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Abstract

A family of deformed AdS5–Schwarzschild black branes is here derived, employing the membrane 
paradigm of AdS/CFT. The solution of the Einstein–Hilbert action, with the Gibbons–Hawking term and a 
counter-term that eliminates eventual divergences, yields a partition function associated to the dual the-
ory which allows the computation of the entropy, pressure and free energy, as state functions, in the 
canonical ensemble. AdS/CFT near-horizon methods are then implemented to compute the shear viscosity-
to-entropy ratio, then restricting the range of the parameter that defines a family of deformed black 
branes.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

AdS/CFT is a paradigm relating gravity in anti-de Sitter (AdS) spacetime to a large-N confor-
mal field theory (CFT), located on the AdS codimension-1 boundary. Perturbatively, considering 
an 1/N expansion, quantum fields in the bulk correspond to CFT operators [1–3]. The dynamics 
of Einstein’s equations, describing weakly coupled gravity in an AdS space, rules the correspond-
ing dynamics of the energy-momentum tensor of strongly coupled QFTs on the AdS boundary. 
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In the N → ∞ t’ Hooft regime, keeping a fixed coupling, the gauge theory on the boundary is 
an effective classical theory.

The AdS boundary is usually identified to a 4D brane. Braneworld models describe a brane 
that has tension, σ , constrained to both the bulk and the brane cosmological constants [4,5]. 
General relativity (GR) describes gravity in an infinitely rigid brane, with an infinite tension. 
However, recent works derived a strong bound for the finite brane tension, lying in the bound σ �
2.81 × 10−6 GeV4 [6,7]. This condition in fact produces a physically correct low energy limit, 
allowing the construction of an AdS/CFT membrane paradigm analogue of any classical GR 
solution [4,5,8–12]. One can also describe the AdS bulk gravity by a black hole, which behaves 
as a fluid at its own horizon, in the membrane paradigm. Einstein’s equations near the horizon of 
the black hole reduce to the Navier-Stokes equations for the fluid [1–3]. A fluid at the black hole 
horizon mimics a fluid at the AdS boundary [8,13–15], introducing an useful dictionary, linking 
brane models and the membrane paradigm of AdS/CFT. Here we aim to derive new deformed 
asymptotically AdS black branes and use the shear viscosity-to-entropy density ratio, η

s
, and the 

deformed black brane temperature, to impose viscosity bounds to the free parameter in these 
new solutions. In the context of AdS/CFT correspondence, a precise relationship between the 
gravitational result and the dual field theory is then established, and further discussed.

In AdS/CFT, the AdS5-Schwarzschild black brane is dual to the gauge theory describing the 
strongly-coupled, large-Nc, N = 4, plasma. In this scheme, the famous ratio η

s
= 1

4π
(and the 

conjectured KSS bound) is obtained, which is indeed a quite small value, compared to ordinary 
materials. However, if large-Nc gauge theories considered by AdS/CFT are good approximations 
to QCD, one could expect that this result may be applied to the quark-gluon plasma (QGP) [16]. 
In fact, experiments in the Relativistic Heavy Ion Collider (RHIC) have shown that the QGP 
behaves like a viscous fluid with very small viscosity, which implies that the QGP is strongly-
coupled, which discards the possibility of using perturbative QCD to the study of the plasma 
[17]. Thus, AdS/CFT may present itself as an alternative to the QGP research and generalizations 
thereof [18,19].

Previously, we have explored the technique employed here to derive a family of solutions 
that consists of a deformation in the AdS4–Reissner–Nordström background, and its potential 
applications to AdS/CMT [20]. By embedding the brane into a higher dimensional bulk, we 
were able to mimic the Hamiltonian and momentum constrains from the ADM formalism for 
static configurations of the metric field [21,22]. These equations turn out to be a weaker condition 
on the metric functions, allowing for a family of deformations of solutions from classical GR. In 
the present work we apply a similar procedure to the AdS5–Schwarzschild black brane [23,24].

The paper is organized as follows: in Sect. 2 the relevant results of linear response theory 
and fluid dynamics are briefly presented within the hydrodynamics formalism, followed by a 
presentation of the AdS/CFT duality. Sect. 3 is then devoted to derive the AdS5–Schwarzschild 
deformed gravitational background. The solution of the Einstein–Hilbert action, also contain-
ing the Gibbons–Hawking term and a counter-term that precludes divergences, yields a partition 
function for the dual theory. Hence, entropy, pressure and free energy, are computed as state 
functions, in the canonical ensemble. The explicit computation of the η

s
ratio is carried out for 

the family AdS5–Schwarzschild deformed black branes in Sect. 4. The saturation of η
s

and the 
black brane temperature therefore is shown to constrain the free parameter AdS5–Schwarzschild 
deformed black brane, driving the family of deformed branes to two unique solutions: the stan-
dard AdS5–Schwarzschild black brane and a new black brane solution. The concluding remarks 
are then presented in Sect. 6.
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2. Hydrodynamics and linear response theory

The so called hydrodynamic limit is characterized by the long-wavelength, low-energy regime 
[25], and is often applicable to describe conserved quantities. As an effective description of field 
theory, hydrodynamics naturally does not contain the details of a microscopic theory. These are 
encoded into the transport coefficients, among which the shear viscosity, η, plays a prominent 
role.

The macroscopic variables encoded in the energy-momentum stress tensor, T μν , along with 
its conservation law, ∂μT μν = 0, describe a simple fluid. In general, one introduces a constitu-
tive equation by determining the form of T μν in a derivative expansion, given in terms of the 
normalized fluid velocity field uμ(xν), its pressure field p(xμ) and its rest-frame energy density 
ρ(xμ).

