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Abstract. We propose a new method to extract the collective masses and momenta associated with a given set

of collective coordinates, along a dynamical microscopic mean-field evolution. We apply our method to the

symmetric fission of 258Fm nucleus, and analyze the dynamical evolution of the system in the collective space.

We compare, between the dynamical and the adiabatic paths, the force acting on the quadrupole degree of

freedom, which is closely related to the relative distance between fragments. It is shown that dynamical effects

beyond the adiabatic limit are important for formation and scission of the neck between emitted fragments.

1 Introduction

Nuclear time-dependent energy density functional (TD-

EDF) approach is experiencing nowadays a renewal of

interest [1–12]. It allows one to describe a wide vari-

ety of dynamical processes ranging from small to large

amplitude collective motion, including nuclear reactions.

Among them, the description of the nuclear fission pro-

cess remains one of the most difficult challenges [13–16].

Since the process involves complex multi-dimensional

quantum tunneling and dynamical effects beyond the adi-

abatic limit, it has not been fully described with a unified

microscopic approach while the process is rather well un-

derstood based on phenomenological models [17].

The main difficulty of the fission is that it is needed to

treat both single-particle and collective degrees of freedom

(DOF) as quantum objects [18]. To this end, using the fact

that the time scale of the fission is rather large, one can

start with the adiabatic potential-energy landscape. The

semiclassical approach can then be employed to obtain the

fission path and lifetime based on it. Alternatively one can

perform the time-dependent generator-coordinate method

(TDGCM) [19] for better taking into account the many-

body effect and configuration mixing. However, it is a nu-

merically highly demanding task to perform TDGCM with

several collective degrees of freedom.

As an alternative approach one can employ the time-

dependent energy density functional (TD-EDF) theory,

which offers the possibility of describing dynamical pro-

cesses involving rather complex shapes without assuming

adiabaticity. A main drawback of this approach in de-

scribing the fission process is that the motion of collec-

tive DOFs is nearly classical, which means that the theory

can hardly describe the quantum tunneling of the system
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through the fission barrier. However, it is still possible to

investigate and extract some important information along

the fission path after the system has passed through the

barrier [13–16].

The aim of the present work is to explore the possi-

bility to get the macroscopic transport coefficients such as

mass, potential, and dissipation directly from a TD-EDF

theory, which takes into account the dynamical effects that

may play an important role in the fission process. To

this end, we propose a new method to obtain collective

masses and momenta associated with a given set of collec-

tive DOF, and we apply this method to the fission of 258Fm

nucleus.

2 Collective mass and momentum
extracted from dynamical mean-field
theory

2.1 TD-EDF evolution of normal and anomalous
densities

Before starting the main subject of the present work, we

recall some aspects of TD-EDF with pairing. The matrix

elements of the normal and anomalous densities are de-

fined through

ρi j(t) = 〈â†j âi〉, κi j(t) = 〈â jâi〉,

where (â†i , âi) correspond to creation/annihilation opera-

tors of a complete set of single-particle states. The expec-

tation values are taken on the trial quasi-particle vacuum

that is evolved in time. The TD-EDF equation of motion

with pairing can be written as (see for instance [20]):

i�
d
dt
ρ =

[
h(ρ), ρ

]
+ κΔ∗ − Δκ∗, (1)

i�
d
dt
κ = h(ρ)κ + κh∗(ρ) − ρΔ − Δρ∗ + Δ. (2)
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Here h(ρ) and Δ are respectively the mean-field and pair-

ing field matrix. These operators can be generically writ-

ten as:

h(ρ)i j =

(
p2

2mN

)
i j
+ Ui j(ρ)

=

(
p2

2mN

)
i j
+

∑
kl

vMik jlρlk (3)

Δi j =
1

2

∑
kl

vPi jklκkl. (4)

where mN denotes the nucleon mass and U is the mean-

field potential. Here vM and vP denote effective vertex re-

spectively in the particle-hole and particle-particle chan-

nels and can be directly defined as functional derivative of

the energy.

