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Collective aspects of microscopic mean-field evolution along the fission path
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Abstract. We propose a new method to extract the collective masses and momenta associated with a given set
of collective coordinates, along a dynamical microscopic mean-field evolution. We apply our method to the
symmetric fission of 2*Fm nucleus, and analyze the dynamical evolution of the system in the collective space.
We compare, between the dynamical and the adiabatic paths, the force acting on the quadrupole degree of
freedom, which is closely related to the relative distance between fragments. It is shown that dynamical effects
beyond the adiabatic limit are important for formation and scission of the neck between emitted fragments.

1 Introduction

Nuclear time-dependent energy density functional (TD-
EDF) approach is experiencing nowadays a renewal of
interest [1-12]. It allows one to describe a wide vari-
ety of dynamical processes ranging from small to large
amplitude collective motion, including nuclear reactions.
Among them, the description of the nuclear fission pro-
cess remains one of the most difficult challenges [13-16].
Since the process involves complex multi-dimensional
quantum tunneling and dynamical effects beyond the adi-
abatic limit, it has not been fully described with a unified
microscopic approach while the process is rather well un-
derstood based on phenomenological models [17].

The main difficulty of the fission is that it is needed to
treat both single-particle and collective degrees of freedom
(DOF) as quantum objects [18]. To this end, using the fact
that the time scale of the fission is rather large, one can
start with the adiabatic potential-energy landscape. The
semiclassical approach can then be employed to obtain the
fission path and lifetime based on it. Alternatively one can
perform the time-dependent generator-coordinate method
(TDGCM) [19] for better taking into account the many-
body effect and configuration mixing. However, it is a nu-
merically highly demanding task to perform TDGCM with
several collective degrees of freedom.

As an alternative approach one can employ the time-
dependent energy density functional (TD-EDF) theory,
which offers the possibility of describing dynamical pro-
cesses involving rather complex shapes without assuming
adiabaticity. A main drawback of this approach in de-
scribing the fission process is that the motion of collec-
tive DOFs is nearly classical, which means that the theory
can hardly describe the quantum tunneling of the system
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through the fission barrier. However, it is still possible to
investigate and extract some important information along
the fission path after the system has passed through the
barrier [13-16].

The aim of the present work is to explore the possi-
bility to get the macroscopic transport coefficients such as
mass, potential, and dissipation directly from a TD-EDF
theory, which takes into account the dynamical effects that
may play an important role in the fission process. To
this end, we propose a new method to obtain collective
masses and momenta associated with a given set of collec-
tive DOF, and we apply this method to the fission of 2>Fm
nucleus.

2 Collective mass and momentum
extracted from dynamical mean-field
theory

2.1 TD-EDF evolution of normal and anomalous
densities

Before starting the main subject of the present work, we
recall some aspects of TD-EDF with pairing. The matrix
elements of the normal and anomalous densities are de-
fined through

pii(D) = (@), wij(0) = (&),

where (&j,&i) correspond to creation/annihilation opera-
tors of a complete set of single-particle states. The expec-
tation values are taken on the trial quasi-particle vacuum
that is evolved in time. The TD-EDF equation of motion
with pairing can be written as (see for instance [20]):

d
ih—

o = [ho).pl+ b - A, (1)
ihditk = h(p)k+kh*(p) —pA—Ap" +A.  (2)
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Here h(p) and A are respectively the mean-field and pair-
ing field matrix. These operators can be generically writ-
ten as:

Mo)j = (%) +Uylp)
= (zp_)ij lkjlplk 3)
1
A = 5; K. (4)

where my denotes the nucleon mass and U is the mean-
field potential. Here v and v” denote effective vertex re-
spectively in the particle-hole and particle-particle chan-
nels and can be directly defined as functional derivative of
the energy.

2.2 Mass and momentum associated with
collective coordinate

Now we give the formulas for mass and momentum of a
collective variable based on the dynamical mean-field evo-
lutions given in Eqgs. (1) and (2). Here we assume that
the effective interactions both in particle-hole and particle-
particle channels are local and zero-range, as the ones most
widely employed in the nuclear mean-field calculations.
We further restrict ourselves to one-body local operators
Qa for the collective variables. For example, it can be the
quadrupole moment which is given by 0, = 25> — 2 — ).
Its expectation value along the TD-EDF path is given by

(Qa) = Ti{Qup(1)]. )
Let us denote the momentum conjugate to Q, by P,,

and the mass by M,. We demand two conditions to be
satisfied by the coordinate, momentum, and mass [21], i.e.,

d(Qy)  (Po)
d ~ M, ©
([Qa, o)) = if, (7

where the latter is also used in the time-dependent random-
phase approximation (TDRPA) [22]. From the above re-
quirements we obtain [21]

TN~ (V00) - (YO, ®)
P2 (90, v+ V- (VO ©)
Lmy

for the mass and the matrix elements of the conjugate mo-
mentum in the real space, for the given collective coordi-
nate. Similar expressions for momentum [23] and for mass
(see for instance [24-26]) are also found in literature.