To first order in the derivative expansion, the stress tensor is expressed as [3,25]

T μν = p
(
ημν + uμuν

)+ ρuμuν + τμν , (1)

where τμν , the term which is first-order in derivatives, carries dissipative effects. The constitutive 
equation for a viscous fluid, as defined above, yields both the continuity and Navier–Stokes 
equations. For a theory described by an action functional S, the coupling of an operator O to an 
external source ϕ(0) reads [26]

S �→ S +
∫

d4xϕ(0)(t,x)O(t,x) . (2)

One is often interested in determining the response in O, which, up to first order in ϕ(0), is 
known as linear response theory. The one-point function reads [26]

δ 〈O(ω,q)〉 = −G
O,O
R (ω,q)ϕ(0)(ω,q) , (3)

where GO,O
R (ω, q) is the retarded Green’s function [27]. The response of τμν under gravitational 

fluctuations is determined by an off-diagonal perturbation term, h(0)
xy , leading to the perturbed 

metric [2,3]:

g(0)
μν dxμdxν = ημνdxμdxν + 2h(0)

xy (t)dxdy, (4)

yielding the response [26]

δ
〈
τxy(ω,q= 0)

〉= iωηh(0)
xy = −G

xy,xy
R h(0)

xy , (5)

and the Kubo formula

η = − lim
ω→0

1

ω
Im
(
G

xy,xy
R (ω,0)

)
. (6)

Computation of the retarded Green’s function is straightforwardly achieved, once the GKPW 
relation [28,29] is regarded. It yields the following expression for the one-point function, [29,30],

〈O〉S = δS̄[ϕ(0)]
δϕ(0)

. (7)

One considers the bulk theory to be GR, with negative cosmological constant, 
5. Therefore the 
action reads

S = 1
∫

d5x
√−g (R − 2
5) + Smat , (8)
16π
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where Smat is specified by the boundary theory of interest. The action for massless scalar field is 
just a kinetic term. A particular case of interest is the AdS5–Schwarzschild spacetime,

ds2 = − r2
0

u2 f (u)dt2 + 1

u2f (u)
du2 + r2

0

u2 δij dxidxj , (9)

where f (u) = 1 −u4, with u = r0/r defining the radial coordinate hereon in this paper, where r0
is the horizon radius. Hence u = 1 locates the horizon, whereas u = 0 is the spacetime boundary. 
For u → 0, Eq. (9) reads

ds2 = r2
0

u2

(
−dt2 + 1

r2
0

du2 + δij dxidxj

)
. (10)

The one-point function, Eq. (7), depends only on the matter contribution when computing the 
on-shell action. Assuming ϕ = ϕ(u), and denoting by a dot the derivative with respect to u, the 
action for the massless scalar field at the boundary becomes

S∼
∫

d4x

(
r4

0

2u3ϕϕ̇

)∣∣∣∣∣
u=0

+
∫

d5x

(
r4

0

2u3 ϕ̈− 3r4
0

2u4 ϕ̇

)
ϕ. (11)

Eq. (11) is just the EOM for the scalar field, whose asymptotic solution reads

ϕ∼ ϕ(0)
(

1 +ϕ(1)u4
)

. (12)

The on-shell action reduces to the surface term on the AdS boundary. Substituting the asymptotic 
form of the scalar field, Eq. (12) into Eq. (11) yields

〈O〉S = 4r4
0ϕ

(1)ϕ(0) = δ 〈O〉 . (13)

Relating this result to Eq. (3) determines the retarded Green’s function,

G
O,O
R (q = 0) = −4r4

0ϕ
(1). (14)

3. The AdS5–Schwarzschild deformed black brane

The general solution to 5D vacuum Einstein gravity with a negative cosmological constant 
depends on the horizon metric Hij and an integration constant, k. Provided that the constraint 
Rij = 3kHij holds, the solution for k = 0, leading to a planar horizon i.e. Hij = δij , is the 
AdS5–Schwarzschild black brane [31]. The dual theory is a conformal fluid [32]. Hence its 
stress-energy tensor is traceless, fixing the bulk viscosity [1,3], ζ = 0, leaving the shear vis-
cosity η as the only non-trivial transport coefficient [26,33]. We will present the arguments and 
a similar calculation, when considering the deformed AdS5–Schwarzschild black brane as the 
gravitational background. The saturation of the η

s
ratio in the AdS5–Schwarzschild black brane 

gravitational background reads [34]

η

s
= 1

4π
. (15)

One does not need discuss specific bulk features, as the existence of solutions to the higher-
dimensional Einstein’s equations describing gravity is undertaken by the Campbell–Magaard 
embedding theorems [35].
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There is a correspondence between AdS/CFT and braneworld scenarios. In an AdS bulk with 
cosmological constant Λ, a solution must satisfy the effective Einstein’s equations

RAB = ΛgAB + EAB , (16)

where A, B = 0, 1, 2, 3, 5, 6. One can project Eq. (16) onto a timelike, codimension-1, embed-
ding AdS manifold, in Gaussian coordinates xM = (xμ, x5) – for μ = 0, 1, 2, 3, where x5 = r . 
When r = 0, it corresponds to the brane itself, requires the Gauss–Codazzi equations to represent 
the embedding bulk Ricci tensor, when the discontinuity of the extrinsic curvature is related to 
the embedding codimension-1 bulk stress-tensor.1 Hence, the field equations yield the effective 
Einstein’s field equations on the bulk, whose corrections consist of an AdS bulk Weyl fluid [36]. 
This fluid flow is implemented by the bulk Weyl tensor, whose projection, the so called electric 
part of the Weyl tensor, reads

EMN(σ−1)=− 6

σ

[
U
(
uMuN + 1

3
hMN

)
+Q(MuN)+PMN

]
, (17)

for M, N = 0, 1, 2, 3, 5, where hMN denotes the projector operator that is orthogonal to the 
velocity, uM , associated to the Weyl fluid flow. In addition, U = − 1

