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Abstract In this article we study certain degenerations of
the mirror curves associated with the Calabi–Yau threefolds
XN ,M , and the effect of these degenerations on the refined
topological string partition function of XN ,M . We show that
when the mirror curve degenerates and become the union of
the lower genus curves the corresponding partition function
factorizes into pieces corresponding to the components of
the degenerate mirror curve. Moreover we show that using
degeneration of a generalised mirror curve it is possible to
obtain the partition function corresponding to XN ,M−1 from
XN ,M .
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1 Introduction: refined topological strings on XN,M and
corresponding mirror curves

The non-compact Calabi–Yau threefold (CY threefold)
XN ,M with N , M ∈ N [6,8,14,20,25,27–29] has the

a e-mail: ambreen.ahmedgcu@yahoo.com
b e-mail: nouman01uet@gmail.com (corresponding author)

structure of a double elliptic fibration with an underlying
SL(2,Z) × SL(2,Z) symmetry. One elliptic fibration has
the Kodaira singularity of type IN−1 and the other elliptic
fibration has IM−1 singularity. The topological string par-
tition function on XN ,M was computed in [28] and shown
to be related to the Little string theories (LSTs) with eight
supercharges. In the decompactification limit the low energy
description of circle compactified LSTs of types (M, N ) and
(N , M) are described by quiver gauge theories with gauge
groups U (M)N and U (N )M respectively. In the geometric
engineering argument the M-theory compactification on a
non-compact Calabi–Yau threefold Y is described at low
energies by the 5dN = 1 SCFTs. These SCFTs are UV com-
pletions of the gauge theories we are interested in. The low
energy gauge theory is completely specified by the require-
ment of supersymmetry, once the gauge group G, hypermul-
tiplet representation R and the 5d Chern–Simons level k is
fixed. In taking the QFT limit the gravitational interactions
are tuned off. This is achieved by sending the volume of
Y to infinity while keeping the volumes of compact four-
cycles and two-cycles finite. This is equivalent to the non-
compactness condition of the CY threefold. The coulomb
branch of the SCFT is identical to the extended Kähler cone
of the threefold Y [8,35]. The CY Y can be understood as
the singular limit of a smooth threefold Ỹ in which cer-
tain number of compact four-cycles have shrunk to a point.
The BPS states of the 5d theory correspond to M2-branes
wrapping holomorphic two-cycles and M5-branes wrapping
holomorphic four-cycles. The volume of the two-cycles and
four-cycles correspond to the masses of the BPS states. At
a generic point of the Coulomb branch the two-cycles and
four-cycles have non-zero volumes and the BPS spectra is
massive. At the origin of the Coulomb branch some of the
cycles may shrink to a point and indicate a local singularity
on the threefold.

The refined topological type IIA string partition function
ZN ,M of XN ,M can efficiently be computed using the refined
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Fig. 1 Coordinates of the 11d M-theory space-time

topological vertex formalism [34]. The partition function
ZN ,M takes the form of an infinite series expansion. The
expansion parameters depend on the choice of a preferred
direction common to all vertices of the toric web diagram.
Different choices of the preferred direction give equivalent
but seemingly different representations of ZN ,M [8,25,29].

Lately another powerful method of computing the parti-
tion function was proposed in [18] in terms of M-strings,
which are one dimensional intersections of M5 and M2
branes. The table given in Fig. 1 summarises the coordinate
labels and specifies the world volume directions of BPS M5-
M2-M-string configuration. The M5-branes are separated
along the compactified x6 ∼ x6 + 2πR6 dimension with
the positions parameterised by scalars VEVs {a1, . . . , aM }
where M denotes the total number of M5-branes andai−ai+1

are the VEVs of the scalars of 6d tensor multiplets. The M2-
branes are stretched between these M5-branes. For the trans-
verse space R

4 we can have only one stack of M2-branes
between M5-branes. However it is possible to perform an
orbifolding [19] of the transverse R

4 such that the mass
deformation and supersymmetry remain preserved. The orb-
ifolding allows the multiple stacks of M2-branes with each
stack charged under the orbifold action. For the M-string
dual to (N , M) web diagram there will be N stacks of M2-
branes, with ith stack consisting of ki number of them. In
gauge theory ki characterises the instanton number. It was
shown subsequently in [25] that the M-string partition func-
tion Z(N , M) is the generating function of the equivariant
(2, 0) elliptic genus of the M-string world sheet,

Z(N , M) =
∑

k

Qk1
1 Qk2

2 · · · QkM
M χell(M(N , k), Vk). (1.1)

Its target space is the product of moduli spaces of U (N )

instantons of charge ki on C
2 : M(N , k) := M(N , k1) ×

M(N , k2) × · · · × M(N , kN ) along with a vector bundle
V (N , M) on it. The mass deformation is taken care of by an
extraU (1)m action with equivariant parameterm. The vector
bundle is special in the sense that only right moving fermions
couple to it. The moduli space M(N , k) is nothing other than
the moduli space of M-strings (Fig. 2).

For example the specific values M = 1, N = k corre-
spond to a single M5-brane wrapped on parallel S1 and k
stack of M2-branes wrapped on the transverse S1 and ending
on the M5-branes. The stack of M2-branes appear as coloured
points in the R

4|| that resides inside the M5-brane world vol-
ume and transverse to the M-string world sheet. Thus for the

Fig. 2 Web diagram of XN ,M . ti ∈ {t1, . . . , tN } denotes the distance
between i th and i+1-t lines and Ti ∈ {T1, . . . , TM } denotes the distance
between i-th and i + 1th lines. m denotes the Kähler parameter of the
diagonal P1s. The double and single bars | and− indicate the periodic
identifications

configuration that involves nl number of M2-branes in the
l-th stack, where l = 1, . . . , k, the moduli space is obviously
the product of Hilbert scheme of points as follows

H := Hilbn1[C2] × Hilbn2 [C2] × · · · × Hilbnk [C2] (1.2)

The vector bundle V over H that is required for (2, 0) world
sheet theory has been determined in [18] and turns out to be
the following

VI = ⊕N
t,s=1Ext1(Ir , Is) ⊗ L− 1

2 (1.3)

where I = (I1, I2, . . . , IN ) ∈ H . Roughly speaking Ext
groups count the massless open string states for strings that
are stretched between D-branes wrapped on complex sub-
manifolds of CY spaces. Note that each factor Ext1(Ir , Is)⊗
L− 1

2 in the fibre denotes the contribution of a pair of stack
of M2-branes ending on a single M5-brane from opposite
sides. In other words there is an isomorphism between the
degrees of freedom on the (N , M) 5-branes web and the
moduli space of M-strings, M(N , k). Using equivariant fixed
point theorems one only needs to know the fibres of the bun-
dle V(N , M) over the fixed points.

The weights of V(N , M) at the fixed points I(1), I(2), . . . ,

I(M) are given by the following Chern character expansio
[25]

∑

weights

ew =
M∑

p=1

N∑

r,s=1

Qme
i(ar−as )
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×
( ∑

(i, j)∈ν
(p)
r

tν
t,(p+1)
s, j −i+ 1

2 qν
(p)
r,i − j+ 1

2

+
∑

(i, j)∈ν
(p+1)
s

t−ν
t,(p)
r, j +i− 1

2 q−ν
(p+1)
s,i + j− 1

2

)

(1.4)

whereν
(1)
1 , ν

(1)
2 , . . . , ν

(1)
N ; ν

(1)
1 , . . . , ν

(1)
N label the fixed points.

The elliptic genus is then given as follows

Z =
∫

M

∏

i

xiθ1(τ, x̃i + z)

θ1(τ, xi )
(1.5)

where xi and x̃i denote the Chern roots respectively of the tan-
gent bundle and vector bundle V(N , M) as can be read from
(1.4) and the theta function of first kind θ1(τ, z) is defined by

θ1(τ ; z) = −ie
iπ
4 (eiπ z − e−iπ z)

∞∏

k=1

(1 − e2π ikτ )

×(1 − e2π ikτ e2π ikz)(1 − e2π ikτ e−2π ikz). (1.6)

More succinctly, the Nekrasov partition function of the gauge
theory on the D5-branes of the web is identical to the appro-
priately normalised topological string partition function of
CY threefold XN ,M and it is also the generating function of
the (2, 0) elliptic genus of the product of instanton moduli
spaces M(N , k) on which the bundle V(N , M) coupled to
the right moving fermions exists.

1.1 Presentation of the paper

We summarised the type IIA/type IIB mirror symmetry con-
jecture in the introduction (1). In Sect. 3 we construct the
quantum mirror curve of XN ,M and study the limits in which
it can be reduced to a lower genus curve. In Sect. 6 we show
that in the splitting degeneration limit the partition function
ZXN ,M is recursively related to the partition functionZXN ,M−1

and we show this degeneration pictorially. In the appendix
we reproduce the proof of an identity used in the main text.

