T Available online at www.sciencedirect.com
L3 .

e ScienceDirect NUGLEARIZ]

E— PHYSICS

ELSEVIER Nuclear Physics B 957 (2020) 115087
www.elsevier.com/locate/nuclphysb

AdSs—Schwarzschild deformed black branes and
hydrodynamic transport coefficients

A.J. Ferreira—Martins *, P. Meert ?, R. da Rocha ™*

& CCNH, Universidade Federal do ABC - UFABC, 09210-580, Santo André, Brazil
b CMCC, Federal University of ABC, 09210-580, Santo André, Brazil

Received 27 April 2020; received in revised form 2 June 2020; accepted 4 June 2020
Available online 8 June 2020
Editor: Clay Cérdova

Abstract

A family of deformed AdSs—Schwarzschild black branes is here derived, employing the membrane
paradigm of AdS/CFT. The solution of the Einstein—Hilbert action, with the Gibbons—Hawking term and a
counter-term that eliminates eventual divergences, yields a partition function associated to the dual the-
ory which allows the computation of the entropy, pressure and free energy, as state functions, in the
canonical ensemble. AdS/CFT near-horizon methods are then implemented to compute the shear viscosity-
to-entropy ratio, then restricting the range of the parameter that defines a family of deformed black
branes.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

AdS/CFT is a paradigm relating gravity in anti-de Sitter (AdS) spacetime to a large- N confor-
mal field theory (CFT), located on the AdS codimension-1 boundary. Perturbatively, considering
an 1/N expansion, quantum fields in the bulk correspond to CFT operators [1-3]. The dynamics
of Einstein’s equations, describing weakly coupled gravity in an AdS space, rules the correspond-
ing dynamics of the energy-momentum tensor of strongly coupled QFTs on the AdS boundary.
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In the N — oo t’ Hooft regime, keeping a fixed coupling, the gauge theory on the boundary is
an effective classical theory.

The AdS boundary is usually identified to a 4D brane. Braneworld models describe a brane
that has tension, o, constrained to both the bulk and the brane cosmological constants [4,5].
General relativity (GR) describes gravity in an infinitely rigid brane, with an infinite tension.
However, recent works derived a strong bound for the finite brane tension, lying in the bound o 2>
2.81 x 107° GeV* [6,7]. This condition in fact produces a physically correct low energy limit,
allowing the construction of an AdS/CFT membrane paradigm analogue of any classical GR
solution [4,5,8—12]. One can also describe the AdS bulk gravity by a black hole, which behaves
as a fluid at its own horizon, in the membrane paradigm. Einstein’s equations near the horizon of
the black hole reduce to the Navier-Stokes equations for the fluid [1-3]. A fluid at the black hole
horizon mimics a fluid at the AdS boundary [8,13—15], introducing an useful dictionary, linking
brane models and the membrane paradigm of AdS/CFT. Here we aim to derive new deformed
asymptotically AdS black branes and use the shear viscosity-to-entropy density ratio, ? and the
deformed black brane temperature, to impose viscosity bounds to the free parameter in these
new solutions. In the context of AdS/CFT correspondence, a precise relationship between the
gravitational result and the dual field theory is then established, and further discussed.

In AdS/CFT, the AdSs-Schwarzschild black brane is dual to the gauge theory describing the
strongly-coupled, large-N,, ' = 4, plasma. In this scheme, the famous ratio g = ﬁ (and the
conjectured KSS bound) is obtained, which is indeed a quite small value, compared to ordinary
materials. However, if large- N, gauge theories considered by AdS/CFT are good approximations
to QCD, one could expect that this result may be applied to the quark-gluon plasma (QGP) [16].
In fact, experiments in the Relativistic Heavy Ion Collider (RHIC) have shown that the QGP
behaves like a viscous fluid with very small viscosity, which implies that the QGP is strongly-
coupled, which discards the possibility of using perturbative QCD to the study of the plasma
[17]. Thus, AdS/CFT may present itself as an alternative to the QGP research and generalizations
thereof [18,19].

Previously, we have explored the technique employed here to derive a family of solutions
that consists of a deformation in the AdSs—Reissner—Nordstrom background, and its potential
applications to AdS/CMT [20]. By embedding the brane into a higher dimensional bulk, we
were able to mimic the Hamiltonian and momentum constrains from the ADM formalism for
static configurations of the metric field [21,22]. These equations turn out to be a weaker condition
on the metric functions, allowing for a family of deformations of solutions from classical GR. In
the present work we apply a similar procedure to the AdSs—Schwarzschild black brane [23,24].

The paper is organized as follows: in Sect. 2 the relevant results of linear response theory
and fluid dynamics are briefly presented within the hydrodynamics formalism, followed by a
presentation of the AdS/CFT duality. Sect. 3 is then devoted to derive the AdSs—Schwarzschild
deformed gravitational background. The solution of the Einstein—Hilbert action, also contain-
ing the Gibbons—Hawking term and a counter-term that precludes divergences, yields a partition
function for the dual theory. Hence, entropy, pressure and free energy, are computed as state
functions, in the canonical ensemble. The explicit computation of the ? ratio is carried out for
the family AdS5;—Schwarzschild deformed black branes in Sect. 4. The saturation of ? and the
black brane temperature therefore is shown to constrain the free parameter AdSs—Schwarzschild
deformed black brane, driving the family of deformed branes to two unique solutions: the stan-
dard AdSs5—Schwarzschild black brane and a new black brane solution. The concluding remarks
are then presented in Sect. 6.
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2. Hydrodynamics and linear response theory

The so called hydrodynamic limit is characterized by the long-wavelength, low-energy regime
[25], and is often applicable to describe conserved quantities. As an effective description of field
theory, hydrodynamics naturally does not contain the details of a microscopic theory. These are
encoded into the transport coefficients, among which the shear viscosity, n, plays a prominent
role.

