
New J. Phys. 25 (2023) 033034 https://doi.org/10.1088/1367-2630/acc605

OPEN ACCESS

RECEIVED

12 December 2022

REVISED

20 February 2023

ACCEPTED FOR PUBLICATION

21 March 2023

PUBLISHED

31 March 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Quantum generative adversarial imitation learning
Tailong Xiao1, Jingzheng Huang1, Hongjing Li1, Jianping Fan2 and Guihua Zeng1,∗

1 State Key Laboratory of Advanced Optical Communication Systems and Networks, and Center for Quantum Sensing and
Information Processing, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

2 Department of Computer Science, University of North Carolina-Charlotte, Charlotte, NC 28223, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: ghzeng@sjtu.edu.cn

Keywords: quantum machine learning, quantum sensing, quantum control

Abstract
Investigating quantum advantage in the NISQ era is a challenging problem whereas quantum
machine learning becomes the most promising application that can be resorted to. However, no
proposal has been investigated for arguably challenging inverse reinforcement learning to
demonstrate the potential advantage. In this work, we propose a hybrid quantum–classical inverse
reinforcement learning algorithm based on the variational quantum circuit with the generative
adversarial framework. We find an important connection between the quantum gradient anomaly
and the performance degradation, which suggest a gradient clipping strategy to stabilize the
training process. In light of the algorithm, we study three classic control problems and the
Hamiltonian parameter estimation in quantum sensing with shallow quantum circuits. The
numerical results showcase that the control-enhanced quantum sensor can saturate quantum
Cramér-Rao bound only with a single variational layer, empirically demonstrating a parameter
complexity advantage over the classical learning control. The proposed generative adversarial
reinforcement learning algorithm achieves state-of-the-art performance in classical and quantum
sensor control in terms of required number of parameters.

1. Introduction

Quantum computation attracts intensive attention from the academy and industry for its unique
characteristics such as quantum superposition and entanglement which may provide substantial speedup for
classical computation [1, 2]. Demonstrating quantum computational advantage is always a great challenge
over the past decade. Numerous quantum algorithms are proposed to demonstrate the quantum advantage
based on the different theoretical models. The most encouraging progresses are the experimental study of
random circuit sampling [3] and Boson sampling [4] where the quantum advantages are firstly verified in
practical superconducting and photonics circuits.

The strong computation capability of fault-tolerant quantum computer stimulates the research interests
of using quantum computer to speedup machine learning algorithms [5–8]. Most quantum machine
learning (QML) algorithms are the quantum version of classical statistical learning models exploited based
on quantum linear algebra. These QML algorithms are assumed to process logical qubit using logical
quantum gates based on the quantum oracle model [9]. These QML algorithms are hard to be realized in
noisy intermediate-scale quantum (NISQ) devices to show quantum advantage [10, 11]. NISQ machine
learning focuses on using variational quantum circuit as a core algorithmic component to demonstrate the
potential advantage of quantum computation. The promising candidate capable of quantum advantage is
variational quantum circuit (VQC) model [12, 13]. Previous seminal VQC-based QML algorithms
concentrate on classification [14, 15] and generative modeling [16] to demonstrate its advantage in handling
artificial data [17, 18].

A few studies concerning quantum reinforcement learning (QRL) to show the learning capability to
benchmark the results over classical models [19–21]. While RL requires a reward function to be defined for
an agent to learn from, inverse RL (IRL) allows us to infer a reward function from expert demonstrations,
which can be more difficult to define manually [22]. IRL imitates human behavior which is particularly

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/acc605
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acc605&domain=pdf&date_stamp=2023-3-31
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8741-6900
https://orcid.org/0000-0002-0910-9710
https://orcid.org/0000-0002-3481-7399
mailto:ghzeng@sjtu.edu.cn


New J. Phys. 25 (2023) 033034 T Xiao et al

important for applications where the agent interacts with humans, such as in healthcare or customer service
[23]. Besides, IRL can also improve the robustness of agents to changes in the environment, as the inferred
reward function is often more generalizable than a manually specified reward function. IRL can be used to
learn from large-scale datasets of expert demonstrations, which can be more efficient than collecting rewards
manually. Generative adversarial imitation learning (GAIL) is a representative IRL algorithm that uses a
generative adversarial network (GAN) to learn a reward function from expert demonstrations. GAIL has
been applied to a variety of domains, including robotics [24], game playing [25], and autonomous driving
[26], and has shown promising results in learning human-like behaviors. As our knowledge, there is no study
on inverse QRL (IQRL) algorithm to exploits the quantum advantage. Consequently, IQRL requires to be
investigated to showcase its learning capability and potential advantage in classical controls and more crucial
quantum control problems.

In this work, we propose a model-free IQRL algorithm called quantum generative adversarial imitationg
learning (QGAIL). QGAIL inherits the architecture of GAIL where the reward function is not required to be
designed compared to conventional RL methods. The quantum agent in QGAIL is trained based on a
discriminator network in which the expert trajectories are input as the supervised reward signal. The
quantum agent imitates the behavior of the expert trajectories aiming to render the discriminator network
cannot distinguish the two strategies between the agent and expert. Our QGAIL algorithm adopts an
actor-critic architecture where the quantum policy network is trained based on the proximal policy
optimization (PPO) method. Furthermore, QGAIL is naturally suited for learning discrete distributions by
sampling from the quantum circuits, which may be useful in some complex discrete control problems. Based
on QGAIL, we provide plenty of training demonstrations to show the feasibility and parameter complexity
advantage in the openAIopenAI gym environment such as the required number of parameters is polynomial
fewer than classical RL methods. More significantly, we apply QGAIL to quantum sensing to estimate the
parameters of the quantum Hamiltonian. The precision of the estimated parameter can saturate quantum
Cramér-Rao bound (QCRB) through quantum controls provided by QGAIL with single variational layer. It
is the first study, to our knowledge, of inverse QRL in quantum parameter estimation for quantum sensing.
The learning capability and parameter complexity advantage of inverse QRL are highlighted for quantum
controls.

The work is organized as follows. In section 2, the related works are discussed. In section 3, the physical
model and the hybrid quantum–classical (QC) algorithm are analyzed. In section 4, we introduce two typical
applications of QGAIL including classical and quantum sensor controls. In section 5, we present the
simulation results based on QGAIL for classical and quantum controls, respectively. Section 6 summarizes
the work.

2. Related work

While there has been significant research on VQC-based QML, the investigation of VQC-based RL has been
limited. However, there have been several recent developments in this area. For instance, Chen et al [27]
proposed a QRL algorithm that employs VQC to estimate the value function for discrete state spaces.
Lockwood and Si [28] extended this VQC-based QRL to continuous state spaces, and in [29], the authors
demonstrated that simple VQC-based Q-networks are insufficient for solving Atari games like Pong and
Breakout. Additionally, Jerbi et al [30] investigated a hybrid QC algorithm for value-based RL, utilizing an
energy-based neural network such as a quantum Boltzmann machine. However, these studies were restricted
to value-based QRL methods and evaluated only on classic problems. Jerbi et al [20] proposed a hybrid QC
policy-based QRL for classic problems and revealed that QRL, as opposed to RL, can solve supervised
learning problems based on discrete logarithmic hardness. Furthermore, in [31], the authors presented a
hybrid QC policy-based QRL approach to address real-world problems such as vehicle routing. Sequeira et al
[32] explored a hardware-efficient VQC-based QRL approach for both classical and quantum control
problems and demonstrated that VQC requires a smaller number of parameters to solve quantum control
problems. Moving on to the full quantum setting, Wu et al [33] studied a deterministic policy-based RL
method in which both the environment and agent are quantum. They suggested that VQC-based RL can
solve quantum control problems with fewer optimizations. Meanwhile, Jerbi et al [34] studied the quantum
policy gradient algorithm to demonstrate the quantum advantage of the full quantum setting, with VQC
potentially providing quadratic speed-ups in sample complexity. Finally, Yun et al [35] proposed a quantum
multi-agent RL approach based on VQC and demonstrated that it can improve the total reward in a
single-hop environment where edge agents offload packets to clouds. In our work, we investigate QGAIL for
classical and quantum control problems in the IRL setting. We employ a hardware-efficient shallow VQC to
approximate a policy and examine the learning capability of QGAIL and its advantage in parameter
complexity. Additionally, we examine the relationship between gradient anomalies and performance.

2



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure 1. The schematic of QGAIL. The algorithm adopts the expert trajectories as the supervised reward to train the policy and
value networks. The environment can be classic controls and quantum sensor control in which the emulator can be characterized
by classical or quantum dynamics. The value and discriminate networks are classical to evaluate the policy and discriminate the
policy from expert trajectories, respectively. The policy network is constructed based on the quantum variational circuit with data
re-uploading technique in which the observations are encoded into each variational layer shown in the blue squares in the
variational quantum circuit. The parameters of value and policy networks can be optimized via the proximal policy optimization
method.

3. Physical model and algorithm

The basic structure of RL consists of two core parts: the agent and the environment. The agent and the
environment can be classical or quantum. When we adopt a quantum agent to interact with the classical
environment, it is generally referred to as QC in RL. On the contrary, when the environment is quantum, it is
referred to as QQ in RL. The CQ and CC can also be defined accordingly. There are many works in CC and
CQ such as Alpha Go in playing the game of Go with a human player [36] and classical deep RL method in
handling quantum tasks [37–39]. Here we handle QC and QQ tasks based on QGAIL.

A general RL algorithm considers the observations, actions, and rewards. States S are referred to as the
position set of the agents at a specific time-step in the (C/Q) environment. RewardsR are the numerical
values that the agents perform an actionA given an observation from the states. A new state will be
internally updated when the environment receives the action. The probability that the agent moves from one
state to its successor state is called state transition probability obeying the distribution p(·) with which the
environment updates the states. p(·) is updated according to the action the environment received. Notably, a
Markov decision process (MDP) is exactly defined that one state moving to another state with p(·) when
given an action [40]. At the same time, a reward value is also provided by the environment. An MDP can also
be described by a tuple (S,A,p(·),γ), where γ ∈ (0,1) denotes the discount rate that balances the
importance of current reward and future reward.

