuano i bosoni fisici
responsabili delle interazioni elettrodeboli e cioè W+,W−, Z0 e il fotone
A, dati dalle seguenti relazioni:

W± =
1√
2

[W1 ∓W2] , (1.3)

(
A
Z0

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B
W3

)
(1.4)

Tale modello, infatti, predice interazioni di corrente neutra del tipo ν +
Y → ν + Y ′ mediato dallo Z0, ricevendo le prime conferme sperimentali
da [29, 30]. Inoltre per la presenza sia di Z0 sia di A in interazioni di
correnti neutre abbiamo:

e = g sin θW = g′ cos θW (1.5)

dove θW , g e g′ sono rispettivamente l’angolo di Weinberg, le costanti di
accoppiamento dei gruppi SU(2)L e SU(1)Y , mentre e è la carica elettrica
dell’elettrone.

Abbiamo già accennato che il settore della rottura spontanea della
simmetria, basato sul meccanismo di Higgs è stato incluso nel Modello
Standard per generare lo spettro delle masse dei bosoni W+,W−, Z0, A
e dei fermioni [19]. In particolare viene introdotto per spiegare termini di
massa del modello, che come termini del tipo:

m2
WWµW

µ oppure −mψ̄ψ = −m
(
ψ̄LψR + ψ̄RψL

)
(1.6)

rompono l’invarianza di gauge. Proprio per evitare questo, si può intro-
durre un doppietto di SU(2)L

∗:

H =

(
H+

H0

)
(1.7)

con ipercarica
∗Come abbiamo già avuto modo di dire, questa è la scelta più semplice e per questo

va sotto il nome di minimale.
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§1.1 – Il Modello Standard

YH =
1

2
(1.8)

tale che la carica elettrica di H+ e H0 sia rispettivamente +1 e 0. La
lagrangiana corrispondente è del tipo:

L = (Dµφ)+ (Dµφ) − V (φ) + LY (1.9)

dove

Dµφ =

(
∂µ − i

g′

2
Bµ − ig

τa

2
W a

µ

)
φ (1.10)

mentre

V (φ) = −µ2φ+φ+ λ(φ+φ)2 (1.11)

è un potenziale scalare e LY sono i termini di Yukawa responsabili delle
masse dei fermioni. Quando il doppietto di Higgs prende valore di aspet-
tazione,

〈H〉 =

(
0
v√
2

)
(1.12)

con

v =
µ√
λ

(1.13)

i bosoni vettori dell’interazione debole acquistano massa pari a

mW =
gv

2
(1.14)

mZ =
mW

cos θW
=

1

2
v

√
g2 + g′2 . (1.15)

Sapendo che

1

2v2
=

g2

8m2
W

=
GF√

2
(1.16)
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§1.1 – Il Modello Standard

dove GF è la costante di Fermi∗, si trova v ∼= 250GeV . Usando sin2 θW

(che può essere ottenuto misurando processi di corrente neutra) tale mo-
dello predice le masse mW e mZ , misurate per la prima volta nel 1987
[31]. Successivamente, con la scoperta del quark top nel 1994 [32], è sta-
to confermato e completato il settore fermionico del Modello Standard.
Tuttavia il bosone di Higgs non è stato ancora osservato.

1.1.1 Limiti del Modello Standard

Il Modello Standard, pur non avendo nessuna inconsistenza con le predi-
zioni sperimentali, ha numerosi parametri liberi e diverse questioni ir-
risolte. Infatti, lo schema dei gruppi di gauge e le sue rappresentazioni
sono complicati e del tutto arbitrarii. Non si conosce il motivo per cui
il Modello Standard è il prodotto diretto di tre gruppi di gauge o perché
l’interazione forte conserva la parità mentre in quella debole è violata;
perché la terza famiglia leptonica è più pesante della seconda e a sua vol-
ta questa è più pesante della prima; non è chiara la ragione per cui le
costanti di accoppiamento delle varie interazioni sono diverse; o perché
i leptoni hanno carica unitaria mentre quella dei quark è frazionaria. A
complicare il quadro si inserisce il grande numero dei parametri che la teo-
ria non definisce. Infatti esistono 3 costanti di accoppiamento, i parametri
µ e λ del potenziale V (φ) nella (1.11), 6 costanti di Yukawa per i quark,
3 angoli della matrice CKM e una fase CP, tre costanti di Yukawa per le
masse dei leptoni carichi ( se invece esiste anche il νR si devono aggiungere
almeno altre 3 costanti di Yukawa per le masse dei neutrini, 3 angoli di
mescolamento, ed una fase di violazione CP) per un totale di 18 (o 25)
parametri liberi. Tuttavia la presenza, tra i parametri liberi, di quantità
molto piccole, può far pensare all’esistenza di dinamiche nascoste. Mi
riferisco ad esempio al rapporto tra le masse dei neutrini (supposte di-
verse da zero) e quelle dei fermioni, oppure tra quelle dei fermioni e dei
bosoni W± e Z0.

1.1.2 Il numero barionico e leptonico

Convenzionalmente, nel Modello Standard, ad ogni barione si associa un
numero barionico (B) pari ad uno e un numero leptonico (L) nullo, vicev-
ersa per i leptoni. Le corrispondenti antiparticelle possiedono numero
barionico o leptonico opposto. Invece, i bosoni del Modello Standard,
hanno numero leptonico e barionico nullo. Tuttavia i barioni hanno una
struttura interna formata da altre particelle, i quark, che si distinguono
in sei famiglie o sapori. Questo implica che il numero barionico può essere
espresso nel seguente modo:

∗GF = 1.17 · 10−5GeV −2
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§1.1 – Il Modello Standard

B =
1

3
(Nq −Nq̄) (1.17)

dove con Nq e Nq̄ abbiamo indicato il numero di quark ed antiquark che
determinano la struttura del barione di riferimento. L’esigenza di intro-
durre il fattore 1/3 è per rispettare la convenzione di B = 1 per i barioni
[33]. Per i leptoni la situazione potrebbe essere simile ai barioni. Tuttavia
(fatta eccezione per le oscillazione dei neutrini) non si osservano fenomeni
di mescolamento tra leptoni di differenti generazioni, come invece accade
per interazioni deboli con gli adroni. Questo ha indotto la necessità di
introdurre un numero leptonico per ogni famiglia:





Le = Nle −Nl̄e

Lµ = Nlµ −Nl̄µ

Lτ = Nlτ −Nl̄τ

(1.18)

a cui segue un numero leptonico totale pari alla somma dei tre:

L = Le + Lµ + Lτ (1.19)

Uno dei successi del Modello Standard è proprio l’esistenza di simme-
trie accidentali che prevedono la conservazione del numero barionico e lep-
tonico. Infatti, proprio l’assenza dell’instabilità del protone o del neutrone
legato è attribuita alla conservazione del numero barionico. Si potrebbe
pensare, quindi, a violazioni di tali leggi di conservazione. Sarebbe anche
lecito chiedersi se può essere ammessa una violazione, ad esempio della
carica elettrica, invece che del numero barionico. Però la conservazione
del numero barionico è legata solo ad una simmetria globale, mentre quel-
la della carica elettrica è legata ad una simmetria di gauge. Infatti non
esiste nessun modo accettabile di violare la carica elettrica senza supporre
l’esistenza di una massa non nulla per il fotone. Potremmo anche specu-
lare su una improbabile simmetria locale associata alla conservazione del
numero barionico. Ciò implicherebbe l’esistenza di un “fotone barionico”
privo di massa∗, che indurrebbe una differenza tra massa inerziale e mas-
sa gravitazionale [34] mai osservata. Quindi la conservazione del numero
barionico non può essere associata ad una simmetria di gauge ed esiste la
possibilità di introdurre, come vedremo nei paragrafi successivi, dei ter-
mini nella lagrangiana del Modello Standard che violino la conservazione
del numero barionico. Di conseguenza, l’esistenza della conservazione del
numero barionico si riduce inevitabilmente ad un problema di verifica spe-
rimentale. Tuttavia ci aspettiamo che i processi di violazione del numero

∗La massa è nulla perché le interazioni potrebbero avvenire anche a grandi distanze.
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barionico abbiano una frequenza molto inferiore rispetto alle altre intera-
zioni note. Infatti la scala temporale dell’interazione debole è dell’ordine
dei 10−10 secondi, invece i limiti attuali (si vedano le tabelle del paragrafo
2.1) sulla vita media del protone sono dell’ordine di 1032 anni. Addirit-
tura esistono lavori come quelli di ’t Hooft [35] con i quali si suggerisce la
possibilità di violare il numero barionico e leptonico per effetto tunnel nei
processi di interazione debole. Per esempio la reazione p+ n→ e+ν̄µ op-
pure p+n→ µ+ν̄e potrebbe verificarsi con una probabilità estremamente
bassa proporzionale a exp(−4π sin2 θW /α) ∼= e−400. Per giunta esistono
anche modelli di violazione del numero barionico basati su interazioni
gravitazionali.

Non solo quindi la conservazione del numero barionico non è un prin-
cipio fondamentale, ma l’evidente eccesso di materia barionica rispetto a
quella anti–barionica nel nostro universo, fa sospettare l’esistenza di pro-
cessi che hanno violato la conservazione del numero barionico nei primi
istanti dell’universo, quando era ancora molto caldo e denso. Proces-
so interpretabile supponendo l’esistenza di una nuova interazione che si
manifesta, ad esempio, tramite il decadimento del protone. Questo è esat-
tamente ciò che molti modelli di GUT prescrivono, modelli in cui sia il
numero barionico che leptonico sono esplicitamente violati.

1.2 Legge del decadimento radioattivo

In questa tesi, occupandoci di decadimento del protone, è utile rivedere
in generale i concetti relativi al decadimento. In fisica atomica e sub-
atomica è frequente la situazione per cui un generico stato quantistico K
può decadere in uno stato Y. Si possono fare molti esempi a riguardo: la
diseccitazione di un atomo di idrogeno con emissione di fotoni; il deca-
dimento β o α di un nucleo, ecc.. Viceversa, uno stato a cui è proibito
decadere è detto stabile. Ad esempio, un elettrone è una particella sta-
bile, poiché la conservazione della carica e della energia gli impediscono
qualsiasi decadimento. Chiamiamo con Γ il tasso di decadimento, cioè il
numero di stati K che decadono nell’unità di tempo. Indichiamo con N0

il numero iniziale di tali stati, e con N(t) il numero di essi al tempo t. La
variazione di N in un tempo infinitesimo dt sarà:

dN(t) = −N(t)Γdt (1.20)

e integrando otteniamo che

N(t) = N0e
−Γt (1.21)
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è il numero di stati superstiti al tempo t. La (1.21) è la legge del decadi-
mento radioattivo. Osserviamo che l’equazione (1.21) indica la probabi-
lità (e−Γt) che una certa frazione di stati K non decadano. Dalla (1.21)
possiamo calcolare la vita media dello stato K, che sarà:

∫∞
0 tN(t)dt∫∞
0 N(t)dt

= Γ−1 . (1.22)

Spesso, però, uno stato iniziale K può decadere in diversi canali di
decadimento. Per esaminare questo caso consideriamo una particella che
può decadere in h modi diversi tutti indipendenti gli uni dagli altri. In-
dichiamo con Γi il tasso di decadimento per ogni modo i-esimo. Allora la
variazione di stati K in un tempo infinitesimo è

dN(t)

dt
= −N(t)

h∑

i=1

Γi (1.23)

e quindi, integrando:

N(t) = N0e
−

Ph
i=1 Γit . (1.24)

In questo caso il tasso di decadimento totale è

Γ =
H∑

i=1

Γi (1.25)

e la vita media è

τ =

(
H∑

i=1

Γi

)−1

. (1.26)

Molto spesso è utile definire il “branching fraction” o rapporto di dira-
mazione:

BRi ≡
Γi

Γ
, (1.27)

e la vita media parziale:

τi = (Γi)
−1 =

τ

BRi
, (1.28)

con i quali si evidenzia quanto un modo di decadimento è più probabile
rispetto ad un altro.

12



Capitolo 2

Analisi dei canali di
decadimento

I concetti della fisica sono libere creazioni dello spi-

rito umano, e non sono, nonostante le apparenze,

determinati unicamente dal mondo esterno.

–A. Einstein–

In questo capitolo esamineremo quali sono i possibili decadimenti del
protone supponendo la violazione del numero barionico e discuteremo la
necessità di individuare degli operatori effettivi (effective operators) che
possano predire tali canali di decadimento.

2.1 Canali di decadimento

Il Modello Standard si basa sull’esistenza di tre distinte famiglie fermioniche,
i quark e i leptoni. Per molti aspetti il fatto che le particelle siano or-
ganizzate in due gruppi (leptoni e quark) con proprietà simili non è sp-
iegabile nell’ambito del modello standard. Potrebbe però, per esempio,
essere legato all’interpretazione data ai leptoni come quarta carica di col-
ore, come Pati e Salam hanno suggerito nel 1974 [36]. Tra l’altro, gli
ultimi esperimenti sull’oscillazione dei neutrini quali Super-Kamiokande
[37], MACRO [38], KamLAND [39] ecc., stanno mettendo a dura prova la
conservazione del numero leptonico per famiglia. È quindi nostra inten-
zione considerare la non conservazione del numero barionico, unico modo
per ipotizzare il decadimento del protone∗. Vale la pena osservare che sia
la non conservazione del numero leptonico, quanto la non conservazione
del numero barionico implicano, nella lagrangiana del Modello Standard
minimale, solo una rottura di una simmetria globale. Non solo, quindi,
la conservazione del numero barionico non è necessaria come simmetria
fondamentale, ma, oltre tutto, potrebbe spiegare il motivo dell’eccesso

∗Ci preme tuttavia assicurare il lettore che questo non influirà sullo stato della sua
esistenza. Infatti, assumendo che una persona di 100Kg viva 100 anni, e che la vita
media del protone sia τp ≈ 1033 anni, il numero medio di protoni decaduti è ≈ 5 · 10−4

(avendo assunto che il corpo umano è fatto al 75% di acqua e il rimanente di carbonio).
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nel nostro universo di materia barionica rispetto a quella antibarionica.
Tuttavia, è indispensabile mantenere la conservazione di alcune grandezze
fondamentali quali lo spin, l’energia o la carica elettrica, solo per citarne
alcune. Infatti se supponiamo l’esistenza di processi con violazione del
numero barionico, per la conservazione dello spin, si dimostra che ∗

∆B + ∆L = 2n ∀n ∈ Z . (2.1)

Quindi, il decadimento di un singolo nucleone (∆B = 1), deve essere
accompagnato da una violazione del numero leptonico. Alla luce di ciò,
è interessante notare come il gruppo di gauge SU(3)c ⊗ SU(2)L ⊗U(1)Y
soddisfi, in particolare, l’invarianza per B − L†. Ci piace pensare che
questo potrebbe essere il “residuo fossile” di una rottura spontanea di
un gruppo di gauge unificato contenente il Modello Standard. Quindi
possiamo cercare di elencare quei canali di decadimento in cui ∆B = ∆L,
processi avulsi dal Modello Standard, ma che possono essere descritti in
termini di una teoria effettiva (effective theory) invariante per SU(3)c ⊗
SU(2)L⊗U(1)Y come sarà chiarito nei prossimi paragrafi. Tali eventi sono
schematizzabili come un barione che decade in un antileptone e in uno o
più mesoni. Nella tabella numero 2.1 e 2.2 abbiamo elencato quei canali
di decadimento rispettivamente a due corpi e a tre corpi, che soddisfano
tale regola di selezione. Nella tabella 2.5 e 2.6 sono riportati i canali
di decadimento con fotoni o con più di due leptoni. In tutte e quattro
le tabelle sono indicati i limiti sperimentali per le vite medie parziali
oggi note [40]. Ci preme osservare che taluni di quei processi violano la
stranezza, mentre per altri è conservata, ma in nessuno di essi ∆B = ∆S.
Tale scelta non è casuale e sarà più chiara in seguito. Nelle tabelle 2.3
e 2.4, invece, elenchiamo processi in cui la regola di selezione è ∆B =
−∆L, rispettivamente per eventi a due e tre corpi. Vogliamo inoltre far
notare che la verifica sperimentale è possibile solo per modi con particelle
cariche, infatti decadimenti che coinvolgono i neutrini sono di difficile
identificazione e ancora più complicato risulta la distinzione tra ν o ν̄
come prodotti del decadimento protonico.

2.1.1 Cinematica del decadimento

Considerando un decadimento a due corpi di un protone libero (nucleo di
idrogeno) la quantità di moto di entrambi i prodotti del decadimento sono
uguali in modulo, verso, ma con direzione opposta. Per un decadimento a
tre corpi, invece, le cose cambiano. Ponendoci nel sistema di riferimento

∗La dimostrazione della (2.1) è alquanto semplice e passa per l’osservazione che le
uniche due categorie di particelle ad avere spin semintero sono i barioni ed i leptoni.

†In seguito presenteremo ulteriori argomenti a supporto di questa tesi.
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Modo Vita media parziale
(1030anni)

N → e+π > 158 (n), > 1600 (p)
N → µ+π > 100 (n), > 473 (p)
N → νπ > 112 (n), > 25 (p)
p→ e+η > 313
p→ µ+η > 126
n→ ν̄η > 158
N → e+ρ > 217 (n), > 75 (p)
N → µ+ρ > 228 (n), > 110 (p)
N → ν̄ρ > 19 (n), > 162 (p)
p→ e+ω > 107
p→ µ+ω > 117
n→ ν̄ω > 108
N → e+ K > 17 (n), > 150 (p)
p→ e+ K0

S > 120
p→ e+ K0

L > 51
N → µ+ K > 26 (n), > 120 (p)
p→ µ+ K0

S > 150
p→ µ+ K0

L > 83
N → ν̄ K > 86 (n), > 670 (p)
n→ ν̄ K0

S > 51
p→ e+ K∗(892)0 > 84
N → ν̄ K∗(892)0 > 78 (n), > 51 (p)

Tabella 2.1: Decadimenti a due corpi con ∆B = ∆L.

Modo Vita media parziale
(1030anni)

p→ e+π+π− > 82
p→ e+π0π0 > 147
N → e+π0π0 > 52
p→ µ+π+π− > 133
p→ µ+π0π0 > 101
n→ µ+π0π− > 74
n→ e+K0µ− > 18

Tabella 2.2: Decadimenti a tre corpi con ∆B = ∆L.
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Modo Vita media parziale
(1030anni)

n→ e−π+ > 65
n→ µ−π+ > 49
n→ e−ρ+ > 62
n→ µ−ρ+ > 7
n→ e−K+ > 32
n→ µ−K+ > 57

Tabella 2.3: Decadimenti a due corpi con ∆B = −∆L.

Modo Vita media parziale
(1030anni)

p→ e−π+π+ > 30
n→ e−π+π0 > 29
p→ µ−π+π+ > 17
n→ µ−π+π0 > 34
p→ e−π+K+ > 75
p→ µ−π+K+ > 245

Tabella 2.4: Decadimenti a tre corpi con ∆B = −∆L.

Modo Vita media parziale
(1030anni)

p→ e+γ > 670
p→ µ+γ > 478
n→ νγ > 28
p→ e+γγ > 100
n→ ν̄γγ > 219

Tabella 2.5: Decadimenti a due corpi con ∆B = ∆L (antileptoni e fotoni).
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Modo Vita media parziale
(1030anni)

p→ e+e+e− > 793
p→ e+µ+µ− > 359
p→ e+νν > 17
n→ e+e−ν > 257
n→ µ+e−ν > 83
n→ µ+µ−ν > 79
p→ µ+e+e− > 529
p→ µ+µ+µ− > 675
p→ µ+νν > 21
p→ µ+e−µ+ > 6
n→ 3ν > 0.0005
n→ 5ν

Tabella 2.6: Decadimenti che coinvolgono tre o più leptoni.