6σEMNuMuN is the effective 

energy density; PMN = − 1
6σ
(
h P

(Mh
Q
N) − 1

3hPQhMN

)
EPQ is the effective non-local anisotropic 

stress-tensor; and the effective non-local energy flux, QM = − 1
6σh P

R EPMuR , is originated from 
the bulk free gravitational field. The tension is described by σ . Local corrections are encoded 
into the tensor [36,37]:

SMN = T

3
TMN −TMP T P

N + gMN

6

[
3TPQT PQ − T 2

]
(18)

where TMN is the matter stress-tensor and T = T M
M denotes the trace of TMN . The trace of SMN

corresponds to the trace anomaly of the cutoff CFT on the brane [12]. Higher-order terms in 
Eq. (18) are neglected, as the embedding bulk matter density is negligible. Denoting by GMN

the Einstein tensor, the 5D Einstein’s effective field equations read

GMN = TMN + EMN(σ−1) + 1

4σ
SMN = 0. (19)

Since EMN ∼ σ−1, it is straightforward to notice that in the infinitely rigid limit, σ → ∞, GR is 
recovered and the Einstein’s field equations have the standard form GMN = TMN . Alternatively, 
the system of equations below is weaker than the effective field equations, and can be seen as 
constraints

RMw = 0, R̊ = 
, (20)

where w = x6 is the bulk extra dimension; R̊ and 
 denote, respectively, the codimension-1 
embedding bulk Ricci scalar and the 5D cosmological constant. Eqs. (20) mimic constraints in 
the ADM procedure [38], whereas the equation RMN = EMN completes this system.

One supposes a general metric, setting the AdS radius to unity,

ds2 = −r2N(r)dt2 + 1

r2A(r)
dr2 + r2δij dxidxj . (21)

1 This model emulates the one in Sect. 10.3 of Ref. [12].
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By demanding that the ADM constraint leads to the AdS5–Schwarzschild metric when β → 1, 
and denoting by a prime the derivative with respect to r , the Hamiltonian constraint reads,

2N ′′(r)
N(r)

− N ′2(r)

N2(r)
+ 2A′′(r)

A(r)
+ A′2(r)

A2(r)
− N ′(r)A′(r)

N(r)A(r)

+4

r

(
N ′(r)
N(r)

− A′(r)
A(r)

)
− 4A(r)

r2 = f (r, r0, β), (22)

where the function f (r, r0, β) is given by Eq. (A.1) in the Appendix A.
In the u variable, the metric (21) reads

ds2 = − r2
0

u2 N(u)dt2 + 1

u2A(u)
du2 + r2

0

u2 δij dxidxj . (23)

The constraint (22) is satisfied by

N(u) = 1 − u4 + (β − 1)u6, (24)

A(u) =
(

1 − u4
)( 2 − 3u4

2 − (4β − 1)u4

)
. (25)

The constant β parameter is referred to as a deformation parameter. In the next section we will 
investigate how the shear-viscosity-to-entropy density ratio can drive specific values for β .

3.1. Thermodynamics

Combining the metric (23), with coefficients (24), (25), and the GKPW relation [29,30], we 
are able to obtain the partition function associated to the dual theory, and calculate the thermody-
namic functions such as entropy, pressure and free energy. Basically, the following action must 
be evaluated

SE =− 1

16πG

Ibulk︷ ︸︸ ︷∫
d5x

√
g (R− 2
5)

− 1

8πG

IGH︷ ︸︸ ︷
lim
u→0

∫
d4x

√
hK+Ic.t ,

(26)

where the first term is the Einstein–Hilbert action with the cosmological constant, the second 
term is the Gibbons–Hawking term, and the last is the counter term, which is introduced to ensure 
that the result is finite. In this case one uses the Euclidean signature, obtained by performing a 
Wick rotation in the time coordinate t �→ iτ . This implies that τ is a periodic coordinate with 
period 2π [39].

Each term will be individually computed, starting by the Einstein–Hilbert term. The cosmo-
logical constant is −2
5 = 12, and the expansion on u of the scalar curvature reads

R = −20 − 8 (β − 1)u4 + . . . , (27)

since the variable u is defined from 0 to 1. For the metric determinant, the expansion on u is 
given by
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√
g ≈ r4

0

u5
− (β − 1) r4

0

u
+ 1

2
(β − 1)r4

0 u

+ (1 − β)

4
[6 − (1 − β)] r4

0u3. (28)

Hence, the Einstein–Hilbert term becomes

Ibulk =
[(

1

ε4 − 1

)
− 2(β − 1)

+1

2

(
β2 + 2(β − 1)2 + β − 2

)]
,

(29)

where ε → 0 is used to keep track of divergent terms, which will be cancelled with the counter 
term.

The Gibbons–Hawking term is a surface term. By considering the normal vector nα =
g

−1/2
uu δu

α , the induced metric for a hypersurface at constant u is given by hμν = gμν − nμnν , 
using gμν from (23) we have

ds2
HS = − r2

0

u2 N(u)dt2 + r2
0

u2 δij dxidxj . (30)

The computation of K is straightforward, being its expansion near the boundary given by

K = −4
[
1 + (β − 1) u4 + . . .

]
, (31)

as well as for the metric determinant

√
h = r4

0

[
1

u4 − 1

2
+ u2

2
(β − 1) − u4

8
+ · · ·

]
. (32)

Then, it is just a matter of manipulating terms to find

IGH = −4

[
1

ε4 − 1

2
(3 − 2β)

]
, (33)

where again, the divergent term is left explicit.
In dimension d , the counter term has a standard form and depends only on the geometry of 

the boundary theory, explicitly given by [40]

Ic.t = 1

8πG
lim
u→0

∫
ddx

√
h

{
(d − 1) + R

2 (d − 2)

+ 1

2 (d−4)(d−2)2

[
RμνR

μν − d R2

4(d−1)

]
+ . . .