3.1. Hybrid QC actor-critic network
QGAIL is a quantum version of classical GAIL in which we leverage a quantum policy neural network to
replace the classical policy neural network. The quantum policy neural network is chosen as the
parameterized quantum circuit (PQC) composed of interleaved rotation and entangling layers as can be seen
in figure 1. PQC is proved to be universal in approximating arbitrary functions [41]. However, the structure
of PQC has an impact on the final performance in practical situations. In this work, QGAIL consists of one
classical value network, one quantum policy network, and one discriminate network. Three networks
cooperate to constitute the hybrid QC neural network.

We adopt the data re-uploading technique in PQC to enhance the capability of the model [42] where the
classical input s ∈ S is encoded by local unitary rotations Rx,Ry,Rz. The final quantum state after the
operation of quantum policy network can be given by

|φ(s,θ)⟩= U(s,θ)|0⟩⊗n, (1)

with

U(s,θ) = Uvar
(
ν(L)

) L−1∏
l=1

Uenc(s,λl)Uvar
(
ν(l)
)
, (2)

3



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure 2. A typical PQC with two qubits and two layers. The entangling layer of ZZ gate is trainable with parameter νe. The
architecture is composed of alternating layers of encoding unitaries Uenc(s,λ) and variational unitaries Uvar(ν). The entangling
layer can also be CZ gates without training parameters. The number of training parameters for L layers (ZZ circular structure)
and n ⩾ 3 qubits can be calculated by (6L− 3)n. In case for CZ entangling gates, the number of parameters scales for (5L− 2)n.

where Uvar
(
ν(l)
)
denotes the lth variational quantum layer, Uenc (s,λl) represents the lth data encoding layer

with scaling parameters λ, the trainable parameters ν = {ν(1), · · · ,ν(L)}, ν ∈ [0,2π]|ν| with L denoting the
number of layers, and the trainable scaling parameters λ= {λ1, · · · ,λL−1}, λ ∈ R|λ|. Encoding and
variational parameters are denoted as θ = (ν,λ). Variational quantum layer is composed of local qubit
rotations and two-local entangling operations given by

Uvar
(
ν(l)
)
=

n−1⊗
i=1

CZi,i+1

n⊗
i=1

[
Rx(ν

(l)
i,1 )Ry(ν

(l)
i,2 )Rz(ν

(l)
i,3 )
]
, (3)

where n is the number of or the size of the state space of RL environment. In reality, we can also choose a
CNOT gate or rotatable ZZ gate as the entangling operator. The two-local structure can be linear, circular,
and full style. In figure 1, we show a circular entanglement structure. Data encoding layer with scaling
parameters can be given by

Uenc(s,λl) =
n⊗

i=1

[
Ry(λ

l
i,1si)Rz(λ

l
i,2si)

]
, (4)

where λli,1/2 denotes trainable scaling parameter of lth encoding layer for qubit i. The state or observation

from C/Q RL environment s= (s1, s2, · · · , sn) with si ∈ R. Finally, the observable Oa is chosen to measure the
quantum state. Arbitrary Hermitian operator Oa can be decomposed into Oa =

∑
i wa,iha,i where ha,i

denotes the sub-Hamiltonian in the n-qubit Pauli group ha,i ∈ Pn. Then the expectation of the action
observable via quantum expectation estimation is given by

⟨Oa⟩s,θ =
∑
i

wa,i⟨φ(s,θ)|ha,i|φ(s,θ)⟩= w · has,θ, (5)

where we have defined has,θ = ⟨ha⟩s,θ as the expectation vector by observing each local sub-Hamiltonian.
Therefore, the action observation can be obtained by post-processing the local observation with a classical
trainable neural layer w. For clarity, we let θ = (ν,λ,w) to denote all the trainable parameters in hybrid QC
policy network. The PQC with trainable parameters is displayed in figure 2. The number of training
parameters is polynomially reduced compared to classical neural networks.

For discrete action space, we can adopt the softmax operation to obtain the final quantum policy with a
tunable temperature β given by

πd
θ(a|s) =

eβ⟨Oa⟩s,θ∑
a ′ eβ⟨Oa ′ ⟩s,θ

. (6)

The softmax operation to obtain the quantum policy is necessary for discrete actions. For continuous action
space, the softmax operator is not applicable to obtain the quantum policy for it maps the action observation
into the value range of [0,1]. Since the local observable is in Pauli group, we have ∥hs,θ∥ ≤ 1 i.e. the

4



New J. Phys. 25 (2023) 033034 T Xiao et al

expectation value of each local observable is limited in range [−1,1]. Then we use a trainable weight to map
the observation value to an arbitrary range viewed as the mean value of the quantum policy. Then we also
randomly initialize a trainable parameter σ2a as the variance of the quantum policy. Consequently, the
quantum policy for continuous control can be given by

πc
θ(a|s) =N

(
⟨Oa⟩s,θ,σ2a

)
. (7)

Note that we choose Gaussian distribution as the policy distribution according to the common practice.
We adopt the multi-layer perceptron (MLP) to serve as the classical value network used to evaluate the

observation from the environment given by

VWv(s) =W(Lv)
v (· · ·(σ(W(1)

v s+ b1)) · · ·)+ bLv , (8)

where σ is the activation function, Lv is the number of layers,W
(l)
v ∈ RH×n,blv ∈ RH denote the trainable

weights and biases and H is the number of hidden neurons. Here we train a separate value network rather
than a branch from quantum policy network.

3.2. QGAIL
In previous part, we have presented the hybrid QC actor-critic architecture used to characterize the quantum
policy. In IRL setting, it is assumed that the agent has no access to the environment reward. The classical
GAIL adopts the generative adversarial learning as the framework to directly train the classical policy
network through obtaining the expert reward by feeding the expert trajectories into a discriminator. More
details can be found in appendix A.3. QGAIL shares the same algorithmic framework with GAIL but the
policy is quantum. QGAIL consists of two training phases: training discriminator and training actor-critic.
Training discriminator is accomplished by optimizing a min-max game given by

min
Gπ

max
D

Eπ[log(D(s,a))]+EπE [log(1−D(s,a))], (9)

where Gπ denotes the quantum policy generator, πE is the expert policy, D denotes the discriminator used to
distinguish the trajectories between the expert and the quantum policy generated. D can be functional
approximated by an MLP which is given by

DWd(s,a) =W(Ld)
d (· · ·(σ(W(1)

d Cat(s,a)+ b1)) · · ·)+ bLd , (10)

whereW(ld)
d ,bld represent the trainable weights and biases, Ld denotes the number of hidden layers, Cat(·)

operation denotes concatenating the observation and action into a vector.
Maximizing the inner phase can make use of binary cross-entropy cost function to calculate the loss and

then the gradients to update the parameters of D. Minimizing the outer phase however can adopt PPO
algorithm to update the quantum actor-critic network. The PPO algorithm is a simplified version of TRPO
algorithm and achieves the state-of-art performance in numerous RL games [43]. Firstly, PPO calculates the
probability ratio between old and new policies at time-step t given by

rt(θ) =
πθ(a|s)
πθold(a|s)

. (11)

Then, PPO imposes the constraint by forcing rt(θ) to stay within a small interval around 1, precisely
[1− ϵ,1+ ϵ], where ϵ is a hyperparameter. The clipped objective is given by

J CLIPQ (θ) = Et

[
min

(
rt(θ)Âπθold

(st,at),clip(rt(θ),1− ϵ,1+ ϵ)Âπθold
(st,at)

)]
, (12)

where the function clip(rt(θ),1− ϵ,1+ ϵ) clips the ratio to be no more than 1+ ϵ and no less than 1− ϵ, the
advantage function with old policy can be calculated by

Aπθold
(st,at) = Qπθold

(st,at)−Vπθold
(st), (13)

5



New J. Phys. 25 (2023) 033034 T Xiao et al

with state-action value function Qπθold
(s,a) given by

Qπθold
(st,at) = E(st+1:∞,at+1:∞)∼πθold

[ ∞∑
l=0

γ let+l

]
, (14)

and the state value function given by

Vπθold
(st) = E(st+1:∞,at:∞)∼πθold

[ ∞∑
l=0

γ let+l

]
. (15)

In reality, we can use a truncated version of generalized advantage estimation given by

Ât = δt +(ξ γ)δt+1+ · · ·+(ξγ)T−t+1δT−1, (16)

where δt = et + γV(st+1)−V(st). Note that ξ is hyperparameter similar to γ, T is the maximum time step
and the expert reward is estimated by et =− logDWd(st,at). Then, we maximum J CLIPQ (θ) via stochastic
gradient ascent method which requires the policy gradient of PQC. The value network is trained through
minimizing the mean square error between the accumulated expert reward and state value given by

J V =
1

|D|T
∑
τ∈D

T∑
t=0

(
VWv(st)−

T∑
k=0

γket+k

)2
, (17)

whereD = {τi} denotes a set of trajectories. The procedure of QGAIL algorithm is presented in Algorithm 1.
The quantum policy step in equation (23) involves calculating the derivative of the CLIP objective

function which can be calculated by the derivate of the probability ratio

∇θrt(θ) = rt(θ)∇θ logπθ(a|s). (18)

The gradient of the log-policy for discrete action space is given by

∇θ logπ
d
θ(a|s) = β

(
∇θ ⟨Oa⟩s,θ −

∑
a ′

πd
θ (a

′|s)∇θ ⟨Oa ′⟩s,θ

)
. (19)

As for continuous action space, the derivative of the log-policy is given by

∇θ logπ
c
θ(a|s) =

(a−⟨Oa⟩s,θ)∇θ⟨Oa⟩s,θ
σ2a

. (20)

The partial derivative of equation (5) over observable weights trivially gives rise to has,θ . However, the
derivatives with respect to variational and scaling parameters ν,λ can be estimated by the parameter-shift
rule [44]:

∂i ⟨Oa⟩s,θ =
1

2

(
⟨Oa⟩s,θ+π

2 ei
−⟨Oa⟩s,θ−π

2 ei

)
, (21)

where ∂i ⟨Oa⟩s,θ is also called quantum gradient which is the partial derivative of measurement observables
over variational parameters. We remark that parameter-shift rule is a standard method to estimate the
gradient of PQC over trainable parameters in real quantum device. However, when simulating the quantum
circuit in classical computer, back-propagation and adjoint method are faster to be executed compared to the
parameter-shift rule. The updating of parameters in value and discriminator networks can be referred to the
classical training techniques.