2 (p,q) webs and the mirror curves

We can consider [2,3] the A-model topological strings on a
toric CY threefold M = C

l+3//U (1)l . Algebraically M is
defined by the following set of constraints

l+3∑

i=1

Qa
i |Xi |2 = ka, a = 1, . . . , l (2.1)

modulo the action of U (1)l , where each Xi parameterizes a
complex plane C and can be visualised as S1-fibrations over
R+. In this way M , as defined by (2.1), is a T 3-fibration over
a non-compact convex and linearly bounded subspace in R

3,

with T 3 parametrised by {θi } coordinates. ka ∈ R+ are called
the Kähler parameters. The CY condition

c1(T M) = 0 (2.2)

holds iff

l+3∑

i=1

Qa
i = 0, a = 1, . . . , l (2.3)

Inspecting Eq. (2.1) makes it clear that since Qa
i ∈ Z, all

toric CY threefolds are constrained to be non-compact. The
second constraint (2.3) furnishes a representation of M as
R+ × T 2 fibered over R3. In this way the toric threefold M
allows its construction by gluing patches of C3.

To construct the mirror N of the threefold M, consider
variable v1, v2 ∈ C, and the homogeneous coordinates xi =:
eyi ∈ C

∗, i = 1, . . . , l + 3 related to Xi by |xi | = e−|Xi |2 .
The variables xi are constrained by xi ∼ λxi for λ ∈ C

∗. The
mirror geometry N is then given by the algebraic equation

v1v2 =
l+3∑

i=1

xi , (2.4)

subject to the constraints

l+3∏

i=1

x
Qa
i

i = e−ra−iθa , a = 1, . . . , l (2.5)

All of these equations can be combined into a single equation

v1v2 = h(x, y; ra, θa) (2.6)

where x, y ∈ C
∗. The function h(x, y; ra, θa) can be decom-

posed into pant diagrams described by

ex + ey + 1 = 0. (2.7)

The last equation describes a conic bundle over C∗ × C
∗ in

which the fibers degenerate over two lines over the family
of Riemann surfaces Σ : g(x, y; ra, θa) = 0 ∈ C

∗ × C
∗. If

the toric diagram of M is thickened, what emerges is noth-
ing else but Σ ; the genus of Σ equals the number of closed
meshes and the number of punctures equals the number of
semi infinite lines in the toric diagram.1 In the topological
A-model the topological vertex computation can be inter-
preted as the states of a chiral boson on a three-punctured
sphere. This chiral boson on each patch of the sphere is
identified with the Kodaira Spencer field on the Riemann
surface embedded in the CY threefold of mirror topologi-
cal B-model [10,16,17,23,32,37,47]. The A-model closed
topological strings on toric CY threefold, with or without
D-branes, is computable by gluing cubic topological ver-
tex expressions. On the mirror B-model the gluing rules are
equivalent to the operator formation of the Kodaira Spencer

1 It is a standard in literature to call Σ the mirror curve.
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theory on the Riemann surface.The elliptic Calabi–Yau three-
fold XN ,M is dual to the brane web of type IIB M NS5-
branes and N D5-branes wrapped on two S1s. We denote
by {y0, y1, y2, y3, . . . , y9} the coordinates of type IIB string
theory vacuum R

1,9. The common worldvolume of the 5-
branes along {y0, y1, y2, y3, y4} gives rise to the gauge the-
ory under consideration and the (p, q) brane web is arranged
in the {y5, y6} plane which is compactified to a torus T2. The
(p, q)-charges and their conservation encode the details of
the five-dimensional mass deformed supersymmetric gauge
theory.

The curve associated to a grid diagram is written as the
zero locus of a sum of monomials, with each monomial asso-
ciated to a vertex of the grid diagram. For example Akl XkY l is
a monomial that corresponds to the vertex (k, l). The mod-
ulus of the curve Akl is determined by imposing a set of
condition: each link on the grid joining e.g. (k, l) to (u, v)

uniquely corresponds to a link on the web, which is orthog-
onal to the former. If the link on the web is given by the line
py = qx + α, the orthogonality condition is expressed as

(k, l) − (u, v) = (−q, p) (2.8)

and the constraint is given by

py = qx + α : Akl = eβαAuv (2.9)

In other words the mirror curves of toric CY threefolds
are determined by the corresponding Newton polygons. The
line in the web [1,4,5,9,34,40,45] orthogonal to the line in
the Newton polygon joining the coordinates,let’s call them
(k1, �1) and (k2, �2) and passing through the point (x0, y0)

is given by ,

(Δ�) y + (Δk) x = (Δ�) y0 + (Δk) x0 (2.10)

where Δ� = �2 − �1 and Δk = k2 − k1. Since the choice of
(x0, y0) is arbitrary, we get

(Δ�) y + (Δk) x = α (2.11)

The equation of the Riemann surface in this patch is given
by exponentiating and complexifying (x, y) to (u, v),

XΔk YΔ� = −eα̃, (2.12)

where X = eu and Y = ev with u, v ∈ C and Re(̃α) =
α. Since the imaginary part α̃ is not determined, we have
introduced a factor of −1 for later convenience. With this
choice, α̃ will be identified with the complexified Kähler
parameters. In the mirror curve, we will have

Ak1�1 X
k1Y �1 + Ak2�2 X

k2Y �2 = 0 (2.13)

which can be solved to give

XΔkYΔ� = − Ak1�1

Ak2�2
�⇒ Ak2�2 = Ak1�1 e

−α̃ (2.14)

3 Mirror curves and their degenerations

We start the discussion by giving an example of Resolved
Conifold. In this case, the Newton polygon is shown in Fig.
3 and the corresponding mirror curve is given by,

A00 + A10X + A01Y + A11XY = 0. (3.1)

Let us choose the horizontal line in the web corresponding to
the points (0, 0) and (0, 1) in the Newton polygon that goes
through the origin so that α = 0 for this line. This gives

A01 = A00. (3.2)

Similarly A10 = A00 and A10 = A01. The line in the web
corresponding to (0, 1), (1, 1) has the equation x = T where
T is the horizontal distance between the two vertices in the
web. Note that the vertical distance is also T . Thus we get
A11 = A01e−t where Re(t) = T . The mirror curve is then
given by

1 + X + Y + e2π i t∗ X Y = 0, (3.3)

where t∗ = i
2π

t = i
2π

T − Im(t)
2π

so that Im(t∗) > 0.

3.1 Mirror curve dual to X1,1

Recall that in the mirror construction the Riemann surface Σ

is a part of the mirror CY threefold. For 6D theories the cor-
responding toric webs have no semi-infinite lines and hence
no punctures. The periodicity of the web is taken into account
by including all of its images under the periodic shift. Note
that after the vertical and horizontal periodic identifications
the toric diagram becomes non-planar.

In this case the mirror curve is given by,
∑

(k,�)∈Z2

Ak,�X
kY � = 0. (3.4)

Let’s take the origin of the web to be the vertex of
the web corresponding to the triangle coordinatized by
(0, 0), (1, 0), (0, 1). With this choice the equation of the hor-
izontal line in the web corresponding to (k, �) and (k, � + 1)

is given by

y = �(t1 + t3) + k t1, (3.5)

where τ is the periodicity of the web in the vertical direction
and t1 is the horizontal distance between two consecutive
vertices on the diagonal in the web given in Fig. 3. This
gives

Ak,�+1 = Ak,�e
2π i(�τ+k z) �⇒ Ak,�+1

= Ak,0e
2π i(τ �(�+1)

2 +(�+1)k z) (3.6)

where Im(τ ) = t1+t3
2π

and Im(z) = t1
2π

. The equation of the
line in the web corresponding to (k, �), (k+1, �) is given by
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Fig. 3 Tessellation of Newton
polygons and web diagram of
X1,1

x = k(t1 + t2) + �t1 where ρ is the periodicity of the web in
the horizontal direction. We thus get

Ak+1,� = Ak,�e
2π i(kρ+�z) �⇒ Ak+1,�

= A0,�e
2π i(ρ k(k+1)

2 +(k+1)�z) (3.7)

From Eqs. (3.6) and (3.7) it follows that

Ak,� = A0,0e
2π i( �(�−1)

2 τ+ k(k−1)
2 ρ+�kz). (3.8)

Using the coefficients the mirror curve becomes

∑

k,�∈Z
e2π i( �(�−1)

2 τ+ k(k−1)
2 ρ+�kz)XkY � = 0. (3.9)

If we define the genus two theta function by

Θ
(
Ω(ρ, z, τ )|(u, v)

)
=
∑

k,�

exp
(

2π i Q(k, �)/2
)
XkY �,

(3.10)

where the period matrix Ω(ρ, z, τ ) and the quadratic form
Q(k, .) are given by

Ω(ρ, z, τ ) :=
(

ρ z
z τ

)

,

Q(k, �) := (k �)Ω(ρ, z, τ )

(
k
�

)

(3.11)

the mirror curve can be written as

Θ
(
Ω(ρ, z, τ )|(u, v)

)
= 0 (3.12)

It is interesting to note [21,31] that under the following iden-
tifications

X → Xe2π iτ , Y → Yez

Y → Y 2π iρ, X → Xez (3.13)

the theta function transforms covariantly and the curve (3.12)
remains invariant.2 Note that in the limit z → 0 the left side
is factorized into the product of genus one theta functions
(∑

k,∈Z
e2π i( k(k−1)

2 ρ)Xk)(
∑

�∈Z
e2π i( �(�−1)

2 τ)Y �
) = 0. (3.14)

3.2 Mirror curve dual to X1,2

Consider the periodic Newton polygon with vertices (0, 0),

(1, 0), (2, 0), (2, 1), (1, 1), (0, 1) as shown in Fig. 4. The
mirror curve is given by
∑

k,�∈Z
Bk� X

kY � = 0 (3.15)

where the coefficients Bk,� can be determined in the same
way as for the genus two case and are functions of the four
Kähler parameters (τ, ρ, z, w). They are related to each other
as follows:

B2k+2,� = B2k+1,�e
2π i(kρ+(�+1)z+w),

B2k+1 = B2k,�e
2π i(kρ+�z), Bk,�+1 = Bk,�e

2π i(� τ+k z).