Modo Vita media parziale
(1030anni)

N → e+ qualunque > 0.6 (n, p)
N → µ+ qualunque > 12 (n, p)
N → ν qualunque
N → e+π0 qualunque > 0.6 (n, p)
N → 2 corpi , ν−libero

Tabella 2.7: Modi inclusivi
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del centro di massa del protone, la conservazione del quadrimpulso ci
impone che:

~p1 + ~p2 + ~p3 = 0

ε1 + ε2 + ε3 = mp (2.2)

dove con mp abbiamo indicato la massa a riposo del protone, invece con
pi ed εi gli impulsi e l’energie dei prodotti del decadimento, con i = 1, 2,
3. Poiché il numero delle equazioni è minore del numero delle incognite,
il numero delle soluzioni sarà infinito. Possiamo comunque valutare il
valore massimo e minimo dell’energia per una delle tre particelle i. Per
raggiungere tale scopo, consideriamo due delle tre particelle come un uni-
co sistema in modo da ricondurci al caso del decadimento a due corpi.
Indichiamo, quindi, con M12 una particella virtuale che ha impulso ed
energia pari a:

−→p 12 = −→p1 + −→p2 (2.3)

ε12 = ε1 + ε2 (2.4)

e massa pari a:

M2
12 = (ε1 + ε2)

2 − (−→p1 + −→p2)
2

= m2
1 +m2

2 + 2(ε1ε2 − p1p2 cos θ) (2.5)

dove θ è l’angolo compreso tra −→p1 e −→p2. L’energia della terza particella
sarà:

ε3 =
m2

p +m2
3 −M2

12

2mp
. (2.6)

Tuttavia M12 non è costante, ma dipende dai limiti cinetici imposti dalla
conservazione del quadrimpulso. Quando M12 assume valore massimo
ε3 acquista valore minimo e viceversa. Il valore minimo di ε3 si ottiene
quando −→p3 = 0, cioè quando cos θ = −1 e in tal caso

(ε3)min = m3 . (2.7)

Il valore massimo, invece, si ottiene per cos θ = 1, per cui M2
12 = (m1 +

m2)
2 e quindi
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(ε3)max =
m2

p +m2
3 − (m1 +m2)

2

2mp
. (2.8)

Ad esempio, per un processo del tipo p −→ e+πoπo, abbiamo che

135MeV . επ . 469MeV 0.51MeV . εe+ . 430MeV .(2.9)

Se, al contrario, il protone è legato le condizioni cinematiche sono differen-
ti a causa del moto di Fermi dei protoni che inducono effetti sui prodotti
del decadimento. Schematizzando i nucleoni come contenuti all’interno di
un potenziale a mo’ di gas di Fermi, il loro impulso sarà:

KF =
(
3π2ρ

) 1
3 , (2.10)

dove ρ è la distribuzione dei protoni che assumiamo pari alla densitá
nucleare a simmetria centrale detta di Saxon-Woods [41], la cui forma è:

ρ(r) =
Z

A
ρ0

1

1 + e
r−c

a

, (2.11)

dove Z ed A sono il numero atomico ed il peso atomico dell’atomo di
riferimento, mentre ρ0, c ed a sono delle costanti tipiche dell’elemento.
Quindi la distribuzione angolare dei mesoni relativa a quella delle parti-
celle “compagne” risente dell’impulso iniziale del protone. Inoltre la massa
effettiva del protone, sarà degradata dall’energia di legame E0:

mp

∣∣∣
eff

= mp − |E0| . (2.12)

Bisogna anche considerare la posizione casuale del protone in accordo con
la (2.11) e quindi la posizione del mesone figlio. Infatti se il mesone è cre-
ato all’interno di un nucleo, bisogna opportunamente valutare le possibili
interazioni di assorbimento, scattering o di scambio del mesone stesso con
un nucleone legato.

Nel prossimo paragrafo studieremo i possibili operatori effettivi che
possiamo scrivere a partire dal Modello Standard e che violano la conser-
vazione del numero barionico.
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2.2 Operatori effettivi

È lecito supporre che alcuni o tutti i canali di decadimento elencati nel
paragrafo 2.1, possano essere descritti da operatori effettivi, nell’idea
che esistano dei mediatori molto massivi che ne spiegano la “bassa” fre-
quenza di decadimento∗. Infatti, eventuali processi che si verificano a
“basse” energie†, ad esempio il decadimento del protone, potrebbero es-
sere descritti in termini di una teoria di campo effettiva invariante per
SU(3)c ⊗ SU(2)L ⊗ U(1)Y in modo tale da rompere l’invarianza di B ed
eventualmente, in accordo con la (2.1), anche quella di L. Nel caso in
cui tale interazione coinvolga una coppia di fermioni e un numero qualsi-
asi di derivate o bosoni, l’invarianza per SU(3)c immediatamente implica
la conservazione del numero barionico. Ciò significa che, per avere una
violazione del numero barionico, i fermioni nella lagrangiana effettiva de-
vono essere in numero almeno pari a quattro. In questo caso la dimensione
canonica sarà d ≥ 6 e la costante di accoppiamento effettiva dipenderà
dalla massa del mediatore esotico‡:

G ∝M4−d . (2.13)

Il caso particolarmente interessante di non conservazione del numero ba-
rionico, in cui B è violato e l’accoppiamento (G) è minimo, è descritto da
un operatore effettivo formato da tre quark e un leptone per cui d = 6.

Consideriamo quali operatori effettivi violino le simmetrie accidentali
del Modello Standard (B ed L). Ad esempio rilasciando la condizione che
B sia violato, esiste un operatore effettivo con due leptoni e due scalari la
cui dimensione è d = 5. Nella tabella numero 2.8 presentiamo alcuni di
questi con la relativa dimensionalità, le regole di selezione e un processo
tipico indotto da questi operatori [42].

Da quanto scritto nella 2.8 possiamo classificare gli operatori con
violazione del numero barionico in due gruppi:

• quelli in cui il numero barionico è violato da una sola unità, | ∆B |=
1,

∗Ovviamente tali particelle non sono incluse nel Modello Standard. D’altra parte,
visto gli ordini di grandezza dei limiti sperimentali delle vite medie dei nucleoni (si
vedano le tabelle dal numero 2.1 al numero 2.7), si può supporre che la loro massa M
sia molto maggiore della massa dei mediatori dell’interazione debole, M � mZ .

†Per basse energie in questo contesto intendiamo E . mZ .
‡La filosofia applicata è simile a quella ideata da Fermi per lo studio del decadimen-

to β, n→ p e− νe. Infatti, per descrivere il processo, propose la seguente lagrangiana
effettiva LF = −

GF√
2

[pγλn]
ˆ

eγλν
˜

+ h.c., dove GF = 1.17 · 10−5 GeV −2 racchiude-
va i dettagli della teoria allora sconosciuti ed oggi è nota col nome di costante di
accoppiamento di Fermi [43, 44]. Per maggiori dettagli si veda [45, Paragrafo 11.1].
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§2.2 – Operatori effettivi

Operatore
effettivo

d Regole di selezione Processo tipico

llφφ 5 ∆B = 0, ∆L = ±2 nn→ ppe−e−

qqql 6 ∆B = ∆L = ±1 p→ e+π0

qqqlcφ 7 ∆B = −∆L = ±1 n→ e−π+

qqqqqq 9 ∆B = ±2, ∆L = 0 n↔ n
qqqlclclcφ 10 ∆B = −1

3∆L = ±1 n→ ννe−π+

qqqlllφφ 11 ∆B = 1
3∆L = ±1 n→ νcνce+

qqqqqqll 12 ∆B = ∆L = ±2 H↔ H

Tabella 2.8: Operatori effettivi invarianti per SU(3)c ⊗ SU(2)L ⊗U(1)Y .
Abbiamo usato la seguente nomenclatura: q sta per quark, l per leptone,
φ per scalare, l’indice c indica la coniugazione di carica e il simbolo H
indica l’idrogeno.

• e gli altri, in cui il numero barionico è violato da due unità | ∆B |=
2.

Il primo gruppo in accordo con la (2.1) induce necessariamente una vio-
lazione del numero leptonico. Ad esso appartengono processi con differenti
regole di selezione, come si può osservare ed in particolare contempla il
decadimento protonico con dimensionalità più bassa possibile (d = 6).
Per il secondo gruppo, invece, possiamo distinguere due casi∗:

i) processi senza violazione del numero leptonico, ∆L = 0,

ii) processi con violazione del numero leptonico uguale a quella del
numero barionico, | ∆B = ∆L |= 2.

Il primo sottogruppo è caratterizzato da processi di natura non leptonici
come l’oscillazione del neutrone in un anti–neutrone (n ↔ n) o doppi
decadimenti nucleonici in mesoni come nn → π0π0, np → πoπ+. Men-
tre il secondo sottogruppo è caratterizzato da processi semi–leptonici
come l’affascinante oscillazione di un atomo di idrogeno in un altro di
antimateria.

Dopo questa breve digressione, ci concentreremo sugli operatori di
dimensione più bassa: d = 6. Come detto, l’espressione generica della
lagrangiana effettiva è del tipo:

Leffettiva ∼ α

M2
(qqql) + h.c. (2.14)

∗Sempre in accordo alla (2.1).

21



§2.2 – Operatori effettivi

e per questo possiamo costruire sei operatori effettivi invarianti per SU(3)c⊗
SU(2)L ⊗ U(1)Y e per il gruppo di Lorentz SO(3, 1) ∗:

O
(1)
abcd =

(
d

c
αaR uβbR

) (
qc
iγcL ljdL

)
εαβγεij (2.15)

O
(2)
abcd = (qc

iαaL qjβbL)
(
uc

γcR ldR

)
εαβγεij (2.16)

O
(3)
abcd = (qc

iαaL qjβbL)
(
qc
kγcL lldL

)
εαβγεijεkl (2.17)

O
(4)
abcd = (qc

iαaL qjβbL)
(
qc
kγcL lldL

)
εαβγ × (−→τ ε)ij · (−→τ ε)kl (2.18)

O
(5)
abcd =

(
d

c
αaR uβbR

) (
uc

iγcR ldR

)
εαβγ (2.19)

O
(6)
abcd = (uc

αaR uβbR)
(
d

c
iγcR ldR

)
εαβγ (2.20)

Dove α, β e γ sono gli indici di SU(3)c; i, j, k ed l sono gli indici di
SU(2); a, b, c e d sono gli indici di famiglia; i pedici L ed R indicano
rispettivamente il campo left e quello right, il primo doppietto, il secondo
scalare di SU(2); C indica la coniugazione di carica per ottenere l’in-
varianza di Lorentz; εij e εαβγ sono i tensori totalmente antisimmetrici
rispettivamente per SU(2) e per SU(3) con ε12 ≡ ε123 = 1.
Questi operatori sono gli unici di dimensione sei che possono essere costru-
iti all’interno del Modello Standard. Si può notare come l’invarianza del
gruppo U(1)Y necessiti l’uso della matrice di coniugazione di carica C
per conservare l’invarianza di Lorentz. La contrazione degli indici di col-
ore di SU(3), con il tensore di Levi–Civita garantisce l’invarianza per il
gruppo di colore, mentre per soddisfare l’invarianza per SU(2), a causa
della presenza del campo di Majorana, si rende necessario introdurre un
tensore antisimmetrico come nella O(3) o nella O(4). Tra l’altro quest’ul-
timo è formato da termini di natura tripletto, rispecchiando le possibili
rappresentazioni che si costruiscono a partire da doppietti fermionici di
SU(2)†. Studiando con attenzione gli operatori (2.15)–(2.20), si pos-
sono individuare alcune importanti proprietà. Si nota, infatti, che tutti

∗Questi operatori sono stati originariamente costruiti da Weinberg in un lavoro del
1978. Cfr. [42, 46]

†Infatti a partire da un doppietto ψ di SU(2) si possono costruire singoletti e
tripletti. Ad esempio ψtCσ2ψ è un singoletto, mentre ψtCσ2

−→σ ψ è un tripletto. Infatti
il primo sotto una trasformazione

ψ → ei−→σ −→α /2ψ =⇒ δψ =
i−→σ −→α

2
ψ (2.21)

ψt
→ ψtei−→σ −→α /2 =⇒ δψt = ψt i

−→σ −→α

2
(2.22)

rimane invariato, mentre il secondo si comporta come un vettore (−→x ) di SO(3) gruppo
isomorfo ad SU(2), δxi = εijkαkxj [45, 54, 50]. Per dimostrare che ψtCσ2

−→σ ψ è un
tripletto è sufficiente verificare che

δ(ψtCσ2σ
iψ) = εijkψtCσ2σ

jψαk (2.23)
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questi operatori, proprio come voluto, possono descrivere il decadimento
del protone, infatti ∆B = −1 e inoltre conservano B−L. In altre parole,
le interazioni (2.15)–(2.20) conservano la differenza del numero barionico
B e del numero leptonico L, consentendo al nucleone di decadere solo
in un antileptone e non in un leptone. Quindi, i canali di decadimen-
to che tali operatori descrivono sono quelli elencati nella tabella numero
2.1. Osserviamo che tali termini possono contenere solo operatori che
distruggono quark di tipo s, ma nessuno operatore che ne crea. Quindi
i processi in cui ∆S = ∆B sono proibiti. Ad esempio un decadimento
tipo p → K+ν̄ ha ∆B = −1 e ∆S = 1 ed è permesso, mentre uno del
tipo n → K−e+ ha ∆S = −1 ed è proibito. Consideriamo ora i processi
per cui ∆S = 0 e ∆B = −1. Notiamo che gli operatori (2.18) e (2.20)
non contribuiscono al decadimento del protone∗. Inoltre dalle proprietà
dell’isospin si possono ottenere le seguenti relazioni circa la frequenza di
decadimento [46]:

Γ(n→ e+π−) = 2Γ(p→ e+π0) (2.24)

Γ(n→ νcπ0) =
1

2
Γ(p → νcπ+) (2.25)

Per dimostrare le relazioni (2.24) e (2.25) è necessario invocare la con-
servazione dello spin isotopico nelle interazioni forti e il fatto che nelle
condizioni di ∆S = 0 e ∆B = −1 gli operatori (2.18) e (2.20) hanno
isospin pari a 1/2. Ricordiamo che Q = I3 + B/2 quindi I3(p) = 1/2,
I3(n) = −1/2 e per i processi (2.24) ∆I3 = −1/2, mentre per i pro-
cessi (2.25) ∆I3 = 1/2. Se poniamo l’attenzione solo sulle proprietà
dell’isospin, possiamo indicare operatori con isospin uguale con simboli
uguali e tralasciare gli stati su cui l’isospin non è definito. In questo mo-
do, possiamo sinteticamente scrivere gli elementi di matrice dei rispettivi
processi indicati nella (2.24) e nella (2.25) nel seguente modo:

< π− | O | n >, < π0 | O | p > (2.26)

< π0 | O′ | n >, < π+ | O′ | p > (2.27)

dove, proprio per la conservazione dell’isospin, I3(O) = −1/2 e I3(O′) =
1/2. Quindi

usando le proprietà seguenti:
h

σj

2
, σi

2

i

= iεjil σl

2
; σt

1 = σ1, σt
3 = σ3, σt

2 = −σ2.
∗Infatti se si sostituiscono i campi u e d con quelli ad isospin semintero ±1/2,

abbiamo ad esempio che nell’operatore O(6) il prodotto di εαβγ , matrice antisimmetrica
per una simmetrica su due indici, data dai campi uc

RαuRβd
c
Rγ , è nullo.
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O | p > = | 1

2
,−1

2
>| 1

2
,
1

2
> (2.28)

O | n > = | 1

2
,−1

2
>| 1

2
,−1

2
> (2.29)

Dalle proprietà dell’algebra dell’isospin possiamo identificare gli stati con
isospin totale assegnato ottenendo:

1√
2

(
| 1

2
,−1

2
>| 1

2
,
1

2
> ± | 1

2
,
1

2
>| 1

2
,−1

2
>

)
= | 1

0
, 0 > (2.30)

| 1

2
,−1

2
>| 1

2
,−1

2
> = | 1,−1 >(2.31)

da cui segue che

O | p >=
1√
2

(| 1, 0 > + | 0, 0 >) (2.32)

< π0 | O | p >=
1√
2
< 1, 0 (| 1, 0 > + | 0, 0 >) =

1√
2
M (2.33)

dove M è necessario perché i bra e i ket non sono normalizzati ad uno.
Invece

< π− | O | n >=< −1, 1 | 1,−1 >= M (2.34)

quindi

√
2 < π0 | O | p >=< π− | O | n > (2.35)

da cui la (2.24). In modo analogo si dimostra la (2.25).

2.3 Vita media del nucleone

I canali di decadimento nelle tabelle numero 2.1–2.7 possono essere in-
terpretati come processi mediati da un bosone molto massivo. Con ri-
ferimento a quanto scritto nei paragrafi precedenti e in particolare alla
(2.14), vogliamo ora valutare la dipendenza della vita media del protone
in funzione della costante di accoppiamento αX/M

2
X . Dalla (2.14) possia-

mo scrivere [47, Capitolo 8] che la frequenza differenziale del decadimento
protonico è:
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§2.3 – Vita media del nucleone

dΓ = Πf
V

(2π)3d
3qf ·W (2.36)

dove l’indice f indica le particelle nello stato finale, V è un volume ar-
bitrario in cui si può pensare che avvenga il processo, che nel calcolo
esplicito scompare, q è il quadrimpulso della particella f e W è la proba-
bilità di transizione per unità di tempo. Più nel dettaglio, W dipende dal
modulo quadro dell’elemento di matrice del decadimento. A questo punto
è utile produrre dei grafici di Feynman del decadimento di un protone. A
tale proposito riportiamo in figura 2.1 alcuni grafici di Feynman relativi
al seguente processo:

p −→ e+π0 (2.37)

�
u

u

d e+

uc

X �
u

d

u e+

uc

Y

�Y

u

u

d

u

e+

uc�X

d

u

u

d

e+

dc

�
d

u

u e+

dc

Y

Figura 2.1: Diagrammi in cui (uud) → e+ūu oppure (uud) → e+d̄d. Se
ai primi tre diagrammi il quark “spettatore” u viene sostituito con un
quark d, otteniamo tre diagrammi che contribuiscono al decadimento del
neutrone.

In figura 2.1 abbiamo indicato con X ed Y due diversi mediatori, con
cariche elettriche rispettivamente di 4/3 e di 1/3. Entrambi accoppiano
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§2.3 – Vita media del nucleone

quark e leptoni e sono dotati di carica di colore. Malgrado la possibile
esistenza di due diversi mediatori, possiamo immaginare che le loro masse
siano simili, cioè MX ∼MY . Ritornando alla (2.36) dovremmo poter es-
sere in grado di calcolare l’elemento di matrice di uno dei decadimenti
mostrati per determinare la vita media del protone. Purtroppo il calcolo
richiede metodi non perturbativi. Infatti, non esiste un modo per cal-
colare processi di interazione dovuti a quark legati. Tuttavia, la via più
semplice, che ci permette comunque di ottenere una espressione seppure
molto approssimata per la vita media, consiste in una analisi di natura
dimensionale del processo, dalla quale otteniamo:

τp ∼ 1

α2
X

M4
X

m5
(2.38)

dove con m abbiamo voluto indicare la scala tipica dei processi adronici.
Nel seguito porremo m = mp.

2.3.1 Stime dei tassi di decadimento

In questo paragrafo, sulla base di quanto detto nel paragrafo 2.3 ed in
particolare sfruttando la (2.38), procediamo ad esaminare quali possono
essere gli ordini di grandezza di un decadimento protonico.

Il problema maggiore, come già detto, consiste nel valutare quale con-
tributo al calcolo è apportato dalla corrente adronica determinata non da
particelle libere, ma da un sistema legato di quark formanti il protone
iniziale o il mesone finale. Possiamo supporre che m = mp (mp = massa
del protone) e fissando τp & 1033 anni∗ e αx ∼ α = e2/(4π) ≈ 1/137
otteniamo una stima per:

MX

∣∣∣
mp

& 1015 GeV . (2.39)

Considerando l’ipotesi di αX più piccole di α, si possono usare le
costanti di Yukawa. Ricordiamo che, nel Modello Standard, queste ven-
gono introdotte ad hoc in modo da ottenere i giusti valori sperimentali
per le masse leptoniche. Si ha esigenza introdurne una per ogni leptone
carico. L’accoppiamento di Yukawa è del tipo g

Y
l̄LΦlR + h.c., avendo

indicato con Φ il doppietto di Higgs. Quando quest’ultimo prende valore
di aspettazione il leptone l diventa massivo e la massa acquistata è pari a

ml =
yl〈φ◦〉√

2
. (2.40)

∗In accordo con le misure presentate nel paragrafo 2.1.
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Tra l’altro, dalla relazione che lega i bosoni vettori W±, mediatori del-
l’interazione debole, e il campo di Higgs stesso, otteniamo,

〈φ◦〉 =

√
1√
2GF

, (2.41)

dove GF ≈ 1.17 · 10−5GeV −2 è la costante di Fermi, determinabile, ad
esempio, analizzando il decadimento del µ. Quindi

gl = ml

√
2
√

2GF . (2.42)

Definiamo, in analogia a quanto fatto per le costanti di accoppiamento di
gauge, anche la seguente espressione:

αl =
gl
4π

. (2.43)

Non di meno, nell’ipotesi che i neutrini oscillino, possiamo estendere i
risultati poc’anzi individuati anche a loro. Le oscillazioni indicano scale
di massa intorno a 10–50 meV. I cosiddetti “limiti sperimentali diretti”,
invece, sono dell’ordine degli eV per il νe. Per gli altri due neutrini i limiti
sono molto peggiori [40], ma nel contesto di oscillazioni a tre neutrini si
applica anche ad essi il limite di qualche eV (o i limiti cosmologici, ancora
più restrittivi). Nel presente contesto ci limitiamo a valutare la costante di
accoppiamento di Yukawa per il neutrino elettronico assumendo mν = 1
eV. Consideriamo adesso la possibilità che αX nella (2.38) sia dell’or-
dine di αl e riportiamo nella tabella numero 2.9 le costanti di Yukawa
con il relativo valore di αX , mentre nella formula (2.44) riportiamo i
corrispondenti valori per MX .

