

THE SIMPLE BEAM-LOADING THEORY
 FOR CONSTANT-GRADIENT LINACS
 (A Supplement to TN-63-9)

1. We have given in TN-63-9 the functional form of $f(t + \tau)$ for constant energy operation under the condition that $\tau \geq t'_F$. Now we wish to discuss the other case where $\tau \leq t'_F$.

The condition for attaining constant energy gain is given by Eq. (23) in TN-63-9, namely,

$$\int_{t+\tau-t'_F}^{t+\tau} \alpha_o \psi'(t + \tau - \xi) f'(\xi) U(\xi) d\xi = U(t'_F - t) \cdot \alpha_o \psi'(t) \left\{ \alpha_o \psi(t'_F) - \alpha_o \psi(t) \right\}. \quad (1)$$

As discussed therein, the integrand $\alpha_o \psi'(t + \tau - \xi) f'(\xi)$ must either vanish or be an oscillating function of period t'_F when $\xi \geq \tau$, so that the integral over any whole period may vanish when $t \geq t'_F$.

The zeroth-order solution of Eq.(1) is not difficult to find. If the time variable is restricted to $0 \leq t \leq T \equiv Mt'_F$, M being an integer, this solution is as follows:

$$f'_o(\xi) = \alpha_o v_{go} \exp(2\alpha_o v_{go} \tau) \cdot \psi'_o(2\xi) \\ \cdot \left[\frac{\psi_o(t'_F)}{\psi_o(\tau)} \sum_{m=0}^M \left\{ U(\xi - mt'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(mt'_F) \right\} \right. \\ \left. - \frac{\psi'_o(t'_F)}{\psi'_o(\tau)} \sum_{m=1}^M \left\{ U(\xi - \tau - mt'_F + t'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(mt'_F) \right\} \right] \quad (2)$$

Here we may note the similarity between this equation and Eq. (2) in

TN-63-7 for constant- α linacs. When $\tau \rightarrow t_F'$,

$$f'_o(\xi) \rightarrow \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \chi \alpha_o \exp(2\alpha_o v_{go} \tau) \cdot \psi'_o(2\xi).$$

This agrees with Eq.(30) in TN-63-9.

By integrating Eq.(2) with respect to ξ and inserting proper integration constants, we obtain

$$\begin{aligned}
 f_o(\xi) &\approx (\chi/2) \alpha_o v_{go} \exp(2\alpha_o v_{go} \tau) \cdot \left\{ \psi_o(t_F') / \psi_o(\tau) \right\} \\
 &\cdot \left[\sum_{m=0}^M \left\{ U(\xi - mt_F') - U(\xi - \tau - mt_F') \right\} \cdot \left\{ \psi_o(2\xi) - \psi_o(2mt_F') \right\} \right] / \psi'_o(mt_F') \\
 &+ \left[\sum_{m=0}^M U(\xi - \tau - mt_F') \cdot \left\{ \psi_o(2\tau + 2mt_F') - \psi_o(2mt_F') \right\} \right] / \psi'_o(mt_F') \\
 &- (\chi/2) \alpha_o v_{go} \exp(2\alpha_o v_{go} \tau) \cdot \left\{ \psi'_o(t_F') / \psi'_o(\tau) \right\} \\
 &\cdot \left[\sum_{m=1}^M \left\{ U(\xi - \tau - mt_F' + t_F') - U(\xi - \tau - mt_F') \right\} \cdot \left\{ \psi_o(2\xi) \right. \right. \\
 &\left. \left. - \psi_o(2\tau + 2mt_F' - 2t_F') \right\} \right] / \psi'_o(mt_F') \\
 &+ \left[\sum_{m=1}^M U(\xi - \tau - mt_F') \cdot \left\{ \psi_o(2\tau + 2mt_F') - \psi_o(2\tau + 2mt_F' - 2t_F') \right\} \right] / \psi'_o(mt_F'). \tag{3}
 \end{aligned}$$

When $\tau \rightarrow t_F'$,

$$\begin{aligned}
 f'_o(\xi) &\rightarrow (\chi \alpha_o / 2) \exp(2\alpha_o v_{go} \tau) \\
 &\cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \psi_o(2\xi) + U(\xi - \tau) \psi_o(2\tau) \right]
 \end{aligned}$$

This is in agreement with Eq. (33) in TN-63-9.