2.3 Generalization to several collective degrees of
freedom.

Let us now consider a more general case where a set of N
collective DOFs {Q,},=1n are selected. A naive general-
ization is to assign to each variable Q,, a collective mo-
mentum P, with matrix elements given by Eq. (9). One
should a priori also generalize the mass matrix elements
as

my
Ma,B(t)

This expression naturally extends the previous case and
was also given in Ref. [24]. As shown in Ref. [21], the
diagonalization of the mass gives new canonical pairs of
operators (QA;C, f’,’(), whose commutation rules identify with
the TDRPA ones and are given by

(/AR (1)

These new operators are particularly useful to get a

simple expression for the collective kinetic energy. In par-

d P
ticular, we have <Qk> = ( Q) while the collective Kinetic
k

= ((VQ,) - (VQp)). (10)

energy is simply glven by

72
pi (D)
EW =) k2 (12)
kin ’
— 2M; (1)
Once the set of collective variables is properly de-
fined, macroscopic analysis of TD-EDF evolution can be
made. Such a connection from the microscopic level to the
macroscopic one is illustrated below for the fission pro-
cess.

3 Application to the fission of 253Fm

To illustrate the method presented in the previous section,
we consider the case of 2*Fm that was the subject of the
recent work [16]. This nucleus is anticipated to have three
different paths towards fission. In this work, we concen-
trate on the so-called symmetric compact shape. The en-
ergy landscape is obtained using the EV8 program with a
constraint of the quadrupole moment [27]. We use here
the standard definition for multipole moments

1
Q1= 5 on (0. (13)

leading for instance to Q = (222 — 22 — ?).

An illustration of the potential energy curve (PEC) is
shown in Fig. 1 as a function of the quadrupole moment
(0>. As in Ref. [16], the Sly4d Skyrme functional [1] is
used for the mean-field channel while a constant interac-
tion is retained for the pairing channel. The static calcu-
lations are performed with a mesh size 13.2 x 24.4 x 13.2
fm> and a mesh step Ax = 0.8 fm.

The dynamical evolution of the system starting from
any point of the PEC can be made consistently using
the recently developed TD-EDF code including pairing
in the BCS approximation [12, 28, 29]. Dynamical cal-
culations shown here are performed in a mesh of size
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Figure 1. (Color online) Potential energy curve of 2*Fm nucleus
as a function of the quadrupole deformation parameter (in barn
unit). Isosurfaces of the total density drawn at half the maximum
value at O, = 34 b, 80 b, 194 b, and 399 b are also shown. The
two thick arrows indicate the spontaneous fission threshold Q'
and the adiabatic scission point Q5.

26.4 x 72.8 x 26.4 fm* with the same mesh step as in
the static case Ax = 0.8 fm. The time step is taken to be
At = 1.5x 10724 sec. In the present calculations, reflection
and axial symmetries are assumed in the constrained cal-
culation. Since symmetry cannot be broken spontaneously
by mean-field, only even multipole moments can be non-
zero during the evolution. In particular, we do not consider
here possible octupole deformation.

As it was observed previously, the system will sponta-
neously separate into two fragments only above a certain
value of the initial quadrupole moment, which is larger
than that of the fission barrier shown in Fig. 1 [13-16].
The lowest initial quadrupole moment leading to sponta-
neous fission within TD-EDF is called hereafter “Dynam-
ical Fission Threshold” and will be denoted by Qtzh. In the
present calculation, the threshold deformation is approxi-
mately Q‘zh =~ 160 b. The shaded area in this figure indi-
cates the region where the system does not spontaneously
fission. The fact that Qtzh is well beyond the expected bar-
rier position signs the deviation from the adiabatic limit
of the microscopic transport theory close to single-particle
level crossings (See Refs. [13-16, 21]).