Tabella 2.9: Costanti di accoppiamento di Yukawa

gl Particella αX ∼ g2
l

4π

3 · 10−6 e 7 · 10−13

6 · 10−4 µ 3 · 10−8

6 · 10−2 τ 3 · 10−4

10−9 νe 8 · 10−20
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MX

∣∣∣
(e)

gl

∼ 1010GeV, MX

∣∣∣
(µ)

gl

∼ 1012 GeV,

MX

∣∣∣
(τ)

gl

∼ 1014GeV, MX

∣∣∣
(νe)

gl

∼ 4 · 106GeV. (2.44)

Le stime dimensionali eseguite in questi paragrafi possono essere cor-
rette da calcoli più precisi che tengano conto di tre questioni fondamentali:

i) occorre scrivere in dettaglio gli operatori che descrivono il decadi-
mento a partire da una teoria ben precisa;

ii) bisogna valutare l’evoluzione delle costanti di accoppiamento fino
alla scala di interesse per il decadimento del nucleone;

iii) è necessario valutare gli elementi di matrice adronica. Ad esempio,
per il decadimento p → π0e+ l’operatore O(5) mette in gioco una
ampiezza del tipo:

< π0 |
(
dt(0)C−1u(0)

)
ut(0) | p >= ξm2

PUα(~p) (2.45)

dove abbiamo indicato con d(0), u(0) gli operatori di campo, con
Uα(~p) lo spinore del protone e con ξ una costante dell’ordine dell’u-
nità.

In breve l’equazione (2.38) va corretta introducendo un fattore adimen-
sionale η, che incorpora tutte queste correzioni. Facendo riferimento a
Langacker [48], η risulta compreso tra 0.5 e 10. Questo suggerisce che
la stima dimensionale (2.38) dia il giusto ordine di grandezza per la vita
media del protone.
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Capitolo 3

Evoluzione delle costanti di
accoppiamento

La conoscenza scientifica non gode di un accesso im-

mediato alla realtà di cui parla, non è come aprire gli

occhi e constatare che si è fatto giorno.

–A. Einstein–

In questo capitolo mostreremo come una teoria rinormalizzabile pre-
scrive l’esistenza di costanti di accoppiamento che variano logaritmica-
mente con il quadrimpulso trasferito. Queste variazioni sono dovute ai
“loop” di particelle virtuali sia fermioniche che bosoniche, le cosiddette
correzioni radiative, che in altre parole sono fluttuazioni quantistiche.
Focalizzeremo l’attenzione principalmente sulle correzioni radiative del
secondo ordine in α, che sono chiamate correzioni radiative a 1-loop. In
particolare discuteremo il caso della QED ed estenderemo i risultati al Mo-
dello Standard, che ci permetterà di discutere l’evoluzione delle costanti
di accoppiamento nel contesto di teorie di grande unificazione.

3.1 Teorie rinormalizzabili

In questa sezione calcoleremo la correzione radiativa del propagatore fo-
tonico nell’ambito di una teoria rinormalizzabile, la QED. Prima di pro-
cedere è opportuno fornire alcune informazioni su cosa sia una teoria
rinormalizzabile.

La nostra interpretazione del mondo fisico spesso usa tecniche matem-
atiche di natura perturbativa, facendo uso delle serie di funzioni. Accade
non di rado però, che tali serie siano costituite da termini divergenti. Que-
sto in molti casi crea problemi. Fortunatamente nell’ambito della fisica
teorica quantistica (QFT) Tomonaga, Shwinger, Feynman e Dyson negli
anni ‘50 risolsero il problema definendo il processo di rinormalizzazione.
Una teoria è detta rinormalizzabile se essa rimane finita rimuovendo tutte
le divergenze tramite la ridefinizione di un numero finito di parametri
come la massa e la carica elettrica. Tale ridefinizione fa leva sull’inosserv-
abilità dei parametri “nudi”, quelli cioè che vengono introdotti per definire
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la teoria. Viceversa una teoria non rinormalizzabile necessita di un nu-
mero infinito di parametri da “curare”. Questo è quanto accade, ad es-
empio, nel caso di accoppiamenti a quattro fermioni. Tuttavia ci preme
osservare che anche una teoria non rinormalizzabile può descrivere buona
fisica, si pensi ad esempio al caso del decadimento β interpretato da Fer-
mi. Comunque una teoria rinormalizzata ha un forte carattere predittivo
e non dipende dal tipo di “cura” (regolarizzazione) usata, ottenendo valori
teorici compatibili con quelli sperimentali. Invece in una teoria non rinor-
malizzabile le predizioni dipendono fortemente dalla “cura” usata. Poiché
la rinormalizzabilità di una teoria di campo dipende dal tipo di divergenze
che si incontrano nel processo perturbativo, una analisi dimensionale è già
in grado di dare delle importanti informazioni. A tal proposito scriviamo
la lagrangiana di interazione come somma di termini del tipo

L =
∑

k

Lk (3.1)

dove ogni termine Lk è il prodotto di una costante Gk, di campi spinori-
ali, scalari e loro derivate, senza preoccuparci di come accoppiarli né di
introdurre indici spinoriali o matrici γµ. Scriviamo quindi:

Lk = Gk∂
CkψAkφBkΦWk , (3.2)

avendo indicato con ψ un campo fermionico, con φ un campo bosonico
privo di massa, con Φ un campo bosonico massivo e con ∂ l’operatore
di derivata che può essere applicato a ψ, a φ e a Φ. Ovviamente la
dimensionalità totale della lagrangiana, in unità naturali, deve essere pari
a [M4], ciò implica che definendo∗

dk =
3

2
Ak +Bk + Ck +Wk , (3.3)

la dimensione della costante è

[Gk] = [M4−dk ] . (3.4)

A questo punto consideriamo un generico diagramma di Feynman formato
da fe linee fermioniche esterne, be linee bosoniche esterne per i bosoni
privi di massa, Φe linee bosoniche esterne per i bosoni massivi, fi linee

∗Si rende necessario ricordare che la dimensione di un campo fermionico è pari a
h

M
3

2

i

, diversamente, quella per un campo scalare è pari ad [M ] così come quella per

l’operatore di derivazione.

30



§3.1 – Teorie rinormalizzabili

fermioniche interne, bi, linee bosoniche interne per i bosoni privi di massa,
wi linee bosoniche interne per i bosoni massivi e Vk vertici del tipo Lk.
L’espressione dell’elemento di matrice, considerando solo le dipendenze
con i quadrimpulsi sarà:

I ≡
∫
d4LK

KC+2wi

(6 K +m)fi(K2 +m2)bi+wi
(3.5)

dove L è il numero di loop da eseguire, mentre C deriva dalle derivate nei
vertici e per questo

C =
∑

k

VkCk . (3.6)

Quindi l’integrale può essere riscritto come:

I ∼
∫
KD−1dK (3.7)

con

D = 4L− fi − 2bi +
∑

k

VkCk (3.8)

A seconda del valore di D si avrà un contributo divergente o convergente∗ .
Nello specifico se D = 0 avremo una divergenza logaritmica, se D < 0,
I è convergente, altrimenti negli altri casi l’integrale diverge. In realtà
da una analisi più dettagliata si evince che anche potenze di K con D
dispari corrispondono a divergenze con D degradate di una unità. Quindi
D = 1 corrisponde ad una divergenza logaritmica e non lineare. Inoltre
può anche accadere che due termini divergenti si elidono vicendevolmente.
Se però D > 0 e non si hanno cancellazioni, la “cura” consiste nell’intro-
duzione di controtermini, a cui corrispondono grandezze fisiche arbitrarie,
costrutti puramente teorici su cui l’indagine sperimentale non può essere
eseguita.

Ritornando al calcolo precedente, possiamo semplificare l’espressione
di D usando quanto segue. Notiamo che su ogni vertice k terminano Ak

linee fermioniche delle quali quelle interne hanno due “terminazioni” e
quelle esterne una sola. Poiché il numero totale di questi vertici, contati
anche due volte è

∑
k VkAk, ne segue che

∗D è noto come grado di divergenza superficiale.
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§3.2 – Correzioni radiative

fe + 2fi =
∑

k

VkAk , (3.9)

analogamente

be + 2bi =
∑

k

VkBk , (3.10)

we + 2wi =
∑

k

VkWk . (3.11)

Per quanto riguarda i “loop” invece, occorre ricordare che ad ogni prop-
agatore è associato un

∫
d4K e ad ogni vertice una delta di Dirac fun-

zione degli impulsi δ(
∑
K) che elimina un integrale. Escludendo una

sola delta, quella che contiene la conservazione del quadrimpulso delle
sole linee esterne, abbiamo:

L = fi + bi + wi −
(
∑

k

Vk − 1

)
. (3.12)

quindi usando la (3.12), la (3.8) e la (3.3) otteniamo:

D = 4 − 3

2
fe − be + 2we +

∑

k

Vk (dk +Wk − 4) . (3.13)

Questa espressione è importantissima, infatti si osserva, che nel momento
in cui dk + Wk − 4 > 0, D dipende dal numero di vertici e quindi la
teoria non è rinormalizzabile in quanto servirebbero un numero infinito
di costanti da ridefinire. Ad esempio nel caso della teoria del bosone
massivo intermedio, meglio nota con l’acronimo IVB, in cui be = 0 e
Wk 6= 0, si nota che D dipende dal numero di vertici ed infatti la teoria
non è rinormalizzabile. D’altra parte, nel caso della QED per la quale
Wk = 0, è evidente come la richiesta che D non aumenti con l’aumentare
del numero di vertici si rifletta sulla necessità di costruire una lagrangiana
in cui la dimensione della costante G non sia minore di [M0]. Questa è
in realtà una condizione necessaria per ogni teoria rinormalizzabile.

3.2 Correzioni radiative

La QED, quindi, è una teoria abeliana rinormalizzabile ∗, questo ci con-
sente di calcolare le correzioni radiative tramite un’opportuna ridefinizione

∗Per maggiori informazioni si può cfr. [49, Capitolo 19]
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§3.2 – Correzioni radiative

della sua costante di accoppiamento. Di seguito esamineremo quest’ulti-
mo aspetto che ci permetterà di individuare la dipendenza delle cariche
dal quadrimpulso scambiato.

Già nel calcolo dei grafici di Feynman al primo ordine perturbati-
vo in α troviamo dei contributi, detti a loop, che divergono. Questi
sono mostrati in figura 3.1. Il primo, chiamato diagramma della flut-

���q p+ q

p

q

Figura 3.1: Grafico a loop del primo ordine in α perturbativo della QED.

tuazione quantistica del vuoto, è privo di linee esterne e per questo non
prescrive nessuna transizione; il secondo rappresenta un termine di self–
energy per l’elettrone; mentre il terzo è un termine di self–energy per
il fotone, chiamato termine di polarizzazione del vuoto, in analogia al-
la polarizzazione indotta, ad esempio, da un campo elettrostatico su un
dielettrico. L’elemento di matrice del terzo dei tre è

M =
−e2
(2π)4

∫
Tr[εrα(q)γαiSF (q + p)γβiSF (p)εrβ(q)]d4p (3.14)

dove

iSF (p) =
i

6 p−m+ iε
. (3.15)

È facile osservare che M è divergente, infatti, da una stima dimensionale

M ∼
∫
d4p

p2
∼
∫
p3dp

p2
∼ p2. (3.16)

Per superare questo tipo di difficoltà, come accennato in precedenza, si
adottano due procedure chiamate regolarizzazione e rinormalizzazione.
La prima consiste in una opportuna modifica dell’integrale. La seconda
interviene in una ponderata ridefinizione dei parametri di ingresso, in mo-
do tale che, rimuovendo la regolarizzazione, l’integrale rimanga finito. Fo-
calizziamo l’attenzione sui diagrammi del secondo ordine in α mostrati in
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�
Figura 3.2: Grafico al primo ordine perturbativo in α.

figura 3.3, interpretabili come l’espansione del grafico in figura 3.2 all’or-
dine e3. I primi due prescrivono la correzione al propagatore fermionico,
il terzo dà la correzione al vertice, mentre l’ultimo al propagatore fotoni-
co. Noi ci concentreremo su quest’ultimo che, come vedremo nel dettaglio,
sarà responsabile del “running” della costante di accoppiamento, ossia del-
la dipendenza della carica con il quadrimpulso scambiato. Vale la pena
far notare che seppure i primi tre grafici, presi singolarmente, influenzino
la ridefinizione della carica, globalmente i loro contributi si elidono vicen-
devolmente. Infatti, considerando tutti e quattro i grafici di figura 3.3,
avremmo, per la carica rinormalizzata, la seguente definizione∗

er =
Z1

Z2

√
Z3 eo , (3.17)

ma si dimostra che Z2 = Z1, dove Z1 è introdotto a causa della self–
energy dell’elettrone, Z2 a causa della correzione al vertice e Z3, invece,
è dovuto alla correzione al propagatore fotonico e sarà calcolato esplici-
tamente nelle pagine che seguono.

� � � �
q

pp+ q

q

Figura 3.3: Questi sono i quattro contributi radiativi al secondo ordine
perturbativo rispetto al diagramma in figura 3.2.

∗Con eo oppure ebare abbiamo indicato il parametro della lagrangiana da cui si
parte per i calcoli dei diagrammi di Feynman.
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§3.3 – Correzione al secondo ordine del propagatore fotonico

3.3 Correzione al secondo ordine del propagatore
fotonico

Con riferimento ai diagrammi di Feynman al primo e secondo ordine per-
turbativo dello scattering elastico di due elettroni in figura 3.4, ci proponi-
amo di studiare il comportamento del propagatore fotonico per analizzare
il ruolo della carica rinormalizzata∗.

�
k = P ′

1 − P1

γα

γβ

�
k = P ′

1 − P1

p− kp

k = P ′
1 − P1

P1 P ′
1

P2 P ′
2

γα

γµ

γν

γβ

Figura 3.4: I due grafici di Feynman rappresentano lo scattering
elettrone–elettrone (scattering Møller) rispettivamente al primo e al
secondo ordine perturbativo.

Di seguito scriviamo gli elementi di matrice dei due grafici, indicando
con M1 l’elemento di matrice del primo e con M2 quello del secondo.

M1 = (ie)2u(p′1)γ
αu(p1)iDαβ(k)u(p′2)γ

βu(p2) (3.18)

con

Dαβ(k) =
−gαβ

k2 + iε
(3.19)

∗Cfr. [47, Capitoli 9 e 10]
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M2 = (ie)2u(p′1)γ
αu(p1)iDαµ(k)

−(ie)2

(2π)4

∫
Tr [γµiSF (p− k)γνiSF (p)] d4p ·

·iDνβ(k)u(p′2)γ
βu(p2) (3.20)

M2 = (ie)2u(p′1)γ
αu(p1)Π̃αβu(p′2)γ

βu(p2) (3.21)

dove

Π̃αβ(k) = iDαµ(k)(ie)2Πµν(k)iDνβ(k) (3.22)

(ie)2Πµν(k) =
−(ie)2

(2π)4

∫
Tr [γµiSF (p− k)γνiSF (p)] d4p . (3.23)

Notiamo che il contributo al propagatore fotonico può essere graficato nel
modo mostrato in figura 3.5, a cui associamo� −→ � + �

Figura 3.5: Correzione del secondo ordine al propagatore fotonico.

iDαβ −→ iDαβ + iDαµ(ie)2Πµν(k)iDνβ . (3.24)

Esplicitando SF otteniamo

(ie)2Πµν(k) =
−e2
(2π)4

∫
Tr {γµ [γρ(p

ρ + kρ) +m] γν [6 p+m]}
[(p+ k)2 −m2 + iε] [p2 −m2 + iε]

d4p .(3.25)

L’estensione della condizione di Lorentz (invarianza di gauge) al nuo-
vo propagatore fotonico fissa la sua forma. Infatti, ricordando la sua
espressione in funzione dello spazio-tempo,

Dµν(x) =
−gµν

(2π)4

∫
d4k

e−ikx

k2 + iε
(3.26)

=
1

(2π)4

∫
d4kDµν(k)e−ikx (3.27)
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imponendo la condizione di Lorentz,

∂µDµν(x) = 0 (3.28)

abbiamo

kµDµν(k) = 0 (3.29)

e quindi

kµΠµν(k) = 0 . (condizione di trasversalità)(3.30)

Da cui la più generale espressione per Πµν(k), come mostrato in appendice
C.2 dal calcolo diretto della (3.25), è

Πµν(k) = −gµνA(k2) + kµkνB(k2) (3.31)

D’altra parte, un diagramma di Feynman al primo ordine ha una espres-
sione del tipo

∫
d4kJα

1 (−k)Dαβ(k)Jβ
2 (k) (3.32)

ma poiché la corrente si conserva,

kµJ
µ(k) = 0 (3.33)

e sostituendo la (3.24) nella (3.32) il termine in B(k2) della (3.31) si
annulla. A questo punto possiamo riscrivere la (3.24) come segue:

−igαβ

k2 + iε
−→ −igαβ

k2 + iε

[
1 − e2

A(k2)

k2 + iε

]
+ o(e2) , (3.34)

dove o(e2) indica la possibilitá di considerare anche contributi superiori
al secondo. Ricordando che

1

1 + z
=

+∞∑

n=0

(−z)n (3.35)
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e considerando che α = e2

4π
−→ 0∗ possiamo riscrivere la (3.34) come

segue:

−igαβ

k2 + iε

[
1 − e2

A(k2)

k2 + iε

]
−→ −igαβ

k2 + iε+ e2A(k2)
(3.36)

Poiché il fotone è privo di massa, occorre imporre l’esistenza di un polo
nel propagatore fotonico per k = 0 nella (3.36),

A(0) = A(k2 = 0) = 0 . (3.37)

Sviluppando A(k2) in serie di Taylor intorno a k2 = 0,

A(k2) = k2A′(0) + k2Πc(k
2) (3.38)

dove

A′(0) =

[
dA(k2)

d(k2)

]

k2=0

(3.39)

e Πc(k
2) è il resto della funzione, tale che Πc(k

2) → 0 per k2 → 0.
Sostituendo A(k2) nella (3.34) e moltiplicando per e2, rinormalizziamo la
carica elettrica nel seguente modo:

er = Z
1
2
3 e+ o(e3) (3.40)

con

Z3 =

[
1 − 1

2
e2A′(0)

]2

(3.41)

Ricordiamo che la (3.40) sarà la carica elettrica di cui le particelle sono
dotate in un processo di interazione. Quindi l’espressione del propagatore
fotonico diventa:

−igαβ

k2 + iε
e2r +

−igαβ

k2 + iε
e4rΠc(k

2) +O(e6r) (3.42)

Nella sezione successiva procederemo nel calcolo esplicito dei contributi
A′(0) e Πc(k

2), con l’obiettivo di rendere l’integrale del loop convergente.

∗Ricordiamo che la convenzione usata è la seguente: ~ = c = 1 con e2

4π
= α '

1
137

.
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3.3.1 Regolarizzazione dimensionale

La regolarizzazione permette di controllare la divergenza dei “loop” grazie
ad una attenta modifica della teoria, collegata, tramite una procedura di
limite, alla teoria originaria.

Di regolarizzazioni ne esistono diversi tipi. Una delle più note è il
metodo del cut–off, che ha però lo spiacevole svantaggio di introdurre
un termine di massa per il fotone rompendo l’invarianza di gauge, tut-
tavia rimediabile tramite una faticosa procedura di rinormalizzazione. Il
metodo degli integrali dimensionali, invece, risulta uno strumento molto
più pratico poiché non rompe alcuna simmetria. Quest’ultima procedu-
ra, infatti, è particolarmente usata in QED e in tutte le teorie di gauge
non abeliane come la QCD. In questo paragrafo mostreremo, tramite
la regolarizzazione dimensionale, la dipendenza dal quadrimpulso della
costante di accoppiamento elettromagnetica e mostreremo come assor-
bire il contributo divergente del loop nella costante di accoppiamento
ridefinita.

Per iniziare è necessario ricordare che un generico integrale del tipo

∫
dDk

(k2 − s)n
(3.43)

avrà una soluzione definita tramite la funzione Γ(x) di Eulero∗:

∫
dDk

(k2 − s)n
= iπ

D
2 (−1)n Γ(n− 1

2D)

Γ(n)

1

sn−D
2

(3.44)

con n > D
2 .