The first-order equation satisfied by $f'_1(\xi)$ is obtained from Eq. (29) in TN-63-9 by cancelling out the zeroth-order terms. This is

$$\begin{aligned} \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \exp \left\{ 2\alpha_0 v_{go} (\xi - \tau) \right\} \cdot f'_1(\xi) &= \Phi(t) \\ &+ U(t'_F - t) \cdot x\alpha_0 \cdot \left[\left\{ \psi_o(t) - \psi_o(t'_F) \right\} + 2 \left\{ \psi_o(t + t'_F) - \psi_o(2t'_F) \right\} \right. \\ &\left. + 3 \left\{ \psi_o(2t'_F) - \psi_o(2t) \right\} \right], \end{aligned} \quad (4)$$

where

$$\Phi(t) = - \exp \left(- 2\alpha_0 v_{go} t \right) \cdot \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \exp \left\{ 4\alpha_0 v_{go} (\xi - \tau) \right\} \cdot 2f'_o(\xi) \quad (5)$$

Now we introduce the following notations:

$$I_{t\xi} \left\{ f'_1(\xi) \right\} = \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \exp \left\{ 2\alpha_0 v_{go} (\xi - \tau) \right\} \cdot f'_1(\xi) \quad (6)$$

and

$$f'_1(\xi) = u'_a(\xi) + u'_b(\xi) + u'_c(\xi) + u'_d(\xi), \quad (7)$$

where

$$I_{t\xi} \left\{ u'_a(\xi) \right\} = U(t'_F - t) \cdot x\alpha_0 \cdot \left\{ \psi_o(t) - \psi_o(t'_F) \right\}, \quad (8a)$$

$$I_{t\xi} \left\{ u'_b(\xi) \right\} = U(t'_F - t) \cdot 2x\alpha_0 \cdot \left\{ \psi_o(t + t'_F) - \psi_o(2t'_F) \right\}, \quad (8b)$$

$$I_{t\xi} \left\{ u'_c(\xi) \right\} = U(t'_F - t) \cdot 3x\alpha_0 \cdot \left\{ \psi_o(2t'_F) - \psi_o(2t) \right\}, \quad (8c)$$

and

$$I_{t\xi} \left\{ u'_d(\xi) \right\} = \Phi(t). \quad (8d)$$

Obviously,

$$u'_a(\xi) = - f'_0(\xi). \quad (9)$$

Thus there are three unknown functions to be determined in order to obtain the solution

$$f'(\xi) = f'_0(\xi) + (v_{go}/c) f'_1(\xi).$$

Two of these functions, $u'_b(\xi)$ and $u'_c(\xi)$, are not difficult to obtain. They are as follows:

$$u'_b(\xi) = - 2 \lambda \alpha_o v_{go} \exp(2\alpha_o v_{go} \tau) \cdot \psi'_o(2\xi + t'_F) \\ \cdot \left[\frac{\psi'_o(t'_F)}{\psi'_o(\tau)} \sum_{m=0}^M \left\{ U(\xi - mt'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(mt'_F) \right\} \right. \\ \left. - \frac{\psi'_o(t'_F)}{\psi'_o(\tau)} \sum_{m=1}^M \left\{ U(\xi - \tau - mt'_F + t'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(mt'_F) \right\} \right]; \quad (10)$$

$$u'_c(\xi) = 6 \lambda \alpha_o v_{go} \exp(2\alpha_o v_{go} \tau) \cdot \psi'_o(3\xi) \\ \cdot \left[\frac{\psi'_o(2t'_F)}{\psi'_o(2\tau)} \sum_{m=0}^M \left\{ U(\xi - mt'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(2mt'_F) \right\} \right. \\ \left. - \frac{\psi'_o(2t'_F)}{\psi'_o(2\tau)} \sum_{m=1}^M \left\{ U(\xi - \tau - mt'_F + t'_F) - U(\xi - \tau - mt'_F) \right\} \cdot \left\{ 1/\psi'_o(2mt'_F) \right\} \right]. \quad (11)$$

The solution of Eq. (8d) for the remaining function $u'_d(\xi)$ is quite tedious, because $\Phi(t)$ is a complicated function. Before describing