The macroscopic variables encoded in the energy-momentum stress tensor, 7", along with
its conservation law, 9, 7" = 0, describe a simple fluid. In general, one introduces a constitu-
tive equation by determining the form of T#" in a derivative expansion, given in terms of the
normalized fluid velocity field u*(x"), its pressure field p(x**) and its rest-frame energy density
p(xH).

To first order in the derivative expansion, the stress tensor is expressed as [3,25]

™ =p (0" +u"u’) + putu’ 4+ ", (1)

where T#", the term which is first-order in derivatives, carries dissipative effects. The constitutive
equation for a viscous fluid, as defined above, yields both the continuity and Navier—Stokes
equations. For a theory described by an action functional S, the coupling of an operator O to an
external source (p(o) reads [260]

S S+/d4x<p<°>(t,x)(9(z,x). )

One is often interested in determining the response in O, which, up to first order in (p(o), is
known as linear response theory. The one-point function reads [26]

5 (0@, q)) = -G9C (@, 9o, q), 3)

where GR(?’O(a), q) is the retarded Green’s function [27]. The response of 7/*V under gravitational

fluctuations is determined by an off-diagonal perturbation term, hfg,), leading to the perturbed
metric [2,3]:

gidxtdx” =, dxtdx? + 200 (dxdy, 4)
yielding the response [26]

5t (w, g =0))=ionh) = -G3"nS) (5)
and the Kubo formula

n=—lim é Im (G (@,0)). (6)

Computation of the retarded Green’s function is straightforwardly achieved, once the GKPW
relation [28,29] is regarded. It yields the following expression for the one-point function, [29,30],

5S[e©]
ol (7)

One considers the bulk theory to be GR, with negative cosmological constant, As. Therefore the
action reads

1
S=1er d°x/=g (R —2A5) + Spar » (8)

(O)s =
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where S, is specified by the boundary theory of interest. The action for massless scalar field is
just a kinetic term. A particular case of interest is the AdSs—Schwarzschild spacetime,

2 2
T, T, . .
ds? = —M—gf(u)dz2 + du® + M—%Sijdx’dxj , )

1
u? f (u)
where f(u) =1—u* withu =ro/r defining the radial coordinate hereon in this paper, where rg

is the horizon radius. Hence u = 1 locates the horizon, whereas u = 0 is the spacetime boundary.
For u — 0, Eq. (9) reads

2
1 S
ds? = ’_g (—dt2 + —du? +5,~,~dx'dx1> : (10)
u ry ’

The one-point function, Eq. (7), depends only on the matter contribution when computing the
on-shell action. Assuming ¢ = @ (u), and denoting by a dot the derivative with respect to u, the
action for the massless scalar field at the boundary becomes

4 4 4
T, T, 3r,
S~ | d*x [ =% 0q /dS 2 6-=S¢]e. 11
/ X(2u3(P<P> + 530 5,50) (In
u=0
Eq. (11) is just the EOM for the scalar field, whose asymptotic solution reads
(pwq,(m(l +¢,<1)u4) , (12)

The on-shell action reduces to the surface term on the AdS boundary. Substituting the asymptotic
form of the scalar field, Eq. (12) into Eq. (11) yields

(0)s=4rgoM o =5(0). (13)
Relating this result to Eq. (3) determines the retarded Green’s function,

G(I?’O(q =0)= —4rg(p(1). (14)
3. The AdS5-Schwarzschild deformed black brane

The general solution to 5D vacuum Einstein gravity with a negative cosmological constant
depends on the horizon metric H;; and an integration constant, k. Provided that the constraint
R;j = 3kH;; holds, the solution for k = 0, leading to a planar horizon i.e. H;; = §;;, is the
AdS5—Schwarzschild black brane [31]. The dual theory is a conformal fluid [32]. Hence its
stress-energy tensor is traceless, fixing the bulk viscosity [1,3], ¢ = 0, leaving the shear vis-
cosity 1 as the only non-trivial transport coefficient [26,33]. We will present the arguments and
a similar calculation, when considering the deformed AdSs—Schwarzschild black brane as the
gravitational background. The saturation of the % ratio in the AdSs—Schwarzschild black brane
gravitational background reads [34]

n 1

s 4w’ (15)
One does not need discuss specific bulk features, as the existence of solutions to the higher-
dimensional Einstein’s equations describing gravity is undertaken by the Campbell-Magaard
embedding theorems [35].
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There is a correspondence between AdS/CFT and braneworld scenarios. In an AdS bulk with
cosmological constant /A, a solution must satisfy the effective Einstein’s equations

Rap=Agap+Eap, (16)

where A, B =0, 1,2,3,5,6. One can project Eq. (16) onto a timelike, codimension-1, embed-
ding AdS manifold, in Gaussian coordinates xM = (x*, x5) —for u=0,1,2,3, where x> =r.
When r = 0, it corresponds to the brane itself, requires the Gauss—Codazzi equations to represent
the embedding bulk Ricci tensor, when the discontinuity of the extrinsic curvature is related to
the embedding codimension-1 bulk stress-tensor.' Hence, the field equations yield the effective
Einstein’s field equations on the bulk, whose corrections consist of an AdS bulk Weyl fluid [36].
This fluid flow is implemented by the bulk Weyl tensor, whose projection, the so called electric
part of the Weyl tensor, reads

