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Abstract In this article we study certain degenerations of
the mirror curves associated with the Calabi—Yau threefolds
X n.um, and the effect of these degenerations on the refined
topological string partition function of Xy 5. We show that
when the mirror curve degenerates and become the union of
the lower genus curves the corresponding partition function
factorizes into pieces corresponding to the components of
the degenerate mirror curve. Moreover we show that using
degeneration of a generalised mirror curve it is possible to
obtain the partition function corresponding to X y 37— from
X N,M-
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1 Introduction: refined topological strings on X y 5 and
corresponding mirror curves

The non-compact Calabi—Yau threefold (CY threefold)
Xy.m with NyM e N [6,8,14,20,25,27-29] has the
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structure of a double elliptic fibration with an underlying
SL(2,7Z) x SL(2,7Z) symmetry. One elliptic fibration has
the Kodaira singularity of type Iy_1 and the other elliptic
fibration has Ip;_1 singularity. The topological string par-
tition function on Xy, p was computed in [28] and shown
to be related to the Little string theories (LSTs) with eight
supercharges. In the decompactification limit the low energy
description of circle compactified LSTs of types (M, N) and
(N, M) are described by quiver gauge theories with gauge
groups U(M)"N and U(N)M respectively. In the geometric
engineering argument the M-theory compactification on a
non-compact Calabi—Yau threefold Y is described at low
energies by the 5d A = 1 SCFTs. These SCFTs are UV com-
pletions of the gauge theories we are interested in. The low
energy gauge theory is completely specified by the require-
ment of supersymmetry, once the gauge group G, hypermul-
tiplet representation R and the 5d Chern—Simons level & is
fixed. In taking the QFT limit the gravitational interactions
are tuned off. This is achieved by sending the volume of
Y to infinity while keeping the volumes of compact four-
cycles and two-cycles finite. This is equivalent to the non-
compactness condition of the CY threefold. The coulomb
branch of the SCFT is identical to the extended Kéhler cone
of the threefold Y [8,35]. The CY Y can be understood as
the singular limit of a smooth threefold Y in which cer-
tain number of compact four-cycles have shrunk to a point.
The BPS states of the 5d theory correspond to M2-branes
wrapping holomorphic two-cycles and M5-branes wrapping
holomorphic four-cycles. The volume of the two-cycles and
four-cycles correspond to the masses of the BPS states. At
a generic point of the Coulomb branch the two-cycles and
four-cycles have non-zero volumes and the BPS spectra is
massive. At the origin of the Coulomb branch some of the
cycles may shrink to a point and indicate a local singularity
on the threefold.

The refined topological type IIA string partition function
Zn.m of Xn um can efficiently be computed using the refined
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Fig. 1 Coordinates of the 11d M-theory space-time

topological vertex formalism [34]. The partition function
Zy.u takes the form of an infinite series expansion. The
expansion parameters depend on the choice of a preferred
direction common to all vertices of the toric web diagram.
Different choices of the preferred direction give equivalent
but seemingly different representations of Zx js [8,25,29].

Lately another powerful method of computing the parti-
tion function was proposed in [18] in terms of M-strings,
which are one dimensional intersections of M5 and M2
branes. The table given in Fig. 1 summarises the coordinate
labels and specifies the world volume directions of BPS M5-
M2-M-string configuration. The M5-branes are separated
along the compactified x® ~ x° 4+ 27 Rg dimension with
the positions parameterised by scalars VEVs {ay, ..., ay}
where M denotes the total number of M5-branes and a; —a; 1|
are the VEVs of the scalars of 6d tensor multiplets. The M2-
branes are stretched between these M5-branes. For the trans-
verse space R* we can have only one stack of M2-branes
between M5-branes. However it is possible to perform an
orbifolding [19] of the transverse R* such that the mass
deformation and supersymmetry remain preserved. The orb-
ifolding allows the multiple stacks of M2-branes with each
stack charged under the orbifold action. For the M-string
dual to (N, M) web diagram there will be N stacks of M2-
branes, with irh stack consisting of k; number of them. In
gauge theory k; characterises the instanton number. It was
shown subsequently in [25] that the M-string partition func-
tion Z(N, M) is the generating function of the equivariant
(2, 0) elliptic genus of the M-string world sheet,

Z(N.M) =" 0} 05+ O3 xeu(M(N. K), Vi), (1.1)
k

Its target space is the product of moduli spaces of U(N)
instantons of charge k; on C> : M(N,Kk) := M(N, ki) x
M(N,ky) x --+ x M(N,ky) along with a vector bundle
V(N, M) on it. The mass deformation is taken care of by an
extra U (1), action with equivariant parameter m. The vector
bundle is special in the sense that only right moving fermions
couple to it. The moduli space M (N, K) is nothing other than
the moduli space of M-strings (Fig. 2).

For example the specific values M = 1, N = k corre-
spond to a single M5-brane wrapped on parallel S' and k
stack of M2-branes wrapped on the transverse S' and ending
on the M5-branes. The stack of M2-branes appear as coloured
points in the Rﬁ that resides inside the M5-brane world vol-
ume and transverse to the M-string world sheet. Thus for the

@ Springer

Fig. 2 Web diagram of Xy y. 1 € {t1,..., tn} denotes the distance
betweenithandi+1-tlinesand 7; € {T1, ..., Ty} denotes the distance
between i-th and i + 1th lines. m denotes the Kéhler parameter of the
diagonal P's. The double and single bars | and— indicate the periodic
identifications

configuration that involves n; number of M2-branes in the
[-th stack, where / = 1, ..., k, the moduli space is obviously
the product of Hilbert scheme of points as follows
H := Hilb"' [C?] x Hilb™[C?] x - -- x Hilb™[C?] (1.2)
The vector bundle V over H that is required for (2, 0) world
sheet theory has been determined in [18] and turns out to be
the following
Vi= el _Ext'(, 1)@ L} (13)
where I = (Iy,1p,...,Iy) € H. Roughly speaking Ext
groups count the massless open string states for strings that
are stretched between D-branes wrapped on complex sub-
manifolds of CY spaces. Note that each factor Ext! (I, I;) ®
L7 in the fibre denotes the contribution of a pair of stack
of M2-branes ending on a single M5-brane from opposite
sides. In other words there is an isomorphism between the
degrees of freedom on the (N, M) 5-branes web and the
moduli space of M-strings, M(NV, k). Using equivariant fixed
point theorems one only needs to know the fibres of the bun-
dle V(N, M) over the fixed points.

The weights of V(N, M) at the fixed points IV, 1 .|
I are given by the following Chern character expansio
[25]

M N
Z eV — Z Z Qmei(a,—as)

weights
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The elliptic genus is then given as follows
/ l—[ xi01 (T, Xi +2)
01(t, xi)
where x; and X; denote the Chern roots respectively of the tan-

gent bundle and vector bundle V(N, M) as can be read from
(1.4) and the theta function of first kind 0; (7, z) is defined by

(1.5)

271ikr)

o
61(z:2) = —ie T (@™ — ) [T(1 e
k=1

x (1 — e2nikt62ﬂikz)(1 _ e2niktef2nik1)'

(1.6)
More succinctly, the Nekrasov partition function of the gauge
theory on the D5-branes of the web is identical to the appro-
priately normalised topological string partition function of
CY threefold X,y and it is also the generating function of
the (2, 0) elliptic genus of the product of instanton moduli
spaces M(N, k) on which the bundle V(N, M) coupled to
the right moving fermions exists.