Come primo passo applichiamo l’integrazione dimensionale alla (3.25).
A tal proposito definiamo

4 − η = D (3.45)

con η parametro positivo, che in seguito sarà fatto tendere a zero riotte-
nendo la dimensione iniziale. Grazie a ciò abbiamo:

(ie)2Πµν(k) =
−e2µ4−D

(2π)4
·

·
∫
Tr {γµ [γρ(p

ρ + kρ) +m] γν [6 p+m]}
[(p+ k)2 −m2 + iε] [p2 −m2 + iε]

dDp .(3.46)

∗Si veda l’appendice B.1.
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Affinché possiamo procedere nei calcoli è necessario calcolare il numera-
tore dell’integrando∗

Nµν(p, k) ≡ Tr [γµ (6 p+ 6 k +m) γν ( 6 p+m)] (3.47)

per poi usare la parametrizzazione di Feynman† che ci permette di scrivere

(ie)2Πµν(k) =
−e2µ4−D

(2π)4

∫ 1

0
dx

∫
Nµν(p, k)

[p2 −m2 + (k2 + 2pk)x+ iε]2
dDp(3.48)

e sostituendo p = q − kx otteniamo:

Πµν(k) =
(
kµkν − k2gµν

)
Π(k2) (3.49)

con‡

Π(k2) =
µ4−Df(D)Γ(2 − 1

2D)

8π4−D 1
2

∫ 1

0
dx

x(1 − x)

[k2x(1 − x) −m2]2−
D
2

(3.50)

È facile a questo punto osservare come la condizione di gauge (3.30) sia
automaticamente soddisfatta nella (3.49). Ricordando che D = 4 − η e
sviluppando la (3.50) per η → 0 otteniamo la teoria originaria con

Π(k2) =
1

12π2

(
2

η
− γ − f ′(4)

2
− lnπ

)
+

− 1

2π2

∫ 1

0
dxx(1 − x) ln

[
k2x(1 − x) −m2

µ2

]
. (3.51)

È interessante notare come, per la presenza di 1/η, la divergenza del “loop”
sia ora contenuta nel primo addendo del secondo membro della (3.51).

Dal confronto della (3.31) e della (3.38) con la (3.49), emerge che

Π(k2) = A′(0) + Πc(k
2) . (3.52)

Ricordando che Πc(k
2 = 0) = 0, Π(0) = A′(0) otteniamo

∗Si veda l’appendice C.1.
†Si veda l’appendice B.2.
‡Per i calcoli espliciti della (3.50) e della (3.51) si rimanda all’appendice C.2.
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e2rΠc(k
2) = e2r

[
Π(k2) − Π(0)

]
(3.53)

da cui risulta che

A′(0) = Π(0) =
1

12π2

(
2

η
− γ − f ′(4)

2
− lnπ

)
+

− 1

2π2

∫ 1

0
dx(1 − x)x ln

[
−m

2

µ2

]
(3.54)

e

Πc(k
2) = − 1

2π2

∫ 1

0
dx(1 − x)x ln

[
1 − k2x(1 − x)

m2

]
. (3.55)

Quindi, ricordando l’espressione per la carica rinormalizzata (3.40) e
quella per la correzione al primo ordine del propagatore fotonico (3.42),
si nota come la divergenza sia stata assorbita da er, che ora può essere
opportunamente ridefinita sfruttando l’indeterminazione della carica di
particella libera (ebare). D’altro canto, visto la (3.42), possiamo definire
una nuova costante di accoppiamento efficace, dipendente dall’impulso
scambiato

e2eff (k2) = e2r
[
1 + e2rΠc(k

2)
]

. (3.56)

Questa per −k2 = Q2 � m2 ha la seguente forma:

e2eff = e2r

[
1 +

e2r
(4π)2

4

3
ln
Q2

m2
+ cost.

]
(3.57)

Con ciò notiamo che la costante di accoppiamento efficace varia in base
al quadrimpulso scambiato e, inoltre, dipende dalla scala della massa m
della particella virtuale che genera il “loop”. Invece er è la carica che entra
nelle ampiezze osservabili e Z3 della (3.40) è una relazione tra la carica
osservabile di una particella fisica reale e la carica “nuda” eo di una par-
ticella non in interazione, che è un costrutto teorico ed è completamente
inosservabile.
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Capitolo 4

Teorie di Grande Unificazione

Per quanto le leggi della matematica si riferiscano alla

realtà, esse non sono certe, e per quanto siano certe,

esse non si riferiscono alla realtà.

–A. Einstein–

Il modello standard nel corso degli anni ha avuto molto successo ma,
come abbiamo evidenziato, trascina con sé diverse limitazioni e suggerisce
alcune domande. In questo capitolo vedremo come estendere il Modello
Standard a scale di energia più alte tramite l’uso di teorie effettive in-
vocando i risultati dei capitoli precedenti e assorbendo queste teorie in
scenari più complessi caratterizzati da modelli di grande unificazione.

4.1 Possibili mediatori

Abbiamo più volte ripetuto che la massa che compare nella (2.13) è pre-
sumibile che sia quella del propagatore scambiato nel processo di vi-
olazione del numero barionico. Quindi, assumendo che le interazioni
(2.15)–(2.20) sono mediate dallo scambio di un bosone massivo, si possono
individuare i numeri quantici di quest’ultimo studiando gli operatori ef-
fettivi, che così scritti, suggeriscono che venga scambiato un propagatore
scalare. È così che per gli operatori O(1), O(2), O(3), O(5) il propagatore
deve avere ipercarica pari ad 1/3, deve essere un singoletto di SU(2) e un
anti–tripletto di colore; l’operatore O(4), invece, deve essere mediato da
un tripletto di SU(2), con ipercarica 1/3 e deve essere un anti–tripletto
di colore; mentre per O(6) troviamo che deve essere mediato da un bosone
con ipercarica 4/3 che è anche un singoletto di SU(2) e un anti–tripletto
di SU(3).
Nella tabella 4.1 abbiamo riportato i numeri quantici dei suddetti bosoni
scalari accompagnati anche dai loro accoppiamenti tipici.

Facciamo notare che operatori costituiti da una coppia di fermioni
“left” e da una “right” (RRLL), possono essere opportunamente riarran-
giati per essere mediati da un propagatore vettoriale. Infatti, esaminando
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Bosoni
mediatori

SU(3)c, SU(2)L, U(1)Y Tipo di accoppiamento Operatore

S1

(
3, 1, 1

3

)
qLqL, uRdR, q

c
Ll

c
L, O(1), O(2),

uc
Re

c
R, d

c
Rν

c
R O(3), O(5)

S2

(
3, 3, 1

3

)
qLq

′
L, q

c
Ll

c
L O(4)

S3

(
3, 1, 4

3

)
uRu

′
R, d

c
Re

c
R O(6)

V1

(
3, 2, 5

6

)
qLuR, q

c
Le

c
L, l

c
Ld

c
R O(1), O(2)

V2

(
3, 2,−1

6

)
qLdR, q

c
Lν

c
R, l

c
Lu

c
R O(1)

Tabella 4.1: Mediatori massivi con B−L = 2
3 . Abbiamo usato la seguente

nomenclatura: q sta per quark, l per leptone, mentre l’indice c indica la
coniugazione di carica.

gli operatori O(1) e O(2) e sfruttando l’identità di Fierz∗, abbiamo

O(1) =
1

2
εαβγεij

[
dcα

Rγ
µliL

] [
qcβi

L γµu
γ
R

]
= (4.1)

=
1

2
εαβγεij

[
ucβ

Rγ
µliL

] [
qcγi

L γµd
α
R

]
(−1) (4.2)

O(2) =
1

2
εαβγεij

[
qcαi

L γµeR

] [
ucγ

Rγµq
βj
L

]
(4.3)

Alla luce di ciò otteniamo che processi descritti dall’operatore O(1) pos-
sono essere mediati da un bosone vettore con ipercarica pari a 5/6 oppure
-1/6 ed essere un anti–tripletto di colore; invece, O(2) sarà mediato solo
dal primo dei due. Questi ultimi due mediatori sono anch’essi riportati
nella tabella 4.1 con i loro accoppiamenti tipici.

A questo punto è interessante verificare se alcuni di questi mediatori
sono predetti da teorie di grande unificazione. Di seguito, valuteremo
il caso del gruppo SU(5) e di quello SO(10). Ci concentriamo in par-
ticolare sul contributo dovuto allo scambio dei nuovi bosoni vettori che
(a differenza dei bosoni di Higgs) accoppiano ai fermioni con costanti
dell’ordine dell’unità.

4.1.1 Effetto dei nuovi bosoni vettori di SU(5)

Il modello SU(5) classifica i 15 fermioni levogiri di ogni generazione in
due multipletti [6]:

15 = 5̄ ⊕ 10 . (4.4)

∗Si veda l’appendice A.1.
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La rappresentazione fondamentale è

Ψ5 =




d1

d2

d3

ec

−νc




R

(4.5)

che comprende tre quark di diverso colore e una coppia di anti-leptoni.
Mentre il decupletto è dato dal seguente prodotto tensoriale antisimmet-
rico:

(5 ⊗ 5)A = 10 . (4.6)

Il gruppo SU(5) ha 24 generatori, infatti se indichiamo con 5 lo stato
della rappresentazione fondamentale, abbiamo

5 ⊗ 5 = 24 ⊕ 1 (4.7)

di cui 12 come vedremo sono i generatori del Modello Standard. Infatti
ogni stato 5 ha i seguenti numeri quantici

5 −→ (3, 1, −1/3) ⊕ (1, 2, 1/2) , (4.8)

che lo identificano rispetto ai sottogruppi del Modello Standard SU(3),
SU(2), e U(1). Dal calcolo abbiamo:

5 ⊗ 5 = (8, 1, 0) ⊕ (1, 1, 0) ⊕ (3, 2, 5/6) ⊕ (3, 2, −5/6) ⊕
+(1, 3, 0) ⊕ (1, 1, 0) . (4.9)

È semplice individuare nei primi due e nel quinto i generatori del modello
standard, mentre il terzo e il quarto sono dodici nuovi generatori. Infat-
ti, (8, 1, 0) sono gli otto bosoni che mediano le interazioni tra i quark
nelle interazioni forti che corrispondono al sottogruppo SU(3)c (i glu-
oni); i tre campi (1, 3, 0) sono i bosoni W+, W− e W 0, corrispondenti
al sottogruppo SU(2)L e, infine, ritroviamo anche il bosone legato al sot-
togruppo U(1)Y , cioè (1, 1, 0). I nuovi dodici bosoni sono (3, 2, −5/6)
e (3, 2, 5/6). Di quelli discussi nella tabella 4.1 notiamo che il gruppo
SU(5) contiene solo V1. Questo vuol dire che SU(5) contempla la pos-
sibilità del decadimento del protone e ingloba i processi descritti dagli
operatori effettivi O(1) e O(2) scritti come nella (4.1)
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4.1.2 Effetto dei nuovi bosoni vettori di SO(10)

In questo paragrafo ci occuperemo solo dell’identificazione dei generatori
del gruppo per confrontarli con i mediatori in tabella 4.1. Il modello
SO(10) può essere decomposto sia nel gruppo SU(5) che in quello di
Pati–Salam.

La rappresentazione fondamentale del gruppo SO(10) è il decuplet-
to 10

∗. Per semplicità procediamo alla identificazione dei generatori
passando per la seguente decomposizione:

SO(10) −→ SU(5) ⊗ U(1) (4.10)

che ci permette di scrivere il decupletto di SO(10) come:

10 = 5 ⊕ 5̄ . (4.11)

Poiché SO(10) è un gruppo ortogonale esso avrà 45 generatori, infatti:

10 ⊗ 10 = 1⊕ 45 ⊕ 54 (4.12)

da cui

45 = 1 ⊕ 24 ⊕ 10 ⊕ 1̄0 . (4.13)

Osserviamo che oltre ai 24 generatori di SU(5), esistono altri 21 generatori
dei quali ci interessa identificare i numeri quantici rispetto al Modello
Standard. Per la (4.7) e la (4.8)

1 = (1, 1, 0) (4.14)

invece per la (4.6) e la (4.8) abbiamo:

10 = (3̄, 1,−2/3) ⊕ (3, 2, 1/6) ⊕ (1, 1, 1) (4.15)

1̄0 = (3, 1, 2/3) ⊕ (3̄, 2,−1/6) ⊕ (1, 1,−1) . (4.16)

Da cui si evince che il modello SO(10) contiene, tramite il decupletto 10,
anche il bosone vettore V2 elencato nella tabella 4.1.

∗Per convenzione scriveremo in grassetto i multipletti solo per il gruppo SO(10).
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4.2 Costante di accoppiamento rinormalizzata

Nel capitolo precedente abbiamo ripercorso la filosofia che si cela dietro
una teoria rinormalizzabile. Abbiamo visto come le correzioni radiative
del propagatore intervengono nella ridefinizione delle costanti di accoppia-
mento determinando l’evoluzione di queste col quadrimpulso scambiato.
Ora vogliamo estendere tali risultati al Modello Standard che, essendo
composto da tre gruppi di gauge, SU(3)c ⊗ SU(2)l ⊗ SU(1)Y , possiede
altrettante costanti di accoppiamento. Dalla (3.57), usando la (3.35)
e sostituendo la carica elettrica e con una carica generica g, possiamo
scrivere:

g2 = g2
0

1

1 − g2
0

b
(4π)2

ln
(

µ
µ0

)2 (4.17)

dove g0 è la carica in corrispondenza di una massa µ0, b è un coefficiente
che dipende dalla teoria in esame, che sarà meglio chiarito nel seguito e
g è il valore della carica in funzione del quadrimpulso µ. Dalla (4.17)
otteniamo:

−1

2

(
g−2 + g−2

0

)
=

b

4π
ln

(
µ

µ0

)
(4.18)

e ponendo t = ln
(

µ
µ0

)
e differenziando, otteniamo:

dg

dt
=

b

(4π)2
g3 . (4.19)

Come visto per la QED (3.57) anche per un qualsiasi gruppo di gauge
Gi, variando la scala degli impulsi, la costante di accoppiamento effettiva
obbedisce all’equazione (4.19) dove chiamiamo β = b

(4π)2
la β-function, la

quale è di particolare interesse perché contiene la dipendenza dal numero e
dal tipo di particelle virtuali che contribuiscono al calcolo della correzione
del propagatore. Quindi per un generico gruppo di gauge Gi, otteniamo

g−2
i (µ) = g−2

i (µ0) −
bi

8π2
ln

(
µ

µ0

)
. (4.20)

Il valore dei coefficienti bi in presenza di vettori, fermioni o scalari, vale:

bi = −11

3
t2(V,Gi) +

4

3
t2(F,Gi) +

1

3
t2(S,Gi) (4.21)
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e

t2(R,G)δab = Tr{T a(R,G)T b(R,G)} (4.22)

dove T a(R,Gi) sono i generatori del gruppoGi con rappresentazione R, (F
sta per fermione, V per vettore ed S per scalare). Inoltre dalle proprietà
della rappresentazione aggiunta si dimostra che

t2(V, SU(n)) = n con n > 1 (4.23)

Il significato di bi è cruciale per il prosieguo della nostra discussione,
per cui è necessario chiarirne adeguatamente il ruolo. Il coefficiente bi,
come già detto, tiene conto del numero e del tipo di particelle virtuali che
entrano in gioco nelle fluttuazione quantistiche del propagatore. Notiamo
che nella formula (3.14) compare la traccia sugli indici di Dirac rendendo
l’elemento di matrice un invariante di Lorentz. Il caso della (3.14) è però
relativo ad una teoria di gauge U(1) per cui il generatore associato è uno
scalare pari ad uno e per questo non è evidente. In generale però, associato
alla carica di un gruppo, si accompagnano i generatori del gruppo stesso.
Questi vanno prescritti ai vertici dei grafici di Feynman. Ciò implica che
nell’elemento di matrice di ogni “loop” compaiono anche i generatori del
gruppo dei quali si richiede la traccia affinché l’elemento di matrice stesso
rimanga un invariante di Lorentz. È per questo motivo che, assorbita
nella bi, compare la traccia dei generatori.

4.3 Evoluzione delle costanti di accoppiamento

Abbiamo visto che la costante di accoppiamento effettiva di un gruppo
di gauge Gi dipende logaritmicamente dal quadrimpulso trasferito. Pos-
siamo chiederci se nell’ambito della teoria del Modello Standard le sue
tre costanti di accoppiamento tendono allo stesso valore limite al crescere
del quadrimpulso. Ciò permetterebbe di individuare un gruppo di gauge
che unifichi le tre interazioni del Modello Standard. Questa idea conduce
alla formulazione di uno schema teorico noto col nome di teoria di grande
unificazione. Il cardine di tale modello è l’uso di un solo gruppo di gauge e
quindi di una sola costante di accoppiamento che lo parametrizzi, nell’idea
che ciò sia l’espressione dell’unificazione delle forze. In altre parole l’idea
di base di una grande unificazione è che oltre una elevata scala energetica,
il gruppo del Modello Standard GSM è contenuto in un gruppo più grande
GGUT . GGUT , inevitabilmente, possiede delle simmetrie aggiuntive, che
restringono l’arbitrarietà di alcuni parametri nel Modello Standard. In
corrispondenza della scala energetica elevata, MX , il gruppo GX si rompe
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spontaneamente generando il sistema di costanti di accoppiamento che os-
serviamo a basse energie. Lo schema più semplice di GUT che possiamo
supporre è il seguente:

GGUT −−→
MX

GSM −−→
MZ

SU(3)c ⊗ U(1)em (4.24)

A volte è possibile anche rompere un gruppo GGUT in sottogruppi inter-
medi prima di arrivare al gruppo del Modello Standard GSM . È ovvio,
quindi, che un modello di grande unificazione, essendo tale, deve nec-
essariamente contenere il Modello Standard, di conseguenza GGUT deve
possedere un rango minimo pari a quattro∗. La corretta riproduzione
delle particelle del Modello Standard è una altra fondamentale richies-
ta che un gruppo GGUT deve necessariamente soddisfare. Quindi GGUT

deve riprodurre lo spettro dei fermioni osservati e deve, inoltre, possedere
una rappresentazione complessa. Infatti, una importante proprietà del
Modello Standard è la violazione della parità nelle interazioni deboli. Ciò
implica l’esistenza di campi con chirialità diverse, “left” e “right” e con rap-
presentazioni diverse, cioè non equivalenti sotto SU(2). A tale proposito
l’esistenza di una rappresentazione complessa in GGUT garantisce che un
elemento coniugato del gruppo non può essere uguale all’elemento stesso.
Gli unici gruppi che ammettono rappresentazioni complesse sono SU(n)
con n ≥ 3, SO(4n + 2) ed E6

†. Quanto detto restringe i possibili gruppi
di grande unificazione a SU(n), a partire da n ≥ 5, a SO(4m + 2) con
m ≥ 2 e ad E6.

Nel seguito analizzeremo le proprietà predittive del modello standard
alla luce di un eventuale gruppo di grande unificazione SU(5) ed SO(10).

4.3.1 SU(5) → SM

Il gruppo SU(5) è definito dalla sua rappresentazione fondamentale: il
gruppo di matrici unitarie 5 × 5 con determinante uguale ad uno ‡. Una
generica trasformazione può essere scritta come:

U = exp

{
−i

23∑

m=0

θmTm

}
(4.25)

∗Il rango è il numero massimo di generatori del gruppo che commutano tra di loro.
Il Modello Standard ne ha quattro, due generatori per il gruppo SU(3), uno da SU(2)
e l’ultimo da U(1). Infatti per un gruppo SU(n) il rango è pari a n− 1.

†Una dettagliata discussione dei gruppi SU(n), SO(n), Sp(n), e dei gruppi
eccezionali come E6 si può trovare in [50, 51].

‡SU(5) è stato uno dei primi modelli di grande unificazione ideati (1974). È anche
conosciuto col nome di gruppo minimale di grande unificazione per la cui realizzazione
si sono adoperati Georgi, Glashow, Quin e Weinberg. Cfr. [6].
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dove i generatori Tm = 1
2λ

m sono hermitiani e a traccia nulla con la
normalizzazione seguente:

tr(T aT b) =
1

2
δab . (4.26)

Poichè un gruppo della forma SU(N) ⊗ SU(M) ⊗ U(1) può essere con-
tenuto in uno della forma SU(N +M), è lecito scegliere SU(N) tale da
agire sui primi N indici della rappresentazione di SU(N +M) ed SU(M)
sui restanti M indici. Infatti SU(5) ha due rappresentazioni a dimen-
sione cinque, 5 e 5̄, già menzionate nel paragrafo 4.1.1, con la seguente
decomposizione:

5 → (3, 1,−1/3) ⊕ (1, 2, 1/2) (4.27)

5̄ → (3̄, 1, 1/3) ⊕ (1, 2̄,−1/2) (4.28)

dove il doppietto 2̄ è equivalente a 2 perchè operiamo con rappresen-
tazioni di SU(2). Seguendo la (4.27) possiamo raggruppare gli anti-
quark down e il doppietto leptonico del Modello Standard in una unica
rappresentazione:

5̄ =




dc
1

dc
2

dc
3

e
−ν




L

(4.29)

Dalla (4.6) otteniamo il decupletto di SU(5), che si decompone nel seguente
modo:

10 = (3̄, 1,−2/3) ⊕ (3, 2, 1/6) ⊕ (1, 1, 1) (4.30)

il che mostra che la 10 include uc, q e lc rispettivamente. In questo modo
ogni generazione del Modello Standard è accomodata in

5̄ ⊕ 10 . (4.31)

Usando la (4.29) e la (4.6) otteniamo la forma esplicita del decupletto∗:
∗Dal prodotto tensoriale della (4.6) abbiamo che 10ab = 1√

2
(5a5′

b − 5b5
′
a). Ad

esempio il termine 1054 = −1045 = 1√
2

(−vee
′ + ev′e) la cui ipercarica, per la (4.27)

è pari ad 1 e quindi il termine 1054 corrisponde a (1, 1, 1) nella (4.30) ossia ad ec.
Come altro esempio il termine 1012 = −1021 = 1√

2
(d1d

′
2 − d2d

′
1) ha ipercarica −2/3,

come il coniugato di quark up e per la conservazione del colore 1012 è equiparabile
a 1√

2
εαβγuc

γ che trasforma come un tripletto coniugato (3̄) di SU(3). Quindi 1012 =
1√
2
uc

3. Procedendo in modo analogo si determina la struttura completa del decupletto.
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10 =
1√
2




0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

−uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −ec
d1 d2 d3 ec 0




L

(4.32)

dove il coefficiente 1√
2

è un termine convenzionale di normalizzazione.
Per quanto accennato prima, vogliamo verificare se a distanze molto

piccole, quando il quadrimpulso trasferito è molto più grande delle masse
dei bosoni vettoriali più pesanti, la simmetria SU(5) viene restaurata e
se tutte le interazioni dei bosoni vettoriali intermedi tra di loro e con
altre particelle (fermioni e bosoni) determinano una singola costante di
accoppiamento, cioè una singola carica g5. È necessario quindi poter
confrontare le tre cariche del Modello Standard con quelle del gruppo
SU(5).

