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NOTATIONS

modulus-square notations

|f(z, ∆)|2 = f(z, ∆)× f(z̄, ∆̄) (0.1)
For left and right conformal weights:

(∆) ≡ ∆, ∆̄

(∆,Y ) ≡ ∆,Y ; ∆̄, Ȳ
(0.2)

For OPE coefficients:

D
(∆3,Y3)
(∆1,Y1),(∆2,Y2)

= 〈V(∆3,Y3)(∞)V(∆1,Y1)(1)V(∆2,Y2)(0)〉 = D∆3,Y3
∆1,Y1;∆2,Y2

D∆̄3,Ȳ3
∆̄1,Ȳ1;∆̄2,Ȳ2

. (0.3)

parametrisations of the central charge

In terms of the background charge Q and coupling constant b:

c = 1 + 6Q2, Q = b+
1
b

(0.4)

c = 1− 6(β − 1
β
)2, β = ib. (0.5)

Central charge of minimal modelsMp,q:

c = cp,q = 1− 6 (p− q)
2

pq
,

 p, q coprime integers ,
2 ≤ p < q ,

(0.6)

parametrisations of the conformal dimension

Parametrisation of the conformal dimension in terms of the momentum P (defined up to reflec-
tion P → −P ) or the charge α (defined up to α→ Q− α):

∆ =
Q2

4 − P
2 (0.7a)

∆ = α(Q− α) (0.7b)

α = P +
Q

2 . (0.7c)

Degenerate representations have momentum, charge and dimension:

Pr,s =
r

2b+
s

2b
−1 (0.8a)

αr,s =
1− r

2 b+
1− s

2 b−1 (0.8b)

∆r,s =
1
4
(
(b+ b−1)2 − (rb+ sb−1)2

)
(0.8c)
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RÉSUMÉ EN FRANÇAIS

contexte général

Les phénomènes critiques fascinent les physiciens depuis de nombreuses années [1], et pour de
bonnes raisons : l’existence de l’universalité, la présence d’invariances, et, surtout, parce que
leur description ne cesse de soulever de nouveaux défis et de nouvelles questions. En effet, ces
phénomènes émergent du comportement collectif de nombreux degrés de liberté, et ne peuvent
être compris à partir de l’analyse d’un petit nombre de ces derniers. Selon Anderson [2] «More
is different », et la description de «more »a nécessité le développement de nouvelles idées en
physique théorique. Même aujourd’hui, de nouvelles questions émergent, dont certaines sont au
coeur de ce travail de thèse.
Afin d’illustrer pourquoi «l’universalité»et «les invariances»sont si attrayantes, considérons l’un
des premiers phénomènes critiques observé expérimentalement, il y a environ deux siècles [3] :
l’opalescence critique. Ce phénomène a lieu lorsqu’un fluide transparent est soumis à des con-
ditions précises de pression et de température ; il prend alors subitement un aspect laiteux1.
En effet, en ce point critique du diagramme de phase, les densités de fluctuations ont lieu
à des longueurs d’onde suffisament grandes pour diffuser la lumière visible, rendant le fluide
opaque. En fait, ces fluctuations ont lieu à toutes les échelles de longueurs, de telle façon que
le système est statistiquement invariant d’échelle : si nous pouvions examiner le fluide au mi-
croscope, quel que soit le grossissement, nous verrions le même motif fluctuant de régions de
hautes et basses densités. Ces régions sont des fractales aléatoires2. Quantitativement, il en dé-
coule que les observables physiques ont un comportement en loi de puissance. Par exemple, la
chaleur spécifique d’un fluide diverge algébriquement lorsque la température approche sa valeur
critique : C ∼ |T − Tc|−α. L’exposant critique α, ainsi que tous les autres exposants donnant
le comportement critique des autres fonctions thermodynamiques, encode ainsi les propriétés
macroscopiques du système. De façon remarquable, ces exposants ne dépendent pas des détails
microscopiques du système en question. Ainsi, différents fluides au point critique, mais aussi les
aimants au point de transition ferromagnétique, sont décrits par les mêmes exposants [6]. Cette
universalité du comportement critique macroscopique suggère des mécanismes fondamentaux
identiques dans des systèmes différents au niveau microscopique.

La prédiction théorique des exposants critiques, et donc la caractérisation des phénomènes cri-
tiques, est un défi. Les approches dites de champ moyen sont parvenues à donner une description
qualitative, et à prédire les valeurs des exposants critiques pour des systèmes pour lesquels les
fluctuations peuvent être négligées. Les idées du groupe de renormalisation ont par la suite
fourni un cadre théorique à l’étude des propriétés à grande échelle des modèles statistiques.
En particulier, les idées du groupe de renormalisation suggèrent que les limites d’échelle des
moyennes statistiques de certaines observables sur réseau existe, et correspondent à des fonc-
tions de corrélation dans une théorie quantique des champs (voir par exemple la section 2 de
[7]).

1 Des vidéos de réaisations expérimentales peuvent-être trouvées facilement, par exemple [4].
2 De telles fluctuations fractales ont été capturées et mesurées expérimentalement [5].
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2 résumé en français

Pour les systèmes de basse dimension les fluctuations sont importantes, faisant échouer les
approches de champ moyen et de groupe de renormalisation perturbatif. En deux dimensions la
détermination exacte des exposants critiques de certaines classes d’universalité importantes (par
exemple Ising et la percolation pure) a été accomplie à partir de solutions exactes des modèles
sur réseau [8–12], et par les techniques du gaz de Coulomb [13–16]. En parallèle, il fut réalisé
[17] que les systèmes critiques ne sont pas seulement invariants d’échelle, mais aussi, dans de
nombreux cas, également invariants sous l’ensemble plus large des transformations conformes. A
partir du fait que, en deux dimensions, il existe une infinité de transformations conformes, il a été
montré [18] que l’on peut obtenir les solutions complètes des théories des champs quantiques en
interactions qui décrivent les modèles critiques. Le principe de cette approche dite de «bootstrap
»[19] est de trouver les solutions de théorie des champs qui soient cohérentes avec les principes
généraux de théorie des champs et avec la symétrie conforme, à partir des contraintes mêmes
imposées par cette cohérence. Appliquée au phénomènes critiques, cette approche permet de
prédire exactement tous les exposants critiques, et plus généralement la limite d’échelle de toutes
les moyennes statistiques des observables sur réseau. Ceci a été accompli pour les théories des
champs conformes (CFTs) appelées modèles minimaux (voir par exemple [20–22]), qui ont été
complètement classifiées [18, 23, 24] et résolues [18, 23, 25, 26]. Ces CFTs décrivent beaucoup
(mais pas toutes) les classes d’universalité importantes, comme la fameuse classe d’universalité
d’Ising. Les modèles sur réseau correspondant ont été construits [27, 28]. Ils comprennent en
particulier les modèles définis par des interactions locales avec poids de Boltzmann positifs,
décrits par des modèles minimaux unitaires.
Depuis lors, un intérêt croissant a été porté à la compréhension de la limite d’échelle des systèmes
statistiques invariants conformes. Les mathématiciens y ont trouvé de nouveaux défis en théorie
des probabilités [29, 30], notamment depuis la conjecture de Cardy [31, 32]. Ceux-ci incluent
par exemple des preuves rigoureuses de l’invariance conforme des modèles statistiques [33, 34],
ou de l’existence de la limite d’échelle [35–37], ainsi que des valeurs des exposants critiques [38,
39].
Cependant, il existe des modèles importants qui n’appartiennent pas à la classification ci-dessus.
On peut citer notamment les modèles avec désordre, ainsi que les modèles décrivant les propriétés
géométriques des transitions de phase critiques. Ces derniers sont en effet définis par des degrés
de liberté non-locaux, et représentent le sujet principal de cette thèse. Pour donner un exemple
concret, prenons l’un des modèles sur réseau les plus connus, le modèle d’Ising. Plutôt que de
considérer les degrés de liberté locaux –les spins– considérons les amas (dits de Fortuin-Kasteleyn,
FK) formés en plaçant des liens aléatoirement entre les sites de même spin. A la température
critique une transition de percolation a lieu, où un amas de la taille du système émerge. Les
fluctuations du système sont encodées dans la mesure de probabilité des amas, qui est invariante
conforme. Caractériser ces fluctuations revient donc à déterminer complètement les propriétés
statistiques des amas de percolation. L’approche de CFT a donné avec succès de nombreuses
prédictions sur les amas FK d’Ising, et plus généralement sur les aspects géométriques des
phénomènes critiques. On peut citer par exemple la formule de Cardy pour la percolation critique
[31], et la détermination des dimensions fractales des amas des modèles O(n) et des modèles de
Potts à Q états [40, 41]. Malgré ces succès, des propriétés statistiques importantes sont restées
hors de portée, même pour le modèle le plus simple de la percolation pure (non-corrélée). Par
exemple, alors qu’il est connu depuis longtemps que la probabilité que deux points à distance r
appartiennent à un même amas (connectivité à deux points) décroît comme r−5/24 [11, 12, 42],
la limite d’échelle de la probabilité que trois points appartiennent au même amas (connectivité à



résumé en français 3

trois points) a été conjecturée relativement récemment [43]. De façon plus générale, une solution
complète de CFT décrivant les propriétés de connectivité des amas de la percolation pure a
été un problème ouvert pendant une trentaine d’années, et seulement récemment une solution
presque complète a été trouvée [44–49]. C’est une des nouvelles solutions de bootstrap que nous
allons discuter dans cette thèse.

ce travail: motivation et résumé des résultats

La motivation à l’origine de ce travail de thèse était d’explorer les nouvelles solutions de bootstrap
suggérées par les phénomènes critiques géométriques et désordonnés. J’ai travaillé dans deux
directions principales :

i) L’implémentation de méthodes de bootstrap numérique en deux dimensions : j’ai examiné
des questions techniques sur des subtilités dans le calcul récursif des blocs conformes de
Virasoro.

ii) L’étude de modèles de percolation sur une topologie toroïdale : les amas aléatoires du modèle
de Potts à Q états et la percolation de surface aléatoires. J’ai trouvé que les connectivités
des amas (la probabilité que des points appartiennent au même amas) sur le tore sont un
très bon outil pour tester des résultats récents sur les CFTs de ces modèles, et en établir de
nouveaux.

Les résultats principaux sont résumés ci-dessous.

Structure anaytique de la représentation récursive des blocs conformes

Un ingrédient crucial du bootsrap conforme est le calcul des blocs conformes, dans l’espace des
paramètres (dimensions d’échelle et/ou charge centrale). En deux dimensions les blocs conformes
sont des fonctions compliquées de ces paramètres, qui ne sont pas connues sous forme fermée.
On peut néammoins les calculer récursivement. Cependant, il se trouve que cette représentation
récursive diverge à certains points de l’espace des paramètres. Ceci est assez problématique en
pratique car le but du bootstrap est justement de scanner cet espace, à la recherche de solutions
cohérentes. J’ai donc cherché à répondre aux questions suivantes : d’où viennent ces divergences
? Pouvons-nous trouver une formule manifestement finie pour les blocs conformes bidimensionels
?
J’ai compris que ces divergences sont des artefacts de la représentation récursive. J’ai pu compren-
dre systématiquement comment elles apparaissent pour des blocs plus simples, sur la topologie
du tore. J’ai calculé explicitement leur limite finie pour un niveau arbitraire de l’expansion,
donnée par l’équation (5.36) dans l’Article I. En revanche, trouver une représentation qui soit
manifestement finie pour le bloc conforme à quatre points est toujours une question ouverte.

Nina Javerzat, Raoul Santachiara, and Omar Foda. “Notes on the solutions of Zamolodchikov-
type recursion relations in Virasoro minimal models.” In: JHEP 08 (2018), p. 183. doi:
10.1007/JHEP08(2018)183. arXiv: 1806.02790 [hep-th]

→Inclus comme Article I au Chapitre 3.

https://doi.org/10.1007/JHEP08(2018)183
http://arxiv.org/abs/1806.02790
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Amas aléatoires du modèle de Potts à Q états

A partir des solutions proposées dans [44–46], j’ai utilisé l’approche CFT pour déterminer analy-
tiquement les corrections universelles dominantes dues à la toplogie du tore pour les connectivi-
tités à deux, trois et quatre points, pour toute valeur de Q ∈ [1, 4], et comparé à des simulations
Monte Carlo. La figure ci-dessous montre les points de données pour la connectivité à deux
points dans la limite de percolation pure Q→ 1. Un de mes résultats principaux est également
tracé, donné par (4.5) dans l’Article II. Sur cette figure on peut voir trois régimes : des effets
non-universels quand la distance entre les points est de l’ordre de quelques pas du réseau, le
régime du plan infini où la probabilité décroît comme une loi de puissance avec l’exposant bien
connu η = 5/24, et un régime où les effets toplogiques dominent. En effet on peut clairement
voir sur cette figure que lorsque r & N/2 la probabilité dévie significativement d’une loi de
puissance. Cet effet est universel. Bien que sont origine soit facilement expliquée (la probabilité
prend des contributions des chemins connectant les deux points en faisant le tour du tore, voir
la figure sur la droite), aucune prédiction théorique n’avait été donnée jusqu’à présent.

10−4 10−3 10−2 10−1 100

0.75

0.8

0.85

0.9

r/N

r
5 24
p

12
(r
)

numérique
(4.5) dans II

Données numériques et prédiction analytique pour la probabilité p12 que deux points à distance r appar-
tiennent au même amas, sur un tore de taille N ×N .