1.1 Presentation of the paper

We summarised the type [IA/type IIB mirror symmetry con-
jecture in the introduction (1). In Sect. 3 we construct the
quantum mirror curve of X y 3s and study the limits in which
it can be reduced to a lower genus curve. In Sect. 6 we show
that in the splitting degeneration limit the partition function
Zx .y isrecursively related to the partition function Zy , ,,_,
and we show this degeneration pictorially. In the appendix
we reproduce the proof of an identity used in the main text.

2 (p,q) webs and the mirror curves

We can consider [2,3] the A-model topological strings on a
toric CY threefold M = C'*3//U(1)!. Algebraically M is
defined by the following set of constraints

1+3

> odXiF =k,
i=1

modulo the action of U (1), where each X; parameterizes a
complex plane C and can be visualised as S'-fibrations over
R . In this way M, as defined by (2.1), is a T'3-fibration over
a non-compact convex and linearly bounded subspace in R3,

a=1,...,1 2.1)

with 73 parametrised by {6;} coordinates. k% € R are called
the Kéhler parameters. The CY condition

ci(TM) =0 (2.2)
holds iff
143

a=1,...,1 (2.3)

o=
i=1

Inspecting Eq. (2.1) makes it clear that since Q¢ € Z, all
toric CY threefolds are constrained to be non-compact. The
second constraint (2.3) furnishes a representation of M as
Ry x T? fibered over R>. In this way the toric threefold M
allows its construction by gluing patches of C°.

To construct the mirror N of the threefold M, consider
variable vy, v» € C, and the homogeneous coordinates x; =:
eV e C* i =1,...,1+3related to X; by |x;| = e 1Xi*,
The variables x; are constrained by x; ~ Ax; for A € C*. The
mirror geometry N is then given by the algebraic equation

I+3

Vi = in, (2-4)
i=1

subject to the constraints

I+3 0

l_[xii —e T g =1,...,1 (2.5)

All of these equations can be combined into a single equation

vivy = h(x, y; r%, 0,) (2.6)

where x, y € C*. The function i (x, y; r¢, 6,) can be decom-

posed into pant diagrams described by

e +e¥+1=0. 2.7)

The last equation describes a conic bundle over C* x C* in
which the fibers degenerate over two lines over the family
of Riemann surfaces X : g(x, y;r%,6,) =0 € C* x C*. If
the toric diagram of M is thickened, what emerges is noth-
ing else but X' ; the genus of X equals the number of closed
meshes and the number of punctures equals the number of
semi infinite lines in the toric diagram.! In the topological
A-model the topological vertex computation can be inter-
preted as the states of a chiral boson on a three-punctured
sphere. This chiral boson on each patch of the sphere is
identified with the Kodaira Spencer field on the Riemann
surface embedded in the CY threefold of mirror topologi-
cal B-model [10,16,17,23,32,37,47]. The A-model closed
topological strings on toric CY threefold, with or without
D-branes, is computable by gluing cubic topological ver-
tex expressions. On the mirror B-model the gluing rules are
equivalent to the operator formation of the Kodaira Spencer

' 1t is a standard in literature to call X the mirror curve.
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theory on the Riemann surface.The elliptic Calabi—Yau three-
fold Xy ps is dual to the brane web of type IIB M NS5-
branes and N D5-branes wrapped on two S's. We denote
by {y°, y', y2, y3, ..., ¥} the coordinates of type IIB string
theory vacuum R!°. The common worldvolume of the 5-
branes along {y°, y', y2, y3, y*} gives rise to the gauge the-
ory under consideration and the (p, g) brane web is arranged
in the {y>, y°} plane which is compactified to a torus T2. The
(p, g)-charges and their conservation encode the details of
the five-dimensional mass deformed supersymmetric gauge
theory.

The curve associated to a grid diagram is written as the
zero locus of a sum of monomials, with each monomial asso-
ciated to a vertex of the grid diagram. For example Ay X* ¥ is
a monomial that corresponds to the vertex (k, [). The mod-
ulus of the curve Ay; is determined by imposing a set of
condition: each link on the grid joining e.g. (k,[) to (u, v)
uniquely corresponds to a link on the web, which is orthog-
onal to the former. If the link on the web is given by the line
py = gx + «, the orthogonality condition is expressed as

k1) = (u,v) = (=q. p) (2.8)
and the constraint is given by
py=qx+a: A=A 2.9)

In other words the mirror curves of toric CY threefolds
are determined by the corresponding Newton polygons. The
line in the web [1,4,5,9,34,40,45] orthogonal to the line in
the Newton polygon joining the coordinates,let’s call them
(k1,£1) and (k2, £2) and passing through the point (xg, yo)
is given by ,

(AD) y + (Ak) x = (AL) yo + (Ak) xo (2.10)

where Al = ¢» — €1 and Ak = ky — k1. Since the choice of
(x0, yo) is arbitrary, we get

(A y + (Ak)x =« @2.11)

The equation of the Riemann surface in this patch is given
by exponentiating and complexifying (x, y) to (u, v),

XAk yAl _ @

(2.12)

where X = ¢ and ¥ = ¢V with u,v € C and Re(a) =
«a. Since the imaginary part @ is not determined, we have
introduced a factor of —1 for later convenience. With this
choice, @ will be identified with the complexified Kéhler
parameters. In the mirror curve, we will have

Ao, XSV 4 Ay, XR2Y2 =0 (2.13)
which can be solved to give

A ~
xAkyAt = _ZhO g = A e (2.14)

Ayl

@ Springer

3 Mirror curves and their degenerations

We start the discussion by giving an example of Resolved
Conifold. In this case, the Newton polygon is shown in Fig.
3 and the corresponding mirror curve is given by,

Ao+ A1oX + AgY + A1 XY = 0. 3.1)

Let us choose the horizontal line in the web corresponding to
the points (0, 0) and (0, 1) in the Newton polygon that goes
through the origin so that « = 0 for this line. This gives

Ap1 = Ago. (3.2)

Similarly A9 = Ao and A19 = Agpi. The line in the web
corresponding to (0, 1), (1, 1) has the equation x = T where
T is the horizontal distance between the two vertices in the
web. Note that the vertical distance is also 7. Thus we get
A1 = Agre”! where Re(¢t) = T. The mirror curve is then
given by

1+ X+Y 42Xy =0, (3.3)

where t* = %t = #T — % so that Im(¢*) > 0.

3.1 Mirror curve dual to X |

Recall that in the mirror construction the Riemann surface X
is a part of the mirror CY threefold. For 6D theories the cor-
responding toric webs have no semi-infinite lines and hence
no punctures. The periodicity of the web is taken into account
by including all of its images under the periodic shift. Note
that after the vertical and horizontal periodic identifications
the toric diagram becomes non-planar.
In this case the mirror curve is given by,

Z Ak’(XkYZ =0.
(k,0)eZ?