} (34)

where R and Rμν , respectively, refer to the scalar curvature and Ricci tensor of the induced 
metric (30), (remembering that μ,ν = 0,1,2,3), and one can quickly check that these vanish. In 
dimension d = 4, remembering that it is a surface term, it leads to the following,

Ic.t = 3

8πG
lim
u→0

∫
d4x

√
h . (35)

Eq. (32) yields

Ic.t = 3r4
0 V b

[
1
4 − 1

]
, (36)
8πG ε 2
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Fig. 1. Temperature of the deformed black brane, as a function of β .

where V = ∫ dxdydz and b = ∫ dτ . (Usually this is called β in the literature, but to avoid 
confusion with the deformation parameter, we called it b.) Combining the integrals and restoring 
the constant factors yields

SE = V br4
0

8πG

(
11 − 15β + 3β2

2

)
. (37)

Eq. (37) is the partition function of the dual theory at the boundary, according to the GKPW 
relation. Now, from statistical mechanics one knows that Z = bF , where F is the free energy. 
Therefore we can calculate thermodynamic functions, by taking derivatives of F .

Since we are going to compute thermodynamic functions, it is convenient to know the tem-
perature. In the AdS/CFT context, the temperature is associated to the Hawking temperature at 
the horizon of the black hole [41]

T = 1

4π
lim
u→1

√
ġt t (u)

ġrr (u)
. (38)

For the metric (23), this expression is simply

T = r0

π

√
β − 2

3 − 4β
. (39)

It is important to mention that expression (39) is obtained by approximating the metric coeffi-
cients near the horizon, i.e. gtt (u = 1) ≈ g

(0)
tt (u = 1) +g

(1)
tt (u = 1)(u −1) + . . ., and similarly for 

guu. Fig. 1 illustrates Eq. (39) as a function of β . The deformed black brane temperature diverges 
at β → 3/4, having imaginary values for either β < 3/4 or β > 2. As the deformed black brane 
temperature cannot attain divergent values or imaginary ones, the analysis of the deformed black 
brane temperature constrains the β parameter in the open range β ∈ (3/4, 2). One can invert 
Eq. (39) to express r0 as

r0 = π

√
3 − 4β

β − 2
T . (40)

Finally, the free energy can be read off, when Eq. (40) is replaced into (37), yielding
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F = π3V

8G

(
11 − 15β + 3β2

2

)(
3 − 4β

β − 2

)2

T 4 . (41)

The state functions can now be computed using standard statistical mechanics in the canonical 
ensemble

s = − 1

V

∂F

∂T
=− π3

2G

(
11−15β+3β2

2

)(
3 − 4β

β − 2

)2

T 3, (42)

P =−∂F

∂V
=− π3

8G

(
11−15β+3β2

2

)(
3−4β

β − 2

)2

T 4 , (43)

ε = F

V
−T s= 5π3

8G

(
11−15β+3β2

2

)(
3 − 4β

β − 2

)2

T 4. (44)

Despite the negative sign in front of entropy and pressure, these quantities are positive in the 
range of β to be considered in the analysis to come in the next session. For a perfect fluid, the 
energy-momentum tensor reads

T ab = (ε + P)uaub + Pgab. (45)

From Eqs. (43), (44), evaluated at the boundary, the trace of the energy-momentum tensor (45)
is given by

gμνT
μν = −ε + 3P

= −π3

G

(
11 − 15β + 3β2

2

)(
3 − 4β

β − 2

)2

T 4. (46)

For future reference, changing T to r0 using (40), the entropy density in Eq. (42) can be 
written as,

s = − r3
0

2G

(
11 − 15β + 3β2

2

)(
3 − 4β

β − 2

)1/2

. (47)

As the entropy of a black hole obtained from Einstein’s equations is proportional to its area, in 
the particular case of metric (23) we have a deformation of a Schwarzschild black hole that is 
asymptotically AdS. This deformation breaks the spherical symmetry of our problem, and we 
have just used the AdS/CFT correspondence to compute the surface area of the black hole, i.e. 
A = 4GsV .

4. η
s for the AdS5–Schwarzschild deformed black brane

As metric (23) arises from a deformation of the AdS5–Schwarzschild [10], the same action-

dependent results may be applied. The metric determinant, g, is such that 
√−g = r4

0
u5

√
N
A

, where, 
from now on, N and A refer respectively to N(u) and A(u).

Consider a bulk perturbation hxy such that:

ds2 = ds2
AdS5−SD + 2hxydxdy , (48)

where ds2
AdS5−SD denotes the AdS5–Schwarzschild deformed black brane metric, Eq. (23). In 

appendix B we show that the field associated to the perturbation propagates with the speed of 
light, this signals that no anomaly is present when it comes to the spacetime causal structure.
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Recall Eq. (5), for h(0)
xy being the perturbation added to the boundary theory, which is asymp-

totically related to hxy , the bulk perturbation, by2

gxxhxy ∼ h(0)
xy

(
1 + h(1)

xy u4
)

, (49)

according to Eq. (12). Notice that one can directly use the results for a massless scalar 
field, as gxxhxy obeys the EOM for a massless scalar field [26,33]. Besides, the deformed 
AdS5–Schwarzschild black brane has the same asymptotic behavior of the AdS5–Schwarzschild 
black brane (namely, Eq. (10)). One can identify gxxhxy as the bulk field, ϕ, which plays the 
role of an external source of a boundary operator, in this case τxy . Therefore, one can directly 
obtain the response δ 〈τxy〉, from Eq. (13),

δ
〈
τxy
〉= r4

0

16πG
4h(1)

xy h(0)
xy , (50)

where it is now convenient to reintroduce the 1/16πG factor. Comparing Eqs. (5) and (50) yields

iωη = r4
0

4πG
h(1)

xy . (51)

Taking the ratio between Eq. (51) and the entropy (47) we find

η

s
= − r0

π

[(
1

11 − 15β + 3β2

)(
β − 2

3 − 4β

)1/2
]

h
(1)
xy

iω
, (52)

where h(1)
xy is the solution of the EOM for the perturbation gxxhxy ≡ ϕ, which is that of a mass-

less scalar field [26,33]