6 1
5MN(0_1)=—; |:U<MMUN+ ghMN>

+Qmuny+Pun]. (17)

for M,N =0,1,2,3,5, where hyy denotes the projector operator that is orthogonal to the
velocity, u™, associated to the Weyl fluid flow. In addition, I = — %05 wnuMulN is the effective
energy density; Pyny = — %o (h (‘;Ih 1\% — %hp Op MN) Ep is the effective non-local anisotropic
stress-tensor; and the effective non-local energy flux, Qp = — %oh ,f Epyuk,is originated from
the bulk free gravitational field. The tension is described by o. Local corrections are encoded
into the tensor [36,37]:

p , 8MN

SMN:—TMN—TMPTN+T[3TPQTPQ—T2] (18)

3

where T,y is the matter stress-tensor and 7 = wa’l denotes the trace of Tjsy. The trace of Syn
corresponds to the trace anomaly of the cutoff CFT on the brane [12]. Higher-order terms in
Eq. (18) are neglected, as the embedding bulk matter density is negligible. Denoting by Gy n
the Einstein tensor, the 5D Einstein’s effective field equations read

1
GMNZTMN+5MN(U_1)+£SMN=0- (19)

Since Eyn ~ oL, itis straightforward to notice that in the infinitely rigid limit, o — 0o, GR is
recovered and the Einstein’s field equations have the standard form Gy y = Ty . Alternatively,
the system of equations below is weaker than the effective field equations, and can be seen as
constraints

Ryw =0, R=A, (20)

where w = x© is the bulk extra dimension; R and A denote, respectively, the codimension-1
embedding bulk Ricci scalar and the 5D cosmological constant. Egs. (20) mimic constraints in
the ADM procedure [38], whereas the equation Ry;y = Eyy completes this system.

One supposes a general metric, setting the AdS radius to unity,

1

ds® = —r’N(r)dr?
K r“N(r) + A0

dr? +r28;;dx’dx. Q1)

1 This model emulates the one in Sect. 10.3 of Ref. [12].
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By demanding that the ADM constraint leads to the AdSs—Schwarzschild metric when g — 1,
and denoting by a prime the derivative with respect to r, the Hamiltonian constraint reads,

2N”(r)_N/2(r) 247 (r) A/2(r)_N/(r)A’(r)
N(r) N2(r) A(r) A%2(r)  N(@r)A(r)

4 (N'(r) A\ 4AGr)
;(N(V)_A(r)>_ 2 =SB 22)

where the function f(r, ro, 8) is given by Eq. (A.1) in the Appendix A.
In the u variable, the metric (21) reads

2 2
2_ Ny 2 1 2, M0 g
ds ——ﬁN(u)dt +u2A(u)du +ﬁ5z.,dx‘dx1. (23)
The constraint (22) is satisfied by
Nw)=1—u*+ (B —1ub, (24)
2 —3u*
A =(1-u*)(——T ). 2
(ae) ( ”)(2—(4ﬁ—1)u4) )

The constant 8 parameter is referred to as a deformation parameter. In the next section we will
investigate how the shear-viscosity-to-entropy density ratio can drive specific values for §.

3.1. Thermodynamics

Combining the metric (23), with coefficients (24), (25), and the GKPW relation [29,30], we
are able to obtain the partition function associated to the dual theory, and calculate the thermody-
namic functions such as entropy, pressure and free energy. Basically, the following action must
be evaluated

Tbuik
ng—; d°x./g (R—2As)
167n G 26)
IH
—_—~—
. 4
T8nGam [ d VK He

where the first term is the Einstein—Hilbert action with the cosmological constant, the second
term is the Gibbons—Hawking term, and the last is the counter term, which is introduced to ensure
that the result is finite. In this case one uses the Euclidean signature, obtained by performing a
Wick rotation in the time coordinate ¢ — it. This implies that 7 is a periodic coordinate with
period 27 [39].

Each term will be individually computed, starting by the Einstein—Hilbert term. The cosmo-
logical constant is —2As5 = 12, and the expansion on u of the scalar curvature reads

R=-20—-8(B8—Du*+..., (27)

since the variable u is defined from O to 1. For the metric determinant, the expansion on u is
given by
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o B=-Drd 1
ﬁ%u—%—To-i-z(ﬂ—l)rgu
1=
( 4’3) [6—(1—B)rgu. (28)

Hence, the Einstein—Hilbert term becomes

1
Toulk = [(e_“ - 1) -2(8-1)

+%(ﬂ2+2(ﬂ—1)2+ﬂ—2)],

+

(29)

where € — 0 is used to keep track of divergent terms, which will be cancelled with the counter
term.

