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ABSTRACT

A SEARCH FOR THE HIGGS BOSON PRODUCED IN ASSOCIATION WITH TOP

QUARKS IN MULTILEPTON FINAL STATES AT ATLAS

Chris Lester

Joseph Kroll

This thesis presents preliminary results of a search for Higgs boson production in associa-
tion with top quarks in multilepton final states. The search was conducted in the 2012 dataset
of /s = 8 TeV proton-proton collisions delivered by the CERN Large Hadron Collider and
collected by the ATLAS experiment. The dataset corresponds to an integrated luminosity
of 20.3 fb~!. The analysis is conducted by measuring event counts in signal regions distin-
guished by the number of leptons (2 same-sign, 3, and 4), jets and b-tagged jets present in
the reconstructed events. The observed events in the signal regions constitute a small excess
over the expected number of background events. The results are evaluated using a frequentist
statistical model. The observed exclusion upper limit at the 95% confidence level is 5.50 times
the predicted Standard Model ttH production cross section. The fitted value of the ratio of
the observed production rate to the expected Standard Model ttH production rate is 2.83 +

1.58 — 1.35.
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CHAPTER 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) experiments has opened
up a new paradigm of research into the Standard Model of particle physics. This thesis
primarily documents a search for the production of Higgs boson in association with top quarks
(ttH) in multi-lepton final states. Searching for this production mode of the Higgs is an
important step toward a precise measurement of the top Yukawa coupling, because it accesses
this coupling via diagrams that do not contain loops. Comparison of this coupling with the
already well-measured top quark mass provides a direct test of a fundamental provision of the
Higgs mechanism: that it gives mass to the fermions.

The analysis uses the 2012 ATLAS experiment’s dataset of proton-proton collisions at a
center-of-mass energy of 8 TeV provided by the LHC. The statistics available do not allow for
an observation of the ttH process at the Standard Model production cross-section, and the
results of the search are interpreted as a 95% exclusion on the production rate. The results
will provide some of strictest constraints on the rate to date and establish a program for future
analyses on larger datasets that will eventually observe this production mode.

Chapter 2 provides theoretical background and motivation for the study of this particular
Higgs production mode and Chapter 3 provides a basic review of the experimental apparatus,

the LHC and ATLAS. Chapter 4 is a brief diversion from the main text to elaborate on the
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techniques used to identify electrons and measure their identification efficiency.

Chapters 5-10 are the main text, which discuss the full analysis procedure for the search
and the final measurement. The results of the analysis have been approved by the in the
ATLAS collaboration and eventually will be documented for publication. They will eventually
be combined with other Higgs searches to set limits on Higgs couplings to other SM particles,

particularly the top quark.



CHAPTER 2

Theoretical Background

The Standard Model of particle physics (SM) is an extraordinarily successful description of the
fundamental constituents of matter and their interactions. Many experiments have verified
the extremely precise prediction of the SM. This success has culminated most recently in the
discovery of the Higgs Boson. This chapter provides a brief introduction to the structure
of the SM and how scientists are able to test it using hadron colliders. It focuses primarily
on the physics of the Higgs boson and its decay to top quarks. I stress the importance of a
measurement of the rate at which Higgs Bosons are produced in association of top quarks, as a
new, rigorous test of the SM. The experimental search for this production mode in multi-lepton

final states is the general subject of this thesis.

2.1 The Standard Model

2.1.1 The Standard Model Structure

The Standard Model (SM) [1, 2, 3, 4] is an example of a quantum field theory that describes
the interactions of all of the known fundamental particles. Particles are understood to be
excitations of the more fundamental object of the theory, the field. The dynamics and inter-

actions of the fields are derived from the Standard Model Lagrangian, which is constructed
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to be symmetric under transformations of the group SU(3) x SU(2);, x U(1). SU(3) is the
group for the color, SU(2)y, is the group for weak iso spin, and U(1) is the group for weak
hyper-charge.

Demanding these symmetries be local, gauge symmetries allows the theory to be re-
normalizable [5], meaning that unwanted infinities can be absorbed into observables from
theory in a way that allows the theory to be able to predict physics at multiple energy scales.
Gauging the symmetries results in the introduction of 8 massless gluons, or the boson' carri-
ers of the strong force [6] from the 8 generators of the SU(3) symmetry, and the 4 massless
bosons, carriers for the weak and electromagnetic forces from the 3 generators of the SU(2)
and 1 generator of the U(1) group. The weak and the electromagnetic forces are considered
part of a larger single unified electroweak group SU(2) x U(1) and the associated generators
mix.

Matter particles are half-integer spin fermions and are represenations of the symmetry
groups. Singlets of the SU(3) are called leptons, do not have a color charge, and, therefore,
do not interact with the strong force. Quarks, as triplets of the SU(3) group, do interact with
the strong force. The SM is a chiral theory: the weak force violates parity, as it only couples
to right-chiral particles or left-chiral anti-particles. This means that right-chiral and left-chiral
fermions arise from different fields, which are different representations of the SU(2)y, group.

The discovery of particles and new interactions in various experiments is intertwined with
the development of the theory that spans many decades and is not discussed in detail here.
But these experiments have proven the above model and symmetries to be an overwhemlimg
success. So far, 3 separate generations of both quarks and leptons have been discovered,

differing only by mass. The reason for this 3-fold replication is not known. The gluons and

Ibosons are full integer spin particles that obey Bose-Einstein statistics, while fermions are half-integer
spin particles that obey Fermi-Dirac statistics
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Figure 2.1: The Standard Model Particle Content

the 4 electroweak bosons have also been discovered(W, W—, Z°, and 7). Figure 2.1 shows

a table of the known SM particle content.

2.1.2 Electroweak Symmetry Breaking and the Higgs

Despite the simple structure of theory, the discovery of massive fundamental particles creates
two sets of problems both related to SU(2)r x U(1) symmetry. First, the force-carrying
bosons must enter the theory without mass or the symmetries will be explicitly broken in the
Lagrangian. Second, adding fermion masses to theory in an ad-hoc way allows the right-chiral
and left-chiral fermions to mix. Since they possesses different quantum numbers, as different
representations of the weak-isospin group, this too breaks gauge invariance.

To solve these problems, spontaneous electro-weak symmetry breaking (EWSB) is intro-
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duced via the Brout-Englert-Higgs mechanism [7, 8, 9]. A massive scalar field in an electro-
weak doublet is added to the theory with 4 new degrees of freedom and a potential which
includes a quartic self-interaction term. Each fermion field interacts with the scalar field via
a different Yukawa coupling, which unites the left and right chiral fields of a single particle
type. This field explicitly preserves all of the symmetries, but the minimum of the potential
does not occur when the expectation of the field is zero. The field eventually falls to a state,
where it acquires a non-zero vacuum-expectation value. A non-vanishing field must point in
a particular direction of weak-isospin space, breaking the symmetry.

The consequences of this spontaneous symmetry breaking are tremendous. The universe
is filled with a field that has a non-zero expectation value. The theory can be expanded
around this new value and 3 of the degrees of freedom can be interpreted as the longitudinal
polarizations of the now massive W+, W—, and Z°, while the 4th remains a scalar field,
called the Higgs field with an associated particle called the Higgs particle or ‘Higgs’. The
weak bosons acquire a mass via their longitudinal polarizations and the Yukawa couplings of

the scalar field to the fermions now behave like a mass term at this new minimum.

2.1.3 The Standard Model Parameters

Confronting the SM with experiment requires the measurement of 17° free parameters, which
are unconstrained from the theory. These free parameters include the fermion masses from the
Yukawa couplings, the force coupling constants, the angles and phase of the mixing between

quarks, and constants from the Higgs and electroweak sector®.

2There are additional parameters from neutrino mass terms and mixing but it is unclear how to include
these into the Standard Model, since it does not predict right-chiral neutrinos that would not interact via any
force

3 The electroweak sector includes parameters like mass of the W and Z9 bosons, the weak mixing
angle,sin?60y,, the fermi constant Gz, and Higgs Mass and vacuum expectation value. These parameters
however are not wholly independent. As discussed above, it is only necessary theoretically to specify the two
parameters relevant to the Higgs potential and the two coupling associated with the gauge groups



2. THEORETICAL BACKGROUND

Experiments have provided a number of measurements of the parameters of the SM[10].
With the discovery of the Higgs boson and the measurement of the Higgs mass, all of the
parameters of the SM can be estimated and statistical procedures can assess the relative
agreement of overlapping measurements to test the self-consistency of the SM. The GFitter
collaboration assembles all relevant electroweak observable measurements into a statistical
model and then allows certain measurements to float within their uncertainty to allow for a fit
among multiple correlated measurements[11]. These correlations arise for two reasons. First,
measurements are made that often depend on multiple SM parameters. Second, radiative
corrections often cause parameters to depend on each other. For instance, the Higgs mass is
sensitive to both the W mass and top mass, through loop level corrections.

Figure 2.2 shows the fitted constraints on 4 key SM parameters (Mg, My, My, sin?0.,,)
with actual measurements overlaid. The plots show both the removal and inclusion in the fit
of key measurements to assess their overall impact. The addition to the fit of the measured
Higgs mass from the ATLAS and CMS collaborations creates a small tension, as the other
observables prefer the mass to be much lower (~ 80 GeV). This tension in the combined
electroweak fit as a result is not statistically significant with a p-value of 0.07. The SM seems

to be self-consistent.

2.2 Collider Physics and the Higgs

To test the theory, physicists accelerate particles to extremely high energies and force them
to interact through collisions. Typically, the particles accelerated are electrons or protons,
since they are stable. Electron-positron collider machines have a rich history of discovery and
measurement in particle physics. The advantage of electron accelerators is that the colliding

element is itself a fundamental particle. However, due to synchrotron radiation, the curvature
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Figure 2.2: x? as a function of the Higgs mass (top left), the top quark mass (top right), the
W boson mass (bottom left) and the effective weak mixing angle (bottom right)
for the combined SM fit from the GFitter group. The data points placed along
X2 = 1 represent direct measurements of the respective observable and their +1¢
uncertainties. The grey (blue) bands show the results when excluding (including)
the new My measurements from (in) the fits.

of the beam line becomes problematic for high energy beams. On the other hand, proton-

proton and proton-anti-proton colliders can be accelerated in rings without large losses due

to synchrotron radiation, but the actual colliding objects at high energies are the constituent

quarks and gluons. This complicates analysis because the initial state of the hard-scattering

system is not known on a per-collision basis and the momentum of hard-scattering system is

unknown along the beam direction.

For hadron colliders, physicists must rely on form-factor descriptions of the colliding

hadrons that describe the fraction of momentum carried by the hadrons constituent ‘partons’.

These are called parton distribution functions (PDF), seen in Figure 2.3, and are factorized

and integrated through the theoretical calculations of various collision processes [12].
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Figure 2.3: Proton Parton Distribution Functions (PDFs) from the MSTW Collaboration at
Q? =10 GeV? and Q? = 10* GeV?

At the Large Hadron Collider (LHC) protons are collided.The types of initial hard-scattering
states at the LHC are quark-quark, quark-gluon, and gluon-gluon. Gluon collisions dominate
overall, due to the large number of gluons inside the proton, though the relative importance
of different initial states changes with the energy scale of the collision and the type of final
state selected.

A prime motivation for the construction of the Large Hadron Collider was the discovery
or exclusion of the Higgs boson[13]. LEP and the Tevatron excluded large swaths of possible
Higgs boson masses, especially below 114 GeV. The Higgs mass was also known to have
a theoretically motivated upper bound. The unitarity of diagrams including the WWWW
vertex required the Higgs mass to be below about 1 TeV. The LHC was designed to be able
to eventually find or exclude a Higgs particle in this range [10].

Reaching this discovery or exclusion required an enormous dataset with collisions at high

energies. Despite the fact that the Higgs couples to nearly every particle, Higgs boson pro-
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Figure 2.4: Dominant Higgs production modes at the LHC

duction at the LHC is a low rate process. Because it couples to fermions proportional to mass
and because the colliding particles must be stable and therefore light, production of the Higgs
must occur through virtual states.

The Higgs boson can be produced through collision at the LHC via 4 mechanisms: gluon-
fusion (ggF), vector-boson fusion (VBF), Higgsstrahlung (VH), and production in association
with top quarks (¢H). The diagrams are shown in Figure 2.4 and the production cross-
sections as a function of Higgs mass for the 8 TeV LHC proton-proton running are shown in
Figure 2.5 [14]. The largest production cross-section is via the gluon fusion channel at 20
pb, which proceeds through a fermion loop that is dominated by the top quark, because of
its large Yukawa coupling to the Higgs. Because the Higgs couples to every massive particle,
it has a rich set of decays also seen in Figure 2.5, especially for my = 125 GeV. Studies of
Higgs properties at hadron colliders offers many tests of the Standard Model and ample room
for new physics searches. These tests specifically can verify the link between Yukawa coupling

and the particles mass and further constrain details of EWSB by examining Higgs coupling

10
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Figure 2.5: 8 TeV LHC Higgs production cross-sections (left) and decay branching fractions

to the weak bosons.

2.2.1 Higgs Discovery at the LHC

In 2012 both ATLAS and CMS announced the discovery of a new boson consistent with the
Higgs by examining the results of Higgs searches in a number of decay channels (H — W+TW—,
H — 7Z°7° and H — ~v) in the 2011 dataset at /s =7 TeV and part of the 2012 dataset at
/s =8 TeV. By 2013 and 2014, both experiments have updated and/or finalized their results
for the full 2011 and 2012 datasets [15, 16]. I will focus on the ATLAS results that measured
both the Higgs mass[17] and spin[18] and provided initial constraints of the Higgs couplings
to different particles.

Figure 2.6 show the results of the searches in all of the measurement channels as well as
constraints on the SM Higgs coupling parameters in an example fit, where the couplings to
the top-quark, bottom-quark, W,Z, and 7 are allowed to fluctuate independently. These rely
on measurements binned in different production and decay channels. They are dominated by

higher statistics results in the gluon-fusion production modes, but measurements in the VH

11
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Figure 2.6: ATLAS Higgs combination results for all SM measurement channels as ratios of
the measured to SM production cross-sections (left) and extracted Higgs coupling
constraint scale-factors for a combined fit to the measurement channels, where the
W.Z, top-quark, b-quark, and 7 couplings are allowed to float. The p-value of this
particular model is 0.13 and in agreement with SM expectations

and VBF modes are close to SM sensitivity.

The combined results show basic agreement with the SM with much room for improvement
with the addition of new production and decay modes and higher statistics. The coupling con-

straints are particularly strong for the W and Z, which are the most sensitive decay channels,

and top quark due to the dominance of the top Yukawa in the ggF loop.

2.2.2 The Importance ttH Production

Notably absent thus far in the SM are searches for the Higgs in the tH production channel,
due to the low production rate and lack of statistics. Searches are underway and initial results
are close to SM sensitivity for ATLAS and CMS.

Measuring the ¢tH production rate is important, because ttH production depends on the

12



2. THEORETICAL BACKGROUND

top Yukawa coupling at tree level. Comparing the predicted Yukawa coupling from top mass
measurements to the coupling from the wholly independent Higgs production measurements
is a very direct test of the Higgs’ involvement in providing mass for the fermions in the SM.

The top Yukawa coupling is already constrained from current measurements of the ggF
production process, since the ggF loop is dominated by top quarks. However, new, colored
particles could be present in the loop. Comparison of the gluon-fusion and the t#H modes
would allow for disentangling the effects of these possible new particles[19]. The simplest of
new phyiscs models, allowing for the modification of the ggF loop, introduce a new generation
of quarks. However, fourth generation quarks, which obtain mass from a Higgs Yukawa
coupling, are already largely excluded due to their enormous effects on the Higgs production
cross-section[20]. Other exotic scenarios allow for new colored particles, which are not entirely
constrained by present measurements|[21, 22, 23]. These include, for instance, supersymmetric
models involving the stop quark.

With the level of statistics available in Run I dataset, very strict constraints on the top
Yukawa coupling are simply not possible and the measurment presented in this thesis is a first
step. Future, high-statistics datasets will have the ability to provide better measurements
and ttH production will become very important. Despite similar uncertainties on the overall
production cross-sections for ttH and the ggF, ttH has the advantage that most of these
uncertainties would cancel for t¢tH if normalized to the topologically similar ¢£Z. Finally,
the uniqueness of the experimental signature means that searches for ttH signatures can be
performed for a variety of Higgs decays (v, bb, WW,ZZ, and 77 with roughly similar degrees
of sensitivity (within a factor of 10)[19].

It is important to note the importance of the top Yukawa coupling due to its enormous
size compared to other couplings. For instance, given the measured top and bottom masses,

the top Yukawa coupling is roughly 30 times the bottom Yukawa coupling, the next largest.

13
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Figure 2.7: RGE for the running of the SM parameter, A for the Higgs self-coupling term
with present values and uncertainty bands for My and M; (left). The two-
dimensional plot colored (right) shows regions for which the SM is stable, unstable
and metastable based on this RGE.

The top Yukawa coupling, along with the Higgs mass, is one of the most important pieces

of the renormalization group equations (RGE) responsible for the running of the parameter

that determines the Higgs self-coupling A. If this parameter runs negative, then the potential
responsible for the entire mechanism of EWSB no longer has a minimum and becomes un-
bounded, resulting in instability in the universe [24]. Metastability occurs when the shape of
the potential allows for a false local minimum. Figure 2.7 shows the running of this parameter,
the regions for which the universe is stable, unstable and metastable. Current measurements
suggest that universe lies in a metastable island*. This is a sort of fanciful aside, intended only

to highlight the importance of the top Yukawa coupling and to suggest that new discoveries

in the top-Higgs sector have far reaching consequences.