6



New J. Phys. 25 (2023) 033034 T Xiao et al

Algorithm 1. Quantum GAIL.

Input: Expert trajectories: τE ∼ πE, initial quantum policy network parameters θ0, value network parameters w
v
0 and

discriminator network parameters wd
0, learning rate α

1: for i= 0,1,2 · · ·do
2: Sample a batch of trajectoriesD = {τi}, τi ∼ πθi

3: Update the discriminator parameters from wd
i to w

d
i+1 with the gradient

Êτi [∇wd log(Dwd(s,a))]+ ÊτE [∇wd log(1−Dwd(s,a))] (22)

4: Take a quantum policy step from θi to θi+1, using the PPO algorithm with expert reward {et}. Specifically,
update the parameters by gradient ascent

θi+1← θi +α∇θiJ
CLIP
Q (23)

5: Take a value step to minimize the error function J V by using gradient descent algorithm. Specifically,

wv
i+1← wv

i −α∇wv
i
J V (24)

6: end for

4. Classic and quantum controls

Classic control is mainly considered to find the control signals to complete the games in environment. We
adopt three tasks as the classical environment. They are CarPole-v1, MountainCar-v0 and Acrobot-v1,
respectively. These environments require discrete policy to maximize the accumulated reward. We make use
of the proposed QGAIL method to handle these classic games by finding out optimal control signals. The
detailed specifications including the observation, action space of the environment can be found in
appendix B. In general, classic environments can be described by classical dynamics which can be
well-characterized with an MDP. The quantum agent learns a good policy, producing a control sequence to
render the classical environment complete the task.

On the other hand, we choose a quantum sensor as the representative quantum environment to study the
performance of QGAIL in producing optimal quantum control signals. Quantum sensor consists of two
critical parts: quantum evolution to sense the unknown parameters and quantum or classical processing unit
(quantum processing unit (QPU) or CPU) to generate optimal control signals. The quantum evolution can
be characterized by quantum Lindblad equation given by

dρ

dt
=− i

ℏ
[H(ω),ρ] +L(ρ), (25)

where ρ denotes the density matrix of the quantum sensor, L is the Lindblad operator to characterize the
Markov noise process, H(ω) is the Hamiltonian of the quantum sensor used to sense the unknown
parameters ω. In general, quantum sensor Hamiltonian H(ω) can be given by

H(ω) =H0(ω)+

p∑
j=1

µj(t)Hj, (26)

where H0(ω) is the time-independent Hamiltonian of the sensor but encoding the unknown parameters, Hj

denotes the jth control Hamiltonian and µj is its control field, p is the number of control fields. Note that
H0(ω) can also be time-dependent evolution. In quantum sensor, one of important goals is to achieve the
most accuracy parameter estimation to reach the Heisenberg limit (HL). A key quantity relating HL to
parameter estimation is quantum Fisher information (QFI). QFI characterizes the maximum information
that can be observed from the quantum state in quantum sensor. QFI can be calculated by

F(t) = Tr[ρ(t)L2s (t)], (27)

where Ls(t) is the symmetric logarithm derivative operator that can be obtain by solving the equation

∂ωρ(t) =
1

2
[ρ(t)Ls(t)+ Ls(t)ρ(t)]. (28)

7



New J. Phys. 25 (2023) 033034 T Xiao et al

In reality, we can estimate ∂ωρ(t) through numerical first order difference over ω. According to the
Cramér-Rao bound [45], the QFI provides a saturable lower bound on the estimation can be achieved given
by

δω̂ ⩾ 1√
MF(t)

, (29)

where δω̂ =
√
E[(ω̂−ω)2] denotes the standard variance of an unbiased estimator ω̂, andM denotes the

repeated measurements. The goal of quantum sensor is to find an optimal control sequences to maximize the
QFI, thus minimizing the standard deviation.

The quantum sensor evolution is continuous which is not suitable for RL environment. We require
discretizing the continuous time evolution into discrete time∆t. To simplify the notation, let Lt denotes the
Lindblad superoperator at time t written as

Lt[◦] =−
i

ℏ
[H(t),◦] +

∑
i

ηi

(
Ai ◦A†

i −
1

2

{
A†
i Ai,◦

})
, (30)

where Ai(t) denotes the quantum noise operator such as the decoherence and phase damping, ηi ⩾ 0 means
the noise is Markovian, otherwise non-Markovian which beyonds the scope of our work. Then equation (25)
can be rewritten as

ρω(T) = exp

{ˆ T

0
Ltdt

}
ρ(0) = lim

∆t→0

∏
k

exp{Lk∆t}ρ(0), (31)

where T is the total evolution time. Equation (31) can be used to simulate the quantum evolution in RL style.
The observation for kth interaction with the quantum sensor can be given by

sk = [ℜ{ρmn
ω (k∆t)},ℑ{ρmn

ω (k∆t)},m,n ∈ {i, j}], (32)

where i, j ∈ [1,2n], n is the number of of the quantum sensor. The actions of the quantum agent are a= {µj}.
Since we consider imitation learning, the reward from the quantum sensor is not required. However, in
producing the expert trajectories based on classical RL methods, we should design a reward function to train
the agent. The reward function is given by

rk =
F(k+ 1)− ξFnc(k+ 1)

Fnc(k+ 1)
× 10,k+ 1< T/∆t, (33)

and for the final time step T/∆t, the reward signal is amplified with C, i.e. r← C× r. Fnc denotes the QFI
without control signals. This reward function is different from the classical environments in which the
reward is sparse. The reward function of equation (33) uses the QFI as the feedback to evaluate the quality of
the quantum controls. Intuitively, maximizing the cumulated reward value can lead to a larger QFI which
meets our goal of parameter estimation in quantum sensor. Moreover, we amplify the reward with 10 times
so that the gradient norm of the neural network is also amplified when updating the parameters, which is
beneficial for the training process.

We remark that the quantum sensor is regarded as the quantum environment to be interacted with the
quantum agent in our work. There are some other typical quantum environments such as the quantum gate
control aiming to maximize the gate fidelity, quantum circuit optimization to reduce the quantum resources
overhead, etc. These quantum environments are highly important and our proposed algorithm can also be
leveraged into these tasks to demonstrate the feasibility and potential advantage of QRL.

5. Simulation results

5.1. QGAIL for classic control
To begin with, we conduct the numerical simulation for analyzing the performance of QGAIL in classic
discrete environments. To train the quantum agent with QGAIL, we first collect the expert trajectories by
using the PPO optimized classical policy to interact with the environments to collect the state and action
pairs for Acrobot-v1 and CartPole-v1. PPO is not suitable for training the MountainCar-v0 for its extreme
reward sparsity. Therefore, we use Deep-Q network (DQN) to train the agent to collect the expert trajectories
as DQN can save the success trajectories into the replay buffer such that the agent can learn from the buffer
with multi-epochs.

8



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure 3. The numerical results of QGAIL for classic control. (a)–(c) are the average returns of QGAIL for CartPole-v1,
MountainCar-v0, and Acrobot-v1, respectively, where the layers of the quantum policy networks are chosen to behave best.
(d)–(f) are the hyper-parameters tuning details. Each environment is simulated 5 times independently and the shadow area
denotes the standard variance.

For each environment, total 100 expert trajectories are collected and each trajectory consists of
state-action pairs with the largest horizon of the environment. We make use of three Adam optimizers to
update the parameters ν,w,λ, respectively. We use another two Adam optimizers to update the parameters
of value and discriminate networks. It is important to remark that encoding and weight parameters should
have different learning rates for variational parameters. In appendix D, we show that in case the parameters
in PQC share the same large learning rate, the model will break and not converge. These results may relate to
the small norm of the quantum gradients. In figure 3, we present the numerical simulation results of QGAIL
for three representative classic control tasks. In figures 3(a)–(c), we present the best performance of QGAIL
where the layers are adjusted to behave well. The convergence speed of our proposed QGAIL is smaller than
other QRL methods [19, 20]. This is likely caused by the intrinsic advantage of the IRL algorithm. We remark
that the classical GAIL algorithm cannot or hardly work well in the MountainCar-v0 environment since the
highly spare reward during interaction with the environment. The inefficiency is amplified in a generative
adversarial regime. The online policy gradient methods such as PPO and REINFORCE behave poorly in this
scenario. However, QGAIL performs well in these environments which empirically demonstrates its
feasibility and efficiency.

We further present the results of different hyper-parameters settings of QGAIL as figures 3(d)–(f) shows.
In figure 3(d), we find that different layers of quantum neural network (QNN) have slightly different
performances in the CartPole-v1 environment. Especially, fixing or training hyper-parameters λ has no
distinct performance difference. Besides, even a single layer of QNN i.e. L= 1 can fast saturate the maximum
rewards. Compared to the classical neural network, QNN exhibits superior performance in terms of the
number of trainable parameters. In figure 3(e), the overall performance of QGAIL is more unstable
compared to CartPole-v1. Larger layers have better performance indicating that more variational parameters
have a more powerful capability. Fixing tuning parameters behaves poorly. In figure 3(f), we find that the
number of layers L= 5 of QNN is not promised to show the best performance. L= 2,3 in general
demonstrate a more stable and better performance over another number of layers. Fixing parameters is
beneficial for the behavior learning process.