2.2 Mass and momentum associated with
collective coordinate

Now we give the formulas for mass and momentum of a

collective variable based on the dynamical mean-field evo-

lutions given in Eqs. (1) and (2). Here we assume that

the effective interactions both in particle-hole and particle-

particle channels are local and zero-range, as the ones most

widely employed in the nuclear mean-field calculations.

We further restrict ourselves to one-body local operators

Q̂α for the collective variables. For example, it can be the

quadrupole moment which is given by Q̂α = 2ẑ2 − x̂2 − ŷ2.

Its expectation value along the TD-EDF path is given by

〈Q̂α〉 = Tr[Qαρ(t)]. (5)

Let us denote the momentum conjugate to Q̂α by P̂α,
and the mass by Mα. We demand two conditions to be

satisfied by the coordinate, momentum, and mass [21], i.e.,

d〈Q̂α〉
dt

=
〈P̂α〉
Mα
, (6)

〈[Q̂α, P̂α]〉 = i�, (7)

where the latter is also used in the time-dependent random-

phase approximation (TDRPA) [22]. From the above re-

quirements we obtain [21]

mN

Mα
= 〈(∇Qα) · (∇Qα)〉, (8)

Pα =
�

2i
Mα
mN

[(∇Qα) · ∇ + ∇ · (∇Qα)] , (9)

for the mass and the matrix elements of the conjugate mo-

mentum in the real space, for the given collective coordi-

nate. Similar expressions for momentum [23] and for mass

(see for instance [24–26]) are also found in literature.

2.3 Generalization to several collective degrees of
freedom.

Let us now consider a more general case where a set of N
collective DOFs {Qα}α=1,N are selected. A naive general-

ization is to assign to each variable Qα, a collective mo-

mentum Pα with matrix elements given by Eq. (9). One

should a priori also generalize the mass matrix elements

as

mN

Mαβ(t)
= 〈(∇Qα) · (∇Qβ)〉. (10)

This expression naturally extends the previous case and

was also given in Ref. [24]. As shown in Ref. [21], the

diagonalization of the mass gives new canonical pairs of

operators (Q̂′
k, P̂

′
k), whose commutation rules identify with

the TDRPA ones and are given by

〈[Q̂′
k, P̂

′
l]〉 = i�δkl. (11)

These new operators are particularly useful to get a

simple expression for the collective kinetic energy. In par-

ticular, we have
d〈Q̂′

k〉
dt =

〈P̂′k〉
M′

k
while the collective kinetic

energy is simply given by

E{α}
kin
=

∑
k

p′2k (t)
2M′

k(t)
. (12)

Once the set of collective variables is properly de-

fined, macroscopic analysis of TD-EDF evolution can be

made. Such a connection from the microscopic level to the

macroscopic one is illustrated below for the fission pro-

cess.

3 Application to the fission of 258Fm

To illustrate the method presented in the previous section,

we consider the case of 258Fm that was the subject of the

recent work [16]. This nucleus is anticipated to have three

different paths towards fission. In this work, we concen-

trate on the so-called symmetric compact shape. The en-

ergy landscape is obtained using the EV8 program with a

constraint of the quadrupole moment [27]. We use here

the standard definition for multipole moments

Qλ =

√
16π

2λ + 1
〈r̂λŶλ0〉, (13)

leading for instance to Q2 = 〈2ẑ2 − x̂2 − ŷ2〉.
An illustration of the potential energy curve (PEC) is

shown in Fig. 1 as a function of the quadrupole moment

Q2. As in Ref. [16], the Sly4d Skyrme functional [1] is

used for the mean-field channel while a constant interac-

tion is retained for the pairing channel. The static calcu-

lations are performed with a mesh size 13.2 × 24.4 × 13.2
fm3 and a mesh step Δx = 0.8 fm.