4The RGE assumed that there is no new physics at all energy scales

14
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2.3 Conclusion

The Standard Model, despite its success in providing a unified description of fundamental
particles and interactions into single theory, has its flaws. These have been discussed in depth
elsewhere, but include issues like the description of massive neutrinos, the failure to include
gravity, and the unnaturalness of large quantum corrections to Higgs parameters. For these
reasons, it seems the SM might be a lower energy approximation to a more fundamental
theory. The discovery of the Higgs boson at the LHC provided a stunning verification of one
of the fundamental aspects of the theory but at the same time offers new area to search for
glimpses of something more fundamental. The production of samples of Higgs bosons allows
for a rich array of new tests of the Standard Model, which is now finally over-constrained by
experiment. Searches for the ttH production, one category of which is the topic of this thesis,
provide tree-level access to a central parameter of the theory, the top Yukawa coupling, as
well as access a variety of Higgs decays, which will eventually provide a rigorous new test of

the SM.
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CHAPTER 3

The Large Hadron Collider and the
ATLAS Experiment

3.1 The Large Hadron Collider

Production of a sufficient number of high energy collisions to adequately explore the physics
of electro-weak symmetry breaking required the development of one of the most complex
machines ever built, the Large Hadron Collider or LHC.

The LHC is the world’s highest energy particle accelerator and is located 100m underneath
the French-Swiss border at the European Organization for Nuclear Research (CERN) in a
26.7 km tunnel. The technology involved in the development of the LHC is an enormous
achievement it its own right and is documented in detail here [25, 26, 27]. The LHC is a
circular machine capable of accelerating beams of protons and colliding them at center of
mass energies up to /s = 14 TeV at 4 collision sites around the ring, where 4 experiments
are housed (ATLAS[28], CMS[29], LHCb[30], and ALICE[31]). Figure 3.1 is a diagram of the
layout of the LHC and its experiments[32]. The LHC also operates in a mode with beams
of heavy ions. The LHC is composed of thousands of super-conducting Niobium-Titantium
magnets, cooled to 1.9 K with liquid Helium, which steer and focus the particle beams, and

superconducting resonant-frequency (RF) cavities, which boost the beam to higher energies.
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Overall view of the LHC experiments.

Figure 3.1: Diagram of the Large Hadron collider and location of the 4 main experiments
(ATLAS, CMS, LHCb, and ALICE) around the ring. The diagram also shows
the location of the SPS, the final booster ring in the accelerator complex that
accelerates the protons to 450 GeV before injection into the LHC.

3.1.1 The Accelerator Complex

The accelerator complex is a progressive series of machines with the LHC as the final stage.
Protons are obtained from hydrogen atoms and are accelerated to 50 MeV using the Linac2,

a linear accelerator, before being injected into the Proton-Synchrotron Booster (PSB). In

17
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the PSB the protons are accelerated to energies of 1.4 GeV for injection in to the Proton-
Synchrotron (PS). The PS accelerates the protons to 25 GeV and dumps bunches into the
Super Proton Synchrotron (SPS), where they are accelerated to 450 GeV and finally dumped
into the LHC for full acceleration. The PS and SPS are circular accelerators that were

important in past physics discoveries and have been re-purposed for use in the LHC complex.

3.1.2 Beam Parameters and Collisions

For the physics studied at the ATLAS experiment, the two most important parameters of the
collisions are the center of mass energy (CME) and instantaneous luminosity (£). High center
of mass energies are necessary for the production of new high mass particles, and, because the
constituents of the actual collisions are the partons of the proton, the CME of the collisions
must in general be much higher than the mass of the particles produced.

The instantaneous luminosity of the collisions is a measure of the collision rate. The in-
tegrated luminosity over time is a measure of the size of the dataset and when multiplied by
the cross-section of a particular process gives the total number of expected events produced
for that process. Instantaneous luminosity depends on the number of colliding bunches of
protons, the intensity of those bunches, the revolution frequency, and the normalized trans-
verse spread of the beam in momentum and position phase space, called the emittance, and
the transverse beam size. The LHC has the option for colliding beams with 2808 bunches of
protons, each with around 10! protons, at a rate of one bunch collision every 25 ns, or 40
MHz. These parameters correspond to a design luminosity of around 1034 cm? s=! or 10 nb~!
s™1, equivalent to 1 Higgs every 5 seconds. For various reasons, the bunch collision rate was

help at 20 MHz for the 2011 and 2012 runs.
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3.2 The ATLAS Experiment

This section provides a brief overview of the ATLAS experiment. The ATLAS detector is
centered on one of the LHC collisions points, located 100 m underground. Through the
combination of a number of subsystems, it is designed to identify the particles arising from
these collisions, measure the energy and momentum of these particles, and make fast decisions
about the content of each collision, in order to save a small fraction of measured collision events
for offline study.

ATLAS, shown in Figure 3.2, possesses cylindrical symmetry around the beam pipe. It
weighs 7000 tons, has a diameter of roughly 25 m and length of 46 m. ATLAS was designed
to be a multi-purpose hermetic, particle detector, able to identify many types of particles,
and designed to provide a snapshot of the entire collision event. The detector sub-systems
form concentric rings around the beam-line at increasing distance. From closest to the beam

outward, they are:

e Inner Detector: The inner detector (ID)[33, 34] is immersed in a solenoidal magnetic
field[35] and provides measurements of charge particle tracks, through three subsystems:
the Pixel Detector[36, 37], the Semi-Conductor Tracker (SCT)[38, 39], and Transition

Radiation Tracker(TRT) [40, 41, 42].

e Calorimeter: The calorimeters measure the energy of particles that participate in the
electromagnetic (photons, electrons) and hadronic interactions (pions, protons, neutrons,
etc.), by forcing them to shower in dense material. The hermeticity of the calorimeters
allows for missing transverse energy measurements. The calorimeter is composed of the
liquid argon electromagnetic calorimeter (LAr)[43], the hadronic tile calorimeter[44], the

liquid argon hadronic endcap calorimeter, and the forward calorimeters.
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Figure 3.2: Diagram of the ATLAS detector and subsystems

e Muon Spectrometer: The muon spectrometer (MS) sub-systems[45] form the outer-
most detector systems and measure the momentum of minimum ionizing muon tracks, as
all other particles are stopped by the calorimeters. The muon systems are immersed in
a toroidal magnetic field [35] and are composed of 4 different sub-systems for triggering

and tracking measurements [46, 47, 48].

e Triggering Systems: The trigger and data acquisition systems[49, 50] read out data
from the detector through a three-tiered hardware and software decision making frame-
work to record the most interesting physical processes for a broad physics analysis pro-

gram.

These systems are discussed in depth in the following sections.
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3.2.1 Detector Coordinate System

ATLAS uses a right-handed coordinate system centered at the nominal proton interaction
point. The beam line defines the z-axis. The x — y plane is perpendicular to the beam line
and is referred to as the transverse plane. The transverse plane holds special significance
in reporting measurements, because the initial momentum of the hard collision system is 0
along the transverse plane in the laboratory rest frame. Particle momenta measured along
the transverse plane is called transverse momenta, and labeled pr. The momentum of the
colliding proton-proton system is also 0 along the z-axis but the colliding partons may have
vastly different momenta. Thus, momentum of the hard colliding system along the z-axis
differs collision to collision.

Because ATLAS possesses a rough cylindrical symmetry, cylindrical and polar coordinates
are used to describe particle trajectories and detector positions. The radial coordinate, R,
describes transverse distances from the beam line. An azimuthal angle, ¢, describes angles
around the z-axis, and a polar coordinate, 6, describes angles away from the z-axis. The
polar angle is often expressed in terms of pseudo-rapidity, defined as n = —In(tan(6/2)).
Distances in 17 — ¢ space are often used to describe the proximity of objects in the detector,
AR = /1% + ¢2.

The ‘barrel’ and ‘endcap’ are classifications that are used to label the position of sub-
detectors. Barrel sub-detectors occupy positions more central to the detector at |n| values
roughly less than 1-2, while the endcap calorimeters extend farther in |7|. The barrel-endcap
transition region contains detector services. Also, the orientation of the detector elements are

often different in the barrel and endcap to have optimal particle flux.
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Figure 3.3: Diagram of the ATLAS ID in the R — ¢ plane showing the barrel view of the
Pixel Detector, SCT, and TRT.

3.2.2 The Inner Detector

The ID makes measurements of the position of charged particles as they move through the
detectors 3 sub-systems (Pixel Detector, SCT, TRT). The individual position measurements
can be strung together to form a particle track. The entire ID is immersed in a 2T solenoidal
magnetic field allowing for measurements of particle momenta through the curvature of the
tracks. The ID is contained with a radius of 1.15 m and has a total length of 7m, allowing
for particle tracking out to |n| < 2.5 . Figures 3.3 and 3.4 show the placement of the ID
sub-systems in the R — ¢ and R — z planes.

The Pixel Detector has 80 million silicon read out channels (pixels) and is closest to the
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Figure 3.4: Diagram of the ATLAS ID in the R — z plane showing the endcap view of the
Pixel Detector, SCT, and TRT. Only one side of the endcap is shown.

interaction point with the finest granularity. As charged particles traverse the silicon, they
create electron-hole pairs, which are subsequently pulled apart in an electric field and can be
captured and registered as a current pulse. The detector has three concentric layers of pixels
in the barrel (to || < 1.9) and three endcap disks on each side of the barrel (to |n| < 2.5).
The closest barrel layer to the beam pipe is called the b-layer. The pixels provide excellent hit
resolution (R — ¢ accuracy of 10 pm and z (R) accuracy of 115 pm in the barrel (endcap)).

The SCT uses similar silicon technology to the pixels, but the each SCT layer contains a
double layer of silicon strips, which are much longer in length than width. The SCT has 4
million read out channels and is arranged in 4 barrel layers and 9 endcap layers with coverage
to |n| < 2.5. The double layers are inclined slightly with respect to each other so that these
1D sensors have 2D resolution for coincident hits. The resolutions are 580 pm in z (R) for
the barrel (endcap) and 17 pm in R — ¢ .

The TRT is comprised of straw drift tubes filled with a gas mixture, containing mostly
Xenon gas. Particles traversing the straws ionize the gas, and the liberated electrons drift to

a wire at the center of the straw, which has an applied voltage, and induce an signal on the

23



3. THE LARGE HADRON COLLIDER AND THE ATLAS EXPERIMENT

wire. The TRT has ~300,000 straws. The barrel straws are arranged cylindrically along the
z direction out to ~ |n| < 1 and the endcap straws point radially outward in the R direction.
For this reason, the barrel (endcap) straws provide no measurement in the R (z) directions.
The drift tubes provide individual position measurements with resolutions of ~ 130 ym. Each
particle track has on average 35 hits, which is large compared to the Pixel and SCT tracks,
which have on average 7 hits.

The TRT is unique in that it also provides particle identification measurements via tran-
sition radiation. Charged particles emit transition radiation when traversing a boundary
between materials of different dielectric constants. The volume between the straws is filled
with a radiator material, a polymer foil or foam, to provide this boundary condition. Tran-
sition radiation photons are emitted in the direction of the particle trajectory in the keV
range and cause a much larger signal amplitude within the straw. Hits that cause a signal
at a higher threshold are thus indicative of transition radiation. The probability for emission
transition radiation depends on the relativistic v of the traversing particle. Because electrons
are much lighter than any other charged particle, their v-factors tend to be high enough to
induce transition radiations, as opposed to pions, muons and other particles.

Combined tracking of particles through the 3 sub-detectors results in track momentum
measurements from 500 MeV, the minimum energy need to leave the ID due to the magnetic

field, to a few TeV. The track pr resolution is roughly 0.05%-pt & 1%.

3.2.3 The Calorimeter

The ATLAS calorimeters measure the energy of electrons, photons and hadrons with |n| < 4.5.
They induce a particle shower via electro-magnetic and nuclear interactions with the detector
material and are deep enough to ensure that all or most of the shower energy remains con-

tained. Exceptionally, muons pass through the ATLAS calorimeters leaving relatively little
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Figure 3.5: Diagram of the ATLAS calorimeters

energy behind. ATLAS calorimeters are sampling calorimeters meaning that the active mate-
rial of the detector only measures a small fraction of the energy produced by the shower. The
overall shower energy is inferred from this fractional measurement. The rest of the material
is inactive, dense material, designed to induce showers. The calorimetry system is grossly
divided longitudinally (radially) into electro-magnetic (EM) and then hadronic segments, op-
erated with different technologies. Figure 3.5 diagrams the layout of the calorimeter system.

The EM calorimeter (LAr), which is located directly outside of the solenoid magnet but
within the same cryostat, has a accordion design with lead absorber and liquid argon active
material. The accordion design ensures uniform coverage in ¢. The barrel and endcap LAr
extend to |n| < 2.47. The LAr provides highly granular measurements in 1 — ¢ with 4 longi-
tudinal segments, totaling ~25-35 radiation lengths with the exception of the barrel /endcap
transition region (1.37 < |n| < 1.52). The geometry of the barrel LAr calorimeter can be seen

in Figure 3.6. The first longitudinal segment is called the pre-sampler, composed of a thin
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layer of active liquid argon, designed to detect early particle showers. The second segment
is the most highly granular segment called the ‘strips’, as it is composed of thin liquid argon
cells. The strips have a size of 0.025/8 x 0.1 in 7 — ¢ in the barrel with similar sizes in the
endcap and are designed to be able to resolve single and double particle showers. This res-
olution is particularly useful in distinguishing 7° — 7+ signatures from electron and photon
signatures. The bulk of the radiation lengths and therefore the primary energy measurement
come from the the third layer®. Each cell in this layer is 0.025 x 0.025 in 7 — ¢. The final layer
is coarser, thinner and designed to estimate energy leaking out of the EM calorimeter. The
forward EM calorimeters extend the n range and use the same technology, but are not used
in this analysis. The energy resolution of the EM calorimeters is o5 /E = 10%/vVE @® 0.7%,
measured in test beam data and confirmed in collision data.

The hadronic calorimeter is located directly behind the EM calorimeter. It is composed of
tiles of iron absorber and plastic scintillator in the barrel (|n| < 1.6), called the TileCal, and
copper-liquid argon in the endcap (1.5 < |n| < 3.2), called the HEC. The calorimeters contain
~10-19 hadronic interactions lengths with multiple longitudinal segments to contain showers
induced by the nuclear interaction of hadronic particles. The energy resolution of the hadronic
calorimeters is 0/ E = 50% /v E®3%. The intrinsic resolution of hadron calorimeters is much
worse than electro-magnetic calorimeters, because much of the energy is lost to the inelasticity

of nuclear break-up.

3.2.4 The Muon Spectrometer

The MS measures the trajectory of particles outside of the calorimeters, using multiple dif-
ferent technologies. Generally, all charged particles except for muons are stopped by the

calorimeter, and therefore the majority of particles in the MS are muons, with the exception

5this layer is actually called ’layer 2’, since the pre-sampler is referred to as ’layer 0’
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Figure 3.6: Diagram of the ATLAS LAr EM calorimeter showing the longitudinal segmenta-
tion and the n — ¢ cells for the central barrel region

of rare cases of hadronic punch-through. Particle momentum spectroscopy is made possible by
an air-core toroidal magnet system, embedded in the barrel MS (|| < 1.4), and two smaller
end cap toroids that provide fields out to |n| < 2.7.

In the barrel region, the muon chambers are arranged in three cylindrical layers around
the beam, while in the endcap-regions the layers are arranged perpendicular to the beam in
wheels. The arrangement is depicted in Figure 3.7.

The chambers in the barrel and most of the endcap are constructed from Monitored Drift

Tubes (MDTs) with an Argon gas mixture. Each chamber contains 3-7 drift tubes and provide
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Figure 3.7: Diagram of the ATLAS muon system

hit resolutions of 80 pum per tube and 35 pum per chamber in the bending plane. For |n| > 2.0,
Cathode Strip Chambers (CSCs) are used, primarily to handle the higher incident particle
flux. They are composed of cathode strips crossed with anode wires in the gas mixture, but
use similar drift technology as the MDTs and have resolutions in the bending plane 40 pym
per chamber.

Separate chambers, called Thin Gap Chambers (TGCs), used in the endcaps, and Resistive
Plate Chambers (RPCs), used in the barrel, provide less precise hit information but within a
much quicker time window, and are therefore used for triggering, as the CSCs and MDTs are

too slow.
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3.2.5 The Trigger System

The ATLAS trigger system is designed to make quick decisions about individual particle
collisions to reduce the enormous collision rate of 20 MHz to a much more manageable 400
Hz to be stored for offline analysis. Saving the full ATLAS data-stream would require space
for 40 TB of raw data per second, but, more importantly, most of these collisions result in the
uninteresting inelastic break-up of the colliding protons. To select out collisions to allow for a
diverse physics program, ATLAS devotes a large portion of the bandwidth to general purpose
single lepton triggers (~ 250 Hz). The presence of leptons in the event indicates the presence
of the weak or electro-magnetic interaction and therefore occurs at many order of magnitude
less frequently then interactions involving the strong interaction. Moreover, many interesting
physics signatures that are analyzable by ATLAS involve leptonic final states. The remaining
bandwidth is allocated to jet, missing energy, tau, and unbiased supporting triggers.

The ATLAS trigger system is composed of 3 levels: level-1 (L1), level (L2), and the event
filter (EF). The first level is a hardware only trigger that reduces the input 20 MHz rate to
~ 75 kHz, selecting 1 out of every 250 collisions. The available buffering on the chips means
that the decisions need to be made within 2.5 us. The L1 identifies small areas of the detector
with significant energy, called Regions-of-Interest (ROIs).

The second and third stages L2 and EF are software based. The L2 algorithms perform
more detailed object reconstruction for leptons, jets and photons inside of the ROIs provided
by L1, by performing tracking and in depth calorimeter clustering algorithms. The decisions
are made within 50 ms per event and pass 1 out of every 15 events to the EF. At the EF,
events undergo full reconstruction using similar but faster versions of the algorithms used
offine. The EF makes decisions on the presence of fully identified objects in the event and

event topological quantities within 4s to reduce the L2 output by a factor of 10. The events
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that pass this stage are then written to tape for offline study.

3.2.6 Reconstruction: Jets, Muons and Electrons

Physicists analyze the collision event as a collection of identified objects, expressed as particles’
momentum 3-vectors. The process of converting the disparate detector signatures and signals
into a unified 4-momentum description of individual objects is called reconstruction. These
objects arise from the final state particles in the event, which can be combined and counted
to infer properties of the hard scatter. The particles that make detectable signatures are
muons, electrons, photons, and jets of hadrons. Jets and b-tagged jets, muons and electrons
are used in the t#H analysis to define our search regions and to separate the Higgs signal from
backgrounds. Other analyses use photons, taus and missing transverse energy®, but these are
not discussed in depth here. Figure 3.8 shows an R — ¢ schematic of the interaction of various

particle signatures in the ATLAS detector.

