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Abstract: The method of maximum entropy is used to model curved physical space in terms of
points defined with a finite resolution. Such a blurred space is automatically endowed with a metric
given by information geometry. The corresponding space-time is such that the geometry of any
embedded spacelike surface is given by its information geometry. The dynamics of blurred space, its
geometrodynamics, is constructed by requiring that as space undergoes the deformations associated
with evolution in local time, it sweeps a four-dimensional space-time. This reproduces Einstein’s
equations for vacuum gravity. We conclude with brief comments on some of the peculiar properties
of blurred space: There is a minimum length and blurred points have a finite volume. There is a
relativistic “blur dilation”. The volume of space is a measure of its entropy.
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1. Introduction

The problem of reconciling quantum theory (QT) and general relativity (GR) has most commonly
been addressed by preserving the framework of QT essentially unchanged while modifying the
structure and dynamics of space-time. This is not unreasonable. Einstein’s equation, Gµν = 8πG Tµν,
relates geometry on the left to matter on the right. Since our best theories for the matter right hand
side are QTs it is natural to try to construct a theory in which the geometrical left hand side is also of
quantum mechanical origin [1–3].

Further thought however shows that this move carries a considerable risk, particularly because
the old process of quantization involves ad hoc rules which, however successful in the past, have
led to conceptual difficulties that would immediately spread and also infect the gravitational field.
One example is the old quantum measurement problem and its closely related cousin the problem of
macroscopic superpositions. Do quantum superpositions of space-times even make sense? In what
direction would the future be? Another example is the cosmological constant problem. Does the zero
point energy of quantum fields gravitate? Why does it not give rise to unacceptably large space-time
curvatures? Considerations such as these suggest that the issue of whether and how to quantize gravity
hinges on a deeper understanding of the foundations of QT and also on a deeper understanding of
GR and of geometry itself—what, after all, is distance? Why are QT and GR framed in such different
languages? Recent developments indicate that they might be closer than previously thought—the link
is entropy. Indeed, in the entropic dynamics approach [4–6] QT is derived as an application of entropic
methods of inference [7] with a central role assigned to concepts of information geometry [8–16].
And, on the GR side, the link between gravity and entropy has been recognized from the early work
of Bekenstein and Hawking and further reaffirmed in more recent thermodynamic approaches to
GR [17–22].

In a previous paper [23] we used the method of maximum entropy to construct a model of
physical space in which points are blurred; they are defined with a finite resolution. Such a blurred
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space is a statistical manifold and therefore it is automatically endowed with a Riemannian metric
given by information geometry. Our goal here is to further close the gap between QT and GR by
formulating the corresponding Lorentzian geometry of space-time.

The extension from space to space-time is not just a simple matter of applying information
geometry to four dimensions rather than three. The problem is that information geometry leads to
metrics that are positive—statistical manifolds are inevitably Riemannian—which cannot reproduce the
light-cone structure of space-time. Some additional ingredient is needed. We do not model space-time
as a statistical manifold. Instead, space-time is modelled as a four-dimensional manifold such that the
geometry of all space-like embedded surfaces is given by information geometry. We find that in the
limit of a flat space-time our model coincides with a stochastic model of space-time proposed long ago
by Ingraham by following a very different line of argument [24].

Blurred space is a curious hybrid: some features are typical of discrete spaces while other features
are typical of continuous manifolds [25,26]. For example, there is a minimum length and blurred points
have a finite volume. The volume of a region of space is a measure of the number of blurred points
within it, and it is also a measure of its bulk entropy. Under Lorentz transformations the minimum
length suffers a dilation which is more analogous to the relativistic time dilation than to the familiar
length contraction.

The dynamics of blurred space, its geometrodynamics, is constructed by requiring that as
three-dimensional space undergoes the deformations associated with time evolution it sweeps a
four-dimensional space-time. As shown in a remarkable paper by Hojman, Kuchar̆, and Teitelboim [27]
in the context of the familiar sharp space-time this requirement is sufficient to determine the
dynamics. Exactly the same argument can be deployed here. The result is that in the absence of
matter the geometrodynamics of four-dimensional blurred space-time is given by Einstein’s equations.
The coupling of gravity to matter will not be addressed in this work.