L’intérêt pour la géométrie du tore a été motivée par le fait que les analyses numériques sont
souvent réalisées avec des conditions au bord périodiques, et donc la connaissance des corrections
induites par cette topologie est importante pour l’étude du problème sur le plan. En particulier,
j’ai donnée aussi des expressions pour les corrections auparavant inconnues du ratio des connec-
tivités à trois points et à deux points, (5.6) de l’Article III. Ces résultats fournissent de plus un
test de conjectures sur la CFT décrivant les connectivités des amas, en particulier du fait que
certaines des constantes de structure sont données par les constantes de structure de la théorie
de Liouville.
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Nina Javerzat, Marco Picco, and Raoul Santachiara. “Two-point connectivity of two-
dimensional critical Q-Potts random clusters on the torus.” In: Journal of Statistical Me-
chanics: Theory and Experiment 2020.2 (2020), p. 023101. doi: 10.1088/1742- 5468/
ab6331. arXiv: 1907.11041 [hep-th]

Nina Javerzat, Marco Picco, and Raoul Santachiara. “Three- and four-point connectivities
of two-dimensional critical Q-Potts random clusters on the torus.” In: Journal of Statistical
Mechanics: Theory and Experiment 2020.5 (2020), p. 053106. doi: 10.1088/1742-5468/
ab7c5e. arXiv: 1912.05865 [hep-th]

→Inclus comme Article II et Article III au Chapitre 4.

Percolation de surfaces aléatoires

J’ai étudié une famille de modèles de percolation corrélée à longue distance, définis à partir des
«excursion sets »(ensemble des sites où la hauteur est plus grande qu’une certaine valeur) de
surfaces aléatoires de rugosité négative. Pour ces modèles, la plupart des exposants critique est
inconnue, et l’existence même de l’invariance conforme est débattue. J’ai utilisé l’anisotropie
induite par une topologie de tore rectangulaire pour tester l’existence des deux composantes
du tenseur impulsion-énergie, qui est l’une des conséquences les plus directes de l’invariance
conforme. Pour cela, j’ai émis d’une part des prédictions sur la connectivité à deux points sur
une telle géométrie, en utilisant une approche CFT et des hypothèses raisonnables, et comparé
d’autre part avec les simulations numériques. De cette façon j’ai obtenu des signatures fortes de
l’invariance conforme (voir les figures ci-dessous, expliquées en détails au Chapitre 5).
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Effet de l’anisotropie sur la connectivité à deux points, pour une valeur de la rugosité H = −2/3. A
gauche : la pente 2 correspond à la dimension d’échelle du tenseur énergie-impulsion. A droite : θ est
l’angle auquel p12 est mesurée et c2 est le coefficient dominant dans la différence p12(r, θ)−p12(r, θ+π/2).
Son comportement en cos(2θ) correspond au spin 2 du tenseur énergie-impulsion.

De plus, j’ai obtenu les premières estimations de certaines quantités impliquant des données
importantes de la CFT, telles que son spectre, les multiplicités, la charge centrale et les constantes

https://doi.org/10.1088/1742-5468/ab6331
https://doi.org/10.1088/1742-5468/ab6331
http://arxiv.org/abs/1907.11041
https://doi.org/10.1088/1742-5468/ab7c5e
https://doi.org/10.1088/1742-5468/ab7c5e
http://arxiv.org/abs/1912.05865
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de structure. J’ai aussi montré que le champ thermique de cette CFT n’est pas dégénéré. Ces
résultats combinés à ceux de l’Article II renforcent la conjecture [53] selon laquelle les amas sont
ceux de la percolation pure pour certaines valeurs de la rugosité.

Nina Javerzat et al. “Topological effects and conformal invariance in long-range correlated
random surfaces.” In: SciPost Phys. 9 (4 2020), p. 50. doi: 10.21468/SciPostPhys.9.4.
050. arXiv: 2005.11830

→Inclus comme Article IV au Chapitre 5.

aperçu

La première partie détaille les implications générales de l’invariance conforme, en examinant ses
conséquences au niveau des fonctions de corrélation. Dans le Chapitre 1 il est montré comment la
symétrie et l’auto-cohérence contraignent les fonctions de corrélation. En particulier il est montré
que toute corrélation peut être calculée comme une certaine expansion exacte. La structure
analytique de cette expansion est étudiée, comme fonction des paramètres de la CFT. Dans le
Chapitre 2 une approche bootstrap similaire est suivie pour dérivée des expressions générales
pour les fonctions de corrélation sur la topologie du tore. Dans le Chapitre 3 les propriétés
analytiques des fonctions de symétrie (les blocs conformes) dans leur représentation récursive
sont examinées.
Ces résultats généraux sont appliqués dans la seconde partie de la thèse à l’étude des amas
aléatoires du modèle de Potts au Chapitre 4 et à la percolation des surfaces aléatoires au Chapitre
5.

https://doi.org/10.21468/SciPostPhys.9.4.050
https://doi.org/10.21468/SciPostPhys.9.4.050
http://arxiv.org/abs/2005.11830


INTRODUCTION

general context

Critical phenomena have fascinated physicists for a long time [1], and for good reasons: the
existence of universality, the presence of invariances, and maybe above all because they keep
raising new questions and challenges in their description. Indeed such phenomena emerge from
the collective behaviour of many degrees of freedom, and cannot be understood from the analysis
of a few of them: as coined by Anderson [2] “More is different”, and the description of “more”
has required the development of new ideas in theoretical physics. Even today, new questions still
emerge, some of which are at the heart of the present research work.
To illustrate why “universality” and “invariance” are so appealing, let us consider one of the
first critical phenomenon to be observed, about 200 years ago [3]: critical opalescence. Take a
transparent fluid and submit it to precise conditions of pressure and temperature, it will suddenly
become cloudy1: at this critical point of the phase diagram, density fluctuations occur at long
enough wavelengths to scatter visible light and the fluid becomes opaque. These fluctuations
actually occur at all length scales, in such a way that the system is statistically scale invariant:
if we could examine such a fluid with a microscope, upon changing the magnification we would
see the same pattern of fluctuating regions of high and low densities. These regions are random
fractals2. Quantitatively, it follows that the physical observables behave as power laws. For
instance the specific heat of the fluid diverges algebraically as the temperature approaches its
critical value: C ∼ |T − Tc|−α. The critical exponent α, together with the ones governing the
decay of the other thermodynamic functions, encode thereby the macroscopic properties of the
system. Remarkably, such exponents do not depend on microscopic details: not only different
fluids have the same behaviour at criticality, but also magnets at their ferromagnetic transition
are described by these same numbers [6]. This universality of long-distance critical behaviours
hints at identical fundamental mechanisms in microscopically different systems.

The theoretical prediction of the critical exponents, and hence the characterisation of critical
phenomena, is a challenge. Mean field approaches succeeded in giving a qualitative description,
and in predicting the values of the critical exponents for systems in which fluctuations can be
neglected. The renormalisation group ideas further provided a framework for the study of the
long-distance properties of statistical models. In particular, renormalisation suggests that the
scaling limit of the statistical averages of certain lattice observables exist and is given by the
correlation functions of a quantum field theory (see for instance Section 2 of [7]).
For systems of low dimension, fluctuations are strong and mean field as well as perturbative
renormalisation group techniques fail. In two dimensions the exact determination of the critical
exponents of important universality classes (for instance Ising and pure percolation) was achieved
instead from exact solutions of the lattice models [8–12], and Coulomb-gas techniques [13–16].
Meanwhile, it was argued [17] that critical systems are not only scale invariant, but in many
cases also invariant under the larger set of conformal transformations. From the observation

1 Videos of experimental realisations can be easily found online, for instance [4].
2 Such fractal fluctuations have been captured and measured experimentally in [5].
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that, in two dimensions, there is an infinity of conformal transformations, it was shown [18] that
complete solutions can be obtained for the interacting quantum field theories which describe
critical models. The principle of this so-called “bootstrap” approach [19] is to find quantum field
theory solutions which are consistent with general field theory principles and with conformal
symmetry, from the very constraints imposed by this consistency (here the reader is invited to
imagine a theory pulling itself up by its own bootstraps). Applied to critical phenomena, this
approach allows to predict exactly all critical exponents and more generally the scaling limit
of all expectation values of lattice observables. This program was completed for the conformal
field theories called minimal models (see for instance [20–22]), which have been fully classified
[18, 23, 24] and solved [18, 23, 25, 26, 55]. These CFTs describe many (but not all) important
universality classes, such as the celebrated Ising universality class. The lattice models which
fall in these universality classes have been constructed [27, 28]. They include in particular the
models defined by local interactions with positive Boltzmann weights, which are described by
the unitary minimal models.
Since then, there has been an increasing interest in understanding the scaling limit of conformally
invariant statistical systems. Mathematicians found there new challenges in probability theory
[29, 30], triggered by Cardy’s conjecture [31, 32]. These include putting on rigorous grounds the
physicists’ convictions of conformal invariance [33, 34], or of the existence of scaling limits of
specific lattice models [35–37], as well as providing proofs of the values of critical exponents [38,
39].

However, there exist important models which do not fall into the above classification. Notably,
models with disorder, as well as models which describe the geometric properties of critical phase
transitions. These latter are indeed defined by non-local degrees of freedom, and they represent
the main focus of this thesis. To give a concrete example let us take one of of the most well-
known lattice models, the Ising model. Its phase transition can be described geometrically by
putting bonds randomly between sites of like spins, forming so-called Fortuin-Kasteleyn (FK)
clusters. At the critical temperature a percolation transition occurs, where a cluster spanning the
whole system emerges. The fluctuations of the system are encoded in the probability measure
of the clusters, which is conformallly invariant. Characterising these fluctuations amounts to
determine the complete statistical properties of the percolation clusters. The CFT approach has
been successful in giving numerous predictions on the Ising FK clusters, and more generally
on geometrical aspects of critical phenomena. We can cite for instance the crossing formula for
critical percolation [31], and the determination of the fractal dimensions of the clusters of the
O(n) and Q−state Potts models [40, 41]. Despite this success, important statistical properties
have remained out of reach, even for the simplest model of pure (uncorrelated) percolation. For
instance, while the probability that two points at distance r belong to the same cluster (two-
point connectivity) has been known for a long time to decay as ∼ r−5/24 [11, 12, 42], the scaling
limit of the probability that three points belong to the same cluster (three-point connectivity)
was only conjectured fairly recently [43]. More generally, a full CFT solution describing the
connectivity properties of the clusters of pure percolation has been an open problem for about
30 years, and only recently an almost complete solution was found [44–49]. This is one of the
new bootstrap solutions which we are going to discuss in this thesis.
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the present work: motivation and summary of results

The motivation at the origin of this work was to explore the new bootstrap solutions pinpointed
by such geometric and disordered critical phenomena. We have worked in two main directions:

i) The implementation of numerical bootstrap methods in two dimensions: we have investi-
gated technical questions on subtelties in the recursive computation of the Virasoro confor-
mal blocks.

ii) The study of percolation models on toroidal topology: the random clusters Q−state Potts
model and the percolation of random surfaces. We found that the clusters connectivities
(the probabilities that points belong to the same cluster) on the torus are an excellent tool
to test recent results on the CFTs of these models, and to establish new ones.

We summarise our main results below.

Analytic structure of the recursion representation of conformal blocks

A crucial ingredient of the conformal bootstrap is the computation of so-called conformal blocks,
in the space of parameters (scaling dimensions and/or central charge). In two dimensions the
conformal blocks are complicated functions of these parameters, which are not known in closed
form. We can nevertheless compute them recursively. However it turns out that this recursive
representation diverges at some points of the parameter space. This is quite problematic since
the aim of the bootstrap is precisely to scan this space, in search of consistent solutions. We
have therefore tried to answer the following questions: where do these divergences come from ?
Can we find a manifestly finite formula for two-dimensional conformal blocks ?
We understood that these divergences are artefacts of the recursive representation. We could
understand systematically how they arise for simpler conformal blocks, on a torus topology. We
computed explicitely their finite limit for arbitrary level of the expansion, given by equation
(5.36) in Article I. Finding a manifestly finite representation for the four-point conformal blocks
on the plane is however still an open question.

Nina Javerzat, Raoul Santachiara, and Omar Foda. “Notes on the solutions of Zamolodchikov-
type recursion relations in Virasoro minimal models.” In: JHEP 08 (2018), p. 183. doi:
10.1007/JHEP08(2018)183. arXiv: 1806.02790 [hep-th]

→Included as Article I in Chapter 3.

The random cluster Q−state Potts model

Based on the solutions proposed in [44–46], we use the CFT approach to determine analytically
the universal dominant torus corrections to the two-, three- and four-point connectivities for all
values of Q ∈ [1, 4], and compare to Monte Carlo simulations. We show in the figure below data
points for the two-point connectivity in the pure percolation limit Q → 1. We plot as well one
of our main results, given by (4.5) in Article II. On this figure one can see three regimes: non-
universal effects when the distance between the points is of the order of a few lattice spacings,

https://doi.org/10.1007/JHEP08(2018)183
http://arxiv.org/abs/1806.02790
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the infinite plane regime where the probability decays with the well-known exponent η = 5/24,
and a regime where topological effects dominate. Indeed one can clearly see on that figure that
when r & N/2 the probability deviates significantly from a power law. This effect is universal.
Although its origin is easily explained (the probability takes contributions from paths connecting
the two points by going around the torus, see the figure on the right), no theoretical prediction
had been given so far.
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Numerical data and analytic prediction for the probability p12 that two points at distance r belong to
the same cluster, rescaled by the plane limit decay, on a N ×N torus.