$\Phi(t)$ and $u_d^!(\xi)$ we further introduce the following notations:

$$C_1 = \psi_o'(t_F') / \psi_o'(0), \quad (12a)$$

$$C_2 = \frac{\psi_o(t_F')}{\psi_o(\tau)} \cdot \frac{\psi_o'(\tau)}{\psi_o'(0)}, \quad (12b)$$

$$C_3 = \frac{\psi_o(t_F')}{\psi_o(\tau)} \cdot \frac{\psi_o'(\tau)}{\psi_o'(t_F')} = C_2 / C_1, \quad (12c)$$

$$C_4 = \psi_o'(2t_F') / \psi_o'(0) = (C_2)^2, \quad (12d)$$

$$C_5 = \frac{\psi_o(t_F')}{\psi_o(\tau)} \cdot \frac{\psi_o'(\tau)}{\psi_o'(0)} - \frac{\psi_o(t_F')}{\psi_o(\tau)} \cdot \frac{\psi_o'(t_F')}{\psi_o'(0)}, \quad (12e)$$

and

$$C_6 = \frac{\psi_o(t_F')}{\psi_o(\tau)} \cdot \left\{ \frac{\psi_o'(\tau)}{\psi_o'(0)} - \frac{\psi_o'(t_F')}{\psi_o'(0)} \right\}. \quad (12f)$$

Using these abbreviation constants we obtain

$$\begin{aligned}
 & -\Phi(t) \left/ \left\{ 2\chi\alpha_o v_{go} \exp(-2\alpha_o v_{go} t) \right\} \right. = \left\{ U(t) - U(t + \tau - t_F') \right\} \cdot (C_2 \tau - t) \\
 & + \left\{ U(t + \tau - t_F') - U(t - t_F') \right\} \cdot \left\{ C_2 (t_F' - t) + C_3 (t + \tau - t_F') - t \right\} \\
 & + \sum_{m=1}^M \left[U(t - mt_F') - U \left\{ t + \tau - (m+1)t_F' \right\} \right] \cdot \left\{ \psi_o'(0) / \psi_o'(mt_F') \right\} \\
 & \cdot \left[C_2 \tau - C_1 \left\{ (m+1)t_F' - t \right\} - (t - mt_F') \right] \\
 & + \sum_{m=1}^{M-1} \left[U \left\{ t + \tau - (m+1)t_F' \right\} - U \left\{ t - (m+1)t_F' \right\} \right] \cdot \left\{ \psi_o'(0) / \psi_o'(mt_F') \right\} \\
 & \cdot \left[C_2 \left\{ (m+1)t_F' - t \right\} + C_3 \left\{ t + \tau - (m+1)t_F' \right\} \right. \\
 & \left. - C_1 \left\{ (m+1)t_F' - t \right\} - (t - mt_F') \right] \quad (13)
 \end{aligned}$$

and

$$\begin{aligned}
 -u_d'(\xi)/2\lambda\alpha_o v_{go} &= \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot C_4 \left\{ 1 + 2\alpha_o v_{go}(\tau - \xi) \right\} \cdot \left\{ \psi_o'(2\xi - 2\tau) / \psi_o'(0) \right\} \\
 &+ \sum_{m=0}^M \left\{ U(\xi - mt_F') - U(\xi - \tau - mt_F') \right\} \cdot C_5 \left\{ \psi_o'(\xi - \tau) / \psi_o'(0) \right\} \\
 &+ \sum_{m=1}^M \left\{ U(\xi - mt_F') - U(\xi - \tau - mt_F') \right\} \cdot \left\{ \psi_o'(2\xi - 2\tau) / \psi_o'(mt_F') \right\} \\
 &\cdot \left[C_6 m \left\{ 1 + 2\alpha_o v_{go}(mt_F' + \tau - \xi) \right\} + C_1 2\alpha_o v_{go} mt_F' - C_2 2\alpha_o v_{go} m\tau \right] \\
 &+ \sum_{m=0}^{M-1} \left[U(\xi - \tau - mt_F') - U(\xi - (m+1)t_F') \right] \cdot \left\{ \psi_o'(2\xi - 2\tau) / \psi_o'(mt_F') \right\} \\
 &\cdot \left[\left\{ C_1 m - (m+1) \right\} \cdot \left\{ 1 + 2\alpha_o v_{go}(mt_F' + \tau - \xi) \right\} \right. \\
 &\left. + C_1 2\alpha_o v_{go} mt_F' - C_2 2\alpha_o v_{go} (m+1)\tau \right]. \tag{14}
 \end{aligned}$$