2. The Information Geometry of Blurred Space

To set the stage we recall the model of blurred space as a smooth three-dimensional manifold X
the points of which are defined with a finite resolution [23]. It is noteworthy that, unlike the very rough
space-time foams expected in some models of quantum gravity, one expects blurred space to be very
smooth because irregularities at scales smaller than the local uncertainty are suppressed. Blurriness
is implemented as follows: when we say that a test particle is located at x ∈ X (with coordinates xa,
a = 1, 2, 3) it turns out that it is actually located at some unknown neighboring x′. The probability
that x′ lies within d3x′ is p(x′|x)d3x′. Since to each point x ∈ X one associates a distribution p(x′|x)
the space X is a statistical manifold automatically endowed with a metric. Indeed, when points are
blurred one cannot fully distinguish the point at x described by the distribution p(x′|x) from another
point at x + dx described by p(x′|x + dx). The quantitative measure of distinguishability [7,11] is the
information distance,

d`2 = gab (x)dxadxb , (1)

where the metric tensor gab—the information metric—is given by,

gab (x) =
∫

dx′ p(x′|x) ∂a log p(x′|x) ∂b log p(x′|x) . (2)

(We adopt the standard notation ∂a = ∂/∂xa and dx′ = d3x′.) Thus, in a blurred space distance
is distinguishability.

In Section 4 we will briefly address the physical/geometrical interpretation of d`. For now we
merely state [23] that d` measures the distance between two neighboring points in units of the local
uncertainty defined by the distribution p(x′|x), that is, information length is measured in units of the
local blur.
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In order to completely define the information geometry of X which will allow us to introduce
notions of parallel transport, curvature, and so on, one must specify a connection or covariant derivative
∇. The natural choice is the Levi-Civita connection, defined so that ∇agbc = 0. Indeed, as argued
in [28], the Levi-Civita connection is to be preferred because, unlike the other α-connections [11], it does
not require imposing any additional structure on the Hilbert space of functions (p)1/2.

The next step is to use the method of maximum entropy to assign the blur distribution p(x′|x).
The challenge is to identify the constraints that capture the physically relevant information. One
might be tempted to consider imposing constraints on the expected values of 〈x′a − xa〉 and 〈(x′a −
xa)(x′b− xb)〉 but this does not work because in a curved space neither of these constraints is covariant.
This technical difficulty is evaded by maximizing entropy on the flat space TP that is tangent to X at P
and then using the exponential map (see [23]) to “project” the distribution from the flat TP to the curved
space X. It is important to emphasize that the validity of this construction rests on the assumption that
the normal neighborhood of every point x—the region about x where the exponential map is 1-1—is
sufficiently large. The assumption is justified provided the scale of the blur is much smaller than the
scale over which curvature effects are appreciable.

Consider a point P ∈ X with generic coordinates xa and a positive definite tensor field γab(x).
The components of y ∈ TP are ya. The distribution p̂(y|P) on TP is assigned on the basis of information
about the expectation 〈ya〉P and the variance-covariance matrix 〈yayb〉P,

〈ya〉P = 0 and 〈yayb〉P = γab(P) . (3)

On X it is always possible to transform to new coordinates

xi = Xi(xa) , (4)

such that
γij(P) = δij and ∂kγij(P) = 0 , (5)

where i, j, . . . = 1, 2, 3. If γab were a metric tensor the new coordinates would be called Riemann
Normal Coordinates at P (RNCP). The new components of y are

yi = Xi
aya where Xi

a =
∂xi

∂xa , (6)

and the constraints (3) take the simpler form,

〈yi〉P = 0 and 〈yiyj〉P = δij . (7)

We can now maximize the entropy

S[ p̂, q] = −
∫

d3y p̂(y|P) log
p̂(y|P)
q̂(y)

(8)

relative to the measure q̂(y) subject to (7) and normalization. Since TP is flat we can take q̂(y) to be
constant and we may ignore it. The result in RNCP is

p̂(yi|P) = 1
(2π)3/2 exp

[
−1

2
δijyiyj

]
. (9)