La derivata covariante di questo gruppo è:

Dµ = ∂µ + ig5

23∑

m=0

Am
µ

λm

2
(4.33)

mentre per il Modello Standard∗

Dµ = ∂µ + igs

8∑

n=1

Gn
µ

λm

2
+ ig

3∑

j=1

W j
µ

τ j

2
+ ig′Y Bµ . (4.34)

Per quanto detto vogliamo verificare se ad una scala energetica in cui
µ > µ0 = MX si verifica che

g5 = g3 = g = g′ . (4.35)

Ovviamente, però, il confronto tra costanti di accoppiamento di sot-
togruppi diversi è lecito quando queste sono normalizzate. Tale normaliz-
zazione, come vedremo di seguito, passa attraverso quella dei generatori
del proprio gruppo. Per i gruppi non abeliani non ci sono grossi problemi,
dato che sono tutti normalizzati allo stesso modo:

Tr{T aT b} =
1

2
δab (4.36)

∗Nella formula (4.34) abbiamo tacitamente indicato con gs la carica di SU(3)c, con
g quella di SU(2)L e con g′ la carica del gruppo U(1)Y .
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Invece le differenze sorgono per i gruppi abeliani e quindi per g′. In questo
caso, confrontando la (4.33) con la (4.34), occorre soddisfare la seguente
relazione:

ig5
λ0

2
A0

µ = ig′Y Bµ (4.37)

sapendo che

λ0

2
=

1√
15




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −3

2 0
0 0 0 0 −3

2




,

che l’ipercarica del quintupletto è:

Y5 =




−1
3 0 0 0 0

0 −1
3 0 0 0

0 0 −1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2




e che A0
µ è identificabile con Bµ, allora:

YSM ≡ Y = −
√

5

3

λ0

2
=⇒ g′ = −

√
3

5
g5 . (4.38)

Come abbiamo già visto il calcolo dei “loop” ci permette di scrivere:

α−1
i (MX) = α−1

i (MZ) − bi
2π

ln

(
M

MZ

)
(4.39)

dove MX ed MZ sono due valori del quadrimpulso trasferito e in partico-
lare MZ è il valore del quadrimpulso trasferito pari al valore della massa
del bosone vettore Z0; α−1

i (Mz) è la costante di accoppiamento associata
al gruppo Gi valutata in MZ . MX rappresenta il valore del quadrim-
pulso in cui le costanti di accoppiamento tendono allo stesso valore. A
causa della dipendenza logaritmica è lecito aspettarsi che MX � MZ e
quest’ultima è, tra l’altro, molto maggiore delle masse delle particelle il
cui contributo viene considerato nel calcolo. La nostra intenzione è quindi
quella di verificare l’esistenza di MX .
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Per verificare questo abbiamo adottato due procedure equivalenti. La pri-
ma consiste nell’individuare quel valore di MX che soddisfi l’uguaglianza
tra sole due costanti di accoppiamento, per poi sostituire il valore ottenu-
to nella terza e quindi confrontare se le tre cariche, calcolate tutte in MX ,
si sovrappongono. Detta in altri termini:

∃! M
(i+j)
X

∣∣∣αi(M
(i+j)
X ) = αj(M

(i+j)
X ) con i 6= j e i, j = 1, 2, 3(4.40)

e verificare se

α1(M
(i+j)
X ) = α2(M

(i+j)
X ) = α3(M

(i+j)
X ) (4.41)

Invece il secondo metodo consiste nell’individuare quel valore di MX

tale che αi(MX) = αj(MX) con i 6= j e poi confrontare, estrapolando
all’indietro, il valore di αk(MZ) con k, j, i diversi, con il valore sperimen-
tale di αk(MZ). Ovviamente poiché le costanti di accoppiamento sono
tre, ogni metodo è ripetuto tre volte, esaurendo tutte le possibili combi-
nazioni. Per eseguire i calcoli occorre ricordare la (4.20), (4.33), (4.34),
(4.38) e che

g sin θw = g′ cos θw = e

α =
e2

4π
(4.42)

da cui

α3(µ) ≡ g2
3(µ)

4π
= αstrong(µ)

α2(µ) ≡ g2
2(µ)

4π
=

α(µ)

sin2 θw

(4.43)

α1(µ) ≡ g2
1(µ)

4π
=

5

3

α(µ)

cos2 θw

Nella tabella 4.2 riportiamo i valori sperimentali usati ed i relativi errori
statistici [40].

Resta da calcolare le quantità bi che sono determinate dall’ordine del
gruppo cioè dal numero di bosoni e dal numero di sapori fermionici. È
quindi utile riportare nella tabella 4.3 i numeri quantici delle particelle
del Modello Standard.

Riprendendo la (4.21) occorre determinare il valore di b3, b2 e b1 rispet-
tivamente legate ad SU(3)c, SU(2)L e U(1)Y . Mentre il calcolo esplicito
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Parametro Valore Errore (1σ)
αstrong 0.1213 0.0018
α−1 127.918 0.018
sin2 θw 0.23120 0.00015
MZ 91.1876 GeV 0.0021 GeV

Tabella 4.2: Valori sperimentali usati per la verifica dell’esistenza di una
MX in cui le cariche restaurano la simmetria SU(5). I dati si riferiscono
alle misure alla scala MZ .

Simbolo SU(3) SU(2) U(1) Campo
ql 3 2 1

6 Fermione
ur 3 1 2

3 Fermione
dr 3 1 −1

3 Fermione
Ll 1 2 −1

2 Fermione
lr 1 1 -1 Fermione
ga 8 1 0 Vettore
W i 1 3 0 Vettore
B 1 1 0 Vettore
H 1 2 1

2 Scalare

Tabella 4.3: Particelle del Modello Standard.
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è mostrato in appendice D.1, esse valgono rispettivamente -7, -19/6 e
41/10.
A questo punto non ci resta che elencare i risultati ottenuti per entrambi
i metodi descritti.
Per il primo metodo si veda la tabella numero 4.4. I valori ottenuti

Carica α1(M
(3)
X ) = α2(M

(3)
X ) α1(M

(4)
X ) = α3(M

(4)
X ) α3(M

(5)
X ) = α2(M

(5)
X )

α1 0.02733±0.00007 0.02358±0.00003 0.02358±0.00004
α2 0.02481±0.00014 0.022698±0.00088 0.02484±0.00009
α3 0.02119±0.00030 0.02119± 0.00031 0.02763±0.00031

Tabella 4.4: Valori ottenuti applicando il primo metodo descritto nella
(4.40) (l’errore statistico è 3σ).

con il secondo metodo, invece, sono riportati nella tabella 4.5 insieme ai
corrispettivi valori sperimentali per il loro confronto ∗.

Carica Valore teorico Valore sperimentale
α3 0.1213± 0.0018 0.07118±0.00018
α−1

2 29.575±0.020 25.774±0.080
α−1

1 59.006±0.092 70.01±0.24

Tabella 4.5: Confronto tra i valori ricavati con il secondo metodo descritto
precedentemente. Gli errori statistici indicati si intendono riferiti a 1σ.

Come si può vedere entrambi i metodi mostrano che il Modello Stan-
dard non è consistente con la grande unificazione. Cioè non è compatibile
con l’ipotesi di una singola costante di accoppiamento ad una qualche
scala di energia. A tal proposito si veda l’immagine numero 4.1, in cui
è mostrato l’evoluzione delle tre costanti di accoppiamento nella zona di
intersezione.

Per superare questa difficoltà, tenendo ferma l’ipotesi che esista una
teoria che sintetizzi in un solo gruppo di gauge le tre interazioni, possiamo
modificare il Modello Standard in maniera opportuna, sacrificandone però
il carattere predittivo. Possiamo supporre l’esistenza di particelle pesanti,
non ancora scoperte, che possono contribuire in maniera decisiva ai valori
delle bi tale da far convergere le tre cariche. Iniziamo introducendo il
Modello Standard Supersimmetrico Minimale (MSSM), che discuteremo
nel prossimo paragrafo.

∗I dati sperimentali sono stati calcolati sfruttando la (4.43) e usando i valori di
αstrong, α e sin2 θw presenti nella tabella numero 4.2

54



§4.3 – Evoluzione delle costanti di accoppiamento

1. ´ 1013 1. ´ 1015 1. ´ 1017 1. ´ 1019

GeV

35

37.5

40

42.5

45

47.5

50

Α3
-1

Α2
-1

Α1
-1

Figura 4.1: Previsione delle intersezioni delle tre costanti di accoppiamen-
to del Modello Standard nel caso di SU(5) −→ SU(3)c⊗SU(2)l⊗U(1)Y .
Il grafico è tracciato in scala semilogaritmica.

4.3.2 SU(5) −→ MSSM

Storicamente si fanno risalire i primi lavori su gruppi supersimmetrici da
parte di Miyazawa al 1966, che sfortunatamente passarono inosservati.
Solo intorno agli anni settanta, grazie al lavoro di due gruppi distin-
ti, uno sovietico (1971) e l’altro dell’Europa occidentale (CERN-1972),
si riscoprì la supersimmetria dando corso a lavori di notevole interesse
che confluirono nella formulazione del Modello Standard Supersimmetrico
Minimale.

Il modello in questione è di notevole complessità e prevede numerose
estensioni. Noi, qui, non abbiamo la pretesa di trattarlo in maniera si-
stematica, ma mostreremo il ruolo che svolge nell’ottica dell’evoluzione
delle costanti di accoppiamento, passando attraverso la “zoologia” delle
sue particelle.

Il MSSM, come accennavamo, richiede l’esistenza di altre particelle.
Infatti oltre a quelle che abbiamo già descritto per il Modello Standard
esiste un campo scalare di Higgs e inoltre è necessario introdurre un part-
ner bosonico per ogni fermione del Modello Standard e viceversa. I nuovi
bosoni sono chiamati squark, selettrone, sneutrino e così via, mentre i
nuovi fermioni sono chiamati fotino, gluino, higgsino e via dicendo. Il
motivo per cui queste particelle non sarebbero ancora state osservate è
legato alla loro massa, che supponiamo sia la stessa per tutte. Nella
tabella 4.6 elenchiamo le particelle del MSSM, i loro numeri quantici e il
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corrispondente partner.

M.S.S.M. S.M. SU(3) SU(2) U(1) Campo
q̃l ql 3 2 1

6 Scalare
ũr ur 3 1 2

3 Scalare
d̃r dr 3 1 −1

3 Scalare
L̃l Ll 1 2 −1

2 Scalare
l̃r lr 1 1 -1 Scalare
g̃a ga 8 1 0 Fermione
W̃ i W i 1 3 0 Fermione
B̃ B 1 1 0 Fermione
H̃ H 1 2 1

2 Fermione
H̃1 H1 1 2 −1

2 Fermione

Tabella 4.6: Particelle del MSSM. Nella colonna SM sono elencate le
particelle del Modello Standard corrispondenti a quelle supersimmetriche.
Si può notare come esiste, oltre a H, un nuovo doppietto di Higgs H1,
che è uno scalare. Notiamo, anche, come i numeri quantici delle particelle
supersimmetriche siano gli stessi dei partner del Modello Standard.

Nel quadro del MSSM ci proponiamo di studiare l’evoluzione delle
costanti di accoppiamento. Ovviamente il modello non può contraddire i
dati sperimentali, ossia i valori noti delle cariche per “energie basse”. Que-
sto ci induce a pensare di suddividere l’evoluzione in tre distinti regimi,
discriminati dal valore di due masse, MS ed MX . Precisiamo meglio il
concetto. L’idea è che per energie minori di MS , valgono i discorsi fatti
nel paragrafo precedente, mentre per energie superiori a MS , entrano in
gioco le nuove particelle introdotte dal MSSM e quindi, in corrisponden-
za di MX , le tre cariche tendono allo stesso limite, unificando la teoria
del MSSM in un gruppo di grande unificazione SU(5). È quindi neces-
sario calcolare le correzioni alle β-function per opera delle nuove parti-
celle. Correzioni che chiamiamo con ∆b1, ∆b2 e ∆b3, rispettivamente per
i gruppi U(1)Y , SU(2)L e SU(3)c e che, come detto, entrano in gioco
quando il quadrimpulso scambiato supera il valore di MS . Il valore delle
tre correzioni è: 5/2, 25/6 e 4∗. Nel caso in esame di processo a due step,
l’equazione (4.39) si modifica nel seguente modo:

1

αi(MZ)
=

1

αX
+
bi
2π
t+

∆bi + bi
2π

h con i = 1, 2, 3 (4.44)

dove t=ln(Ms/Mz) e h=ln(MX/MS).
Risolvendo il sistema

∗Si veda l’appendice D.2 per il calcolo esplicito.

56



§4.3 – Evoluzione delle costanti di accoppiamento




3
5α

(1 − sin2θw)
1
α
(sin2θw)

1
α3


 =




1 b1
2π

∆b1+b1
2π

1 b2
2π

∆b1+b2
2π

1 b3
2π

∆b1+b3
2π






1
αX

t
h




otteniamo le predizioni di α−1
X , MS e MX elencate nella tabella numero

4.7. Con l’immagine numero 4.2 mostriamo le tre cariche in corrisponden-

Parametro Valore teorico Errore
α−1

X 23.3 0.4
MS 22 GeV 12 GeV
MX 3.06 · 1016 GeV 0.52 · 1016 GeV

Tabella 4.7: Valori calcolati per il modello SU(5) −→ MSSM. Gli errori
statistici indicati si intendono riferiti a 1σ

za di MX . Dai calcoli eseguiti è chiaro che la scala energetica intermedia
MS è prossima ad MZ , anche se esistono ragioni indipendenti per cui
MS . TeV. Tra l’altro, l’assunzione fatta che le masse delle particelle
supersimmetriche siano tutte uguali è al quanto arbitraria. Malgrado ciò,
questa ci permette di ottenere delle indicazioni ragionevoli.
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Figura 4.2: MSSM. Il grafico è tracciato in scala semilogaritmica.
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4.3.3 SO(10)

In questo paragrafo esamineremo l’evoluzione delle costanti di accoppia-
mento nel gruppo SO(10), introdotto per la prima volta da Fritzsch e
Minkowski [52]. In generale i gruppi SO(N) sono molto interessanti per-
ché privi di anomalie, fatta eccezione per il gruppo N = 6. Inoltre non
tutti i gruppi SO(N) hanno una rappresentazione complessa, ma solo i
gruppi SO(4n+2). Per questo motivo il più piccolo gruppo ortogonale di
rango∗ > 4, con rappresentazione complessa, è proprio SO(10). Un van-
taggio di quest’ultimo è l’esistenza di una rappresentazione spinoriale† a
16 dimensioni che contiene tutti i campi di materia di una generazione,
compreso il neutrino destrogiro. Inoltre il modello SO(10) conserva la
parità e le sue possibili decomposizioni, già accennate nel paragrafo 4.1.2,
sono:

SO(10) −→ SU(5) ⊗ U(1) −→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y (4.45)

SO(10) −→ SO(6) ⊗ SO(4) ∼=
SU(4) ⊗ SU(2)L ⊗ SU(2)R ⊗D (4.46)

−→ SU(3)c ⊗ U(1)B−L ⊗ SU(2) ⊗ SU(2) (4.47)

−→ SU(3)c ⊗ SU(2) ⊗ U(1)Y . (4.48)

La possibilità di una simmetria intermedia, prima della simmetria
di grande unificazione è un aspetto importante di una teoria di GUT.
Infatti l’evoluzione delle costanti di accoppiamento sarà influenzata dalla
presenza di tali sottogruppi intermedi. In questo paragrafo tralasceremo
la decomposizione in SU(5) perché già trattata per discutere la rottura
del gruppo SO(10) nel gruppo SU(4)⊗ SU(2)R ⊗ SU(2)L ⊗D −→ GSM

dove D è un gruppo discreto e SU(4) ⊗ SU(2)R ⊗ SU(2)L è il gruppo di
Pati–Salam (GPS)[36]. La presenza di GPS introduce una scala energetica
intermedia MPS che svolge lo stesso ruolo discusso per MS nel paragrafo
4.3.2. Cioè per Q2 < M2

PS ci troviamo in una zona descritta dal Modello
Standard; per M2

PS < Q2 < M2
X siamo nel regime del gruppo GPS ⊗

D e per Q2 > M2
X l’unificazione delle tre costanti di accoppiamento è

completa. Per quanto detto, fino alla scala MPS possiamo scrivere:

α−1
i (MZ) = α−1

i (MPS) +
bi
2π
t , t = ln

MPS

MZ
(4.49)

∗Il rango di un gruppo ortogonale SO(N) è pari a N/2 per N pari e (N-1)/2 per N
dispari.

†Dato un gruppo SO(2n) la dimensione della rappresentazione spinoriale più
piccola è pari a 2n−1.
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con i = 1,2,3. Mentre per M2
PS < Q2 < M2

X

α−1
i (MZ) = α−1

i (MX) +
bi
2π
t+

b′i + bi
2π

h , h = ln
MX

MPS
. (4.50)

Come già accaduto per il MSSM ⊂ SU(5), così ora, nel regime di di
Q2 > M2

PS esistono alcune particelle aggiuntive, dovute alla presenza del
gruppo di Pati–Salam. È necessario, quindi, individuarle e determinare
quali sono i loro numeri quantici rispetto al Modello Standard. Questo ci
consentirà di poter valutare le correzioni da apportare alle “β–function”
passando per il calcolo delle b′i. Le particelle del gruppo SO(10) ven-
gono collocate in un multipletto a 16 dimensioni, inglobando così anche
il neutrino “right”. Nel gruppo di Pati–Salam queste particelle vengono
alloggiate nei seguenti multipletti:

16 = ΨL + ΨR (4.51)

ΨL =

(
u u u ν
d d d e−

)

L

ΨR =

(
u u u ν
d d d e−

)

R
.
(4.52)

Poiché GPS si può rompere in SU(3)c ⊗ U(1)B−L ⊗ SU(2)L ⊗ SU(2)R
possiamo scrivere il quadrupletto di SU(4) usando i numeri quantici di
SU(3)c ⊗ U(1)B−L:

4 = (3, 1/3) ⊕ (1,−1) (4.53)

4̄ = (3̄,−1/3) ⊕ (1, 1) . (4.54)

I generatori del gruppo saranno in numero di 15, infatti:

4 ⊗ 4̄ = 1 ⊕ 15 (4.55)

= (1, 0) ⊕ (1, 0) ⊕ (8, 0) ⊕ (3, 4/3) ⊕ (3̄,−4/3) . (4.56)

Sapendo che:

Y = T3R +
B − L

2
(4.57)

possiamo scrivere i generatori del modello di Pati–Salam (4.55) rispetto
al Modello Standard:

(8, 1, 0) ⊕ (3, 1, 2/3) ⊕ (3̄, 1,−2/3) ⊕ (1, 1, 0) (4.58)
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Il primo termine rappresenta gli otto gluoni; i due tripletti di colore sono,
invece, due nuovi generatori, mentre l’ultimo è un singoletto che non
possiede nessuna carica e che per questo non interviene nel calcolo dei
“loop”. A questi vanno aggiunti i mediatori dei gruppi SU(2)L e SU(2)R,
che naturalmente sono tripletti “left” e “right”:

(1, 2, 1) ⊗ (1, 2̄, 1) = (1, 1, 1) ⊕ (1, 3, 1) SU(2)L (4.59)

(1, 1, 2) ⊗ (1, 1, 2̄) = (1, 1, 1) ⊕ (1, 1, 3) SU(2)R . (4.60)

Sotto il Modello Standard, per la (4.57) hanno i seguenti numeri quantici:

(1, 3, 1) −→ (1, 3, 0) (4.61)

(1, 1, 3) −→ (1, 1, 1) ⊕ (1, 1, 0) ⊕ (1, 1,−1) . (4.62)