When $\tau \rightarrow t_F'$,

$$\begin{aligned}
 u_b'(\xi) &\rightarrow - \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot 2\lambda\alpha_o \exp(2\alpha_o v_{go} t_F') \psi_o'(2\xi + t_F'), \\
 u_c'(\xi) &\rightarrow + \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot 6\lambda\alpha_o \exp(2\alpha_o v_{go} t_F') \psi_o'(3\xi),
 \end{aligned}$$

and

$$\begin{aligned}
 u_d'(\xi) &\rightarrow - \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot 2\lambda\alpha_o \exp(2\alpha_o v_{go} t_F') \\
 &\cdot \left\{ 1 + 2\alpha_o v_{go}(\tau - \xi) \right\} \cdot \psi_o'(2\xi + t_F').
 \end{aligned}$$

Hence,

$$\begin{aligned}
 f_1'(\xi) &\rightarrow \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \lambda\alpha_o \exp(2\alpha_o v_{go} t_F') \cdot \left[6\psi_o'(3\xi) - 2\psi_o'(2\xi + t_F') \right. \\
 &\left. - \psi_o'(2\xi) - 2 \left\{ 1 + 2\alpha_o v_{go}(\tau - \xi) \right\} \cdot \psi_o'(2\xi + t_F') \right]. \tag{15}
 \end{aligned}$$

This is in agreement with Eq. (32) in TN-63-9.

Having obtained $f'_1(\xi)$ we may then integrate to obtain $f_1(\xi)$ in a straight-forward manner. The expression of $f_1(\xi)$ will not be given here because of its considerable length.

2. Up to this point it has been assumed that $f(\xi)$ is a continuous function and $f(0) = 0$. When $f(0) \neq 0$, we may proceed as in TN-63-7 to separate $f(\xi)$ into two parts,

$$f(\xi) = f(0) + h(\xi), \quad (16)$$

so that $h(0) = 0$.

Let

$$\alpha_o L_{a_1}(t) = f(0) \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \alpha_o \psi'(t + \tau - \xi) \quad (17a)$$

and

$$\alpha_o L_{a_2}(t) = \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \alpha_o \psi'(t + \tau - \xi) h(\xi). \quad (17b)$$

Then the contribution to the electron energy gain from $f(\xi)$ is

$$\alpha_o L_a(t) = \alpha_o L_{a_1}(t) + \alpha_o L_{a_2}(t). \quad (18)$$

In case $\tau \geq t'_F$, $\alpha_o L_{a_1}(t) = \{f(0)|_2\} \cdot (1 - c_1) \cdot \left\{ 1 + (v_{go}/c)c_1 \right\}$. Here c_1 is given by Eq. (12a). Since $\alpha_o L_{a_1}(t)$ is independent of t , no further discussion is needed.

In case $\tau \leq t'_F$,

$$\begin{aligned} \alpha_o L_{a_1}(t) = & f(0) \alpha_o \cdot \left[\psi_o(t + \tau) - U(t + \tau - t'_F) \left\{ \psi_o(t + \tau) - \psi_o(t'_F) \right\} \right. \\ & + (v_{go}/c)f(0) \alpha_o \cdot \left[\left\{ \psi_o(2t + 2\tau) - \psi_o(t + \tau) \right\} - U(t + \tau - t'_F) \right. \\ & \left. \left. \cdot \left\{ \psi_o(2t + 2\tau) - \psi_o(2t'_F) - \psi_o(t + \tau) + \psi_o(t'_F) \right\} \right] \right]. \end{aligned} \quad (19)$$

This case may be treated by the same procedure as discussed in TN-63-7.

Thus, we consider $h(\xi)$ to be the solution which satisfies

$\alpha_o L_{a_2}(t) + \alpha_o L_b(t) = \text{const.}$, and introduce one additional part $w(\xi)$ into $f(\xi)$,

$$f(\xi) = f(0) + h(\xi) + w(\xi), \quad (20)$$

so that the sum of $\alpha_o L_{a_1}(t)$ and

$$\alpha_o L_{a_3}(t) = \int_{t+\tau-t'_F}^{t+\tau} d\xi U(\xi) \alpha_o \psi'(t + \tau - \xi) w(\xi) \quad (21)$$

is a constant. From this condition it follows that

$$\alpha_o L_b(t) + \sum_{\mu=1}^3 \alpha_o L_{a\mu}(t) = \text{const.},$$

i.e., the total gain of electron energy is constant.