(34)

Let’s take the origin of the web to be the vertex of
the web corresponding to the triangle coordinatized by
(0, 0), (1,0), (0, 1). With this choice the equation of the hor-
izontal line in the web corresponding to (k, £) and (k, £ + 1)
is given by

y =Lt + 1) + k1, 3.5)

where 7 is the periodicity of the web in the vertical direction
and 11 is the horizontal distance between two consecutive
vertices on the diagonal in the web given in Fig. 3. This
gives

i (Lr+k
Appr1 = Ap TR — A4
= Ap g2 T+ Dk

(3.6)

where Im(t) = 52 and Im(z) = 4L. The equation of the
line in the web corresponding to (k, £), (k+ 1, £) is given by
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Fig. 3 Tessellation of Newton
polygons and web diagram of
X1

A, 3= Ay 627Ti(2T+2f2)

ts [ ‘H_

x = k(t1 + 1) + £t; where p is the periodicity of the web in
the horizontal direction. We thus get

i (kp+£
Apire = A 00T — A
27 (p M 4 (k- 1) 2)

= Ag e 3.7
From Egs. (3.6) and (3.7) it follows that
A = Ag et T otk (3.8)
Using the coefficients the mirror curve becomes
Z i (G et MDD ppkry ykey e _ 3.9)

k,LeZ

If we define the genus two theta function by
O(20p. 2. D)lw,v)) = Y exp(27i 0k, 0)/2) X",
ke
(3.10)

where the period matrix £2(p, z, 7) and the quadratic form
Q(k, .) are given by

Qp.2,7) = (‘Z’;f)

k
Ok, ) :=(k 0)2(p,z, 1) <€) (3.11)
the mirror curve can be written as
O(2(p. 2. Dl v)) =0 (3.12)

It is interesting to note [21,31] that under the following iden-
tifications

Y — Yeéf
X — Xeét

X —> XeomiT,

Y — y¥rie, (3.13)

—_—
origi tl tQ

T =1+ 19

p=13+1

the theta function transforms covariantly and the curve (3.12)
remains invariant.” Note that in the limit z — 0 the left side
is factorized into the product of genus one theta functions

(Z ezni(@p)xk)(zezni(&;”r)ye) -0

k,eZ LeZ

(3.14)

3.2 Mirror curve dual to X »

Consider the periodic Newton polygon with vertices (0, 0),
(1,0), (2,0), (2, 1), (1, 1), (0, 1) as shown in Fig. 4. The
mirror curve is given by

Z B X¥vt =0
kLeZ

(3.15)

where the coefficients By ¢ can be determined in the same
way as for the genus two case and are functions of the four
Kaihler parameters (z, p, z, w). They are related to each other
as follows:

2ri (kp+(€+1)z
Boita,e = Boppy g kot Daw)

2mi(kp+Lz) 2ri(€t+k z)

Boky1 = Bag e Bi,¢11 = By e

(3.16)

These recursive relations have the following solution:

Bok.¢

2 Recall [7] the theta function with characteristics given by

2) f) @)= Y exp(im(n+2).2.n +a) + 27i(n + a).z + b))

-- neZ#

satisfies the following identities under the shifts of z by lattice L and
a,b e R¢

® ;’) (Z-‘r on + m|9) — e*irm.(l.nfbrin‘(z+b)+27‘ria4m(_) |:§i| (ZlQ)

o [;‘I:}] @Q) = FTiamg [z] Q).

@ Springer
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Fig. 4 Tessellation of Newton P
polygons and web diagram of
Xi,2

Ago = Aso 627717(2/)+3z+u')

3 9y
7— [
origiu}‘ 2p+3z4+w
[ J
w

0 —1
:exp[zm<k(k—1)p+ (2 )r+2k€z+kz+kw>]
Bokt1.¢

= exp[Zﬂi(kzp + te-1

T+ Qk+ Dz +k(z + w))].
Then the mirror curve is given by
@(.Q(Zp, 22, )| Qu—p +2+w,v— z))

+e2”""@(9(2p, 2. )| QuAz+w, v —1 + z)) —0.
(3.17)

To see the factorisation we can write the last expression
explicitly as

3 <exp[27ri<k(k T GV

k,LeZ 2
+2klz + kz + kw)]X%Yé

e —1)
2

+exp[2m’ (kzp + T+ 2k + ez

Tk(z + w))]xz’cﬂyf) —0. (3.13)

It is easy to see that In the limit z — 0 we get the factorized
form

(Zewfomi (M5 20)]r ) (2 (cxofomi (ke

keZ

“p + kw)] + exp[2m’<k2p + kw)]x)) —0.

(3.19)

3.3 Mirror curve dual to Xy

Consider the (N, M) web shown in Fig. 5. The Kéhler
class w of Xy p is parameterized by (mgy g, 7, 0, T, t) =

@ Springer

Fig. 5 Web diagram of Xy ps. t; € {t1, ..., ty} denotes the distance
between i-th and i + 1-th vertical lines and 7; € {T1, ..., Ty} denotes
the distance between i-th and i 4 1-th horizontal lines. my ), parametrize
the diagonal P's

(ma,g, T, 0,m, T1,To, -+, Ty—1,t1,t2, -+ ,ty—1)  with
T = Zf‘il T;and p = Z;v:l tj. For arbitrary (N, M) values
the factorisation properties of the mirror curve will in gen-
eral be affected by the quantum corrections. The quantum
corrected Kihler parameters are the solutions of the Picard—
Fuchs equations [33]. After getting quantum corrections var-
ious Kéhler parameters are mixed non-trivially and that ren-
ders the factorisation non-trivial as compared to the classical
case discussed here.

The mirror curve is given by a sum over the monomials
associated with the Newton polygon. In this case the Newton
polygon tiles the plane
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Hy pm(X,Y) = (3.20)

Z A XY

(i,))ez?

3 The coefficients A;, ; depend on the length of the various
line segments in the web which are the Kéhler parameters
of the corresponding Calabi—Yau threefolds. As discussed
before the neighbouring pair of points in the Newton polygon
connected by a line give a relation between the associated
coefficients A; ;,

A; k=1 o i—1
Lkl ezf:l Ti+) (o Mak (3.21)
Ak

Ait1k — AN M
Ak

Ait1k+1 = Aiy11

eTl+(T1+T2)+(Tl+T2+T3)+'"+(Tl+"'+Tk D+ kot Yo Map
=Aii11e y k=) T+ Xy Yo Map

= Ag et TR )

e SN R=Ty+ o Yo Mo (3.22)
where in the web diagram of Xy _u, % € {1, ..., ty} denotes
the distance between ith and i + 1th vertical lines and 7; €
{T1, ..., Ty} denotes the distance between i-th and i + 1-th
horizotntal lines and m, p, parametrize the diagonal finite line
segments representing P's.

Using Ap,1 = Ao,o = 1 we get the following solution

Aiprirl =e |(l V)fy+25_l|(k T+ fo Xlem 0Ma.p

(3.23)
Thus the curve is given by
Hym(X,Y) = > Aippp Xy (3.24)
(i.k)eZ?
N—1,M-1
= > WiX.Y)
i=0,k=0
Wik(X,Y) = Y ANayitimpiipt XNy Mo
(a,b)e7?