3.2.6.1 Tracks and Clusters

The basic components of reconstruction are sensor measurements, or hits, in trackers (ID,
MS) and energy measurements in the calorimeter. Hits in the ID and MS undergo pattern
recognition, which identifies hits that belong to a single track, and fitting, which fits a curve to
the track to assess the particle trajectory. Charged particle trajectories are generally helical in
a magnetic field, but the fitting algorithm takes into more detailed information about energy
loss to material along the tracks length. The result of the fitting is an estimation of particle
momentum 3-vector. Electrons, photons and hadronic particles leave clustered deposits of
energy in the EM and hadronic calorimeters from their showers. Electron and photon showers

are primarily contained with the EM calorimeter, while hadronic showers deposit most of

6missing transverse energy is the presence of momentum imbalance in the transverse plane of the calorime-

ter due to escaping neutrinos
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their energy in the hadronic calorimeters. The process of associating individual read-out cells
of energy in the calorimeter to clusters of energy from the showers of individual particles is
called clustering. From the basic pieces of tracks and clusters, more complex objects can be

created.

3.2.6.2 Electrons

Electrons leave both a track in the ID and a narrow and isolated cluster of energy in the EM
calorimeter, AR < 0.1. Electron reconstruction proceeds using a sliding window algorithm,
which scans a fixed size rectangle in 17 — ¢ space over the EM calorimeter cells to find relative
maxima of energy in the window [51]. These maxima seed the clustering algorithms. Because
electrons are light, they lose energy to the material gradually through scattering and more
catastrophically through the emission of a high energy photon, through interaction with nu-
clei. This process is called bremsstrahlung. Tracks for electrons are reconstructed differently
because they must include the hypothesis that the electron loses significant energy through
bremsstrahlung. Generally, the emitted photon is contained within the same energy cluster
and therefore the sliding window algorithm is always wider in the direction of bending, ¢. A
single track is then matched to the cluster within certain minimum matching requirements in
7, ¢, and pr. Electrons are distinguished from photon conversions, which also have a track,
by lack of association with conversion vertices, found with a dedicated algorithm.

Electrons have many lever arms for further identification to suppress backgrounds from
fake sources. The narrowness of the shower shape, quality of track, and presence of transition
radiation are used by cut-based and multivariate identification algorithms. This is discussed
in depth in Chapter 4. Electrons are reliably reconstructed and identified with energies above

7 GeV.
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3.2.6.3 Muons

Muons are reconstructed from a combination of ID and MS tracks, when possible. The two
tracks must meet matching criteria to ensure they are from the same particle. The muon
momentum 3-vector comes from the combined ID/MS fit. Muons leave little energy in the
calorimeters and are generally isolated from other particles, when produced from electro-weak
bosons. Identification algorithms make requirements on the number of tracking hits in the ID
and MS and the quality of the matching of the two tracks. Muons are reliably reconstructed
and identified with energies above 5 GeV. More about muon reconstruction and identification

can be found here [52].

3.2.6.4 Jets

Quarks and gluons are colored objects that cannot exist alone on the time scales of detec-
tor measurements, due to confinement, a property of the strong force . When emitted, they
undergo a process called hadronization, in which they convert into ‘jets’ of colorless hadrons
that emerge collimated from the interaction point. The majority of these hadrons are charged
and neutral pions, though other hadrons are often present. Jets are reconstructed using con-
glomerations of calorimeter energy clusters chosen via an anti-k; algorithm, with a radius of
AR <0.4 [53]. The algorithm has been shown to be infrared safe, meaning the jet quantities
are not sensitive to low energy, small angle radiative divergences. Jets at ATLAS are recon-
structed from 10 GeV, calibration of the energy scale and resolution are only available for

energies greater than 20-25 GeV.

3.2.6.5 B-Tagged Jets

Generally, the flavor of the initiating quark is not known from the reconstructed jet, although

gluon initiated jets and quark initiated jets have slightly different properties. Jets from b
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Figure 3.8: R — ¢ schematic of the ATLAS detector and various particle signatures

quarks, however, are unique in that the long life-time of the produced B mesons allow for
measurable decays in flight. This property is used to tag b-quark initiated jets. This analysis
uses the MV1 tagging algorithm [54], which is a neural network based algorithm that looks for
secondary displaced decay vertices inside the event and takes into account jet track parameters
and energy flow with respect to these vertices. Jets from b quarks often involve B meson decays

to leptons, especially muons, which can be used to tag an orthogonal b-jet sample for studying

tagging efficiencies.
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CHAPTER 4

Electrons

High energy electron signatures are important elements of searches and measurements at
hadron colliders, because they signal the presence of important electro-weak processes in
the event. Requiring well-identified electrons in collision events suppresses the overwhelming
rate of strong-force mediated scattering and allows for the collection of a manageably-sized
dataset with interesting physics for study. For this reason, electron signatures form one of the
two pillars of the HLT trigger at ATLAS, as discussed in Chapter 3, and rigorous electron
identification is an important piece of many ATLAS analyses. This section summarizes the
development of ATLAS electron identification for the high luminosity 2011 and 2012 datasets

and discusses the techniques involved in measuring the electron identification efficiency.

4.1 Identification of Electrons at ATLAS

Electron reconstruction is discussed briefly in Chapter 3 and, in depth here [51]. The result
of electron reconstruction is called an electron candidate, which is comprised of a narrow
calorimeter energy cluster with |n| < 2.47 and and ID track that matches loosely in 1 and
¢. If the electron has |n| < 2.01, the ID detector track is fiducial to the TRT and has

the possibility of having high-threshold hits, indicative of transition radiation (TR). Electron
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Figure 4.1: Electron reconstruction efficiency for an example pt bin versus |n|. The drop
in efficiency at higher values of |n| is directly attributable to the increase in the
amount of material in front of the EM calorimeter (left). The material causes
bremsstrahlung, which makes track-cluster matching more difficult for electrons

cluster reconstruction is extremely efficient. The track-matching requirement is less efficient,
because the presence of hard bremsstrahlung may in certain cases cause the electron cluster
and emitted photon cluster to have a wide separation in the calorimeter [55]. Figure 4.1 shows
the reconstruction efficiency as a function || for an example pr bin as well as a plot of the
amount of material in front of the EM calorimeter. The efficiency loss at high |n| is caused
mostly by material-induced hard bremsstrahlung.

Objects that are not isolated electrons are often reconstructed as electrons, as the recon-
struction requirements are quite loose. Objects that often ‘fake’ isolated electrons are light
quark and gluon jets, heavy flavor jets that include real decays to electrons, and converted
photons. Light quark and gluon jets fragment into a number of collimated hadronic particles.
In rare cases, the jet may fragment most of its energy into a single charged pion, which show-

ers early in the EM calorimeter and fakes an electron signature. In other cases, the jet may
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Figure 4.2: Example single photon (left) and 7% — ~+ (right) signatures in the ATLAS EM
calorimeter. The fine segmentation of the cells in the strips allows for the distin-
guishing of two nearby showers from one shower and is used in electron identifi-
cation

fragment mostly into a neutral pion, which subsequently decays into a pair of photons. If one
of these photons converts, a track will point to the EM energy cluster and possibly fake an
electron signature. These cases would result in a reconstructed electron candidate. Although
the probability for these misidentifications to happen is small, the enormous jet production
rate means that it is a significant background. In general, light quark and gluon jet ‘fakes’
have larger transverse shower profiles and more energy leakage into the hadronic calorimeter.
For the neutral pion case, there are generally two separated showers for lower energy decays.
For both cases, there are often other particle signatures nearby. Heavy-flavor jet decays and
photon conversions contain real electrons. However, heavy flavor decays also involve the pro-
duction of additional hadronic particles within the jet. Both photon conversion and heavy
flavor decays involved secondary vertices displaced from the primary interaction point.

In order to distinguish these fake signatures from real, isolated electrons, electron iden-
tification algorithms use a number of reconstructed variables describing the electron shower
in the detector and the electron track. The details of the calculated variables can be found

here [56]. In general, electron identification takes advantage of the narrowness of isolated elec-
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tron shower in the transverse plane and lack of energy deposition in the hadronic calorimeter.
The transverse variables include measurements of the shower width in both layer 2 and the
strips, where more refined measurements are possible. In fact, the strips were designed to
separate single photon and electron showers from multiple showers from neutral pion decays,
shown in Figure 4.2. The shower width variables are generally measured mostly in 7 as
bremsstrahlung tends to smear the electron energy in ¢. Electron tracks are required to have
an adequate number of hits in the Pixel Detector, SCT and TRT. These hit requirements,
especially the b-layer requirement suppress electron conversions which occur in the detector
material. Track-cluster matching and geometric impact parameter variables require ID tracks
to match the calorimeter energy well and to arise from the primary interaction point. Elec-
trons with tracks explicitly associated with a conversion vertex can be rejected. Finally, the
high threshold fraction of hits on the track, made by transition radiation, is an uncorrelated
discriminator of pion and electron tracks. Figure 4.3 shows the average high threshold hit
probability for pions and electrons as a function of their pr.

Electron identification algorithms make selections in 9 bins of |5|, [0.10, 0.60, 0.80, 1.10.
1.37, 1.52, 1.81, 2.01, 2.37, 2.47] and bins of pr, [7, 10, 15, 20, 30, 40, 50, 60, 70, 80+] GeV.
The || binning changes with the calorimeter geometry, which in turn affect the shower shape
distributions. The shape of most of the identification variable distributions, tracking and

calorimeter, are pt dependent.

4.1.1 2011 Menu

Electron identification in 2011 was accomplished through rectangular cuts on the identification
variables at 3 operating points: Loose, Medium and Tight. The medium operating point was
used online as the primary electron trigger. At the beginning of the 2011 run, the 3 operating

points possessed the same cut-values, but tighter operating points had cuts on more variables.
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Figure 4.3: Electron and pion track high threshold probabilities as a function of their trans-
verse momenta. The two scales are united through the y-factor, on which the TR
probability depends directly. Electron tracks are much more likely to have high
threshold hits at electron energies typical of electro-weak decays.

The Loose operating point only cut on shower shape variables in layer 2 and hadronic leakage,
the medium operating point added cuts on shower width variables in the strips, and tight
added TR cuts, strict-track cluster matching, conversion rejection and a b-layer requirement.
This menu, called the ‘ISEM’ menu, was the first fully data-optimized cut menu for electrons.

The demands of increasing luminosity demanded a tightening of the medium operating
point midway through the data-taking, in order to maintain a EF trigger rate of around 20-25
Hz on the primary electron trigger. To accomplish this, variables cut on at the tight operating
point were added to the medium operating point, and the entire set of cuts was optimized to
provide the targeted fake rejection and reduction in the trigger rates at the highest possible
efficiency. The same procedure was applied to the loose operating point, where the target was
to provide an efficiency of 95% and the highest possible fake rejection. The re-inventing of
the menu in this way allowed for not only better performance, due to the inclusion of more

variables, but a more stable tightening of the backgrounds from loose to medium to tight,
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Figure 4.4: Comparison of the ISEM’ (left) and ‘IsEM++’ electron identification operating
points for Loose, Medium, and Tight. The efficiency as a function of 5 for an
example pt bin is shown on top and the background rejection is shown on the
bottom

where the same background types were targeted at each level. The new menu was called
the ‘IsEM++’ menu and the operating points were renamed ‘Loose++’, ‘Medium++" and
‘Tight++’. Figure 4.4 shows the comparison of the operating points for the new menu and

old menu.

4.1.2 2012 Menu and Pile-up

Improvements in the running conditions for 2012, in particular narrowing the transverse beam
emittance and size, resulted in large increase in number of proton-proton interactions during
every 50 ns bunch crossing. In 2011 the average number of reconstructed primary vertices
in each event, an indicator of the number of interaction per bunch crossing, was around 7,
while in 2012 the average grew to 25. Some events during 2012 running had 40 reconstructed

primary vertices.
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Figure 4.5: Electron hadronic leakage fraction (Rpq.q) and transverse shower profile (R,) in
layer 2 for high and low pile-up conditions. Pile-up is measured here as the number
of primary vertices in the event.

The increase in energy in the calorimeters from these additional collisions, called pile-up,
caused a worsening of the resolution of electron identification variables, particularly the shower
shapes and hadronic leakage. The presumed cause was the increase in the number of showers
of low energy hadronic particles near electrons. Figure 4.5 shows two example distributions,
the hadronic leakage (Rpqq) and the transverse shower profile (R,), for high and low pile-up
conditions. The distributions shows a clear widening for higher pile-up which results in a loss
of efficiency.

In order to combat this loss, the ‘IsEM++ menu was once again optimized to have a flatter
efficiency profile as a function of the amount of pile-up in the event with similar performance
to the 2011 menu. The strategy for this menu was to loosen selections on variables sensitive to
pile-up energy. It was expected and confirmed that relying more on the strip variables for the
shower shape selection and the energy in layer 3 of the EM calorimeter for the hadronic leakage
would sample a smaller volume of the calorimeter and thus be less sensitive to additional energy
in the neighborhood of the electron. The strategy is outlined pictorially in Figure 4.6.

The efficiency of the 2011 operating points compared to the 2012 operating points is shown
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Figure 4.6: Schematic of the strategy to reduce the pile-up dependence of electron identifica-
tion. A EM calorimeter wedge is shown overlaid with example electron (green)
and pile-up particle (red) signatures. The strategy is to loosen the dependence
of the identification on layer 2 and the hadronic calorimeter, which sample large
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in Figure 4.7, demonstrating a clear improvement in efficiency of the selections for higher pile-

up conditions.
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Figure 4.8: Example electron likelihood score output for electrons and fake electrons (left). A
cut can be made at any point in this distribution to define a selection operating
point (right). The cut-based operating point lies within the curve of possible
likelihood operating points, showing that the likelihood indeed outperforms the
cuts.

4.1.3 Electron Likelihood

A natural step forward for the electron identification is the use of multi-variate algorithms.
Multi-variate identification algorithms use many identification variables at once. Signals and
backgrounds can be separated in a multi-dimensional variable space in ways that go beyond
simple rectangular cuts. For the case of electron identification, it was found that using a
likelihood function, trained with electron identification variables, provided clear performance
gains with respect to rectangular cuts, while also providing stable and easily understandable
results. The likelihood scores each electron based on how signal-like or background-like it
is for each identification variable and then multiplies these individual scores together into a
final score. Figure 4.8 shows the example output of the likelihood for real electrons and fake
electrons. The output distributions can be cut on continuously to produce a curve of possible
selections rather than a single selection point.

There are many advantages to a likelihood-based approach. First, variables that show
significant shape differences between real and fake electrons but do not have a clear cut point

can still be used in a likelihood. Second, the likelihood score takes into account the entire
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shape of the distribution and not simply an efficiency and fake rejection at a single cut point.
Finally, the final cut on the likelihood output score can be tuned easily to achieve a desired
efficiency and rejection in a way that does not overly bias selection on a single variable.

The likelihood menu for ATLAS was developed at the end of the 2012 run to be used on
advanced 2012 analyses. The menu uses similar variables to the cut-based menus but adds
a few additional ones, including a measurement of the amount of energy the electron track
lost as it traversed the ID. The likelihood menu makes cuts on the likelihood output score
at 4 different operating points with the same binning as the cut menu but tunes the cuts
based on the number of primary vertices in the event. This tuning ensures a stabil response
of the identification with varying degrees of pile-up. The likelihood menu greatly outperforms
the rejection of the ‘ISEM++’ menu for similar efficiencies. Figure 4.9 shows a comparison of
performance the cut-based and likelihood tight regime operating points. The likelihood menu,

specifically the VERYTIGHT operating point, is used in the t#H analysis.

4.2 Measurement of Electron Identification Efficiency at ATLAS

Precise measurements of the electron identification efficiency are important pieces of many
ATLAS analyses, including the t#H multi-leptons analysis. For analyses with low pt leptons,
systematic uncertainties on the electron identification efficiency can be some of the largest
systematic effects. The methods used to measure the electron identification efficiency are
described in depth here [51].

Electron identification efficiencies are measured using a method called tag-and-probe for
J/U and Z boson decays to electrons. One object from the decay is ‘tagged’, or fully identified,
while the other is left unidentified. There is reasonable confidence that the second object is an

electron based on the kinematic properties of the event, specifically the di-electron invariant

43



4. ELECTRONS

i

> r > r
é F é F —— Tight Cuts
‘G 0.95F '© 095 4 Tight Likelihood
= r —% = r
5} r —— o E —4— VeryTight Likelihood
5 0.9 et e 5 0.9
5 F S 5 F e
&ossE T & 085
o r =t o g b4 2} e
[F SR s == =1 Fies
0.8 o 0.8 -
g o & I == i 3
4T o Cremt  _ F 23] —e—i
0.75/1't B 075~ FH . g -
rol o . ot
0.7 i, —4— Tight Cuts 0.7 0 i
E —4— Tight Likelihood b 3
0.651 ight Likeli 0.65 20<E <50 GeV
E —4— VeryTight Likelihood E T e
T RN R I IR S 5 (o i T TN I T A N
0.6 20 40 60 80 100 120 140 0.6 -2 -15 -1 -05 0 05
E; (MeV)
> n > n
g 0025 4 Tight Cuts g 0025 4 Tight Cuts
[} F [} F
E0.0lS} —4— Tight Likelihood E0.0lS} —4— Tight Likelihood
$0.016§ —4— VeryTight Likelihood g0.0lG? —4— VeryTight Likelihood
2 r r
50.014; 30.014
9 E 3 E
£0.0121- £0.0121-
] C [ L
2 0015, 2 0015,
0.008 3 bz
0.006[ I P I
r —_— r —_—
0.004F L F 1
C - C -
0.002)- e s 2 e
P S B BN PR I I O P S B R PR I I O
20 40 60 80 100 120 140 20 40 60 80 100 120 140
E; (GeV) E; (GeV)

Figure 4.9: Comparison of the performance of the cut-based and likelihood operating points
in the tight regime. Efficiency (top) and rejection (bottom) plots are shown versus
In| and Er

mass is near the Z or J/WU pole. The tag-and-probe method leaves a sample of unidentified
and unbiased ‘probes’, where the efficiency can be measured.

