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FOR CONSTANT-GRADIENT LINACS
(A Supplement to TN-63-9)

1. We have given in TN-63-9 the functional form of f(t + 1) for constant

energy operation under the condition that = > tﬁ. Now we wish to discuss

the other case where 1 < t%.
The condition for attaining constant energy gain is given by Eq. (23)

in TN-63-9, namely,

t+T

ocoxlf’(t + 1 - &) £r(e)u(e)lat = U(tF', - t)-){cxou,r‘(t) {aow(tﬁ) - ozoq;(t)} .
T+1-t!

F (1)

As discussed therein, the integrand abw'(t + 1T - &) £'(£) must either

vanish or be an oscillating function of period tﬁ when £ > 1T, S50 that
the integral over any whole period may vanish when 1t > tﬁ.
The zeroth-order solution of Eq.(l) is not difficult to find. If the

time variable is restricted to 0 <t < T = Mt,, M being an integer, this

F
solution is as follows:
1 — 1
fo(é) —-Xobvgo exp(2aovgof).wo(2§)
M
- 'Y -T - ! R 1 !
Z ult - mt ) T-mt;) 1/\4;0(th)
m=0

v (62) |
- wo( 5 m; (g - T - mbg 4+ t) - U(é - T - th) 1/xpo(th)
(2)

Here we may note the similarity between this equation and Eq. (2) in



TN-63-7 for constant-q linacs. When T —*tl'?,

fc')(é) —"{I(é) - U(e - 'r%-'}éao exp(eaovgo'r\'g- \J;c')(EE,).

This agrees with Eq.(30) in TN-63-9.
By integrating Eq.(2) with respect to ¢ and inserting proper in-

tegration constants, we obtain

£,(8) & (X|2)a v, exp(2a v 7)- {wo(tgw)/wo(r)}

M

Z '{U(E - th',) - U(g -7 - mt')} { v (2¢) - wo(emtﬁ,)}/wc')(mtﬁ‘)
m=0

T ) o e - e o

m=0

(X'Q)(xovgo exp(2aovgo'r).{¢rc') (tll?) / w(‘)(T)}
M .
Z {U(g - T -mbl o+ tF',) - U(E, -1 - mt'F)},{\yO@&)

m=1
- q;o(z'r + emt), - 2t')}/\yc')(mtl'?)
M
+ Z U(g -T - mt') [\y (21 + 2mt'} - v, (27 + 2mt"'- atFi}/tLr (th)
n= L° .
(3)
When = —>tF',,

fo(é ) — (’X R I 2) exp (ZaOVgO'r)

.[{U(g) - Ut - T)} v (28) + U(E - %) WO(ET)]
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This is . in agreement with Eq. (33) in TN-63-9.
The first-order equation satisfied by fi(g) is obtained from Eq. (29)
in TN-63-9 by cancelling out the zeroth-order terms. This is

t+7

f dae u(e) exp{anvgo(E - T)}- f;(é) = o(t)
‘t+T-t1'?
+ U(tl'? - t).mo.[{q;o(t) - ¥ (t};,)} + e{yo(t by - wo(Qtﬁ‘;}
3 {wo (et - wo(et)] )
(%)
where
t+T
o(t) = - exp (_ .2ocovgot). f dt U(t) exp {haovgo(g - T)}O 2f(')(§)
t+1'-t%‘
(5)
Now we introduce the foliowing notations:
t+T
Itg{fi(éi}= f ae u(e) exp{anvgo(g - T)}ofi(&) (6)
: t+T-t!
; F
and
£1(8) = ua(e) + uwl(8) + uy(s) + uy(e), (7)
where
e (1) =t - 9 7yt - v, ),
Itbg {u{)(g)} = U(tBL - t)'amo.{\y (t + t}g,) - (21:'» (8p)
) ?
Tie {ué(&)} = ‘U(t' - t)- 3xa0< 2t') -y (at)} (8c)
and L {u&(g)} = o(t). (8d)



Gbviously,
11&'1(5) = - fc')(ﬁ). (9)

Thus there are three unknown functions to be determined in order to obtain

the solution

£r(t) = fé(g) + (vgo/c) f;(&).

Two of these functions, u.l')(é) and ué(g), are not difficult to obtain.