Using the inverse of Equation (6) we can transform back to the original coordinates ya,

ya = Xa
i yi and γab = Xi

aX j
bδij . (10)
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The resulting distribution is also Gaussian,

p̂(ya|P) = (det γab)
1/2

(2π)3/2 exp
[
−1

2
γabyayb

]
, (11)

and the matrix γab of Lagrange multipliers turns out to be the inverse of the correlation matrix γab,
γabγbc = δc

a.
Next we use the exponential map to project yi coordinates on the flat TP to the RNCP coordinates

on the curved X,
x′i = xi(P) + yi . (12)

The corresponding distribution p(x′i|P) induced on X by p̂(yi|P) on TP is

p(x′i|P)d3x′ = p̂(yi|P)d3y , (13)

or

p(x′i|xi) =
1

(2π)3/2 exp
[
−1

2
δij(x′i − xi)(x′j − xj)

]
. (14)

Thus, in RNCP the distribution p(x′i|xi) retains the Gaussian form. We can now invert (4) and
transform back to the original generic frame of coordinates xa and define p(x′a|xa) by

p(x′a|xa)d3x′a = p(x′i|xi)d3x′i , (15)

which is an identity between scalars and holds in all coordinate systems. In the original xa coordinates
the distribution p(x′a|xa) will not, in general, be Gaussian,

p(x′a|xa) =
(det γab)

1/2

(2π)3/2 exp
[
−1

2
δij

(
Xi(x′a)− Xi(xa)

) (
X j(x′a)− X j(xa)

)]
. (16)

Finally we substitute (16) into (2) to calculate the information metric gab. (The integral is easily handled
in RNCP.) The result is deceptively simple,

gab = Xi
aX j

bδij = γab . (17)

The main result of [23] was to show that the metric gab of a blurred space is a statistical concept
that measures the “degree of distinguishability” between neighboring points. The metric is given
by the Lagrange multipliers γab associated to the covariance tensor γab that describes the blurriness
of space.

3. Space-Time and the Geometrodynamics of Pure Gravity

The constraint that determines the dynamics is the requirement that blurred space be a
three-dimensional spacelike “surface” embedded in four-dimensional space-time. As shown in [27]
the reason this condition is so constraining is that when evolving from an initial to a final surface
every intermediate surface must also be embeddable in the same space-time and, furthermore, the
sequence of intermediate surfaces—the path or foliation—is not unique. Such a “foliation invariance”,
which amounts to the local relativity of simultaneity, is a requirement of consistency: if there are
two alternative paths to evolve from an initial to a final state, then the two paths must lead to the
same result.

Space-time is foliated by a sequence of space-like surfaces {Σ}. Points on the surface Σ are
labeled by coordinates xa (a = 1, 2, 3) and space-time events are labeled by space-time coordinates
Xµ (µ = 0, 1, 2, 3). The embedding of Σ within space-time is defined by four functions Xµ = Xµ (x).
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An infinitesimal deformation of Σ to a neighboring Σ′ is specified by Xµ (x)→ Xµ (x) + δXµ (x). The
deformation vector δXµ(x) is decomposed into normal and tangential components,

δXµ = δX⊥nµ + δXaXµ
a , (18)

where nµ is the unit normal to the surface and the three vectors Xµ
a = ∂Xµ/∂xa are tangent to the

coordinate lines xa (nµnµ = −1, nµXµ
a = 0).

We assume a phase space endowed with a symplectic structure: the basic dynamical variables are
the surface metric gab(x) and its canonically conjugate momentum πab(x). This leads to a Hamiltonian
dynamics where the super-Hamiltonian H⊥(x)[g, π] and the super-momentum Ha(x)[g, π] generate
normal and tangential deformations respectively. In order for the dynamics to be consistent with the
kinematics of deformations the Poisson brackets of H⊥ and Ha must obey two sets of conditions [29,30].
First, they must close in the same way as the “group” of deformations, that is, they must provide a
representation of the “algebra” of deformations [31],

[H⊥(x), H⊥(x′)] =
(

gab(x)Hb(x) + gab(x′)Hb(x′)
)

∂axδ(x, x′) , (19)

[Ha(x), H⊥(x′)] = H⊥(x)∂axδ(x, x′) , (20)

[Ha(x), Hb(x′)] = Ha (x′)∂bδ(x, x′) + Hb(x)∂aδ(x, x′) . (21)

And second, the initial values of the variables gab and πab must be restricted to obey the weak
constraints

H⊥(x) ≈ 0 and Ha(x) ≈ 0 . (22)