In general, more layers i.e. more variational parameters in QGAIL are not necessary to have better
performance in classic discrete control environments. We deliberate that when QNN is ‘fat’ (the number of is
large), the number of layers should be chosen within a moderate range such as L= 2,3, i.e. shallow quantum
circuit. In contrast, when QNN is ‘thin’ (the number of qubit is small), the number of layers can be chosen
up to 5 or 6 layers. This empirical observation also implies that the number of trainable parameters should
be designed up to a moderate number. Too many or too few variational parameters are likely to lead to poor
performance in classic RL environments. This feature is distinct from the classical neural network and may
be caused by the Barren Plateau (BP) in optimizing random Haar unitaries. The optimization of the
variational parameters of the hardware-efficient QNN remains a challenging problem and there are many
efforts aimed to tackle it. We also note that fixing tuning parameters has no significant improvement over

9



New J. Phys. 25 (2023) 033034 T Xiao et al

classic environments. For different RL environments, we require conducting many simulations to choose the
optimal hyperparameters.

During the numerical simulation, we find the training process is not stable as the classical NN. We
speculate that this unstable training process is not a principle problem. The simulation software when
calculating the gradient of variational parameters (especially the entangling parameters) limits the maximum
float precision. When the gradient explodes during training, the performance drops greatly as figure 3(f)
shows. In appendix D, we illustrate the gradient norm of different parameter groups during the training
process. We find the gradient anomaly is related to the averaged return drop. Therefore, we propose the
gradient clipping strategy to mitigate the gradient anomaly to avoid the return drop. We deliberate that the
gradient clipping strategy can increase the stability of the learning process. Besides, our QNN does not suffer
from BP problems since we design the number of variational parameters into a moderate range. The relation
between the gradient anomaly and performance drop can be eliminated by using the gradient clipping
strategy.

The classical GAIL also can obtain the optimal rewards as figures 3(a)–(c) shows. Since the classical GAIL
is a mature algorithm and investigated extensively, we do expect the our QGAIL can surpass the classical
GAIL in terms of the final rewards. However, in figure 3(b), it turns out that QGAIL has a faster convergence
speed in MountainCar-v0 environment, an environment with highly sparse rewards. In addition, the number
of parameters used to train the QNN is notably less than the classical neural network.

5.2. QGAIL for quantum control
In the quantum environment, we analyze the performance of QGAIL for parameter estimation in quantum
sensors. We use the PPO and A3C algorithms to train the quantum agent. The expert trajectories are
collected by training the classical PPO and A3C algorithm in a quantum sensor environment. The
parameters of the quantum sensor environment determine the quantum evolution. The dephasing and
spontaneous emission of the qubit is regarded as the quantum noise effect leading to the purity of the density
matrix smaller than 1. We note that the quantum noise also leads to a linear QFI shrink. Quantum control in
this work is continuous and we assume the actions are Gaussian distributed.

When we consider the qubit dephasing noise, the evolution can be described by master equation

∂tρt =−i [H(t),ρt] +
η

2
[σnρtσn− ρt], (34)

where

H(t) =
1

2
ω0σ3+

∑
i

µi(t)σi. (35)

The control operator σi, i ∈ {1,2,3} denote the Pauli-X,Y,Z operator. The external control field combining
these operators is sufficient to obtain arbitrary single qubit gate. The dephasing direction is given by
n= (sinϑcosϕ, sinϑ sinϕ,cosϑ). The parameter to be estimated is ω0 and we take ω

−1
0 = 1 as our time unit.

The optimal probe state calculated by the standard metrology theory is the superposition state
(|0⟩+ |1⟩)/

√
2. The optimal measurement that extracts the largest QFI is chosen as the projective

measurement on the Pauli-X basis and the measurement operator isΠ = |+⟩⟨+|. This optimal measurement
can obtain the largest QFI given the optimal quantum control signals. The dephasing direction is
ϑ= π/4,ϕ = 0 to simulate the quantum noise in the evolution. In this case, we consider the total evolution
time T= 5 and∆T= 0.1 thus giving rise to 50 time steps in one episode. The ideal QFI during the quantum
sensing process that can be obtained is given by

F(T) =

(ˆ T

0
λmax(∂ωH(t))−λmin(∂ωH(t))dt

)2
, (36)

where λmax(·) (λmin(·)) refers to the largest (smallest) eigenvalue of the operator. The largest QFI in our case
thus is T2, which is related to the quantum speed limit. However, as for the impact of the quantum dephasing
noise, the largest QFI cannot be obtained even the optimal control is provided.

As we consider the spontaneous emission noise, we can make use of the following master equation,

∂tρt =−i[H(t),ρt] + γ+

[
σ+ρtσ−−

1

2
{σ−σ+,ρt}

]
+ γ−

[
σ−ρtσ+−

1

2
{σ+σ−,ρt}

]
, (37)

where σ± = (σ1± iσ2)/2 and the relaxation rates are taken as γ+ = 0.1,γ− = 0 throughout our discussion.
We note that since our free Hamiltonian only has the Pauli-Z terms and the spontaneous emission noise only

10



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure 4. The numerical performance of QC architecture with QGAIL for quantum parameter estimation in quantum sensor
environment. (a) and (c) are the QFI curve during the training process in which the total evolution time is T= 5,∆t= 0.1 and
the quantum noise are dephasing and spontaneous emission, respectively. The insert plots in (a)–(c) denote the averaged return.
Each simulation is conducted for five independent runs and the shadow area denotes the standard variance. (b)–(d) are the
box-shaped quantum control signals produced from the best-trained quantum agent.

affect the Pauli-X and Y terms, we only consider Pauli-X and Y controls. The number of control terms only is
2 compared to the dephasing noise with 3 control terms. Similarly, the ideal QFI also cannot be obtained in
spontaneous emission case even given the optimal control. In both cases, although quantum optimal control
cannot recover the largest QFI, it shows an QFI enhancement compared to the case without control. The
optimal noisy control is the benchmark generated by GRAPE algorithm for fair comparison.

In figure 4, it turns out that QGAIL can produce the optimal control policy to maximize the ultimate QFI
of the quantum parameter estimation. The convergence speed is notably fast and the algorithm consumes
nearly 100 iterations. The red line in figures 4(a)–(c) denotes the benchmark result of the GRAPE algorithm
and the dotted green lines represent the baseline that no control signals are fed into the quantum sensor.
Under spontaneous emission noise, it is not necessary to apply the Pauli-Z control so that we only show two
control amplitudes as figure 4(d) shows. Overall, quantum control signals can enhance the precision of
quantum parameter estimation compared to no control case. QGAIL also shows a competitive performance
over classical GAIL in terms of the convergence speed (slightly faster as figures 4(a)–(c) shows). The QGAIL
has single variational layer and the number of parameter is significantly less than the classical algorithm. We
also fix the tuning parameters to reduce the trainable parameters. The fixed QC architecture does not affect
the performance of the QGAIL algorithm. Besides, the learning process is stable and has no return drop since
we apply the gradient clipping during training to avoid the gradient anomaly phenomenon. In appendix D,
we present more additional results about different L, architectures and longer evolution times. On the other
hand, expert trajectories can enhance the learning progress of the quantum policy network through
adversarial training. The simulation results imply that hardware-efficient QNN is highly powerful enough
and can show practical capability in quantum controls. Compared to QGAIL in classic controls, the
performance is more surprising since only a single quantum layer can achieve optimality. By integrating
generative adversarial training in RL, we can train the quantum agent without the reward signals from
interacting with the quantum sensor environments. The reward design of the environment is a complicated
task and hard to engineer in practice. However, the expert trajectories are sometimes easy to be obtained
such as in Robotics [46]. The QGAIL algorithm can relax the dependence on the reward design. Moreover, it
is related to the quantum generative adversarial neural network, which is widely studied to showcase the
potential quantum advantage of quantum variational circuits [47–49].

11



New J. Phys. 25 (2023) 033034 T Xiao et al

Table 1. The scaling of training parameters in QGAIL and GAIL for classic and quantum controls.

Algorithm Policy Environment Operator Param. Comp.

GAIL On-policy Classic State-Value O(n2)
GAIL On-policy Quantum State-Value O(n2)
QGAIL On-policy Classic State-Value O(n)
QGAIL On-policy Quantum State-Value O(n)
QGAILa On-policy Quan./Clas. State-Value O(log(n))
a QGAIL with amplitude encoding can obtain full logarithmic less parameters compared to classical models.

Figure 5. The number of parameters used in GAIL and QGAIL for four different tasks with different observation dimensions.
Classical GAIL uses one hidden layer with 32,64,64,128 neurons, respectively. QGAIL uses CZ entangling gates and ZZ gates and
3 variational layers for all observation dimension.

The number of parameters cannot be large such that the QNN can be executed on current devices. Our
proposed QGAIL algorithm does not require deep quantum layers but only a single layer is sufficient to
saturate the optimal noisy QFI. We summarize the parameter complexity of the QNN for classical and
quantum environments as table 1 shows.