ANa+i+1,Mb+k+1

. eZNoH»z (Na+i— y)[V+ZM17+k I(Mb+k V)TV+ZM1H~/< ZNUS»( g ﬂ

(3.25)
Using the identifications
ty=t, if y= y' (mod N)
T, =T, if y =y (modM)
My, g =Ma, g, if o) =az(modN) and By
= B, (mod M) (3.26)

3 The notation Hpy p should not be confused with H which denotes
the instanton moduli space in the introduction.

we get
Na+i—1
Z (Na+i—y), = Z(Na +i—yy,
y=1 y=1
2N
+ > (Na+i—p), +
y=N+1
Na
+ ) (Na+i-y),
y=N(a—1)+1
Na+i—1
+ Y (Na+i—yp
y=Na+1

N
=Z[(Na+i—y)+(N(a—1)+i—y)
y=1
+(N@=2) +i—y)+--
i1
F(N+i— )/)]ty +3 G =ty
y=1
N i—1
-y [N“(“TH) Fal — y)]zy +3 G-,
=1 y=1
i—1

[Na(a+1)+al]1_2yty+2(l—y)ty (3.27)

=1 =1

<

Similarly

Mb+k—1
Z (Mb 4k — )T,
y=1
k—1
+Y k=0T,
y=I
Mb+k Na+i Mb+k N-—1 2N—-1

Z Zmaﬁ: ;;) [azzoma,ﬂ—l—azzlvma,ﬁ_y...

p=0 a=0

M
= [M% +bk:|p— Syt
y=1

(3.28)

Na—1 Na+i

+ Z My, g+ Z ma,ﬁ]

a=N(a—1) a=Na
Mb+k N-1

-2 [ ZZ]
e
EP’

Q

S

k
Mmy,g + Z ma,ﬁ:l
£=0

k

le,ﬂ+Zm0t,ﬁ:|
=0
N—-1 k i M-1

aﬂ+azzmaﬁ+bzzmaﬁ

=0 p=0 a=0 =0

?Mf jilyg

||P1E

+sza,ﬂ-

=0 =0

(3.29)
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Since ZLV;J mg, g is independent of 8 by Lemma 5.4 of [36]*
therefore

Mb+k Na+i N—1M-—1
Do D map=(ab+ CER K Y Y map
=0 a=0 a=0 =0
i k
+D D Mmap
a=0 =0
= (ab+ DD 4 DD )y 4 i (3.30)
Na+i—1 Mb+k—1
> (Na+i—yit,+ Y (Mb+k—y)T,
y=1 y=1
Mb+k Na+i
+ D D Map
=0 «=0

+zi(Na+i+1)+z22(Mb+k+1)

N i1
= [N“(a—;l) —l—ai]t - Zyty + Z(i — V)l

y=1 y=I1
M k—1
MU L bklp = Yy T+ Y k- 0T,
y=1 y=1
(k+1) b(i+1) ik
+(ab + T~ + 25~ )m + m'

+z1(Na+i+1)+z20(Mb+k+1)
=Gyt T.m) + L@+ 5L b

Nt m a+ =L
+’%1).<m )( N +ar§ -1

k+1
Mp ) \b+ 57
+bp (% — 1)
— i m = 3 (5 NT = 3 (5 Mp

+Nzi(a+ 5 + M+ 5
=Gy T.m) + 1 +w)'2m+u)

+m+u) - Z+v), (3.31)
where
ik k+1)(M+k—1 i+1)(N+i—1
Gl]V,M(t’T’m):_(+)(2M+ )p_(l-i- )(2N+l )‘L'

N i—1
+m"k — Z v+ Z(i — Yty
y=1 y=1

M k—1
> v+ ) k=T, (3.32)
y=I y=I

Z= (Nzi, Mz)

i+1 kel
u= (5 50)

v=& -1, p% -1).

4 Note that mq,p is denoted as C(la,h) in [36].

@ Springer

We define the genus two theta function as:

Oun(z, 2) = Y ep@HW @miwtmineiy (333
neZ?
Then
. ik
WX V)= Y N Oy, (z ). (3.34)
(a,b)eZ?
The genus of the mirror curve
N—-1,M-1
> WX, Y) =0, (3.35)
1=0,k=0

is M N + 1. The underlying abelian surface has polarisation

. . . Nt m
(N, M) with the period matrix given by 2 = ( m M,o>'
The theta functions form a basis corresponding to this
(N, M)-polarization of the abelian surface.

3.4 Geometric interpretation of the mirror curve

An illuminative way to visualise the mirror curve X' is to
see it as N copies of the base torus glued together by N-1
branch cuts [12,31]. The one cycles, A and B, of the base
torus are lifted to a basis of 1-cycles A;, B;,i =1,..., N on
Y. Riemann—Hurwitz theorem is used to compute the genus
of ¥ and is equal to N+1. The Riemann—-Roch theorem is
handy in the computation of the number of moduli of X,
which is equal to N in this case.

In the case under consideration, the genus N Riemann sur-
face is seen as defined by theta divisor. A general polarised
abelian variety ¢/ admits a line bundle £ with ¢;(£) =
where w is a (1, 1)-form that is given in terms of the coordi-
nates 0 < y; <1 by

w = [Ndy, Adys +dy; A dys] (3.36)

where it is assumed that the period matrix £2 of ¥ is sym-
metric and Im(§2) > 0. For general abelian variety with
polarisation given by w = [Ndy| A dys + Mdys A dy4] the
line bundle £ admits M N holomorphic sections. In the case
of an abelian surface these sections are given by genus 2 theta
functions

i
@[M N:|(z|.Q) 0<i<M, 0<j<N.

o (3.37)

A theta divisor is the zero locus of a linear combination of
the above set of theta functions

M N i

ZZAU@[K §:|(z|.(2)20
j

(3.38)

1

where A;; denote the moduli of the curve. This zero locus
defines the mirror curve of genus M N + 1 and is the Riemann
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surface X'. For the special case of M = 1 the mirror curve
can be expressed in the following form

3L e cloah ) =0, (3:39)
n! 2mi

where 6] is the Jacobi theta functionand h(x) = [ ;\7:1 O1(x—
&jlp) with &; is the moduli of X'. This can be reorganised into
the following form

(3.40)

N, N
G AP gid =0,
27

RN ANE
where £2 is the period matrix of the genus MN+1 curve b3
which is an unbranched cover of a genus 2 curve and in gen-
eral is given by

¢ Bmi Pmy Pmy | Brmyy 7
1 2mi 2mi 2mi 2mi
2
Q= (3.41)
ﬂm. . . .
| By 90 0 p |

It is easy to see from the following representation of genus
g = MN + 1 theta function
o N A
® (Z|82) = ex <m'(m+oz).9.(m + )
MRS 3

meZ&

+27i(Z + B).(m + oc)), (3.42)

where Z, o, B, m are g-vectors and £2 is a g X g matrix with
Im$2 > 0.

To study the decomposition of generalised theta function
[44] defined on the Jacobian of a genus g = M curve, we
start from the following Fourier representation

M : M
2 : eZm D sy Mizi T Y mi 2iym
’

meZM

O(R)z) = (3.43)

where £2 is the period matrix and satisfies the following con-
straints

M

M
Z.Q,'j =T, Z.Qij =T.
i=1 j=1

This constraint encodes various periodicity properties. In
other words we can decompose 2 as

(3.44)

Q= % + 2, (3.45)

where 2’ is the traceless part. Now redefine z; as follows

M
z
i=47 + z; such that Zz; =0. (3.46)

i=1

Putting back these redefined variables in (3.43) we get

ORlz)= Y

meZM

LM . M M M
827”M Yimymitim 5 (Oin m;)2+2mi Yim mizi4mi Zi,j:l m,-.Ql./jm,-

- >

i€lpy,SEL

<)

meZM,Zﬁil mj=i

-y

iEZM

eZni(s+ﬁ)z+m’rM(s+ﬁ)2

. M / - M ’
o2 Dot MpZy i Y mp 82, my

0 [%] (Mt|2)0;(22'|Z), (3.47)

where ©; is the second summation factor in the first line of
(3.47).