The interest for the torus geometry was motivated by the fact that numerical investigations are
often performed with periodic boundary conditions, so that the knowledge of the corrections
induced by the topology is important for the studies of the planar problem. In particular we
give also expressions for the previously unkown corrections to the ratio of three- to two-point
connectivities, (5.6) in Article III. The results furthermore provide a test of conjectures on the
CFT describing the clusters connectivities, in particular of the fact that some of the structure
constants are given by the Liouville structure constants.

Nina Javerzat, Marco Picco, and Raoul Santachiara. “Two-point connectivity of two-
dimensional critical Q-Potts random clusters on the torus.” In: Journal of Statistical Me-
chanics: Theory and Experiment 2020.2 (2020), p. 023101. doi: 10.1088/1742- 5468/
ab6331. arXiv: 1907.11041 [hep-th]

Nina Javerzat, Marco Picco, and Raoul Santachiara. “Three- and four-point connectivities
of two-dimensional critical Q-Potts random clusters on the torus.” In: Journal of Statistical
Mechanics: Theory and Experiment 2020.5 (2020), p. 053106. doi: 10.1088/1742-5468/
ab7c5e. arXiv: 1912.05865 [hep-th]

→Included as Article II and Article III in Chapter 4.

https://doi.org/10.1088/1742-5468/ab6331
https://doi.org/10.1088/1742-5468/ab6331
http://arxiv.org/abs/1907.11041
https://doi.org/10.1088/1742-5468/ab7c5e
https://doi.org/10.1088/1742-5468/ab7c5e
http://arxiv.org/abs/1912.05865
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Percolation of random surfaces

We study a family of long-range correlated percolation models, which are defined from the
excursion sets (set of sites where the height is larger than a fixed level) of random surfaces with
negative roughness. For these models most critical exponents are unknown, and the existence
of conformal symmetry even debated. We use the anisotropy induced by a rectangular torus
topology to probe the existence of the two components of the stress-energy tensor, which is
the most direct consequence of conformal invariance. Specifically, we make predictions for the
two-point connectivity on such geometries, using a CFT approach and reasonable assumptions,
and compare with numerical simulations. We provide in this way strong evidence for conformal
invariance (see the figures below, explained in details in Chapter 5).
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Effect of anisotropy on the two-point torus connectivity, for an example value of the roughness H = −2/3.
Left: the slope 2 corresponds to the scaling dimension of the stress-energy tensor. Right: θ is the angle
at which p12 is measured and c2 the dominant coefficient in the difference p12(r, θ)− p12(r, θ+ π/2). Its
behaviour in cos(2θ) corresponds to the spin 2 of the stress-energy tensor.

Moreover we obtain the first numerical estimates of quantities involving important CFT data,
such as the spectrum, the multiplicities, the central charge and the structure constants. We also
show that the energy field of this CFT is not degenerate. Based on the results obtained in Article
II we strengthen the conjecture [53] that for certain values of the roughness, the clusters are
those of pure percolation.

Nina Javerzat et al. “Topological effects and conformal invariance in long-range correlated
random surfaces.” In: SciPost Phys. 9 (4 2020), p. 50. doi: 10.21468/SciPostPhys.9.4.
050. arXiv: 2005.11830

→Included as Article IV in Chapter 5.

https://doi.org/10.21468/SciPostPhys.9.4.050
https://doi.org/10.21468/SciPostPhys.9.4.050
http://arxiv.org/abs/2005.11830
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outline

The first part details the general implications of conformal invariance, by examining its con-
sequences on correlation functions. In Chapter 1 we show how symmetry and self-consistency
constrain correlation functions. In particular we show that any correlation function can be com-
puted as a particular exact expansion. We further study the analytic structure of this expansion,
as a function of the CFT parameters. In Chapter 2 we follow a similar bootstrap approach to
derive general expressions for correlation functions on the torus topology. We examine in Chap-
ter 3 the analytic properties of the symmetry functions, the conformal blocks, in their recursive
representation.
These general results are applied in the second part of the thesis to the study of the random
cluster Q−state Potts model in Chapter 4 and of the percolation of random surfaces in Chapter
5.



Part I

C O N FO R M A L F I E L D T H E O RY





1
CONFORMAL F IELD THEORY ON THE PLANE

In this first chapter we explain what are the consequences of conformal symmetry at the level of
our main object of study, the correlation functions. In two-dimensions the algebra of conformal
symmetry is the infinite dimensional Virasoro algebra. This translates into an infinite number
of constraints on the correlation functions. Are these constraints sufficient to determine all
correlators ? Actually no, because correlation functions also incorporate model-dependent data,
in a way which is not fixed by conformal symmetry. This results in a rich space of possible
different theories.
Correlation functions in a quantum field theory are in general complicated objects. They are
difficult to compute exactly and one usually resorts to perturbative methods. However, in a
CFT it is always possible to write an arbitrary correlation as a certain exact expansion, by using
the bootstrap approach. This expansion does not rely on anything about the theory but on its
self-consistency and on conformal invariance. Self-consistency of the theory tells that correlation
functions can be expanded, because in any consistent theory there must exist so-called operator
product expansions. Conformal symmetry restricts the form of this expansion, to be built from
basic units called conformal blocks. These are functions whose form is completely determined by
conformal invariance: they are the symmetry functions of the Virasoro algebra. How conformal
blocks arrange to form a given correlation function is determined by model-dependent data.
Solving a theory, namely being able to compute all correlation functions, amounts then to
determine this model-dependent data. Again, the bootstrap idea is that this data must be
constrained: not all sets of model-dependent data give consistent correlation functions. For some
CFTs, this constraint of consistency alone allows to solve completely the theory. This is the case
for instance of the minimal models and of Liouville theory (see [20] for a review, as well as [21]).
In other cases this is not restrictive enough, but numerical conformal bootstrap techniques can
be used to determine part of the model-dependent data (see the example of the Potts model in
Chapter 4).
In Sections 1.1 and 1.2 we give the algebraic aspects of CFT. We introduce the Virasoro algebra
and its representations, and the model-independent data which enters the correlation functions
under the form of conformal blocks. Correlation functions are discussed in Section 1.4, especially
their conformal block expansion. Sections 1.5 and 1.6 deal with the analytic properties of the
conformal block expansion: the conformal blocks themselves are very peculiar functions with a
rich pole structure. Physical correlation functions are expected to be smooth functions, which im-
plies a subtle interplay between the model-dependent and algebraic data. In Section 1.7 we make
precise the consistency constraint on correlation functions, by deriving the crossing-symmetry
equation.

1.1 from conformal transformations to the virasoro algebra

Let us consider the Euclidean space, equipped with a metric gµν , which we take to be the flat
metric gµν = δµν . Conformal transformations are defined (see for instance [22], Chapter 4) as

15



16 conformal field theory on the plane

the transformations of xµ → x′µ which leave the distance ds2 = dxµdxµ invariant, up to a
position-dependent factor:

ds2 → λ2(x)ds2. (1.1)

In other words, conformal transformations are the transformations which correspond to a local
(position-dependent) rescaling.
In two dimensions we can define the complex coordinates:

z = x1 + ix2

z̄ = x1 − ix2.
(1.2)

With these coordinates, the metric is:

ds2 = dz dz̄. (1.3)

Under a transformation z → z′ = f(z), where f is an analytic function, it becomes:

ds′2 = dz′ dz̄′ =
df(z)

dz

df(z̄)

dz̄
dz dz̄ =

∣∣∣∣dfdz
∣∣∣∣2 ds2. (1.4)

Comparing with (1.1), any analytic function f is therefore a conformal transformation of the
complex plane. Actually, we work on the complex plane enlarged with the point at infinity,
that is, the Riemann sphere C ∪ {∞} (see for instance [20], Section 1.3). On this sphere, the
transformations which are globally defined (everywhere invertible), are:

f(z) = z + b translation (1.5a)

f(z) = az

 scaling if a ∈ R

rotation if |a| = 1
(1.5b)

f(z) =
z

cz + 1

 special conformal transformation: composition of

an inversion f(z) = z−1, a translation and another inversion.
(1.5c)

They are special cases of the Möbius transformations:

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0. (1.6)

An infinitesimal transformation can be written f(z) = z + ε(z) with [21]:

ε(z) =
∞∑

n=−1
εnz

n+1. (1.7)

Expanding (1.6) around the identity (a = d and c, b� d), we see that the global transformations
(1.5) are generated respectively by n = {−1, 0, 1}. The other modes of ε generate conformal
transformations which are only defined locally.
Let us now consider a quantum field V (z, z̄). It transforms under f(z) = z + ε(z) as [18]:

δεV (0) = 1
2πi

∮
C
dzε(z)T (z)V (0) (1.8)
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where C is the contour of the region where ε is analytic [21]. T is the stress-energy tensor , which
is the Noether current associated to conformal symmetry. We can formally write T V as an
expansion over the modes of T :

T (z)V (0) =
∑
n∈Z

L
(0)
n

zn+2V (0). (1.9)

The Ln’s act on the field V . By replacing in the contour integral (1.8) one obtains:

δεV (0) = 1
2πi

∮
C
dz
∑
n

∑
m

εnL
(0)
m zn−m−1V (0) =

∑
n

εnL
(0)
n V (0). (1.10)

The Lns generate therefore the conformal transformations of fields. Adding also the antiholo-
morphic part we find:

δV (0) = δεV (0) + δε̄V (0) =
∑
n

(
εnL

(0)
n + ε̄nL̄

(0)
n

)
V (0). (1.11)

For the global transformations we find for instance:

δV =


ε0 (L0 + L̄0) V ε0 ∈ R rescaling

ε0 (L0 − L̄0) V ε0 ∈ iR rotation

ε−1 (L−1 + L̄−1) V ε−1 ∈ R translation.

(1.12)

Primary fields are those which transform covariantly under conformal transformations z → z′ =

f(z) [18]:

V ′(z′, z̄′) = f ′(z)−∆f̄ ′(z̄)−∆̄V (z, z̄) (1.13)

where ∆, ∆̄ are called the holomorphic and anti-holomorphic conformal dimensions. These num-
bers partly characterise a given field1 so that in the following we use the notation V∆,∆̄. We have
in particular:

• Under scaling z → λz:

V∆,∆̄(λz,λz̄) = λ−(∆+∆̄)V∆,∆̄(z, z̄), (1.14)

so that the total scaling dimension is ∆ + ∆̄.

• Under rotations z → eiθz:

V∆,∆̄(e
iθz, e−iθz̄) = e−iθ(∆−∆̄)V∆,∆̄(z, z̄), (1.15)

so that the spin is s = ∆− ∆̄.

Under an infinitesimal transformation f(z) = z + ε(z), (1.13) gives to first order:

V ′(z′) = (1 + ∂ε(z))−∆ V (z) = (1− ∆∂ε(z)) V (z). (1.16)

1 We will see in the following that the conformal dimensions are not sufficient to fully characterise a field, and that
the additional information of its fusion with other fields is needed.
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Expanding the left-hand side:

V ′(z′) = V ′(z) + ε(z)∂V (z) (1.17)

we get

δV (z) = V (z)− V ′(z) = (ε(z)∂ + ∆∂ε(z)) V (z). (1.18)

With ε(z) given by (1.7):

δV (0) = (ε−1∂ + ∆ε0) V (0). (1.19)

This is obtained from (1.8) if:

T (z)V (0) = ∆V (0)
z2 +

∂V (0)
z

+ · · · (1.20)

as can be checked by inserting this product in the contour integral. The · · · stand for non-singular
terms which therefore do not contribute to the contour integral (1.8).
The stress-energy tensor on the other hand is not a primary field and transforms as [18]:

T ′(z′) = [f ′(z)]
−2
(
T (z)− c

12 {f , z}
)

. (1.21)

{f , z} is the Schwarzian derivative:

{f , z} = f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2
(1.22)

and c is the central charge. The central charge corresponds to a quantum anomaly, which arises
from the soft breaking of conformal invariance by the introduction of a length (see eg. [22],
Chapter 5). For instance, the transformation f(z) = −i N2π ln z maps the plane to the infinite
cylinder of radius N/2π. On the cylinder, using (1.21) T becomes:

T ′(z′) =

(2π
N

)2 ( c

24 − z
2T (z)

)
. (1.23)

We see that, whereas the expectation of T is zero on the plane: 〈T 〉plane = 0, (1.23) implies
that it is non-zero on the cylinder and is proportional to the central charge: 〈T 〉cylinder =

π2 c
6N2 .