(3.16)

These recursive relations have the following solution:

B2k,�

2 Recall [7] the theta function with characteristics given by

Θ

[
a
b

]

(z|Ω) =
∑

n∈Zg

exp
(
iπ(n + a).Ω.(n + a) + 2π i(n + a).(z + b)

)

satisfies the following identities under the shifts of z by lattice LΩ and
a, b ∈ R

g

Θ

[
a
b

]

(z + Ωn + m|Ω) = e−iπn.Ω.n−2π in.(z+b)+2π ia.mΘ

[
a
b

]

(z|Ω)

Θ

[
a + n
b + m

]

(z|Ω) = e2π ia.mΘ

[
a
b

]

(z|Ω).
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Fig. 4 Tessellation of Newton
polygons and web diagram of
X1,2

= exp
[
2π i
(
k(k − 1)ρ + �(� − 1)

2
τ + 2k�z + kz + kw

)]

B2k+1,�

= exp
[
2π i
(
k2ρ + �(� − 1)

2
τ + (2k + 1)�z + k(z + w)

)]
.

Then the mirror curve is given by

Θ
(
Ω(2ρ, 2z, τ )|(2u − ρ + z + w, v − τ)

)

+e2π iuΘ
(
Ω(2ρ, 2z, τ )|(2u + z + w, v − τ + z)

)
= 0.

(3.17)

To see the factorisation we can write the last expression
explicitly as

∑

k,�∈Z

(

exp
[
2π i
(
k(k − 1)ρ + �(� − 1)

2
τ

+2k�z + kz + kw
)]

X2kY �

+exp
[
2π i
(
k2ρ + �(� − 1)

2
τ + (2k + 1)�z

+k(z + w)
)]

X2k+1Y �

)

= 0. (3.18)

It is easy to see that In the limit z → 0 we get the factorized
form
(∑

�∈Z
exp
[
2π i
(�(� − 1)

2
τ
)]

Y �

)(∑

k∈Z
X2k
(

exp
[
2π i
(
k(k

−1)ρ + kw
)]

+ exp
[
2π i
(
k2ρ + kw

)]
X

))

= 0. (3.19)

3.3 Mirror curve dual to XN ,M

Consider the (N , M) web shown in Fig. 5. The Kähler
class ω of XN ,M is parameterized by (mα,β, τ, ρ, T, t) =

Fig. 5 Web diagram of XN ,M . ti ∈ {t1, . . . , tN } denotes the distance
between i-th and i + 1-th vertical lines and Ti ∈ {T1, . . . , TM } denotes
the distance between i-th and i+1-th horizontal lines. ma,b parametrize
the diagonal P1s

(mα,β, τ, ρ,m, T1, T2, · · · , TM−1, t1, t2, · · · , tN−1) with
τ =∑M

i=1 Ti and ρ =∑N
j=1 t j . For arbitrary (N , M) values

the factorisation properties of the mirror curve will in gen-
eral be affected by the quantum corrections. The quantum
corrected Kähler parameters are the solutions of the Picard–
Fuchs equations [33]. After getting quantum corrections var-
ious Kähler parameters are mixed non-trivially and that ren-
ders the factorisation non-trivial as compared to the classical
case discussed here.

The mirror curve is given by a sum over the monomials
associated with the Newton polygon. In this case the Newton
polygon tiles the plane

123
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HN ,M (X,Y ) :=
∑

(i, j)∈Z2

Ai, j X
i Y j . (3.20)

3 The coefficients Ai, j depend on the length of the various
line segments in the web which are the Kähler parameters
of the corresponding Calabi–Yau threefolds. As discussed
before the neighbouring pair of points in the Newton polygon
connected by a line give a relation between the associated
coefficients Ai, j ,

Ai,k+1

Ai,k
= e

∑k−1
j=1 Tj+∑i−1

α=0 mα,k (3.21)

Ai+1,k

Ai,k
= e

∑i−1
j=1 t j+

∑k−1
α=0 mi,α

Ai+1,k+1 = Ai+1,1

eT1+(T1+T2)+(T1+T2+T3)+···+(T1+···+Tk−1)+∑k
β=1

∑i
α=0 mα,β

= Ai+1,1e
∑k−1

γ=1(k−γ )Tγ +∑k
β=1

∑i
α=0 mα,β

= A0,1e
t1+(t1+t2)+···+(t1+t2+···+ti−1)

e
∑k−1

γ=1(k−γ )Tγ +∑k
β=0

∑i
α=0 mα,β (3.22)

where in the web diagram of XN ,M , ti ∈ {t1, . . . , tN } denotes
the distance between i th and i + 1th vertical lines and Ti ∈
{T1, . . . , TM } denotes the distance between i-th and i + 1-th
horizotntal lines and ma,b parametrize the diagonal finite line
segments representing P

1s.
Using A0,1 = A0,0 = 1 we get the following solution

Ai+1,k+1 = e
∑i−1

γ=1(i−γ )tγ +∑k−1
γ=1(k−γ )Tγ +∑k

β=0
∑i

α=0 mα,β .

(3.23)

Thus the curve is given by

HN ,M (X, Y ) =
∑

(i,k)∈Z2

Ai+1,k+1X
i+1Y k+1 (3.24)

=
N−1,M−1∑

i=0,k=0

Wi,k(X, Y )

Wi,k(X, Y ) =
∑

(a,b)∈Z2

ANa+i+1,Mb+k+1X
Na+i+1Y Mb+k+1

ANa+i+1,Mb+k+1

= e
∑Na+i−1

γ=1 (Na+i−γ )tγ +∑Mb+k−1
γ=1 (Mb+k−γ )Tγ +∑Mb+k

β=0
∑Na+i

α=0 mα,β .

(3.25)

Using the identifications

tγ = tγ ′ if γ ≡ γ ′ (mod N )

Tγ = Tγ ′ if γ ≡ γ ′ (mod M)

mα1,β1 = mα2,β2 if α1 ≡ α2 (mod N ) and β1

≡ β2 (mod M) (3.26)

3 The notation HN ,M should not be confused with H which denotes
the instanton moduli space in the introduction.

we get

Na+i−1∑

γ=1

(Na + i − γ )tγ =
N∑

γ=1

(Na + i − γ )tγ

+
2N∑

γ=N+1

(Na + i − γ )tγ + · · ·

+
Na∑

γ=N (a−1)+1

(Na + i − γ )tγ

+
Na+i−1∑

γ=Na+1

(Na + i − γ )tγ

=
N∑

γ=1

[
(Na + i − γ ) + (N (a − 1) + i − γ )

+(N (a − 2) + i − γ ) + · · ·

+(N + i − γ )
]
tγ +

i−1∑

γ=1

(i − γ )tγ

=
N∑

γ=1

[
N a(a+1)

2 + a(i − γ )
]
tγ +

i−1∑

γ=1

(i − γ )tγ

=
[
N a(a+1)

2 + ai
]
τ −

N∑

γ=1

γ tγ +
i−1∑

γ=1

(i − γ )tγ (3.27)

Similarly

Mb+k−1∑

γ=1

(Mb + k − γ )Tγ =
[
M b(b+1)

2 + bk
]
ρ −

M∑

γ=1

γ Tγ

+
k−1∑

γ=1

(k − γ )Tγ (3.28)

Mb+k∑

β=0

Na+i∑

α=0

mα,β =
Mb+k∑

β=0

[ N−1∑

α=0

mα,β +
2N−1∑

α=N

mα,β + · · ·

+
Na−1∑

α=N (a−1)

mα,β +
Na+i∑

α=Na

mα,β

]

=
Mb+k∑

β=0

[
a

N−1∑

α=0

mα,β +
i∑

α=0

mα,β

]

= a
N−1∑

α=0

[
b
M−1∑

β=0

mα,β +
k∑

β=0

mα,β

]