The remaining problem is to determine $w(\xi)$ from the following equation:

$$\frac{d}{dt} \left\{ \alpha_o L_{a_1}(t) + \alpha_o L_{a_3}(t) \right\} = 0. \quad (22)$$

As may be inferred from the case of constant- α linacs discussed in TN-63-7, Eq. (22) cannot be solved for large intervals of time unless $w(\xi)$ is allowed to have discontinuities at points $\xi = t'_F, 2t'_F, 3t'_F, \dots$

The solution of Eq. (22) can most conveniently be found step by step.

The first step is to consider the small interval of time, $0 \leq t < t'_F - \tau$. In this interval we have, according to Eq. (19) and Eq. (21),

$$\frac{d}{dt} \left\{ \alpha_o L_{a_1}(t) \right\} = f(0) \alpha_o \cdot \left[\psi'_o(t + \tau) - (v_{go}/c) \left\{ \psi'_o(t + \tau) - 2\psi'_o(2t + 2\tau) \right\} \right] \quad (23)$$

and

$$\frac{d}{dt} \left\{ \alpha_o L_{a_3}(t) \right\} = \int_0^{t+\tau} d\xi \alpha_o \psi'(t + \tau - \xi) w'(\xi). \quad (24)$$

In Eq. (24), $\psi'(\xi) = \psi'_0(\xi) - (v_{go}/c) \left\{ \psi'_0(\xi) - 2\psi'_0(2\xi) \right\}$ and $w'(\xi) = w'_0(\xi) + (v_{go}/c) w'_1(\xi)$. By substituting Eqs. (23) and (24) into Eq. (22) and then separating the zeroth- and the first-order terms, we obtain

$$\int_0^{t+\tau} d\xi \alpha_0 \psi'_0(t + \tau - \xi) w'_0(\xi) = - f(0) \alpha_0 \psi'_0(t + \tau) \quad (25a)$$

and

$$\begin{aligned} \int_0^{t+\tau} d\xi \alpha_0 \psi'_0(t + \tau - \xi) w'_1(\xi) &= - 2f(0) \alpha_0 \psi'_0(2t + 2\tau) \\ &\quad - \int_0^{t+\tau} d\xi 2\alpha_0 \psi'_0(2t + 2\tau - 2\xi) w'_0(\xi). \end{aligned} \quad (25b)$$

The zeroth-order equation may be solved at once. The solution is

$$w'_0(\xi) = - \left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \frac{f(0)}{\tau} \times \frac{\psi'_0(\xi)}{\psi'_0(0)}. \quad (26)$$

On substituting this expression of $w'_0(\xi)$, Eq. (25b) becomes

$$\begin{aligned} \int_0^{t+\tau} d\xi \alpha_0 \psi'_0(t + \tau - \xi) w'_1(\xi) &= 2f(0) \alpha_0 \psi'_0(2t + 2\tau) \\ &\quad \cdot \left\{ \frac{1}{\tau} \frac{\psi'_0(\tau)}{\psi'_0(0)} - 1 \right\}. \end{aligned} \quad (27)$$

From this equation $w'_1(\xi)$ can easily be obtained.

$$\begin{aligned} w'_1(\xi) &= 2 \frac{f(0)}{\tau} \left\{ \frac{1}{\tau} \frac{\psi'_0(\tau)}{\psi'_0(0)} - 1 \right\} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \left\{ \frac{\psi'_0(\xi)}{\psi'_0(0)} \right. \right. \\ &\quad \left. \left. - 2\alpha_0 v_{go} \tau \frac{\psi'_0(2\xi)}{\psi'_0(0)} \right\} - \left\{ U(\xi - \tau) - U(\xi - t_F') \right\} \cdot 2\alpha_0 v_{go} \tau \frac{\psi'_0(2\xi)}{\psi'_0(0)} \right]. \end{aligned} \quad (28)$$

Hence,

$$w_o(\xi) = - \frac{f(0)}{\tau} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \frac{\psi_o(\xi)}{\psi'_o(0)} + U(\xi - \tau) \frac{\psi_o(\tau)}{\psi'_o(0)} \right] \quad (29a)$$

and

$$\begin{aligned} w_1(\xi) = & 2 \frac{f(0)}{\tau} \cdot \left\{ \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(\tau)} - 1 \right\} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \frac{\psi_o(\xi)}{\psi'_o(0)} \right. \\ & - \alpha_o v_{go} \tau \left. \frac{\psi_o(2\xi)}{\psi'_o(0)} \right\} + U(\xi - \tau) \frac{\psi_o(\tau)}{\psi'_o(0)} \\ & - \left\{ U(\xi - \tau) - U(\xi - t_F) \right\} \alpha_o v_{go} \tau \left. \frac{\psi_o(2\xi)}{\psi'_o(0)} \right] \end{aligned} \quad (29b)$$