As opposed to muons, contamination from fake electron make the tag-and-probe method
difficult. Backgrounds from fake electrons are subtracted using fits to the Z and J/¥ invariant
mass distributions. For Z electrons, fits to the electron isolation distribution are also used. The
final efficiencies reported are the result of statistical fit among all methods. The uncertainties
are at low momenta are around ~ 5% and are dominated by systematics effects from large
background subtractions. They are less than 1% at high momenta and dominated by tag-

and-probe selection effects. The efficiency can be seen in Figure 4.11.
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Figure 4.11: Electron identification efficiency calculated in data and MC versus electron pr.

The development of low pr electron scale-factors was an integral piece in extending the

sensitivity of Higgs searches in the WW and ZZ decays modes. Early efforts in 2012 to provide
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consistent, well-measured efficiencies in this region were complicated by large disagreements
in the efficiencies obtained from the three different estimation methods: Z tag-and-probe with
isolation background subtraction, Z tag-and-probe with invariant mass background subtrac-
tion, and J/¥ tag-and-probe. This was especially true for electrons with pr of 10-20 GeV.
The energy scale of Z and J/¥ decays disfavor electrons of this momentum, and backgrounds
are high, revealing problems disguised in higher purity regions. The background subtraction
methods were studied in depth to assess possible biases, and a new lower statistics but high
purity tag-and-probe method using radiative Z — e*e™ decays was developed. The result of
these studies was the development of new background subtraction templates for the isolation
and invariant mass subtraction and an appropriate uncertainty to cover the systematic effects

from the biases of these subtractions.
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CHAPTER 5

Analysis Summary

This chapter provides an overview the of analysis searching for SM production of the Higgs
boson in association with top quarks in multi-lepton final states. The analysis searches in
signal regions (SRs) with 2 same-sign, 3 and 4 light leptons (e, ), which are sensitive to Higgs
decays to vector bosons, H — W*W=* and H — Z*Z*. We refer to these channels as 2¢ SS,
3¢, and 4¢ through the rest of this document.

The multi-lepton channels form a complement to already completed ttH searches in final
states targeting the H — bb [57], H — ~v[58]. The ttH searches in the H — 77 decay modes
were developed concurrently with the multi-lepton searches, but we do not discuss these here.
Of this set of complementary searches, the multi-lepton and bb are the most sensitve.

Based on SM production cross-sections, observation lies just outside the sensitivity of the
Run I dataset, even when combining all searches. Instead, the analyses provide an opportunity
to constrain for the first time the ttH production mode with limits reasonably close to the
actual production rate. The multi-lepton analysis is therefore optimized to overall sensitivity
to the ttH production rather than individual decay modes, which would be more useful for
constraining Higgs couplings.

Detailed description of the event and objection section are provided in Chapter 7, back-

ground modeling in Chapter 8, the effect of systematic errors and the statistical analysis in
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Chapter 9 and final results in Chapter 10.

5.1 Signal Characteristics

The signal is expected to be characterized by the presence of 2 b-quark jets from the top quark
decays, isolated leptons from vector boson and tau decays, a high jet multiplicity and missing
energy from neutrinos. Three Higgs boson decays are relevant for this analysis: WHW— |
7t7~ and ZZ . All modes are generally dominated by the WW signature, though the 3¢
and 4¢ channels possess some contribution from therr and ZZ decays. Table 5.1 provides the
fractional contribution of the main Higgs decay modes at the generator level to ttH search
channels and Figure 5.1 shows example diagrams for each channel. In general, the number
of leptons is anti-correlated with the number of jets, since a vector boson can either decay

leptonically or hadronically, such that:

e in the 2¢ SS channel, the t#H final state contains 6 quarks’. These events are then

characterized by the largest jet multiplicity.
e In the 3¢, the ttH final state contains 4 quarks

e In the 4¢ channel, the ¢ZH final state contains a small number of light quarks, 0 (H —

WHW ™ case), 2 or 4 (H — ZZ case).

Table 5.1: Contributions of the main Higgs decay modes to the 3 multi-lepton t£H signatures
at generation level.

Signature | H - WW | H —717 | H— ZZ
Same-sign 100% - -
3 leptons 1% 20% 9%
4 leptons 53% 30% 17%

"this does not include additional quarks from radiation
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5.2 Background Overview

For all channels after selection, the size of the signal is of similar order to the expected size

of background. Background processes can be sorted into two categories:

e Reducible: These processes cannot lead to a final state compatible with the signal
signature without a mis-reconstructed object. This category includes events with a
prompt lepton but with mis-reconstructed charge and events with jets that ‘fake’ leptons.
The main backgrounds of this sort are t and Z+jets . Data-driven techniques are used to
measure the rate of these processes and strict object selection and isolation requirements

are used to reduce their rate.

e Irreducible: Events which can lead to the same final state as the signal. The main
background of this category are: vector boson production (V) associated with top quarks
(ttV), a Z boson produced in associated with a top quark (tZ), W*Z, and ZZ . They
are modeled using the Monte Carlo simulations. In general, these backgrounds are
combatted with jet and b-tagged jet requirements. Although the jet multiplicity of t£V

is high, the multiplicity of t¢tH events is still higher.

5.3 Analysis Strategy

The analysis search is conducted in 3 channels, based on counting of fully identified leptons:
20 S8, 3¢, and 4¢, with cuts optimized separately for each. We further divide the 2¢ SS into
sub channels based on the number of jets and flavor of the leptons and the 4¢ channel into
sub-channels enriched and depleted in opposite-sign (OS) leptons arising from Z decays.
This analysis is a counting experiment, meaning that the only quantities signficant to the

result are the event counts in the signal regions and not the event shapes. The measured
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background rates, expected signal rates and systematic uncertainties are fed into a Poisson
model and fit to the observed data. The parameter of interest in the fit and the result of this
measurment is, u, the ratio of the fitted number of ttH events in the signal regions to expected
number of ttH events in the signal regions. Since we assume SM branching ratios, p can be
considered the ratio of the measured ttH cross-section to the observed ttH cross-section, and
we expect the fitted p to be close to 1 with large statistical errors.

We express the final result as a measurment of x4 with uncertaintites and 95% upper limit
on the value of u: p-values higher than this value will be considered excluded. We provide

these results for each channel individually and combined.
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Figure 5.1: Example Feynman diagrams for the 3 ttH multi-lepton categories.
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CHAPTER 6

Dataset and Simulation

6.1 Data

6.1.1 The 2012 Dataset

The ttH analysis uses the entire 2012 ATLAS dataset only, collected from April to December.
The size of the dataset corresponds to 20.3 fb™!, after passing data quality requirements,
ensuring the proper operation of the tracking, calorimeter and muon subsystems. The LHC
successfully produced datasets for physics studies in 2010, 2011 and 2012. The 2012 proton-
proton dataset was delivered with collisions with a CME of 8 TeV with bunch collisions every
50 ns[59].

Figure 6.1 shows the accumulation of the 2012 dataset over time. Despite doubling the
bunch spacing above the design of 25 ns, the luminosity neared the design luminosity due to
unexpected improvements in the transverse beam profile[60]. This increased the amount of
pile-up, or number of collisions per bunch crossing and in general collision events were busier
due to these multiple interactions. Figure 6.2 shows the average number of interaction per
bunch crossing for the 2011 and 2012 datasets. The 2012 dataset shows an average of 20-25
interactions.

The dataset must contain either a primary muon or primary electron trigger (EF_e24vhi _mediuml
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SN L L L L L L L L L LB

180F" ATLAS Online Luminosity

160 3 Vs=8 TeV,J'Ldt =21.7 b, <u> = 20.

140 O Vs=7TeV,[Ldt=52 fbl, <p>= 9.1

120

100
80
60
40
20

Recorded Luminosity [pb™/0.1]
\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\7‘\\\'\

OO

10 15 20 25 30 35 40 45
Mean Number of Interactions per Crossing

Figure 6.2: The average number of interactions per bunch-crossing for the 2012 and 2011
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OR EF_e60mediuml OR EF_24i_tight OR EF_36_tight). The electron triggers require a

electron with at least 25 GeV of calorimeter energy, passing the medium identification re-

quirement and loose tracking isolation. Above 60GeV, the isolation requirement is dropped

and the identification is loosened slightly. The muon trigger requires a good inner detector
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track and matching hits in the muon spectrometer, as well as loose tracking isolation, which

is also dropped about 36 GeV.

6.2 Simulation

Simulation samples are used to determine the overall event selection acceptance and efficiency
and model the number of events in the signal regions for prompt backgrounds and signal. The
simulated samples are created using standard PDF sets use Monte Carlo (MC) techniques to
model the hard parton scatter, underlying event activity, parton showering, and hadronization.
The samples are then passed through a full ATLAS detector simulation[61] based on GEANT4
[62]. Small corrections are then applied to re-scale object identification efficiencies, energy
scales, and the pile-up based on control regions from data. These corrections are discussed in

Chapter 9.

6.2.1 Signal Simulation

The ttH production is modeled using matrix elements obtained from the HELAC-Oneloop
package [63] that corresponds to the next-to-leading order (NLO) QCD accuracy. Powheg
BOX [64, 65, 66] serves as an interface to the parton shower Monte Carlo programs. The
samples created using this approach are referred to as PowHel samples. CT10NLO PDF sets
are used and the factorization (ur) and renormalization (ur) scales are set to pg = pp =
ur = my + mpy /2. Pile-up and the underlying events are simulated by Pythia 8.1 [67] with
the CTEQG61L set of parton distribution functions and AU2 underlying event tune. The Higgs
boson mass is set to 125 GeV and the top quark mass is set to 172.5 GeV.

The signal MC samples are summarized in Table 6.1. These large samples are generated with

inclusive Higgs boson decays with branching fractions set to the LHC Higgs Cross Section
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Table 6.1: Monte Carlo samples used for signal description.

Process Generator Cross- L [~ 1] | Detector
section [fb] simulation
ttH—allhad+H | PowHel+Pythia8 59.09 2146.5 Full
ttH—1jets+H PowHel+Pythia8 56.63 2238.9 Full
ttH—114+H PowHel+Pythia8 13.58 9332.0 Full

Working Group (Yellow Report) recommendation for my = 125 GeV [68]. The inclusive

cross section (129.3 fb at my = 125 GeV) is also obtained from the Yellow Report [68].

6.2.2 Background Simulation

The background simulations used for this analysis are listed in Table 6.2. In general, the
Alpgen[69], MadGraph[70], and AcerMC[71] samples use the CTEQ6L1[72] parton distribu-
tion function, while the Powheg[73], Sherpa[74], are generated with the CT10 PDF. The
exception is the MadGraph t#t¢ sample, which is generated with the MSTW2008 PDF|[75].

The highest order calculations available are used for the cross sections.
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Table 6.2: Monte Carlo samples used for background description.
fied MadGraph samples use Pythia 6 for showering and Alpgen samples use Her-

wig+Jimmy. tf, single top, and Z+jets

estimates for the final result

Unless otherwise speci-

samples are replaced with data-driven

Process Generator Detector
simulation
HW* ttZ MadGraph Full
tz MadGraph AF2
tttt MadGraph Full
HWEWw=+ Madgraph+Pythia8 AF2
tt Powheg+Pythia6 Full/AF2
single top tchan AcerMC+Pythia6 Full
single top schan—1 | Powheg+Pythia6 Full
single top W+t Powheg+Pythia6 Full
W MadGraph Full
Wr+4p Alpgen Full
WTwW-= Sherpa Full
w*Zz Sherpa Full
Same-sign WW Madgraph+Pythia8 AF2
77 Powheg+Pythia8,gg277+Herwig Full
Zry* Sherpa Full
Z+jets Sherpa Full
ggF Higgs Powheg+Pythia8 Full
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CHAPTER 7

Object and Event Selection

The analysis is divided into 3 signal regions based on lepton counting: 2 same-sign leptons, 3
leptons and 4 leptons. The lepton counting occurs for fully identified leptons with full overlap
removal with transverse momenta over 10 GeV to ensure orthogonality. Lepton selections are
tightened afterward within each region.

The cuts for each signal region are provided in Table 7.1 and the object selections are
detailed in the following selections. The selections are based on optimizations of the region
sensitivity performed using MC (event for data driven backgrounds) and ad-hoc values for
normalization systematic uncertainties®

All signal regions are comprised of three basic requirements: the presence of b-tagged jets,
the presence of additional light jets, and a veto of same flavor opposite sign leptons with an
invariant mass within the Z window. Additional requirements on the invariant mass of the
leptons, the missing transverse energy in the event, and the total object energy (Hr) proved
to have negligible additional benefit at our level of statistics. Figure 7.1 shows the background
and signal fractions as a function number of jets and number of b-tagged jets for otherwise

fully selected events.

8 epe e . . s . .
the sensitivity was approximated using the N formula. The systematic errors considered were 20% for

ttV and V'V and 30% for fakes. These ended up being close the final systematic errors assessed in Chapter 9.
The objects of optimization were the lepton momenta, identification operating points, isolation and event
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Table 7.1: Selections in the 2¢ SS, 3¢ and 4¢ Signal Regions

| Signal Region [ 20 SS [ 3¢ [ 40
Trig. Matched Lepton Yes Yes Yes
N7 =2, N, =0 =3 =4
Lepton Charge Sum +2 or —2 +1or —1 0
Lepton pr (GeV)™ pTo > 25 pro > 10 pTo > 25
pr1 > 20 pr1,2 >25,20 pr1 > 20
pr2,3 > 10
Jet Counting Nb 2 1, Njet =4 Nb Z 1, NJet Z 4 Nb 2 1, Njet Z 2
or Ny > 2, Njer = 3
Mass Variables (GeV) |Msros — Mz| < 10 Msros > 10
150 < My, < 500
|[Msros — Mz| < 10
Sub-channels 2 (Njet =4, Njer > 5) none 2 (No SFOS leps,
x 3(ee,ep,ppt) SFOS leps)

7.1 2/ Same-Charge Signal Region

The 2 lepton signal region requires two leptons of similar charge (2¢ SS). The signal is sym-
metric in charge but the background from opposite-sign ¢t di-lepton production would be
overwhelming. Requiring only two leptons allows the extra 2 W bosons in the event to decay
hadronically, resulting in on average 4 additional light jets plus 2 additional b-quark jets from
the top decays.

We require a leading lepton with transverse momentum of at least 25 GeV that matches
to a trigger and a sub-leading lepton of at least 20 GeV, a b-tagged jet, and at least 4 jets in
total.

In order to suppress non-prompt backgrounds, the lepton isolation criteria for tracking and
calorimeter are tightened from less than 10% of the lepton momentum to 5%. To suppress
charge misidentification, the electron is required to be extremely central (|n| < 1.37) to avoid
the material-rich regions of the detector. Additionally, ee events with a lepton pair invariant

mass within 10 GeV of the Z pole are removed. To maintain orthogonality with the 7 analyses,

kinematic variables
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events with fully identified taus are vetoed.
For the statistical combination the channel is divided into 6 sub-channels: 2 jets counting

bins (Njet = 4, Nyt > 5) x 3 lepton flavor bins (ee,pup,ep).

7.2 3/ Signal Region

The 3 lepton channel requires 3 leptons, whose summed charge is either —1 or +1. The leptons

are ordered in this way:

e lepO0: the lepton that is opposite in charge to the other two leptons
e lepl: the lepton that is closer in AR to lep0

e lep2: the lepton that is farther in AR from lepl

Since events with a fake lepton arise exclusively from opposite sign di-lepton processes, tt
and Z+jets, where additional jets are misidentified as the third lepton, lep0 is never the fake
lepton. As a result, the transverse momentum requirement of lep0 (> 10 GeV) is lower that
the other two, > 20 GeV. One lepton must must match a trigger and have pr > 25 GeV.

The 3¢ channel further requires at least one b-tagged jet and at least 4 jets in total, or two
b-tagged jets and exactly 3 jets in total. Additionally, to suppress W*Z and Z-+jets events,
events with same-flavor opposite-sign (SFOS) pairs within 10 GeV of the Z pole are vetoed.

Additional cuts, including a di-lepton mass cut, and splittings were investigated but low
statistics proved to wash out any advantages. The di-lepton mass cut will be a useful discrim-
inator in future analyses since the spin statistics of Higgs decay in W bosons often causes the
two emitted opposite-sign leptons to point in the same direction, resulting in a small measured

invariant mass.

99



7. OBJECT AND EVENT SELECTION

7.3 4/ Signal Region

In the four lepton signal region, selected events must have exactly four leptons with a total
charge of zero. At least one lepton must be matched to one of the applied single lepton trigger
and have a transverse momentum above 25 GeV. The leading and sub-leading leptons are
required to have transverse momentum of 25 and 15 GeV respectively. In order to suppress
background contributions from low-mass resonances and Drell-Yan radiation, all SFOS lepton
pairs are required to have a dilepton invariant mass of at least 10 GeV.

The four-lepton invariant mass is required to be between 100 and 500 GeV. This choice of
mass window suppresses background from the on-shell Z — 4/ peak and exploits the high-mass
differences between the signal and the dominant ¢£Z background. Events containing an SFOS
lepton pair within 10 GeV of the Z boson mass are discarded. This Z-veto procedure greatly
reduces background contributions from ZZ and ttZ. Finally, selected events are required to
have at least two jets, at least one of which must be tagged as a b-quark jet.

The contribution from ttZ comprises approximately 75% of the total background in the
inclusive signal region. A signal region categorization which factorizes t£Z from the remaining
backgrounds is thus beneficial. The signal region is accordingly divided into two categories

based on the presence of SFOS lepton pairs in the final state.

7.4 Electron Selection

The electrons are reconstructed by a standard algorithm of the experiment [51] and the elec-
tron cluster is required to be fiducial to the barrel or endcap calorimeters: |nejuster| < 2.47.
Electrons in the transition region, 1.37 < |custer| < 1.52, are vetoed. Electrons must have
pr>10 GeV and pass the VERYTIGHT likelihood identification criteria.

In order to reject jets misidentified as electrons, electron candidates must also be well
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isolated from additional tracks and calorimeter energy around the electron cluster. Both the
tracking and calorimeter energy within AR = 0.2 of the electron cluster must be less than
5% of the electron transverse momentum: ptcone20/Pr < 0.05 and Etcone20/Er < 0.05.
All quality tracks with momentum greater than 400 MeV contribute to the isolation energy.
Calorimeter isolation energy is calculated using topological clusters with corrections for energy
leaked from the electron cluster. Pile-up and underlying event corrections are applied using a
median ambient energy density correction.