∇M

(√−ggMN∇Nϕ
)

= 0 . (53)

Considering a stationary perturbation, given by the form ϕ(u, t) = φ(u)e−iωt , the perturbation 
equation reduces to a second-order ODE for φ(u),

φ̈+ 1

2

(
ṄA

2N
+ NȦ

A
− 3

u

)
φ̇+ 1

NA

ω2

r2
0

φ= 0 . (54)

To derive the solution of Eq. (54), two boundary conditions are imposed: the incoming wave 
boundary condition in the near-horizon region, corresponding to u → 1, and a Dirichlet boundary 
condition at the AdS boundary, φ(u → 0) = φ(0), where h(0)

xy = φ(0)e−iωt .
The incoming wave boundary condition near the horizon is obtained by solving Eq. (54) in 

the limit u → 1. After a straightforward computation one finds the following

φ∝ exp

(
±i

ω

r0

√
4β − 3

β − 1

√
1 − u

)
. (55)

This solution has a natural interpretation using tortoise coordinates, allowing one to identify it 
as a plane wave [27]. The positive exponent represents an outgoing wave, whereas the negative 
one describes the wave incoming to the horizon, which, according to the near-horizon boundary 
condition, allows us to fix

2 We are now using the u coordinate, instead of r .
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φ≈ exp

(
−i

ω

r0

√
4β − 3

β − 1

√
1 − u

)
. (56)

Next we solve Eq. (54) for all u ∈ [0, 1] as a power series in ω. As we are interested in the 
hydrodynamic limit of this solution, i.e. ω → 0, it is sufficient to keep the series up to linear 
order:

φ(u) = �0(u) + ω�1(u) . (57)

Since the second term in Eq. (54) is of order ω2, it can be neglected. By direct integration the 
solution reads

�i = Ci + Ki

∫
u3

√
N(u)A(u)

du , (58)

for Ci and Ki the integration constants and i = 0, 1. Thus, according to Eq. (57), we have

φ= (C0 + ωC1) + (K0 + ωK1)

∫
u3

√
N(u)A(u)

du . (59)

In order to impose the boundary conditions we expand the integral (59) around u → 0 and u → 1. 
It yields, up to leading order in the respective expansions,

∫
u3

√
NA

du=
⎧⎨
⎩

u4

4 , for u → 0,

3−4β
β−1

√
β−1

3−4β

√
1 − u , for u → 1.

(60)

The first pair of integration constants is fixed by the Dirichlet boundary condition

lim
u→0

φ= (C0 + ωC1) + (K0 + ωK1) lim
u→0

u4

4
= φ(0), (61)

implying that (C0 + ωC1) = φ(0). Near the horizon one has

φ≈ φ(0) − (K0 + ωK1)
(4β − 3)

β − 1

√
β − 1

4β − 3

√
1 − u. (62)

Expanding Eq. (56) up to O(ω) yields

φ∝ 1 − i
ω

r0

√
4β − 3

β − 1

√
1 − u. (63)

It is straightforward to see that Eq. (62) fixes the proportionality according to

φ≈ φ(0) − iφ(0) ω

r0

√
4β − 3

β − 1

√
1 − u. (64)

Comparison between Eqs. (62) and (64) immediately fixes the second pair of integration con-
stants:

(K0 + ωK1) = iφ(0) ω

r0

(
β − 1

4β − 3

) |4β − 3|
|β − 1| . (65)

Then the full solution reads
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Fig. 2. 4r0
h
(1)
xy

iω
as a function of β .

φ=φ(0)

(
1+i

ω

r0

(
β−1

4β−3

) |4β−3|
|β−1|

∫
u3

√
NA

du

)
. (66)

Accordingly, the full time-dependent perturbation

ϕ= gxxhxy = φ(u)e−iωt , (67)

is asymptotically given by:

gxxhxy ∼ e−iωtφ(0)

(
1 + i

ω

r0

(
β − 1

4β − 3

) |4β − 3|
|β − 1|

u4

4

)
. (68)

Eqs. (49), (68) yield

h(1)
xy = iω

4r0

(
β − 1

4β − 3

) |4β − 3|
|β − 1| , (69)

where h(0)
xy = φ(0)e−iωt . The term multiplying iω

4r0
in Eq. (69) can be visualized in Fig. 2.

Therefore we have different signs depending on the value of β ,⎧⎨
⎩h

(1)
xy = − iω

4r0

3
4 < β < 1 ,

h
(1)
xy = iω

4r0
β < 3

4 or β > 1 .
(70)

A negative value for h(1)
xy , without further constraints, would imply a negative value of η

s
, i.e., a 

negative viscosity or entropy density, which would violate the second law of thermodynamics. 
Therefore, demanding thermodynamical consistency leads to the following first bound in the 
deformation parameter: either β < 3

4 or β > 1.

Now, substituting (69) in Eq. (52) yields

η

s
=

⎧⎪⎨
⎪⎩

− 1
4π

(
1

11−15β+3β2

)(
β−2
3−4β

)1/2
, β > 1

1
4π

(
1

11−15β+3β2

)(
β−2
3−4β

)1/2
, β < 1

. (71)

Fig. 3 illustrates Eq. (71) as a function of β . For the precise value β = 1, the deformed black 
brane η ratio is exactly 1 , recovering the KSS result for the AdS5–Schwarzschild black brane. 
s 4π
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Fig. 3. η
s ratio of the deformed black brane, as a function of β .

Besides, Fig. 3 shows the divergence of η
s

for β � 0.9 as well as the vanishing of the η
s

ratio, for 
β = 2.