+
i∑

α=0

[
b
M−1∑

β=0

mα,β +
k∑

β=0

mα,β

]

= ab
N−1∑

α=0

M−1∑

β=0

mα,β + a
N−1∑

α=0

k∑

β=0

mα,β + b
i∑

α=0

M−1∑

β=0

mα,β

+
i∑

α=0

k∑

β=0

mα,β . (3.29)
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Since
∑N−1

α=0 mα,β is independent of β by Lemma 5.4 of [36]4

therefore

Mb+k∑

β=0

Na+i∑

α=0

mα,β = (ab + a(k+1)
M + b(i+1)

N )

N−1∑

α=0

M−1∑

β=0

mα,β

+
i∑

α=0

k∑

β=0

mα,β

= (ab + a(k+1)
M + b(i+1)

N )m + mi,k (3.30)
Na+i−1∑

γ=1

(Na + i − γ )tγ +
Mb+k−1∑

γ=1

(Mb + k − γ )Tγ

+
Mb+k∑

β=0

Na+i∑

α=0

mα,β

+z1(Na + i + 1) + z2(Mb + k + 1)

=
[
N a(a+1)

2 + ai
]
τ −

N∑

γ=1

γ tγ +
i−1∑

γ=1

(i − γ )tγ

+
[
M b(b+1)

2 + bk
]
ρ −

M∑

γ=1

γ Tγ +
k−1∑

γ=1

(k − γ )Tγ

+(ab + a(k+1)
M + b(i+1)

N )m + mi,k

+z1(Na + i + 1) + z2(Mb + k + 1)

= Gi,k
N ,M (t, T, m) + 1

2 (a + i+1
N , b

+ k+1
M ).

(
Nτ m
m Mρ

)(
a + i+1

N
b + k+1

M

)

+ aτ( N2 − 1)

+bρ(M2 − 1)

− (i+1)(k+1)
MN m − 1

2 ( i+1
N )2 Nτ − 1

2 ( k+1
M )2 Mρ

+Nz1(a + i+1
N ) + Mz2(b + k+1

M )

= Gi,k
N ,M (t, T, m) + 1

2 (n + u)tΩ(n + u)

+(n + u) · (̂z + v), (3.31)

where

Gi,k
N ,M (t, T, m) = − (k+1)(M+k−1)

2M ρ − (i+1)(N+i−1)
2N τ

+mi,k −
N∑

γ=1

γ tγ +
i−1∑

γ=1

(i − γ )tγ

−
M∑

γ=1

γ Tγ +
k−1∑

γ=1

(k − γ )Tγ (3.32)

ẑ = (Nz1, Mz2)

u = ( i+1
N , k+1

M )

v = (τ ( N2 − 1), ρ(M2 − 1)).

4 Note that mα,β is denoted as C1
(a,b) in [36].

We define the genus two theta function as:

Θu,v(z,Ω) =
∑

n∈Z2

e
1
2 (n+u)tΩ(n+u)+(n+u)·(z+v). (3.33)

Then

Wi,k(X,Y ) =
∑

(a,b)∈Z2

eG
i,k
N ,M Θu,v(z,Ω). (3.34)

The genus of the mirror curve

N−1,M−1∑

i=0,k=0

Wi,k(X,Y ) = 0, (3.35)

is MN + 1. The underlying abelian surface has polarisation

(N , M) with the period matrix given by Ω =
(
Nτ m
m Mρ

)

.

The theta functions form a basis corresponding to this
(N , M)-polarization of the abelian surface.

3.4 Geometric interpretation of the mirror curve

An illuminative way to visualise the mirror curve Σ is to
see it as N copies of the base torus glued together by N-1
branch cuts [12,31]. The one cycles, A and B, of the base
torus are lifted to a basis of 1-cycles Ai , Bi , i = 1, . . . , N on
Σ . Riemann–Hurwitz theorem is used to compute the genus
of Σ and is equal to N+1. The Riemann–Roch theorem is
handy in the computation of the number of moduli of Σ ,
which is equal to N in this case.

In the case under consideration, the genus N Riemann sur-
face is seen as defined by theta divisor. A general polarised
abelian variety U admits a line bundle L with c1(L) = ω

where ω is a (1, 1)-form that is given in terms of the coordi-
nates 0 ≤ yi ≤ 1 by

ω = [Ndy1 ∧ dy3 + dy2 ∧ dy4] (3.36)

where it is assumed that the period matrix Ω of Σ is sym-
metric and Im(Ω) > 0. For general abelian variety with
polarisation given by ω = [Ndy1 ∧ dy3 + Mdy2 ∧ dy4] the
line bundle L admits MN holomorphic sections. In the case
of an abelian surface these sections are given by genus 2 theta
functions

Θ

[
i
M

j
N

0 0

]

(z|Ω) 0 ≤ i < M, 0 ≤ j < N . (3.37)

A theta divisor is the zero locus of a linear combination of
the above set of theta functions

M∑

i

N∑

j

Ai jΘ

[
i
M

j
N

0 0

]

(z|Ω) = 0 (3.38)

where Ai j denote the moduli of the curve. This zero locus
defines the mirror curve of genus MN+1 and is the Riemann
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surface Σ . For the special case of M = 1 the mirror curve
can be expressed in the following form

∑

n=0

1

n! (
m

2π i
)n∂nz θ1(z|τ)∂nx h(x) = 0, (3.39)

where θ1 is the Jacobi theta function andh(x) =∏N
j=1 θ1(x−

ξ j |ρ) with ξ j is the moduli of Σ . This can be reorganised into
the following form

Θ[ 1
2 ,..., 1

2 ],[ 1
2 ,..., 1

2 ](z,
Nβ

2π
(x − ξi )|Ω̂) = 0, (3.40)

where Ω̂ is the period matrix of the genus MN+1 curve Σ̂

which is an unbranched cover of a genus 2 curve and in gen-
eral is given by

Ω̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ
βm1
2π i

βm2
2π i

βm3
2π i · · · βmMN

2π i
βm1
2π i ρ 0 0 ...0
βm2
2π i 0 ρ 0 ...0
. . . .

. . . .

. . . .
βmMN

2π i 0 0 0 ...ρ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.41)

It is easy to see from the following representation of genus
g = MN + 1 theta function

Θ

[
α

β

]

(Z |Ω̂) =
∑

m∈Zg

exp

(

π i(m + α).Ω̂.(m + α)

+2π i(Z + β).(m + α)

)

, (3.42)

where Z , α, β,m are g-vectors and Ω is a g × g matrix with
ImΩ > 0.

To study the decomposition of generalised theta function
[44] defined on the Jacobian of a genus g = M curve, we
start from the following Fourier representation

Θ(Ω|z) =
∑

m∈ZM

e2π i
∑M

i=1 mi zi+iπ
∑M

i, j=1 miΩi j m j , (3.43)

where Ω is the period matrix and satisfies the following con-
straints

M∑

i=1

Ωi j = τ,

M∑

j=1

Ωi j = τ. (3.44)

This constraint encodes various periodicity properties. In
other words we can decompose Ω as

Ω = τ

M
+ Ω ′, (3.45)

where Ω ′ is the traceless part. Now redefine zi as follows

zi = z

M
+ z′i such that

M∑

i=1

z′i = 0. (3.46)

Putting back these redefined variables in (3.43) we get

Θ(Ω|z) =
∑

m∈ZM

e2π i z
M

∑M
i=1 mi+iπ τ

M (
∑M

i=1 mi )
2+2π i

∑M
i=1 mi z′i+π i

∑M
i, j=1 miΩ

′
i j mi

=
∑

i∈ZM ,s∈Z
e2π i(s+ i

M )z+π iτM(s+ i
M )2

×
∑

m∈ZM ,
∑M

j=1 m j=i

ei2π
∑M

p=1 mpz′p+π i
∑M

p,q=1 mpΩ
′
pqmq

=
∑

i∈ZM

θ

[ i
M
0

]

(Mτ |z)Θi (Ω
′|z′), (3.47)

where Θi is the second summation factor in the first line of
(3.47).

4 Degenerations and their effect on the partition
function

The partition function of the CY threefold XN ,M is given
by [25]

Z(N ,M)(τ, ρ, ε1,2,ma = m, t)

=
∑

αi
a

N∏

i=1

Q|α(i)|
i

N∏

i=1

M∏

a=1

ϑ
αi+1
a αi

a
(m)

ϑαi
aα

i
a
(ε+)

×
∏

1≤a<b≤M

N∏

i=1

ϑ
αi
aα

i+1
b

(tab − m)ϑ
αi+1
a αi

b
(tab + m)

ϑαi
aα

i
b
(tab − ε+)ϑαi

aα
i
b
(tab + ε+)

, (4.1)

where the sum is over N partitions of α(a) = {α(a)
1 , α

(a)
2 , . . . ,

α
(a)
N } and α

(1)
a ≡ α

(N+1)
a , Qi = ebi+1−bi , tab = ta,a+1 +

ta+1,a+2+· · ·+ta+b−(a+1),b,bi+1−bi is the distance between
vertical lines (or M5 branes) and moreover the factorisation
degeneration takes place when all the mass parameters ma

are taken equal to m. The expressions of partition functions
after degeneration becomes particularly simple at the special
point in the Kähler moduli space where Qi := Q := e2π iτ

and in the unrefined limit of the Ω-background parameters
ε1 = −ε2 = ε.