The electron track must also match the primary vertex. The longitudinal projection of
the track along the beam line, 20 sin §, must be less than 1 cm) and the transverse projection
divided by the parameter error, dO significance, must be less than 4. These cuts are used in
particular to suppress backgrounds from conversions, heavy-flavor jets and electron charge-
misidentifications.

The electron selection is summarized in Table 7.2.

7.5 Muon Selection

Muons used in the analysis are formed by matching reconstructed inner detector tracks with
either a complete track or a track-segment reconstructed in the muon spectrometer (MS),
called Chain 2 muons. The muons have pr>10 GeV and satisty |n| < 2.5. The muon track
are required to be a good quality combined fit of inner detector hits and muon spectrometer
segments, unless the muon is not fiducial to the inner detector, || > 2.47. Muons with inner
detector tracks are further required to pass standard inner detector track hit requirements [52].

As with electrons, muons are required to be isolated from additional tracking or calorimeter
energy: ptcone20/Pr < 0.1, Etcone20/Er < 0.1. A cell-based Etcone20/Pr relative isolation

variable is used. A pile-up energy subtraction based on the number of reconstructed vertices
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in the event is applied. The subtraction is derived from a Z boson control sample.
The muons must also originate from the primary vertex and have impact parameter re-
quirements, d0 significance < 3, and z0sinf < 0.1 c¢m, similar to the electrons.

The muon selection is summarized in Table 7.2.

7.6 Jet and b-Tagged Jet Selection

Jets are reconstructed in the calorimeter using the anti-k; [53] algorithm with a distance
parameter of 0.4 using locally calibrated topologically clusters as input (LC Jets). Since the
jets in the t#H signal mostly arise from the decay massive resonances and not radiation, they
are expected to be central and high energy. Jets must have pr>25 GeV and |n| < 2.5.

Jets must also pass loose quality requirement, ensuring the proper functioning of the
calorimeter at the time of data taking. Jets near a hot calorimeter cell in data periods B1/B2
are rejected. The local hadronic calibration is used for the jet energy scale, and ambient
energy corrections are applied to account for energy due to pileup.

Jets within || < 2.4 and pr < 50 GeV are further required to be associated with the
primary vertex. The the fraction of track pr associated with the jet that comes from the
primary vertex, must exceed 0.5 (or there must be no track associated to the jet). This
requirement rejects jets that arise from pile-up vertices.

B-jets are tagged using a Multi-Variate Analysis (MVA) method called MV1 and relying
on information of the impact parameter and the reconstruction of the displaced vertex of the
hadron decay inside the jet[54]. The output of the tagger is required to be above 0.8119 which

corresponds to a 70% efficient Working Point (WP).
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7.7 Object Summary and Overlap

Since many fully identified objects may be reconstructed as two different objects, an overlap

removal procedure is applied. Electrons within AR < 0.1 of muons are rejected in favor

of the muon. Jets within AR < 0.3 of electrons are then removed. Finally, muons within

AR < 0.04 + 10GeV/pr of jets are rejected, as these muons are thought to arise from jet

fragmentation.
Parameter Values Remarks
Electrons
pr > 10 GeV
| < 2.47 veto crack < 1.37 for 2¢ SS channel
1D Very Tight Likelihood
Isolation ErCone20/pt ,prCone20/pr < 0.05
Jet overlap removal AR > 0.3
|do”| <do
2zo0sinb <lcm
Muons
pT > 10 GeV
0| <25
D Tight

Jet overlap removal

AR > 0.04 410 GeV /pr

Isolation ErCone20/pr ,prCone20/pr < 0.1 < 0.05 for 2 leptons
|dg?| < 30
20 <lem
Jets
pT > 25 GeV
I <25
JVF JVF> 0.5 or no associated track or pr> 50 GeV
b-Tag MV1 70% operating point [

Table 7.2: Object identification and selection used to define the 5 channels of the multi-
lepton ttH analysis. Some channels use a sub-sample of objects as explained in the
Remarks column.
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Figure 7.1: Number of jets vs. number of b-tagged jet plot for the fully selected multi-lepton
channels. Signal regions are outlined with a dashed line. Sub-channels are defined
later in the 2¢ SS and 4¢ SRs. The fractional background contribution to each
jet and b-tagged jet bin are shown for non-prompt (red), ttV+ tZ (yellow), and
VV (green). The expected signal fraction is shown in white. The expected non-
prompt fraction contains charge misidentifications and fakes. It is shown for MC
only, although data-based methods are used for the final result.
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CHAPTER 8

Background Estimation

The ttH multi-lepton signal regions discussed in Chapter 5 are contaminated by background
contributions at a similar order of magnitude to the signal. The dominant background for
each region is t£V. Sub-dominant but important backgrounds include the production of vec-
tor boson pairs in associated with jets and b-quark jets (VV) and ¢ production with a jet
misidentified as a lepton (fakes). The 2¢ SS regions possesses a unique background of charge
misidentification from Z and top events. The methods for estimating these backgrounds are
discussed in this chapter. Monte Carlo simulation is used for the prompt ¢tV and VV contribu-
tions. The non-prompt backgrounds from tt jet-misidentification and charge-misidentification
are estimated using data-driven methods. Table 8.1 provides a summary of the ttH signal
and background expectation for each of the signal regions, including the data-driven estimates

discussed in this section.

8.1 Vector Boson (IW*, Z) production in association with top

quarks: ttV, tZ

Production of top quarks plus vector boson is an important background in all multi-lepton

channels. A large part of the t£V component, arising from on-shell Z — ¢¢, can be removed via
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Table 8.1: Expected number of signal and background events in 2¢ SS, 3¢ and 4/ signal regions.
Same-sign 3 leptons 4 leptons
> 5 jets 4 jets Z enriched Z depleted
PEpEs EuE i PEpEs T i
ttH 0.73+£0.03 | 2.13+0.05 | 1.41+0.04 | 0.44+£0.02 | 1.16 £0.03 0.74 £0.03 2.34 £ 0.04 0.19+£0.01 0.03 £0.00
tV 2.60+£0.13 | 7.42+£0.17 | 5.01£0.16 | 3.05+0.13 | 8.39+0.24 5.79+£0.20 7.21+£0.24 0.74 £0.05 0.00 £ 0.00
tZ 0.71 4+ 0.03 incl. in ttV incl. in ¢tV
VvV 0.48+£0.25 | 0.37+0.23 | 0.68+0.30 | 0.77+0.27 | 1.93+0.80 | 0.54+0.30 | 0.89+0.25 0.08 £0.01 0.00 £ 0.00
fake leptons (DD) | 2.33+0.92 | 6.66+1.06 | 2.89 +0.67 | 3.45+1.36 | 12.33 £1.56 | 6.32+1.26 2.624+0.51 | (1.1£0.6)-1073 | (0.09 £0.03) - 10~3
Q misid (DD) 1.10£0.09 | 0.85+0.08 - 1.82+£0.11 | 1.39£0.08 - - — -

Tot Background ‘ 6.52 +1.45 ‘

1530 +1.64 | 885+ 1.18 [ 9.07+1.42 [ 23.97+2.70 | 12.65+1.82 | 11.43+0.62 |

0.831+0.075

0.0110 £ 0.0003

NOLLVINLLSH ANNOYDMOVY 'R



8. BACKGROUND ESTIMATION

a Z mass veto on SFOS leptons. However the Z — 77 and +* components remain. The ttW*
and tZ processes generally require extra jets to reach the multiplicity of our signal regions,
as such it is important to ascertain uncertainties associated with QCD radation. We consider
uncertainties on both the ¢#W* and ¢£Z production cross-sections of these two processes and
event selection efficiencies in the signal regions. The latter is sensitive to the NJet modelling
in the MC. We assess the size of these uncertainties by investigating the effects of the choice
of the factorization (up) and renormalisation pugr scales and PDF sets.

Monte Carlo events for these processes are generated with MadGraph 5 and showered
with Pythia 6. t#{I/W* events are generated with up to two extra partons at matrix element
level, while for t#Z up to one extra parton at matrix-element level is produced. The tZ
process is simulated without extra partons. The next-to-leading-order (NLO) cross sections
are implemented by applying a uniform k-factor to the leading-order (LO) events for each
process. For ttZ, the k-factor is determined by comparing LO and NLO cross sections for
on-shell Z production only and then applied to the off-shell signal regions.

The ttV uncertainties are calculated using the internal QCD scale and PDF re-weighting
that is available with MadGraph5+aMC@NLO. The prescription for the scale envelope is
taken from [76]: the central value u = pg = prp = my +my /2 and the uncertainty envelope is
[0/2, 2p0]. The PDF uncertainty prescription used is the recipe from [77]: calculate the PDF
uncertainty using the MSTW2008ulo [75] PDF for the central value and then the final PDF
uncertainty envelope is derived from three PDF error sets each with different ag values (the
central value and the upper and lower 90% CL values). The final NLO cross section central
values and uncertainties are given in Table 8.2.

The tZ process is normalized to NLO based on the calculation in Ref. [78]. Here the scales
are set to po = my and the scale variations are by a factor of four; the scale dependence is

found to be quite small.
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Table 8.2: NLO cross section and theoretical uncertainty calculations derived from Mad-
Graphb + aMC@QNLO.

Process | onro [fb] Scale Uncertainty [%)] | PDF Uncertainty [%] | Total symmetrized
uncertainty [%]

W 144.9 +10 -11 +7.7 -8.7 13.3

W~ 61.4 +11 -12 +6.3 -8.4 13.6

ttz 206.7 +9 -13 +8.0 -9.2 14.0

tz 160.0 +4 -4 +7 -7 8.0

tZ 76.0 +5 -4 +7 -7 8.6

Table 8.3: Theoretical uncertainties of the t{W* and t£Z event yields in the signal regions
due to the impact of matching, modelling, parton shower, QCD scalec, and PDF
differences on the event selection.

Matching [%] | 2l4jets | 21>5jets | 3l 41
ttZ 16.0 9.7 0.5 | 2.0
W= | 4.2 0.2 102 | —
Modeling [%] | 2l4jets | 21>5jets | 31 41
ttZ 3.5 8.7 6.2 | 10.5
W= | 0.1 10.8 | 156 | —
Parton Shower [%] | 2l4jets | 21>5jets | 31 | 41
ttZ 2.4 10.2 24 | 24
W | 24 102 | 13.0 | —
QCD Scale [%)] | 2l4jets | 21>5jets | 31 | 41
tz 1.5 2.3 1.4 1 0.9
HWE | 1.1 2.5 3.6 | —
PDF (%] | 2l4jets | 21>5jets | 31 | 4l
ttZz 1.5 2.3 1.4 109
W | 1.1 2.5 3.6 | —

Acceptance uncertainties on ¢tV MC modelling for considered for 5 separate effects: the

matrix element to parton shower matching algorithm, the modelling of the jet multiplicity,

the modelling of the the parton shower, the QCD scale, and the choice of PDF set. These

uncertainties are considered by comparing event yields in the signal regions with different

modelling choices for each effect and are summarized in Table 8.3.
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8.1.1 ttZ Validation Region

Unlike tfW* a ttZ validation region can be obtained by simply inverting the veto on SFOS
lepton pairs near the Z pole in the 3 lepton signal region. This region thus requires 3 leptons
(with momentum and identification cuts discussed in Chapter 7, at least one SFOS pair of
leptons within 10 GeV of the Z mass, and either 4 jets and at least 1 b-tagged jet or exactly
3 jet and 2 or more b-tagged jets. The resulting region has low statistics and is not used as
a control region but is instead used as a validation to demonstrate that the normalization
uncertainty, discussed above, is properly evaluated.

The region defined by this is predicted to be 67% ttZ, 17% W*Z, and 13% tZ. We predict
19.3 £ 0.5 events and observe 28, giving a observed-to-predicted ratio of 1.45 £ 0.27 £ 0.03,
where the errors are from data and simulation statistics, respectively. Given the large errors,
the region is still in agreement with the predictions to within 1-1.5 o. Distributions of various

variables are shown in Fig. 8.1.

8.2 Di-boson Background Estimation: W*Z, ZZ

W*Z and ZZ di-boson production with additional and b-tagged jets constitute small con-
tributions to the 3¢ and 4¢ channels. For the 3¢ case W*Z comprises ~ 10% of the total
background, while for the 4¢ case ZZ contribution accounts comprises ~ 10% of the total
background. Because of the small size of these contributions, each of the above processes can
be assigned a non-aggressive uncertainty based on similar previous analyses with ATLAS and
cross-checked with data validation regions and MC truth studies.

Both W*Z and ZZ production have been studied by ATLAS [79][80], but neither process
has been investigated thoroughly in association with multiple jets and b-quark jets. However,

single boson production with b-quark jets has been investiaged. Both W 4+ b [81] and Z + b
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Figure 8.1: Data/MC comparison plots for {¢Z control region A (> 4 jets, > 1 b-tag and 3
jets, > 2 b-tag). In all plots, the rightmost bin contains any overflows. Top left:
number of electrons. Top right: 10*the number of b-tags + the total number of
jets. Middle left: the invariant mass of the (0,1) lepton pair (see the text for the
definition of the lepton ordering). Middle right: the invariant mass of the (0,2)
lepton pair.

[82] production in 7 TeV data have been shown to agree with MC models to within 20-30%.

A single W produced in association with b-tagged jets possesses a similar topology to the
W*Z+b process at a different energy scale and has been shown to be dominated by ¢ mis-tags
and b-jets from gluon splitting and multiple parton interaction. The W +0b analysis, referenced
above, uses Alpgen MC with Herwig PS modeling, only provides results to 1 additional jet,
and uses the CombNN tagger (we use MV1). Its results are therefore not directly comparable
to this tLH analysis (where W*Z is modeled using Sherpa with massive ¢ and b quarks).

Z + b production originates from slightly different diagrams than ZZ + b, but the sources of
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the b-tags are similar. The 7 TeV analysis, referenced above, provides results with Sherpa
MC with an agreement of ~ 30%. However, it also used the CombNN tagger instead of MV 1.
Beause of the differences of the 2011 single boson analyses (type of tagger used, type of MC
and tunes used), we would like to verify the general 20-30% level of agreement in 2012 data
with the simulation and tagger used in the ¢t£H analysis: Sherpa MC, 2012 tunes, MV1. With
the data skims available to use we are able to do this in the Z 4 b region but not the W + b.

Figure 8.2 shows the spectrum of the number of reconstructed and selected jets (NJet) in
a Z + b validation region, defined by 2 tight-isolated leptons within 10 GeVof the Z mass and
with at least one b-tagged jet, using the t#H analysis definitions. The level of agreement in

this region confirms at the 30% level seen in the 7 TeV analysis, discussed above.
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Figure 8.2: NJet spectrum for 2 tight-isolation leptons with 1 b-tagged jet (MV1_.70)

In the following two sections, we assess the truth origin of jets in the W*Z +band ZZ +b
regions and leverage data/MC agreement where we can. We see that the data allows us to
constrain the W*Z to 50%. We claim this 50% as a systematic. The 20-30% agreement in

the single boson regions above bolsters our confidence in this number.
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8.2.1 W%*Z Normalization Uncertainty

The t£H analyses has two validation regions to test the Sherpa agreement with data for W+ Z:
one inclusive 3 lepton region, using the three-lepton channel object and pr cuts and a W+ Z+b
region with 1 b-tagged jet and a requirement that at least one SFOS pair have an invariant
mass within 10 GeV of the Z mass. The region with fewer than 4 jets is W*Z dominated.
Figure 8.3 shows kinematic variables for the inclusive region. The overall data normalization
is ~10% higher than MC, but this will be well within our systematic uncertainty. The NJet
shape shows good agreement across the full spectrum, giving confidence about the Sherpa high
NJet SR extrapolation. Figure 8.4 shows NJet spectrum for the W*Z + b validation region
with agreement with in statistical uncertainties. The region has low statistics and around ~
60% purity and statistical analysis of the region suggests that a 50% normalization error on
the W*Z component is enough to cover any possible mismodelings, especially in higher NJet
bins, which are closer to the signal regions.

We also examine the W+ Z truth origins of the b-jet in the W Z+b validation region (VR)
and the signal region using MC to assess the validity of the extrapolation from the VR to the
SR and to confirm the similarity in jet origin to the single boson analyses, references above.
The flavour of the closest matching truth particle (pr > 5 GeV, after FSR) in AR determines
the true-jet flavor. If there are no quarks, taus or gluons within AR of 0.3, the label defaults
to light. Table 8.4 shows the origin fraction of b-tagged jets in the various W*Z +b VRs and
the SR. If there are two b-tagged jets, the highest pr is used, but this is a small fraction of
the number of b-tags. As expected the ¢ and b contributions dominate, as was the case with
the 2011 single boson analyses referenced above. It is important also that the VR has similar

composition to the SR. There is a small dependence on the number of jets.
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Figure 8.3: 3 lepton W Z validation using the t£H lepton identification and momentum cuts:
mass, number of jet and flavor variables

Bottom Charm Light
W*Z4+bVR1Jet | 025 £ 0.03 | 0.54 + 0.04 | 0.20 & 0.03
W+Z +b VR 2 Jet | 0.34 £ 0.04 | 0.52 4 0.06 | 0.13 £ 0.03
W*Z 4+bVR 3 Jet | 0.40 £ 0.07 | 0.41 4+ 0.07 | 0.18 £ 0.04
3l SR 0.43 £ 0.14 | 0.38 £ 0.17 | 0.18 £ 0.11

Table 8.4: Truth origin of highest energy b-tagged jet in the W*Z + b VR and 31 SR

8.2.2 ZZ Normalization Uncertainty

In order to investigate the MC agreement with data in the ZZ case, two validation regions

similar to the W*Z case are defined. First, a 4 lepton ZZ region is constructed using the

object selections for the 4-lepton channel and requiring exactly two pairs of SFOS leptons with

a di-lepton invariant mass within 10 GeV of the Z mass. Additionally, the ZZ + b process

is investigated directly using a similar validation region which again requires exactly two Z-
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Figure 8.4: W*Z + b validation region: NJet, NElec, and Mass Variables

candidate lepton pairs as well as at least 1 b-tagged jet. Some kinematic distributions are
shown in Figures 8.5 and 8.6, and particular attention should be paid to the NJet spectrum,
which shows good data-MC agreement in the high-jet bins, with a slight discrepancy in the
1-jet bin. The agreement for the region with at least 2 jets yields confidence in the NJet MC
modeling in this region which lies close to the 4-lepton signal region.