Therefore, a priori the deformation parameter can attain the ranges

0.75 < β < 0.9 and 1 < β ≤ 2. (72)

The value β ≤ 2 is seen from (71), since β = 2 makes that quantity equal to zero, whereas 
the range 0.9 ≤ β < 1 imply η

s
< 0, which has no physical significance. The saturation η

s
= 1

4π
, 

corresponding to the infinite ’t Hooft coupling limit [42], then implies β = 1. This result has been 
expected, as this case recovers the AdS5–Schwarzschild black brane (9). However, an additional 
consistence test must take into account Eq. (24), that defines the deformed AdS5–Schwarzschild 
black brane event horizon. In fact, let us call by uβ = 1/rβ the solution of the algebraic equation 
N(u) = 0, in (24). The first consistence test must regard the choice of β in such a way that 
it produces a real event horizon.3 Therefore, this restricts more the possible range for β , from 
1 < β ≤ 2 to 1 < β ≤ 1.384. A second consistence test involves the fact that the r0 = limβ→1 rβ
horizon, corresponding to the standard AdS5–Schwarzschild black brane event horizon, is of 
Killing type. Along our previous calculations, the horizon is assumed to be at r0. For it to be a 
good approximation in the proposed ranges of β , in such a way that 

∣∣r0 − rβ
∣∣� 10−2, we must 

restrict a little more the allowed range to 1 < β � 1.2, since for the another range 0.75 < β < 0.9
the condition 

∣∣r0 − rβ
∣∣� 10−2 already holds. Hence, the β parameter is restricted into the ranges

0.75 < β < 0.9 and 1 < β � 1.2. (73)

To end this section we present a comparison between results obtained with metric (23) and the 
conventional AdS5-Schwarzschild, which also gives us insight on the effect of the parameter β . 
Denoting TS , sS and 

( η
s

)
S

the temperature, entropy density and shear viscosity to entropy density 
of the standard AdS5-Schwarzschild spacetime, respectively, one can check that the correspond-
ing positive quantities for fixed β = 1.05 are

T = 0.89TS, s = 1.82sS,
η

s
= 0.54

(η

s

)
S
. (74)

For instance, if β = 1.2 one finds

3 Equivalently, that the algebraic equation N(u) = 0, in (24) does not have only complex solutions.
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T = 0.67TS, s = 6.03sS,
η

s
= 0.17

(η

s

)
S

. (75)

Considering the results (74) and (75), the effects of the deformation in the metric are clear, 
changing thermodynamics and hydrodynamics by a numerical factor. In the range 1 < β ≤ 1.2, 
there is a violation of the KSS bound. One can speculate that the violation comes from the 
fact that the solution under investigation does not obey Einstein’s equations of GR, since it was 
obtained via an embedding in a higher dimensional space-time, whose evolution is governed by 
an equation that has the Einstein’s field equations as a certain limit, cf. Eq. (19). Fig. 3 illustrates 
that the range 0.75 < β < 0.9 is formally allowed, wherein the deformation parameter makes 
the KSS bound not to be violated. The existence of a range where the KSS bound is violated, 
namely 1 < β � 1.2, but no pathologies in causality of space-time or thermodynamic functions 
can be seen, is also one of the main results of this work. The meaning of the β parameter will 
be further discussed in Sec. 5. We emphasize that it is a free constant parameter, generating a 
family of deformed AdS5–Schwarzschild black branes, which has been constrained for different 
reasons. We have imposed compliance with the second law of thermodynamics, thus discarding 
the ranges which would yield negative values of η

s
. Therefore, the family of solutions obtained 

with the allowed values of β can be an interesting result worthy further investigation, mainly in 
the AdS/QCD correspondence. The embedding bulk scenario and ADM procedure, in which the 
deformed AdS5–Schwarzschild black brane was obtained, provides one more counterexample 
setup to the KSS bound conjecture. Besides, these results can play a relevant role on the QGP, 
whose measured viscosity is close to the KSS bound, possibly violates the bound [43]. In the 
next section we also address a possible scenario that corroborates to the violation of the KSS 
bound in the range 1 < β � 1.2.

5. Scrutinizing the β parameter

This section is devoted to clarify aspects of the β parameter. If one considers AdS/CFT in 
the braneworld, it relates the electric part of the Weyl tensor Eμν in Eq. (17), that represents 
(classical) gravitational waves in the bulk, to the expectation value 〈Tμν〉 of the (renormalized) 
energy-momentum tensor of conformal fields on the brane4 [37,46]. Besides, the presence of 
the brane introduces a normalizable 4D graviton and an ultraviolet (UV) cut-off in the CFT, 
proportional to σ−1. The general-relativistic limit requires σ → ∞, corresponding to a geometric 
rigid brane with infinite tension. In the AdS/CFT setup, Eν

μ ∼ �2
p〈T ν

μ〉. Since the electric part of 
the Weyl tensor is traceless, such a correspondence would imply that 〈T μ

μ〉 ≡ 〈T 〉 = 0. In other 
words, it would hold in the case where the conformal symmetry is not anomalous. Eq. (46)
therefore indicates a conformal anomaly due to the quantum corrections induced by β . Eq. (46)
yields 〈T 〉 �= 0 for any value of β but β = 1. It is in full compliance with the fact that if 〈T 〉 = 0, 
then the UV cut-off would be required to be much shorter than any physical length scale involved. 
Besides, 〈T 〉 = 0 for any value of β would also demand the absence of any intrinsic 4D length 
associated with the background, otherwise the CFT is affected by that scale. For the deformed 
AdS5–Schwarzschild black brane, the horizon radius r0 is a natural length scale and one therefore 
expects that only CFT modes with wavelengths much shorter than r0, that are much larger than 

4 The large N limit expansion of the CFT requires N ∼ 1/(σ�p)2 � 1. In the original Randall–Sundrum braneworld 
models, the Planck length, �p (for 8πG4 = �2

p , where G4 is the 4D Newton constant), is related to the 5D fundamental 
gravitational length �5 by �2

p = σ�3 [44,45], where σ is the brane tension.
5
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σ−1, can propagate freely. Bulk perturbations at the boundary work as sources the CFT fields, 
and can produce 〈T 〉 = 0.