3.1 Mass parameter from TD-EDF

In the present section, we consider different initial
quadrupole deformations between the fission barrier and
the scission point. The scission point corresponding to
a quadrupole deformation Q5° has already been shown in
Fig. 1. It corresponds to the kink in the PEC appearing
at O =~ 270 b. Beyond the scission point, the PEC is
nearly dominated by the Coulomb repulsion between the
two fragments (see also Fig. 5).

As an illustration, we consider that the initial state cor-
responds to Q" = 160 b, that is a situation just above the
spontaneous fission threshold. In particular, it has been
shown in Ref. [16] that if the system is left initially with
zero collective energy, the total final kinetic energy of frag-
ments after TD-EDF evolution is compatible with exper-
imental observation. To study possible non-adiabatic ef-
fects, initial conditions with boosts in the quadrupole mo-

' - 'static '
T ES'= 0.0MeV ----- !
? 9.0 MeV
((:, 360 Mev ............
s 81.1 MeV .
= 1 0 B
Al
= M
0-9 [ L L L L ]

0 100 200 300 400 500
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Figure 2. (Color online) Quadrupole mass parameter calculated
from TD-EDF paths. In all cases, the initial quadrupole moment
is Q' = 160 b. Different trajectories correspond to different ini-
tial boosts. The corresponding initial collective energies E}" are
systematically reported in the figure. The quadrupole mass along
the adiabatic PEC is also shown (solid line) for comparison.

ment of varying intensity (including no boost at all) are
used. The boost in the quadrupole momentum is applied
with the local operator exp(ip,Q»(r)/f) to each single-
particle wave-function. This induces an additional initial
collective kinetic energy [14] :

2
EY = 5—; f IV Qo (r)Pn(r,t = 0)d*r

where n(r, t = 0) denotes the local density of the system in
the adiabatic curve selected at a given initial moment.

In Fig. 2, the quadrupole mass deduced with the
present method is shown as a function of O, along the
TD-EDF trajectories for Qi2ni = 160 b with increasing ini-
tial quadrupole boosts. For display purpose, we take the
ratio of the mass to its asymptotic value with two identical
fragments at infinite separation. To illustrate the departure
from the adiabatic path, we also show the result obtained
by assuming that the local density identifies with the den-
sity obtained from the constrained mean-field calculation.
In the following, the latter is referred to as “static mass”.

We observe in Fig. 2 that the mass is in general rather
close to the static mass, especially if EI" = 0 MeV. In
that case, the system first follows closely the adiabatic case
and then some deviation is observed. The deviation occurs
around the scission point. At this point, the slope of the
PEC suddenly changes to match with the Coulomb case
that dominates at large distance. This increase of slope
is expected to induce also a larger collective velocity and
therefore also induce a possible departure from the adia-
batic limit. We see in this figure that the mass also de-
pends on the initial collective velocity imposed to the sys-
tem. The larger is the initial velocity, the more deviation
from the static mass is observed.

3.2 Total versus collective kinetic energy

As we mentioned in Sec. 2, the present method allows us
to access a set of conjugate momenta and the collective
kinetic energy (CKE) as well as the masses associated with
the set of collective coordinates. The CKE of the set of
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Figure 3. (Color online) Evolutions of the total collective kinetic
energy E% as a function of time. The initial systems correspond
respectively to a quadrupole moment (a) Q7" = 171 b without
boost or (b) to Q¥ = 80 b with initial boost. In both cases, the
CKE obtained using Eq. (12) and associated to Q, only (Eﬁin),

Q4 only (E}, ) or both (E%) are also shown.

kin

collective variables {Q,} can be obtained by diagonalizing
the mass matrix and by using Eq. (12).

In Fig. 3, the CKE associated to the quadrupole and/or
hexadecapole moments are displayed as a function of time
during the fission process. We also compare these energies
to the total kinetic energy computed through

h2 . ,l2
E = %fd»*r J 1 (14)

n(r,t)’

where j(r, 1) is the single-particle current. Two different
initial conditions are considered, one starting from an al-
ready elongated shape without boost and one with a more
compact shape but where a boost in quadrupole momen-
tum is applied to induce fission.