We define

|α(a)| =
N∑

b=1

|α(a)
b | (4.2)

where |α(a)| is the size of the partition α(a) which is the sum
of the parts of partition. To study the degeneration of partition
function we have to study the x → 0 limit of ϑμν(x). For two
integer partitions μ and ν, theta function ϑμν in the above
partition function (4.1) is defined as

ϑμν(x) =
∏

(i, j)∈μ

ϑ(ρ, e−x t−νtj+i− 1
2 q−μi+ j− 1

2 )
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×
∏

(i, j)∈ν

ϑ(ρ, e−x tμ
t
j−i+ 1

2 qνi− j+ 1
2 ). (4.3)

Here t = e−iε2 , q = eiε1 , νt represents the transpose of
the partition ν and product

∏

(i, j)∈ν

means that the product is

over all the boxes of the Young diagram corresponding to the
partition ν having length �(ν)

(i, j) ∈ ν, implies that 1 ≤ i ≤ �(ν), 1 ≤ j ≤ νi .

The Jacobi theta function ϑ(ρ, y) for y = e2π i z is defined as

ϑ(ρ, y)=(y
1
2 − y− 1

2 )

∞∏

k=1

(1 − y e2π ikρ)(1 − y−1 e−2π ikρ).

For x = 0 and in unrefined case

ϑμν(0) = −
∏

(i, j)∈μ

ϑ(ρ, νtj − i + μi − j + 1)

×
∏

(i, j)∈ν

ϑ(ρ, μt
j − i + νi − j + 1)

= −
∏

(i, j)∈μ

ϑ(ρ, hμ(i, j) + νtj − μt
j )

×
∏

(i, j)∈ν

ϑ(ρ, hν(i, j) + μt
j − νtj ) (4.4)

where hμ(i, j) = μi + μt
j − i − j + 1 is the hook length of

the partition μ. Since, the Jacobi theta function ϑ(ρ, z) is an
odd function w.r.t. z i.e., ϑ(ρ, 0) = 0, therefore ϑμν(0) = 0
if hμ(i, j) + νtj − μt

j = 0. Since hμ(i, j) �= 0, therefore
νtj �= μt

j . If μ = ν then

ϑμμ(0) =
∏

(i, j)∈μ

ϑ(ρ, hμ(i, j))2

hμ(i, j) is non zero therefore ϑμμ(0) �= 0. In other words
μ �= ν implies ϑμν(0) = 0 i.e. either hμ(i, j)+νtj −μt

j = 0
or hν(i, j) + μt

j − νtj = 0. Because hμ(i, j) �= 0 therefore
νtj �= μt

j . We thus arrive at the useful property of ϑμν(x) at
x = 0 given by:

ϑμν(0) = δμ ν

∏

(i, j)∈μ

ϑ(qhμ(i, j))ϑ(q−hμ(i, j)) (4.5)

where δμ ν is the kronecker delta function and hμ(i, j) =
μi +μt

j − i − j +1 is the hook length of the partition μ. This
identity is useful for studying different degenerations of the
partition functions.

5 Degeneration 1: factorization

This type of degeneration corresponds to taking both the ver-
tical and horizontal ‘distances’ between the 5-branes equal

to m, which is the Kähler parameter corresponding to the
exceptional curve or (1, 1) brane in the web diagram Fig. 5.

5.1 (N , M) = (1, 2)

We begin by looking at the case of X1,2. The unrefined par-
tition function is given by,

Z(1,2)(τ, ρ,m, t, ε) =
∑

α1,2

Q|α1|+|α2| ϑα1α1(m)ϑα2α2(m)

ϑα1α1(0)ϑα2α2(0)

×ϑα1α2(t
−
m )ϑα1α2(t

+
m )

ϑα1α2(t)
2 . (5.1)

Here, t−m = t − m and t+m = t + m. The partition function
Z(1,2) in the limit t �→ m reduces to

Z(1,2)(τ, ρ,m, ε) =
∑

α1,2

Q|α1|+|α2| ϑα1α1(m)ϑα2α2(m)

ϑα1α1(0)ϑα2α2(0)

×ϑα1α2(0)ϑα1α2(2m)

ϑα1α2(m)2

Using the property of ϑμν(x) defined in Eq. (4.5) we get

Z(1,2)(τ, ρ,m, ε) =
∑

α1

Q2|α1| ϑα1α1(2m)

ϑα1α1(0)
(5.2)

= Z(1,1)(2τ, ρ, 2m, ε). (5.3)

5.2 (N , M) = (1, M)

The partition function defined in (4.1) for N = 1 has the
following expression

Z(1,M)(τ, ρ, ε1,2,m, t)

=
∑

α1,2,··· ,M
Q|α1|+···+|αM |

M∏

a=1

ϑαaαa (m)

ϑαaαa (ε+)

×
∏

1≤a<b≤M

ϑαaαb (tab − m)ϑαaαb (tab + m)

ϑαaαb (tab − ε+)ϑαaαb (tab + ε+)
. (5.4)

For ta a+1 = m we get tab = ta a+1 + ta+1 a+2 + · · · +
ta+b−(a+1) b = (b − a)m. In this case the unrefined Z(1,M)

partition function (ε+ → 0) becomes

Z(1,M)(τ, ρ, t = m, ε)

=
∑

α1,2,··· ,M
Q|α1|+···+|αM |

M∏

a=1

ϑαaαa (m)

ϑαaαa (0)

×
∏

1≤a<b≤M

ϑαaαb ((b − a − 1)m)ϑαaαb ((b − a + 1)m)

ϑαaαb ((b − a)m)2 .

(5.5)

Since ϑαaαb (0) = 0 for αa �= αb as shown in the previous
section, we get

Z(1,M)(τ, ρ, t = m, ε)
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=
∑

α1

QM|α1|
[ϑα1α1(m)

ϑα1α1(0)

]M M−1∏

a=1

×
M∏

b=a+1

ϑα1α1((b − a − 1)m)ϑα1α1((b − a + 1)m)

ϑα1α1((b − a)m)2

=
∑

α1

QM|α1|
[ϑα1α1(m)

ϑα1α1(0)

]M ϑα1α1(0)M−1ϑα1α1(M m)

ϑα1α1(m)M

=
∑

α1

QM|α1| ϑα1α1(M m)

ϑα1α1(0)

= Z(1,1)(M τ, ρ, Mm, ε). (5.6)

This shows self-similarity behaviour of the partition func-
tion Z(1,M)(τ, ρ, t = m, ε) upto the rescaling of τ and
m. In other words as far as the partition function is con-
cerned the the CY-3fold XN ,M is equivalent to the CY-3fold
X1,1 upto the rescaling of some kähler parameters. This self-
similarity structure is actually followed by the partition func-
tion Z(N ,M)(τ, ρ, t = m, ε) for general values of N and M
as shown below.

5.3 General (N , M)

By generalising to the CY-threefold XN ,M , we get the fol-
lowing result

Z(N ,M)(τ, ρ, t = m, ε) =
∑

α
(i)
1

N∏

i=1

Q
M|α(i)

1 |
i

ϑ
α

(i)
1 α

(i)
1

(M m)

ϑ
α

(i)
1 α

(i)
1

(0)

=
∑

α
(1)
1

Q
NM|α(1)

1 |
1

(ϑ
α

(1)
1 α

(1)
1

(M m)

ϑ
α

(1)
1 α

(i)
1

(0)

)N
.

(5.7)

So, in general

Z(N ,M)(τ, ρ, ta,a+1 = m, ε) = Z(1,1)(M τ, ρ, M m, ε)N .

(5.8)

This corresponds to degenerating the web diagram of XN ,M

to the disconnected union of N rescaled web diagrams of
X1,1 as shown in Fig. 6. The CY threefold X1,1 has a nice
interpretation in terms of the so-called banana curves [13].
A banana configuration of curves in the CY threefold is a
union of three curves Ci ≡ P

1 with the normal bundle given
by O(−1) ⊕ O(−1). Moreover C1 ∩ C2 = C2 ∩ C3 =
C3 ∩ C1 = {x, y} for distinct point x, y ∈ CY3-fold and
there exists a preferred coordinate patch in which Ci are
along the coordinate axis.

In other words the topological string partition function
ZXN ,M (ω, ε) is factored [20,38] into a product of N copies
of ZX1,1(τ, ρ,m), where the later is the topological partition
function on a CY threefold with a single banana configuration
of curves.