Of course, this requires that the UV cut-off be much shorter than any physical length scale in 
the system. For a black hole, the horizon radius is a natural length scale and one therefore expects 
that only CFT modes with wavelengths much shorter than rh, that are still much larger than σ−1, 
propagate freely [47].

Besides, for the deformed AdS5–Schwarzschild black brane, one can emulate the holographic 
computation of the Weyl anomaly [48]. In fact, denoting a and c central charges of the conformal 
gauge theory, according to Eq. (24) of Ref. [42],

〈T μ
μ〉CFT = c

16π2

(
Rμνρσ Rμνρσ − 2RμνR

μν + 1

3
R2
)

− a

16π2

(
Rμνρσ Rμνρσ −4RμνR

μν +R2
)

, (76)

where the terms in parentheses are, respectively, the Euler density and the square of the Weyl 
curvature.

It is worth to mention the splitting of the allowed range of β into 0.75 < β < 0.9 and 1 < β �
1.2. Firstly, considering the range 1 < β � 1.2, Ref. [49] studied an effective 5D bulk gravity 
dual, and showed that the KSS bound is violated, whenever the central charges in the Weyl 
anomaly (76) satisfy |c − a|/c � 1. In this way, the inequality c > a yields the KSS bound to 
be violated [50,51]. Ref. [49] showed that, as an effect of curvature squared corrections in the 
AdS bulk, the shear viscosity-to-entropy density ratio can be expressed as η

s
= 1

4π
a
c

+O(1/N2). 
Therefore, in the large N limit, the equality η

s
�

1
4π

a
c

holds, and the central charges ratio drive the 
KSS bound violation, whenever c �= a. In fact, the well-known N = 4, SU(N ) super-Yang–Mills 
theory implies a = c, however nothing precludes that c �= a in other cases [49].

Secondly, now considering the allowed range 0.75 < β < 0.9, the deformed AdS5–Schwarzs-
child black brane, on the boundary u → 0, the square of the Weyl curvature can be expanded 
as

N2
(

40

3
+ 32

3
(β − 1)u4 + 8(β − 1)u6

)
+O

(
u7) , (77)

and the Euler density as

N2
(

120 + 96(β − 1)u4 + 72(β − 1)u6
)

+O
(
u7) , (78)

where N2 = πL3/2G. One notices in Eqs. (77), (78) that the leading-order terms contain 
factors (β − 1)up , for p = 4, 6. Therefore, the limits β → 1, corresponding to the standard 
AdS5–Schwarzschild black brane, and the boundary u → 0 limit, are indistinguishable. Hence, 
the limit u → 0 yields

〈T μ
μ〉CFT = 520N2

9
, (79)

having the same result of the standard AdS5–Schwarzschild black brane.
It is worth to compare an already known result about η

s
in presence of quantum corrections. 

In fact, Ref. [52] discusses quantum corrections to the η
s

ratio, by including higher derivative 
terms with the 5-form RR flux to the calculation. Corrections are implemented as inverse powers 
of the color number N , and the leading 1/N2 correction adds two corrections terms to entropy 
density, s, modifying η in QCD strongly coupled QGP. Its original value, 1 , is increased by 
s 4π
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approximately 37%, roughly 22% due to the first correction term and 15% due to the second. As 
discussed in this section, our setup yields corrections that can be interpreted as quantum ones, 
induced by β , as expressed in Eq. (46). For β = 0.75, consisting of a lower bound for β , the η

s

ratio increases ∼ 4.1 times the original η
s

= 1
4π

value. In the range 0.75 < β < 0.9, there is a 
minimum at β ≈ 0.8, for which the shear viscosity-to-entropy ratio equals 2.5 the KSS bound. 
In the range 1 < β ≤ 1.2, we showed that the KSS bound is violated. For example, as analyzed 
in Eq. (74), (75), the value β = 1.05 yields η

s
= 0.54 

( η
s

)
S

, whereas taking β = 1.2 implies that 
η
s

= 0.17 
(η

s

)
S

.

6. Concluding remarks and perspectives

The ADM procedure was used to derive a family of AdS5–Schwarzschild deformed gravi-
tational backgrounds, involving a free parameter, β , in the black brane metric (23), (24), (25). 
Computing the η

s
ratio for this family provided two possible values to β . The first one, β = 1, 

was physically expected, corresponding to the AdS5–Schwarzschild black brane. Besides the im-
portance of the result itself, in particular for the membrane paradigm of AdS/CFT, it has a good 
potential for relevant applications, mainly in AdS/QCD. Taking into account the thermodynamics 
that underlies the family of deformed black branes solutions, arising from the Einstein–Hilbert 
action in the bulk, with a Gibbons–Hawking term and a counter-term that eliminates divergences, 
yields the deformed black brane temperature (39). This expression, together with the fact that the 
event horizon of the deformed AdS5–Schwarzschild black brane must assume real values, con-
strain the range of the free parameter β in the range (73).

Although we have derived our results using the ADM formalism, in a bulk embedding sce-
nario, the KSS bound violation in the range 1 < β ≤ 2 represents, as a matter of speculation, a 
possible smoking gun towards the fact that the deformed AdS5–Schwarzschild black brane (23), 
with metric coefficients (24), (25), might be, alternatively, derived from an action with higher 
curvature terms. However, up to our knowledge, no result has been obtained in this aspect, yet.