Based on the study of the ZZ and ZZ + b validation regions and the overall agreement
noted with the Z + b analysis, we expect a similar error to W*Z to be appropriate in the
Z 7 case. A truth origin study is undertaken in MC to demonstrate a similar b-jet origin
to the W*Z case. The true origin of the leading (highest energy) b-tagged jet is shown in
Table 8.5 for the 4-lepton signal region as well as the ZZ + b validation region described

above divided into jet bins. As it was in the W*Z case above, the true origin of the b-jet in
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Figure 8.5: Jet-inclusive 4-lepton ZZ validation region using the t#H lepton identification and
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Z7 +1b is dominated by ¢ and b. Taking this study in tandem with the results from the W*Z
investigation, it is appropriate to take the central value of the ZZ 4 b background contribution

in the 4-lepton SR from MC and to assign an overall systematic of 50% in order to account

for the MC modeling limitations.

Bottom Charm Light
ZZ+bVR 1 Jet | 0.56 + 0.03 | 0.24 + 0.01 | 0.20 £+ 0.01
ZZ +b VR 2 Jet | 0.52 +£0.05 | 0.25 £ 0.02 | 0.23 £ 0.02
Z7Z+b VR 3Jet | 0.53 £0.11 | 0.25 +£ 0.08 | 0.22 4+ 0.07
41 SR 0.34 £ 0.15 | 0.42 £ 0.16 | 0.24 £+ 0.10

Table 8.5: Truth origin of highest energy b-tagged jet in the ZZ + b VR and 4l SR

8.3 Charge-Misidentification Background

Charge-misidentification contributes to the background for 2¢ SS case and only for flavor
channels, which include electrons. The same-sign requirement is essential in removing large
SM opposite sign-backgrounds, but because of their size even small charge misidentification
rates result in contamination in same-sign regions. For the 2¢ SS signal regions, charge-
misidentification background arise primarily from ## di-lepton events with a smaller contribu-
tion from leptonic Z decays.

In general, charge-misidentification can arise in two ways. The first occurs for ultra-high
energy electrons and muons, which leave tracks in the detector that are too straight for the fit
to determine the direction of curvature with high confidence. This type of charge misidentifi-
cation is not a concern to the t#H multi-lepton analysis, as most of the leptons have transverse
momentum < 150 GeV. The second source of charge misidentification is from ’tridents’, which
only occurs for electrons, because their low mass allows for high rate bremsstrahlung in the

detector material. In some cases, after an electron releases a photon through bremsstrahlung,

the photon may convert nearby resulting in three electron tracks. The reconstruction algo-
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rithms may sometimes match the wrong track to the calorimeter energy deposit, resulting in
a possible charge misidentification. As discussed in the selection, tight track-cluster geometric
and energy matching requirements are applied on the electron candidates to reduce the over-
all rate and the electron acceptance is narrowed to (|n| < 1.37), since most of the material is
concentrated more forward in the detector.

We estimate the contribution of charge-misidentification events in our 2¢ SS signal regions
and relevant control regions by applying a weight per electron in the OS region with otherwise
identical cuts. The weight is related to the charge-misidentification rates. We measure these
rates using a likelihood method in the OS and SS Z — ee control region in data. The rate
measured from these control regions is binned in electron pr and 7, to account for dependencies
in these variables. The method, validations and associated errors are discussed in detail in

the following sub-sections.

8.3.1 Likelihood Method

The number of reconstructed same-sign (Nss) Z — ee events is related to total number of

produced Z — ee (N) through factors related to the charge misidentification rate, e:

NSZ‘; = N”(Q + € — 2€j6i) (81)

where €; and ¢€; are the charge misidentification rates for each electron separately. If we drop

terms quardratic in €, we have:

Ngg = Nij(ei-f—Ej). (8.2)

Although it is impossible to know event-by-event which electron’s charge was misidentified,

we can use a likelihood method over the whole Z sample to measure how ¢ depends on the
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electron pr and |n|. As illustration, we first consider the case, where e depends on only one
variable, |n|, and then generalize to the two-dimensional case of |n| vs pr.

N is described by a Poisson distribution:

)\ke—A
k7

f(k,A) = (8.3)

where k is the observed number of occurrences of the event, i.e. k = N¥, and ) is the expected

EXR

number, i.e. A\ = N%(¢; + ¢;). Thus, the probability for an observed number of same-sign Z

events given the sample size and charge misidentification rates is expressed by:

[N (€ + e)| N e TN (v

P(NHIN', 1,6 = N &4
The likelihood L for all the events is obtained by evaluating all the |n| combinations:
N (¢, NINY —NY (e;+e;)
L(elN.., N) = [T )l e —. (8.5)

* N
In this process, the —In L is used in order to simplify and make easier the minimization.
Terms which do not depend on the rates ¢; and ¢; are removed in this step. This way, the

final function to minimize is given by the following expression:
—InL(€|Nos, N) & > In[N(¢; + ;) IN — NV (e; + ¢;). (8.6)

g
The likelihood can be easily extended to depend on the charge misidentification rates as a
function of two parameters. The probability to find a same-sign event given the rates for each
electron is (€; 1 + €;,;), where the two indices represent binned |n|- and pr-dependence. Thus,
the Eq. 8.6 transforms into
—InL(e|Nos, N) & Y In[NM(e; o + €, ) INIF — N9 (€ 1+ €50). (8.7)
i3,k

We use events selected within the Z peak using the t#H electron object cuts. The events

are stored in two matrices: one for the same-sign events N*! and the other one for all
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events N**! Small backgrounds need to be subtracted. The background subtraction is done
using a simple side-band method. This method consists in dividing the Z invariant mass in
three regions, i.e. A, B and C, where B is the central region corresponding to the Z peak.
The number of events is counted in the regions on the sides of the peak, i.e. n4 and n¢e, and
removed from the total number of events in the peak region B, np. This way, the number of

signal events Nz is given by

na+ngc

. (8.8)

NZ:an

Once the background has been subtracted, the likelihood is minimized for the 2D matrix
of € bins. Knowing € as a function of |n| and pr for any single electron, it is now possible
to estimate the number of same-sign events from the number of opposite sign events in any

sample:

€;+ej—2€5€;
o N = llJrji”N"S for ee channels
—€i—€;+2€;€;

e N° = = N? for the ey channels

8.3.2 Results

The charge misidentification rate is calculated in 7 || bins [0.0, 0.6, 1.1, 1.37, 1.52, 1.7, 2.3,
2.47] by 4 prbins [15, 60, 90, 130, 1000] GeV. For pr bins above 130 GeV, the Z dataset
becomes too small and the rates are calculated using tt MC, scaled by the data-MC ratio of
the rates in the lower pr bins, [90-130] GeV. Figure 8.7 shows the extracted rates in all bins.

As a cross-check, we apply the full method to the Z MC samples (extracting rates via a
likelihood fit and applying them to opposite sign events) and compare to the MC predicted
number of same-sign events. The invariant mass of the Z from our charge misidentification

and directly from the MC can be seen on Figure 8.8. In the simulated Z samples, the number
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Figure 8.7: Electron charge misidentification rates measured in data with the likelihood
method on Z events (black points, red squares and blue triangles) as a func-
tion of || and parametrized in pp. The full 2012 dataset has been used to es-
timate the rates below 130 GeV. Above this value, the charge misidentification
rates have been estimated by extrapolating the rates in the region where the
pr € [90,130] GeV with a pr dependent factor extracted from simulated ¢t events
(green triangles). Statistical and systematic uncertainties have been included in
this plot.

of same-sign Z events is 5 049 while the estimation is 5 O31f§gg. The uncertainties combine

both statistical systematic uncertainties, which are discussed in depth below. The validation

gives compatible results within uncertainties.

8.3.3 Systematic and Statistical Uncertainties

Statistical uncertainties dominate the combined uncertainty on the charge misidentification
estimate. The statistical uncertainties come primarily from the size of the Z same-sign sample
in data and are especially large for central, material-poor regions where the charge misidentifi-
cation rate is extremely low. Additional systematic uncertainties are included for a comparison
between the positron and electron rate, the per-bin MC closure test discussed above, and for

the effect of varying the invariant mass window used for the background subtraction for three
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We apply the rates to estimate the charge misidentification background in the 2¢ SS signal
regions, and find ~ 25% contamination in the e*e® regions and a ~ 10% contribution to the
e u* regions with a 10% systematic error overall. The low overall error can be attributed to
the fact that the statistical error is lowest where the bulk of charge misidentifications occur.
The charge flip contribution measured in the signal regions from this method is detailed in

Table &8.1.

8.4 Fake Lepton Backgrounds

Fake Leptons, from the misidentification of jets as either electrons or muons, primarily arise
from ¢t and single top processes in the 2¢ SS, 3¢ and 4/ channels. Smaller contributions come
from Z+jet events. Fake backgrounds are sub-dominant but important in the 2¢ SS and
3¢ channels. They are extremely small in the 4¢ channels. Truth studies suggest that these
misidentified leptons arise overwhelmingly from b-quark initiated jets. The general method for
estimating fakes in all channels is to define a reversed object selection control region (usually
isolation) for each lepton flavor with otherwise identical signal region selection (N& g, N&jg).
This region is fake-dominated. The total number of fake events in these regions are then
scaled by transfer factors () to estimate the number of fake events of the appropriate flavor

in the signal region. The simple formula for determining fakes is defined in Equation 8.9.

Nfakezee-N5R+9u~NgR (89)

This approach factorizes the background model into two separate measurements. N¢opg is
sensitive the overall t# production rate, especially in the presence of additional jets from QCD
ratio, as well as the object-level misidentification of a jet as a lepton. The transfer factors are

sensitive to only the object level properties of the misidentified jet, and in particular only the
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variables which are reversed in the anti-tight identification.

The transfer factors are obtained obtained in a different way for each channel, due to
unique issues with statistics and contamination, but each method relies heavily on the data-
based control regions with fewer jets. Figure 8.10 shows a truth study of the stability of the
transfer factor for the 2¢ SS and 3¢ cases as a function of the number of jets in the event for
events with one-b-tagged jet. This suggest that the regions with fewer jets are a good model
of the fakes in the signal regions with more jets and is expected because of the homogeneity
of origin of the fakes across all jet bins.

The details of the methods for each channel are discussed in depth in the following sections.
For all methods, the overall systematic uncertainty on the normalization of the fake estimate
is in the range 30%-50% and arise primarily from statistics and the closure on assumptions

used to obtain the transfer factor.
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Figure 8.10: Ratios of regions with tight and anti-tight leptons in 2-lepton and 3-lepton chan-
nels from ¢t MC. These ratios are the MC calculated transfer factors for each
region, i.e. 8. = eee/eed, ee/ed and 6, =mmp/mmm, mm/mp, where ’d’ refers
to anti-tight electrons and ’p’ referes to anti-tight muons. The transfer factors
are seen to be similar in the 2¢ and 3¢ cases and stable as a function of the
number of jets

Because these methods do not provide a per-object transfer-factor that depends on the

properties of the faking object, we must use the MC to model the shapes of the fake kinematic
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distributions in the signal regions. This is not an essential issue, since the analysis only
considers only the total number of events in each signal region in the final measurement of

ttH production.

8.4.1 2¢ SS Fakes

The 2¢ SS fake method follows the procedure outlined in general above. We define anti-tight
electron and muon control regions with reversed particle identification criteria for each signal
region, including the 6 flavor and jet-counting sub regions. The anti-tight muon and electron

criteria are provided below:

e anti-tight electron (d): fails the verytight likelihood operating point, but still passes
the veryloose operating point. fails relative tracking and calorimeter isolation, E}EZ >

0.05 and pje! > 0.05.

e anti-tight muon (p): 6 GeV < pr < 10 GeV

The electron and muon transfer factors, . and §,,, are calculated in the region with signal
region selection but fewer jets, NJet == 2 or NJet == 3 and are defined as the ratio of
the number of events for two fully identified leptons to the number of events with one fully
identified lepton and one anti-identified lepton, after the prompt and charge misidentification
backgrounds are subtracted. Only same-flavor channels are used to ensure that muon and
electron transfer factors maybe estimated separately: on every region, the prompt and charge-

misidentification backgrounds are subtracted from the data.

Data Prompt SS Misld
0 — Nee  Ng™* — N JSomP — NeQe (8.10)
e — = . s .
Ned NeDdata _ Ngompt SS NSiJszsld MC

84



8. BACKGROUND ESTIMATION

measure 6.

N
QM: N'uu =

Process | N(events)
ed < 3 jets Process |  N(events)
% 713+ 0.63 up < 3 jets
Vv 7.55 £ 1.27 vv 1.14 +1.99
vV, tV 6.68 +0.18 Vo 1.14+1.14
V + jets 59.4 4+ 18.51 vV, 1tV 0.642 £+ 0.060
tt,t+ X 671.26 + 12.76 V + jets 24.48 +17.64
tt prompts 32.97 £ 2.83 tt+ X 104.91 £5.14
Total MC 752.0 £ 22.5 Total MC | 171.38 + 18.89
Data 967 Data 141
Data Fakes 912.66 Data fakes 138.08
ee < 3 jets pp < 3 jets
Vv 3.55+0.45 Vv 3.55 +0.42
Vo 1.43 +£0.70 Vo 0
V1V 414+ 0.17 V1V 9.37 + 0.26
V + jets 83 +8.8 V + jets | 0.16 =+ 11.81
tt,t+ X 11.65 4+ 1.67 tt,t+ X 12.90 +1.93
Charge misID 8.54 +0.23 Total MC 27.18 £11.98
Total MC 28.52 £+ 8.96 Data 47
Data 32 Data fakes 34.08
Data Fakes 14.32

Table 8.6: Number of events of the main simulated background processes and of the data in
the etet and p*p® channels used for the measurement of 6, and 0,. VV, Vr,
ttV,tV and tt prompts (or charge misID) are the backgrounds which lead to prompt
same-sign dileptons and are subtracted from the data to get a measured number
of fakes. Uncertainties are statistical. The numbers labeled Data fakes are used to

Data __ Prompt SS
N HE N B

Hp
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Data __ pnyPrompt SS
Nup NM’

The 2,3 jet anti-tight regions used in obtaining the transfer factors are shown in Table 8.6
and the 4.5 jet anti-tight regions, scaled by the transfer factors to get the fake estimates in
the SR are shown in Figure 8.11. The tf and single top MC are included in the plots and

tables for reference, although they are not used in the measurements.
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Figure 8.11: 4,5 Jet SS 2¢ ed (above) and up control regions with at least one b-tagged jet.
After subtraction of prompt and charge misidentification backgrounds, these re-
gions are scaled by the transfer factors, . and 6,, to obtain the final number
of fake events in the CR. The top MC (red) is used for reference but not in the
actual calculation.

The transfer factors obtained from the 2 and 3 jet regions are shown in 8.7 with statistical
errors and propagated systematic errors from the subtraction of relevant backgrounds (¢£V and
charge misidentification). The MC values are just for comparison. An additional systematic
error is added by comparing the transfer factors, obtained from the low jet control region,
to those obtained from the higher jet signal regions, using different ¢t MC. The value of this
systematic is 20-30 %. Since we consider only the closure effects of ¢t fakes, we risk possible
effects from non-tt fakes in assessing the appropriateness of the low NJet extrapolation. These

include W+jet and di-jet fakes. In order to ensure that the extrapolation is under control

with the possible presence of these fakes, we vary the b-tagged Jet pr and missing energy cut,
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Factor Expected (MC)  Measured (data)
0e 0.0136 +0.0062  0.01569 £ 0.00619
0. 0.1211 £ 0.0175 0.2468 £ 0.0539

Table 8.7: Expected and measured values of the 6 factors.

Channels
Uncertainties 4 jets > 5 jets
e:te:t Miui eiﬂi ej:ej: ILLj:‘uj: ei‘uj:
AGE 39.6 - 9.71 | 39.6 - 13.6
Statistical | AGT™ — 219 165 | -~ 219 144
ANy _anti_e(n jets)(stat) | 6.8 199 126 | 84 206  16.0
AGEY5" (closure) 21.8 - 6.8 26.7 - 8.9
Systematics | AG5Y*" (closure) - 24.8 18.7 - 31.2 20.6
AG;Y" (other fakes) - 14.0  10.6 - 14.0 9.2
AG7F (other fakes) 19.0 - 4.7 19.0 - 6.5
Q Mis Id (¢ — anti — ) 2.2 - 0.7 2.4 - 0.8
Total 49.6 40.8 32.5 52.2 50.1 36.8
Correlated Q Mis Id (¢¢) 24.0 - 6.8 24.0 - 7.92
Systematics | ttW=XS 4.0 4.1 5.1 4.0 4.1 4.5
tHWw 2.75 2.7 1.78 2.75 2.7 3.20
ttZ 0.49 0.48 0.48 0.48 0.48 0.56
Table 8.8: Summary of the uncertainties (in %) in ete® (reverse Id + reverse isolation

method), p*p® and etp® . Statistical uncertainty is splitted into statisti-
cal uncertainties on ¢, and 6, and uncertainty due to the Control Region size
(AN¢_anti—e(n jets)). The correlated systematics are anti-correlated to the sys-
tematic on other background processes on the signal region.

and recalculate the transfer factors. The largest deviations we see in the electron and muon
transfer factors as a result are 14% and 17% respectively, and we include these as additional
sysetematic uncertainties.

The overall systematic uncertainties and contribution from each source in all of the sub-
channels of the signal region are shown in Table 8.7 and the final contribution of fake events

to the signal region are show in Table 8.1 found at the beginning of the chapter.