The dynamical evolution of the system starting from

any point of the PEC can be made consistently using

the recently developed TD-EDF code including pairing

in the BCS approximation [12, 28, 29]. Dynamical cal-

culations shown here are performed in a mesh of size
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Figure 1. (Color online) Potential energy curve of 258Fm nucleus

as a function of the quadrupole deformation parameter (in barn

unit). Isosurfaces of the total density drawn at half the maximum

value at Q2 = 34 b, 80 b, 194 b, and 399 b are also shown. The

two thick arrows indicate the spontaneous fission threshold Qth
2

and the adiabatic scission point Qsc
2

.

26.4 × 72.8 × 26.4 fm3 with the same mesh step as in

the static case Δx = 0.8 fm. The time step is taken to be

Δt = 1.5×10−24 sec. In the present calculations, reflection

and axial symmetries are assumed in the constrained cal-

culation. Since symmetry cannot be broken spontaneously

by mean-field, only even multipole moments can be non-

zero during the evolution. In particular, we do not consider

here possible octupole deformation.

As it was observed previously, the system will sponta-

neously separate into two fragments only above a certain

value of the initial quadrupole moment, which is larger

than that of the fission barrier shown in Fig. 1 [13–16].

The lowest initial quadrupole moment leading to sponta-

neous fission within TD-EDF is called hereafter “Dynam-

ical Fission Threshold” and will be denoted by Qth
2

. In the

present calculation, the threshold deformation is approxi-

mately Qth
2
� 160 b. The shaded area in this figure indi-

cates the region where the system does not spontaneously

fission. The fact that Qth
2

is well beyond the expected bar-

rier position signs the deviation from the adiabatic limit

of the microscopic transport theory close to single-particle

level crossings (See Refs. [13–16, 21]).

3.1 Mass parameter from TD-EDF

In the present section, we consider different initial

quadrupole deformations between the fission barrier and

the scission point. The scission point corresponding to

a quadrupole deformation Qsc
2

has already been shown in

Fig. 1. It corresponds to the kink in the PEC appearing

at Q2 � 270 b. Beyond the scission point, the PEC is

nearly dominated by the Coulomb repulsion between the

two fragments (see also Fig. 5).

As an illustration, we consider that the initial state cor-

responds to Qini
2 = 160 b, that is a situation just above the

spontaneous fission threshold. In particular, it has been

shown in Ref. [16] that if the system is left initially with

zero collective energy, the total final kinetic energy of frag-

ments after TD-EDF evolution is compatible with exper-

imental observation. To study possible non-adiabatic ef-

fects, initial conditions with boosts in the quadrupole mo-

Figure 2. (Color online) Quadrupole mass parameter calculated

from TD-EDF paths. In all cases, the initial quadrupole moment

is Qini
2 = 160 b. Different trajectories correspond to different ini-

tial boosts. The corresponding initial collective energies Eini
2 are

systematically reported in the figure. The quadrupole mass along

the adiabatic PEC is also shown (solid line) for comparison.

ment of varying intensity (including no boost at all) are

used. The boost in the quadrupole momentum is applied

with the local operator exp(ip2Q2(r)/�) to each single-

particle wave-function. This induces an additional initial

collective kinetic energy [14] :

Eini
2 =

p2
2

2m

∫
|∇Q2(r)|2n(r, t = 0)d3r

where n(r, t = 0) denotes the local density of the system in

the adiabatic curve selected at a given initial moment.

In Fig. 2, the quadrupole mass deduced with the

present method is shown as a function of Q2 along the

TD-EDF trajectories for Qini
2 = 160 b with increasing ini-

tial quadrupole boosts. For display purpose, we take the

ratio of the mass to its asymptotic value with two identical

fragments at infinite separation. To illustrate the departure

from the adiabatic path, we also show the result obtained

by assuming that the local density identifies with the den-

sity obtained from the constrained mean-field calculation.