5.4 Interpreting the factorisation: Z(M,N ) → ZN
(1,1)

Recall that, on a arbitrary point of the Kähler cone, the num-
ber of independent Kähler parameters entering the partition
function are

#(Tas) + #(ti s) + #(intersections)

−#(horizontal constraints)

−#(vertical constraints) + 2

= (M − 1) + (N − 1) + MN

−(M − 1) − (N − 1) + 2

= MN + 2 (5.9)

In general we can have three different series representations
[30] of Z(M,N ) according to whether the toric web diagram
of XM,N is sliced into horizontal strips, vertical strips and
diagonal strips

Z(M,N )(t, T, m, ε1, ε2) = Z pert (T, m)
∑

k

e−k.tZk(T, m)

Z(M,N )(t, T, m, ε1, ε2) = Z pert (t, m)
∑

k

e−k.TZk(t, m)

Z(M,N )(t, T, m, ε1, ε2) = Z pert (T, t)
∑

k

e−k.mZk(T, t)

(5.10)

where the Kähler parameters Ti from T= {T1, T2, . . . , TM }
represent the distance between vertical lines , ti from t=
{t1, t2, . . . , tN } represent the distance between horizontal
lines and m denote the diagonal lines of the web diagram
in Fig. 2. These expansion have been interpreted as instanton
expansions of three gauge theories which are dual to each
other. For these to be consistent expansions it is assumed
that there exists a region of the moduli space of X(M,N )

in which either T or t or m become infinite, with all the
rest of parameters kept finite. This region of the moduli
space corresponds to the weak coupling limit of gauge
theories.

At the special point in the moduli space where ta,a+1 = m,
we are left with three independent Kähler parameters τ, ρ,m.
Moreover due to the weak coupling expansion {T → ∞}, N
horizontal strips gets decoupled and we get ZN

1,1.

Remark

After normalisation by the gauge theory perturbative part,
the partition function Z(1,1)(τ, ρ, m) can be written as [11,
15,43]

Z(1,1)( τ, ρ,m)
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Fig. 6 ZN ,M degenerating to (Z1,1)
N

= e
−π i(τ+ρ+m)

12
∏

(k,l,m)>0

(
1 − e2π i(kτ+lρ+pm)

)−c(4kl−p2)

= 1

Φ10(τ, ρ,m)
1

24

(5.11)

where c(4kl − p2) are the Fourier coefficients of the elliptic
genus of K3

χ(K3, τ, z) =
∑

h≥0,m∈Z
24c(4h − m2)e2π i(hτ+mz) (5.12)

and Φ10(τ, ρ,m) is the unique weight 10 automorphic form
of Sp(2,Z). We have implicit used the fact that the large
radius limit (universal part) of the Taub-NUT elliptic genus
matches with the elliptic genus of C2 [22]. This allows us to
write Z(N ,M)(τ, ρ, ta,a+1 = m) in the following way

Z(N ,M)(τ, ρ, ta,a+1 = m) = e
−Nπ i(τ+ρ+m)

12
∏

(k,l,m)>0

×(1 − e2π i(Mkτ+lρ+pMm))−Nc(4kl−p2)

= 1

Φ10(Mτ, ρ, Mm)
N
24

(5.13)

6 Degeneration 2: splitting degeneration

This degeneration corresponds to turning off the Kähler
parameters in such a way that the partition function ZN ,M

reduces to the partition function ZN ,M−1, upto an overall
factor of Dedekind eta function. Consider the following par-
tition function

Z(N ,M)(τ, ρ,ma , ε1,2, t̃ab)

=
∑

αi
a

N∏

i=1

Q|α(i)|
i

N∏

i=1

M∏

a=1

ϑ
αi+1
a αi

a
(ma)

ϑαi
aα

i
a
(ε+)

∏

1≤a<b≤M

N∏

i=1

×
ϑ

αi
aα

i+1
b

(̃tab)ϑαi+1
a αi

b
(̃tab + ma + mb)

ϑαi
aα

i
b
(̃tab + ma − ε+)ϑαi

aα
i
b
(̃tab + mb + ε+)

. (6.1)

In the above partition function (6.1)

t̃ab = t̃a a+1 + ma+1 + t̃a+1 a+2 + · · · + mb−1 + t̃b−1 b.

For N = 1 the above defined partition function reduces to

Z(1,M)(τ, ρ,ma , ε1,2 , t̃ab)

=
∑

α1,2,··· ,M
Q|α1|+···+|αM |

M∏

a=1

ϑαaαa (ma)

ϑαaαa (ε+)

×
∏

1≤a<b≤M

ϑαaαb (t̃ab)ϑαaαb (t̃ab + ma + mb)

ϑαaαb (t̃ab + ma − ε+)ϑαaαb (t̃ab + mb + ε+)
.

Remark

Note that
∑

μ Q|μ| = e
π i
12

η(τ)
. This factor appears in the degen-

eration limit as discussed below (Fig. 7).

6.1 (N , M) = (1, 2)

Let us consider the partition function for N = 1 and M = 2
in the unrefined case (ε1 = −ε2 = ε),

Z(1,2)(τ, ρ,m1,2, t̃12, ε)

=
∑

α1,2

Q|α1|+|α2| ϑα1α1(m1)ϑα2α2(m2)

ϑα1α1(0)ϑα2α2(0)

×ϑα1α2(t̃12)ϑα1α2(t̃12 + m1 + m2)

ϑα1α2(t̃12 + m1)ϑα1α2(t̃12 + m2)
. (6.2)

• m1 → 0 or m2 → 0:
When we take m1 = 0 in the partition function (6.2),

the terms in the numerator and denominator becomes same,
therefore they cancel out each other. Then (6.2) reduces to
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Fig. 7 Two possible
degenerations of the partition
function Z1,2. The third column
depicts 3D/non-planar structure
of the mirror curves

the multiple of Z(1,1) as:

Z(1,2)(τ, ρ,m2, t̃12, ε) =
∑

α1,2

Q|α1|+|α2| ϑα2α2(m2)

ϑα2α2(0)

=
∑

α1

Q|α1|Z(1,1)(τ, ρ,m2, ε).

Same result follows for the case when we take m2 = 0 in
(6.2) i.e,

Z(1,2)(τ, ρ,m1, t̃12, ε) =
∑

α2

Q|α2|Z(1,1)(τ, ρ,m2, ε).

• t̃12 → 0 :
In the limit t̃12 → 0, (6.2) is:

Z(1,2)(τ, ρ,m1,2, ε) =
∑

α1,2

Q|α1|+|α2| ϑα1α1 (m1)ϑα2α2 (m2)

ϑα1α1 (0)ϑα2α2 (0)

×ϑα1α2 (0)ϑα1α2 (m1 + m2)

ϑα1α2 (m1)ϑα1α2 (m2)
. (6.3)

Again, the presence of ϑα1α1(0) force contribution only from
the same partition and we get the following:

Z(1,2)(τ, ρ,m1,2, ε) = Z(1,1)(2τ, ρ,m1 + m2, ε).

6.2 (N , M) = (1, 3)

Similarly consider the partition function Z(1,3)(τ, ρ,m1,2,3,

t̃a,b, ε)

Z(1,3)(τ, ρ,m1,2,3, t̃a,b, ε)

=
∑

α1,2,3

Q

3∑

k=1
|αk |

(
3∏

k=1

ϑαkαk (mk)

ϑαkαk (0)

)

×ϑα1α2(t̃12)ϑα1α2(t̃12 + m1 + m2)

ϑα1α2(m1 + t̃12)ϑα1α2(m2 + t̃12)

×ϑα2α3(t̃23)ϑα2α3(t̃23 + m2 + m3)

ϑα2α3(t̃23 + m2)ϑα2α3(t̃23 + m3)

Fig. 8 Z13

×ϑα1α3(t̃13)ϑα1α3(t̃13 + m1 + m3)

ϑα1α3(t̃13 + m1)ϑα1α3(t̃13 + m3)
(6.4)

Remember here allm′
i s i = 1, 2, 3 are different, and t̃13 =

t̃12 + m2 + t̃23.

• m3 �→ 0 :
Whenm3 approaches to zero in (6.4) it takes the following

form:

Z(1,3)(τ, ρ,m1,2, t̃12, ε)

=
∑

α1,2,3

Q|α1|+|α2|+|α3| ϑα1α1(m1)ϑα2α2(m2)

ϑα1α1(0)ϑα2α2(0)

×ϑα1α2(t̃12)ϑα1α2(t̃12 + m1 + m2)

ϑα1α2(m1 + t̃12)ϑα1α2(m2 + t̃12)
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(a) (b) (c)

Fig. 9 Three possible degenerations of the partition function Z1,3

=
∑

α3

Q|α3| Z(1,2)(τ, ρ,m1,2, t̃12, ε)

Thus Z(1,3) → Z(1,2).
• m2 �→ 0 :
Similarly

Z(1,3)(τ, ρ,m1,2,3, t̃13, ε)

m2 = 0−−−−→
∑

α2

Q|α2| Z(1,2)(τ, ρ,m1,3, t̃13, ε)

and
• m1 �→ 0 :

Z(1,3)(τ, ρ,m1,2,3, t̃23, ε)

m1 = 0−−−−→
∑

α1

Q|α1| Z(1,2)(τ, ρ,m2,3, t̃23, ε)

Hence in all these three cases when any m1,m2 or m3 is zero
Z(1,3) reduces to the case of Z(1,2) upto some factor (Figs. 8,
9). Moreover same degeneration of Z1,3 results if one takes
the limit t̃ab → 0 for any a, b i.e., Z(1,3) → Z(1,2).

