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Abstract. Here we have derived a cosmological analogue of Berry phase by obtaining the
corresponding wavefunction for the system of inflationary cosmological perturbations solving
the Schrodinger equation. We have further shown that cosmological Berry phase can be
related inflationary observable parameters. As a result one can, atleast in principle, establish
a supplementary probe of inflationary cosmology through the measurement of the associated
Berry phase. But we do not make any strong comment on this.

1. Introduction
The original motivation behind inflation [1] was to resolve the puzzles associated with Standard
Big Bang scenario but the most exciting aspect of this scenario comes from the fact that they
provide natural explanation for the quantum origin of classical cosmological fluctuations [2]
observed in the large scale structure of the matter and in the cosmic microwave background.
The accelerated expansion converts the initial vacuum quantum fluctuations into macroscopic
cosmological perturbations. So, measurement of any quantum property which reflects on classical
observables serve as a supplementary probe of inflationary cosmology, complementing the well-
known CMB polarization measurements [3]. This has led us to investigate for the potentiality of
Berry phase [4] in providing a measurable quantum property which is inherent in the macroscopic
character of classical cosmological perturbations, thereby serving as a supplementary probe to
CMB in inflationary cosmology.

Here our intention is to demonstrate the effect of the curved spacetime background in the
dynamical evolution of the quantum fluctuations during inflation through the derivation of the
associated Berry phase and search for the possible consequences via observable parameters.
To this end, we first find an exact wavefunction for the system of inflationary cosmological
perturbation by solving the associated Schrodinger equation. The relation between the
dynamical invariant [5, 6, 7] and the geometric phase has then been utilized to derive the
corresponding Berry phase [8, 9]. For slow roll inflation the total accumulated phase gained
by each of the modes during sub-Hubble oscillations (adiabatic limit) is found to be a new
parameter made of corresponding (scalar and tensor) spectral indices. Since tensor spectral
index is related to the tensor to scalar amplitude ratio through the consistency relation, the
Berry phase can indeed be utilized to act as a supplementary probe of inflationary cosmology.
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2. Inflationary Cosmological perturbations as parametric oscillators
The total action for the system of single scalar field driven inflation is given by

S = −1

2

∫
d4x
√
−g
[
M2
PR+ gµνφ,µφ,ν + 2V (φ)

]
(1)

where R is the Ricci scalar, φ the inflaton and V (φ) being corresponding potential. The explicit
expression for the perturbations quantities can be calculated by varying the above action. The
single scalar field driven inflation produces both the scalar and tensor perturbations, but in
the linear theory they evolve independently as a result we can study their evolution separately.
It can be shown that for the scalar perturbation everything can be reduced to the study of a
single variable v known as Mukhanov-Sasaki variable defined by, v ≡ aδφGI + zΦB with z =

aφ
′

H , δφGI gauge invariant inflaton fluctuation and ΦB Bardeen’s Potential [10]. For the
tensor perturbation it is the variable u defined by, hij = u

aQij where Qij Eigentensors of the

Laplacian operator.
The actions for the scalar and tensor perturbations can be cast into the following form [11]

SS =
1

2

∫
dηdx

[
Π2 +

z′

z
(Πv − vΠ)− δij∂iv∂jv

]
, where Π ≡ ∂L

∂v′
= v′ − z′

z
v

ST =
1

2

∫
dηdx

[
π2 +

a′

a
(πu− uπ)− δij∂iu∂ju

]
, where π ≡ ∂L

∂u′
= u′ − a′

a
u (2)

The variable v is related to the most fundamental perturbation quantity, comoving curvature
perturbation R, via the relation v = −zR. Promoting the fields to operators and taking the
Fourier decomposition, the Hamiltonian operators corresponding to the above actions (2) is
found to be

Ĥk ≡
2∑
j=1

Ĥjk =

2∑
j=1

1

2

[
k2q̂2

jk + Y (η) (p̂jkq̂jk + q̂jkp̂jk) + p̂2
jk

]
(3)

here we have decomposed vk, uk, Πk, πk into their real and imaginary parts. Also q̂jk = v̂jk,

ûjk; p̂jk = Π̂jk, π̂jk and Y = z′

z , a′

a for the scalar and tensor modes respectively and j = 1, 2

with the frequency given by ω =
√
k2 − Y 2. So for each of the scalar and tensor modes, the

Hamiltonian is a sum of two parametric oscillators, each of them having the form (3).

3. The Berry phase in inflationary cosmological perturbations
To calculate the Berry phase we require the wavefunction of the system. To this end we first solve
the associated Schrdinger equation using the Dynamical Invariant Operator Method (DIOM) [7]
for the system of inflationary cosmological perturbations. Following the usual technique [5, 6],
after some straightforward but tedious algebra we found

Ψn1,n2 =
eiαn1,n2 (η)H̄n1

[
q1k
ρk

]
H̄n2

[
q2k
ρk

]
4

√
π222(n1+n2)(n1!n2!)2ρ4

k

exp

[
i

2

(
ρ
′
k

ρk
− Y (η) +

i

ρ2
k

)(
q2

1k + q2
2k

)]
(4)

where ρk is a time dependent real function satisfying the Milne-Pinney equation

ρk
′′ + Ω2(η, k)ρk =

1

ρ3
k(η)