The number of training parameters mainly involves memory consumption as figure 5 shows. In GAIL,
the parameter complexity in a neural network is commonly viewed as theO(n2) scaling [27] for classic
controls. Since we can treat the quantum states as classical information, the complexity is stillO(n2). It is not
known that quantum samples with classical processing can show a provable quantum advantage. In figure 5,
we simulate GAIL with one hidden layer and 32,64,64,128 neurons for four observation dimensions.
Current deep RL methods generally will choose more hidden layers but we find for our problems, single
hidden layer is adequate. In our simulation, the number of parameters surpasses theO(n2) since the latter
shows the parameter scaling when n is large. For QGAIL where the data is classical, the complexity is scaled
asO(n) for L is generally viewed as a constant scaling [16] as figure 5 shows. The number of parameters
shows a linear increment as the observation dimension linearly increases. As for the quantum environment,
the complexity is scaled asO(n) as our simulation results demonstrate orO(logn) [50]. Moreover, the
scaling may be lower than the case of QGAIL for classic controls. The QGAIL with amplitude encoding has a
logarithmic scaling but there is no known efficient algorithm to encode the arbitrary classical data into the
quantum memory in a superposition way [51]. The parameter complexity advantage in VQC-based
supervised learning is also empirically observed in [52–55]. These quantum algorithms demonstrates the
parameter complexity advantage of VQC in QML for classical tasks. For quantum sensor control, based on
the quantum input, QGAIL shows a lower parameter requirement compared to classical tasks.

12



New J. Phys. 25 (2023) 033034 T Xiao et al

6. Conclusions

In summary, we propose a generative adversarial quantum imitation learning algorithm based on shallow
VQCs. We find a critical association between the gradient anomaly and the performance drop, which may
widely exist in variational QML models. We deliberate that the gradient clipping strategy is an efficient
method to eliminate the gradient anomaly to stabilize the learning process in QML. We argue that our
algorithm architecture is flexible and can produce many different IRL algorithms by choosing the classical or
quantum version of value, discriminate and policy networks. Based on QGAIL, we testify three representative
classic controls in classical environments. It turns out that the total training parameters of the QNN should
be restricted to a moderate range to obtain better performance. Besides, we also apply QGAIL to quantum
sensing where the learning model is used to generate the optimal controls to steer the state evolution so that
the final quantum state can be measured to obtain the maximum QFI. QGAIL is robust against quantum
noise such as dephasing and spontaneous emission noise. More surprisingly, QGAIL only requires a single
variational layer to produce the optimal quantum control signals so that the parameter estimation can
saturate QCRB. The parameter complexity of QGAIL compared with its classical RL models has a
polynomial reduction. We further reason that QML may be better suited for quantum problems. Quantum
sensing is highly likely to be the most promising application of quantum RL algorithms since the number of
required is not large. Therefore, our proposed algorithm is feasible for current NISQ devices. We highlight
the importance of generative QML models, which are widely investigated to exploit the advantage in learning
discrete distributions. IQRL may be an interesting area that can exploits the expert information to train the
agent and it can be used to enhance the sample efficiency of RL and more safe-demanding situations such as
automatic driving. In future work, we will study QGAIL in multi-parameter quantum sensing and more
complex automatic control tasks.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

The authors thank the fruitful discussion with Binke Xia. This work is supported by National Natural Science
Foundation of China (Grant Nos. 61701302 and 61631014).

Appendix A. Classical RL basics

A.1. Classical DQN
Here, we briefly present the classical algorithms of DQN. DQN is an offline RL algorithm which possesses an
experience replay memory to store the historical trajectories. The goal of RL is to maximize the cumulated
reward (also referred to as return) at time step t written as Rt =

∑T
t ′=t γ

t ′−trt ′ . The optimal action-value
function is defined by maximizing expected return of equation (14) by find an optimal policy π⋆. The
optimal Q function obeys Bellman equation, which is based on such an intuition: if the optimal value
Q⋆(s ′,a ′) of the sequence s

′
at the next time-step was known for all possible actions a

′
, then the optimal

strategy is to choose the action a
′
maximizing the expected value of r+ γQ⋆(s ′,a ′) with

Q⋆(s,a) = Es ′∼S

[
r+ γmax

a ′
Q⋆ (s ′,a ′) | s,a

]
. (A.1)

RL wants to estimate the Q function by using the Bellman function as an iterative update rule given by

Qi+1(s,a) = E
[
r+ γmax

a ′
Qi(s

′,a ′)|s,a
]
. (A.2)

Crucially, the value iteration algorithms converge to Q⋆ theoretically [56] when i→∞. However, in reality
we use a function approximator such as a neural network to estimate Q function, i.e. Q(s,a ′;θ)≈ Q⋆(s,a).
The neural network is referred to as Q network. A Q network can be trained by minimizing a sequence of
loss functions LQi (θi) that changes at each iteration i,

LQi (θi) = Es,a∼ρ(·)

[
(yi −Q(s,a;θi))

2
]
, (A.3)

13



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure A1. The schematic of A3C for quantum sensor control. There are N local quantum sensor evolutions that are simulated in
parallel. Each local agent interacts with its local environment to obtain independent trajectories. These trajectories are batched to
train the global actor-critic network. Once the global network is trained and its parameters are synced to each local network.

where yi = Es ′∼S [r+ γmaxa ′ Q(s ′,a ′;θi−1)|s,a] is the target calculated by the trajectories at iteration i and
ρ(s,a) denote the behavior distribution. We note that the θi−1 is fixed when optimizing the loss function at
iteration i− 1. We can use stochastic gradient descent to optimize the Q network by calculating the gradient

∇θiL
Q
i (θi) = Es,a∼ρ(·);s ′∼S

[(
r+ γmax

a ′
Q(s,a;θi−1)−Q(s,a;θi)

)
∇θiQ(s,a;θi)

]
. (A.4)

The DQN algorithm is model-free and solves RL tasks directly using samples interacting with environments.
It is also off-policy which learns about the greedy strategy by maximizing the Q function. The DQN
algorithm is highly suited for sparse reward environments such as MountainCar. We remark that the
quantum DQN algorithm is also proposed by realizing the Q network with a quantum neural network i.e.
PQC. Our work can also be used to exploit the quantum DQN algorithm.

A.2. Classical A3C
Asynchronous advantage actor-critic (A3C) is a representative policy gradient method with a special focus
on parallel training. In the task of quantum sensor control, A3C is leveraged to generate optimal control
sequences to showcase RL’s advantage compared to conventional GRAPE algorithm [57]. In A3C, the critics
learn the value function while multiple actors are trained in parallel to keep synced with global parameters.
Hence, A3C works well for parallel training since multiple actors can search for more possible actions. In
quantum optimal control, as the reward function is QFI-related which is not a direct measure as rewards in
classic environments, A3C can increase more explorations of the agent to search for optimal control signals.
In addition, A3C has the same theoretical algorithmic framework as actor-critic in GAIL. Here we present a
schematic of A3C in quantum sensor environments in figure A1.

A.3. Classical GAIL
Classical GAIL is a representative algorithm in imitation learning where the agent can learn a policy without
interaction with the expert reward or access to reinforcement signal. There are two main approaches suitable
for imitation learning: behavioral cloning (BC) [58], which learns a policy as a supervised learning problem
over state-action pairs from expert trajectories; and IRL [59], which learns a cost function under which the
expert is uniquely optimal. BC suffers from the compounding error caused by covariate shift and requires
large amounts of data to perform well. On the other hand, IRL learns a cost function that prioritizes entire
trajectories over others such that compounding error is not an issue. However, many IRL algorithms are
extremely expensive to run, requiring RL in an inner loop [22]. GAIL integrates generative adversarial
learning with IRL to overcome the extensive overhead of IRL through directly learning the policy without
learning a cost function.

14



New J. Phys. 25 (2023) 033034 T Xiao et al

IRL primitive procedure aims to find a cost function such that the expert behaves better than all other
policies and is defined with the cost regularized ψ given by

IRLψ(πE) = argmax
c∈RS×A

(
min
π∈Π
−H(π)+Eπ [c(s,a)]

)
−EπE [c(s,a)]−ψ(c), (A.5)

where Eπ[c(s,a)] = E[
∑∞

t=0 γ
tc(st,at)] denotes the expectation with respect to the trajectory it generates

where c denotes the cost function, s0 ∼ p0,at ∼ π(·|st), and st+1 ∼ p(·|st,at) for t> 0, the expert policy is
denoted as πE, H(π) is the γ-discounted causal entropy of the policy π given by

H(π) = Eπ [− logπ(a|s)] =−Eπ

[ ∞∑
t=0

γt logπ(a|s)

]
. (A.6)

Maximum casual entropy IRL seeks a cost function c ∈ C that assigns low cost to the expert policy and high
cost to other policies. Therefore, the expert policy can be found via one RL procedure given by

RL(c) = argmin
π∈Π

−H(π)+Eπ[c(s,a)], (A.7)

which maps a cost function to high causal entropy policies that minimize the expected cumulative cost.
Designing appropriate ψ leads to different learning regimes. For example, in case ψ is a constant function,
equation (A.5) becomes the conventional IRL that can find the optimal cost function but has large overhead.
However, in case ψis chosen to be δC where δC(c) = 0 if c ∈ C and+∞ otherwise, equation (A.5) becomes
apprenticeship learning which suffers from incapability of finding a cost function to recover the expert
behavior but is more efficient compared with classic IRL.

GAIL design a new cost regularizer to achieve a tradeoff, given by

ψGA(c) =

{
EπE [g(c(s,a))] if c< 0,

+∞ otherwise.
(A.8)

where

g(x) =

{
−x− log(1− ex) if x< 0

+∞ otherwise.
(A.9)

The regularizer assigns a small penalty on cost functions c which places an amount of negative cost on expert
state-action pairs. However, in case c approaches zero and assigns large costs to the expert, then ψGA will
heavily penalize c. Note that ψGA builds the connection between generative adversarial learning and imitation
learning. To solve equation (A.5), one can instead optimize the min-max game given by equation (9).
Discriminator D aims to distinguish between the distribution of state-action pairs generated by policy
generator (G) and the expert state-action pairs. When D fails to distinguish state-action pairs generated by G
from the expert state-action pairs, then G has successfully learned the distribution of the expert state-action
pairs. Therefore, the generator imitates the behavior successfully from the expert trajectories. In a practical
setting, we generally use the neural network as the function approximator to represent G and D. Minimizing
the phase over the policy generator can make use of PPO or TRPO algorithms which can prevent the policy
from changing too much due to noise in the policy gradient. The detailed training process can be referred to
as the training trick of the GAN. We present the pseudo-code of GAIL in Algorithm 2.