The family of AdS5–Schwarzschild deformed black branes, here derived using the ADM for-
malism, is also not the first example in the literature of a setup that violates the KSS bound and
does not involve higher derivative theories of gravity, in the gauge/gravity correspondence. In 
fact, strongly coupled N = 4 super-Yang–Mills plasmas can describe pre-equilibrium stages of 
the quark-gluon plasma (QGP) in heavy-ion collisions. In this setup, the shear viscosity, trans-
verse to the direction of anisotropy, was shown to saturate the KSS viscosity bound [53]. Besides, 
anisotropy in the shear viscosity induced by external magnetic fields in a strongly coupled plasma 
also provided violation in the KSS bound [54]. Theories with higher order curvature terms in the 
action, in general, comprise attempts of describing quantum gravity. Hence, one is restricted to 
consider CFT for which the central charges satisfy |c − a|/c � 1 and c > a, in such a way that 
still c ∼ a � 1, also yielding violation of the KSS bound [50,51]. Up to now, the equations of 
motion for 5D actions with higher curvature terms up to third order are already established in the 
literature, but it has been not possible to obtain the deformed AdS5–Schwarzschild black brane 
(23) yet as an exact solution to any of them. We keep trying to compute higher curvature terms, 
including fourth order terms, and we have not exhausted all the possibilities, yet. Any effective 
action is expected to contain curvature terms of higher order, each one of them accompany-
ing their respective coefficients. To derive a sensible derivative expansion, one should restrict to 
the classes of CFTs wherein these coefficients are proportional to inverse powers of the central 
charge c [50].
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As large-Nc gauge theories considered by AdS/CFT are good approximations to QCD, one 
could expect that the result of Eq. (15) may be applied to the QGP, which is a natural phenomenon 
in QCD, when at high enough temperature the quarks and gluons are deconfined from protons 
and neutrons to form the QGP [19]. In fact, experiments in the RHIC have shown that the QGP 
behaves like a viscous fluid with very small viscosity, which implies that the QGP is strongly-
coupled, thus discarding the possibility of using perturbative QCD to the study of the plasma. 
Therefore, the new AdS5–Schwarzschild deformed black brane (23) can be widely used to probe 
additional properties in the AdS/QCD approach. As in the holographic soft-wall AdS/QCD the 
AdS5-Schwarzschild black brane provides a reasonable description of mesons at finite temper-
ature [23], we can test if using the AdS5–Schwarzschild deformed black brane derives a more 
reliable meson mass spectra for the mesonic states and their resonances, better matching experi-
mental results. Besides, the new AdS5–Schwarzschild deformed black brane can be also explored 
in the context of the Hawking–Page transition and information entropy [55,56].
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Appendix A

f (r, r0, β)

= − 1

r10

{
−
(

10(β − 1) + r6 − 3r2r4
0

)(
β + r6 − r2r4

0 − 1
)

+ 4r8
(−2β + r6 + r2r4

0 + 2
)2(

β + r6 − r2r4
0 − 1

)2
+ 4r8

(
4r12+8(2−3β)r8r4

0 +(20β−23)r4r8
0 +3(4β−1)r12

0

)2(
2r8 − 5r4r4

0 + 3r8
0

)2 (
2r4 + (1 − 4β)r4

0

)2
− 2r8

(
8r16−60r12r4

0 +6(40β(2β−3)+67)r8r8
0 +(4β−1)(20β+43)r4r12

0 −9(1−4β)2r16
0

)
(
2r8−5r4r4

0 +3r8
0

) (
2r4+(1−4β)r4

0

)2
+ 1

2r4+(1−4β)r4
0

[r2
(

2r8+2r6−5r4r4
0 +(1−4β)r2r4

0 +3r8
0

)
×
(
β+r6−r4−r2r4

0 −1
)
]
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+ 4r8
(
r6+r2r4

0 +2−2β
) (

4r12+8(2−3β)r8r4
0 +3(4β−1)r12

0

)(
2r4−3r4

0

) (
r4−r4

0

) (
2r4+(1−4β)r4

0

) (
β+r6−r2r4

0 −1
)

+ 2r8

(
2r8 + 5r4r4

0 − 9r8
0

2r8 − 5r4r4
0 + 3r8

0

− 4r4

2r4 + (1 − 4β)r4
0

+ r2
(
3r4 − r4

0

)
β + r6 − r2r4

0 − 1

)}
(A.1)

Appendix B

We will show that the graviton propagates at the speed of light. Throughout this appendix we 
make r0 = 1, and the metric (23) is written in coordinates {t, r, x, y, z}, where r = u−1 according 
to the present convention.

Consider a perturbation of the form (48). As discussed in the text, the perturbation hxy can 
be considered as a field on its own, hence we define ϕ = gxxhxy . We now identify the action as 
S ∼ S0 + S2, where S0 does not have any contribution from ϕ, i.e. it is the action as studied in 
Sect. 3.1, whereas S2 contains contributions of ϕ and its derivatives. Let

ϕ =
∫

dk�(r)e−iωt+ikr+iqz , (B.1)

where dk = dωdqdk

(2π)3 , so that S2 ∝ ∫ L(�, �′, �′′), the proportionality factor is discarded. The 
Lagrangian reads√

A

N
L = �2

[
− 6r5 + 2rA + r2

(
ikA + 2A′ + 2AN ′

N

)
+ 7

2
r3
(

− q2 − Ak2 + ω2

N

)

+ r3
(

ikA′ + ikA
N ′

N
+ AN ′′

2N

+ A′N ′

4N
− AN ′2

4N2

)]
+ ��′

[
r2 (8 + 7ikr)A + A′ + AN ′

N

]
+ 3

2
�′2A + 2A��′′ .

(B.2)

For an action dependent on a single field up to its second derivative one can show immediately 
that

δS = δSbdy +
∫

drδ�

[(
∂L
∂�′′

)′′
−
(

∂L
∂�′

)′
+ ∂L

∂�

]
, (B.3)

δSbdy are surface terms, while the factor inside the integral is the equation of motion.
The momentum vector is kμ = (ω, k, 0, 0, q). Evaluating the EOM from (B.3) using La-

grangian (B.2) we obtain, in the limit kμ �→ ∞, the following

kμkμ = 0 , (B.4)

i.e. the EOM for a light-ray. This shows that the graviton – field associated to the perturbation 
(48) – propagates with the speed of light.
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