• t̃ab �→ 0 :
Z(1,3)(τ, ρ,m1,2,3, t̃23, ε)

t̃ab = 0−−−−→
∑

α

Q|α| Z(1,2)(τ, ρ,m1,2,3, ε)

6.3 (N , M) = (2, 3)

Previous subsections discuss the cases when N = 1 and now
we generalize to the case of N = 2. Explicitly the partition
function is of the form

Z(2,3)(τ, ρ,m1,2,3, ε1,2, t̃ab)

=
∑

αi
a

2∏

i=1

Q|α(i)|
i

2∏

i=1

3∏

a=1

ϑ
αi+1
a αi

a
(ma)

ϑαi
aα

i
a
(0)

×
∏

1≤a<b≤3

2∏

i=1

ϑ
αi
aα

i+1
b

(t̃ab)ϑαi+1
a αi

b
(t̃ab + ma + mb)

ϑαi
aα

i
b
(t̃ab + ma − ε+)ϑαi

aα
i
b
(t̃ab + mb + ε+)

(6.5)

For the unrefined case ε1 = −ε2 = ε, we consider the degen-
erate limit m3 = 0. Using the identity (4.5) we get

Z(2,3)(τ, ρ,m1,2,m3 = 0, t̃ab, ε)

=
∑

α1,α2,α
(1)
3

Q|α(1)|
1 Q|α(2)|

2 (Q1Q2)
|α(1)

3 |

×
ϑ

α
(2)
1 α

(1)
1

(m1)ϑα
(2)
2 α

(1)
2

(m2)

ϑ
α

(1)
1 α

(1)
1

(0)ϑ
α

(1)
2 α

(1)
2

(0)

ϑ
α

(1)
1 α

(2)
1

(m1)ϑα
(1)
2 α

(2)
2

(m2)

ϑ
α

(2)
1 α

(2)
1

(0)ϑ
α

(2)
2 α

(2)
2

(0)

×
ϑ

α
(1)
1 α

(2)
2

(t̃12)ϑα
(2)
1 α

(1)
2

(t̃12 + m1 + m2)

ϑ
α

(1)
1 α

(1)
2

(t̃12 + m1)ϑα
(1)
1 α

(1)
2

(t̃12 + m2)

×
ϑ

α
(2)
1 α

(1)
2

(t̃12)ϑα
(1)
1 α

(2)
2

(t̃12 + m1 + m2)

ϑ
α

(2)
1 α

(2)
2

(t̃12 + m1)ϑα
(2)
1 α

(2)
2

(t̃12 + m2)
.

Recognizing theZ(2,2)(τ, ρ,m1,2, tab, ε)part, the last expres-
sion can be written more succinctly as

Z(2,3)(τ, ρ,m1,2,m3 = 0, t̃ab, ε)

=
∑

α
(1)
3

Q
α

(1)
3

1 Q
α

(1)
3

2 Z(2,2)(τ, ρ,m1,2, t̃ab, ε) (6.6)

Similar degenerations follow by taking the limit m2 = 0 or
m1 = 0.
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6.4 General (N , M)

The previous sections discuss the cases when N was taken
equal to one. In this section we generalize the argument to
generic values of M and N . For the unrefined case ε1 =
−ε2 = ε

Z(N ,M)(τ, ρ,ma, ε1,2, t̃ab) =
∑

αi
a

N∏

i=1

Q|α(i)|
i

N∏

i=1

M∏

a=1

ϑ
αi+1
a αi

a
(ma)

ϑαi
aα

i
a
(0)

×
∏

1≤a<b≤M

N∏

i=1

ϑ
αi
aα

i+1
b

(t̃ab)ϑαi+1
a αi

b
(t̃ab + ma + mb)

ϑαi
aα

i
b
(t̃ab + ma)ϑαi

aα
i
b
(t̃ab + mb)

(6.7)

Z(N ,M)(τ, ρ,ma, t̃ab, ε) =
∑

αi
a

N∏

i=1

Q|α(i)|
i

N∏

i=1

M∏

a=1

ϑ
αi+1
a αi

a
(ma)

ϑαi
aα

i
a
(0)

×
M−1∏

a=1

M∏

b=a+1

×
ϑ

αi
aα

i+1
b

(̃ta a+1 + ma+1 + t̃a+1 a+2 + · · · + mb−1 + t̃b−1 b)

ϑαi
aα

i
b
(̃ta a+1 + ma+1 + t̃a+1 a+2 + · · · + mb−1 + t̃b−1 b)

×
ϑ

αi
aα

i+1
b

(̃ta a+1 + ma+1 + t̃a+1 a+2 + · · · + mb−1 + t̃b−1 b + ma + mb)

ϑαi
aα

i
b
(̃ta a+1 + ma+1 + t̃a+1 a+2 + · · · + mb−1 + t̃b−1 b)

. (6.8)

Specializing to N = 1, Qi = Q and in the limit m1 = 0
the last expression reduces to

Z(1,M)(τ, ρ,ma, t̃ab, ε)

=
∑

α1

Q|α1|Z(1,M−1)(τ, ρ,mi , t̃ab, ε), (6.9)

where tab and mi do not include the moduli which are tuned
to zero. More generally and at the same point Qi = Q in the
moduli space we expect similar structure for Z(N ,M)

Z(N ,M)(τ, ρ,ma, t̃ab, ε) =
∑

αi
a

N∏

i=1

Q|α(i)|
N∏

i=1

M∏

a=2

ϑ
αi+1
a αi

a
(ma)

ϑαi
aα

i
a
(0)

×
M−1∏

a=2

M∏

b=a+1

×
ϑ

αi
aα

i+1
b

(̃taa+1 + t̃a+1a+2 + · · · + t̃b−1b + ma+1 + · · · + mb−1)

ϑαi
aα

i
b
(̃taa+1 + t̃a+1a+2 + · · · + t̃b−1b + ma + ma+1 + · · · + mb−1)

×
ϑ

αi
aα

i+1
b

(̃taa+1 + t̃a+1a+2 + · · · + t̃b−1b + ma + ma+1 + · · · + mb−1 + mb)

ϑαi
aα

i
b
(̃taa+1 + t̃a+1a+2 + · · · + t̃b−1b + ma+1 + · · · + mb−1 + mb)

×
N∏

i=1

ϑ
αi+1

1 αi
1
(m1)

ϑαi
1α

i
1
(0)

(ϑ
αi

1α
i+1
2

(̃t12)ϑαi
1α

i+1
2

(̃t12 + m1 + m2)

ϑαi
1α

i
2
(̃t12 + m1)ϑαi

1α
i
2
(̃t12 + m2)

×
ϑ

αi
1α

i+1
3

(̃t12 + t̃23 + m2)ϑαi
1α

i+1
3

(̃t12 + t̃23 + m1 + m2 + m3)

ϑαi
1α

i
3
(̃t12 + t̃23 + m1 + m2)ϑαi

1α
i
3
(̃t12 + t̃23 + m2 + m3)

× · · ·
ϑ

αi
1α

i+1
M

(̃t12 + t̃23 + · · · + t̃M−1M + m1 + m2 + · · · + mM−1 + mM )

ϑ
αi

1α
i+1
M

(̃t12 + t̃23 + · · · + t̃M−1M + m2 + · · · + mM−1 + mM )

)

. (6.10)

In the limit m1 → 0

Z(N ,M)(τ, ρ,ma, t̃ab, ε)

=
⎛

⎜
⎝
∑

αi
1

N∏

i=1

Qα
(i)
1

⎞

⎟
⎠Z(N ,M−1)(τ, ρ,mq , t̃ pq , ε). (6.11)

Similar recursive structure in (N,M) shows up in the limits
mi = 0 (for any i=2,…) or t̃i = 0. From mathematical view-
point such degenerations have been discussed in [41,42].