Algorithm 2. Classical GAIL.

Input: Expert trajectories: τE ∼ πE, initial policy network and discriminator network parameters θ0,w0
1: for i= 0,1,2 · · ·do
2: Sample a batch of trajectories τi ∼ πθi

3: Update the discriminator parameters from wi to wi+1 with the gradient

Êτi [∇w log(Dw(s,a))]+ ÊτE [∇w log(1−Dw(s,a))] (A.10)

4: Take a policy step from θi to θi+1, using the TRPO or PPO algorithm with cost function log(Dwi+1(s,a)).
Specifically, take a natural gradient step with

Êτi [∇θ logπθ(a|s)Q(s,a)], Q(̄s, ā) = Êτi [log(Dwi+1(s,a))|s0 = s̄,a0 = ā] (A.11)

5: end for

15



New J. Phys. 25 (2023) 033034 T Xiao et al

Table B1. The classic environments description with observation, action space and reward function. The horizon of each environment
limits the interaction time steps during training.

Env. Obs. Ctr. Hor. Reward Opt. re.

CartPole-v1 4 Discrete 2 500 +1 until termination 500.0
MountainCar-v0 2 Discrete 3 200 −1+ height until termination −110.0
Acrobot-v1 6 Discrete 3 500 −1 until termination −81.12
Quantum sensor 8 Continuous 3 T/∆t rk F(T)

Appendix B. Classical environments description

Classic control in this work chooses three typical games and they are CartPole-v1, Acrobot-v1, and
MountainCar-v0. To begin with, CartPole-v1 aims to find a good discrete policy to produce controls
(moving the cart) that can render the pole in the cart keep in a stable status. The control or action is moving
left or moving right. The observation is the position of the cart on the track, the angle of the pole with the
vertical, the cart velocity, and the rate of change of the angle. When the agent moves right or left and the pole
is still stable (angle is smaller than the threshold), a (+1) reward will be given. The agent should interact with
the environment and present a policy to maximize the reward.

Acrobot-v1 aims to swing up a two-link robot. The system consists of two links connected linearly to
form a chain, with one end of the chain fixed. The joint between the two links is actuated. The goal is to
apply torques on the actuated joint to swing the free end of the linear chain above a given height while
starting from the initial state of hanging downwards. All steps that do not reach the goal incur a reward of -1.
Achieving the target height results in termination with a reward of 0.

MountainCar-v0 is a deterministic MDP that consists of a car placed stochastically at the bottom of a
sinusoidal valley. The possible actions are the accelerations that can be applied to the car in either direction.
The goal of the MDP is to strategically accelerate the car to reach the goal state on top of the right hill. Here
we summarize the observation space, action space, horizon of the environments, and the optimal reward as
seen in table B1. We note that these classic environments can be well described by MDP, thus RL can solve
them and show a good performance. In addition, these classic environments obey classical dynamics and the
controls are classical.

The environment of quantum sensor control is also summarized in table B1. We only consider one qubit
evolution where the number of density matrix elements is 8 and the number of Pauli control terms is p= 3.
The reward function can be calculated by equation (33). The maximum horizon is determined by the total
evolution time T and the time slot∆t. The goal is to achieve the maximum QFI so that obtaining the most
accurate parameter estimation.

Appendix C. Expert trajectory generation of the toy games and quantum parameter
estimation

Expert trajectories are viewed as the reinforcement signals to train the QC critic-actor networks. In principle,
the number of trajectories can affect the ultimate performance of the QGAIL. Intuitively, more expert
trajectories will have better average returns with the overhead of large training episodes. In our work, we
generate 100 trajectories for three classic environments. Each trajectory consists of state-action pairs with a
maximum horizon. Therefore, there are 50000 state-action pairs for CartPole-v1, 20000 state-action pairs
for MountainCar-v0, 50,000 state-action pairs for Acrobot-v1. The generation of expert trajectories is based
on different Deep RL methods. Specifically, the expert trajectories of MountainCar-v0 are collected via the
training DQN algorithm. The expert trajectories of CartPole-v1 and Acrobot-v1 are collected via the training
PPO algorithm. The training parameters such as the learning rate and the number of neurons and the layers
can be found in appendix E.

For quantum environments i.e. quantum sensor control, we adopt the A3C+PPO algorithm to produce
the optimal quantum control sequences. The maximum horizon is T/∆t. Thus, the number of expert
trajectories is 100T/∆t. In reality, we choose two typical evolution times T= 5,10,∆t= 0.1 to simulate the
quantum sensor evolution. We also consider two typical quantum noise processes such as qubit dephasing
and spontaneous emission to study the noisy evolution. The hyperparameters of the A3C+PPO algorithm
can also be found in appendix E.

16



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure D1. The performance of single Adam optimizer in Acrobot-v1 environment. The blue curve denotes the average return of
fixed learning rate. The yellow curve denotes the large initial learning rate with an exponential learning rate decay.

Appendix D. Additional results

We present the additional simulation results of QGAIL in controlling classic and quantum environments. In
the main text, we have briefly discussed that a single optimizer for different parameter groups performs
worse. The average return is displayed in figure D1. In both two situations, only one optimizer for a different
parameter group cannot perform well even if there is an exponential learning rate decay.

Consequently, we can guess that entanglement and variational parameters θvar,θent have distinct
updating rule compared to input and output parameters. Quantum gradient over ‘quantum’ parameters
generally has a smaller gradient norm, As a rule of thumb, the learning rate of ‘quantum’ parameters
(showing quantum feature) may be given a smaller learning rate such as 0.01,0.001. The ‘classical’
parameters such as input and output parameters can have a larger learning rate. Recently, there is a study
showing that QNN has a better performance with a small learning rate [60].

Here, we present the gradient norm of QNN during training regarding a different group of variational
parameters. The gradient norm of the parameter set θ = (θvar,θent,λ,w) are recorded separately. Each
parameter group has a distinct optimizer and initial learning rate. We do not conduct learning rate decay
simulations but do not exclude the possibility of good performance. In the general variational quantum
circuit, deep randomly initialized QNN suffers from BP problem, i.e. the gradient vanishes exponentially as
the training epoch goes on. In such situation, the QNN cannot be trained well enough. In figure D2, the
gradient norm ||θ||2 is recorded with respect to four separate groups. In figures D2(a) and (b), the
Acrobot-v1 environment is simulated and the averaged return of QGAIL shows a drop as the blue boxed
framed. Interestingly, the gradient norm of entanglement and tuning parameters also have a very large value
at the same training iteration. We call the suddenly large gradient norm over entanglement parameters as the
gradient anomaly. When the gradient anomaly is observed, QNN has a large parameter updating which leads
to model collapse. Note that the gradient anomaly does not always occur for the randomness of the
simulation environments. To avoid the model collapse, we can use the gradient clipping technique to
manually clip the gradient norm into a restricted range for example setting the maximum gradient norm of
specific variational parameter ||θ||2 = 3. We also observe that the gradient norm of output parameters w has
a very small value both in figures D2(a) and (c) during the whole training process. Output parameters thus
have no large updating gradient. In figures D2(c) and (d), the gradient norm does not have a gradient
anomaly, thus the averaged return has no drop. In figure D2, the gradient norm of each parameter group is
well distributed in a bounded range. The gradient is not exponentially vanished since we design the number
of parameters in a moderate range. Therefore, QNN can be trained well to generate classic control signals
with a small number of episodes. Note that each time the averaged return increases to a larger value, the

17



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure D2. Plotting of the gradient norm over different group of variational parameters during training process. (a) The gradient
norm of QGAIL in Acrobot-v1 environment. (b) The averaged return of QGAIL with 2 layers. (c) The gradient norm with respect
to four parameter groups in MountainCar-v0. (d) The averaged return of QGAIL with 5 layers.

gradient norm over θvar will also increase leading to a subsequent return drop. In case we apply the gradient
clipping technique to restrict the gradient value into a specified range, the gradient anomaly does not occur
and the averaged return is stable during the whole training process as figure D3 shows.

In the quantum sensor environment, we consider two architectures named classical-quantum–classical
(CQC) and QC. The CQC architecture can be applied to the situation where the observation space is large, in
which the quantum policy network cannot be classically and efficiently simulated. The first classical network
can be viewed as a function of feature extraction or dimension reduction. The extracted feature is
subsequently processed by a quantum network. The other architecture is QC where the observations are
directly embedded into the multi-layer quantum network. The last classical network in both architectures is
aimed to produce continuous quantum control signals. This hybrid QC architecture is flexible and quantum
hardware-efficient, which may be commonly used in heterogeneous computing of CPU and QPU.

As figure D4 shows, the numerical performance of the CQC archieture with different variational layers L
is illustrated. We can find that both two networks can obtain the optimal QFI but more layers (or
parameters) cannot show an advantage in terms of convergence or optimality. Conversely, the performance
of L= 10 layers is worse than the case of L= 4 layers demonstrating that 4 layers are powerful enough to
generate optimal quantum controls. Fixing the tuning parameters will reduce the total number of training
parameters but do not affect the convergence and optimality as figures D4(a) and (b) shows.

Besides, we simulate the QGAIL for quantum parameter estimation with QC architecture under different
L to fully demonstrate the power of the quantum networks as can be seen in figure D5 shows. Figure D5
consists of 12 subplots that show the performance of QGAIL under different settings. Surprisingly, all
quantum agents with quantum policy networks can approach or surpass the optimal noisy QFI generated by
GRAPE. In figure D5(a), only a single layer of the QNN can showcase the optimality in producing the
quantum control signals. Training the tuning parameters has no explicitly advantage compare to fixing λ as
figure 4(a). Further, we simulate larger layers such as L= 4,6,10 to study the performance. We can find that
increasing the layers cannot accelerate the training process or obtain a larger QFI, which demonstrates that a
single variational layer is powerful enough to generate the optimal control signals. We also find that when

18



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure D3. Gradient clipping technique is used to train the QNN and the range of the gradient value is tailored within [−2,2].