The central charge is an important parameter which characterises a conformal field theory. For
instance c = 1/2 for the Ising model, and c = 4/5 for the 3−state Potts model [22]. However
as mentioned in the introduction of this chapter, a CFT is also determined by model-dependent
data, so that different theories may have the same central charge. To pursue with an example
given in the general introduction, the correlation functions of the Ising spin variables, and the
connectivities of the Ising FK clusters are described by CFTs which, albeit having the same
central charge c = 1/2, are not the same theory. Indeed, the Ising spin variables are described
by the minimal modelM(4, 3) (in the notation [22]) which is a unitary CFT containing a finite
number of fields, whereas the Ising FK clusters are described by the non-unitary, non-rational,
logarithmic CFT that we study in Chapter 4.
Let us now make an infinitesimal transformation f(z) = z + ε(z), for which (1.21) becomes, at
first order:

T ′(z′) = T (z)− 2T (z)∂ε(z)− c

12∂
′′′ε(z). (1.24)
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With

T ′(z′) = T ′(z) + ε(z)∂T (z), (1.25)

we get:

δT (0) = 2ε0T + ε−1∂T (0) +
c

2ε2. (1.26)

From the contour integral (1.8), upon taking V = T (1.26) is equivalent to:

T (z)T (0) = c/2
z4 +

2T (0)
z2 +

∂T (0)
z

+ · · · (1.27)

The modes Ln defined by (1.9) can be written as a contour integral:

L(z)
n =

1
2πi

∮
Cz
dy (y− z)n+1 T (y), n ∈ Z. (1.28)

The expansion (1.27) is then equivalent to the following commutation relations (see for instance
Chapter 3 in [21]):

[Lm,Ln] = (n−m)Lm+n +
c

12n(n+ 1)(n− 1)δn+m,0. (1.29)

These commutation relations define the algebra of two-dimensional conformal symmetry, called
the Virasoro algebra V ir. The anti-holomorphic modes are defined analogously and we have

[Lm, L̄n] = 0. (1.30)

In the next section we study the highest-weight representations of the Virasoro algebra. These
representations are made of states |∆〉, which in a CFT are related to the fields V∆ [18]:

|∆〉 = lim
z→0

V∆(z) |0〉 , (1.31)

where |0〉 is the vacuum state. The full conformal algebra of the CFT is the tensor product
V ir⊗ V ir. In a given theory only a subset of all possible representations of V ir⊗ V ir appear.
This model-dependent data defines the full spectrum of the theory, S = {V∆}. As will be made
manifest in Section 1.4, the knowledge of the spectrum is crucial to compute the correlation
functions.

1.2 highest weight representations of the virasoro algebra

In this section we recall basic facts about the highest weight representations of the Virasoro
algebra. For a detailed presentation see for instance Chapter 4 of [56]. The highest-weight states
|∆〉 of the Virasoro algebra (for a detailed presentation of the ) are the eigenstates of the mode
L0, with eigenvalue ∆ :

L0 |∆〉 = ∆ |∆〉 (1.32)

which are annihilated by all positive modes:

Ln |∆〉 = 0, ∀n > 0. (1.33)
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Acting on |∆〉 with the negative modes Ln, n < 0 produces all other – so-called descendant–
states in the representation R∆. We denote Y = {n1,n2, · · · }, ni ∈N, ni ≤ ni+1, a partition
of the integer |Y | = ∑

i ni. All independent descendants of |∆〉 can then be written:

L−Y |∆〉 = L−n1L−n2 · · · |∆〉 . (1.34)

Such a descendant state has conformal weight ∆ + |Y |, as is seen by applying the L0 operator
onto the descendant state, and using the commutation relations (1.29). |Y | is called the level of
the descendant. For general ∆, the number of independent descendants at level |Y | is therefore
the number of integer partitions of |Y |.
The inner products between states are defined as the matrix elements of the Gram matrix H
[22]:

HY ,Y ′(∆) = 〈∆LY ′ |L−Y ∆〉 . (1.35)

They are computed by applying the commutation relations (1.29), with the inner product of
primary states normalised to one:

〈∆|∆〉 = 1. (1.36)

The matrix H is block diagonal, since inner products between descendants of different levels
vanish:

H(∆) =



1 0 0 0 · · ·
0 2∆ 0 0 · · ·
0 0 4∆(2∆ + 1) 6∆ · · ·
0 0 6∆ 4∆ + c/2 · · ·
...

...
...

... . . .


(1.37)

in the basis
{
{L−1 |∆〉}, {L2

−1 |∆〉 ,L−2 |∆〉}, · · ·
}
.

The representation R∆ is irreducible if and only if there are no primary states among the
descendants L−Y |∆〉. Indeed, such a state, called null state or singular state, and such that:

|χ〉 = L−Y |∆〉 (1.38a)
Ln |χ〉 = 0,∀n > 0, (1.38b)

spans its own representation Rχ, which is a subrepresentation of R∆. Note that, by definition,
singular states have vanishing norm:

〈χ|χ〉 = 0. (1.39)

An irreducible representation is obtained by quotienting out the subrepresentation(s):

R∆ → R∆/Rχ, (1.40)

and is called a degenerate representation at level |Y |. Given a level |Y | = r s, the representation
with highest-weight state |∆r,s〉 is degenerate at level rs, with the weight ∆r,s given by:

∆r,s =
1
4
(
(1 + r)b+ (1 + s)b−1

) (
(1− r)b+ (1− s)b−1

)
. (1.41)
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In this equation we use the following notation for the central charge (0.4):

c = 1 + 6
(
b+

1
b

)2
. (1.42)

We denote R∆r,s ≡ Rr,s such a degenerate representation.
Note that setting the singular state to zero creates linear dependance between the states in the
representation. For example, the null state in the representation R1,2 is:

|χ〉 ∝
(
L2
−1 + b−2L−2

)
|∆1,2〉 = 0⇒ L2

−1 |∆1,2〉 = −b−2L−2 |∆1,2〉 . (1.43)

Using the notation (1.41), the inverse of the matrix of inner products (1.37) may be written:

H−1(∆) =



1 0 0 0 · · ·
0 1

2(∆−∆1,1)
0 0 · · ·

0 0 4∆+c/2
32∆(∆−∆1,2)(∆−∆2,1)

−6∆
32∆(∆−∆1,2)(∆−∆2,1)

· · ·

0 0 −6∆
32∆(∆−∆1,2)(∆−∆2,1)

4∆(2∆+1)
32∆(∆−∆1,2)(∆−∆2,1)

· · ·
...

...
...

... . . .


(1.44)

In this expression it is manifest that ∆ = ∆1,1 or ∆ = ∆1,2, ∆2,1, the matrix H−1 is not well-
defined. More generally, when ∆ = ∆r,s the corresponding block of H(∆) is not invertible. This
happens of course when R∆ is degenerate, R∆ = Rr,s. In that case, the singularities are removed
by the existence of fusion rules (see next section). However, it is important to note that H(∆)
may also be non-invertible for non-degenerate representations R∆, at values of the central charge
c such that ∆(c) = ∆r,s(c) (see Section 1.6.2).
We now define the following factors, which will appear in the computation of correlation func-
tions:

Γ∆3,Y3
∆1,Y1;∆2,Y2

≡
〈V∆3,Y3(∞)V∆1,Y1(1)V∆2,Y2(0)〉
〈V∆3(∞)V∆1(1)V∆2(0)〉

. (1.45)

Because the V∆i,Yi ’s are descendant states, 〈V∆3,Y3(∞)V∆1,Y1(1)V∆2,Y2(0)〉 is completely deter-
mined from 〈V∆(∞)V∆1(1)V∆2(0)〉 by the conformal algebra. An efficient way to compute it is
by using the following recursions [57]:

〈L(∞)
−n V∆3(∞)V∆1(1)V∆2(0)〉 = 〈V∆3(∞)

(
nL

(1)
0 +

n∑
i=1

(n+ 1)!
(i+ 1)!(n− i)!L

(1)
i

)
V∆1(1)V∆2(0)〉

(1.46a)

+ 〈L(∞)
0 V∆3(∞)V∆1(1)V∆2(0)〉+ 〈V∆3(∞)V∆1(1)

(
L(0)
n −L

(0)
0

)
V∆2(0)〉

〈V∆3(∞)L
(1)
−nV∆1(1)V∆2(0)〉 = (−1)n〈V∆3(∞)L

(1)
0 V∆1(1)V∆2(0)〉 (1.46b)

+ 〈
(
(−1)n+1(L

(∞)
0 −L(∞)

1 ) + L(∞)
n +

∞∑
i=0

(n− 1 + i)!
(i+ 1)!(n− 2)!L

(∞)
n+1+i

)
V∆3(∞)V∆1(1)V∆2(0)〉

+ (−1)n〈V∆3(∞)V∆1(1)
(
nL

(0)
0 +

∞∑
i=1

(n− 1 + i)!
(i+ 1)!(n− 2)!L

(0)
i

)
V∆2(0)〉

〈V∆3(∞)V∆1(1)L
(0)
−nV∆2(0)〉 = 〈

(
L(∞)
n −L(∞)

0

)
V∆3(∞)V∆1(1)V∆2(0)〉 (1.46c)

+ 〈V∆3(∞)V∆1(1)L
(0)
0 V∆2(0)〉+ 〈V∆3(∞)

(
nL

(1)
0 +

∞∑
i=1

(−1)i(n− 1 + i)!
(i+ 1)!(n− 2)! L

(1)
i

)
V∆1(1)V∆2(0)〉.
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In particular we see that 〈V∆3,Y3(∞)V∆1,Y1(1)V∆2,Y2(0)〉 is proportional to 〈V∆(∞)V∆1(1)V∆2(0)〉,
so that the ratios (1.45) are completely fixed by conformal symmetry and are therefore indepen-
dent of the particular theory.

1.3 the operator product expansion

In the bootstrap approach (see for eg. [20]), we assume that the product of two fields can be
expanded over the other fields in the spectrum, namely, that the following operator product
expansion (OPE) exists [18] (see also Chapter 5 of [58]):

V∆1,∆̄1(z1, z̄1)V∆2,∆̄2(z2, z̄2)
z1∼z2=

∑
(∆3)

∣∣∣z−∆1−∆2+∆3
12

∣∣∣2
∣∣∣∣∣∣
∑
Y3

D∆3,Y3
∆1,∆2

z
|Y3|
12 V∆3,Y3

∣∣∣∣∣∣
2

=
∑
(∆3)

∣∣∣z−∆1−∆2+∆3
12

∣∣∣2D(∆3)
(∆1),(∆2)

(
V(∆3) +O(z12)

)
.

(1.47)

Here we introduced the short-hand notation :

(∆) ≡ (∆, ∆̄), (1.48)

as well as the modulus-square notation:

|f(z, ∆)|2 = f(z, ∆)× f(z̄, ∆̄). (1.49)

The coefficient D∆3,Y3
∆1,∆2

can be factorised in the following way:

D∆3,Y3
∆1,∆2

= D∆3
∆1,∆2

 ∑
Y

|Y |=|Y3|

H−1
Y ,Y3

(∆3)Γ
∆3,Y
∆1,∆2

 (1.50)

which makes apparent what depends on the particular model and what is fixed by conformal
invariance:

• The sum encodes the contribution of descendants in (1.47), and is therefore completely
determined by the symmetry algebra, with H−1

Y ,Y3
the matrix elements of (1.44) and the

Gamma factors given by (1.45).

• The number

D
(∆3)
(∆1),(∆2)

= 〈V∆3,∆̄3(∞)V∆1,∆̄1(1)V∆2,∆̄2(0)〉 = D∆3
∆1,∆2

D∆̄3
∆̄1,∆̄2

, (1.51)

is called structure constant. Looking back at (1.47), it encodes the fusion of two primary
fields onto another primary field. The set of structure constants is a model-dependent set
of data, in the sense that it is not fixed by conformal symmetry2.
We normalise the structure constants involving an identity field to 1:

D
(∆3)
(∆Id),(∆2)

= 1. (1.52)
2 Nevertheless, the structure of this set of constants may reflect the presence of possible extra symmetries, as
discussed in Section 1.6.
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Note that the OPE (1.47) extends straightforwardly to descendant fields: (∆1) → (∆1,Y1),
(∆2) → (∆2,Y2). In particular expression (1.20) of Section 1.1 is the OPE between a primary
field and the stress-energy tensor, which is the level-2 descendant of the Identity field.
Seen as a function of the scaling dimension, the coefficient D∆3,Y3

∆1,∆2
(1.50) has poles whenever

the dimension ∆3 is of the type ∆m,n (0.8c). As seen above, the block of the matrix H(∆3)

corresponding to level mn is indeed non-invertible in that case. For example, at level 1:

H−1
{1},{1}(∆3) =

1
2∆3

Γ∆3,{1}
∆1,∆2

= ∆3 − ∆2 + ∆1

 D
∆3,{1}
∆1,∆2

= D∆3
∆1,∆2

∆3 − ∆2 + ∆1
2∆3

. (1.53)

For generic values of ∆1, ∆2, this is singular as ∆3 → ∆1,1 = 0, which means that the field V∆3

cannot appear in the OPE V∆1V∆2 . However, if ∆1 = ∆2, then lim∆3→∆1,1 D
∆3,{1}
∆1,∆2

= 1
2 . In general,

fields with degenerate dimension cannot appear in the OPE expansion, except if the dimensions
∆1 and ∆2 satisfy algebraic relations, called fusion rules.
Let us take now V(∆1) or V(∆2) to be degenerate. For simplicity let us take V∆1 = V1,1. Then,
because the null state L−1V1,1 is set to zero:

D∆3
∆1,{1};∆2

= 〈V∆3(∞)L−1V1,1(1)V∆2(0)〉 = 0. (1.54)

Using relation (1.46a):

〈V∆3(∞)L−1V1,1(1)V∆2(0)〉 = (∆3 − ∆2)D
∆3
1,1;∆2

, (1.55)

so that D∆3
1,1;∆2

6= 0⇒ ∆2 = ∆3. The degenerate field V1,1 imposes therefore the fusion:

R1,1 ×R∆ = R∆. (1.56)

More generally, the fusion rule with a degenerate representation is, in terms of the conformal
charge α (0.7b) [18]:

Rr,s ×Rα =
r−1∑
i=0

s−1∑
j=0
Rα+αr,s+ib+jb−1 . (1.57)