4 Degenerations and their effect on the partition
function

The partition function of the CY threefold Xy js is given
by [25]

Zn, M)(r 0, €12, Mg =m, t)

Y [Jel ] e
(x’ i=1 i=1a=1 aal(6+)
ai*! (tap — m)ﬁ e (tab +m)

A.1)

it

BN e ey

@ o@

where the sum is over N partitions of a@ = {a

af} and o) = oV, 0; = ' tab = laatt +
tat1,a42+  Flatb—(a+1),b>bit1 —b,~ is the distance between
vertical lines (or M5 branes) and moreover the factorisation
degeneration takes place when all the mass parameters m,
are taken equal to m. The expressions of partition functions

after degeneration becomes particularly simple at the special

l+1 —b;

point in the Kihler moduli space where Q; := Q := ¢>7iT
and in the unrefined limit of the §2-background parameters
€] = —€) = €.

We define

4.2)

N
@)= ley”|
b=1

where |a(@| is the size of the partition &®) which is the sum
of the parts of partition. To study the degeneration of partition
function we have to study the x — 0 limit of ¢, (x). For two
integer partitions p and v, theta function %, in the above
partition function (4.1) is defined as

NI SR
@i, j)en

ﬁuv x) =

@ Springer
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I S
X 1_[ S (p, e X i gt

(i,j)ev

(4.3)

Here t = e/, g = ¢/“1, V' represents the transpose of

the partition v and product [] means that the product is
(i,j)ev

over all the boxes of the Young diagram corresponding to the

partition v having length £(v)

implies that 1 <i < £(v),

(i, j)ev, l<j=w.

The Jacobi theta function ¥ (p, y) for y = > is defined as

Zﬂikp)(l _ y—l e—znikp).

1 1 =
o, V=2 —y D[] —ye

k=1

For x = 0 and in unrefined case

@ =— [] #.vi—i+m—j+1
(. )en
< [T ooy —i+vi—j+1D
(i,j)ev
=— [T 2. kul, i)+ 5 — 1)
(G, )en
< [T oG huti, i)+ —vh) (4.4)
(i,j)ev

where 1, (i, j) = i + ,u’j —i — j + 1is the hook length of
the partition p. Since, the Jacobi theta function 9 (p, z) is an
odd function w.r.t. z i.e., ¥ (p, 0) = 0, therefore ¢#,,(0) =0
if hy, (i, j) + v; — u’j = 0. Since h, (i, j) # 0, therefore
v; £ thj.If/L = v then

90 = [T 900 hui. )

(i, J)en

h, (i, j) is non zero therefore ¥, (0) # 0. In other words
w # v implies ¥, (0) = O i.e. either 1, (i, j) —i—v; —,u;. =0
or hy,(i, j) + /L;- - v; = 0. Because i, (i, j) # 0 therefore
v;- #~ u; We thus arrive at the useful property of ,,, (x) at
x = 0 given by:

O () =8, [ 2" )0 ") (4.5)
(. j)ep

where §,,,, is the kronecker delta function and h, (i, j) =

Wi+ u; —i— j+1is the hook length of the partition zt. This

identity is useful for studying different degenerations of the

partition functions.

5 Degeneration 1: factorization

This type of degeneration corresponds to taking both the ver-
tical and horizontal ‘distances’ between the 5-branes equal

@ Springer

to m, which is the Kihler parameter corresponding to the
exceptional curve or (1, 1) brane in the web diagram Fig. 5.

5.1 (N, M) =(1,2)

We begin by looking at the case of X >. The unrefined par-
tition function is given by,

Za(t,p,m,t,€) =

Z Q|a1|+\a2| ﬁalal(m)ﬂazaz(m)

2 Barer (0 0)

Doy () Doty (1,1)
Doy ()2

5.1

Here, t,, =t —m and t,/ = ¢ + m. The partition function
Z (1,2 in the limit  — m reduces to

9 9
Za)(t, pom,e) =y Qlrltlel m'(m) e ()
w101 0 0)

« 7—90(10(2 (O)ﬂoqozz (2m)
Doty (m)?

Using the property of ¢, (x) defined in Eq. (4.5) we get

Uy ay (2m)
Za (T, pme) =) Q! T (5.2)
02 Z Pgar (0)
= Zq,1n2t, p,2m, e). (5.3)
52 (N,M)=(1,M)
The partition function defined in (4.1) for N = 1 has the
following expression
Za.m)(T, p, €12, m, 1)
Z Qe+l 1—[ Doy, (M)
ara. a=1 aaaa (6+)
% 1—[ Olaotb (tap — m)ﬁotaa;, (tap +m) (5.4)
l<a<b<M l?aaab (tab - 6+)0agotb (tab + €+)

For tyq+1 = m we get tup = ltag+1 + latlat2 + -+ +
tatb—(a+1)b = (b — a)m. In this case the unrefined Z( )
partition function (e, — 0) becomes

Za,m)(T, p,t =m,€)

= Z Qo+ 1—[ Varyar, (M)
2P ()

A2, .M
X 1_[ CtuOt[) (b —-a-— 1)m)ﬂa,,ab((l; —a+ 1)m) ’
I<a<b<M Pa,a, (b — a)m)

(5.5)

Since ¥y,q, (0) = 0 for o, # oy, as shown in the previous
section, we get

Za,m (T, p,t =m,€)



Eur. Phys. J. C (2022) 82:348

Page 11 of 18 348

_ Z QMlole[ aldl(m)] Aﬁl
0[10(] (O) a=1

ﬁ Dy (b — @ — Dm)Paya (b — a + Dm)
b=a+1 290110(] ((b - a)m)2
_ Z QM|a1| I:ﬁotwq (m)]M Vaya, (O)M_ll?oqa] (M m)
ﬁalal(o) 0a1a1(m)M
_ Mo Otlal(Mm)
Z ¢ Vayay (0)
_Z(l’l)(Mr,p,Mm,e). (5.6)

This shows self-similarity behaviour of the partition func-
tion Z( py(t, p,t = m,e€) upto the rescaling of t and
m. In other words as far as the partition function is con-
cerned the the CY-3fold X is equivalent to the CY-3fold
X 1.1 upto the rescaling of some kédhler parameters. This self-
similarity structure is actually followed by the partition func-
tion Z(y m)(t, p,t = m, €) for general values of N and M
as shown below.

5.3 General (N, M)

By generalising to the CY-threefold Xy, we get the fol-
lowing result

0
ZN,m (T, p,t =m,€) = ZHQMl |

o =1
@

_ ZQNM|a(“| (

oD
B

) o) (,)(Mm)
19 o <,>(0)

ﬁ“il)ail) M m)>N
l?agl)aii) 0)

5.7

So, in general

=ZanMt, p, Mm, €)™,
(5.8)

Znm) (T, Py taar1 =M, €)

This corresponds to degenerating the web diagram of Xy 5/
to the disconnected union of N rescaled web diagrams of
X1,1 as shown in Fig. 6. The CY threefold X ; has a nice
interpretation in terms of the so-called banana curves [13].
A banana configuration of curves in the CY threefold is a
union of three curves C; = P! with the normal bundle given
by O(—=1) & O(—1). Moreover Ci N Cy; = Co N C3 =
C3 N C; = {x, y} for distinct point x, y € CY3-fold and
there exists a preferred coordinate patch in which C; are
along the coordinate axis.