Having obtained $w_o(\xi)$ and $w_1(\xi)$ we may then calculate $\alpha_o L_{a_3}(t)$, using Eq. (21).

$$\begin{aligned} \alpha_o L_{a_3}(t) = & - f(0) \alpha_o \psi_o(t + \tau) + \frac{f(0)}{2} \cdot \left\{ 1 - \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(0)} \right\} \\ & + (v_{go}/c) \cdot \left[f(0) \alpha_o \left\{ \psi_o(t + \tau) - \psi_o(2t + 2\tau) \right\} \right. \\ & \left. + f(0) \cdot \left\{ \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(\tau)} - 1 \right\} \left\{ \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(0)} - \frac{1}{2} \right\} \right]. \end{aligned} \quad (30)$$

Therefore, with reference to Eq. (19),

$$\begin{aligned} \alpha_o L_{a_1}(t) + \alpha_o L_{a_3}(t) = & \frac{f(0)}{2} \cdot \left\{ 1 - \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(0)} \right\} \\ & + (v_{go}/c) f(0) \cdot \left\{ \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(\tau)} - 1 \right\} \\ & \cdot \left\{ \frac{1}{\tau} \frac{\psi_o(\tau)}{\psi'_o(0)} - \frac{1}{2} \right\}. \end{aligned} \quad (31)$$

As expected, this is independent of t .

In the next interval of time, $t_F' - \tau \leq t < t_F'$, the two equations derived from Eq. (22) are as follows:

$$\int_{t+\tau-t_F'}^{t+\tau} d\xi \alpha_O \psi'_O(t + \tau - \xi) w'_O(\xi) + \alpha_O \psi'_O(t + \tau - t_F') \left\{ w_O(t_F' + 0) - w_O(t_F' - 0) \right\} = 0; \quad (32a)$$

$$\begin{aligned} \int_{t+\tau-t_F'}^{t+\tau} d\xi \alpha_O \psi'_O(t + \tau - \xi) w'_1(\xi) + \alpha_O \psi'_O(t + \tau - t_F') \left\{ w_1(t_F' + 0) - w_1(t_F' - 0) \right\} \\ = - \int_{t+\tau-t_F'}^{t+\tau} d\xi 2\alpha_O \psi'_O(2t + 2\tau - 2\xi) w'_O(\xi) \\ - 2\alpha_O \psi'_O(2t + 2\tau - 2t_F') \left\{ w_O(t_F' + 0) - w_O(t_F' - 0) \right\}. \end{aligned} \quad (32b)$$

Eq. (25a) and Eq. (32a) must be consistent with each other when $t + \tau \rightarrow t_F'$. From this requirement we obtain

$$w_O(t_F' + 0) - w_O(t_F' - 0) = f(0) \cdot C_1. \quad (33a)$$

Similarly, Eq. (25b) and Eq. (32b) must be consistent with each other when $t + \tau \rightarrow t_F'$. Thus,

$$w_1(t_F' + 0) - w_1(t_F' - 0) = 2f(0) \cdot (C_4 - C_1). \quad (33b)$$

Because of these results Eqs.(32a) and (32b) become, respectively,

$$\int_{t+\tau-t_F'}^{t+\tau} d\xi \alpha_O \psi'_O(t + \tau - \xi) w'_O(\xi) = - C_1 f(0) \alpha_O \psi'_O(t + \tau - t_F') \quad (34a)$$

and

$$\int_{t+\tau-t_F'}^{t+\tau} d\xi \alpha_0 \psi'_0(t + \tau - \xi) w'_1(\xi) = -2f(0)\alpha_0 \left\{ (C_4 - C_1) \psi'_0(t + \tau - t_F') \right. \\ \left. + C_1 \psi'_0(2t + 2\tau - 2t_F') \right\} - \int_{t+\tau-t_F'}^{t+\tau} d\xi 2\alpha_0 \psi'_0(2t + 2\tau - 2\xi) w'_0(\xi). \quad (34b)$$