I tre tripletti “left” sono già presenti nel Modello Standard, mentre gli
altri tre “right” sono scalari nuovi, di cui (1, 1, 0) non partecipa al calco-
lo a causa dell’assenza di cariche. A questi vanno aggiunti altri campi
scalari come mostreremo di seguito. Abbiamo già avuto modo di sot-
tolineare che il modello SO(10) permette di accomodare i 15 fermioni
chirali del Modello Standard più il neutrino “right handed” in un unico
multipletto. La presenza del neutrino “right” gioca una funzione estrema-
mente importante, poiché la massa dei neutrini riveste un indiscutibile
ruolo nella fenomenologia delle particelle elementari [53]–[55]. Tuttavia
l’indagine sperimentale ci suggerisce che, supponendo l’esistenza del neu-
trino “right”, questo dovrebbe avere una massa sufficientemente elevata
da essere prodotto con estrema rarità. Un buon metodo per spiegare que-
sto ipotetico fenomeno è l’esistenza del così detto meccanismo di “seesaw”
[56]–[58]. È quindi interessante notare che è possibile implementare tale
meccanismo nel gruppo SO(10) [59]–[62] semplicemente scegliendo, tra i
vari possibili campi di Higgs, il multipletto a 126 componenti. In que-
sto modo il meccanismo di “seesaw” trovare una collocazione naturale nel
gruppo SO(10):

16 ⊗ 16 = 10s ⊕ 120a ⊕ 126s . (4.63)

Nello specifico i nuovi campi contenuti nel multipletto 126, rilevanti per
il modello Pati–Salam,

4 ⊗ 4 = 6a ⊕ 10s (4.64)
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sono ∆ = (10, 1, 3) e ∆ = (1̄0, 3, 1). Dobbiamo però individuare quali
sono i numeri quantici di tali particelle sotto il Modello Standard. Per
questo, ricordando la (4.53) e esplicitando la (4.64) come segue,

(4 ⊗ 4)s = (6, 2/3) ⊕ (1,−2) ⊕ (3,−2/3) (4.65)

otteniamo:

(10, 3, 1) = (6, 3, 1/3) ⊕ (1, 3,−1) ⊕ (3, 3,−1/3) (4.66)

(1̄0, 1, 3) = (6̄, 1, 2/3) ⊕ (6̄, 1,−1/3) ⊕ (6̄, 1,−4/3) ⊕ (1, 1, 2) ⊕ (1, 1, 1)(4.67)

⊕(1, 1, 0) ⊕ (3̄, 1, 4/3) ⊕ (3̄, 1, 1/3) ⊕ (3̄, 1,−2/3) . (4.68)

A questi va aggiunto un ulteriore campo di Higgs, che per il Modello
Standard ha i numeri quantici (1,2,1/2), necessario per la simmetria “left”–
“right”. Tenendo conto di questi nuovi campi, le correzioni alle b′i nella
(4.50) risultano:

b′1 = −113

30
(4.69)

b′2 =
41

6
(4.70)

b′3 =
7

3
. (4.71)

Quindi risolvendo il sistema:




3
5α

(1 − sin2θw)
1
α
(sin2θw)

1
α3


 =
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2π
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1 b2
2π
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2π
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αX
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h
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

otteniamo le predizioni di α−1
X , MPS e MX elencate nella tabella numero

4.8.

Parametro Valore teorico Errore
α−1

X 41.13 0.03
MPS 2.4 · 1013 GeV 0.2 · 1013 GeV
MX 2.0 · 1015 GeV 0.2 · 1014 GeV

Tabella 4.8: Valori calcolati per il modello SO(10) −→ GPS −→ SM .
Gli errori statistici indicati si intendono riferiti a 1σ
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Mentre in figura 4.3 è riportata l’evoluzione delle tre costanti di ac-
coppiamento. Dal grafico si nota la zona in cui le tre cariche risentono
unicamente della fisica del Modello Standard, per poi cambiare drastica-
mente in corrispondenza diMPS e convergere nello stesso punto all’altezza
di MX in cui la simmetria del modello S0(10) è restaurata. Si nota tra
l’altro che in corrispondenza di M ∼ 1013 GeV, ancora nella zona del Mo-
dello Standard, la costante α−1

3 diviene più piccola di α−1
2 e si mantengono

tali fino all’unificazione.
Usando i dati in tabella 4.8 e con riferimento alla (2.38) otteniamo

una stima della vita media per il decadimento del protone τp ∼ 1033 anni.
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Figura 4.3: SO(10) −→ GPS −→ SM . Il grafico è tracciato in scala
semilogaritmica.

4.4 Supersimmetria e decadimento del protone

In SUSY–GUT il decadimento del protone può avvenire attraverso proces-
si caratteristici (mediante processi a 1–loop) che discutiamo qui di seguito
e portano a stime un po’ diverse da quelle esposte nel capitolo 2.3.1.

La presenza del bosone di Higgs nel modello supersimmetrico SU(5),
necessario per generare la massa dei fermioni, implica l’esistenza di mec-
canismi capaci di indurre il decadimento del protone. Proprio perché il
termine di massa coinvolge due fermioni e il bosone di Higgs è utile stu-
diare le combinazioni possibili tra due fermioni. Sfruttando quanto detto
nel paragrafo 4.1.1:
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(5̄ ⊕ 10) ⊗ (5̄ ⊕ 10) (4.72)

produce il seguente risultato:

5̄ ⊗ 10 = 5 ⊕ 4̄5

10 ⊗ 10 = 5̄ ⊕ 45 ⊕ 50

5̄ ⊗ 5̄ = 1̄0 ⊕ 1̄5 . (4.73)

Delle possibili rappresentazioni del bosone di Higgs, la scelta della 5 va
sotto il nome di modello minimale. Seppure dalla (4.73) esiste la pos-
sibilità di rappresentare un campo di Higgs con una rappresentazione
50–dimensionale, il doppietto di Higgs, che dà massa ai fermioni carichi,
è contenuto solo nelle rappresentazioni 45– e 5–dimensionali. Tra l’altro,
nel prodotto tensoriale (4.72), non compare la rappresentazione di Higgs
24 necessaria per la rottura spontanea da

SU(5) −→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y (4.74)

il che ci conforta, visto che le masse fermioniche sono molto più piccole
delle rispettive masse MX delle GUT. Però il prodotto tensoriale tra un
campo di Higgs 5–dimensionale e 24–dimensionale, può comunque dar
luogo ad una rappresentazione 45–dimensionale:

5 ⊗ 24 = 5 ⊕ 45 ⊕ 70 (4.75)

quindi anche se la 45 non è esplicitamente contenuta nella lagrangiana
di SU(5) può comparire per la presenza di un operatore effettivo che
coinvolga la rappresentazione 5– e 24– dimensionale di un campo di Higgs.
Quindi gli accoppiamenti possibili sono del tipo:

10 · 10 · 5H ; 10 · 5̄ · 5̄H . (4.76)

Da tali termini di Yukawa si dimostra l’esistenza di un canale di decadi-
mento dominante per il protone che è mediato dall’Higgsino.
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4.4.1 Stime dei tassi di decadimento con accoppiamento
di Yukawa

Continuando i ragionamenti precedenti, in questo paragrafo stimiamo i
tassi di decadimenti del nucleone per la presenza dell’accoppiamento di
Yukawa.

Indicando con Y e Y le costanti di Yukawa, possiamo scrivere:

Y · 10 · 10 · 5H = qY1u
cHu + qY2qT + ucY3e

cT (4.77)

Y · 10 · 5̄ · 5̄H = qY1d
cHd + qY2lT̄ + ucY3d

cT̄ + ecY4lHd (4.78)

Si noti che l’unica libertà che abbiamo per produrre il corretto spettro
delle masse dei fermioni a destra della (4.77) è una ponderata scelta degli
accoppiamenti a sinistra. Ad esempio, dal calcolo dettagliato della secon-
da equazione della (4.77) e (4.78) [48, formula (3.65)] si ottiene: Y1 = Y4,
implicando che md = me, cioè che le masse dei quark up delle tre famiglie
sono uguali alle masse dei leptoni carichi.

Ritornando agli operatori che possono produrre il decadimento del
protone, contraiamo i termini con T e T̄ della (4.77) e (4.78) otteniamo
l’operatore:

Y2Y2

M2
T

qqql (4.79)

che è in relazione al grafico 4.4. In questo caso è possibile che la massa

�qq l

q

T

T̄

Figura 4.4: Interazione tra fermioni mediata da tripletto colorato
dell’Higgs nel modello SU(5) minimale.

del tripletto colorato dell’Higgs sia dell’ordine delle masse alla scala della
grande unificazione. Quindi la presenza delle costanti di accoppiamento
di Yukawa, presumibilmente inferiori ad uno, renderebbe la transizione
più lenta rispetto agli operatori di dimensione 6 già incontrati.

Tuttavia il modello SUSY SU(5) ingloba anche i partner supersim-
metrici, il che rende necessario aggiungere, ai termini (4.76), i seguenti:

Ψ1Ψ̃2H̃ + Ψ̃1Ψ2H̃ + Ψ¯̃Φ ¯̃H + Ψ̃Φ̄ ¯̃H (4.80)
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avendo identificato Ψ con il decupletto, Φ con il quintupletto e con il
simbolo˜(tilde), invece, il corrispondente partner supersimmetrico. Questi
introducono operatori con dimensione d = 5 del tipo:

Y2Y2

MT
q̃qq̃l (4.81)

in relazione con il grafico 4.5. Subito si nota che ora l’operatore è inversa-

�qq̃ l

q̃

T̃

¯̃T

Figura 4.5: Interazioni tra fermioni e scalari mediato da tripletto colorato
dell’Higgsino nel modello SU(5) minimale.

mente proporzionale alla massa del tripletto colorato dell’Higgsino, T̃ . A
partire da queste considerazioni è possibile costruire un processo del tipo
mostrato in figura 4.6, in cui l’accoppiamento è proporzionale a

(
1

4π

)2 Y2Y2

MT

1

m̃
(4.82)

dove m̃ è una massa dell’ordine delle particelle supersimmetriche. Purtroppo

�q
q

l

q

q̃

T

q̃

g̃

Figura 4.6: Decadimento del protone a causa dell’esistenza dell’Higgsino
nel modello SU(5).

però la (4.82) contiene una grossa indeterminazione teorica non solo su
MT come già accennato, ma anche su m̃ e sulle costanti di accoppiamento
di Yukawa, parametri che dipendono fortemente dalla teoria delle masse
dei fermioni. Ad aggravare la situazione c’è la forma molto rozza dell’ele-
mento di matrice del diagramma 4.6, la (4.82), derivata da considerazioni
di natura esclusivamente dimensionali. Tuttavia, continuando su questa
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strada, supponendo che le costanti di Yukawa Y2 e Y2 siano dello stesso
ordine di grandezza delle Y1 e Y4, responsabili della massa dei fermioni
carichi e ricordando la (2.42) e la (2.43) scriviamo:

τp ∝

[
(4π)2 MT m̃

]2

αuαd

1

m5
p

. (4.83)

ottenendo:

τp ∝
[

(4π)2

GF

MT

mumd
m̃

]2
2π2

m5
p

. (4.84)

Sostituendo mu = 4MeV , md = 8MeV [40], MT ∼ Mx ∼ 1016 GeV in
accordo ai dati della tabella 4.7, otteniamo:

τp ∼ 1025 · (m̃ in GeV )2 anni (4.85)

e se m̃ ∼= 1TeV allora

τp ∼ 1031anni . (4.86)

Tuttavia sostituendo md con ms = 130MeV abbiamo

τp ∼ 1028 anni (4.87)

il che fa pensare che un processo del tipo p −→ K+ν possa essere favorito
in SU(5)-SUSY. Infatti, SU(5)-SUSY ha come processi dominanti:

p −→ K+ ν̄µ (4.88)

n −→ K◦ ν̄µ (4.89)

In verità le stime calcolate sono abbastanza rozze e vanno prese con le
dovute cautele. Vari effetti possono contribuire ad aumentarle di almeno
due ordini di grandezza [63].

Malgrado ciò, se confrontiamo le stime (4.86) e (4.87) con i valori spe-
rimentali riportanti nel paragrafo 2.1 sembrano essere in contraddizione
perchè troppo basse. Infatti, recentemente [64, 65, 66] è stata sottolineata
l’inadeguatezza del modello minimale supersimmetrico SU(5) come teoria
di grande unificazione, proprio a causa della sbagliata previsione sulla vita
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media del decadimento del protone. Tuttavia le incertezze teoriche in gio-
co potrebbero comunque essere sufficienti a evitare l’esclusione di SU(5)
SUSY-minimale come modello di GUT accettabile. A tale proposito è
interessante considerare gli articoli di Senjanovic [67, 68]. Tra l’altro, già
nel 1998 si è osservato che le indeterminazioni teoriche sulle masse delle
particelle supersimmetriche possono indurre una diminuzione della veloc-
ità del decadimento e riportare così le previsioni nei limiti sperimentali
[69].

Per confronto notiamo che usando i dati dell’accoppiamento di gauge
di tabella 4.7 e la (2.38) otteniamo un valore per la vita media del protone
pari a τp ∼ 1037 anni.
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Capitolo 5

Prospettive di ricerca

La teoria è quando si sa tutto e niente funziona. La

pratica è quando tutto funziona e nessuno sa il perché.

In questo caso abbiamo messo insieme la teoria e la

pratica: non c’è niente che funziona e nessuno sa il

perché!

–A. Einstein–

In questo capitolo come prima cosa mostreremo che un esperimento
che ha come obbiettivo lo studio del decadimento del protone deve es-
sere costruito con una grande massa esposta (exposure), a causa della
rarità del fenomeno. Purtroppo proprio questa necessità è correspons-
abile della presenza del fondo. Infatti, tutti gli esperimenti di questo tipo
incontrano come problema principale la gestione del fondo. Vale a dire
tutti quegli eventi che il rivelatore identifica, ma che non sono generati
dal decadimento del protone. È essenziale, quindi, ponderare la scelta
del composto con cui il rivelatore viene costruito, conciliando stabilità e
purezza della molecola con costi e prestazioni. Si rendono indispensabili
l’uso di raffinate tecniche di “purificazione” del composto per eliminare la
presenza di isotopi radioattivi. Purtroppo, è la radioattività ambientale,
la causa maggiore di eventi indesiderati. Proprio per questo motivo, tali
esperimenti sono alloggiati in camere sotterranee a riparo dal grosso del
flusso dei raggi cosmici. Malgrado ciò, i neutrini ugualmente riescono a
raggiungere l’esperimento e a causare la fetta principale di eventi di fon-
do (fondo irriducibile). Proprio per diminuire l’impatto di quest’ultimi si
possono implementare tecniche di ricostruzione delle tracce e fare uso di
misure calorimetriche.

5.1 Massa esposta

Dalle discussioni precedenti risulta chiaro che l’accoppiamento per il de-
cadimento del protone sia un evento estremamente raro. È ragionevole,
quindi, voler valutare la quantità di massa ed il tempo di funzionamento
necessari ad un rivelatore ideale per identificare almeno un evento.

Osservando un numero di particelle N per un tempo T e potendo in-
dividuare, tra queste, un numero S diverso da zero di particelle decadute,
otteniamo il tasso di decadimento come
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Γ =
S

NTε
(5.1)

dove con ε, abbiamo indicato l’efficienza del rivelatore. L’errore asso-
ciato a Γ è ovviamente determinabile tramite le usuali formule per la
propagazione degli errori. Indichiamo con M la massa del rivelatore e con
MT la massa esposta. Chiamiamo con Ai e Zi il peso atomico ed il nu-
mero atomico dello i-esimo atomo del composto di cui è fatto il rivelatore.
Supponendo che

Zi ≈
1

2
Ai (5.2)

possiamo approssimare come segue:

∑

i

Zi ≈
1

2

∑

j

Aj (5.3)

avendo esteso la sommatoria su tutti gli atomi che compongono la moleco-
la. In questo modo possiamo valutare il numero di protoni scrivendo

N ≈ M

mp

∑
iAi∑
j Zj

≈ M

2mp
. (5.4)

Quindi sostituendo nella (5.1), abbiamo:

MT ≈ 2Smp

εΓ
. (5.5)

Da considerazioni di carattere sperimentale già incontrate in precedenza
(tabelle 2.1–2.7), il canale di decadimento con limite sperimentale più
grande ha

τp/BR(p −→ e+πo) & 1.6 · 1033 anni . (5.6)

Di conseguenza, il valore della massa esposta MT necessario per rivelare
almeno un evento supponendo una quasi perfetta efficienza del rivelatore∗

dovrà non essere inferiore a
∗L’efficienza del rivelatore in esperimenti di questa natura è fortemente vincolata

alla capacità di riuscire a discriminare al meglio un segnale di fondo rispetto all’evento
che si vuole cercare.
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MT ' 5Kt· anni (5.7)

Poiché tale evento è estremamente raro da esigere un numero elevato di
protoni N , la sua distribuzione è di natura poissoniana:

P (ν | S) =
e−S Sν

ν!
. (5.8)

Con P (ν | S), abbiamo indicato la funzione di distribuzione della proba-
bilità di rivelare ν eventi con un esperimento in cui la massa esposta e la
τp presunta sono tali da far pensare ad un valore medio di eventi rivelati
pari ad S. Il livello di confidenza che si verifichi almeno un evento è quindi

CL ≡ P (ν > 1 | S) = 1 − P (0 | S) . (5.9)

Ciò vuol dire che il livello di confidenza sarà del 63% per un valore medio
atteso pari ad S = 1, mentre, con S = 3 e quindi una massa esposta pari
a MT ≈ 15 Kt· anni, il livello di confidenza potrà essere pari al 95%.

Consideriamo adesso il caso in cui sia presente un fondo sperimentale.
In generale, nell’analisi degli eventi si possono verificare due condizioni.
Una in cui si riscontra un chiaro eccesso di segnali oltre il fondo (B), nel
qual caso è possibile misurare la vita media del protone. L’altro in cui non
sono rivelati oltre al fondo altri significativi segnali. In quest’ultimo caso
sarà possibile dare solo un limite inferiore alla vita media del protone.

Il numero medio di candidati per il decadimento, in entrambi i casi, è
dato da

µ = ΓEε+B (5.10)

dove abbiamo indicato E = NT . Come già ricordato prima, la distribu-
zione degli eventi è di natura poissoniana con parametri Γ, E, ε, B. Quin-
di, la distribuzione delle probabilità di rivelare ν segnali dall’esperimento
(trigger) è

F (ν | Γ, E, ε,B) =
e−(ΓEε+B)(ΓEε+B)ν

ν!
. (5.11)

La trattazione del primo caso, assumendo un fondo noto con certezza,
non si discosta da quanto detto precedentemente. Invece, di seguito,
riportiamo l’analisi per il secondo caso.

Noi siamo interessati a cosa un esperimento può dirci circa il tasso
di decadimento, quindi vogliamo ottenere l’espressione della F(Γ | ν) a
partire dalla (5.11). Per questo motivo applichiamo il teorema di Bayes∗

∗Cfr. [40, capitolo 31], [70, capitoli 3 e 9].
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alla (5.11) ed otteniamo:

F (Γ, E, ε,B | ν) = αF (ν | Γ, E, ε,B)Fo (Γ, E, ε,B) , (5.12)

dove α è una costante di normalizzazione ed Fo (Γ, E, ε,B) è la probabilità
a priori delle grandezze Γ, E, ε,B. Supponendo che il tasso di decadimen-
to, l’efficienza, l’esposizione E ed il fondo siano tutti indipendenti gli uni
dagli altri, possiamo scrivere:

Fo (Γ, E, ε,B) = Fo(Γ)Fo(E)Fo(ε)Fo(B) . (5.13)

Le quantità Fo(Γ), Fo(ε), Fo(E) e Fo(B), sono le probabilità a pri-
ori∗, cioè indicano lo stato di conoscenza di ogni parametro prima del-
l’esecuzione dell’esperimento. Possiamo quindi riscrivere la (5.12) come
segue:

F (Γ, E, ε,B | ν) = αF (ν | Γ, E, ε,B)Fo(Γ)Fo(ε)Fo(E)Fo(B) .(5.14)

Conoscendo le probabilità a priori (5.13), possiamo rendere la (5.14) in-
dipendente dai parametri E, ε e B, procedendo con la così detta marginal-
izzazione, ovvero con la seguente integrazione

F(Γ | ν) =

∫ ∫ ∫
F (Γ, E, ε,B | ν) dεdBdE , (5.15)

mentre la costante di normalizzazione α, sarà tale che

∫ ∞

0
F(Γ | ν)dΓ = 1 . (5.16)

Allora, otteniamo il limite sperimentale Γ̃ sul tasso di decadimento (cioè
la probabilità che Γvero & Γ̃ con un livello di confidenza pari a CL)
risolvendo, rispetto a Γ̃, la seguente equazione:

CL =

∫ Γ̃

0
F(Γ | ν)dΓ . (5.17)

∗In letteratura si usa il termine prior per indicarle.
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5.2 Eventi di fondo

Un esperimento con una grossa massa esposta coinvolge inevitabilmente
un grande numero di eventi che possono essere ridotti, ma non eliminati
completamente. È per questo motivo che vengono attrezzati laborato-
ri sotterranei ed usati materiali a bassa radioattività naturale. In que-
sto modo si può vantaggiosamente sfruttare la naturale schermatura dai
raggi cosmici offerta da uno spessore di roccia sufficientemente elevato.
Purtroppo però ciò non risulta sufficiente ad impedire che i neutrini pos-
sano interferire con l’esperimento stesso. È quindi necessario valutare
l’impatto di questo tipo di fondo, detto irriducibile, sulla misura della
vita media del protone.