In other words the topological string partition function
Zxy y (@, €) is factored [20,38] into a product of N copies
of Zx, , (z, p, m), where the later is the topological partition
function on a CY threefold with a single banana configuration
of curves.

5.4 Interpreting the factorisation: Zy ny — Z(Al’ )

Recall that, on a arbitrary point of the Kéhler cone, the num-
ber of independent Kihler parameters entering the partition
function are

#(T,s) + #(t;5) + #(intersections)
—#(horizontal constraints)
—#(vertical constraints) + 2

=WM-1)+N—-1)+MN
—-M-1—-(N—-1)+2
=MN +2 (5.9)
In general we can have three different series representations
[30] of Z(m,ny according to whether the toric web diagram

of X n is sliced into horizontal strips, vertical strips and
diagonal strips

Zn (L T.m €1, €2) = ZP/(T.m) Y e M2 (T, m)
k

Zn (€, T, m, €1, €2) = ZP (1, m) Y e T Z(t, m)
k
Zm.n T, m, €, e) = ZP(T, t) Z e KMZ (T, t)
k
(5.10)

where the Kihler parameters 7; from T= {T1, T», ..., Ty}
represent the distance between vertical lines , #; from t=
{t1, 1, ..., ty} represent the distance between horizontal
lines and m denote the diagonal lines of the web diagram
in Fig. 2. These expansion have been interpreted as instanton
expansions of three gauge theories which are dual to each
other. For these to be consistent expansions it is assumed
that there exists a region of the moduli space of Xy )
in which either T or t or m become infinite, with all the
rest of parameters kept finite. This region of the moduli
space corresponds to the weak coupling limit of gauge
theories.

At the special point in the moduli space where ¢, ,+1 = m,
we are left with three independent Kahler parameters t, p, m.
Moreover due to the weak coupling expansion {T — oo}, N
horizontal strips gets decoupled and we get Z {V I

Remark

After normalisation by the gauge theory perturbative part,
the partition function Z(j 1)(t, p, m) can be written as [11,
15,43]

Za,n(t, p,m)
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Fig. 6 Zy .y degenerating to (21 1)V

—mi(t+p+m) —c(4kl—p?)
—=¢e 2 1_[ (1 —e
(k,l,m)>0

1
- 5.11)
Dio(t, p, m)2A

2ni(kr+l,0+pm)>

where c(4kl — p?) are the Fourier coefficients of the elliptic
genus of K3
X(K3,1.2)= Y 24c(d4h—m*)eP "D (512)

h>0,meZ

and @1o(t, p, m) is the unique weight 10 automorphic form
of Sp(2,7Z). We have implicit used the fact that the large
radius limit (universal part) of the Taub-NUT elliptic genus
matches with the elliptic genus of C2 [22]. This allows us to
write Z(y, pm)(T, P, ta,a+1 = m) in the following way

—Nri(t+p+m)
Znmy (T, potaar1 =m) =e 2 1_[
(k,l,m)>0
x(1 — 62711'(Mk‘[+lp+pMm))—Nc(4kl—p2)

1
— . (5.13)
DMz, p, Mm)2

6 Degeneration 2: splitting degeneration

This degeneration corresponds to turning off the Kihler
parameters in such a way that the partition function Zy
reduces to the partition function Zy p—1, upto an overall
factor of Dedekind eta function. Consider the following par-
tition function

Zv,m(t, ,0 mg , €1, 2,};1;)

_X,.: 1—[ o] 1—[1—[

i=la=1

l+1C(’ (mll)

a ot’ (6+)

I<a<b<

@ Springer

ITi degenerates to
_—>

s o i+1(;;b)l9 i+ i(ZJb +my +mp)
X
19 @b—i-ma —6+)l9 » @b+mb+6+)

6.1)

In the above partition function (6.1)
Tab = Taat1 + May1 +Tasias2 + -+ mp_1 + 1.

For N = 1 the above defined partition function reduces to

Za,m) (T, p, Mg, €12, Lab)

= 3 bt HM
a2, M Vo, (€4)
X 1_[ auah (tab)ﬁauah (tab +mgy + mb)
l<a<b<M Vayap, (tab + Ma — €4) 0,0, (lap + mp + €4) '
Remark

Note that Z QI = ( ) This factor appears in the degen-
eration 11m1t as dlscussed below (Fig. 7).

6.1 (N, M) = (1,2)

Let us consider the partition function for N = 1 and M =2
in the unrefined case (€] = —¢p = €),

Za,2)(t, p,mi2, 2, €)
_ Z Q|a1\+|a2| Vajay (M1)Varyay (M2)
£ Darr 0Pz, (0)
190{10{2 (fré)ﬂalolz (IE +my + m2)
ﬁonaz ({1; + ml)ﬂmaz(tlf\i + my) '

6.2)

e my —> Qormp — 0:

When we take m; = 0 in the partition function (6.2),
the terms in the numerator and denominator becomes same,
therefore they cancel out each other. Then (6.2) reduces to
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Fig. 7 Two possible
degenerations of the partition
function Z; ». The third column
depicts 3D/non-planar structure
of the mirror curves

the multiple of Z(j 1) as:

~ Varar (M2)
Z1,2)(t, p,ma, 112, €) = Z Qo] azaz—o
P Ve (0)

=Y 0 Z4 1 (x, p.my. €.

o]

Same result follows for the case when we take my, = 0 in
(6.2) i.e,

Zaa(t, p,my, i, €) = Z 0212 1y(z, p,ma, €).

a2

° tE —0:
In the limit 715 — 0, (6.2) is:

Jor |+eea | 19011(:(1 (ml)ﬁotzotz (mz)

Za(t,p,mn,€) = Z 0 e 000 (0)
ajag [ 21%)

a2
19&]012 (0)19011012 (my +my)
ﬂ(llaz (ml)ﬂaqaz (m2)

(6.3)
Again, the presence of ¥4,«, (0) force contribution only from

the same partition and we get the following:

Zap(t, p,mip2,€) = Z1,1)2t, p, m; +m2, €).
62 (N,M)=(1,3)

Similarly consider the partition function Z( 3)(z, p, m1 2,3,
Taps €)

Z4.3)(T, p,m1 23, lap, €)

= Z ka; otel <ﬁ ﬁOlkOlk (mk))
@123 k=1 Foey (0)

% ﬁalag (ﬁ)ﬂaf} (H-é +my + ”’E)
Voyan M1 + 112) Va0 (M2 + 112)

% ﬁazag (%)ﬁazog (l% + n’/lj + ms3)
Dayers (123 + m2)Voyas (f23 + m3)

Fig. 8 Z3

ﬁoclog (l%)ﬁalag (11’? +my + m3)
Varas (113 +m1) Vs (T3 +m3)

6.4)

Remember here all m; si = 1,2, 3 are different, and 713 =
f12 +my + 3.

e m3y— 0:

When m3 approaches to zero in (6.4) it takes the following
form:

Za.3)(T. p.my 2, 112, €)
_ Z Q\a1|+\a2|+|a3\ Vayay (M1) Vayar (M2)
s Derra; (0) P, (0)
Varas (112) Dy (F12 4+ m1 + m2)
Davyay (M1 + 12) Dy (M2 + 112)
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3

(a) (b)

Fig. 9 Three possible degenerations of the partition function Z1 3

=0 24 (r, p.mi2. 112, €)

o3

Thus Zg 3y = Za,2).
e myt— 0:
Similarly

Za3)(t, pomip3, 113, €)
my =0 Z 02l 24 o) (t, p,m1 3, 113, €)
\ ,

2%

and
e my— 0:

Z13)(t, p,mi 23, 13, €)
m =0 Y QN Zq,(t. p.ma3. 0. €)
, :

al

Hence in all these three cases when any m 1, my or m3 is zero
Z(1,3) reduces to the case of Z(; 2y upto some factor (Figs. 8,
9). Moreover same degeneration of Zj 3 results if one takes
the limit 7,5, — O for any a, b i.e., 213 — Z(1.2).

o tay— 0:

Za3)(t, pomip3, 3, €)
=0 Y 0" Z4a)(x, p,mi23,€)
o

6.3 (N, M) = (2,3)

Previous subsections discuss the cases when N = 1 and now
we generalize to the case of N = 2. Explicitly the partition

function is of the form

Z0.3) (T, p,m123, €12, tap)

@ Springer

oza“oc’ (ma)

- e 1]

i=la=1 alo‘l(o)

2 B ol (tap)?,, i+t ,-(t;; +mg + mp)
1 r (tab + mg — 6+)ﬂ 1 x (tab —+ nmp + 6+)

(6.5)

< 1

1<a<b<3i= l

For the unrefined case €; = —e> = €, we consider the degen-
erate limit m3 = 0. Using the identity (4.5) we get

Z0.3)(t, p,mi o, m3 = 0,74, €)

V] la®| ey
= Y  of 0y iy

al,a?,«
ﬂaEZ)aiw(ml)ﬁaéz)aén(mz) 290(;1)“;2) (ml)l?ag)a;z) (m3)
ﬁail)ail) (O)ﬁaél)aél) 0) ﬁaiz)aiz) 0) ﬂaf)af) )

D@ (12)8, 0,0 (t12 + my + m2)

O]
3

g (12 +m1)B m m (f12 + m2)

@ (12)0,0,0) (t12 +m1 + m2)

D@2 (2 +m1)T, 0,0 (2 + m2)

Recognizing the Z 2y (T, p, m1 2, tap, €) part, the lastexpres-
sion can be written more succinctly as
Z0.3)(t, p,mi2,m3 = 0,74, €)

o o
o ~
=> 07 03 2T, p.m12.Tap. €)

P
a3

(6.6)

Similar degenerations follow by taking the limit my = 0 or
mp = 0.
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6.4 General (N, M)

The previous sections discuss the cases when N was taken
equal to one. In this section we generalize the argument to

In the limit m; — 0

Z(N,M)(Tv 107 me, %b’ 6)

generic values of M and N. For the unrefined case €] = Z l_[ Q Zvm-1(T, p, mq,t~pq, €). (6.11)
—€) =€ a’l i=l1
~ |Ol(')\ [+Ial (ma)
Zv,m) (T, p, My, €12, tap) = Z l—[ 0, l_[ l_[ O
ol i=1 i=la=1 “’“’
1_[ 1_[ a ol (tab)ﬂ iyl (tab +mg + mp)
X 6.7)
| <a<b<M i=1 l(l‘ab"""’la)19 l(tab"f‘mb)
Zonte e = ¥ [T TITT 2442 T T
.[7 9 9 b 6 =
(N.M\T, P Mg, lap ‘ 191 1(0)
o, i=1 i=1a=1 a=1 b=a+1
Voiai+t Taatt + May +latiat2 + - Fmp_1 +Tp-1p)
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Vyigi Caa+1 +Mat1 + latiara + -
a”b

+mp—1 + th—1p)

Specializing to N = 1, Q; = Q and in the limit m; = 0

the last expression reduces to

Z(I,M)(tv 107 ma, Zlba 6)
=> 0" 20y n(x. p.mi Tap, ),

aj

(6.9)

where t,5, and m; do not include the moduli which are tuned
to zero. More generally and at the same point Q; = Q in the
moduli space we expect similar structure for Z(y )

Similar recursive structure in (N,M) shows up in the limits
m; = 0 (for any i=2,...) or #; = 0. From mathematical view-
point such degenerations have been discussed in [41,42].

7 Discussions

The compactified 5-brane web given in Fig. 5 gives rise to a
five dimensional N” = 2 supersymmetric gauge theory on the
common worldvolume. This 5-branes web can be deformed
to include also (1, 1) 5-branes. In string theory this is inter-

~ o HM (mg) M-1 M
Ziwan(epomes e = 3 [0 T[T oot ) e T T
Oéf; i=1 i=1la=2 a=2 b=a+1
Vit (aa+1 +lattar2+ oo+ mayr + oo+ mp_i)
. Bgiai (aat1 +latiara+ o+ Tpm1p +ma+magy + -+ mp_1)
ﬁa‘ilaé‘*'l(;;a-l-l +Tagtat2 + o F loo1p + Mg+ may1 + -+ mp_i +mp)
l‘/‘a;ai(?aaﬂ +Tattat2 + o+ To—1p + Mol + -+ mp_1 + mp)

N 9 i1, (m1)

ﬁaiaéﬂ (tlz)ﬂaiaéﬂ (tiy +my +my)

1 1
gl Vaieq O (

Dyt i (112

+ ml)ﬁagaé(ﬁz + m2)

9, irt (T2 + 13 +m2)0 i i+t (12 + 123 +my + my + m3)
173 173

Voo (12 + 123 + 11 + M) i (112 + 123 + ma +m3)

0"‘10‘5\;1([12 T3t

+im—im +my+my A+

+mpy—1+my)

Vi git! (o +13+ -

_ ) (6.10)
+ity—im+my+ - mpy— +my)

@ Springer



348 Page 16 of 18

Eur. Phys. J. C (2022) 82:348

preted as the splitting of the D5-branes on the NS5-brane
world volume. In other words the string tension is turned on
for the strings that are stretched between D5-branes. It gives
rise to the mass deformation of the bifundamental hypermul-
tiplets in the five dimensional gauge theory. The mass defor-
mation results in the breaking of supersymmetry to N = 1
in five dimensions. Because of the toric compactification of
the 5-branes web one gets affine An_i quiver gauge theory
with an SU(N) gauge group at each node and one bifunda-
mental matter stretched between adjacent nodes. There are
M coupling constants 7;,i = 1, ..., M for each node such
that

M 1
Zfi =R—1,

i=1

(7.1)

where R is the radius of the S! on which M5-brane theory
is compactified. In geometrical terms each gauge coupling
constant is related to the area of a distinct curve in CY three-
fold. If there are more than one, though equivalent, choices
of these curves, this gives rise to dual gauge theory formu-
lations of the same system. In other words for the web of
M NSS5-branes and N DS5-branes the gauge theory on the
D5-branes is given by

gauge group
:U() x SUN)I x SU(N)2 x -+ x SUN)um

hypermultiplet representation

LDy ((Na, Na+1) @ (N, Nam) (72)
where N, is the SU(N) fundamental representation of the
a-th node and N, the complex conjugate one.