The Gibbons—Hawking term is a surface term. By considering the normal vector n, =
gu_ul/ 283, the induced metric for a hypersurface at constant u is given by hy,, = gy — nyny,
using g, from (23) we have

2 g 2, 10 i g
dsiis = —;N(u)dt + u—26ijdx’dx]. (30)
The computation of K is straightforward, being its expansion near the boundary given by

K:—4[1+(,3—1)u4+...], 31)
as well as for the metric determinant
1 1 u? u?
== 1 B—1)— —+...|. 32
i ro[u4 S } (32)

Then, it is just a matter of manipulating terms to find

1 1
Iy =—4 [6—4 —506- 2ﬂ)} , (33)

where again, the divergent term is left explicit.
In dimension d, the counter term has a standard form and depends only on the geometry of
the boundary theory, explicitly given by [40]

1
Iy = li dxvh{d—1
ot 87rGu£r%) x\/_{( )+

2(d—2) )

1 dw?
o [%W"— ]+}
2(d—4)d-2) 4d-1)
where R and DR, respectively, refer to the scalar curvature and Ricci tensor of the induced

metric (30), (remembering that u, v =0, 1, 2, 3), and one can quickly check that these vanish. In
dimension d = 4, remembering that it is a surface term, it leads to the following,

3
I =——li d*xvh . 35
T 87 G us0 x/h (35)
Eq. (32) yields

; _3rgVb[ 11 36)
“T 8rG [* 2]
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T 7ty

B

0.8 1.0 1.2 14 1.6 1.8 2.0

Fig. 1. Temperature of the deformed black brane, as a function of S.

where V = [dxdydz and b = [dt. (Usually this is called B in the literature, but to avoid
confusion with the deformation parameter, we called it b.) Combining the integrals and restoring
the constant factors yields

_ Vbrg (11 —158 + 38>
87 G 2 '

Eq. (37) is the partition function of the dual theory at the boundary, according to the GKPW
relation. Now, from statistical mechanics one knows that Z = bF, where F is the free energy.
Therefore we can calculate thermodynamic functions, by taking derivatives of F.

Since we are going to compute thermodynamic functions, it is convenient to know the tem-
perature. In the AdS/CFT context, the temperature is associated to the Hawking temperature at
the horizon of the black hole [41]

E (37

1 ! &re(u)
m

T=—1 - .
4 u—1\ grr(u)

(38)

For the metric (23), this expression is simply

_n [B=2
=" /3—4,3' (39)

It is important to mention that expression (39) is obtained by approximating the metric coeffi-
cients near the horizon, i.e. g,,(u =1) & 81(?) =1+ gt(tl)(u =1)(u—1)+..., and similarly for
guu- Fig. 1 illustrates Eq. (39) as a function of . The deformed black brane temperature diverges
at 8 — 3/4, having imaginary values for either 8 < 3/4 or 8 > 2. As the deformed black brane
temperature cannot attain divergent values or imaginary ones, the analysis of the deformed black
brane temperature constrains the 8 parameter in the open range 8 € (3/4,2). One can invert
Eq. (39) to express rg as

3—-48
B—2
Finally, the free energy can be read off, when Eq. (40) is replaced into (37), yielding

ro=m T. (40)
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3 _ 2 _ 2
T V<11 15ﬁ+3ﬂ><3 4,3) - "
8G 2 B—2

The state functions can now be computed using standard statistical mechanics in the canonical
ensemble

3 _ 2 _ 2
S:_lgz_n_(ll 158438 ><3 4’3)T3, (42)
VT  2G 2 B—2
3 2 2
PZ_B_FZ_n_(ll—IS,B-i—S,B )(3—4,3) T (43)
vV 8G 2 B—2
3 _ 2 _ 2
SZE_TSZSLCI 15ﬂ+3ﬁ)(3 4ﬁ) T (44)
v 8G 2 B—2

Despite the negative sign in front of entropy and pressure, these quantities are positive in the
range of B to be considered in the analysis to come in the next session. For a perfect fluid, the
energy-momentum tensor reads

7% = (¢ + P)uu® + Pg?®, (45)
From Egs. (43), (44), evaluated at the boundary, the trace of the energy-momentum tensor (45)
is given by

guTH =—e+3P

3 _ 2 _ 2
z_n_<11 158 + 38 )(3 4,3) - “6)
G 2 g—2

For future reference, changing T to r¢ using (40), the entropy density in Eq. (42) can be
written as,

3 _ 2 _ 1/2
S:_r_0<11 158+ 38 )(3 4,3) ' 47
2G 2 B—-2

As the entropy of a black hole obtained from Einstein’s equations is proportional to its area, in
the particular case of metric (23) we have a deformation of a Schwarzschild black hole that is
asymptotically AdS. This deformation breaks the spherical symmetry of our problem, and we
have just used the AdS/CFT correspondence to compute the surface area of the black hole, i.e.
A =4GsV.

4. g for the AdSs—Schwarzschild deformed black brane

As metric (23) arises from a deformation of the AdSs—Schwarzschild [10], the same action-

4
dependent results may be applied. The metric determinant, g, is such that \/—g = ;—% %, where,
from now on, N and A refer respectively to N (u) and A(u).

Consider a bulk perturbation /4, such that:

ds® =dspys,_sp + 2hyydxdy (48)

where dsidss_ sp denotes the AdSs—Schwarzschild deformed black brane metric, Eq. (23). In
appendix B we show that the field associated to the perturbation propagates with the speed of
light, this signals that no anomaly is present when it comes to the spacetime causal structure.
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Recall Egq. (5), for h)(g) being the perturbation added to the boundary theory, which is asymp-
totically related to /1y, the bulk perturbation, by’

¢ ey ~ 1) (1 + h,()y)u“) : (49)

according to Eq. (12). Notice that one can directly use the results for a massless scalar
field, as g**h,, obeys the EOM for a massless scalar field [26,33]. Besides, the deformed
AdS5—Schwarzschild black brane has the same asymptotic behavior of the AdSs—Schwarzschild
black brane (namely, Eq. (10)). One can identify g**h,, as the bulk field, ¢, which plays the
role of an external source of a boundary operator, in this case 7*”. Therefore, one can directly
obtain the response & (%), from Eq. (13),