1.4 correlation functions

In this section we give the form of the two-, three- and four-point functions on the plane. The
spatial dependence of the two- and -three-point is fixed by global conformal invariance. The
four-point function on the other hand, combines in a non-trivial way model-dependent data
with data fixed by local conformal invariance. By using the OPE we show how to write an
arbitrary four-point function as a channel expansion, over the spectrum of the theory. This is
the technique we will use throughout this thesis to compute correlation functions. Applying the
OPE in a similar way reduces higher point-functions to combinations of two-point functions, with
coefficients determined by the spectrum and the structure constants. Therefore the necessary
ingredients to determine all correlation functions are the set of scaling dimensions and the set of
structure constants. A CFT is completely defined by these two sets of data. Four-point functions
are in this respect a central object of study in a CFT: on the one hand they depend non-trivially
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on the model-dependent data, and on the other hand they describe physical observables of a
(statistical) model.
Consider first the two-point function. It is fixed by global conformal invariance to [18]:

〈V∆1,∆̄1(z1, z̄1)V∆2,∆̄2(z2, z̄2)〉 =
δ∆1,∆2δ∆̄1,∆̄2

z∆1+∆2
12 z̄∆̄1+∆̄2

12
. (1.58)

Translation and rotation invariance imply a |z12| dependence, while scale invariance implies a
power law decay. The special conformal transformation (1.5c) imposes that two-point functions
vanish unless the fields have the same dimension.
The three-point function, on the other hand, is fixed –also by global symmetry, up to a constant
[18]:

〈V∆1,∆̄1(z1, z̄1)V∆2,∆̄2(z2, z̄2)V∆3,∆̄3(z3, z̄3)〉 =
D

(∆3)
(∆1),(∆2)∣∣∣z∆1+∆2−∆3

12 z−∆1+∆2+∆3
23 z∆1−∆2+∆3

13

∣∣∣2 . (1.59)

The constant D(∆3)
(∆1),(∆2)

is the structure constant appearing in the OPE (1.47): this can be found
by inserting the OPE say of V∆1 and V∆2 in the left-hand side of (1.59). It is easily seen that the
OPE expansion corresponds to the series of the right-hand side of (1.59) when z1 ∼ z2. This is
done explicitely in Section 2.5.2 where the three-point function is studied on the torus.
The four-point function is conveniently written in the form [18]:

〈
4∏
i=1

V(∆i)(zi, z̄i)〉 =
∣∣∣z−2∆1

13 z∆1−∆2−∆3+∆4
23 z−∆1−∆2+∆3−∆4

24 z∆1+∆2−∆3−∆4
34

∣∣∣2
× 〈V∆1,∆̄1(z, z̄)V∆2,∆̄2(0)V∆3,∆̄3(∞)V∆4,∆̄4(1)〉,

(1.60)

where we defined:

〈V∆1,∆̄1(z, z̄)V∆2,∆̄2(0)V∆3,∆̄3(∞)V∆4,∆̄4(1)〉

= lim
Z→∞

Z2∆3Z̄2∆̄3〈V∆1,∆̄1(z, z̄)V∆2,∆̄2(0)V∆3,∆̄3(Z, Z̄)V∆4,∆̄4(1)〉,
(1.61)

which depends on the cross-ratio:

z ≡ z12z34
z13z24

. (1.62)

The four-point function can be expanded as a sum over the fields in the spectrum S, in a so-
called s-channel expansion, as follows. Inserting the OPE (1.47) of V(∆1) and V(∆2), and using
(1.50) we obtain:

〈V(∆1)(z, z̄)V(∆2)(0)V(∆3)(∞)V(∆4)(1)〉

=
∑

(∆s)∈Ss

∣∣∣z−∆1−∆2+∆s
∣∣∣2D(∆s)

(∆1),(∆2)
D

(∆3)
(∆s),(∆4)

∣∣∣∣∣∣∣∣∣
∑
Ys

zYsΓ∆3
∆4;∆s,Ys

∑
Y ′s

|Y ′s |=|Ys|

H−1
Ys,Y ′s (∆s) Γ∆s,Y ′s

∆1,∆2

∣∣∣∣∣∣∣∣∣
2

=
∑

(∆s)∈Ss

D
(∆s)
(∆1),(∆2)

D
(∆3)
(∆s),(∆4)

∣∣∣F (s)
∆s (∆i|z)

∣∣∣2
(1.63)
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where ∆i = ∆1, ∆2, ∆3, ∆4, and ∆s is called the internal dimension. The s-channel spectrum Ss
is a subset of the full spectrum S, namely the set of fields V∆s in S for which the structure
constants D(∆s)

(∆1),(∆2)
, D(∆s)

(∆1),(∆2)
are non-zero. In the last line we introduced the s-channel four-

point conformal block on the plane, F (s)
∆s (see eg. [20], Section 2.4). It corresponds to the expansion

z → 0, which can be represented diagrammatically as:

F (s)
∆s =

V∆2(0) V∆s
V∆3(∞)

V∆1(z) V∆4(1)

(1.64)

The conformal block contains the contributions of all descendants of the field V(∆) to the four-
point function:

F (s)
∆ (∆i|z) = z−∆1−∆2+∆

∑
Y

zY Γ∆3
∆4;∆,Y

∑
Y ′

|Y ′|=Y

H−1
Y ,Y ′(∆) Γ∆,Y ′

∆1,∆2

= z−∆1−∆2+∆

1 + Γ∆3
∆4;∆,{1}H

−1
{1},{1}(∆)Γ

∆,{1}
∆1,∆2

z

+

[
Γ∆3

∆4;∆,{1,1}

(
H−1
{1,1},{1,1}(∆)Γ

∆,{1,1}
∆1,∆2

+H−1
{1,1},{2}(∆)Γ

∆,{2}
∆1,∆2

)
+ Γ∆3

∆4;∆,{2}

(
H−1
{2},{1,1}(∆)Γ

∆,{1,1}
∆1,∆2

+H−1
{2},{2}(∆)Γ

∆,{2}
∆1,∆2

) ]
z2 +O(z3)

.

(1.65)

It is therefore completely determined by symmetry. The s-channel expansion (1.63) is then a
model-dependent (spectrum and structure constants) linear combination of model-independent
functions (the conformal blocks).

1.5 analytic structure of the conformal blocks

While some models may live at a particular value of the central charge (for instance the Ising
spin model at c = 1/2), CFTs can be defined on a (continuous) range of the central charge. This
is the case of Liouville theory and of the generalised minimal models (see for instance Chapter
3 in [20]), as well as of the CFTs describing the continuous families of models studied in this
thesis. Scaling dimensions and structure constants are then (a priori unknown) functions of the
central charge. It is manifest from the conformal block expansion (1.63) that the behaviour of
the four-point function with the central charge depends on the interplay between the analytic
properties of the structure constants and the ones of the conformal blocks. In this section we
investigate the structure of these latter.

1.5.1 Recursion relation for the conformal blocks

Although the four-point conformal block (1.65) is completely determined by the commutation
relations (1.29), there exist no closed form formula for F (s)

∆ (∆i|z), for generic values of the
dimensions ∆i. This is not very surprising, given that the conformal blocks are the symmetry
functions associated to an infinite dimensional algebra. By comparison, the conformal blocks
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in (even) dimension greater than two are given in terms of hypergeometric functions (see for
instance [59]).
The expansion (1.65) may be computed level by level using relations (1.46a), but this is not very
efficient, since the number of descendants grows quickly. Let us look at the analytic structure of
the expansion (1.65), as a function of the internal dimension. Similarly to the OPE expansion
(1.47), the conformal block F (s)

∆ has a pole whenever the internal dimension ∆ takes degenerate
values ∆ = ∆m,n. This means that the block will be well-defined only if the external dimension
∆1, ∆2 or/and ∆3, ∆4 satisfy the corresponding fusion rules. In the simple example (1.53) at level
mn = 1:

H−1
{1},{1}(∆) =

1
2∆

Γ∆,{1}
∆1,∆2

= ∆− ∆2 + ∆1

Γ∆3
∆4;∆,{1} = −∆3 + ∆ + ∆4

 Γ∆3
∆4;∆,{1}H

−1
{1},{1}(∆)Γ

∆,{1}
∆1,∆2

=
(∆1 − ∆2 + ∆)(∆4 − ∆3 + ∆)

2∆
.

(1.66)

When ∆→ ∆1,1 = 0, the limit will be either finite if the fusion rule is satisfied by one of the two
nodes in diagram (1.64): ∆1 = ∆2 or ∆3 = ∆4, or zero if the two nodes satisfy the fusion: ∆1 = ∆2
and ∆3 = ∆4. Note that the null state L−1 |∆1,1〉 has descendants at levels 2, 3, ..., and therefore
there will be simple poles also at higher orders in the expansion of the block F (s)

∆1,1
. From the

example at order 1 above, we know that the residues of these poles must vanish when ∆1 = ∆2
and when ∆3 = ∆4. We can then deduce that each residue is proportional to (∆1−∆2)(∆3−∆4).
More generally,

res∆=∆m,nF
(s)
∆ (∆i|z) ∝ F

(s)
∆m,n+mn

(∆i|z). (1.67)

This observation leads to a very efficient way to compute the Virasoro conformal blocks, given
by Zamolodchikov’s recursion representation [60, 61]:

F (s)
∆ (∆i|z) = (16q)∆−Q

2
4 z

Q2
4 −∆1−∆2(1− z)

Q2
4 −∆1−∆4θ3(q)

3Q2−4
∑

i
∆iH∆(∆i|q). (1.68)

In this expression, Q refers to notation (0.4) for the central charge. The recursion parameter q
is a function of z:

q =
1
16

(
z +

1
2 z

2 + · · ·
)

, (1.69)

which follows from inverting

z =

(
θ2(q)

θ3(q)

)4
, (1.70)

where θ2 and θ3 are the Jacobi theta functions (A.1). The analytic structure (1.67) of the
conformal block appears in the function H∆(∆i|q), as made manifest in its recursive form:

H∆(∆i|q) = 1 +
∑
mn≥1

(16q)mnRm,n(∆i)
∆− ∆m,n

H∆m,n+mn(∆i|q). (1.71)
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To express the coefficients Rm,n, it is convenient to parametrise the conformal dimension with
the momentum P (0.7a,0.8a), in terms of which:

Rm,n(Pi) =
2P0,0Pm,n∏m−1

r=1−m
∏n−1
s=1−n 2Pr,s

m−1∏
r

2
=1−m

n−1∏
s

2
=1−n

∏
±

(P2 ± P1 + Pr,s) (P3 ± P4 + Pr,s) . (1.72)

For instance,

R1,1 =
1
2 (P

2
2 − P 2

1 )(P
2
3 − P 2

4 ) =
(∆1 − ∆2)(∆4 − ∆3)

2 , (1.73)

which is indeed the residue when ∆→ ∆1,1 of the coefficient at order 1 (1.66).
We point out that further, non-physical singularities arise in the representation (1.71). Indeed,
using that

∆m,n +mn = ∆m,−n (1.74)

(cf. (0.8c)) we have:

H∆m,n+mn(∆i|q) = H∆m,−n(∆i|q) = 1 +
∑
rs≥1

(16q)rs Rr,s(∆i)
∆m,−n − ∆r,s

H∆r,−s(∆i|q). (1.75)

The denominator vanishes if there are positive integers r, s such that:

∆m,−n = ∆r,s ⇔ mb− n

b
= ±rb± s

b
, (1.76)

where b is parametrisation of the central charge (0.4). For generic b, this implies r, s = ±m,∓n,
so that rs < 0. Therefore, for generic central charge, no such singularities arise. However, if b is
such that:

mb− n

b
= ±rb± s

b
⇔ b2 = ± n+ s

m∓ r
, (1.77)

that is if b2 is a rational number, then expression (1.71) develops singularities. In particular,
these values of b include the values of the central charge:

c = cp,q = 1− 6 (p− q)
2

pq
,

 p, q coprime integers ,
2 ≤ p < q ,

(1.78)

These values correspond to the central charges of A-type minimal models [20], among which the
Ising model, the 3−states Potts model, etc. It has been conjectured in [50, 62] that these unphys-
ical poles cancel each other in the sum (1.71). Nevertheless, they prevent accurate numerical
analysis at rational values of the central charge, as remarked for instance in Section 4.3 of [47].
Obtaining a recursion which would be manifestly smooth as a function of the central charge is
a difficult problem, which we study in Chapter 3.

1.6 conformal blocks and structure constants together

In this section we would like to point at two subtle aspects of the channel expansion, which arise
when putting structure constants and conformal blocks together. In Section 1.6.1 we explain
what happens when the symmetry algebra is larger than the Virasoro algebra, through the simple
but instructive example of the 3−state Potts model. In Section 1.6.2 we comment on further
singularities which can appear both in the conformal blocks and in the structure constants.
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1.6.1 s-channel expansions in the 3−state Potts model

The 3-state Potts model is a well-known spin model which is a generalisation of the Ising model:
the spin variables can take 3 values instead of 2 (see for instance Chapter 7 in [22]. In Chapter
4 we define precisely the general Q−state Potts model in its random cluster formulation). This
model is conformally invariant and possesses the additional permutational symmetry S3. The
CFT is then based on the extended algebraW3, formed by the stress-energy tensor and a spin−3
fieldW (see for instance [63] for an introduction to theW3 algebra and its representations). The
modes Wn of the field W are defined in strict analogy with the Virasoro ones (1.28):

W (z)
n =

1
2πi

∮
Cz
dy (y− z)n+2 W (y), n ∈ Z. (1.79)

The spectrum of the 3−Potts model contains seven scalar Virasoro primaries [22]3:

Field V1,1 = Id V3,3 = σ± V1,2 = ε V3,1 V1,3 V1,4

∆ 0 1/15 2/5 2/3 7/5 3

The field V3,3 has multiplicity 2: there are two spin fields σ± with the same dimension but
different fusion rules, as seen below. Among these fields, only the identity Id, the two spin fields
σ±, the energy ε and the V3,1 fields are primaries of the full W3 algebra, the others being W3
descendants:

V1,4 = W = W−3Id
V1,3 = W−1W̄−1ε.