They are as follows:

ut')(g) = -2 Xaovgo exp(2aovgo'r),\lrc')(2§, + tl'i‘)

: ::((tf;‘) y {u(g -mty) - ule -7 - mt;,'«)}' {l/wé(mtﬁ')}

J

. Ié((i‘ﬁ;') mil {U(g e mt, + tI;,) ~uft - - th',)} . {l/\vc')(mt];,)}:' ;

(10)
u":(é) = 67((101/g exp(anngT). "’5(35)
Yol |
t -mt!) - ule - v - mt)))- \ .
\VO (2 1') mZO i) ( tF) U( T th) l/\uo (zth
viety) o |
- E - - mt! ') - U (e . . ' '
¥ (27) le U( T Mbpt F) ( T th) 1/ (zth)
(11)

The solution of Eq. (8d) for the remaining function u&(g) is quite
tedious, because ®(t) 1s a complicated function. Before describing
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¢®(t) and u&(g) we further introduce the following notations:

c =g (bg) /v500), (12a)
o ol Y (120)
2 () wi(o)

c = \‘!O (tF) .WO(T) = CZ/C , (120)
>y (1) e !

c, = vo ey v = 6F (124)
c = Yo (t%) . wo(T) _ \l'o (tF) ll’o(tF‘) (12¢)

Sy (0 w0 () (0)
bl i
Using these abbreviation constants we obtain
. ‘D(t)/{ex"‘o"go exp (- 2aovgot3} ={U(t) ~uft+ T - tll‘,)}.(cz-r - )
+ {U(t +1 -t - Us - t};,)}.{cz(t%, - 1) + cs(t’+ T - th)- t}

+ i[u (t - mtp) - U{t +7-(m +1)t11:>:|- {wg}(o)/%(mty'";}

ms=1

and

.[Cz‘r -c, {(m + 1)t - t} - b - mtl‘;)}
M-1 -
+ Z [U{t + 7 - (m+ 1)%} - U{t - (m+ 1)1;1;}J.{%(o)/\yé(mt@

.[sz{(m+ 1)t1'? - t} + 03 {t + 7 - (m+ l)tI‘;}
- C1<(m + 1) - 1? - (¢ - mtl'_“)]

._5_

(13)



and

- uv(g)/2)(av o {U(g) - U(e - T} {1 + 2av ("I.' - g} { t(2t - 2T)/¢ (o}
M
+ {U(g -mey) - ue -« -mt')} {w (¢ - 1) [y (o)}

M

+ Z {U(é,- mtl‘?) - U(l_i, - T - mtl‘?)} .{w(’)(QQ - 27)/\];5 (mtl'??
m=1

.[C m {l + 2a v (mt' + T - ES}+ C 204 v omtl'? C22aovgom'r]

M-1

+ch>[ Ut -+ - mtr ) - U{; - (m+ 1)t}] {w (2¢ -2r)/ mt,%
IR ¥ A

r .
+ C12aovgoth 022aovgo(m + 1)t ' (1)

When 1 o tﬁ’

w (€) a-{u(g) - (e - T} 2Xt, exp (Bt vy ty) Vo (B8 + tg)s

ué(g) — 4 {U(g) - u(e - r%- 6an exp(zav tl'p) v (3¢),

- ué(é)—“{U(&) - U(t - T)}' 2xat, exp(2ov i)
{2+ 2ot - 1) v e v ).
Hence,
£1(¢) —»{U(»e) - e - 19 o exp o v tL). |:6\lf (38) - 2y (2t + )
- yi(28) -2 {1 +2ay (v - ga cvl (e + t}})], (15)
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This is in agreement with Eq. (32) in TN-63-9.
Having obtained fi(g) we may then integrate to obtain fl(é) in a
straight-forward manner. The expression of fl(g) will not be given

here because of 1ts considerable length.