8.4.2 3/ Fakes

The 3¢ fake method follows the same general strategy as the 2¢ SS case. Transfer factors are

used to extrapolate from anti-tight, fake-rich control regions in data into the signal region.
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However, the equivalent low jet control regions are too low in statistics to provide the transfer
factors from data directly. Instead, the transfer factors are obtained directly from the ¢t
simulation. Data control regions, called auxiliary regions, are used to determine the modeling
of the identification and isolation variables, used in the transfer factor extrapolation. The low
jet regions are still employed in a low statistics validation of the entire fake procedure.
Anti-tight electrons and muons are defined in slightly different ways, compared to the 2/

SS case:

e anti-tight electron (d): fails to pass the verytight likelihood operating point, but still
verifies the veryloose operating point. The isolation selection is released E’"Td > 0.05,

pht > 0.05.

e anti-tight muon (p): muons must pass identification but the pr cuts is lowered to 6

GeV. The overlap removal with jets and isolation cuts are released.

The transfer factors, 6. and 0,,, extracted from MC, is defined as the ratio of the number of
top (tt + single-top) events in the signal region, to the number of ¢f events in the anti-tight
regions. The factors are calculated in separate flavor regions to ensure that the electron jet
fakes and muon jet fakes are calculated separately. The calculation follows the same form as
for the 2¢ SS case, but now lep0, which by construction is almost never a fake is allowed to
be either electron or muon in both cases, denoted below in Equations 8.12 and 8.13.

Ntop

= e (8.12)

zed

Ntop
0, = o (8.13)
Nzih

The MC modeling of the variables involved in the transfer factor can be verified when

another variable fails. For instance, the MC modeling of the electron isolation variable can be
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compared to data when the particle identification variable fails and vice-versa. The modeling
of muon-jet AR, involved in the overlap removal, can be compared when either the isolation
variable or the pr fails. The comparison of the electron variables in this manner can be
seen in Figure 8.13 and the muon variables in Figure 8.12. The regions used have the same
selection as the signal region with an added missing transverse energy requirement, > 60 GeV,
to ensure only top fakes. 20% and 30% systematic uncertainties are assigned to the muon and
electron transfer factors, respectively, to account for data-MC discrepancies. This method for
evaluating data-MC agreement for individual electron and muon variables in turn relies on the
assumption that these variables are largely uncorrelated and that the transfer factor itself is
factorizable into pieces for each variable. Factorized and fully correlated transfer factors have
been compared using MC and shown to have differences smaller than the systematic quoted,
suggesting that the uncorrelated assumption is reasonable.

The electron and muon anti-tight control regions, which are scaled by the transfer factors
are shown in Figure 8.14. The prompt MC subtracted data in these regions are scaled by
the transfer factors to obtain the overall contribution of fake electron and muon events in the
signal region. The systematic uncertainties are split between the statistical error on the trans-
fer factor and normalization of the anti-tight control regions and the data-MC comparisons
outlined above. For muon fakes the total systematic uncertainty is 25% and for electrons it is

34%. The numbers and uncertainties involved in the calculation are shown in Table 8.9.

Stage Muon Electron
Anti-Tight CR Normalization | 364.62 £ 20.02 (5%) 38.2 £ 6.9 (17%)
Transfer factor 0.0047 £ 0.0011 (23%) | 0.0240 + 0.0064 (36%)
SR Contribution 171 + 0.42 (25%) 0.91 + 0.35(39%)

Table 8.9: Summary of regions and inputs to the extraction of the number of ¢ events with
a fake muon in the SR

The low jet region (1, 2, 3) is used as a validation for the method. The ¢f and single
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Figure 8.12: Distributions of the properties of the anti-tight muons in data (dots), compared
with the total simulation (red line), rescaled to the integral of the data for a
shape comparison. The uncertainty on the data distribution is statistical. The
number of events for each of them is also presented in the legend. The vari-
ables probed are, top: pr and AR(u, ,closest selected jet); bottom: ptcone20/pr
and Etcone20/pr. The selection is the signal region event selection with one
anti-tight muon (failing at least one of the isolation, muon-jet overlap, or pr
selection criteria). A ratio plot is containing the 20% area around 1, is displayed,
demonstrating that a 20% data-MC comparison systematic is sufficient.
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Figure 8.13: Distributions of anti-tight electron variables. The variables presented are, from
top left to bottom right, pr, n, VERYTIGHT Likelihood value, ptcone20/pr,
Etcone20/pr. The plotted regions have the same cuts as the signal region, ex-
cept the anti-tight electron must fail isolation for the plot of the VERYTIGHT
identification word or fail the VERYTIGHT identification word for the plots of the
isolation. Data (dots) are compared with a stacked histogram of the various sim-
ulated samples: top in red, V+jets (blue), VV (purple) and ¢tV (yellow). The
uncertainty on the data distribution is statistical.

top fakes in this region are estimated using the procedure above. Similar systematics are
assessed. This region with the fake estimate is plotted in Figure 8.15. The agreement of data
and summed prediction for the fakes and prompt backgrounds is well within the systematic
and statistical uncertainties. The figure also shows the same region with relaxed pr cuts on

all leptons to 10 GeV, which enriches the fake contributions greatly. The data and summed

fake and prompt predictions are also well within the statistical and systematic uncertainties.
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Figure 8.14: Muon-xxp (above) and electron-xxd (below) anti-tight control regions: jet vari-
ables. Note: the ¢t and single top MC in the plots is used only as comparison,
but is not included in the fake measurement

8.4.3 4/ Fakes

We will not discuss the 4¢ fakes in depth, as it is a very small background - at the % level
and will have almost no impact on the final result. The fake method used in the the 4¢ case
is similar to the 2¢ and 3¢ cases discussed above. All fakes arise from ¢t and single-top events,
where two jets are misidentified as leptons. To measure the contribution of this background,
control regions with 2 fully identified and 2 anti-identified leptons are created. These control
regions do not have a number of jets requirement in order to increase statistics. From these
control regions, two extrapolations are made. First, a transfer factor is applied to extrapolate

from the anti-tight to tight regions for electrons and muons. The regions are defined with
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Figure 8.15: 3¢ fake validation regions for nominal pr selection (above) and relaxed pr se-
lection, > 10 GeV, (below). Plotted are the number of jets and the number of
electrons in each event. The data and MC ratio below each plot agree with 1
within the statistics of the region and the overall systematic assigned for the fake
component (red)

identical object identification selection and reversal as the 3¢ case, and the same transfer
factors can be used. They must be used twice however, because there are two anti-identified
leptons in each event. Second, the jet inclusive regions are extrapolated into the 2-jet signal
region, using a second extrapolation factor derived from ¢t events. Since, the majority of
fake leptons arise from b-quark initiated jets, the jet spectrum t¢ events with the additional
requirement of 2-b-tagged jets from data are used as a model for the jet extrapolation. The
overall systematic uncertainty on this measurement arises from the statistics in the control

regions and MC based assessments of non-closure and are 35%-50% depending on the sub-
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channel.
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CHAPTER 9

Summary of Systematic Uncertainties

This chapter summarizes the systematic uncertainties that enter the measurement of the limit
of tt H multi-lepton analysis. The systematic uncertainties arise from three main sources. The
first are the normalization uncertainties on the background process estimation methods, which
are discussed in depth in Chapter 8. The second source is the theoretical uncertainties on
the ttH production cross-section and acceptance. The final source are the experimental and
detector related systematic uncertainties related to event selection efficiencies and measure-
ments and identification of the objects. They affect only the non-data driven backgrounds and
the ttH signal, as simulation is used to model their acceptance and efficiency for the analysis
selection.

These systematic uncertainties, the estimated background and signal event counts in each
of the signal regions, and the observed data in each signal region are combined in a statistical
fit to an analysis model to extract the measurement of interest. We measure per-channel
and combined ratios of the observed production rate to the theoretically predicted production
rate of ttH, a parameter called p. In the absence of a statistically significant observation, this
measurement is translated into a upper confidence limit on p. The details of this procedure
are discussed in the following sections and the results with the observed data are discussed in

Chapter 10
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9. SUMMARY OF SYSTEMATIC UNCERTAINTIES

9.1 Systematic Uncertainties on Signal Cross-section and

Acceptance

The ttH signal is simulated with matrix elements at NLO in QCD with Powhel. The simu-
lation details are discussed in Chapter 6. The production cross section and the Higgs boson
decay branching fractions together with their theoretical uncertainties from the QCD scale
and PDF choice are taken from the NLO theoretical calculations reported in [68]. The uncer-
tainty from the QCD scale estimated by varying pg by a factor of 2 from the nominal value
is tgiggﬁ,a while the uncertainty from the PDF set and the value of ag is +8.1%.

The impact of the choice of the QCD scale on the simulation of the t#H event selection
efficiency is estimated in two independent ways.

First, the factorization and renormalisation scales pg are varied by a factor of 2, as . = 2
and p = po/2. The effects of these new scales are estimated via the application of event re-
weighting procedures on the nominal simulation using kinematic distributions at parton level.
The weights used are dependent on the transverse momenta of both the t#H system and of
the top quark, as described in [83].

Second, the choice of the factorization and renormalisation scales, dependent on fixed
(static) parameters in the nominal simulation, is tested comparing its prediction with an
alternative (dynamic), but still physics motivated choice pg = (mbmbmi )3, which depends
on kinematic variables. This comparison is performed via event re-weighting of the nominal
static simulation based on weights derived as a function of the ¢t¢H transverse momentum [83].
In order to take the difference between the choices of scale as systematic uncertainties, a
symmetric envelope around the nominal simulation is built applying the weights and also

their inverses.

In order to not double-count the variations on the total cross section the predictions
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Table 9.1: Theoretical uncertainties of the signal event yields in the signal regions due to the
impact of QCD scale uncertainties on the event selection.

QCD scale [%] | 2¢4jets | 2¢>5jets | 3¢ 4¢
: 0.6 77 73 [ F09

ol T
Dynamic o8 2.6 —1.1 | —00

from the different QCD scales are normalized to the same total cross section. That means
that the observed differences are only coming from the event selection. Significant variations
on the jet multiplicities can be seen and these translate into different predictions on the
signal event yields in the signal regions. Such differences, listed in Table 9.1, are taken as
theoretical systematic uncertainties in addition to the ones affecting the total t##H production
cross section. The static uncertainties come from the variations by a factor of 2 from the
nominal scale and they are correlated with the uncertainties on the total cross section, which
are estimated with the same procedure. The dynamic uncertainties come from the difference
between the nominal and the alternative dynamic scale and are treated as an independent
source of theoretical uncertainty.

The uncertainty of the ttH event selection due to the PDF sets is estimated comparing the
predictions with three different PDF sets, varying each set within errors and taking the width
of the envelope as systematic uncertainty. The recommended sets are CT10, MSTW2008n1o68cl
and NNPDF21_100.

Figure 9.1 shows the estimated PDF systematic uncertainties as a function of the jet
multiplicity in t£H events with at least two leptons. The uncertainties are compatible with
the uncertainty on the production cross section estimated in [68] and indicated by the dashed
red lines in the lower panel. Table 9.2 shows the half-width of the envelope of the acceptance
under all eigenvector variations of the three PDF sets. No significant dependence on the event

topology is observed, so that the PDF systematic uncertainty on the t#H event selection is
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Table 9.2: Uncertainties on t#H acceptance in signal regions due to PDF variation.

Sample | 204j | 205 | 3¢ | 4
ttH [ 0.3% | 1.0% | 0.5% | 1.4%

neglected.
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Figure 9.1: PDF systematic uncertainty on the jet multiplicities in tH events with at least

2 leptons. The dashed red lines in the lower panel indicate the systematic uncer-
tainty on the ¢ttH production cross section.

The acceptance uncertainty related to the parton shower and underlying event modelling is
estimated by comparing the event yields in the signal regions with the nominal parton shower
and underlying event generator (PYTHIA) with HERWIG++. The statistical uncertainties
on these comparison are larger than any observable systematic effects but are still small

compared to the above uncertainties (1-3%).

9.2 Experimental and Detector Systematic Uncertainties

Experimental and detector systematic uncertainties affect the efficiencies of identifying ob-
jects and the efficiencies for events to pass our cuts . These uncertaintites affect only MC

models of physics processes, ttV, ttH, V'V and thus alter ther number of expected events from
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signal and backgroun in our signal regions. Data-driven backgrounds take into account these
uncertainties by construction. We consider systematic effects from a number of sources: the
lepton and jet energy scale measurements, the lepton identification and isolation selections,
the efficiency and misidentification rate associated with tagging b-quark jets. Effects due to
modeling the energy and objects from additional vertices were studied and found to be neg-
ligible. The vast majority of the individual detector systematics effects are small. The sum
total of the systematic effects are comparable to the overall normalization and cross-section

uncertainties on some of the physics processes and is shown in Table 9.3.

9.2.1 Lepton Identification, Energy Scale, and Trigger

The electron[51] and muon identification efficiencies[84] are measured in data using Z boson
and J/¥ control samples. They muon efficiencies are shown in Figure 9.2, while the lectron
efficienceis are shown in Figure 4.11. The uncertainty on the muon efficiencies are measured
as functions of n and p and are generally less 1%. The uncertainty on the electron and muon
efficiencies are also measured as functions of 77 and pr and are at the 1% level for pr above 30
GeV, but become much larger 5-10% for the lower pt regimes. These translate into sub-1%
level effects on the ttV and ttH event counts in the signal regions for the muons and 1%
level effects for the electrons. The effects become more important with increasing numbers of
leptons.

The electron[85] and muon[84] energy scale and resolution are also measured using the
Z-boson control samples in data. The uncertainties related to the scale and resolution for the
leptons affect the overall event acceptance through the lepton momentum cuts primary and
have negligible impact on the event count uncertainties in the signal regions.

The efficiencies for muons and electrons to pass muon[86] and electron triggers[87] have

been calculated with respect to the offline identification operating points using the Z boson
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Figure 9.2: Muon identification efficiency in Data and MC as a function of . The CB+ST
(combined+segment tagged) operating point is used

control samples. They are in the range of 90% for electron triggers and 70% for muon triggers,
owing to gaps in muon trigger coverage, and have 1% level uncertainties. When statistically
combined for 2¢ SS, 3¢ and 4/ lepton signal regions, the overall trigger efficiency is high and

the uncertainties on the number of expected events is negligible.

9.2.2 Lepton Isolation and Impact Parameter

The isolation and impact parameter selections are specific to this analysis and are discussed
in depth in Chapter 7. We calculated their combined efficiency with respect to the full lepton
identification selection using the Z boson control samples and define data-MC scale factors to
correct the efficiency in the simulation. Background are subtracted using shape templates in
the di-lepton invariant mass spectrum. The Z-event template is derived from MC, while the
background template is derived from the same-sign control region. We measure the efficiency
scale-factors in bins of lepton momentum. Uncertainties are assigned per-bin to account for the

level of statistics and variations caused by the fit parameters. An additional 1% uncertainty
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envelope is added to both the electron and muon measurements to account for trends observed
in the dependence of the data-MC efficiency scale-factor as a function of the number of jets.
Stability of the efficiency scale-factor as a function of the number of jets is important for this
analysis, because event activity in the low jet Z sample, where the efficiency is measured, is
much different from the high jet signal regions, where the efficiency is applied. The dependence
of the scale-factor on the number of jets can be seen Figure 9.3. The isolation scale-factor
uncertainties are around 1-3% depending on the particle momentum, but these uncertainties
propagate to 2-5 % (some of the largest) effects in the event counts in the signal regions. The

uncertainties are more important in the regions with more leptons.
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Figure 9.3: Muon (left) and electron(right) isolation efficiency scale-factors from the Z control
sample as a function of the number of jets in the event. An additional systematic
uncertainty of 1% is added to encompass the variation in the number of jets
variable
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9.2.3 Jet Energy

The jet energy scale (JES) is calculated using a combination of data-based in-situ techniques,
where jet transverse momentum is balanced with respect to a reference photon or a Z boson,
as well as single particle test-stand studies[88]. Additional smaller effects are taken into
account including the b-quark jet specific response, near-by jets, the effects of pile-up and an
inter-calibration of similar 7 regions using di-jet events. These effects are measured in 2012
data. The JES systematic errors arises from numerous sources that are diagonalized into
eigenvectors so that they can be combined in an uncorrelated way. The combined uncertainty
is plotted in Figure 9.4 as a function of jet  and pr and is the range 2-4% for jets used in this
analysis. The jet energy resolution is calculated in a similar way with slightly larger errors,
10% [89]. The combined scale and resolution systematics are of non-negligible effects 6-7% on

the signal and background event counts in the signal regions.
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Figure 9.4: JES systematic uncertainties as a function of jet n (for jets pp> 25 GeV) and pr
(for jets |n| < 0.4). The combined systematic uncertainty is shown with contribu-
tions from the largest sources
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9.2.4 B-Tagged Jet Efficiency

The b-quark tagging efficiency must be calculated separately for charm, light and b-quarks.
ATLAS uses three data based control regions: an inclusive jet sample for mistagged light
quarks[90], the ¢ sample for b-quarks[91], and a sample of D* mesons for charm quarks[92].
These efficiencies and rates are well-measured in MC and the data-based corrections are
small. The data-MC efficiency scale-factor shown in Figure 9.5 is close to 1 and has an
overall systematic uncertainty of around 5%. The uncertainties are applied to the analysis
via a number of eigenvectors. Together these uncertainties have a 4 % effect in the event

expectation in the signal regions.
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Figure 9.5: b-Tagging data-MC efficiency scale-factors versus jet pt calculated in the #£ sample
from 2012 data. The uncertainties are combined statistical and systematic.

9.2.5 Summary

The combined effect of these detector and experimental systematics on the ¢V and ttH is
provided in Table 9.3. The effects are smaller than the normalization uncertainties on some of
the backgrounds. They are dominated by the lepton isolation scale-factor measurements and
the electron identification with smaller contributions from the JES and b-tagging efficiencies.
These detector systematic uncertainties enter the fit individually and the most important to

the overall measurement uncertainty can be seen in Figure 10.7.
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Total Systematic 2eedj 2eebjincl 2em4]j 2embjincl
Uncertainty | Down-Up Down-Up Down-Up Down-Up
ttH | -4.68 5.84 | -8.24 6.14 | -5.10 3.50 | -5.52 6.40
ttW | -7.20 5.45 | -8.72 11.30 | -3.63 6.22 | -9.72 7.95
ttZ | -9.68 5.07 | -5.87 10.98 | -4.07 6.16 | -8.37 4.99
Total Systematic 2mm4;j 2mmbjincl 3¢ 4
Uncertainty Down-Up Down-Up Down-Up Down-Up
ttH | -5.20 7.51 | -7.28 6.75 | -5.84 5.59 | -6.54 6.54
ttW | -4.54 5.23 | -8.63 6.88 | 6.36 8.16 —
ttZ | -5.24 8.69 | -9.73 8.18 | -6.14 6.66 | -9.58 6.94

Table 9.3: Sum in quadrature of all the systematic uncertainties on the number of event yields

per channel.