Figure D4. The numerical performance of QGAIL with classical-quantum–classical (CQC) policy for parameter estimation in
quantum sensing, where the total evolution time T= 5,∆T= 0.1 and the dephasing noise rate γ= 0.1. The number of qubits is
n= 4 and the first classical neural network is shaped 32× 32 with only one hidden layer and the last output classical linear weight
is shaped with 4× 3 for producing continuous quantum controls. (a) Fixing the tuning parameters λ and L= 4. (b) Without
fixing the tuning parameters λ and L= 4. (c) Without fixing the tuning parameter and L= 10.

L= 6,10 as figures D5(d)–(g), the convergence speed is even worse than the case of smaller layers implying
that more variational parameters need more episodes (data samples) to train. When considering the case of
T= 10, the quantum policy generated QFI shows a surpass over optimal noisy QFI even with a single
variational layer. Besides, larger layers do not show the problem of BP, which demonstrates that generative
adversarial training in RL is likely to avoid the BP problem. This may relate to the cost function where in
supervised learning, the global cost function does readily lead to the BP problem when the layers become
larger. However, in the IRL scenario, the supervised label is replaced with the reward signal, a weaker label
compared to the supervised label. Combining the PPO algorithm which restricts the policy improvement
into a specified region, the gradient is reduced stably and will not easily trap into the local minima. When we
simulate the quantum agent in controlling quantum sensors with spontaneous emission evolution, the
ultimate QFI also approaches the benchmark under T= 5. The control enhanced QFI is slightly larger than
the case of no control. However, when we simulate longer evolution times, the QFI gap between the control
enhanced QFI and QFI without control is amplified. In this case, the quantum agent can produce the
optimal control signals to render the ultimate QFI saturate the limit. Through plenty of simulations, we find
that QNN may be better suited for controls in a quantum environment compared to the classic controls in
the main text. Especially in a quantum sensing application, the information about the density matrix is fed
into the QNN to learn a policy that maximizes the QFI. We guess that since our data samples are quantum
states which may be better suited for QNN to extract feature information. We remark that although the exact

19



New J. Phys. 25 (2023) 033034 T Xiao et al

Figure D5. The numerical performance of the proposed QGAIL with QC architecture under different variational layers L, the
evolution times T and quantum noise. (a)–(i) are the simulation results under dephasing noise. (j)–(l) are the results under
spontaneous emission noise. (a) The total evolution time T= 5,∆t= 0.1,L= 1 and not fixing the tuning parameters.
(b) T= 5,∆t= 0.1,L= 2 and not fixing the tuning parameters. (c) T= 5,∆t= 0.1,L= 4 and not fixing the parameters.
(d) T= 5,∆t= 0.1,L= 6 and not fixing the parameters. (e) T= 5,∆t= 0.1,L= 2 and fixing the parameters.
(f) T= 5,∆t= 0.1,L= 4 and fixing the parameters. (g) T= 5,∆t= 0.1,L= 10 and not fixing the parameters.
(h) T= 10,∆t= 0.1,L= 1 and fixing the parameters. (i) T= 10,∆t= 0.1,L= 4 and fixing the parameters.
(j) T= 5,∆t= 0.1,L= 2 and fixing the parameters. (k) T= 5,∆t= 0.1,L= 4 and fixing the parameters.
(l) T= 10,∆t= 0.1,L= 4 and not fixing the parameters.

form of the density matrix is not regarded as the input of the QNN (amplitude encoded as the initial state),
the amplitude and phase information are still obtained and encoded into the QNN. As in [50, 61]
demonstrated, the quantum samples are not necessary to be transformed into quantum states but only with
the full information of the quantum state are still feasible and beneficial.

20



New J. Phys. 25 (2023) 033034 T Xiao et al

Table D1. The hyperparameters summary for all RL methods in this study including PPO, DQN, A3C and QGAIL. In the table, GAE
refers to generalized advantage estimation. DQN is used to generate expert trajectories for MountainCar. PPO is used in Acrobot-v1 and
CartPole-v1. A3C+PPO is used in quantum sensor environment.

Hyperparameters Value

Greedy exploration (DQN) ε0 = 1,ηd = 0.9,εe = 0.001
Batch size 64
Memory size 105

Discount rate γ= 0.99
Layers and hidden neurons 3,256
Activation ReLu
Adam learning rate 5× 10−4

GAE (PPO) τ = 0.95
PPO clipping ϵ= 0.2
Discount rate γ= 0.99
Epochs in one iteration 60
Mini-batch size 512
Batch size for one iteration 2048
Iterations 500
Value network layers and neurons 3,128
Policy network layers and neurons 3,(256,128)
Adam leaning rate 3× 10−4

Num. local workers (A3C+PPO) 20
Discount rate γ= 0.9
Entropy weight η = 10−3

Batch size T/∆T
Reward fator η= 1.001
PPO clipping ϵ= 0.12
Num. epochs in one iteration 10
Policy layers and neurons 3,200
Value layers and neurons 3,128
Activation Relu

GAE (QGAIL) τ = 0.95
Discount rate γ= 0.99
Batch size for one iteration horizon× 30
Mini-batch size horizon× 10
Reward fator η= 1.001
PPO clipping ϵ= 0.2
Num. epochs in one iteration 60
QNN layers and qubits 2∼ 4,#states
Value layers and neurons 3,128
Discri. layers and neurons 3,(256,128)
Activation Tanh/Relu
AdamW lr (classical) 3× 10−4
AdamW lr (quantum env.) 10−3

Adam lr (classic env.) 0.1(in),0.1(out),0.01(var)
Gradient clipping range [−2,2]

Appendix E. Hyperparameters specifications

The hyperparameters designed in this work including the quantum and classical neural networks are
presented in table D1. Since GAIL requires the expert trajectories produced from classical RL methods as we
have discussed in the previous section, we also present the hyperparameters of classical RL methods. For
classical environments, we conduct the numerical simulation of DQN and PPO methods for generating
expert trajectories. For quantum environments, we conduct A3C+PPO for quantum sensor control. During
the training process, we find that the chosen hyperparameters are not unique and they are crucial for the
final performance of machine learning. For example, the mini-batch size and epochs during one iteration
should be tuned jointly to control the convergence speed and final performance. In general, for discrete
control, we choose the batch size larger than the case in continuous control. The mini-batch size in QNN is
better not to be too large since current quantum machine learning simulation packages are not so efficient to
support large batch computation. In practical NISQ devices, the large batch computation has two ways: (1)
run the same quantum circuit simultaneously on many NISQ devices, and (2) sequentially run the quantum
circuit once for a single batch. Both two ways are resource-consuming. We propose training the QGAIL in

21



New J. Phys. 25 (2023) 033034 T Xiao et al

classical computers and then transferring the parameters into the quantum device with a fine-tuning to
adapt to the practical quantum imperfections. This transfer learning proposal can reduce the quantum
resource consumption and highlight the advantage of fast inference in NISQ devices.

In classic and quantum environments, the observables used to estimate the quantum policy are different.
Through numerical simulation, it turns out that the observables has no vital impact if there are
post-processing classical layers. In Acrobot-v1 environment, the observable is Oa = [wi (Z1 · · ·Z6), · · · ]1≤i≤3,
where wi is the training parameters. In MountainCar-v0 environment, the observable is
Oa = [wi (Z1Z2), · · · ]1≤i≤3. In CartPole-v1 environment, the observable is Oa = [wi(Z1Z2Z3Z4), · · · ]1≤i≤2. In
continuous quantum control, the observable is Oa = [wi · (Z1, · · · ,Z8)T]1≤i≤3, where final trainable linear
layer isW ∈ R8×3. The final classical layer has smaller size compared to their pure classical models. As in
continuous control situation, we also need the variance of the policy. Therefore, we also design the same
number of training parameters

Appendix F. Software specifications

Quantum simulation in classical computers is not efficient but in some RL applications, the observation
space is not so large so that the qubit encoding technique is still feasible in classical computers. In this study,
we make use of Tensorflow quantum [62] to simulate the QNN in discrete classic controls. The classical
neural network is based on the Keras implementation. The classical and quantum network constructs a
hybrid QC quantum machine learning model and in this model, the data pipeline will automatically
calculate the classical and quantum gradients with backpropagation. In continuous quantum control, we
make use of Tencent tensorcircuit [63] to build the hybrid model where the backend of the quantum circuit
is not based on a state-vector or density matrix but a tensor network. Therefore, tensorcircuit is more
efficient than Tensorflow quantum in terms of simulation complexity. Moreover, the tensorcircuit supports
GPU, jit, and vmap speedup, so that the training speed of the QNN is greatly enhanced compared to
Tensorflow quantum. The classical network is based on the Pytorch module [64]. In the hybrid data pipeline,
the classical and quantum gradients are calculated based on backpropagation. The quantum evolution is
simulated based on the Qutip package [65].

We implement the hybrid quantum machine learning model in the QSIP artificial intelligence server
which consists of two computation nodes and each node has 96 CPU cores and 24 GB Nvidia RTX 3090
GPU. The model of the CPU is Intel(R) Xeon(R) Silver 4210 R CPU @ 2.40GHz. We also implement
quantum machine learning in the SJTU ‘Siyuan No.1’ HPC cluster which consists of 60 032 CPU cores. The
HPC platform supports a large-scale quantum machine learning model.