2. Up to this point it has been assumed that f(¢) is a continuous
function and f£(0) = 0. When f£(0) £ O, we may proceed as in TN-63-7
to separate f(&) into two parts,

£(g) = £(0) + h(&), (16)
so that h(0) = O.
Let t+1
otoLal.(t) = £(0) f dat U(g)ao\(r'(t + 1 -t) (17a)
t+r-t%
and
t+1
AL, (8) = [ @k u(e) a (s + - £) m() . (17)
t+1-t§

Then the contribution to the electron energy gain from f(t) is
aOLa(t) = ozoLal(t) + aoLae(t). (18)

In case 1T Z_tf, aoLal(t) = <%(O)|é}-(l - Cl)'<} + (vgoﬁ90;> . Here
C1 is given by Eq. (12a). Since abLal(t) is independent of ~t, no
further discussion is needed.
In case 71 < tﬁ,
- . - - 1 - H
aOLal(t) = f(O)ao [\yo(t + 1) U(t + T tF){WO(t + 1) ¥, (tF»:l
- - - - t
+ (vgo/c)f(o)ao I:{\Lro(Qt +21) -y (t+ r)} Ul + v - tp)

.{\yo(at + 271) - ¥, (21:1'7.)- \Iro(t +T) + Yo (tlt?)} . (19)



This case may be treated by the same procedure as discussed in TN-63-T7.
Thus, we consider h(t) to be the solution which satisfies
aoLae(t) + aoLb(t) = const., and introduce one additional part w(t) into

£(e),

£(e) = £(0) + n(e) + w(t), (20)

so that the sum of a L  (t) and
o a)
4T
- ! -
a Ly, () = f dt U(t) av'(t + 7 - &) w(t)
t+r-t! (21)
F

is a constant. From this condition it follows that

3

aoLb(t) + }T Oblhp(t) = const.,

B=1
i.e., the total gain of electron energy is constant.

The remaining problem is to determine w(£) from the following
equation:

a‘% aoLal(t) + aoLaB(t)} = 0. (22)

As may be inferred from the case of constant-q linacs discussed in
TN-63-T, Eq. (22) cannot be solved for large intervals of time unless
w(t) is allowed to have discontinuities at points £ = ths 2tp, 3tL,...
The solution of Eq. (22) can most conveniently be found step by step.

The first step 1s to consider the small interval of time, 0 <t < tﬁ - T
In this interval we have, according to Eq. (19) and Eq. (21),

g% ablhl(t)} = f(O)ab- Wé(t + 1) - (vgo/c)<{w5(t +T) - Ewé(Zt + 21?}

(23)
and t+T
= aoLa3(t)} = fdﬁ a¥'(t+ 1 - &) w(E). (24)
. )
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In Bq. (24), ¥'(8) = vi(8) - (vgo/) {wg(e) - 2w5(2gf> and
w'(g) = wi(e) + (ng/c) w!(£). By substituting Eqs. (23) and (214) into
Eq. (22) and then separating the zeroth- and the first-order terms, we

obtain
t+r
fd{i—,ao\l;é(t + 1= 8)wi(E) = - £(0) ay!(t +1) (25a)
0
and
t+7
f df;ocoxy(’)(t + T - {;)w;(ﬁ) = - 2f(o)ag¢5(2t + 271)
0 bt
- fd.g 20:0\1;(')(21; + 21 - 28) Wi (8),
0 (250)

The zeroth-order equation may be solved at once. The solution is

| | £0) i)
wi(8) = - (u(e) - u(e - T)k' X (26)
i T WC')(O) ‘

On substituting this expression of wé(g), Eq. (25b) becomes

t+T
fdgao\lxc')(t + T - g)wi(g) = 2f(0)aow(')(2't + 271)
0 -
1y (t)
T | 27)
Ty (1)

From this equation wi(g) can easily be obtained.

£(0) |1 ¥ (v) NG,
wi(&) =2 - - Ly qu(e) - u(e - 1))
T T Wé(T) Wé(o)
v (28) ” uéaes)i
- eobvgot -CUu(e - 1) - U(g - t') -2 v T
¥.(0) 5 o) |



Hence,

£(0) v () ¥, (7)
w (£) = - < (ue) - ule - 1) + U(E - 1)

L v (0) v (0)
(29a)
and
£(0) |1 v (x) 1 v ®)
w (t) =2 \ - - 19 que) - ut - 1)
T [Ty ) | 50
v (et) ¥ (1)
-ayv, T + Ut - 1)
78 ) v!(0)
<U(E T ‘ v (28)
- E - 1) ~ -tlhav 1
k F? o go Wé(o)
(290)

Having obtained wo(g) and wl(g) we may then calculate oL, (t),
3
using Eq. (21).