A remarkable feature of the resulting dynamics is that once the constraints (22) are imposed on
one initial surface Σ they will be satisfied automatically on all subsequent surfaces. As shown in [27]
the generators that satisfy (19)–(21) are

Ha = −2∇bπb
a , (23)

H⊥ = 2κGabcdπabπcd − 1
2κ

g1/2(R− 2Λ) , (24)

Gabcd =
1
2

g−1/2 (gacgbd + gadgbc − gabgcd) , (25)

where κ and Λ are constants which, once the coupling to matter is introduced, can be related to
Newton’s constant G = c4κ/8π and to the cosmological constant Λ. Equations (22)–(25) are known to
be equivalent to Einstein’s equations in vacuum.

To summarize: (a) Space-time is constructed so that the geometry of any embedded spacelike
surface is given by information geometry. (b) The geometrodynamics of blurred space is given by
Einstein’s equations. These are the main conclusions of this paper.

4. Discussion

Dimensionless Distance?—As with any information geometry the distance d` given in
Equations (1) and (2) turns out to be dimensionless. The interpretation [23] is that an information
distance is measured distances in units of the local uncertainty—the blur. To make this explicit we
write the distribution (14) that describes a blurred point in RNCP in the form

p(x′i|xi) =
1

(2π`2
0)

3/2
exp

[
− 1

2`2
0

δij(x′i − xi)(x′j − xj)

]
, (26)

so that the information distance between two neighboring points is
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d`2 =
1
`2

0
δijdxidxj . (27)

Since the blur `0 is the only unit of length available to us (there are no external rulers) it follows that
`0 = 1 but it is nevertheless useful to write our equations showing `0 explicitly. In (26) the two points
x and x′ are meant to be simultaneous.

Minimum Length—To explore the geometry of blurred space it helps to distinguish the abstract
“mathematical” points that are sharply defined by the coordinates x from the more “physical” blurred
points. We shall call them c-points and b-points respectively. In RNCP the distance between two
c-points located at x and at x + ∆x is given by (27). To find the corresponding distance ∆λ between
two b-points located at x and at x + ∆x we recall that when we say a test particle is at x it is actually
located at x′ = x + y so that

∆λ2 =
1
`2

0
δij(∆xi + ∆yi)(∆xj + ∆yj) . (28)

Taking the expectation over y with the probability (26)—use
〈
yi〉 = 0 and

〈
yiyj〉 = `2

0 δij—we find

〈∆λ2〉 = 1
`2

0
δij〈(∆xi + ∆yi)(∆xj + ∆yj)〉 = ∆`2 + 6 . (29)

We see that even as ∆x → 0 and the two b-points coincide we still expect a minimum rms distance of√
6`0.

Blur Dilation—The size of the blur of space is a length but it does not behave as the length of a
rod. When referred to a moving frame it does not undergo a Lorentz contraction. It is more analogous
to time dilation: just as a clock marks time by ticking along the time axis, so are lengths measured
by ticking `0s along them. By the principle of relativity all inertial observers measure the same blur
in their own rest frames — the proper blur `0. Relative to another inertial frame the blur is dilated
to γ`0 where γ is the usual relativistic factor. This implies the proper blur `0 is indeed the minimum
attainable.

The Volume of a Blurred Point: Is Space Continuous or Discrete?—A b-point is smeared over
the whole of space but we can still define a useful measure of its volume by adding all volume elements
g1/2(x′)d3x′ weighed by the scalar density p(x′|x)/g1/2(x′). Therefore in `0 units a blurred point has
unit volume. This means that we can measure the volume of a finite region of space by counting the
number of b-points it contains. It also means that the number of distinguishable b-points within a
region of finite volume is finite which is a property one would normally associate to discrete spaces. In
this sense blurred space is both continuous and discrete. (See also [26].)