, where Ω2 = ω2 − dY

dη
. (5)
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Once the wavefunction of the system is known it can then be used to derive the associated
Berry phase and in the present context we have found

γn1,n2,k = −1

2
(n1 + n2 + 1)

∫ Γ

0

(
1

ρ2
k

− ρ2
kω

2 − (ρ′k)
2

)
dη (6)

where it has been assumed that the invariant is Γ periodic and its eigenvalues are non-degenerate.
Now in the adiabatic limit Eqn.(5) can be solved [6] by a series of powers in adiabatic parameter,
so at the ground state of the system the Berry phase for a particular perturbation mode can be
evaluated upto the first order in adiabatic parameter and is given by

γ
(S, T )
k =

1

2

∫ Γ

0

Y ′√
k2 − Y 2

dη (7)

where the superscripts S and T stand for scalar and tensor modes respectively.

4. Berry Phase interms of cosmological observables
Now to link this Berry phase with the cosmological observables we need to fix the value of the
parameter Γ. To this end we shall calculate the total Berry phase accumulated by each mode
during inflationary sub-Hubble oscillations which is

γS,Tk sub = −1

2
lim

η′→−∞

∫ ηS,T0

η′

Y ′√
k2 − Y 2

dη (8)

where ηS,T0 is the conformal time which satisfies the relation k2 =
[
Y (ηS,T0 )

]2
and guarantees

that the modes are within the horizon and oscillating with real frequency.
The accumulated Berry phase during sub-Hubble evolution of the scalar modes, in terms of

the slow-roll parameters, turns out to be

γSk =
1

2
lim

η′→−∞

∫ −√1+6ε1−2ε2
k

η′

z
′′

z −
(
z
′

z

)2

√
k2 −

(
z′

z

)2
dη ≈ −π

4

1 + 3ε1 − ε2√
1 + 6ε1 − 2ε2

+O(ε21, ε
2
2, ε1ε1) (9)

Similarly for the tensor modes we have

γTk =
1

2
lim

η′→−∞

∫ −√1+2ε1
k

η′

a
′′

a −
(
a
′

a

)2

√
k2 −

(
a′

a

)2
dη ≈ −π

4

1 + ε1√
1 + 2ε1

+O(ε21, ε
2
2, ε1ε1) (10)

where ε1, ε2 are the usual potential slow-roll parameters. As, during inflation the slow-roll
parameters do not evolve significantly from their initial values so in the above estimates for γS,Tk
we can consider ε1 and ε2 as their values at horizon crossing without committing any substantial
error. Also at the horizon exit the fundamental observable parameters can be expressed in terms
of slow-roll parameters, so we found the accumulated Berry phase during inflationary sub-Hubble
oscillations of the modes to be given by

γSk ≈ −π
8

3− nS(k)√
2− nS(k)

, nS(k) ≈ 3−
8γSk
π

4γSk
π
−

√
16[γSk ]2

π2
− 1

 (11)

γTk ≈ −π
8

2− nT (k)√
1− nT (k)

, nT (k) ≈ 2−
8γTk
π

4γTk
π
−

√
16[γTk ]2

π2
− 1

 (12)

International Conference on Modern Perspectives of Cosmology and Gravitation (COSGRAV12) IOP Publishing
Journal of Physics: Conference Series 405 (2012) 012025 doi:10.1088/1742-6596/405/1/012025

3



where nS and nT are the scalar and tensor spectral indices respectively. So the Berry phase for
sub-Hubble oscillations of the perturbation modes during inflation can be completely envisioned
through the observable parameters.

5. Discussion and Summary
In this article we have demonstrated how the exact expression for the wave function of the
quantum cosmological perturbations can be analytically obtained by solving the associated
Schrodinger equation following the dynamical invariant technique. This helps us to derive an
expression for cosmological analogue of Berry phase. The classical cosmological perturbation
modes (both scalar and tensor) having quantum origin picks up a phase during their advancement
through the curved space-time background that depends entirely on the background geometry
and can be estimated quantitatively by measuring the corresponding spectral indices. So the
Berry phase for the quantum counterpart of the classical cosmological perturbations endow us
with the measure of spectral index.

Any attempt towards the measurement of cosmological Berry phase may reflect observational
credentials of this parameter in inflationary cosmology. So, cosmological Berry phase may have
the potentiality to play some important role in inflationary cosmology. However, we are yet to
figure out this quantitative feature in a more concrete language. So, we do not make any strong
comment on this. At this point, all we would like to point out is that an analogue of Berry phase
appears in inflationary cosmology, which is a measurable observable of the quantum property
of the cosmological perturbations and which may presumably give some insight on observable
parameters as well.

So far as the detection of cosmological Berry phase is concerned, we are far away from
quantitative measurements. A possible theoretical aspect of detection [12] of the analogue of
cosmological Berry phase may be developed in squeezed state formalism [11]. For a quantum
harmonic oscillator, when a squeezing Hamiltonian is switched on, and the squeezing parameter
is varied, we can find a detectable Berry phase. As the inflationary perturbations can be studied
in the squeezed state formalism, we hope to put forward our analysis on the detection of the
geometric phase in near future.
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