7 Discussions

The compactified 5-brane web given in Fig. 5 gives rise to a
five dimensionalN = 2 supersymmetric gauge theory on the
common worldvolume. This 5-branes web can be deformed
to include also (1, 1) 5-branes. In string theory this is inter-
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preted as the splitting of the D5-branes on the NS5-brane
world volume. In other words the string tension is turned on
for the strings that are stretched between D5-branes. It gives
rise to the mass deformation of the bifundamental hypermul-
tiplets in the five dimensional gauge theory. The mass defor-
mation results in the breaking of supersymmetry to N = 1
in five dimensions. Because of the toric compactification of
the 5-branes web one gets affine ÂN−1 quiver gauge theory
with an SU (N ) gauge group at each node and one bifunda-
mental matter stretched between adjacent nodes. There are
M coupling constants τi , i = 1, . . . , M for each node such
that

M∑

i=1

τi = 1

R1
, (7.1)

where R1 is the radius of the S1 on which M5-brane theory
is compactified. In geometrical terms each gauge coupling
constant is related to the area of a distinct curve in CY three-
fold. If there are more than one, though equivalent, choices
of these curves, this gives rise to dual gauge theory formu-
lations of the same system. In other words for the web of
M NS5-branes and N D5-branes the gauge theory on the
D5-branes is given by

gauge group

: U (1) × SU (N )1 × SU (N )2 × · · · × SU (N )M

hypermultiplet representation

: ⊕M
i=1

(

(Na, N̄a+1) ⊕ (N̄a, Na+1)

)

(7.2)

where Na is the SU (N ) fundamental representation of the
a-th node and N̄a the complex conjugate one.

The partition function of the quiver gauge theories given
in (7.2) can be computed directly by using Nekrasov instan-
ton calculus as described in [25]. In doing so one has to take
into account the non-trivial winding of strings on the com-
pact direction transverse to the 5-branes. There is interesting
physical interpretations of these degenerations. In the previ-
ous sections we have discussed how various degenerations of
the mirror curve is related to certain degeneration of the cor-
responding partition functions Z(N ,M). Recall the following
degeneration (5.8)

Z(N ,M)(τ, ρ, ta,a+1 = m, ε) = Z(1,1)(M τ, ρ, M m, ε)N .

(7.3)

This degeneration corresponds to a U (N )M quiver gauge
theory degenerating to a U (1)M gauge theory. Moreover
the gauge coupling constant τ and the hypermultiplet mass
parameter m are scaled to Mτ and Mm under the degenera-
tion. This rescaling corresponds to multiple wrapping num-
ber of the D-branes along the τ and m directions.

Similarly the second degeneration of the ZN ,M (6.10) that
we discussed and is given by

Z(N ,M)(τ, ρ,ma, tab, ε)

=
⎛

⎜
⎝
∑

αi
1

N∏

i=1

Q
α

(i)
1

i

⎞

⎟
⎠Z(N ,M−1)(τ, ρ,mq , t̃ pq , ε), (7.4)

has an interesting physical interpretation. The limit mi → 0
corresponds to supersymmetry enhancement to N = 4 and
we get a decoupling factor of η(τ).

8 Conclusions

This paper explored some interesting consequences of the
mirror symmetry of the local CY threefold XN ,M . We inves-
tigated some interesting properties of the type A topological
string partition function of XN ,M in special regions of the
Kähler moduli space. We have called these degenerate lim-
its, because in these limits the partition functions on XN ,M

collapse to those on XN ,M−1 in various ways. In accordance
with mirror symmetry the degeneration behaviour on the type
A side is reproduced on the type B side in the degeneration
of the mirror curves into lower genus curves.

For future directions it would be interesting to study the
analogous properties of ZN ,M and quantum mirror curves
for the general Ω-background .i.e. ε1 �= 0 and/or ε1 �= 0 and
ε1 �= ε2 and at an arbitrary point of the Kähler moduli space
of XN ,M . It will also be interesting to study the modular prop-
erties of the free energy log(Ẑ(N ,M)(τ, ρ, ε,m, t)) and the
single particle free energy [26] PLog(Ẑ(N ,M)(τ, ρ, ε,m, t))
along the lines of [24]. It is also interesting to generalise the
quantisation of classical DELL system as done in [39] to the
case where the underlying abelian variety has (M,N) polar-
ization.
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Appendix A: Geometry of XN,M : a quick review

The non-compact CY 3-fold X1,1 is defined as the partial
compactification [25,36] of the resolved conifold geometry.
The later is given by C

× × C
× fibered over the z-plane.

The partial compactification is achieved by compactifying
each of the two C

× fibers to a T
2 fiber. Of the three Kähler

parameters τ, ρ,m of the CY 3-fold X1,1, ρ and τ correspond
to the elliptic fibers and m corresponds to the curve class of
the exceptional P1 of the resolved conifold. We will define
the non-compact CY 3-fold XN ,M for N , M ∈ N as the
ZN × ZM orbifold of X1,1.

In toric geometry the equation of the conifold given by

z1z2 − z3z4 = 0, z1, z2, z2, z4 ∈ C (A.1)

is translated to an equation on integer latices parametrised
by 3-vectors v1, v2, v3, v4

v1 + v2 − v3 − v4 = 0. (A.2)

The CY condition constrains the geometry to a plane. The
irreducible toric rational curves of the 2-dimensional cone
are given by

C1
(a,b) : = R≥0Conv({(a + 1, b, 1), (a, b + 1, 1)}),

C2
(a,b) : = R≥0Conv({(a, b, 1), (a, b + 1, 1)}),

C3
(a,b) : = R≥0Conv({(a, b, 1), (a + 1, b, 1)}), (A.3)

for all a, b ∈ Z. The Kähler variables qi corresponding to Ci

are defined as the exponential of the symplectic area of Ci .
The author in [36] computes Strominger–Yau–Zaslow (SYZ)
[46] mirror of the local CY3-fold XN ,M , which is given by

uv =
N−1,M−1∑

a,b=0

Δa,b

∑

c,d∈Z2

qC(cN+a,dM+b) zcN+a
1 zdM+b

2 , (A.4)

where Δa,b encodes the data of the open Gromov–Witten
invariants, z1, z2 are coordinates of the abelian variety of
polarisation (N , M), and u, v are the sections of certain line
bundles on the abelian variety. The zero locus

N−1,M−1∑

a,b=0

Δa,b

∑

c,d∈Z2

qC(cN+a,dM+b) zcN+a
1 zdM+b

2 = 0, (A.5)

defines a curve with genus NM+1 with (N , M) polarisation.
For illustration, consider the CY3-fold X1,1, for which the
cone of effective curves is given by R≥0{C1,C2,C3}. To
make the modularity of the system manifest, we redefine the
curve classes as

Cτ = C1 + C2, Cρ = C1 + C3, Cσ = C1, (A.6)

for which the corresponding Kähler parameters are denoted
as qτ = q1q2 = e2π iτ , qρ = q1q3 = e2π iρ, qσ = q1 =
e2π iσ . Then following the SYZ program, the SYZ mirror of
X1,1 is given by

uv = Δ(q)
∑

c,d∈Z2

qC(c,d) zc1z
d
2 . (A.7)

Moreover it turns out that the right hand side can be re-written
in terms of theta function as

uv = Δ(Ω)Θ2

[
0

(− τ
2 ,−ρ

2 )

]

(z1, z2;Ω), (A.8)

where Θ2 is the genus 2 theta function and Ω =
(
Nτ σ

σ Mρ

)

is the period matrix of the following genus 2 curve

Θ2

[
0

(− τ
2 ,−ρ

2 )

]

(z1, z2;Ω) = 0. (A.9)

Moreover the curve classes Ci satisfy the following rela-
tions

C1
(a−1,b) + C3

(a−1,b) = C1
(a,b−1) + C3

(a−1,b),

C1
(a−1,b) + C2

(a,b) = C1
(a,b−1) + C2

(a,b−1). (A.10)

For the local CY 3-fold XN ,M a modular covariant basis of
generators can be given by

Cm,(a,b) = C1
(a,b), Cτ,(a,b) = C1

(a,b) + C2
(a,b),

Cρ,(a,b) = C1
(a,b) + C3

(a,b), (A.11)

where a, b ∈ Z. In the fundamental domain of the (N , M)-
web there are 3MN toric rational curves where a ∈ ZN , b ∈
ZM . Due to the 2NM constraints in (A.11) and torus period-
icity the effective rank is MN + 2.

Appendix B:
∑N−1

a=0 ma,b is independent of b: proof

Here we prove the identity used in Sect. 3.3.
Note that in our notation the curve classesC1

(a,b) are repre-
sented by the Kähler parameters ma,b. Using the first relation
in Eq. (A.11), we can write the following summation

p−1∑

a=0

(C1
(a−1,b) + C3

(a−1,b)) =
p−1∑

a=0

(C1
(a,b−1) + C3

(a−1,b)).

(B.1)

Due to the compactification of web diagram on a torus there is
periodicity relation C1

(−1,b) = C1
(p−1,b). After simplification

the second term cancels on both sides and we get

p−1∑

a=0

(C1
(a−1,b)) =

p−1∑

a=0

(C1
(a,b−1)). (B.2)
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Expanding the left side

p−1∑

a=0

(C1
(−1,b) + C1

(0,b) + C1
(1,b) + · · · + C1

(p−3,b) + C1
(p−2,b))

=
p−1∑

a=0

(C1
(a,b−1)). (B.3)

Rearranging the terms after using Using C1
(−1,b) = C1

(p−1,b),
we obtain the desired relation

p−1∑

a=0

C1
(a,b) =

p−1∑

a=0

C1
(a,b−1). (B.4)
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