4
) "o Dy O
5(r7)= @4@;/1;; : (50)
where it is now convenient to reintroduce the 1/167 G factor. Comparing Egs. (5) and (50) yields
o M
jwn = ——h,. 51
YO G D
Taking the ratio between Eq. (51) and the entropy (47) we find
n__n ! p=2)"] iy (52)
s T 11 —158+38%2)\3—-48 iw’

where h;ly) is the solution of the EOM for the perturbation g**h,, = ¢, which is that of a mass-

less scalar field [26,33]
Vi (V88" Vne) =0. (53)

Considering a stationary perturbation, given by the form @(u, t) = ¢ (u)e™'“", the perturbation
equation reduces to a second-order ODE for ¢ (u),

. 1/NA NA 3\, 1 w?
(22 22 2y Y0, 54
¢+2(2N+ - u>d>+NArgd> (54)

To derive the solution of Eq. (54), two boundary conditions are imposed: the incoming wave
boundary condition in the near-horizon region, corresponding to # — 1, and a Dirichlet boundary
condition at the AdS boundary, ¢ (u — 0) = ¢©, where hfg,) = pOeior,

The incoming wave boundary condition near the horizon is obtained by solving Eq. (54) in
the limit # — 1. After a straightforward computation one finds the following

q>o<exp<j:i2 4ﬂ_3«/1—u>. (55)
ro\ B—1

This solution has a natural interpretation using tortoise coordinates, allowing one to identify it

as a plane wave [27]. The positive exponent represents an outgoing wave, whereas the negative

one describes the wave incoming to the horizon, which, according to the near-horizon boundary

condition, allows us to fix

2 We are now using the u coordinate, instead of r.



A.J. Ferreira—Martins et al. / Nuclear Physics B 957 (2020) 115087 11

w |4 =3
drexp|—i—
ro ,3 —1
Next we solve Eq. (54) for all u € [0, 1] as a power series in w. As we are interested in the
hydrodynamic limit of this solution, i.e. @ — 0, it is sufficient to keep the series up to linear
order:

«/1—14). (56)

Gu) = Po(u) + 0P (u) . (57)

Since the second term in Eq. (54) is of order ?, it can be neglected. By direct integration the
solution reads

3
u
O, =Ci+K; | ————du, 58
i i i / NAw u (58)
for C; and K; the integration constants and i = 0, 1. Thus, according to Eq. (57), we have
ud
¢=(Co+wC1)+(Ko+wK1)/7du. 59
N (u)A(u)

In order to impose the boundary conditions we expand the integral (59) around u — O and u — 1.
It yields, up to leading order in the respective expansions,

ul % , for u — 0,
f ——du= (60)
vVNA %‘/%«/l—u, for u — 1.
The first pair of integration constants is fixed by the Dirichlet boundary condition
4
lim & = (Co + wC1) + (Ko + 0Ky) lim — = $©, 61)
u—0 u—0 4
implying that (Co 4+ wC1) = $@. Near the horizon one has
48 -3 -1
o~ 00 = Ko+ ok LD [Py (©2)

B—1 \48-3
Expanding Eq. (56) up to O(w) yields

pocl— i [P35 (63)
ro\l B—1

It is straightforward to see that Eq. (62) fixes the proportionality according to

o p® —ip02 [P35 (64)
ronl -1

Comparison between Eqgs. (62) and (64) immediately fixes the second pair of integration con-
stants:

@ (B—1) 1483
(Ko+wK))=id o (4,3—3> TSR (65)

Then the full solution reads
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4r,a)
iw "

-2 -1 1 2

(1)
hyy
Fig. 2. 4ry—2 as a function of 8.

iw

oL@ (B-1 I4ﬂ—3|/ u? )
b=¢ (1+’ro(4ﬁ—3) EE T A (©0)

Accordingly, the full time-dependent perturbation

¢ = gxxhxy — d)(u)e—iwt , (67)
is asymptotically given by:
» . — 1\ 14 -3|u*
xrp o giotg© (142 (P b 68
8 Nxy~e ¢ +lr0 4—3) =1 4 (68)
Egs. (49), (68) yield
' — 1) 48-3|
po_ e (B , 69
W T4 \ap-3) 11 )

where h,(g) = @~ The term multiplying ijo in Eq. (69) can be visualized in Fig. 2.
Therefore we have different signs depending on the value of 8,
1 .
h;y)z—% %<,3<1,

D _ iw 3 (70)

hxy:m B<zorf>1.
A negative value for h)(cl}) without further constraints, would imply a negative value of ? ie.,a
negative viscosity or entropy density, which would violate the second law of thermodynamics.
Therefore, demanding thermodynamical consistency leads to the following first bound in the
deformation parameter: either § < % or 8> 1.

Now, substituting (69) in Eq. (52) yields

172
1 1 B—=2
n_ _H<11—15ﬂ+3ﬁ2>(3—4ﬁ> - P , (71)

s 1 ! 52\ 12
E(ll—lﬁﬁ+3ﬂ2)<3_4ﬁ) ) B<l1

Fig. 3 illustrates Eq. (71) as a function of 8. For the precise value § = 1, the deformed black

brane % ratio is exactly %, recovering the KSS result for the AdS;—Schwarzschild black brane.
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5l

Fig. 3. g ratio of the deformed black brane, as a function of j.

Besides, Fig. 3 shows the divergence of % for B = 0.9 as well as the vanishing of the % ratio, for

B=2.