5.2.1 Neutrini solari ed atmosferici

Nei primi decenni del XX secolo gli studi sul decadimento β portano alla
scoperta di una nuova particella elementare: il neutrino. È Pauli che
nel 1930 promuove l’ipotesi che una particella elettricamente neutra di
spin 1/2 viene creata ed emessa contemporaneamente all’elettrone in un
decadimento β. Da allora la fisica del neutrino ha fatto grossi passi in
avanti. Oggi conosciamo la natura leptonica di tali particelle che sono
state con successo integrate nel quadro del Modello Standard. Tuttavia
i neutrini ancora sono oggetto di raffinati esperimenti per comprendere
aspetti che a tutt’oggi ci sfuggono.

Poiché i neutrini costituiscono il fondo per ricerche sul decadimento
del protone è indispensabile conoscere il loro flusso e la loro probabilità di
interazione. Le sorgenti di neutrini sono essenzialmente due: il sole e le
interazioni dei raggi cosmici con l’atmosfera terrestre∗. Per questo motivo
è in uso chiamare i primi neutrini solari ed i secondi neutrini atmosferici.
Di seguito esamineremo il ruolo dei due tipi di neutrini per capire in
che modo possono disturbare un esperimento volto alla misura della vita
media del protone.

I neutrini solari sono prodotti a seguito delle reazioni di fusione al-
l’interno del sole. Il loro flusso sulla superficie terrestre è dell’ordine di
65 · 109 cm−2s−1 con una energia che varia da 1 MeV a 20 MeV circa.
Proprio a causa della loro bassa energia non possono dar luogo a reazioni
del tipo:

ν + N −→ l + N ′ + h (5.18)

oppure

ν + N −→ ν ′ + N ′ + h (5.19)
∗A patto di non collocare l’esperimento in prossimità di una centrale nucleare o di

un acceleratore di particelle.
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Infatti, tali processi, le prime di corrente carica e le seconde di cor-
rente neutra, si possono verificare solo se l’energia cinetica del neutrino è
superiore alla differenza delle masse:

Eν > ml +mN ′ −mN +mh (5.20)

ad eseompio, nel caso in cui N sia un protone ed N ′ un neutrone, l sia
un positrone ed h sia un π0 occorre che Eµ > 130MeV .

Diversamente dai neutrini solari, i neutrini atmosferici raggiungono
spettri energetici più elevati. È noto che l’atmosfera della terra è con-
tinuamente raggiunta da un flusso isotropo di raggi cosmici, particelle
cariche la cui composizione chimica è per il 90% circa protoni, il 9%
nuclei di elio ed il restante tutti gli altri elementi.

Figura 5.1: Flusso dei primari.

Il loro flusso è proporzionale a:

dN

dE
∝ E−(γ+1) (5.21)

dove γ assume valori diversi in regimi energetici diversi. La figura 5.1
mostra il flusso dei raggi cosmici primari. I raggi cosmici che penetrano
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nell’atmosfera, i primari, interagiscono con essa producendo una cascata
di particelle secondarie tra cui proprio i neutrini, che per questo sono detti
neutrini atmosferici. Questi ultimi sono i più abbondanti raggi cosmici
presenti sulla superficie della terra.

Possiamo schematizzare il meccanismo di produzione dei neutrini atmo-
sferici nel modo seguente (figura 5.2). Un primario interagisce con un
nucleo di un elemento presente in atmosfera. Dopo una serie di reazione
vengono prodotti dei pioni carichi che decadendo in muoni producono
neutrini muonici e a seguito del decadimento dei muoni vengono prodotti
neutrini elettronici, come mostrato di seguito:

p + X −→
n∑

i=1

X ′
i + π

+

(−) (5.22)

π
+

(−) −→ µ
+

(−) + νµ(ν̄µ) (5.23)

µ
+

(−) −→ e
+

(−) + νe(ν̄e) + ν̄µ(νµ) . (5.24)

Dal calcolo cinematico si dimostra che le energie medie dei tre neutrini
sono simili. Inoltre i processi descritti sopra implicano che il rapporto tra
il numero totale di neutrini muonici su elettronici è circa 2:

Nνµ +Nν̄µ

Nνe +Nν̄e

∼= 2 . (5.25)

Per stimare da un punto di vista quantitativo il flusso di neutrini atmo-
sferici che possiamo aspettarci al suolo abbiamo usato i dati relativi all’es-
perimento Super Kamiokande sfruttando un programma fortran realizza-
to dal dott. Paolo Lipari che implementando i suddetti dati sperimentali
genera il flusso di neutrini atmosferici (dN/d(lnE) cm2 ·s ·sr) in prossim-
ità dei laboratori che ospitano l’esperimento Super Kamiokande. Usando
un secondo programma fortran∗ integriamo il flusso su tutto l’angolo soli-
do, considerando anche le piccole correzioni dovute alla oscillazione dei
neutrini. In figura 5.2.1 riportiamo il flusso dei neutrini atmosferici così
ottenuto.

∗Allegato nella appendice E.
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Figura 5.2: Illustrazione schematica di una cascata di raggi cosmici.
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Figura 5.3: Flusso neutrini.
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5.2.2 Interazione dei neutrini atmosferici

Il calcolo del numero di eventi prodotti dal flusso di neutrini atmosferici
in un rivelatore è determinato dal prodotto di convoluzione del flusso di
neutrini con la loro sezione d’urto. Lavorando sugli stessi dati usati per
creare la figura 5.2.1, possiamo fare una rozza stima di quanti eventi ci
aspettiamo. Da [71] abbiamo:

σ(νN → e+ h) = 10−38 · 2mpEν cm2 (5.26)

e supponendo una massa esposta di 5Kt·anni, ci aspetteremmo circa
500 eventi di fondo. Invece se restringiamo la finestra energetica nelle
vicinanze della massa del protone, con una apertura di circa 50MeV :

mp < Eν < mp + 50MeV (5.27)

ci aspettiamo una decina di eventi. Tuttavia è lecito attendersi che tali
valori siano sovrastimati per due ragioni fondamentali. La prima è dovuta
alla mancata implementazione da parte nostra della condizione di impulso
nullo (o quasi nullo tenendo conto del moto di Fermi). L’altro motivo
riguarda il reale valore della sezione d’urto. Infatti la (5.26) è tipica di
un processo di “deep inelastic scattering”, sovrastimando la reale sezione
d’urto, ad esempio, per un processo di produzione di un pione. Possiamo
valutare l’errore che stiamo commettendo confrontando il valore della
sezione d’urto ad 1 GeV riferendoci al grafico di figura 29 di [72], da
cui si nota una sovrastima della sezione d’urto (5.26) di un fattore circa
10.

5.3 Aspettative per rivelatori ad argon

Nel 1977 [73] Rubbia suggerisce una nuova tecnologia per la ricostruzione
accurata di tracce in esperimenti con una grossa massa sensibile: le camere
a proiezione temporale costituite da argon liquido (LAr TPC). La pe-
culiarità principale delle LAr TPC risiede nel fatto che, in condizioni
di elevata purezza dell’argon, le tracce di ionizzazione possono essere
trasportate praticamente senza deformazioni per distanze dell’ordine dei
metri sotto l’azione di un opportuno campo elettrico. La formazione del-
l’immagine è fornita da un insieme di elettrodi disposti all’estremità del
percorso di deriva degli elettroni. La lettura delle tracce è garantita dal-
l’induzione della carica, che permette la non distruzione delle stesse, con-
sentendo l’uso di più elettrodi disposti su piani differenti e con orientazioni
differenti. Ciò garantisce una precisa ricostruzione tridimensionale delle
tracce e dispone di poter eseguire precise misure calorimetriche. Inoltre la
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possibilità di misure accurate del deposito locale di energia (dE/dx) per-
mette di semplificare l’identificazione del tipo di particella rivelata. Oltre
ciò, l’argon liquido risulta un mezzo ideale per la sua elevata densità, alto
potere di ionizzazione e di scintillazione e costi relativamente contenuti.

Nell’ottica di un esperimento volto alla identificazione del decadimen-
to del protone, per identificare in maniera sufficientemente sicura la sua
presenza è necessario sviluppare una procedura ottimale. È quindi utile
suddividere il processo di analisi dati in diversi step. Bisogna identificare
ogni possibile canale di decadimento del protone che può essere rivelato
dall’esperimento. Occorre individuare il numero di eventi di fondo che
possono confondersi con i primi e quindi valutare l’efficienza dell’esperi-
mento per ogni canale di decadimento. La possibilità di ottimizzare tale
procedura dipende esclusivamente dalla progettazione dell’esperimento.
Esperimenti basati su LAr TPC per la ricerca del decadimento del pro-
tone sono LANNDD [74] ed ICARUS [75]. Per quanto riguarda quest’ul-
timo, da analisi Monte Carlo [76] si sono potute stimare le efficienze per
i vari canali di decadimento, che riportiamo nella tabella (5.1).

Nel paragrafo 5.1 abbiamo discusso il metodo statistico per calcolare
il limite sperimentale del tasso di decadimento. Ora ci proponiamo di
applicare tale metodo per stimare il limite sperimentale della vita media
del protone, nel caso in cui non ci sia un netto affermarsi di eventi su
segnali di fondo nell’esperimento ICARUS. Con riferimento alla (5.10),
indicando con

S = ΓEε (5.28)

tale che applicando il teorema di Bayes∗ alla (5.11), otteniamo:

F (S,B | ν) =

αF (ν | S,B)Fo (S,B) , (5.29)

Se assumiamo che il fondo è noto con certezza, ossia:

F◦(B) = δ(B −B0) (5.30)

otteniamo, marginalizzando la (5.29):

F (S | ν) = (5.31)

= α

∫ ∞

0

e(S+B)(S +B)ν

ν!
δ(B −B0)dB (5.32)

= α
e(S+B0)(S +B0)

ν

ν!
. (5.33)

∗Cfr. [40, capitolo 31], [70, capitoli 3 e 9].
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Canale di Efficienza Fondo
decadimento (%) (5 kTon × year)

p→ e+π0 45.30 0.005
p→ e+

(
π0
)

15.10 9.73
p→ K+ν̄ 96.75 0.005
p→ µ−π+K+ 97.55 0.005
p→ e+π+π− 18.60 0.125
p→ e+π+ (π−) 29.50 6.01
p→ e+ (π+π−) 16.30 19.68
p→ π+ν̄ 41.85 3.91
p→ µ+π0 44.80 0.04
p→ µ+

(
π0
)

17.85 20.81

n→ e−K+ 95.95 0.000
n→ e+π− 44.35 0.040
n→ e+ (π−) 25.55 26.73
n→ µ−π+ 44.75 0.12
n→ µ− (π+) 21.05 14.56
n→ π0ν̄ 45.10 2.37

Tabella 5.1: Stime, tramite simulazioni Monte Carlo, delle efficienze
ICARUS. Le particelle racchiuse tra parentesi indicano particelle prodotte
dal decadimento, ma non rivelabili perché assorbite dal nucleo a cui
apparteneva il nucleone decaduto.
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Per trovare il valore limite del segnale S̃ occorre risolvere la (5.17), che
nel caso specifico assume la forma:

CL =

∫ S̃

0
F(S | ν)dS =

∫ S̃

0 e(S+B0)(S +B0)dS∫∞
0 e(S+B0)(S +B0)dS

. (5.34)

Per semplificare il calcolo del CL, può essere usato il seguente integrale
notevole:

∫ x2

x1

xme−xdx = −e−x
m∑

r=0

m!x(m−r)

(m− r)!

∣∣∣∣∣

x2

x1

(5.35)

e facendo il seguente cambio di variabile x = S +B0 otteniamo:

CL = 1 − e−(S+B0)
Pν

r=0
(S+B0)ν

r!

e−B0
∑ν

r=0
Br

0
r!

. (5.36)

Risolvendo la (5.36) per un livello di confidenza del 90% e usando i dati
del fondo in tabella 5.1 possiamo calcolare quali limiti sperimentali sono
raggiungibili per la vita media parziale del nucleone con una massa efficace
di 5 KTon × anno, che riportiamo in tabella 5.2.

τnucleone/B =
MTε

Smnucleone

Nnucleone

A
(5.37)

dove MT è la massa esposta, mnucleone è la massa del tipo di nucleone in
esame, Nnucleone il numero di nucleoni in esame contenuti nel nucleo di
Argon ∗ ed A il suo numero atomico. Dalla tabella 5.2 si nota come già con
una massa esposta di 5 Kton×anno ICARUS sarà in grado di migliorare
i limiti sperimentali per diversi canali di decadimento. Nella Tabella 5.3
mostriamo quali debbano essere i valori per la massa esposta necessari per
migliorare di un ordine di grandezza gli attuali limiti sperimentali del [40].
Nella stessa abbiamo anche indicato quanti anni di funzionamento sono
richiesti per ottenere lo stesso risultato supponendo una massa esposta
di 5 Kton × anni. Notiamo, in particolare, che per i canali favoriti nei
modelli supersimmetrici come p→ k+ν̄ occorre una massa esposta di 59.2
Kton × anni, o 12 anni di presa dati con 5 Kton × anni. Mentre per i
canali tipici dei modelli non supersimmetrici come p → e+π0 la massa
esposta richiesta è molto più grande.

∗Per l’argon Z = 18 ed A = 40.
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Canale τnucleone/B Limiti del PDG
di decadimento (1030 anni) (1030 anni)

p→ e+π0 265 1600
p→ e+

(
π0
)

30.0 1600
p→ K+ν̄ 566 670
p→ µ−π+K+ 571 245
p→ e+π+π− 109 82
p→ e+π+ (π−) 72.5 82
p→ e+ (π+π−) 24.6 82
p→ π+ν̄ 117 25
p→ µ+π0 262 473
p→ µ+

(
π0
)

266 473

n→ e−K+ 686 32
n→ e+π− 317 158
n→ e+ (π−) 41.7 158
n→ µ−π+ 320 100
n→ µ− (π+) 432 100
n→ π0ν̄ 199 112

Tabella 5.2: Previsioni teoriche del limite sperimentale della vita media
del protone raggiungibile tramite l’esperimento ICARUS con una massa
efficace di 5 Kton × anno.
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Canale Massa esposta necessaria Limiti PDG Anni di attesa con
di decadimento (Kton × anni) (1030 anni) 5 Kton × anni

p→ e+π0 302 1600 60.4
p→ e+

(
π0
)

2666.7 1600 533.4
p→ K+ν̄ 59.2 670 12
p→ µ−π+K+ 21.5 245 4
p→ e+π+π− 37.6 82 7.5
p→ e+π+ (π−) 56.6 82 11.3
p→ e+ (π+π−) 166.7 82 33.3
p→ π+ν̄ 10.7 25 2
p→ µ+π0 90.3 473 18
p→ µ+

(
π0
)

88.9 473 18
n→ e−K+ 2.4 32 0.5
n→ e+π− 24.9 158 5
n→ e+ (π−) 189.5 158 38
n→ µ−π+ 15.6 100 3.1
n→ µ− (π+) 23.2 100 3.2
n→ π0ν̄ 28.2 112 5.6

Tabella 5.3: ICARUS - Massa esposta necessaria per superare di un ordine
di grandezza gli attuali limiti sperimentali.
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5.4 Stato attuale della ricerca sperimentale

Attualmente l’unico esperimento sul decadimento del protone è l’esper-
imento giapponese Super–Kamiokande∗ [77]. Esso è ospitato presso i
laboratori sotterranei nelle vicinanze della città di Kamioka a circa 250
Km da Tokyo. L’esperimento è costituito da un enorme contenitore d’ac-
qua, circa 50 Kton (con un volume fiduciale per la ricerca del protone
di circa 22 Kton), alloggiato ad una profondità di circa 1000 m all’inter-
no della “Mozumi Mine”, corrispondente a 2700 m di acqua equivalente
(m.w.e). Il fenomeno fisico principale su cui si basa è la così detta ra-
diazione Čerenkov [78]. Una particella carica che attraversa il rivelatore
con una velocità superiore a quella della luce nel mezzo, produce una luce
rivelata da una serie di fotomoltiplicatori piazzati sulla superficie interna
del rivelatore. Tramite un sofisticato sistema di elaborazione dati è pos-
sibile, il più delle volte, ricostruire il processo verificatosi individuando il
tipo di particella rivelata. Malgrado questo tipo di tecnologia sia meno
efficiente di quella a LAr TPC essa ha prodotto e produce importanti
risultati sperimentali. Ha migliorato, ad esempio, le misure sulle vite me-
die parziali per vari canali di decadimento, quali: p −→ e+π0 e p −→ ν̄K+

[79, 80] e attualmente, dopo 1489 giorni di presa dati per i canali di de-
cadimento seguenti p −→ ν̄K+, n −→ ν̄K0, p −→ µ+K0 e p −→ e+K0

non ha rivelato nessuna evidenza del decadimento del nucleone, ma ha
potuto definire i seguenti limiti sperimentali [81]: 2.3 · 1033, 1.3 · 1032,
1.3 · 1033, 1.0 · 1033 anni per le vite medie parziali dei decadimenti sopra
elencati, con un livello di confidenza pari al 90%. Attualmente si stanno
sostituendo tutti i fotomoltiplicatori, operazione che probabilmente ter-
minerà nel mese di giugno 2006 . Osserviamo, tuttavia, che nei rivelatori
Čerenkov il K+ prodotto dal decadimento del protone è invisibile a causa
del suo impulso (340 MeV) che è al di sotto della soglia necessaria per
la produzione di luce Čerenkov in acqua (Pso(K

+) = 562 MeV). Quindi
la sua identificazione è di tipo indiretta e passa tramite la rivelazione dei
prodotti del suo decadimento. Ciò riduce l’efficienza a solo 4.4% o 6.5%
corrrispondentemente a due differenti metodi [80]. Notiamo che esistono
varie proposte sperimentali per proseguire lo studio del decadimento del
protone ingrandendo la massa del rivelatore a luce Čerenkov di un ordine
di grandezza (UNO, HyperKamiokande, MEMPHYS).

Recentemente è stato proposto un nuovo rivelatore, il LENA (Low
Energy Neutrino Astronomy) [82] che potrebbe migliorare l’analisi del
canale p → ν̄K+. Il rivelatore proposto consiste di un grosso volume di
liquido scintillatore† di forma cilindrica, approssimativamente di 30 m di

∗Esso è la continuazione dell’esperimento Kamiokande. L’acronimo NDE originar-
iamente significava Nucleon Decay Experiment, ma oggi è spesso inteso come Neutrino
Detector Experiment.

†Come scintillatore per l’esperimento LENA è stato proposto il PXE (phenyl-o-
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diametro e 90 m di lunghezza, con una copertura di fotomoltiplicatori
del 30%, utile per ricerche in vari campi: astrofisica, geofisica, e fisica
delle particelle elementari. I possibili siti proposti dove il nuovo rivelatore
potrebbe essere collocato sono una miniera sotterranea al centro della Fin-
landia (Pyhäsalmi, CUPP: Center of Underground Physics in Pyhäsalmi)
oppure sul fondo del mare in prossimità di Pilos in Grecia. In entrambi i
casi lo schermo offerto è di circa 4000 m di acqua equivalente (m.w.e.) e
sono luoghi lontani da reattori nucleari, la presenza dei quali causerebbe
un grosso fondo per la ricerca di neutrini da resti di supernovae (ν̄e). Il
pregio di un un rivelatore come LENA consiste nel poter rivelare diretta-
mente le particelle K+. Infatti, le simulazioni basate su tecniche Monte
Carlo hanno dimostrato una efficienza del 65% per il canale di decadi-
mento sopra citato. Ciò permetterà di raggiungere un limite inferiore per
la vita media del protone via p −→ K+ν̄ di 4×1034 anni se l’esperimento
rimarrà attivo per 10 anni [84].

xylylethane), accuratamente studiato con funzioni di “Counting Test Facility” (CFT)
per il rivelatore BOREXINO al laboratorio sotterraneo del Gran Sasso [83]. Attual-
mente sono in studio le proprietà ottiche di una miscela di PXE e derivati di oli minerali
[84, Vedi citazione 3].
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In questa tesi abbiamo considerato l’ipotesi di processi con violazione del
numero barionico o leptonico connessi con l’esistenza di nuova fisica a
energie molto maggiori di quelle tipiche del Modello Standard. Infatti,
nei capitoli 3 e 4 mostriamo che i modelli di grande unificazione presi
in considerazione suggeriscono scale energetiche dell’ordine di 1015–1016

GeV.
Nei capitoli 2 e 4 abbiamo stimato la vita media del decadimento del

protone. A tale proposito, nell’ambito di modelli di grande unificazione
sia supersimmetrici che non supersimmetrici, abbiamo trovato ordini di
grandezza “vicini” agli attuali limiti sperimentali.