In the following, the latter is referred to as “static mass”.

We observe in Fig. 2 that the mass is in general rather

close to the static mass, especially if Eini
2 = 0 MeV. In

that case, the system first follows closely the adiabatic case

and then some deviation is observed. The deviation occurs

around the scission point. At this point, the slope of the

PEC suddenly changes to match with the Coulomb case

that dominates at large distance. This increase of slope

is expected to induce also a larger collective velocity and

therefore also induce a possible departure from the adia-

batic limit. We see in this figure that the mass also de-

pends on the initial collective velocity imposed to the sys-

tem. The larger is the initial velocity, the more deviation

from the static mass is observed.

3.2 Total versus collective kinetic energy

As we mentioned in Sec. 2, the present method allows us

to access a set of conjugate momenta and the collective

kinetic energy (CKE) as well as the masses associated with

the set of collective coordinates. The CKE of the set of
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Figure 3. (Color online) Evolutions of the total collective kinetic

energy Etot
kin

as a function of time. The initial systems correspond

respectively to a quadrupole moment (a) Qini
2 = 171 b without

boost or (b) to Qini
2 = 80 b with initial boost. In both cases, the

CKE obtained using Eq. (12) and associated to Q2 only (E2
kin

),

Q4 only (E4
kin

) or both (E2+4
kin

) are also shown.

collective variables {Qα} can be obtained by diagonalizing

the mass matrix and by using Eq. (12).

In Fig. 3, the CKE associated to the quadrupole and/or

hexadecapole moments are displayed as a function of time

during the fission process. We also compare these energies

to the total kinetic energy computed through

Etot
kin =

�
2

2m

∫
d3r

j(r, t)2

n(r, t)
, (14)

where j(r, t) is the single-particle current. Two different

initial conditions are considered, one starting from an al-

ready elongated shape without boost and one with a more

compact shape but where a boost in quadrupole momen-

tum is applied to induce fission.

From this figure several interesting aspects could be

seen

• At initial time Etot
kin
= E2

kin
. This is indeed due to the fact

that either the two are equal to zero (Fig. 3(a)) or that the

initial condition (Fig. 3(b)) is such that all initial kinetic

energy is induced by the quadrupole boost.

• The CKE associated to Q4 is also initially non zero. This

stems from the fact that Q2 and Q4 are not independent

collective variables. Therefore boosting in quadrupole

moment also induces an excitation of the hexadecapole

and higher order even multipole moments.

• Due to the rather strong correlations between Q2 and

Q4, the off diagonal matrix elements of the inertia play

an important role. Indeed, neglecting this contribution

would give:

E2+4
kin � E2

kin + E4
kin. (15)

However, summing directly these two energies would

exceed the total kinetic energy that is an upper bound

whatever is the selected set of collective variables. In

 0
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Figure 4. (Color online) Evolutions of the collective momentum

as a function of time for different initial quadrupole deformations

(with Qini
2 ≥ Qth

2 ). The arrow indicates the scission point associ-

ated to the adiabatic potential.

Fig. 3, E2+4
kin

accounts for the off-diagonal inertia and fi-

nally leads to an energy that is lower than Etot
kin

.

• At large distances, we see that

Etot
kin � E2+4

kin � E2
kin. (16)

This is due to the fact that all kinetic energies are domi-

nated by the relative motion of the two fragments in the

exit channel.

3.3 Collective evolution close to scission

Here we investigate the collective evolution close to the

scission point. The scission can be seen directly in Fig. 1

by the change of slope around Qsc
2
� 270 b.

The evolution of the collective momentum is displayed

in Fig. 4 as a function of Q2 for different initial defor-

mations. We clearly see different behaviors depending if

the initial quadrupole moment is above or below Qsc
2

. For

Qini
2

≥ Qsc
2

the momentum evolution corresponds essen-

tially to the motion of two fragments boosted by their mu-

tual Coulomb field. For Qini
2
≤ Qsc

2
, the nuclear interaction

between nuclei still plays a significant role and a richer

evolution is seen. In that case, independently of the initial

Qini
2 value, after some transition time, all curves become

nearly identical with one another.