The partition function of the quiver gauge theories given
in (7.2) can be computed directly by using Nekrasov instan-
ton calculus as described in [25]. In doing so one has to take
into account the non-trivial winding of strings on the com-
pact direction transverse to the 5-branes. There is interesting
physical interpretations of these degenerations. In the previ-
ous sections we have discussed how various degenerations of
the mirror curve is related to certain degeneration of the cor-
responding partition functions Zy . Recall the following
degeneration (5.8)

ZNn (T, pitaarr =m,€) = Za. (M, p, Mm, e)V.
(7.3)

This degeneration corresponds to a U(N)M quiver gauge
theory degenerating to a U (1) gauge theory. Moreover
the gauge coupling constant T and the hypermultiplet mass
parameter m are scaled to Mt and Mm under the degenera-
tion. This rescaling corresponds to multiple wrapping num-
ber of the D-branes along the T and m directions.

@ Springer

Similarly the second degeneration of the Zy s (6.10) that
we discussed and is given by

Zv,m) (T, Py Mg, tap, €)
N )

NG

= 212"

i i=1
o

Z(N,M—l)(ta P, mqa?pqa €), (7.4

has an interesting physical interpretation. The limit m; — 0
corresponds to supersymmetry enhancement to N = 4 and
we get a decoupling factor of 1(7).

8 Conclusions

This paper explored some interesting consequences of the
mirror symmetry of the local CY threefold X y 3. We inves-
tigated some interesting properties of the type A topological
string partition function of Xy s in special regions of the
Kihler moduli space. We have called these degenerate lim-
its, because in these limits the partition functions on Xy, u
collapse to those on Xy, p7—1 in various ways. In accordance
with mirror symmetry the degeneration behaviour on the type
A side is reproduced on the type B side in the degeneration
of the mirror curves into lower genus curves.

For future directions it would be interesting to study the
analogous properties of Zx p and quantum mirror curves
for the general £2-background .i.e. €] # 0 and/or €] # 0 and
€] # €7 and at an arbitrary point of the Kéhler moduli space
of X, m.It will also be interesting to study the modular prop-
erties of the free energy log(ZA(N,M)(t, p,€,m,t)) and the
single particle free energy [26] PLog(ZA,’(N,M) (t, p, e, m,t))
along the lines of [24]. It is also interesting to generalise the
quantisation of classical DELL system as done in [39] to the
case where the underlying abelian variety has (M,N) polar-
ization.
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Appendix A: Geometry of Xy y: a quick review

The non-compact CY 3-fold X is defined as the partial
compactification [25,36] of the resolved conifold geometry.
The later is given by C* x C* fibered over the z-plane.
The partial compactification is achieved by compactifying
each of the two C* fibers to a T? fiber. Of the three Kihler
parameters 7, p, m of the CY 3-fold X 1, p and t correspond
to the elliptic fibers and m corresponds to the curve class of
the exceptional P! of the resolved conifold. We will define
the non-compact CY 3-fold Xy a for N, M € N as the
Zn x Zy orbifold of X ;.
In toric geometry the equation of the conifold given by

2122 — 2324 =0, z1,22,22,24 € C (A.D)

is translated to an equation on integer latices parametrised
by 3-vectors vy, va, V3, Va

vi+vy—v3—v4 =0. (A.2)

The CY condition constrains the geometry to a plane. The
irreducible toric rational curves of the 2-dimensional cone
are given by

C(la,b) :=RxoConv({(a+1,b,1),(a,b+1,1)}),
Coupy 1 = ReoConv({(a, b, 1), (a,b+ 1, 1)}),

C(3a,b) :=RyoConv({(a, b, 1), (a+1,b, D}, (A.3)

foralla, b € Z. The Kihler variables ¢; corresponding to C*
are defined as the exponential of the symplectic area of C".
The author in [36] computes Strominger—Yau—Zaslow (SYZ)
[46] mirror of the local CY3-fold X, s, which is given by

N—-1,M—1
w — Z Aab Z qC(cN+a,dM+l7)Z§N+aZgM+b’ (A.4)
a,b=0 c,deZ?

where A, ; encodes the data of the open Gromov—Witten
invariants, 71, zo are coordinates of the abelian variety of
polarisation (N, M), and u, v are the sections of certain line
bundles on the abelian variety. The zero locus

N—1,M—1
Z Aab Z qC(cN+u,dM+b)Z€N+aZ(21M+hZO’ (A.5)
a,b=0 c,deZ?

defines a curve with genus N M + 1 with (N, M) polarisation.
For illustration, consider the CY3-fold X i, for which the
cone of effective curves is given by Rxo{C L c2, C3}. To
make the modularity of the system manifest, we redefine the
curve classes as

C.=C'+c? c,=c'+¢* c,=c', (A.6)

for which the corresponding Kéhler parameters are denoted
as g = qiq2 = e'.q, = qigz = €7 g0 = q1 =
> Then following the SYZ program, the SYZ mirror of

X1,1 1is given by

wv=Aq) Y g enziy. (A7)
c,de7?

Moreover it turns out that the right hand side can be re-written
in terms of theta function as
(A.8)

uv=A(-Q)(~)2[ i|(z1712;9),

(_%7 _/2_))

where ©®, is the genus 2 theta function and 2 = <NT o )
o Mp

is the period matrix of the following genus 2 curve

@2[ O ]m,zz;m:o. (A9)
(=3, —%)

2
Moreover the curve classes C' satisfy the following rela-
tions

1 3 1 3
Clam16) T Clam1.6) = Cla—1) + Clu—1.5)>

1 2 1 2
C(a—],h) + C(d,b) - C(d,b—]) + C(d,h—l)' (AIO)

For the local CY 3-fold Xy j» a modular covariant basis of
generators can be given by

1 I 2
Cinab) = Clapy Criab) = Clupy + Clapye

Cp.@b) = Clapy T Ciuty: (A.11)

where a, b € Z. In the fundamental domain of the (N, M)-
web there are 3M N toric rational curves wherea € Zy, b €
Zp- Due to the 2N M constraints in (A.11) and torus period-
icity the effective rank is M N + 2.

Appendix B: 22:01 m, ;, is independent of b: proof

Here we prove the identity used in Sect. 3.3.

Note that in our notation the curve classes C (1 a.b) Arerepre-
sented by the Kéhler parameters my j,. Using the first relation
in Eq. (A.11), we can write the following summation

p—1 p—1

1 3 1 3
> Claciiy + Clacrn) = 2 Clapmry + Clacri)-
a=0 a=0

(B.1)

Due to the compactification of web diagram on a torus there is
periodicity relation C(l_1 b = C (lp_l by After simplification
the second term cancels on both sides and we get

p—1 p—1
Y Clacrn) = D (Clapory)- (B.2)
a=0 a=0
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Expanding the left side
p—1
1 1 1 1 1
D (Clipy +Clopy + Clipy + -+ Clpsy + Clypap)
a=0

p—1
=Y (Clap 1) (B.3)
a=0

Rearranging the terms after using Using C (1_ 1py =C (lp_ 1.b)
we obtain the desired relation

p—1 p—1

1 1
> Claty = D Clas-ry-
a=0 a=0

(B.4)
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