Abbiamo anche considerato la situazione sperimentale attuale e quel-
la attesa nel prossimo futuro. In particolare ci siamo concentrati sui
rivelatori ad argon liquido e discusso quali masse e tempi di presa dati
sarebbero necessari per migliorare di un ordine di grandezza gli attuali
limiti sperimentali come evidenziato nella tabella 5.3.

In conclusione la presente tesi si propone di recuperare ed attualiz-
zare le discussioni di tematiche di interesse nella fisica delle particelle
elementari, qual è il decadimento del protone.
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Appendice A

Spinori

A.1 Identità di Fierz

[
Ψ1L(R)γ

µΨ2L(R)

] [
Ψ3L(R)γµΨ4L(R)

]
=
[
Ψ1γ

µΨ4

] [
Ψ3γµΨ2

]
(A.1)

[
Ψ1LΨ2R

] [
Ψ3RΨ2R

]
= −1

2

[
Ψ1Lγ

µΨ4L

] [
Ψ3RγµΨ2R

]
(A.2)

A.2 Identità algebriche delle matrici γ

Consideriamo un numero intero D e un insieme di matrici γ, che chiami-
amo γ0, γ1, ..., γD−1 le quali soddisfano la seguente relazione di anticom-
mutazione,

{γµ, γν} = 2gµν

Se le matrici γ sono di dimensione

f(D) × f(D) (A.3)

ed I è la matrice unità, allora sono soddisfatte le identità seguenti:

γλγ
λ = D · I

γλγ
αγλ = −(D − 2)γα

γλγ
αγβγλ = (D − 4)γαγβ + 4gαβ

Tr
(
γαγβγγγδ

)
= f(D)

[
gαβgγδ − gαγgβδ + gαδgβγ

]

Tr(γαγβ · · · γµγν

︸ ︷︷ ︸
numero dispari

) = 0
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Integrali notevoli

B.1 Proprietà della funzione Γ(x) di Eulero

Definiamo

Γ(x) =

∫ ∞

0
dt e−t tx−1 (B.1)

da cui

Γ(x+ 1) = xΓ(x) (B.2)

Γ(n+ 1) = n! n ∈ N (B.3)

Γ(
1

2
) =

√
π (B.4)

Γ(1) = 1 (B.5)

Γ(x) w
1

x
per x� 1 (B.6)

B.2 Parametrizzazione di Feynman

A differenza dell’integrale (3.43) che contiene un solo fattore quadratico,
spesso si adoperano integrali con differenti fattori quadratici a denomi-
natore. Questo tipo di integrale può essere ridotto come la (3.43) grazie
ad una tecnica ideata da Feynman. A tale proposito possiamo sfruttare
quanto segue.

Consideriamo la seguente identità:

1

ab
=

1

a− b

∫ b

a

dt

t2
(B.7)

e definiamo x, parametro di Feynman con
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t = b+ (a− b)x (B.8)

l’equazione (B.7) può essere riscritta come segue:

1

ab
=

∫ 1

0

dx

[b+ (a− b)x]2
(B.9)

più in generale derivando rispetto ad a si ottiene:

1

anb
=

∫ 1

0

nxn−1

[b+ (a− b)x]n+1dx (B.10)

Questo metodo sarà usato nel paragrafo C.2.

B.3 Integrali D dimensionali

∫
dDk

(k2 − s)n
= 0 (B.11)

∫
dDk

kµkν

(k2 − s+ iε)n
= iπ

D
2 (−1)n+1 Γ(n− 1

2D − 1)

2Γ(n)

gµν

sn−D
2
−1
(B.12)

∫
dDk

k2

(k2 − s+ iε)n
= iπ

D
2 (−1)n+1 Γ(n− 1

2D − 1)

2Γ(n)

D

sn−D
2
−1
(B.13)

∫
dDk

(k2 − s+ iε)n
= iπ

D
2 (−1)n

Γ(n− 1
2D)

Γ(n)

1

sn−D
2

(B.14)
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Appendice C

Calcolo esplicito della (3.46)

C.1 Calcolo di Nµν(p, k)

In questa sezione discuteremo il calcolo della (3.47).
Forti delle identità delle matrici γ presentate nell’appendice A.2 e della

linearità della traccia, possiamo scrivere:

Nµν(p, k) ≡ Tr [γµ ( 6 p+ 6 k +m) γν (6 p+m)]

= Tr
[
γµ (γαpα + γρkρ +m) γν

(
pλγλ +m

)]

= Tr
[
γµγαpαγ

νpλγλ + γµγρkργ
νpλγλ + γµγνm2

]
+

+Tr
[
γµγαpαγ

νm+ γµγρkργ
νm+ γµγνmpλγλ

]
.

È facile osservare che il secondo addendo dell’ultimo membro sia nullo.
Rimane da calcolare il primo addendo:

Tr
[
γµγαpαγ

νpλγλ

]
= f(D)

[
pµpν − gµνp2 + pµpν

]

Tr
[
γµγργνγλkρpλ

]
= f(D) [kµpν − gµνkp+ pµkν ]

Tr
[
γµγµm2

]
= f(D)gµνm2

e mettendo in evidenza otteniamo:

Nµν(p, k) = f(D)
{
(pµ + kµ) pµ + (pν + kν) pµ +

[
m2 − p (k + p)

]
gµν
}
.(C.1)
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C.2 Derivazione della (3.51)

In questo paragrafo partendo dalla (3.46) svolgeremo i calcoli per deter-
minare la (3.51).

La (3.46) è

(ie)2Πµν(k) =
−e2µ4−D

(2π)4
·

·
∫
Tr {γµ [γρ(p

ρ + kρ) +m] γν [6 p+m]}
[(p+ k)2 −m2 + iε] [p2 −m2 + iε]

dDp .(C.2)

Sfruttando quanto detto nell’appendice B.2 fissiamo,

a = (p+ k)2 −m2 + iε (C.3)

b = p2 −m2 + iε (C.4)

e sostituendo nella (3.46), troviamo

(ie)2Πµν(k) = −e2µ
4−D

(2π)4

∫ 1

0
dx

∫
dDp

Nµν(p, k)

[p2 −m2 + (k2 + 2pk)x+ iε]2
(C.5)

definendo p = q − kx otteniamo

(ie)2Πµν(k) = −e2 k
4−D

(2π)4

∫ 1

0
dx

∫
dDq

Nµν(q − kx, k)

[q2 −m2 + k2(1 − x)x+ iε]2
(C.6)

Per semplificare il numeratore (C.1) usiamo la (B.1) sottraendo e som-
mando
k2(1 − x)xgµνf(D), la cui espressione diventa:

Nµν(q, k) = f(D)
{[

2qµqν − q2gµν
]
+
[
m2 − k2x(1 − x)

]
gµν
}

+

−f(D)[2kx(1 − x)
(
kµkν − k2gµν

)
. (C.7)

Riscrivendo la (C.6) nella forma compatta:

(ie)2Πµν(k2) = −e2 k
4−D

(2π)4
f(D)

∫ 1

0
dx

3∑

i=1

Iµν
i (k, x) (C.8)

ne determineremo esplicitamente l‘espressione passando per il calcolo degli
integrali Iµν

i (k, x).
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Iµν
1 ≡

∫
dDq

[
2qµqν − q2gµν

]

[q2 + k2x(1 − x) −m2 + iε]2
(C.9)

che per la (B.13) e la (B.14)

Iµν
1 = iπ

D
2

Γ(1 − 1
2D)gµν

[k2x(1 − x) −m2]1−
D
2

(1 − D

2
) (C.10)

Iµν
2 ≡

[
m2 − k2(1 − x)x

]
gµν

∫
dDq

1

[q2 + k2x(1 − x) −m2 + iε]2
(C.11)

per la (B.14) e la (B.3):

Iµν
2 =

[
m2 − k2(1 − x)x

]
gµν iπ

D
2 Γ(2 − 1

2D)

[k2x(1 − x) −m2]2−
D
2

= −iπD
2

Γ(1 − 1
2D)gµν

[k2x(1 − x) −m2]1−
D
2

(1 − D

2
)

= −Iµν
1

di conseguenza solo Iµν
3 è significativo, la cui espressione è

Iµν
3 = −[2kx(1 − x)

(
kµkν − k2gµν

) ∫
dDq

1

[q2 + k2x(1 − x) −m2 + iε]2

= −[2kx(1 − x)
(
kµkν − k2gµν

) iπ
D
2 Γ(2 − 1

2D)

[k2x(1 − x) −m2]2−
D
2

(C.12)

quindi

(ie)2Πµν(k) = −e2 k
4−D

(2π)4
f(D)

∫ 1

0
dx Iµν

3 (k, x)

e ricordando la (3.49)

Πµν(k) =
(
kµkν − k2gµν

)
Π(k2) (C.13)

con
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Π(k) =
k4−Df(D)Γ(2 − 1

2D)

8π4−D 1
2

∫ 1

0
dx

x(1 − x)

[k2x(1 − x) −m2]2−
D
2

(C.14)

che è la (3.50). Per continuare nel calcolo ed esplicitare la (3.50) abbiamo
bisogno delle espressioni seguenti:

x−
η
2 w 1 − 1

2
η lnx+ o(η) (C.15)

f(D) = f(4 − η) = 4 + ηf ′(4) + o(η) con f(D = 4) = 4(C.16)

e delle proprietà delle funzioni di Eulero (B.1), abbiamo:

Π(k2) =
1

12π2

(
2

η
− f ′(4)

2
− lnπ

)
+

− 1

2π2

∫ 1

0
dxx(1 − x) ln

[
k2x(1 − x) −m2

µ2

]
(C.17)

ossia la (3.51).
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Beta-function

D.1 Coefficienti bi delle β-function (SM)

Per calcolare i valori di b3, b2 e b1 rispettivamente legate a SU(3)c, SU(2)L
e U(1)Y , occorre ricordare la (4.21):

bi = −11

3
t2(V,Gi) +

4

3
t2(F,Gi) +

1

3
t2(S,Gi) (D.1)

e sfruttare le informazioni contenute nella tabella 4.3 ricordando che il
contributo al calcolo apportato da ogni campo di Weyl o di Majorana va
diviso per 2.

Calcolo di b3

Per quanto scritto nella (4.23)

t2(V, SU(3)c) = 3 . (D.2)

Per calcolare t2(F, SU(3)c) ricordiamo che la normalizzazione dei gene-
ratori (4.36) ci suggerisce t2 = 1

2 . Dalla tabella numero 4.3 esistono
4 campi di Weyl su cui SU(3)c agisce e per ognuno di essi ci sono tre
famiglie, quindi:

t2(F, SU(3)c) =
1

2
· 1

2
· 4 · 3 . (D.3)

L’ultimo termine nella (4.21) è nullo perché non esistono campi scalari su
cui opera la simmetria di colore SU(3)c. Quindi abbiamo:

b3 = −11

3
· 3 +

4

3
· 1

2
· 1

2
· 4 · 3 = −7 (D.4)
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Calcolo di b2

Analogamente a quanto detto sopra e tenendo presente che anche per
SU(2) i campi di Weyl sono quattro per tre famiglie, abbiamo

t2(V, SU(2)L) = 2 (D.5)

t2(F, SU(2)L) =
1

2
· 1

2
· 4 · 3 . (D.6)

In questo caso però vi è da considerare il contributo del doppietto di
Higgs, campo scalare per cui per la (4.36)

t2(S, SU(2)L) =
1

2
(D.7)

quindi

b2 = −11

3
· 2 +

4

3
· 1

2
· 1

2
· 4 · 3 +

1

3
· 1

2
= −19

6
. (D.8)

Calcolo di b1

Il calcolo di b1 è legato al valore dell’ipercarica delle particelle virtuali che
intervengono nei processi a 1-loop che stiamo considerando. Occorre però
fare attenzione e ricordare che noi stiamo descrivendo uno scenario in cui
il Modello Standard è contenuto nel gruppo SU(5). Questo ci impone di
tenere in debita considerazione la (4.38). Premesso ciò, visto l’ordine del
gruppo:

t2(V,U(1)Y ) = 0 (D.9)

D’altra parte i fermioni di Weyl da considerare sono tutti quelli del Mo-
dello Standard e ognuno di loro ha una molteplicità pari a tre per via del
numero di famiglie. Quindi:

t2(F,U(1)Y ) =
3

5
· 1

2
· 3 ·

[
6 ·
(

1

6

)2

+ 3 ·
(

2

3

)2

+ 3 ·
(

1

3

)2

+(D.10)

+2 ·
(

1

2

)2

+ 12

]
.

93



Discussioni

Il contributo scalare è dato dal doppietto di Higgs e quindi:

t2(S,U(1)Y ) =
3

5
·
(

1

2

)2

· 2 . (D.11)

Sommando tutti i contributi e moltiplicandoli per i coefficienti visti nella
(4.21), abbiamo:

b1 = 4 +
1

10
=

41

10
. (D.12)

D.2 Coefficienti ∆bi delle β-function (MSSM)

Per calcolare le correzioni alle β-function per il MSSM, bisogna valutare
i valori di ∆b3, ∆b2 e ∆b1 rispettivamente legate a SU(3)c, SU(2)L e
U(1)Y , tramite l’espressione della (4.21):

bi =

[
−11

3
t2(V,Gi) +

4

3
t2(F,Gi) +

1

3
t2(S,Gi)

]
(D.13)

e sfruttando le informazioni contenute nella tabella 4.6. Ricordiamo che
il contributo al calcolo apportato da ogni campo di Weyl o di Majorana
va diviso per 2. In questo contesto sostanzialmente occorre ripetere i
ragionamenti fatti nell’appendice D.1 per applicarli alle nuove particelle
del MSSM.

Calcolo di ∆b3

Per la (4.36) considerando i nuovi fermioni su cui opera il gruppo SU(3)c
del modello MSSM, cioè i gluini, abbiamo:

t2(F, SU(3)c) =
1

2
· 3 . (D.14)

Invece come scalari di colore abbiamo gli squark, per cui

t2(S, SU(3)c) =
1

2
· 4 · 3 (D.15)

da cui otteniamo che

∆b1 =
4

3
· 1

2
· 3 +

1

3
· 1

2
· 4 · 3 = 4 . (D.16)
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Calcolo di ∆b2

Analogamente a quanto visto per b2 per SU(2) abbiamo quattro campi
scalari per famiglie (sleptoni ) e l’higgs H1 che danno:

t2(S, SU(2)L) =
1

2
· 4 · 3 +

1

2
. (D.17)

Mentre i fermioni aggiuntivi sono un solo tripletto di SU(2) più i due
higgsini da cui

t2(F, SU(2)L) =
1

2
· 2 +

1

2
· 1

2
· 2 (D.18)

quindi:

∆b2 =
1

3

[
1

2
3 · 4 +

1

2

]
+

4

3

[
1

2
· 2 +

1

2

1

2
2

]
= 1 . (D.19)

Calcolo di ∆b1

Il calcolo di ∆b1 è legato al valore dell’ipercarica delle particelle virtuali
che intervengono nei processi a 1-loop che stiamo considerando. Occorre
però fare attenzione e ricordare che noi stiamo descrivendo uno scenario in
cui il MSSM è contenuto nel gruppo SU(5). Questo ci impone di tenere
in debita considerazione la (4.38). D’altra parte i fermioni di Weyl da
considerare sono solo i due higgsini, quindi:

t2(F,U(1)Y ) =
3

5

1

2

(
1

2

)2

2 · 2 . (D.20)

Il contributo scalare è dato da tutti gli sfermioni e dal nuovo doppietto di
Higgs H1,

t2(S,U(1)Y ) =
3

5
3

[
6

(
1

6

)2

+ 3

(
2

3

)2

+ 3

(
1

3

)2

+ 2

(
1

2

)2

+ 12

]
+(D.21)

+
3

5

(
1

2

)2

2 .

Sommando tutti i contributi e moltiplicandoli per i coefficienti visti nella
(4.21), abbiamo

∆b1 =
5

2
. (D.22)
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Appendice E

Flusso dei neutrini atmosferici

E.1 Programma flusso_neutrini_atm.f

c

c Programma per calcolare i flussi

c di neutrini ed antineutrini muonici upgoing

c a Kamioka

c

PROGRAM table_energy_flux

IMPLICIT NONE

INTEGER i,n_steps,id

REAL e_n,incr_e_n

REAL e_n_min,e_n_max

REAL cos_min,cos_max

REAL s

REAL sk_ne,sk_ae

REAL sk_nm,sk_am

REAL k

DATA cos_min,cos_max/-1.0,+1.0/

DATA n_steps/200/

DATA e_n_min,e_n_max/0.051,1.e4/

OPEN(unit=10,file=’total_flux.d’,status=’unknown’)

CALL FLUX_NU_INI
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k=8.*atan(1.) ! l’integrazione azimuthale, 2 Pi

e_n=e_n_min

incr_e_n=(e_n_max/e_n_min)**(1./n_steps)

sk_ne=0.

sk_ae=0.

sk_nm=0.

sk_am=0.

DO I=1,n_steps+1

id=1

PRINT *,I

CALL integra(e_n,id,cos_min,cos_max,s)

sk_ne=s * k

id=2

CALL integra(e_n,id,cos_min,cos_max,s)

sk_ae=s * k

id=3

CALL integraOsc(e_n,id,cos_min,cos_max,s)

sk_nm=s * k

id=4

CALL integraOsc(e_n,id,cos_min,cos_max,s)

sk_am=s * k

WRITE(10,10000) e_n,sk_ne,sk_ae,sk_nm,sk_am

e_n=e_n*incr_e_n

ENDDO

10000 FORMAT(5(e10.4,1x))

END

c

c

c

c

c

SUBROUTINE integra(e_n,id,a,b,s)

IMPLICIT NONE

REAL FLUX_NU

EXTERNAL FLUX_NU

REAL e_n,a,b

INTEGER j,jmax

REAL eps

REAL s,os,st,ost

INTEGER n,it

REAL tnm,del,x,sum

INTEGER id

DATA eps,jmax/1.e-6,12/

c

c Questa routine integra i flussi di mu e antimu
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c sugli angoli di zenith; i flussi sono presi da Paolo Lipari.

c Come routine di integrazione uso

c Simpson con check della convergenza.

c

ost=-1.e30

os=-1.e30

st=0.5*(b-a)*(FLUX_NU(id,e_n,b)+FLUX_NU(id,e_n,a))

s=(4.*st-ost)/3.

os=s

ost=st

it=1

DO j=2,jmax

tnm=it

del=(b-a)/tnm

x=a+0.5*del

sum=0.

DO n=1,it

sum=sum+FLUX_NU(id,e_n,x)

x=x+del

ENDDO

st=0.5*(st+sum*del)

s=(4.*st-ost)/3.

IF (ABS(s-os).lt.eps*ABS(os)) RETURN

os=s

ost=st

it=it*2

ENDDO

RETURN

END

c

SUBROUTINE integraOsc(e_n,id,a,b,s)

IMPLICIT NONE

REAL FLUX_NU_OSC

EXTERNAL FLUX_NU_OSC

REAL e_n,a,b

INTEGER j,jmax

REAL eps

REAL s,os,st,ost

INTEGER n,it

REAL tnm,del,x,sum

INTEGER id

DATA eps,jmax/1.e-6,12/

c

c Questa routine integra i flussi di mu e antimu

c sugli angoli di zenith; i flussi sono presi da Lipari.

c Come routine di integrazione uso

c Simpson con check della convergenza.

c

ost=-1.e30

os=-1.e30

st=0.5*(b-a)*(FLUX_NU_OSC(id,e_n,b)+FLUX_NU_OSC(id,e_n,a))

s=(4.*st-ost)/3.
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os=s

ost=st

it=1

DO j=2,jmax

tnm=it

del=(b-a)/tnm

x=a+0.5*del

sum=0.

DO n=1,it

sum=sum+FLUX_NU_OSC(id,e_n,x)

x=x+del

ENDDO

st=0.5*(st+sum*del)

s=(4.*st-ost)/3.

IF (ABS(s-os).lt.eps*ABS(os)) RETURN

os=s

ost=st

it=it*2

ENDDO

RETURN

END

FUNCTION FLUX_NU_OSC(id,e_n,cos)

IMPLICIT NONE

INTEGER id

REAL FLUX_NU_OSC

REAL FLUX_NU

EXTERNAL FLUX_NU

REAL e_n,cos

REAL pmumu,length,rearth,alti

DATA rearth,alti /6371.0,15.0/

length=-rearth*cos + sqrt((rearth+alti)**2-rearth**2*(1.0-cos**2))

pmumu=1.0-sin(1.267 * 2.5e-3 * length / e_n)**2

FLUX_NU_OSC=FLUX_NU(id,e_n,cos)*pmumu

RETURN

END

include "kamioka_flux.f"

c Kamioka_flux.f e’ il programma creato da Paolo Lipari
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