In the absence of dissipation and assuming that the

dynamics stem uniquely from a collective potential, one

would expect that the smaller is Qini
2

, the higher is P2(t) as

a function of Q2. However, it is clearly seen from Fig. 4

that part of the energy is dissipated in the early stage of the

evolution. To further progress, we may follow Ref. [6] and

assume that the momentum evolution can be written as a

simple dissipative equation of motion:

Ṗ2 = −∂Vcoll

∂Q2

+
1

2

∂M2

∂Q2

Q̇2
2 − γ(Q2)Q̇2, (17)

where the collective potential Vcoll and the friction coeffi-

cient γ are unknown quantities. In the adiabatic limit, the

collective potential identifies with the one shown in Fig. 1

and γ(Q2) = 0 along the path.
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Figure 5. (Color online) (a) Function F(Q2) obtained with TD-

EDF using Eq. (18) for the three evolutions with Qini
2 ≤ Qsc

2 dis-

played in Fig. 4. For comparison, we also show the forces acting

on Q2 that would be induced either by the adiabatic potential

(black dashed line) or solely by the Coulomb field (black filled

circle). The arrows in the figure indicate the Q2 value where

the neck density ρneck becomes ten times less than the saturation

density ρsat = 0.16 fm−3. The two arrows indicate the adiabatic

(static) and dynamical paths (dynamic). In the latter case, the

position is almost independent of Qini
2 . (b) Dynamical potential

curve obtained by integrating F(Q2) using Eq. (22). Again for

comparison, the adiabatic potential and the Coulomb field are

also shown.

To access the potential and dissipative collective prop-

erties, it is convenient to define the quantity

F(Q2) ≡ Ṗ2 − 1

2

∂M2

∂Q2

Q̇2
2. (18)

This function is shown in Fig. 5 for some of the evolutions

presented in Fig. 4. If the macroscopic transport equation

(17) is valid, this quantity is expected to identify with:

F(Q2) = −∂Vcoll

∂Q2

− γ(Q2)Q̇2. (19)

and therefore is sensitive to both the potential and dissipa-

tive part. For comparison, we also display the cases where

dissipation is assumed to be zero in Eq. (19) and where

the potential part identifies either to the adiabatic poten-

tial or solely to the Coulomb field. In the latter case, the

Coulomb potential for large relative distance, or large Q2,

is approximated by

VC ≈ Z1Z2e2

R
≈ Z1Z2e2√

A
2A1A2

Q2

=
1

4

√
A
2

Z2e2Q−1/2
2
. (20)

The last expression is obtained for the symmetric fission

case, i.e. Z1 = Z2 = Z/2 and A1 = A2 = A/2 considered

here, and further assuming no intrinsic quadrupole defor-

mation of emitted fragments after scission.

Figure 5(a) gives interesting information on the differ-

ent steps leading to fission. We first see that after the very

first instant of the evolution where some dissipation oc-

curred, all evolutions obtained with Qini
2 ≤ Qsc

2
are on top

of each other. The dynamic before scission deviates sig-

nificantly from the expected adiabatic one underlining the

importance of both non-adiabatic and dissipative effects.

In particular, we clearly see that the dynamical formation

of the neck differs from the adiabatic case. Defining the

scission point as the Q2 value where the neck density equal

1/10 of the saturation density, we observe that dynami-

cally the scission occurs at much larger Q2 than the adia-

batic case (arrows in Fig. 5). This has two consequences

(i) first, the two nuclei stick together up to a larger distance

compared to the adiabatic case. Accordingly, the nuclear

field can play an enhanced role. (ii) we see that we should

introduce the notion of “dynamical scission point” that a

priori differs from the “adiabatic scission point” and that

occurs at larger quadrupole moment. In the present case of

symmetric compact fission, the dynamical scission point

occurs around Qsc,dyn

2
� 360 b, compared to the adiabatic

scission point Qsc,stat
2

� 270 b.