Therefore, a priori the deformation parameter can attain the ranges

0.75<B <09 and 1<p=<2. (72)

The value B < 2 is seen from (71), since B = 2 makes that quantity equal to zero, whereas
the range 0.9 < B < 1 1mply < < 0, which has no physical significance. The saturation " = 4;,
corresponding to the infinite ’ t Hooft coupling limit [42], then implies B = 1. This result has been
expected, as this case recovers the AdSs—Schwarzschild black brane (9). However, an additional
consistence test must take into account Eq. (24), that defines the deformed AdSs—Schwarzschild
black brane event horizon. In fact, let us call by ug = 1/rg the solution of the algebraic equation
N(u) =0, in (24). The first consistence test must regard the choice of B in such a way that
it produces a real event horizon.’ Therefore, this restricts more the possible range for 8, from
I <pB<2tol< B =<1.384. A second consistence test involves the fact that the ro = limg_, 1 rg
horizon, corresponding to the standard AdSs—Schwarzschild black brane event horizon, is of
Killing type. Along our previous calculations, the horizon is assumed to be at rg. For it to be a
good approximation in the proposed ranges of §, in such a way that |r0 — r,g| <1072, we must
restrict a little more the allowed range to 1 < 8 < 1.2, since for the another range 0.75 < 8 < 0.9
the condition |ro — r,g| < 1072 already holds. Hence, the 8 parameter is restricted into the ranges

0.75<B <09 and 1<B<1.2. (73)

To end this section we present a comparison between results obtained with metric (23) and the
conventional AdSs-Schwarzschild, which also gives us insight on the effect of the parameter .
Denoting T, ss and (g) ¢ the temperature, entropy density and shear viscosity to entropy density
of the standard AdS5-Schwarzschild spacetime, respectively, one can check that the correspond-
ing positive quantities for fixed g = 1.05 are

T=089Ts,  s=1.82ss, 3:0.54(3) : (74)
N S/ 8

For instance, if 8 = 1.2 one finds

3 Equivalently, that the algebraic equation N (u) = 0, in (24) does not have only complex solutions.
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T=067Ts, s=603ss, —~=0.17 <Q> . (75)
s s/

Considering the results (74) and (75), the effects of the deformation in the metric are clear,
changing thermodynamics and hydrodynamics by a numerical factor. In the range 1 < 8 < 1.2,
there is a violation of the KSS bound. One can speculate that the violation comes from the
fact that the solution under investigation does not obey Einstein’s equations of GR, since it was
obtained via an embedding in a higher dimensional space-time, whose evolution is governed by
an equation that has the Einstein’s field equations as a certain limit, cf. Eq. (19). Fig. 3 illustrates
that the range 0.75 < B < 0.9 is formally allowed, wherein the deformation parameter makes
the KSS bound not to be violated. The existence of a range where the KSS bound is violated,
namely 1 < 8 < 1.2, but no pathologies in causality of space-time or thermodynamic functions
can be seen, is also one of the main results of this work. The meaning of the 8 parameter will
be further discussed in Sec. 5. We emphasize that it is a free constant parameter, generating a
family of deformed AdSs—Schwarzschild black branes, which has been constrained for different
reasons. We have imposed compliance with the second law of thermodynamics, thus discarding
the ranges which would yield negative values of bﬁ Therefore, the family of solutions obtained
with the allowed values of B can be an interesting result worthy further investigation, mainly in
the AdS/QCD correspondence. The embedding bulk scenario and ADM procedure, in which the
deformed AdSs—Schwarzschild black brane was obtained, provides one more counterexample
setup to the KSS bound conjecture. Besides, these results can play a relevant role on the QGP,
whose measured viscosity is close to the KSS bound, possibly violates the bound [43]. In the
next section we also address a possible scenario that corroborates to the violation of the KSS
bound in the range 1 < 8 < 1.2.

5. Scrutinizing the g parameter

This section is devoted to clarify aspects of the 8 parameter. If one considers AdS/CFT in
the braneworld, it relates the electric part of the Weyl tensor £,, in Eq. (17), that represents
(classical) gravitational waves in the bulk, to the expectation value (7),,) of the (renormalized)
energy-momentum tensor of conformal fields on the brane* [37,46]. Besides, the presence of
the brane introduces a normalizable 4D graviton and an ultraviolet (UV) cut-off in the CFT,
proportional to o ~!. The general-relativistic limit requires ¢ — oo, corresponding to a geometric
rigid brane with infinite tension. In the AdS/CFT setup, £, ~ Z%, (T},). Since the electric part of
the Weyl tensor is traceless, such a correspondence would imply that (T,’f) = (T) = 0. In other
words, it would hold in the case where the conformal symmetry is not anomalous. Eq. (46)
therefore indicates a conformal anomaly due to the quantum corrections induced by 8. Eq. (46)
yields (T') # O for any value of 8 but 8 = 1. It is in full compliance with the fact that if (T') =0,
then the UV cut-off would be required to be much shorter than any physical length scale involved.
Besides, (T') = 0 for any value of 8 would also demand the absence of any intrinsic 4D length
associated with the background, otherwise the CFT is affected by that scale. For the deformed
AdS5—Schwarzschild black brane, the horizon radius rq is a natural length scale and one therefore
expects that only CFT modes with wavelengths much shorter than r¢, that are much larger than

4 The large N limit expansion of the CFT requires N ~ 1/(c¢ p)z > 1. In the original Randall-Sundrum braneworld
models, the Planck length, ¢ P (for 87G4 = Z%,, where G4 is the 4D Newton constant), is related to the SD fundamental
gravitational length £5 by Z%, = aﬂg [44,45], where o is the brane tension.
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o~!, can propagate freely. Bulk perturbations at the boundary work as sources the CFT fields,

and can produce (T) = 0.