(1.80)

Let us now consider the spin four-point function. Note that one can define several different four-
point spin correlators due to its 2-fold multiplicity. These four-point functions typically have
different s-channel expansions, since σ+ et σ− have different fusions:

σ+ × σ+ = σ− + V3,1 (1.81a)
σ+ × σ− = Id + ε. (1.81b)

Then we have for instance the following s-channel conformal block expansions:

〈σ+(z)σ+(0)σ+(∞)σ+(1)〉 =
∑

V =σ−,Z

[
DV
σ+,σ+

]2
|F∆V (∆σ|z)|2 (1.82a)

〈σ+(z)σ−(0)σ+(∞)σ−(1)〉 =
∑

V =Id,ε,
V1,3,W

[
DV
σ+,σ−

]2
|F∆V (∆σ|z)|2 . (1.82b)

It is clear from the above expansions that these two correlators are not the same object, although
they are both four-point functions of fields with the same dimension. This is a crucial point in
the study of the more general Q−Potts model of Chapter 4.
Let us consider the second correlator (1.82b). In this “naive” conformal block expansion, only
conformal symmetry is taken into account: the fields V1,3 and W are considered as primaries,
since they are indeed Virasoro primaries. But if we know that the symmetry is actually larger, we

3 NB: the convention for the field indices m,n in [22] is switched with respect to ours m↔ n.
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can rewrite this expansion by regrouping the terms according to the full algebra representations,
instead of the Virasoro representations. Using (1.80) we obtain:

〈σ+(z)σ−(0)σ+(∞)σ−(1)〉 =
(
|F∆Id (∆σ|z)|

2 +
[
DW
σ+,σ−

]2
|F∆W (∆σ|z)|2

)

+
[
Dε
σ+,σ−

]2|F∆ε (∆σ|z)|
2 +

DV1,3
σ+,σ−

Dε
σ+,σ−

2 ∣∣∣F∆1,3 (∆σ|z)
∣∣∣2
 (1.83)

with the structure constant of the identity normalised to one (1.52). Because W and V1,3 are W3

descendants, it means that the ratios of structure constants DW
σ+,σ−/DId

σ+,σ− and DV1,3
σ+,σ−/Dε

σ+,σ−
are fixed by the full,W3 symmetry, exactly as the Gamma factors of Section 1.2. These ratios can
be computed recursively as well [57]. Defining the W3 blocks W, the expansion (1.83) becomes:

〈σ+(z)σ−(0)σ+(∞)σ−(1)〉 = |W∆Id (∆σ|z)|
2 +

[
Dε
σ+,σ−

]2
|W∆ε (∆σ|z)|

2 . (1.84)

This is a very simple example in which the symmetry function of the full symmetry algebra (here
theW3 block) assembles the contributions of different Virasoro primaries. An important point is
that the presence of this extra symmetry implies relations between some structure constants: in
that case DW

σ+,σ− and DV1,3
σ+,σ− can be determined recursively from DId

σ+,σ− and Dε
σ+,σ− . A similar

structure is present in the more involved Q−Potts model under the form of interchiral blocks,
as will be seen in Chapter 4.

1.6.2 Analytic structure of four-point functions

In Section 1.5 we have seen that a conformal block F∆s (∆i) is well-defined if ∆s 6= ∆r,s with
r, s ∈N, or if ∆s = ∆r,s and the external dimensions ∆i satisfy fusion rules.
Let us consider the s-channel expansion of a generic four-point function (for simplicity the four
external fields are taken to have the same dimension):

〈V(∆)(z)V(∆)(0)V(∆)(∞)V(∆)(1)〉 =
∑

(∆s)∈Ss

[
D

(∆s)
(∆),(∆)

]2 ∣∣∣F (s)
∆s (∆|z)

∣∣∣2 . (1.85)

In particular V(∆) and the V(∆s)’s are not degenerate. ∆ and ∆s are functions of the central charge
c, so that there can exist values of c at which ∆s = ∆r,s for some integers r, s. The dimension ∆
is arbitrary so that the conformal block F (s)

∆s has a pole at order rs. This happens in particular
in the four-point functions of the random cluster Q−Potts model. In that case it turns out that
the poles coming from the conformal blocks are cancelled by poles in the structure constants.
The CFT of the Q−Potts model is fully detailed in Chapter 4. To give an example of such
analytic behaviour of the four-point function, let us assume for now that this CFT is defined for
continuous values of the central charge, and contains a field with dimension ∆ = ∆0,1/2, whose
four-point function has the following s-channel expansion:

〈V(0, 1
2 )
(z, z̄)V(0, 1

2 )
(0)V(0, 1

2 )
(∞)V(0, 1

2 )
(1)〉 =

[
D

(0, 1
2 )

(0, 1
2 )(0, 1

2 )

]2 ∣∣∣F0, 1
2
(z)
∣∣∣2 + · · · (1.86)

The conformal block is:

F0, 1
2
(z) = |z|

2∆
(0, 1

2 )
(
1 + f1(∆0, 1

2
)z + f2(∆0, 1

2
)z2 + · · ·

)
(1.87)
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and the structure constant D(0, 1
2 )

(0, 1
2 )(0, 1

2 )
is known to be well-defined on the considered range of c

(cf. Section 4.2).
At central charge c = 1/2 we have ∆0, 1

2
(c = 1/2) = ∆2,1(c = 1/2), which corresponds to a level

2 degenerate dimension. V0,1/2 is however not a degenerate field, for any c. The fusion rules are
thereby not satisfied and there is a pole in the conformal block at level 2:

f2(∆0, 1
2
) ∼ 1

c− 1/2. (1.88)

However (1.86) takes also a contribution from a non-diagonal field with dimensions (∆, ∆̄) =

(∆2,−1, ∆2,1) = (∆2,1 + 2, ∆2,1), so that:

(1.86) =
[
D

(0, 1
2 )

(0, 1
2 )(0, 1

2 )

]2
F∆0, 1

2
(z)F̄∆0, 1

2
(z̄) +

[
D

(2,−1),(2,1)
(0, 1

2 )(0, 1
2 )

]2
F∆2,1+2(z)F̄∆2,1(z̄) + · · · (1.89)

where F̄0, 1
2

c=1/2
= F̄2,1. The smoothness of the four-point function at c = 1/2 then requires:

resc=1/2

[
D

(2,−1),(2,1)
(0, 1

2 )(0, 1
2 )

]2
F∆2,1+2 = −

[
D

(0, 1
2 )

(0, 1
2 )(0, 1

2 )

]2
resc=1/2F∆0, 1

2
. (1.90)

However from the structure of conformal blocks we have (cf. Section 1.5):

resc=1/2F∆0, 1
2
= res∆=∆2,1F∆ ∝ F∆2,1+2. (1.91)

Therefore condition (1.90) becomes:

resc=1/2

[
D

(2,−1),(2,1)
(0, 1

2 )(0, 1
2 )

]2
∝
[
D

(0, 1
2 )

(0, 1
2 )(0, 1

2 )

]2

=−
[
D

(0, 1
2 )

(0, 1
2 )(0, 1

2 )

]2
resc=1/2f2(∆0, 1

2
).

(1.92)

The structure constant D(2,−1),(2,1)
(0, 1

2 )(0, 1
2 )

, obtained from numerical conformal bootstrap has indeed a
pole at c = 1/2 (see Figure 8 a) in [47]).
More generally in the random clusters Potts model, the smoothness of physical observables is
ensured by a similar precise interplay between the analytic properties of both conformal blocks
and structure constants.

1.7 crossing symmetry

Crossing-symmetry is a consistency constraint on the four-point functions, which allow to de-
termine the model-dependent data: the spectrum and the structure constants. It comes from
assuming commutativity of fields:

V(∆1)(z1)V(∆2)(z2) = V(∆2)(z2)V(∆1)(z1). (1.93)

Expression (1.63) for the four-point function, was derived by taking the OPE between fields
V(∆1)(z) and V(∆2)(0), yielding the s-channel expansion z → 0 of the four-point correlator.
We could have instead chosen to let z approach 1 (resp.∞) by taking the OPE V(∆1) × V(∆4)
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(resp.V(∆1) × V(∆3)), yielding the t- (resp. u-) channel expansions. For instance we could have
written:

〈V(∆1)(z, z̄)V(∆2)(0)V(∆3)(∞)V(∆4)(1)〉 =
∑

(∆t)∈St

D
(∆t)
(∆1),(∆4)

D
(∆3)
(∆t),(∆2)

∣∣∣F (t)
∆t (∆i|1− z)

∣∣∣2 , (1.94)

with the four-point t-channel conformal block:

F (t)
∆ (∆i|1− z) = (1− z)−∆1−∆4+∆t

∑
Y

(1− z)Y Γ∆3
∆t,Y ;∆2

∑
Y ′

|Y ′|=Y

H−1
Y ,Y ′(∆t) Γ∆t,Y ′

∆1,∆4

=

V∆2(0)

V∆t

V∆1(z)

V∆3(∞)

V∆4(1)

(1.95)

Note that the s-channel and t-channel spectra can be in general different.
Commutativity implies that we can equate the s-expansion (1.63) with the above t-expansion
(1.94). It gives the following crossing-symmetry equation:

∑
(∆s)∈Ss

D
(∆s)
(∆1),(∆2)

D
(∆3)
(∆s),(∆4)

∣∣∣F (s)
∆s (∆i|z)

∣∣∣2 =
∑

(∆t)∈St

D
(∆t)
(∆1),(∆4)

D
(∆3)
(∆t),(∆2)

∣∣∣F (t)
∆t (∆i|1− z)

∣∣∣2 . (1.96)

This equation condenses all consistency and symmetry constraints: existence of an associative
OPE and conformal block decomposition. It must be satisfied by any four-point function in a
consistent theory. This restricts the allowed model-dependent data: a spectrum and a set of
structure constants are consistent if they lead to crossing-symmetric four-point functions.
Exploitation of crossing-symmetry is especially powerful when applied to correlation functions
which involve degenerate fields. In that case the fusion rules (1.57) impose that the spectra
Ss and St contain finitely many terms. Such a bootstrap approach allowed for instance to
determine analytically all structure constants of diagonal Liouville theory [64] and was applied
more recently to non-diagonal Liouville [65, 66]. In the random cluster Q−Potts model a similar
approach allowed to determine shift relations between some of the structure constants [47] (cf.
Chapter 4).
When the sum in (1.96) contains a large (potentially infinite) number of terms, numerical boot-
strap techniques allow to check crossing-symmetry of a given spectrum and to determine part
of the set of structure constants.





2
CONFORMAL F IELD THEORY ON THE TORUS

In this Chapter we derive general formulas for the correlation functions of fields living on a torus
topology, from a conformal bootstrap approach. In general, correlation functions on the torus
are extremely complicated objects, for which exact expressions are known only in a few cases
(for example Ising and Ashkin-Teller models [67–69]). However it is always possible to obtain a
general expansion, similar to the s-channel expansion of the plane four-point function seen in
Chapter 1.
We first derive the expressions of the conformal generators in Section 2.1. In Section 2.2 we define
correalations on the torus. We derive the general expressions for the one-point function and the
partition function in Sections 2.3 and 2.4. In Section 2.5 we derive the s-channel expansions of
the two-, three- and four-point functions. Alhough they follow from standard CFT techniques,
to our knowledge they do not appear in the literature. We therefore give here their derivation
in full details.

2.1 conformal generators on the cylinder

Following [70], we express the Virasoro generators on the plane as the modes of the stress-energy
tensor (1.28):

L(z)
n =

1
2πi

∮
Cz
dy (y− z)n+1 T (y), n ∈ Z. (2.1)

The stress-tensor transforms under a general conformal map z 7→ f(z) according to equation
(1.21):

T (y) = [f ′(y)]
2
T (f(y)) +

c

12 {f , y} = [f ′(y)]
2 ∑
m∈Z

L
(f (z))
m

[f(y)− f(z)]m+2 +
c

12 {f , y} (2.2)

where {f , y} is the Schwarzian derivative (1.22). Expanding [f(y)− f(z)]−m−2 around y ∼ z,
and replacing in (1.28) we get:

L(z)
n =

c

12
1

2πi

∮
Cz
dy (y− z)n+1 {f , y}

+
1

2πi
∑
m

L
(f (z))
m

[f ′(z)]m+2

∮
Cz
dy

[f ′(y)]2

(y− z)−n+m+1

1 +
∑
l≥1

(−1)l
l!

(m+ l+ 1)!
(m+ 1)!

∑
k≥2

f (k)(z)

k!f ′(z)
(y− z)k−1

l
 .

(2.3)

The second contour integral gives non-zero terms for m = n,n+ 1, · · · . Collecting the residues
from the different order poles in the sum, we get for the first values of m:

L(z)
n =

c

12
1

2πi

∮
Cz
dy (y− z)n+1 {f , y}+ [f ′(z)]

−n
L(f (z))
n +

1− n
2

f ′′(z)

[f ′(z)]n+2L
(f (z))
n+1

+ [f ′(z)]
−n−4

(
2− n

6 f ′′′(z)f ′(z) +
n2 + n− 4

8 [f ′′(z)]
2
)
L
(f (z))
n+2 + · · ·

(2.4)

33
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An explicit check is obtained using the transformation f(y) = y2:

1
2πi

∮
Cz
dy (y− z)n+1 [f ′(y)]

2 ∑
m∈Z

L
(f (z))
m

[f(y)− f(z)]m+2

=
1

2πi

∮
Cz
dy (2y)2(y− z)n+1 ∑

m∈Z

L
(z2)
m

[y2 − z2]m+2

=
1

2πi

∮
Cz
dy (2y)2

L(z2)
n (y+ z)−n−2

y− z
+
L
(z2)
n+1(y+ z)−n−3

(y− z)2 +
L
(z2)
n+2(y+ z)−n−4

(y− z)3 + · · ·


=

1
(2z)nL

(z2)
n +

1− n
(2z)n+2L

(z2)
n+1 +

n2 + n− 4
2

1
(2z)n+4L

(z2)
n=2 + · · ·

(2.5)

We take now f to be the map:

z 7→ w = −i N2π ln z (2.6)

from the plane to a finite cylinder of length M and radius N , as pictured in Figure 2.1.

z e−2πM
N

1

w

M

N

Figure 2.1: The coordinate z on an annulus is mapped to the coordinate w on the finite cylinder.