From this figure several interesting aspects could be
seen

e Atinitial time E|3' = El%m. This is indeed due to the fact
that either the two are equal to zero (Fig. 3(a)) or that the
initial condition (Fig. 3(b)) is such that all initial kinetic

energy is induced by the quadrupole boost.

e The CKE associated to Q4 is also initially non zero. This
stems from the fact that Q, and Q4 are not independent
collective variables. Therefore boosting in quadrupole
moment also induces an excitation of the hexadecapole
and higher order even multipole moments.

e Due to the rather strong correlations between Q, and
Qu, the off diagonal matrix elements of the inertia play
an important role. Indeed, neglecting this contribution
would give:

Egt = Eg + Egp,. (15)

However, summing directly these two energies would
exceed the total kinetic energy that is an upper bound
whatever is the selected set of collective variables. In

P, [MeV/(fm c)]

Figure 4. (Color online) Evolutions of the collective momentum
as a function of time for different initial quadrupole deformations
(with Q' > Q). The arrow indicates the scission point associ-
ated to the adiabatic potential.

Fig. 3, Eﬁ;}“ accounts for the off-diagonal inertia and fi-
nally leads to an energy that is lower than E}' .

o At large distances, we see that
tot _ p2+4 _ 2
En = Eign = Ep- (16)

This is due to the fact that all kinetic energies are domi-
nated by the relative motion of the two fragments in the
exit channel.

3.3 Collective evolution close to scission

Here we investigate the collective evolution close to the
scission point. The scission can be seen directly in Fig. 1
by the change of slope around Q5° = 270 b.

The evolution of the collective momentum is displayed
in Fig. 4 as a function of O, for different initial defor-
mations. We clearly see different behaviors depending if
the initial quadrupole moment is above or below Q5. For
07" = Q5 the momentum evolution corresponds essen-
tially to the motion of two fragments boosted by their mu-
tual Coulomb field. For Q' < O, the nuclear interaction
between nuclei still plays a significant role and a richer
evolution is seen. In that case, independently of the initial

izni value, after some transition time, all curves become
nearly identical with one another.

In the absence of dissipation and assuming that the
dynamics stem uniquely from a collective potential, one
would expect that the smaller is Q, the higher is P,(t) as
a function of Q,. However, it is clearly seen from Fig. 4
that part of the energy is dissipated in the early stage of the
evolution. To further progress, we may follow Ref. [6] and
assume that the momentum evolution can be written as a
simple dissipative equation of motion:

_ Vool . 10M,
00, 200

P, = 03~ 7(02)0s, (17)
where the collective potential V,,; and the friction coeffi-
cient y are unknown quantities. In the adiabatic limit, the
collective potential identifies with the one shown in Fig. 1
and y(Q,) = 0 along the path.

07002-p.4
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Figure 5. (Color online) (a) Function F(Q,) obtained with TD-
EDF using Eq. (18) for the three evolutions with Qiz“i < 05 dis-
played in Fig. 4. For comparison, we also show the forces acting
on O, that would be induced either by the adiabatic potential
(black dashed line) or solely by the Coulomb field (black filled
circle). The arrows in the figure indicate the Q, value where
the neck density pneck becomes ten times less than the saturation
density pg = 0.16 fm™3. The two arrows indicate the adiabatic
(static) and dynamical paths (dynamic). In the latter case, the
position is almost independent of Qiz“‘. (b) Dynamical potential
curve obtained by integrating F(Q,) using Eq. (22). Again for
comparison, the adiabatic potential and the Coulomb field are
also shown.

To access the potential and dissipative collective prop-
erties, it is convenient to define the quantity

Lok,
26Q2Q2' (18)

This function is shown in Fig. 5 for some of the evolutions
presented in Fig. 4. If the macroscopic transport equation
(17) is valid, this quantity is expected to identify with:

aVcoll
00,

and therefore is sensitive to both the potential and dissipa-
tive part. For comparison, we also display the cases where
dissipation is assumed to be zero in Eq. (19) and where
the potential part identifies either to the adiabatic poten-
tial or solely to the Coulomb field. In the latter case, the
Coulomb potential for large relative distance, or large O,
is approximated by

F(Q)) = P, -

F(Q) = - ~(02)Q>. 19)

Z1Z,e?

7, Z,¢* 1 [A
Ve ~ ~ 1£2€ _ 1 —Z262Q£1/2. (20)
R A 4 N2
24,4, )

The last expression is obtained for the symmetric fission
case,ie. Z; =7, = Z/2and A; = A, = A/2 considered
here, and further assuming no intrinsic quadrupole defor-
mation of emitted fragments after scission.