al (t) = - £(0)av (t + 1) + #0) {1 --l- Yo (™)
o a3 O 0O o - ‘1,(;(0)

+ (ng/c)- f(O)aO "’o(t +T) - q;o(et + 271)

1 T 1y (1 11|
+f(o)--W°()-1 _\lro)__
T . (1) Ty (0) 2

(30)

Therefore, with reference to Eq. (19),

2

1 wo(r) 1 (51)
- — - — 31
T Wé(o) 29,

£(0 Loy ()
a L, (t) + oL, (t) = ———l{l - ; 2




As expected, this is independent of t.
In the next interval of time, tﬁ - 1<t <t,, the two equations
derived from Eq. (22) are as follows:

t+1
dgozomyc')(t + 1T - &) w(')(é) + aoxy(;(t + T - tﬁ,){wo(tl:,, + o) A (tb; - }:o;
t+T-tﬁ (322)

t+1 -
J[ dEQEWé(t + T - &) wi(g) + abWé & + T - tﬁ){}l(té + O) - wl(tﬁ - O?}

t+T-tF'| LT

= - Jf dEEObWé(Zt + 2T - 2@) wé(i)
t+T-tﬁ

- 20y (2t + 27 - etbg) wo(t' +0) - wo(t' - o).

F F
- (32b)
Eq. (25a) and Eq. (32a) must be consistent with each other when
t o+ T'—>tf. From this requirement we obtain
? - f+v _ = ” .
wo(tF + o) wo{tF o) £(0) c, (33a)
Similarly, Eq. (25b) and Eq. (32b) must be consistent with each other
when t + <7 —>téa Thus,
t _ _— = . | -
wl(tF + 0) vt 0) = 2£(0)- (c, c,).
(33b)
Because of these results Egs(32a) and (32b) become, respectively,
t+1
§ - 1 - - 1 {4 - 1
f déoco\jfo(t + T - t) wo(g) clf(o)ao\yo (1: + 7T tF)
Tt (3ka)
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and

t4v
dea vl (t + 7 - &) wi(E) = - 2£(0)a {(c4 - 01) v (t+ 7 - tlg,)
t+r-tf ot
+C¥Y (2t + 27 - 2t')} f dt2o y! (2t + 27 - 2¢) w!(E),
t+¢—t§

(34p)

Eq. (34%a) can be solved easily. The solution is

£(0) ¥ (8)
wi(g) = - . | U(t) - Ut - 1%
T ¥ (0)
{ -t - Ul - - t'}] (35)

Having determined wé(g) we may then solve Eq. (34b) to obtain

£(0) [1 v (v) vo ()
artey 2 2 - b f ute) - ue - 0y
v |t vi(x) ¥5(0)
¥ (2¢) ro(2s)
-2av_ T -QU(t - 1) - U(E -t .20 v =
o8 wc',(o)} { 0o F% e o

e 22)
E - tY) - UlE « 1~ t1)) -20V_ %
{ ( ) ( F)j} {W'(O) O go v! (tl)

\Vc', (tl',ﬂ) \lr(')(2§)
Vo [ vk .

(36)
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Thus,

£(0 v (& v (1)
w€=-(){U(§)'U(§’T) = A
° - v (0) v (0)
A
- ° (37)
and
£(0) %1 v (%)
w (8) =2 - -1
T v (7)
1 (v (8 ¥ (2¢)
u(e) - u(e - 1)) A
v (0) = wl(0)
oe - ) 2 i u(t - 1) - ufs -t Fol2t)
+ -1 - - 1) - -t pyav T
val0) | (e ¥2(0)
W& - tp) v (27)
slule -t -ule -7 -e)Vole 22 F 4y 120
{ £ (. 0 1 w0) ° 8 y1(0)
\vo(eg - etf«*)
- aov OT s C
1y (o)
£(0) ¥, (tl'?).
+ o(UE - 1) - ULE - 1 - t1}), l+20v 7 -
T {’( F) ( F) 0 go Wé(T)
¥ (2t - 2t ) |
.C 0( ) +21’(C -c)
Y y(0) v

(38)

These expressions of wo(g) and wl(g) are applicable for the time
interval 0 <t <'t§. This is by far the interval of most practical interest.
Clearly, we may extend these functions, if required, to later time intervals
by the same procedure as described above.
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