Of course, this requires that the UV cut-off be much shorter than any physical length scale in
the system. For a black hole, the horizon radius is a natural length scale and one therefore expects
that only CFT modes with wavelengths much shorter than ry, that are still much larger than o !,
propagate freely [47].

Besides, for the deformed AdSs—Schwarzschild black brane, one can emulate the holographic
computation of the Weyl anomaly [48]. In fact, denoting a and ¢ central charges of the conformal

gauge theory, according to Eq. (24) of Ref. [42],

c L 5
(TH)cFr = = (RW(,R“”P“ — 2R, R™ + gR )
_# (Rﬂvpa RIPO _4R;WRIW+R2) , (76)

where the terms in parentheses are, respectively, the Euler density and the square of the Weyl
curvature.

It is worth to mention the splitting of the allowed range of 8into 0.75 <8 <0.9and 1 <8 <
1.2. Firstly, considering the range 1 < 8 < 1.2, Ref. [49] studied an effective 5D bulk gravity
dual, and showed that the KSS bound is violated, whenever the central charges in the Weyl
anomaly (76) satisfy |c — a|/c < 1. In this way, the inequality ¢ > a yields the KSS bound to
be violated [50,51]. Ref. [49] showed that, as an effect of curvature squared correctlons in the

AdS bulk, the shear viscosity-to-entropy density ratio can be expressed as '7 = 4n S+ OU/N 2).
Therefore, in the large N limit, the equality 1~ L < holds, and the central Charges ratio drive the

KSS bound violation, whenever ¢ # a. In fact the well known N = 4, SU(N) super-Yang-Mills
theory implies @ = ¢, however nothing precludes that ¢ # a in other cases [49].

Secondly, now considering the allowed range 0.75 < 8 < 0.9, the deformed AdSs;—Schwarzs-
child black brane, on the boundary u — 0, the square of the Weyl curvature can be expanded
as

N? (430 33—2(,3 —Du*+8(8 — 1)u6> +0(u’), (77)
and the Euler density as
N2 (120 +96(8 — Du* +72(8 — 1)u6) +O "), (78)

where N2 = 7 L3/2G. One notices in Egs. (77), (78) that the leading-order terms contain
factors (B — 1)uP?, for p = 4, 6. Therefore, the limits § — 1, corresponding to the standard
AdSs—Schwarzschild black brane, and the boundary u — 0 limit, are indistinguishable. Hence,
the limit # — 0 yields

520N
9
having the same result of the standard AdS5;—Schwarzschild black brane.
It is worth to compare an already known result about ﬁ in presence of quantum corrections.
In fact, Ref. [52] discusses quantum corrections to the Z ratio, by including higher derivative
terms with the 5-form RR flux to the calculation. Correctlons are implemented as inverse powers
of the color number N, and the leading 1/N? correction adds two correctlons terms to entropy
density, s, modifying in QCD strongly coupled QGP. Its original value is increased by

(T crr =

(79)

a43
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approximately 37%, roughly 22% due to the first correction term and 15% due to the second. As
discussed in this section, our setup yields corrections that can be interpreted as quantum ones,
induced by g, as expressed in Eq. (46). For ,3 = 0.75, consisting of a lower bound for S, the %
ratio increases ~ 4.1 times the original { 2 = — value. In the range 0.75 < 8 < 0.9, there is a
minimum at 8 =~ (.8, for which the shear v1scosity-t0-entr0py ratio equals 2.5 the KSS bound.
In the range 1 < 8 < 1.2, we showed that the KSS bound is violated. For example, as analyzed
in Eq. (74), (75), the value B = 1.05 yields ? = 0.54 () , whereas taking = 1.2 implies that

1=0.17(2),-
6. Concluding remarks and perspectives

The ADM procedure was used to derive a family of AdSs—Schwarzschild deformed gravi-
tational backgrounds, involving a free parameter, 8, in the black brane metric (23), (24), (25).
Computing the ’7 ratio for this family provided two possible values to 8. The first one, 8 =1,
was physically expected corresponding to the AdSs—Schwarzschild black brane. Besides the im-
portance of the result itself, in particular for the membrane paradigm of AdS/CFT, it has a good
potential for relevant applications, mainly in AdS/QCD. Taking into account the thermodynamics
that underlies the family of deformed black branes solutions, arising from the Einstein—Hilbert
action in the bulk, with a Gibbons—Hawking term and a counter-term that eliminates divergences,
yields the deformed black brane temperature (39). This expression, together with the fact that the
event horizon of the deformed AdSs—Schwarzschild black brane must assume real values, con-
strain the range of the free parameter § in the range (73).

Although we have derived our results using the ADM formalism, in a bulk embedding sce-
nario, the KSS bound violation in the range 1 < 8 < 2 represents, as a matter of speculation, a
possible smoking gun towards the fact that the deformed AdSs—Schwarzschild black brane (23),
with metric coefficients (24), (25), might be, alternatively, derived from an action with higher
curvature terms. However, up to our knowledge, no result has been obtained in this aspect, yet.