ORCID iDs

Tailong Xiao https://orcid.org/0000-0002-8741-6900
Jingzheng Huang https://orcid.org/0000-0002-0910-9710
Hongjing Li https://orcid.org/0000-0002-3481-7399

References

[1] Ciliberto C, Herbster M, Ialongo A D, Pontil M, Rocchetto A, Severini S and Wossnig L 2018 Proc. R. Soc. A 474 20170551
[2] Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information: 10th edn (Cambridge: Cambridge University

Press) (https://doi.org/10.1017/CBO9780511976667)
[3] Arute F et al 2019 Nature 574 505–10
[4] Tillmann M, Dakíc B, Heilmann R, Nolte S, Szameit A and Walther P 2013 Nat. Photon. 7 540–4
[5] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195–202
[6] Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
[7] Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631–3
[8] Harrow AW, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[9] Aaronson S 2015 Nat. Phys. 11 291–3
[10] Preskill J 2018 Quantum 2 79
[11] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
[12] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028
[13] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242–6
[14] Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504
[15] Havlíček V, Córcoles A D, Temme K, Harrow AW, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209–12
[16] Zhu D et al 2019 Sci. Adv. 5 eaaw9918
[17] Sarma S D, Deng D-L and Duan L-M 2019 Phys. Today 72 48–56
[18] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[19] Dunjko V, Taylor J M and Briegel H J 2016 Phys. Rev. Lett. 117 130501
[20] Jerbi S, Gyurik C, Marshall S, Briegel H and Dunjko V 2021 Parametrized quantum policies for reinforcement learning Advances

Neural Information Processing Systtems vol 34 pp 28362–75

22

https://orcid.org/0000-0002-8741-6900
https://orcid.org/0000-0002-8741-6900
https://orcid.org/0000-0002-0910-9710
https://orcid.org/0000-0002-0910-9710
https://orcid.org/0000-0002-3481-7399
https://orcid.org/0000-0002-3481-7399
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nphys3272
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.98.032309
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1126/sciadv.aaw9918
https://doi.org/10.1126/sciadv.aaw9918
https://doi.org/10.1063/PT.3.4164
https://doi.org/10.1063/PT.3.4164
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1103/PhysRevLett.117.130501
https://doi.org/10.1103/PhysRevLett.117.130501


New J. Phys. 25 (2023) 033034 T Xiao et al

[21] Skolik A, Jerbi S and Dunjko V 2022 Quantum 6 720
[22] Ho J and Ermon S 2016 Advances in Neural Information Processing Systems vol 29
[23] Yu C, Liu J, Nemati S and Yin G 2021 ACM Comput. Surv. 55 1–36
[24] Ravichandar H, Polydoros A S, Chernova S and Billard A 2020 Annu. Rev. Control Robot. Auton. Syst. 3 297–330
[25] Aytar Y, Pfaff T, Budden D, Paine T, Wang Z and De Freitas N 2018 Advances in Neural Information Processing Systems vol 31
[26] Kiran B R, Sobh I, Talpaert V, Mannion P, Al Sallab A A, Yogamani S and Pérez P 2021 IEEE Trans. Intell. Transp. Syst. 23 4909–26
[27] Chen S Y C, Yang C H H, Qi J, Chen P Y, Ma X and Goan H S 2020 IEEE Access 8 141007–24
[28] Lockwood O and Si M 2020 Reinforcement learning with quantum variational circuit Proc. AAAI Conf. on Artificial Intelligence and

Interactive Digital Entertainment vol 16 pp 245–51
[29] Lockwood O and Si M 2021 Playing atari with hybrid quantum-classical reinforcement learning NeurIPS 2020 Workshop on

Pre-Registration in Machine Learning (PMLR) pp 285–301
[30] Jerbi S, Trenkwalder L M, Nautrup H P, Briegel H J and Dunjko V 2021 PRX Quantum 2 010328
[31] Sanches F, Weinberg S, Ide T and Kamiya K 2022 Phys. Rev. A 105 062403
[32] Sequeira A, Santos L P and Barbosa L S 2022 arXiv:2203.10591
[33] Wu S, Jin S, Wen D and Wang X 2020 arXiv:2012.10711
[34] Jerbi S, Cornelissen A, Ozols M and Dunjko V 2022 arXiv:2212.09328
[35] Yun W J, Kwak Y, Kim J P, Cho H, Jung S, Park J and Kim J 2022 Quantum multi-agent reinforcement learning via variational

quantum circuit design 2022 IEEE 42nd Int. Conf. on Distributed Computing Systems (ICDCS) (IEEE) pp 1332–5
[36] Silver D et al 2016 Nature 529 484–9
[37] Xiao T, Fan J and Zeng G 2022 npj Quantum Inf. 8 1–12
[38] Xu H, Li J, Liu L, Wang Y, Yuan H and Wang X 2019 npj Quantum Inf. 5 1–8
[39] Hentschel A and Sanders B C 2010 Phys. Rev. Lett. 104 063603
[40] Sutton R S and Barto A G 2018 Reinforcement Learning: An Introduction (Cambridge, MA: MIT press)
[41] Goto T, Tran Q H and Nakajima K 2021 Phys. Rev. Lett. 127 090506
[42] Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E and Latorre J I 2020 Quantum 4 226
[43] Schulman J, Wolski F, Dhariwal P, Radford A and Klimov O 2017 arXiv:1707.06347
[44] Wierichs D, Izaac J, Wang C and Lin C Y Y 2022 Quantum 6 677
[45] Liu J, Yuan H, Lu X-M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001
[46] Heimann D, Hohenfeld H, Wiebe F and Kirchner F 2022 arXiv:2202.12180
[47] Niu M Y, Zlokapa A, Broughton M, Boixo S, Mohseni M, Smelyanskyi V and Neven H 2022 Phys. Rev. Lett. 128 220505
[48] Zoufal C, Lucchi A and Woerner S 2019 npj Quantum Inf. 5 1–9
[49] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[50] Huang H Y et al 2022 Science 376 1182–6
[51] Mottonen M, Vartiainen J J, Bergholm V and Salomaa MM 2004 arXiv:quant-ph/0407010
[52] Park G, Huh J and Park D K 2022Mach. Learn.: Sci. Technol. 4 015006
[53] Li G, Song Z and Wang X 2021 Vsql: Variational shadow quantum learning for classification Proc. AAAI Conf. on Artificial

Intelligence vol 35 pp 8357–65
[54] Blance A and Spannowsky M 2021 J. High Energy Phys. 2021 1–20
[55] Jerbi S, Fiderer L J, Poulsen Nautrup H, Kübler J M, Briegel H J and Dunjko V 2023 Nat. Commun. 14 517
[56] Fan J, Wang Z, Xie Y and Yang Z 2020 A theoretical analysis of deep q-learning Learning for Dynamics and Control (PMLR)

pp 486–9
[57] Mnih V, Badia A P, Mirza M, Graves A, Lillicrap T, Harley T, Silver D and Kavukcuoglu K 2016 Asynchronous methods for deep

reinforcement learning Int. Conf. on Machine Learning (PMLR) pp 1928–37
[58] Codevilla F, Santana E, López A M and Gaidon A 2019 Exploring the limitations of behavior cloning for autonomous driving Proc.

IEEE/CVF Int. Conf. on Computer Vision pp 9329–38
[59] Arora S and Doshi P 2021 Artif. Intell. 297 103500
[60] Huembeli P and Dauphin A 2021 Quantum Sci. Technol. 6 025011
[61] Huang H Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H and McClean J R 2021 Nat. Commun. 12 1–9
[62] Broughton M et al 2020 arXiv:2003.02989
[63] Zhang S X et al 2022 arXiv:2205.10091
[64] Paszke A et al 2019 Advances in Neural Information Processing Systems vol 32
[65] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760–72

23

https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.22331/q-2022-05-24-720
https://doi.org/10.1145/3477600
https://doi.org/10.1145/3477600
https://doi.org/10.1146/annurev-control-100819-063206
https://doi.org/10.1146/annurev-control-100819-063206
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1103/PRXQuantum.2.010328
https://doi.org/10.1103/PRXQuantum.2.010328
https://doi.org/10.1103/PhysRevA.105.062403
https://doi.org/10.1103/PhysRevA.105.062403
https://arxiv.org/abs/2203.10591
https://arxiv.org/abs/2012.10711
https://arxiv.org/abs/2212.09328
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/s41534-021-00512-0
https://doi.org/10.1038/s41534-021-00512-0
https://doi.org/10.1038/s41534-019-0198-z
https://doi.org/10.1038/s41534-019-0198-z
https://doi.org/10.1103/PhysRevLett.104.063603
https://doi.org/10.1103/PhysRevLett.104.063603
https://doi.org/10.1103/PhysRevLett.127.090506
https://doi.org/10.1103/PhysRevLett.127.090506
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://arxiv.org/abs/1707.06347
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1088/1751-8121/ab5d4d
https://arxiv.org/abs/2202.12180
https://doi.org/10.1103/PhysRevLett.128.220505
https://doi.org/10.1103/PhysRevLett.128.220505
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1126/science.abn7293
https://arxiv.org/abs/quant-ph/0407010
https://doi.org/10.1007/jhep04(2021)001
https://doi.org/10.1007/jhep04(2021)001
https://doi.org/10.1038/s41467-023-36159-y
https://doi.org/10.1038/s41467-023-36159-y
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1088/2058-9565/abdbc9
https://doi.org/10.1088/2058-9565/abdbc9
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1038/s41467-020-20314-w
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/2205.10091
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021

	Quantum generative adversarial imitation learning
	1. Introduction
	2. Related work
	3. Physical model and algorithm
	3.1. Hybrid QC actor-critic network
	3.2. QGAIL

	4. Classic and quantum controls
	5. Simulation results
	5.1. QGAIL for classic control
	5.2. QGAIL for quantum control

	6. Conclusions
	Appendix A. Classical RL basics
	A.1.  Classical DQN
	A.2.  Classical A3C
	A.3.  Classical GAIL

	Appendix B. Classical environments description
	Appendix C. Expert trajectory generation of the toy games and quantum parameter estimation
	Appendix D. Additional results
	Appendix E. Hyperparameters specifications
	Appendix F. Software specifications
	References