Figure 5(a) gives interesting information on the differ-
ent steps leading to fission. We first see that after the very
first instant of the evolution where some dissipation oc-
curred, all evolutions obtained with Q‘Azni < QF are on top

of each other. The dynamic before scission deviates sig-
nificantly from the expected adiabatic one underlining the
importance of both non-adiabatic and dissipative effects.
In particular, we clearly see that the dynamical formation
of the neck differs from the adiabatic case. Defining the
scission point as the O, value where the neck density equal
1/10 of the saturation density, we observe that dynami-
cally the scission occurs at much larger O, than the adia-
batic case (arrows in Fig. 5). This has two consequences
(1) first, the two nuclei stick together up to a larger distance
compared to the adiabatic case. Accordingly, the nuclear
field can play an enhanced role. (ii) we see that we should
introduce the notion of “dynamical scission point” that a
priori differs from the “adiabatic scission point” and that
occurs at larger quadrupole moment. In the present case of
symmetric compact fission, the dynamical scission point
occurs around Q;C’dy" ~ 360 b, compared to the adiabatic
scission point Q5 =~ 270 b.

After scission, the dynamical evolution is very close to
the Coulomb field case (black filled circles). This indicates
that no dissipation takes place after this point. Some os-
cillations observed around the average Coulomb repulsion
are due to intrinsic oscillation of each fragment. These
oscillations obviously go beyond the simple macroscopic
approximation (17) since they involve additional intrinsic
shape degrees of freedom.

Figure 4 seems to indicate that dissipation occurs only
at rather small @,. For O, > 300 b, one might assume that
the motion is only driven by a potential that we denote by
V9 (0Q,). Then, we have the approximate relationship:

AVI(Q)

00,

where F(Q») is estimated along the path using Eq. (18).
The potential may be obtained through the relation:

= —F(Qy) 2y

Q;wx
V0, = Ve(0F™) + fQ F(Q)dQ, (22)

where the boundary Q7** is taken much larger than the dy-
namical scission point so that the potential at the bound-
ary is dominated by the Coulomb repulsion between the
fragments. Examples of potential obtained in this way is
shown in Fig. 5(b) assuming 07** = 800 b. V,q shown
with the dashed curve in Fig. 5(b) is drawn by shifting
the PEC given in Fig. 1 so that it coincides with V( at
0, =433 b (= 05,

We see in Fig. 5(b) that the potential obtained us-
ing Eq. (22) differs significantly from the adiabatic one
at small Q5 due to dynamics and eventually non-adiabatic
effects. Note that the dynamical potential should be inter-
preted with some caution since it might contain some dis-
sipative effects especially at initial time. It is worth in par-
ticular mentioning that the adiabatic and dynamical poten-
tials should be identical at initial Q,. We clearly observe
in Fig. 5(b) a lower value for the dynamical case. The
difference between the adiabatic and dynamical curves at
t = 0 corresponds to the energy transferred into the other
collective degrees freedom or internal excitations of the
fragments during the fission. We see that this difference is
~ 23 MeV for QM = 160 b.
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4 Conclusion

In the present work, a method is proposed to construct con-
jugated collective momenta associated to a given set of lo-
cal collective variables along a TD-EDF path. A detailed
discussion is made on the proper definition of associated
inertia including the effect of its possible off-diagonal ma-
trix elements. Once pairs of conjugated collective vari-
ables are obtained, one can make a macroscopic reduction
of the microscopic mean-field dynamic.

An illustration is given here with the fission process.
A precise analysis is made in the symmetric fission of
23Fm. The mass matrix is calculated along the fission
path including only quadrupole moment, and/or both the
quadrupole and hexadecapole moment. In particular, the
important role of off-diagonal matrix elements of the mass
is underlined. Then, a detailed analysis of the macroscopic
evolution in the quadrupole collective space is made. The
importance of dissipation in the early stage of the evolu-
tion is discussed. Clear non-adiabatic effects are probed, in
particular associated with the specific neck evolution. We
show that the dynamical scission occurs at much larger
quadrupole moment compared to that for the adiabatic
path. An attempt to extract the nucleus-nucleus potential
felt by the daughter nuclei after fission is also made. It
is shown that this potential significantly differs from the
adiabatic one due to the non-adiabatic effects and the dis-
sipation of energy into the intrinsic excitations of fission
fragments.

It is worth mentioning that the method presented here
is rather versatile and could be used in other dynamical
processes. For instance, it could a priori be used to study
anharmonicity in giant resonances as well as possible cou-
pling between collective modes.
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