The Schwarzian is {f , z} = 1
2z2 , and we obtain from (2.4) for finite w = f(z):

L
(z)
0 = L

C,(w)
0 (2.7a)

L
(z)
−1 = z−1

(
N

2πi

)(
L
C,(w)
−1 − 2πi

N
L
C,(w)
0

)
(2.7b)

L
(z)
−2 = z−2

(
N

2πi

)2
(
L
C,(w)
−2 − 3

2
2πi
N
L
C,(w)
−1 +

13
12

(2πi
N

)2
L
C,(w)
0 +

(2πi
N

)2 c

24

)
(2.7c)

· · ·

The modes with L
C,(w=∞)
n , obtained from L

(z=0)
n are instead related to contour integrals that

are non-contractible on the cylinder. One finds for instance:

L
(0)
−n = L

C,(∞)
−n +

c

24δn,0. (2.8)
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2.2 expectations on the torus

Consider now a statistical model with Hamiltonian H, defined on a M ×N lattice with periodic
boundary conditions in, say, theN direction. We can think of spin degrees of freedom Si,j living at
each site of the lattice, so that each row is a state |St〉 = {St,0, · · ·St,N−1}. This state is obtained
from the state |S0〉 by evolution with H over a distance –or time, t: |St〉 = e−tH |S0〉. Such
evolution on the cylinder corresponds, by conformal mapping to the plane, to radial evolution
(cf. Figure 2.2) and so the Hamiltonian is given by the dilation operator (see eg. [56], Chapter
8):

H = L
C,(∞)
0 + L̄

C,(∞)
0 . (2.9)

t

M

N

St,0

St,1
· · ·

t

Figure 2.2: A state |St〉 propagating on the cylinder (left) and on the plane (right).

The partition function of the system on the cylinder is therefore:

Z =
∑

|S0〉,|SM 〉
〈SM |e

−M
(
L
C,(∞)
0 +L̄

C,(∞)
0

)
|S0〉. (2.10)

Imposing periodic boundary conditions also in theM direction: |S0〉 = |SM 〉 we get the partition
function on a torus:

Z = trSe
−M
(
L
C,(∞)
0 +L̄

C,(∞)
0

)
(2.11)

where the trace is over the set of states, aka the spectrum S. Gluing the ends of the cylinder
this way does not create the most general torus one can design: as shown in Figure 2.3 this torus
corresponds to the case τ1 = 0 drawn in grey. A general torus would have complex modular
parameter τ = τ1 + iτ2. In addition we can use the modular transformations

τ 7→ aτ + b

cτ + d
, ad− bc = 1 (2.12)

to get an equivalent torus with τ = τ1 + iMN . To create such a torus from the cylinder, we need
to first translate the edges by τ1 before gluing them together.
The translation operator on the cylinder is LC0 − L̄C0 (see again [56], 8.4), so that the partition
function on the torus with modular parameter τ is:

Z = trSe
−2πτ2

(
L
C,(∞)
0 +L̄

C,(∞)
0

)
e

2πiτ1

(
L
C,(∞)
0 −L̄C,(∞)

0

)
= trSqL

C,(∞)
0 q̄L̄

C,(∞)
0 , (2.13)
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w2

w1

τ1 = 0

τ1 6= 0

−→
Nτ

M

N

Nτ2

Nτ1

Figure 2.3: To make a torus of complex modular parameter τ we glue the edges of length M together to
make a cylinder, and twist it by Nτ1 before gluing its ends.

where we introduced the elliptic nome:

q = e2πiτ . (2.14)

2.3 one-point function

The one-point function of a field V∆,∆̄ corresponds to the trace (2.13) with a field insertion:

〈V∆,∆̄〉τ =
1
Zτ

trSint

(
qL
C,∞
0 q̄L̄

C,∞
0 V∆,∆̄(0)

)
(2.15)

and is normalised by the partition function on the torus Zτ (see next Section 2.4). By translation
invariance, we can choose to insert the field at w = 0. This torus correlation function can be
associated with diagram 2.4, where Sint ⊆ S is the set of representations which satisfy the fusion:

V(∆)

Sint

Sint S′int

V(∆)

Figure 2.4: Diagrammatic representation of the torus one-point function.

R∆ ×Rint → Rint (2.16)
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pictured in Figure 2.4. We now map (2.15) to the plane using (2.6). The generators at infinity
transform as (2.8):

L
(C,∞)
0 = L

(0)
0 −

c

24
L̄
(C,∞)
0 = L̄

(0)
0 −

c

24,
(2.17)

while the field tranforms as (1.13):

V∆,∆̄(0) = i∆−∆̄
(2π
N

)∆+∆̄
V∆,∆̄(1). (2.18)

Considering for simplicity the one-point function of spinless fields, we get from (2.15) using (2.17)
and (2.18):

〈V∆,∆̄〉τ =
1
Zτ

(2π
N

)∆+∆̄
trSint

(
qL

(0)
0 −

c
24 q̄L̄

(0)
0 −

c
24V∆,∆̄(1)

)
. (2.19)

Performing the trace over the conformal families R∆int ,

〈V∆,∆̄〉τ =
1
Zτ

(2π
N

)∆+∆̄ ∑
(∆int,Yint)

〈V(∆int,Yint)(∞)qL
(0)
0 −

c
24 qL̄

(0)
0 −

c
24V(∆)(1)V(∆int,Yint)(0)〉

=
1
Zτ

(2π
N

)∆+∆̄ ∑
(∆int)

q∆int− c
24 q̄∆̄int− c

24
∑

Yint,Ȳint

D
(∆int,Yint)
(∆int,Yint),(∆)q

|Yint|q̄|Ȳint|,
(2.20)

where we used the notation (0.3). The sum over Yint, Ȳint is the contribution of descendants, and
can be wrapped up into the one-point conformal block on the torus:

〈V∆,∆̄〉τ =
1
Zτ

(2π
N

)∆+∆̄ ∑
(∆int)

D
(∆int)
(∆int),(∆)q

∆int− c
24 q̄∆̄int− c

24

∣∣∣F (1)
∆int

(∆|q)
∣∣∣2 , (2.21)

with:

F (1)
∆int

(∆|q) =
∞∑
Y =0

qY
∑
YL,YR

|YL|=|YR|=Y

Γ∆int,YR
∆int,YL;∆H

−1
YL,YR(∆int)

= 1 + 2∆int + ∆(∆− 1)
2∆int

q+O(q2).

(2.22)

As for the four-point conformal block on the plane (1.65), there exist a recursion relation to
compute efficiently one-point conformal blocks on the torus [71]:

F (1)
∆int

(∆ext|q) =
q1/24

η

1 +
∑
N≥1

H
(N)
∆int

(∆ext)q
N


= 1 +

(
1 +H

(1)
∆int

(∆ext)
)
q+

(
2 +H

(1)
∆int

(∆ext) +H
(2)
∆int

(∆ext)
)
q2 + · · ·

(2.23)

with

H
(N)
∆int

(∆ext) =
N∑

mn=1

RT
m,n(∆ext)

∆int − ∆m,n
H

(N−mn)
∆m,−n

(∆ext). (2.24)
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The coefficients RT
m,n are given, in terms of the momenta (0.7a,0.8a), by:

RT
m,n(Pext) =

2P0,0Pm,n∏m
r=1−m

∏n
s=1−n 2Pr,s

2m−1∏
r

2
=1−2m

2n−1∏
s

2
=1−2n

(Pext − Pr,s) . (2.25)

The recursion makes manifest that the one-point block has an analytic structure similar to the
four-point block, with poles at degenerate values of the internal dimension, ∆int = ∆m,n. The
combination of the fusion (2.16) with the one imposed by the degenerate channel (1.57) leads
to:

RPint ×RPext = Rm,n ×RPext → Rm,n, (2.26)

implying that the external field is degenerate, Pext = Pk,l, |k| = 1, 3, · · · 2m − 1, |l| =
1, 3, · · · 2n− 1. It follows that the coefficient RT

m,n(Pk,l) vanishes. Writing:

Pext = Pk,l + εext

Pint = Pm,n + εint,
(2.27)

the limit (εext, εint)→ (0, 0) of

RT
m,n(Pext)

∆int − ∆m,n
∝ εext
εint

(2.28)

depends on how the limit is reached. We will illustrate this point in Section 2.4, when dealing
with the analogous formula for the partition function.

As an example, let us consider the one-point function of the energy field in the Ising modelM4,3.
The Ising spectrum consists of three degenerate fields:

Id = V1,1, ε = V1,2 = V3,2

σ = V2,1 = V2,2
(2.29)

Therefore the fusion of the energy field with another degenerate field is dictated by the fusion
of R1,2:

R1,2 ×Rr,s = Rr,s±1. (2.30)

The fields entering the internal channel of the energy one-point function should further satisfy
the fusion (2.16). There is only one such field which is the spin σ, and we obtain:

〈ε〉τ =
1
Zτ

(2π
N

)2∆ε
Dσ
σ,ε |q|

2∆σ−c/12 ∣∣F∆ε,∆σ (q)
∣∣2 . (2.31)

Using the expansion (2.22) of the conformal block as well as the values of dimensions, central
charge and structure constant:

∆ε =
1
2, c =

1
2,

∆σ =
1
16, Dσ

σ,ε =
1
2,

(2.32)
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we obtain:

〈ε〉τ =
1
N

π

Zτ
|q|1/12

∣∣∣1− q+O(q2)
∣∣∣ . (2.33)

The exact expression on the torus with N = 1 is given by the following expression [69] in terms
of the Dedekind eta function (A.5):

〈ε〉 = π|η|2

Z
=
π

Z
|q|1/12

∣∣∣(1− q)(1− q2) · · ·
∣∣∣2 . (2.34)

It matches the expansion (2.33) up to the factor of 1/N , which comes from the transformation
between a cylinder of length N and a cylinder of length 1:

〈V(∆)〉τ1+iM/N =
1

N∆+∆̄
〈V(∆)〉τ1+iM ≡

1
N∆+∆̄

〈V(∆)〉. (2.35)

Finally, let us consider the one-point functions of descendant fields, and in particular of level 1
and 2 descendants. Coming back to definition (2.15), and this time transforming both the field
with (2.18) and the generator with (2.7b):

〈LC,(w=0)
−1 V∆,∆̄〉τ = i∆−∆̄+1

(2π
N

)∆+∆̄+1
trSint

{
qL

(0)
0 −

c
24 q̄L̄

(0)
0 −

c
24
(
L
(z=1)
−1 + L

(z=1)
0

)
V∆,∆̄(1)

}
.

(2.36)

When computing the trace, we evaluate the Virasoro matrix elements (1.45) of (L−1 + L0) V∆,∆̄.
Using the recursions (1.46a) these evaluate to:

〈V∆int(∞) (L−1 + L0) V∆,∆̄(1)V∆int(0)〉 = 0. (2.37)

Therefore, any one-point function of a level 1 descendant field vanishes on the torus.
At level 2, using (2.7c):

〈LC,(w=0)
−2 V∆,∆̄〉τ

= −
(2π
N

)∆+∆̄+2
trSint

{
qL

(0)
0 −

c
24 q̄L̄

(0)
0 −

c
24

(
L
(z=1)
−2 − 13

12L
(z=1)
0 − c

24

)
V∆,∆̄(1)

}
=

(2π
N

)∆+∆̄+2 ∑
(∆int,Yint)

(
∆
12 − ∆int − |Yint|+

c

24

)
D

(∆int,Yint)
(∆int,Yint),(∆)q

∆int+|Yint|− c
24 q̄∆̄int+|Ȳint|− c

24 .

(2.38)

This expression will be useful to evaluate for instance the one-point function of an important
level 2 descendant, the stress-energy tensor.