Eq. (34a) can be solved easily. The solution is

$$w'_0(\xi) = -\frac{f(0)}{\tau} \cdot \frac{\psi'_0(\xi)}{\psi'_0(0)} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \right. \\ \left. + \left\{ U(\xi - t_F') - U(\xi - \tau - t_F') \right\} \right]. \quad (35)$$

Having determined $w'_0(\xi)$ we may then solve Eq. (34b) to obtain

$$w'_1(\xi) = 2 \frac{f(0)}{\tau} \left\{ \frac{1}{\tau} \frac{\psi'_0(\tau)}{\psi'_0(0)} - 1 \right\} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \left\{ \frac{\psi'_0(\xi)}{\psi'_0(0)} \right. \right. \\ \left. \left. - 2\alpha_0 v_{go} \tau \frac{\psi'_0(2\xi)}{\psi'_0(0)} \right\} - \left\{ U(\xi - \tau) - U(\xi - t_F') \right\} \cdot 2\alpha_0 v_{go} \tau \frac{\psi'_0(2\xi)}{\psi'_0(0)} \right. \\ \left. + \left\{ U(\xi - t_F') - U(\xi - \tau - t_F') \right\} \cdot \left\{ \frac{\psi'_0(\xi)}{\psi'_0(0)} - 2\alpha_0 v_{go} \tau \frac{\psi'_0(2\xi)}{\psi'_0(t_F')} \right\} \right] \\ + 2 \frac{f(0)}{\tau} \cdot \left\{ U(\xi - t_F') - U(\xi - \tau - t_F') \right\} \cdot \left\{ 1 + 2\alpha_0 v_{go} \tau \right. \\ \left. - \frac{\psi'_0(t_F')}{\psi'_0(\tau)} \right\} \cdot \frac{\psi'_0(2\xi)}{\psi'_0(t_F')} . \quad (36)$$

Thus,

$$w_o(\xi) = - \frac{f(0)}{\tau} \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \frac{\psi_o(\xi)}{\psi'_o(0)} + U(\xi - \tau) \frac{\psi_o(\tau)}{\psi'_o(0)} \right. \\ \left. + \left\{ U(\xi - t'_F) - U(\xi - \tau - t'_F) \right\} \cdot C_1 \left\{ \frac{\psi_o(\xi - t'_F)}{\psi'_o(0)} - \tau \right\} \right] \quad (37)$$

and

$$w_1(\xi) = 2 \frac{f(0)}{\tau} \cdot \left\{ \frac{1 - \frac{\psi_o(\tau)}{\psi'_o(\tau)}}{\tau \frac{\psi_o(\tau)}{\psi'_o(\tau)} - 1} \right\} \\ \cdot \left[\left\{ U(\xi) - U(\xi - \tau) \right\} \cdot \left\{ \frac{\psi_o(\xi)}{\psi'_o(0)} - \alpha_o v_{go} \tau \frac{\psi_o(2\xi)}{\psi'_o(0)} \right\} \right. \\ \left. + U(\xi - \tau) \frac{\psi_o(\tau)}{\psi'_o(0)} - \left\{ U(\xi - \tau) - U(\xi - t'_F) \right\} \alpha_o v_{go} \tau \frac{\psi_o(2\xi)}{\psi'_o(0)} \right. \\ \left. + \left\{ U(\xi - t'_F) - U(\xi - \tau - t'_F) \right\} \cdot \left\{ C_1 \frac{\psi_o(\xi - t'_F)}{\psi'_o(0)} - \alpha_o v_{go} \tau \frac{\psi_o(2\tau)}{\psi'_o(0)} \right. \right. \\ \left. \left. - \alpha_o v_{go} \tau \cdot C_1 \frac{\psi_o(2\xi - 2t'_F)}{\psi'_o(0)} \right\} \right] \\ + \frac{f(0)}{\tau} \cdot \left\{ U(\xi - t'_F) - U(\xi - \tau - t'_F) \right\} \cdot \left[\left\{ 1 + 2\alpha_o v_{go} \tau - \frac{\psi_o(t'_F)}{\psi'_o(\tau)} \right\} \right. \\ \left. \cdot C_1 \frac{\psi_o(2\xi - 2t'_F)}{\psi'_o(0)} + 2\tau (C_4 - C_1) \right]. \quad (38)$$

These expressions of $w_o(\xi)$ and $w_1(\xi)$ are applicable for the time interval $0 \leq t < t'_F$. This is by far the interval of most practical interest. Clearly, we may extend these functions, if required, to later time intervals by the same procedure as described above.