The family of AdSs—Schwarzschild deformed black branes, here derived using the ADM for-
malism, is also not the first example in the literature of a setup that violates the KSS bound and
does not involve higher derivative theories of gravity, in the gauge/gravity correspondence. In
fact, strongly coupled N/ = 4 super-Yang-Mills plasmas can describe pre-equilibrium stages of
the quark-gluon plasma (QGP) in heavy-ion collisions. In this setup, the shear viscosity, trans-
verse to the direction of anisotropy, was shown to saturate the KSS viscosity bound [53]. Besides,
anisotropy in the shear viscosity induced by external magnetic fields in a strongly coupled plasma
also provided violation in the KSS bound [54]. Theories with higher order curvature terms in the
action, in general, comprise attempts of describing quantum gravity. Hence, one is restricted to
consider CFT for which the central charges satisfy |c —a|/c < 1 and ¢ > a, in such a way that
still ¢ ~ a > 1, also yielding violation of the KSS bound [50,51]. Up to now, the equations of
motion for 5D actions with higher curvature terms up to third order are already established in the
literature, but it has been not possible to obtain the deformed AdSs—Schwarzschild black brane
(23) yet as an exact solution to any of them. We keep trying to compute higher curvature terms,
including fourth order terms, and we have not exhausted all the possibilities, yet. Any effective
action is expected to contain curvature terms of higher order, each one of them accompany-
ing their respective coefficients. To derive a sensible derivative expansion, one should restrict to
the classes of CFTs wherein these coefficients are proportional to inverse powers of the central
charge ¢ [50].
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As large- N, gauge theories considered by AdS/CFT are good approximations to QCD, one
could expect that the result of Eq. (15) may be applied to the QGP, which is a natural phenomenon
in QCD, when at high enough temperature the quarks and gluons are deconfined from protons
and neutrons to form the QGP [19]. In fact, experiments in the RHIC have shown that the QGP
behaves like a viscous fluid with very small viscosity, which implies that the QGP is strongly-
coupled, thus discarding the possibility of using perturbative QCD to the study of the plasma.
Therefore, the new AdSs—Schwarzschild deformed black brane (23) can be widely used to probe
additional properties in the AdS/QCD approach. As in the holographic soft-wall AdS/QCD the
AdSs5-Schwarzschild black brane provides a reasonable description of mesons at finite temper-
ature [23], we can test if using the AdSs—Schwarzschild deformed black brane derives a more
reliable meson mass spectra for the mesonic states and their resonances, better matching experi-
mental results. Besides, the new AdSs—Schwarzschild deformed black brane can be also explored
in the context of the Hawking—Page transition and information entropy [55,56].
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Appendix A

f(r.ro, B)
1

- _W{ — (106 =1 +r = 3r2g) (B 410 =2 1)
4r8 (—2/3 +r0+ rzrg + 2)2
(,3 +7r0— rzrg — 1)2
4r8 (4r1248(2—3B)r8rd+ (208 —23)r*r8 4348 — 1)rl2)
(2r8 = 5rtrd +368)7 (204 + (1 = 48)rd)’
2r8(8r10 —60r 12rd +-6(408(28 —3)+6T)r8r§ + (4B — 1) (208 +43)r*r 2 —9(1—-4p)2ri®)
(2r8 =5r4rd+3r8) (2r4+(1—4B)rd)?

+

+

1 2(~.8 6 4.4 2.4 8
+—r<2r +2r°=5r"rg+(1-4 rr+3r)
2r4+(1—4/3)rg[ ot (1=4B)rro+3rg

X <ﬂ+r6—r4—r2rg—1)]
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48 (rO+r2rg+2—-2B) (4r'2+8(2—3B)r¥rg +3(4—)ry?)
(2r*=3rg) (r*=rg) 2r*+1—4B)ry) (B+ro—r2rg—1)

58 2r8 4 5r4r6‘ — 9r§ B 474 n r2 (3r4 — rg) (A1)
28 —5rdrg +3r8 2kt (14 B+ —r2rd—1

Appendix B

We will show that the graviton propagates at the speed of light. Throughout this appendix we
make 7 = 1, and the metric (23) is written in coordinates {t, r, x, v, z}, where r = u~! according
to the present convention.

Consider a perturbation of the form (48). As discussed in the text, the perturbation /A, can
be considered as a field on its own, hence we define ¢ = g**h,,. We now identify the action as
S ~ So + S2, where Sy does not have any contribution from ¢, i.e. it is the action as studied in
Sect. 3.1, whereas S, contains contributions of ¢ and its derivatives. Let

® :/dkd>(r)e_iwt+ikr+iqz , (B.1)

where dk = %, so that Sy oc [ L(®, ®', @), the proportionality factor is discarded. The

Lagrangian reads

A 2AN"\ 7 2
,/N£=<I>2[—6r5+2rA+r2<ikA+2A’+ v >+—r3(—q2—Ak2+%>

2

+ 3 kA/ ] N/ AN//
rofi _HkAW_'_

2N
A'N'  AN” AN'7 3
- dD' | r? (8 +Tikr) A+ A’ A4 2ADD" .
AN 4N2>:|+ [V(-‘rll’) + +Nj|+2 +
(B.2)
For an action dependent on a single field up to its second derivative one can show immediately
that
38 =4S +/d 3P oL\ 9L /+8£ (B.3)
= r - N :
by 3D a0’ ) " 9|

dSpay are surface terms, while the factor inside the integral is the equation of motion.
The momentum vector is k" = (w, k, 0,0, g). Evaluating the EOM from (B.3) using La-
grangian (B.2) we obtain, in the limit k* > oo, the following

Kk =0, (B4)

i.e. the EOM for a light-ray. This shows that the graviton — field associated to the perturbation
(48) — propagates with the speed of light.
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