The Entropy of Space—The statistical state of blurred space is the joint distribution of all the yx

variables associated to every b-point x. We assume that the yx variables at different xs are independent,
and therefore their joint distribution is a product,

P̂[y] = ∏
x

p̂ (yx|x) . (30)

From (11) and (17) the distribution p̂ (ya
x|x) in the tangent space Tx is Gaussian,

p̂(yx|x) =
(det gx)1/2

(2π)3/2 exp
[
−1

2
gab(x)ya

xyb
x

]
, (31)

which shows explicitly how the information metric gab determines the statistical state of space.
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Next we calculate the total entropy of space,

S[P̂, Q̂] = −
∫

Dy P̂[y] log
P̂[y]
Q̂[y]

def
= S[g] (32)

relative to the uniform distribution
Q̂[y|g] = ∏xg1/2(x), (33)

which is independent of y — a constant. Since the y’s in Equation (30) are independent variables the
entropy is additive, S[g] = ∑xS(x), and we only need to calculate the entropy S(x) associated to a
b-point at a generic location x,

S(x) = −
∫

d3y p̂(y|x) log
p̂(y|x)
g1/2(x)

=
3
2

log 2πe = s0. (34)

Thus, the entropy per b-point is a numerical constant s0 and the entropy of any region R of space,
SR[g], is just its volume,

SR[g] = ∑x∈RS(x) = s0

∫
R

d3x g1/2(x). (35)

Thus, the entropy of a region of space is proportional to the number of b-points within it and is
proportional to its volume.

Canonical Quantization of Gravity?—The picture of space as a smooth blurred statistical
manifold stands in sharp contrast to ideas inspired from various models of quantized gravity in
which the short distance structure of space is dominated by extreme fluctuations. From our perspective
it is not surprising that attempts to quantize gravity by imposing commutation relations on the metric
tensor gab have not been successful. The information geometry approach suggests a reason why:
quantizing the Lagrange multipliers gab = γab would be just as misguided as formulating a quantum
theory of fluids by imposing commutation relations on those Lagrange multipliers like temperature,
pressure, or chemical potential, that define the thermodynamic macrostate.

Physical Consequences of a Minimum Length?—A minimum length will eliminate the short
wavelength divergences in QFT. This in turn will most likely illuminate our understanding of the
cosmological constant and affect the scale dependence of running coupling constants. One also expects
that QFT effects that are mediated by short wavelength excitations should be suppressed. For example,
the lifetime of the proton ought to be longer than predicted by grand-unified theories formulated in
Minkowski space-time. The nonlocality implicit in a minimum length might lead to possible violations
of CPT symmetry with new insights into matter-antimatter asymmetry. Of particular interest would be
the early universe cosmology where inflation might amplify minimum-length effects possibly making
them observable.

Acknowledgments: I would like to thank N. Carrara, N. Caticha, S. Ipek, and P. Pessoa, for valuable discussions.

References and Notes

1. For an introduction to the extensive literature on canonical quantization of gravity, loop quantum gravity,
string theory, and causal sets see e.g., [2,3].

2. Kiefer, C. Quantum Gravity; Oxford U.P.: Oxford, UK, 2007.
3. Ashtekar, A.; Berger, B.; Isenberg, J.; MacCallum, M. (Eds.) General Relativity and Gravitation; Cambridge U.P.:

Cambridge, UK, 2015.
4. Caticha, A. The Entropic Dynamics approach to Quantum Mechanics. Entropy 2019, 21, 943;

doi:10.3390/e21100943, arXiv 2019 arXiv:1908.04693.
5. Ipek, S.; Abedi, M.; Caticha, A. Entropic Dynamics: Reconstructing Quantum Field Theory in Curved

Spacetime. Class. Quantum Grav. 2019, 36, 205013, arXiv 2018, arXiv:1803.07493.
6. Ipek, S.; Caticha, A. An Entropic Dynamics approach to Geometrodynamics. arXiv 2019, arXiv:1910.01188.



Proceedings 2019, 33, 15 8 of 8

7. Caticha, A. Entropic Inference and the Foundations of Physics; International Society for Bayesian Analysis-ISBrA:
Sao Paulo, Brazil, 2012. Available online: http://www.albany.edu/physics/ACaticha-EIFP-book.pdf
(accessed on 20 September 2019).

8. The subject of information geometry was introduced in statistics by Fisher [9] and Rao [10] with important
later contributions by other authors [11–14]. Important aspects were also independently discovered in
thermodynamics [15,16].

9. Fisher, R.A. Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 1925, 22, 700–725.
10. Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta

Math. Soc. 1945, 37, 81.
11. Amari, S. Differential-Geometrical Methods in Statistics; Springer: Berlin, Germany, 1985.
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