After scission, the dynamical evolution is very close to

the Coulomb field case (black filled circles). This indicates

that no dissipation takes place after this point. Some os-

cillations observed around the average Coulomb repulsion

are due to intrinsic oscillation of each fragment. These

oscillations obviously go beyond the simple macroscopic

approximation (17) since they involve additional intrinsic

shape degrees of freedom.

Figure 4 seems to indicate that dissipation occurs only

at rather small Q2. For Q2 > 300 b, one might assume that

the motion is only driven by a potential that we denote by

Vdyn(Q2). Then, we have the approximate relationship:

∂Vdyn(Q2)

∂Q2

= −F(Q2) (21)

where F(Q2) is estimated along the path using Eq. (18).

The potential may be obtained through the relation:

Vdyn(Q2) = VC(Qmax
2 ) +

∫ Qmax
2

Q2

F(Q′
2)dQ′

2 (22)

where the boundary Qmax
2

is taken much larger than the dy-

namical scission point so that the potential at the bound-

ary is dominated by the Coulomb repulsion between the

fragments. Examples of potential obtained in this way is

shown in Fig. 5(b) assuming Qmax
2
= 800 b. Vad shown

with the dashed curve in Fig. 5(b) is drawn by shifting

the PEC given in Fig. 1 so that it coincides with VC at

Q2 = 433 b (≥ Qsc,stat
2

).

We see in Fig. 5(b) that the potential obtained us-

ing Eq. (22) differs significantly from the adiabatic one

at small Q2 due to dynamics and eventually non-adiabatic

effects. Note that the dynamical potential should be inter-

preted with some caution since it might contain some dis-

sipative effects especially at initial time. It is worth in par-

ticular mentioning that the adiabatic and dynamical poten-

tials should be identical at initial Q2. We clearly observe

in Fig. 5(b) a lower value for the dynamical case. The

difference between the adiabatic and dynamical curves at

t = 0 corresponds to the energy transferred into the other

collective degrees freedom or internal excitations of the

fragments during the fission. We see that this difference is

≈ 23 MeV for Qini
2 = 160 b.
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4 Conclusion
In the present work, a method is proposed to construct con-

jugated collective momenta associated to a given set of lo-

cal collective variables along a TD-EDF path. A detailed

discussion is made on the proper definition of associated

inertia including the effect of its possible off-diagonal ma-

trix elements. Once pairs of conjugated collective vari-

ables are obtained, one can make a macroscopic reduction

of the microscopic mean-field dynamic.

An illustration is given here with the fission process.

A precise analysis is made in the symmetric fission of
258Fm. The mass matrix is calculated along the fission

path including only quadrupole moment, and/or both the

quadrupole and hexadecapole moment. In particular, the

important role of off-diagonal matrix elements of the mass

is underlined. Then, a detailed analysis of the macroscopic

evolution in the quadrupole collective space is made. The

importance of dissipation in the early stage of the evolu-

tion is discussed. Clear non-adiabatic effects are probed, in

particular associated with the specific neck evolution. We

show that the dynamical scission occurs at much larger

quadrupole moment compared to that for the adiabatic

path. An attempt to extract the nucleus-nucleus potential

felt by the daughter nuclei after fission is also made. It

is shown that this potential significantly differs from the

adiabatic one due to the non-adiabatic effects and the dis-

sipation of energy into the intrinsic excitations of fission

fragments.

It is worth mentioning that the method presented here

is rather versatile and could be used in other dynamical

processes. For instance, it could a priori be used to study

anharmonicity in giant resonances as well as possible cou-

pling between collective modes.
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