9.3 Summary of Background and Signal Normalization

Uncertainties

Table 9.4 gives the summary of the systematic uncertainties that are included in the analy-

sis for the normalization and acceptance of each process. The relative importance of these

uncertainties to the final fit can be seen in Figure 10.7.
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Type Description Uncertainty
Signal (ttH)
QCD Scale Cross Section (Dynamic Scale) +3.8% —9.3% (Section 9.1)
Analyses Acceptance 0.-2.6%
PDF+as Cross Section + 8.1%
Analyses Acceptance 0.3-1.0%
Parton Shower Analyses Acceptance 0.2-1.4%

ttW (Irreducible background)

QCD Scale

PDF+as

Matching
Modelling
Parton Shower

Cross Section (Dynamic Scale)
Analyses Acceptance

Cross Section
Analyses Acceptance

Analyses Acceptance
Analyses Acceptance
Analyses Acceptance

+15% (Section 8.1 )
0.4-3.5%

+ 13%
1.1-4.8%

0.2-10.%
0.1-15.6%
2.4-13.0%

ttZ (Irreducible background)

QCD Scale

PDF+ag

Matching
Modelling
Parton Shower

Cross Section (Dynamic Scale)
Analyses Acceptance

Cross Section
Analyses Acceptance

Analyses Acceptance
Analyses Acceptance
Analyses Acceptance

+12% (Section 8.1)
0.1-3.1%

+ 9%
0.9-2.7%

0.5-16.%
3.5-10.5%
2.4-13.0%

VV Backgrounds

Normalization Uncertainty

W*Z 77 Processes

+ 50% (Section 8.2)

Data-Driven Backgrounds

Normalization Uncertainty
Normalization Uncertainty

Jet Fakes
Charge MisID

+ 30-50% (Section 8.4)
+ 30-40% (Section 8.3)

Table 9.4: Summary of systematic uncertainties for processes present in the signal regions
in the analysis, with their type, description, name, values and uncertainties, and

status of inclusion in the final results.
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CHAPTER 10

Results and Statistical Model

The predicted number of background and signal events and the observed data for each of
the signal regions (including sub-channels) are provided in Table 10.1. We observe an excess
of events in many of the 2¢ and 3¢ channels over the expected background. We provide a
preliminary measurement of p, which is a ratio of the observed ttH production rate to the
predicted SM production rate. We also interpret the results as a 95% exclusion level on
possible p values. The statistical model used to make these measurements is discussed in
depth below.

Table 10.1: Results in the 2¢, 3¢, and 4/ signal regions with flavor and jet sub-channels for 2/
and SFOS and non-SFOS sub-channels for 4¢. The results included only statistical

normalization

ttH ttV tZ VvV Fakes QMis Sum Background | Data
20 SS 6.74 +0.61 | 31.00 £4.03 | 1.59+0.21 | 5.30 +2.65 | 24.65 +£4.40 | 4.87 +1.08 67.41 £ 6.62 98
2eedj 0.45+0.04 | 2.86+0.37 | 0.20+0.03 | 0.89+0.45 | 3.454+1.75 1.82+0.34 9.22 + 1.87 9
2eebjincl 0.74+0.07 | 2.46+0.32 | 0.13+0.02 | 0.60+0.30 | 2.334+2.90 | 1.11+0.56 6.63 + 2.99 10
2emd4j 1.18+0.11 | 7.90+1.03 | 0.59+0.08 | 1.78 +0.89 | 12.33 £1.55 | 1.39+0.44 2517+ 2.11 26
2embjincl | 2.17+0.20 | 7.21+0.94 | 0.29+0.04 | 0.64£0.32 | 6.66+1.25 | 0.85+£0.43 17.84 £ 1.75 22
2mm4j 0.76 £ 0.07 | 5.63+0.73 | 0.23£0.03 | 0.56 £0.28 | 6.32+£1.73 0 12.62 +1.90 20
2mmb5jincl | 1.44 £0.13 | 4.94+0.64 | 0.14+0.02 | 0.83+£0.42 | 2.89+0.96 0 8.58 +1.23 11
3¢ 2.394+0.21 | 6.56+0.85 | 0.58£0.07 | 1.81 £0.91 | 2.62+£0.50 0 11.57+1.34 18
4/ 0.20+0.02 | 0.45+0.06 | 0.054+0.01 | 0.05+0.01 | 0.03+0.01 0 0.57 + 0.06 1
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10.1 Results in Signal Regions

Plots of event variables are shown in Figures 10.1 - 10.2 for the 2¢ SS signal region and
Figures 10.3 - 10.4 for the 3 £ signal. The 4 ¢ regions have too few events to be informative.
Likewise, the statistics of the backgrounds models are too poor in the sub-channels of the 2/
signal region. The results are shown instead for the inclusive 2¢ signal region. The charge
misidentification and fake backgrounds take their normalizations from the measurements in
Chapter 8, while their shapes are directly from MC. The plots show the combined statistical
uncertainties and systematic uncertainties from theory and background normalization as well

as experimental and detector effects.

10.2 Statistical Model

We use the above results to make two sets of measurements: an upper confidence limit on u,
the signal strength parameter, and a measurement of u. These measurements are done for
each channel individually and then combined. The interpretation of the results in the form
of a statistical model follow the procedure, discussed here [93]. We interpret the results as
counting experiments in each signal region. Therefore agreement in kinematic shapes do not

affect the statistical procedure.

10.2.1 The Likelihood

The observed and expected event yields in the signal regions are analyzed using a binned
likelihood function (£), built from product of Poisson models of expected event counts for

each bin, where the bins are the separate signal regions:

NSR . . .
La H P( ;bs|/’c ! sémp + blewp) (101)
=0
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Figure 10.1: Distributions for combined 2-lepton signal region without hadronic taus. Jet and

b-tagged jet multiplicities (top row); 10*n(b-tags)+n(jets) and electron multiplic-
ity (middle tow); scalar sum of the prof selected leptons and jets in the event
(bottom left) and only of leptons (bottom right).
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Figure 10.2: Distributions for combined 2-lepton signal region without hadronic taus. Leading
and sub-leading lepton pr(top); leading jet prand 7 (middle right); scalar sum of
the prof selected jets in the event (bottom left) and only of b-tagged jets (bottom

right).
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Figure 10.3: Jet and b-tagged jet multiplicities (top row); 10*n(b-tags)+n(jets) and electron
multiplicity (middle tow); invariant mass of opposite sign lepton pairs; scalar
sum of the prof selected leptons and jets in the event (bottom left) and only of
leptons (bottom right).
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Figure 10.4: Lepton 0 pr(top left) and lepton 1 pr(top right); lepton 2 pr(middle left) and
leading jet pr(middle right); scalar sum of the prof selected jets in the event
(bottom left) and only of b-tagged jets (bottom right). Lepton 0 is the one with
opposite charge with respect to lepton 1 and 2, where lepton 2 has lower pr than
lepton 1.
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Figure 10.5: Invariant mass of opposite sign lepton pairs (top); (bottom row) invariant mass
of the three lepton system in the inclusive WZ VR.

)

where s!__ is the SM signal expectation in the signal region, bexp

cxp are the background expecta-

tions, ¢ counts over the signal regions, and P is the Poisson distribution. The signal strength
parameter is the parameter of interest in the model (POI) and acts as a simple scale-factor
to the SM ttHproduction rate and is common to all channels. Setting p to 0 corresponds to
the background only scenario. The background parameter, b, is a sum over all background
processes.

The signal and background expectations, s and b, depend on systematic errors. These are
included in the likelihood function in the form of a vector nuisance parameters, é: which are

constrained to fluctuate within Gaussian distributions. These fluctuations affect the back-
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—

ground and signal expectations by response functions, v(6), set by systematic uncertainties
measured in the previous section. For instance, the W= Znormalization uncertainty is 50%
from Section 8.2 and is included in the fit as its own unit Gaussian,G(6]0,1). The fluctuations
of the Gaussian, 0y z, scale the background contribution via the form, 0.5- (146w z)-bw z. For
many of the detector systematics, the uncertainties are two sided and are included as piecewise
Gaussians. We add correlations to various uncertainties by hand, when appropriate. With
these nuisance parameters, the likelihood takes this form:

Nch
‘C(Ma (H P obs,M VS(_’) ézp +Vb( bzezp ) X HG 9 i1, 0 (10'2)

=0
10.2.2 Test Statistic and Profile Likelihood

Values of p are tested with the negative log quantity, ¢, = —2In(A(u)), where A(p) is the test

statistic. A(u) is defined as:
L(1:6,.)
L(j, 0)

where 9_,; are values of the nuisance parameter vector that maximize the likelihood for a given

Ap) = (10.3)

value of o and i and g are the fitted values of signal strength and nuisance parameters that

maximize the likelihood overall. p is constrained to be positive.

10.2.3 CL; Method

Exclusions limits on the signal strength are calculated with the test statistic using a modified
frequentist method, called the CLs; method[94]. CLj; is defined as a ratio of two frequentist
quantities. The numerator quantifies the probability of finding the observed data given the
signal + background hypothesis. The denominator quantifies the probability of the data given

the background only hypothesis.
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Using the numerator alone has the undesirable property that, if the data fluctuates below
the expectation, an exclusion limit can be reached that is far beyond the sensitivity of the
experiment. Normalizing to the background only hypothesis penalizes these low sensitivity
cases.

The probability of obtaining an observation as extreme as the data given a particular signal
+ background hypothesis is given by the p-value, p, defined as:

Pu = \ flau)daqy (10.4)
ap*
, and the probability of obtaining an observation as extreme as the data given the background

hypothesis, pp is:

Py — / " F(guo)dgums (10.5)
q

obs
h=0

, where f(g,,) is the distribution of g, for all possible observations for a given p and g is defined

above. Therefore,

Pu
CL, = —— 10.6
Sl (10.6)

A p value is considered excluded at 95% confidence when CL; is less than 5%.

10.2.4 Exclusion Limits

Figure 10.6 and table 10.2 show the expected and observed exclusion limits for all channels.

Table 10.2: Expected and observed 95% CL, limits on u for the combined and split signal

regions
Expected Limit | Expected SM Signal Injected Limit | Observed Limit

Combined 2.55 3.42 5.50
2¢ SS 3.58 4.51 6.50
20ee 8.95 9.81 12.62
20em 4.89 5.82 7.84
2/mm 5.30 6.22 8.30
3¢ 3.67 4.65 6.86

4/ 14.89 16.45 18.05
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T T
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Figure 10.6: Plot of the 2¢ SS, 3¢, 4¢, and combined 95% CL, observed limits on p. The
expected 1-0 (green) and 2-o (yellow) error bands are shown around the expected
limit. The expected limit with SM signal injection (u = 1) is included as well.

10.2.5 y Measurement

In addition to setting a limit on the signal strength, we also fit the best value of the signal
strength for 1. We do this by minimizing the negative log likelihood value, g,, or conversely
maximizing the likelihood. The 1-0 error band is set via a profile likelihood scan, where the
value ¢, is scanned as a function of p. Values of u that increase q/’}”" by 1 form the edges
of the error band. The fitted value of p for all channels separately and combined is shown in
Figure 10.3. The overally uncertainty derives almost equally from statistical and sysetematic

uncertainties.
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Channels | p value | stat | syst tot
+3.89 | +2.72 | +4.75
21 | 2lee 3.74 T35 | T5an | Taoe
+2.09 | +1.81 | 42.77
2lem 2.97 ~1.83 | —1.56 | —2.41
+2.61 | +1.85 | +3.20
2lmm 2.68 —2.22 | —1.48 | —2.67
+1.47 | +1.57 | 42.15
All 2.85 ~1.35 | —1.28 | —1.86
+1.97 | +0.94 | 42.19
3l 2.93 —~1.68 | —0.62 | —1.79
+6.81 | +1.18 | 46.91

41 1.83 0.00 —0.00 | 0.00
+1.15 | +1.08 | +1.58
2341 2.83 —~1.06 | —0.84 | —1.35

Table 10.3: p measurement for all channels and their combination, with asymmetric minos
errors. Statistical, systematics and total error are provided. Results are given on
a fit to data for all channels.

10.2.6 Nuisance Parameter Impact on the Signal Strength

Finally, we examine the post-fit impact of the various nuisance parameters in Figure 10.7. The
fake nuisance parameters are divided for 2¢ into the systematic uncertainty on the transfer
factors for electrons and muons (alpha_Theta_mm, alpha_Theta_ee) and the systematic uncer-
tainties on the number of events in the anti-tight control regions (e.g alpha_Fakes_2lem5j). The
3¢ fake uncertainties are contained in a single parameter (alpha Fakes 3l). The theory cross-
section (XS) uncertainties are divided into PDF and scale nuisance parameters separately for
each background (W= t£Z ttH). The most important nuisance parameters associated with
the detector and experimental uncertainties are the JES, the b-tag scale-factor weights, and
the lepton isolation.

We have measured the various analysis uncertainties well and do not expect the fit to have

much further constraint. For that reason, we expect the pulls of the nuisance parameters to be
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close to 0 and the measured uncertainties on those parameters to be consistent with the input

uncertainties. This is true for all but the 4¢ fake transfer factor which is pulled slightly high

by the excess in the p channels. The pull is well within the uncertainty. The uncertainties

that dominate this fit are those associated with the ¢tV cross-section and the fake estimates.

Figure 10.7:
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Figure of the post- and pre-fit impacts of the top nuisance parameters on the
combined p measurements

10.3 Discussion of Results and Significance of the Excess

The results show an overall excess of events over the background-only hypothesis. An excess

is observed in both the 2¢ and 3¢ channels. However, the excess is not a considered signficant

enough to warrant an observation of new physics.

A first suspicion would be that two domianant backgrounds are not well modeled: #V and
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fake. The fake backgrounds from top have been validated in low jet control regions, and the
extrapolation to higher number of jets is constrained by simulation. The anti-tight control
regions, shown in Chapter 8, which are enriched in fake events do not show a similar shape to
the excesses in the tight signal regions. The t£V cross-section is constrained only by theoretical
methods and the t¢Z validation region used does show an excess of data events. A rescaling of
the ¢tV by the data/MC ratio show in the ¢£Z validation regions would not explain the size or
shape of the excess, though the significance of the excess would decrease. The ttZ validation
region excess is compatible with a statistical fluctuation of the backgrounds, as discussed in
Section 8.1. Indeed, an public ATLAS measurement of the t£Z rate in this 3¢ region shows a
deficit of events [95] using the same MC models. It is therefore not clear that re-scaling the
the ¢tV cross-section is warranted.

The overall excess of events has peculiar properties: it is found predominantly in events
with a large-number of jets and b-tagged jets. For the 2¢ channel, the excess is found primarily
in the pp and e — p flavor bins. Events with large numbers of b-tagged jets and flavor
asymmetry are difficult to describe with the standard model backgrounds, even including a
standard model Higgs hypothesis. The high pr scale of the excess for sub-leading leptons
suggest that the fakes are well understood and the agreement in the 1 b-tagged jet bin suggest

that the combined ¢V and fakes are under control.
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CHAPTER 11

Conclusions

This thesis has presented a preliminary search for the t¢H process in multilepton final states
using the 2012 8 TeV dataset, collected by ATLAS. The signal regions, which are binned in
number of leptons, show an interesting excess of events. The level of excess is not large enough
to claim statistically signficant observation of a new process, whether SM ttH production or
otherwise. As a result, we proceed by setting a 95% confidence limit on the tH production rate
compared to the SM production,which is much less strict than expected and provide a fitted
value of u, the ratio of the observed production rate to the theoretical SM ##H production
rate.

We believe the background processes are well-measured via simple and straightforward
procedures. These procedures either rely on or are verified by data control and validation
regions surrounding the signal regions. The good data-MC agreement in these regions suggests
that the data excesses are characteristic of the signal regions only and that the background
processes are well-understood within the systematic uncertainties assigned.

The signal regions are constructed with simple selection criteria, requiring only certain
number of leptons, jets, and b-tagged jets within standard acceptance criteria. Additional
selection criteria, namely vetoes of dilepton invariant mass ranges, are well motivated by

the removal of backgrounds involving Z resonance production. The selection criteria and
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11. CONCLUSIONS

background measurement procedures were set prior to viewing the data in the signal region.

This analysis shares parts of signal regions with other ATLAS super-symmetric and exotic
analyses, which are under internal review. If similar excesses are seen in these analyses, it
will provide some cross-check to the t#H analysis, which is done with a different procedure for
assessing fake background contributions.

This multilepton analysis will be combined with the already public H — bb [57] and
H — ~v[58] analysis, which have observed(expected) 95% confidence limits on p of 4.1(2.6)
and 4.9(6.7), respectively. Both have seen small, non-significant excesses with fitted p values
of 1.7 + 1.4 and 1.3 4+ 2.62 — 1.75, respectively. When approved, the multilepton analysis
will be combined with other analyses in fit constraining the parameters of the Higgs sector.
As it is primarily dependent on the top Yukawa coupling and Higgs coupling to W bosons, it
will have the greatest effect on the measurement of these parameters.

It is interesting to note that the CMS experiment observes a similar excess in their mul-
tilepton search for t¢Hproduction. Their observed(expected) 95% limit on p is 6.6(2.4) and
their fitted value of p is 3.7 + 1.6 — 1.4 [96].

Observing ttH production is really a task for the second LHC run. The increased luminos-
ity and collision energy (13 TeV) will ensure that the tH process is observed with that run’s
dataset [19]. The overall cross-section of t¢H production will increase by a factor of roughly
4, due to accessing more of the gluon PDFs in the collisions. The cross-sections of most of
the backgrounds (¢£V and top fakes) will also increase by this factor, but the increase in the
signal cross-section is more important: the second run dataset will have twice the sensitivity
to ttH per amount of collected data. While there will likely not be any conclusive resolution
of the excesses found in the multilepton signal regions with the first run dataset, the second

run dataset will surely shed light on this issue.
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