2.4 the partition function on the torus

The partition function is the one-point function of the identity,

Zτ = trS
(
qL
C
0 q̄L̄

C
0 Id
)

. (2.39)
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From the general expression (2.21), and using the normalisation of the identity structure constant
(1.52), we can write it as:

Zτ =
∑

(∆int)∈S
q∆int− c

24 q̄∆̄int− c
24

∣∣∣∣ lim
∆ext→0

F (1)
∆int

(∆ext|q)
∣∣∣∣2 . (2.40)

If the representations Rint entering the sum are not degenerate, the matrix of inner products
H(∆int) appearing in the conformal block expansion (2.22) is invertible. We can then simply
take the limit

lim
∆ext→0

Γ∆int,YR
∆int,YL;∆ext

= HYL,YR(∆int), (2.41)

and the blocks assume the simple form:

F (1)
∆int

(∆ext = 0|q) =
∞∑
Y =0

qY p(Y ), (2.42)

where p(Y ) is the number of partitions of the integer Y . This sum can be written in terms of
the η function (A.5) :

F (1)
∆int

(∆ext = 0|q) =
∞∑
n=1

1
1− qn =

q
1

24

η(q)
. (2.43)

Plugging in (2.40) we obtain the partition function of a free boson (see for intstance [22], Chapter
10):

Zτ =
1
|η(q)|

∑
(∆int)∈S

q∆int q̄∆̄int . (2.44)

If there are degenerate representations Rint = Rm,n in the spectrum, the block of the matrix
H(∆m,n) corresponding to level mn is non-invertible. The simplest example is a degenerate
representation at level 1:

Γ∆int,{1}
∆int,{1};∆ext

= 2∆int + ∆ext(∆ext − 1)

H−1
{1},{1}(∆int) =

1
2∆int

(2.45)

and the expansion of the conformal block (2.22) is:

F (1)
∆int

(∆ext|q) = 1 + 2∆int + ∆ext(∆ext − 1)
2∆int

q+O(q2). (2.46)

The limit lim∆ext,∆int→0F
(1)
∆int

(∆ext|q) can be reached in different ways. Let us parametrise the
conformal dimension using the momentum α, and use the regularisation parameters εext and
εint:

αext = 2εext (2.47a)
αint = α1,1 + εint = εint. (2.47b)
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Then,

2∆int + ∆ext(∆ext − 1)
2∆int

= 1− εext +O(ε2ext)

εint +O(ε2int)
. (2.48)

The limit (εext, εint) → (0, 0) depends therefore on the way one reaches the point (εext, εint) =

(0, 0). If εext > εint we get back expression (2.44). Setting instead εext = εint one finds,

2∆int + ∆ext(∆ext − 1)
2∆int

= 0

F (1)
∆ext,∆int

(q) = 1 +O(q2).
(2.49)

This corresponds to removing the null state at level 1. The general case αint = αm,n is more
easily worked out by using the recursion formula (2.23) of the conformal blocks. Using the same
regularisation scheme

αext = 2εext (2.50a)
αint = α(m,n) + εint, (2.50b)

the residues (2.25) become:

RT
m,n(2εext) = εext

∏2m−1
i

2
=1−2m

∏2n−1
j

2
=1−2n

i−1
2 b+ j−1

2 b−1∏m
k=1−m

∏n
l=1−n(−kb− lb−1)

+O(ε2ext), (k, l) 6= (0, 0), (m,n), (2.51)

and relabelling indices leads to:

RT
m,n(2εext) = −εext(mb+

n

b
) +O(ε2ext). (2.52)

With

∆int − ∆m,n = εint(mb+
n

b
) +O(ε2int), (2.53)

we get:

lim
ε→0
εint→0

RT
m,n(2εext)

∆int − ∆m,n
= lim

ε→0
εint→0

−εext +O(ε2ext)

εint +O(ε2int)
= −1, (2.54)

if we set ε = εint. Again, this amounts to quotienting out the null representation Rm,n, and the
expansion of the conformal block becomes:

F (1)
0,∆int

(q) = 1 + · · ·+
(
p(mn)− 1

)
qmn + · · ·+

(
p(mn+N)− p(N)

)
qmn+N + · · · (2.55)

Similarly to the recursion representation for the four-point blocks of Section 1.5, the recursion
formula (2.23) develops non-physical singularities at rational values of the central charge c = cp,q
(0.6). The structure of these singularities and their cancellation is studied in Chapter 3.
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2.4.1 One-point function of the stress-energy tensor

An important quantity is the expectation value of the stress-energy tensor. On the torus it is
given by [70]:

〈T 〉τ =
2πi
N2 ∂τ logZ. (2.56)

For example, the Ising partition function on the torus takes the form [69]:

Z =
1

2 |η|

4∑
ν=2
|θν(0|τ )| , (2.57)

in terms of the elliptic theta functions defined in Appendix A. Taking the derivative,

〈T 〉 = 1
8 |η|Z

4∑
ν=2
|θν |

(
θ′′ν
θν
− 1

3
θ′′′1
θ′1

)
. (2.58)

We will most often use (2.56) as an expansion in q:

〈T 〉τ =
(2πi
N

)2
q∂q logZ

= − 1
Z

(2π
N

)2 ∑
(∆int,Yint)

(
∆int + |Yint| −

c

24

)
D

(∆int,Yint)
(∆int,Yint),0q

∆int+|Yint|− c
24 q̄∆̄int+|Ȳint|− c

24 .
(2.59)

Note that this is expansion (2.38) which we derived in Section 2.3, since T is the level 2 descen-
dant of the identity.
In the limit M

N →∞, ie in the limit q → 0, the torus becomes a cylinder, and (5.28) becomes:

〈T 〉M/N→∞ = 〈T 〉C =
π2c

6N2 , (2.60)

which can also be derived from the transformation of T under the map between the plane and
the cylinder (2.6). The stress-energy tensor gives the variation of the Hamiltonian (see eg. [58],
Chapter 11):

δH =
1

2π

∫ N

0
dw2〈T 〉C + 〈T̄ 〉C =

π c

6N . (2.61)

This variation is compensated by a change in the free energy [58], so that the free energy density
is:

E = − πc

6N
N=2π
= − c

12. (2.62)

When c = 1 this is the famous Casimir energy of a free boson on a circle.
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2.5 higher point functions on the torus

We derived the general expression (2.20) of the torus one-point function in the preceding section.
In this section we derive the expression of the two, three and four point-functions on the torus.
We will see that the terms induced by the torus topology are determined by the structure of the
CFT, namely the fusion rules and structure constants. These are the expressions which will be
applied in Part II to the study of percolation models.

2.5.1 Two-point function

Similarly to the zero- and one-point functions, the two-point function on the torus is defined as
the trace over the spectrum with field insertions:

〈V(∆1)(w1, w̄1)V(∆2)(w2, w̄2)〉τ =
1
Z

trS
(
qL
C,∞
0 q̄L̄

C,∞
0 V(∆1)(w1, w̄1)V(∆2)(w2, w̄2

)
. (2.63)

When the insertion points get close, ie w1 → w2, we can insert the OPE (1.47) of the two fields
in the expression above, giving the s-channel expansion of the two-point function:

〈V(∆1)(w1, w̄1)V(∆2)(w2, w̄2)〉τ =
∑

(∆top,Ytop)∈S
D

(∆3,Y3)
(∆1),(∆2)

w
∆3+|Y3|−∆1−∆2
12 w̄

∆̄3+|Ȳ3|−∆̄1−∆̄2
12

× trS
(
qL
C,∞
0 q̄L̄

C,∞
0 V(∆top,Ytop)(w2, w̄2)

)
.

(2.64)

The trace gives the one-point function (2.15) on a torus of length N . We find convenient to
express the two- (and higher) point functions in terms of the one-point functions on a torus of
length N = 1:

〈V(∆)〉τ1+iM/N =
1

N∆+∆̄
〈V(∆)〉τ1+iM ≡

1
N∆+∆̄

〈V(∆)〉. (2.65)

This makes explicit the plane limit and the w12
N topological corrections of the two-point function:

〈V(∆1)(w1, w̄1)V(∆2)(w2, w̄2)〉τ

=
1

w∆1+∆2
12 w̄∆̄1+∆̄2

12

∑
(∆top,Ytop)

D
(∆top,Ytop)
(∆1),(∆2)

(
w12
N

)∆top+|Ytop| ( w̄12
N

)∆̄top+|Ȳtop|
〈V(∆top,Ytop)〉

=
1

w∆1+∆2
12 w̄∆̄1+∆̄2

12

[
δ(∆1),(∆2) + f (2)τ

(
w12
N

)] (2.66)

where we defined the function f (2)τ which accounts for the torus expansion:

f (2)τ =
∑

(∆top,Ytop)

a
(2)
(∆top,Ytop)

(τ )

(
w12
N

)∆top+Ytop ( w̄12
N

)∆̄top+Ȳtop

, (2.67)

with

a
(2)
(∆,Y )(τ ) = D

(∆,Y )
(∆1),(∆2)

〈V(∆,Y )〉. (2.68)
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Expansion (2.66) can be represented diagramatically as in Figure 2.5.

V(∆1)(w) V(∆2)(0)

V(∆top,Ytop)

Figure 2.5: Diagrammatic representation of the torus two-point function.

Remark that on the plane the expansion (2.66) reduces to the simple power-law decay (1.58).
This is due to the fact that all one-point functions (but the identity) vanish on the plane.
But on the torus, two-point functions contain, similarly to four-point functions on the plane,
information on the fusion of fields through their dependence on the structure constants. Note
also that, although the two-point function of two different fields is zero on the plane, it might
be non-zero on the torus, with w12

N terms coming from the contributions of the fields in their
fusion which are different from the identity.

As an explicit example, let us consider the two-point function of the Ising spin fields (2.29).
Their fusion rule is:

V(2,1) ×V(2,1) = V(1,1) + V(3,1), (2.69)

and therefore the two channels in the expansion (2.66) are the identity and the energy field. The
contribution of each primary and its descendants give:

〈σ(w)σ(0)〉τ = |w|−4∆σ
([

1 +D(0,{2})
σ,σ

((
w

N

)2
〈T 〉+

(
w̄

N

)2
〈T̄ 〉

)
+O

(
w4

N4

)]

+Dε
σ,σ

∣∣∣∣wN
∣∣∣∣2∆ε

[
〈ε〉+O

(
w2∆ε+4

N2∆ε+4

)]) (2.70)

where we took into account that the one-point functions of total derivatives vanish (see (2.36)
and (2.37)), and that the energy is degenerate at level 2 (2.38). From (1.50) and using relations
(1.46a) one finds that D(0,{2})

σ,σ = 2∆σ
c . With the dimensions (2.32) of the Ising model,

〈σ(w)σ(0)〉τ = |w|−1/4
(

1 + 1
2

∣∣∣∣wN
∣∣∣∣ 〈ε〉+ 1

4

((
w

N

)2
〈T 〉+

(
w̄

N

)2
〈T̄ 〉

)
+O

(
w4

N4

))
. (2.71)

The exact two-point function is [68, 69]:

〈σ(w)σ(0)〉 = 1
2|η|Z

[θ′1(0)|1/4

|θ1(w)|1/4

4∑
i=1
|θi
(
w

2

)
|. (2.72)
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Expanding around w ∼ 0, and using the identity (A.8):

〈σ(w)σ(0)〉 = |w|−1/4

1 + 1
2
π |η|2

Z
|w|

+
1
4

1
8 |η|Z

4∑
ν=2
|θν |

[(
θ′′ν
θν
− 1

3
θ′′′1
θ′1

)
w2 +

(
θ̄′′ν
θ̄ν
− 1

3
θ̄′′′1
θ̄′1

)
w̄2
]
+O(w4)

.

(2.73)

The terms of order w and w2 are respectively the contributions of the energy and the stress-
energy tensor. With their one-point functions given by (2.33) and (2.58), we recover expansion
(2.71) 1.

2.5.2 Three-point function

The derivation of the s−channel expansion of the three-point function 〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)〉τ
of spin-less fields2 follows what we did in the previous section for the two-point function. Inserting
the OPE V(∆1)(w1)V(∆2)(w2):

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)〉τ
|w12|−2∆1−2∆2

=
∑

(∆L)∈S
YL,ȲL

D
(∆L,YL)
(∆1),(∆2)

w
∆L+|YL|
12 w̄

∆̄L+|ȲL|
12

〈
V(∆L,YL)(w2)V(∆3)(w3)

〉
τ

.

(2.74)

The plane limit corresponds to the internal channel V(∆L) = V(∆3) as shown in diagram 2.6a,
while the topological corrections are associated to diagram 2.6b. Inserting the expansion (2.66)

V(∆1)

V(∆2)

V(∆3,Y3)

Id

V(∆3)

(a)

V(∆1)

V(∆2)

V(∆L,YL)

V(∆top,Ytop)

V(∆3)

(b)

Figure 2.6: Diagrammatic representations of the plane limit (a) and the topological corrections (b) of the
torus three-point function.

1 up to the powers of N : (2.72) is the two-point function on a torus of length 1. Transforming the coordinate:
w′ = Nw, and the field σ using (2.35), we find exactly (2.71).

2 for simplicity of notation we derive the result for spin-less fields; it is straightforward to extend it to fields with
spin.
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of the two-point
〈
V(∆L,YL)(w2)V(∆3)(w3)

〉
τ
we get:

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)〉τ
|w12|−2∆1−2∆2 |w23|−2∆3

=
∑

(∆L)∈S
YL,ȲL

D
(∆L,YL)
(∆1),(∆2)

(
w12
w23

)∆L+|YL| ( w̄12
w̄23

)∆̄L+|ȲL|

×
∑

(∆),Y ,Ȳ
D

(∆,Y )
(∆L,YL),(∆3)

(
w23
N

)∆+|Y | ( w̄23
N

)∆̄+|Ȳ |
〈V(∆,Y )〉.

(2.75)

We can separate explicitely the plane limit:

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)〉τ
|w12|−2∆1−2∆2 |w23|−2∆3

=

∣∣∣∣w12
w23

∣∣∣∣2∆3 ∑
Y3

D
(∆3,Y3)
(∆1),(∆2)

D
(0)
(∆3,Y3),(∆3)

(
w12
w23

)|Y3| ( w̄12
w̄23

)|Ȳ3|

+ f (3)τ

(
w12
w23

, w23
N

)
,

(2.76)

with the function f (3)τ accounting for the topological corrections:

f (3)τ

(
w12
w23

, w23
N

)
=

∑
(∆top,Ytop)

a
(3)
(∆top,Ytop)

(
w12
w23

; τ
)(

w23
N

)∆top+|Ytop| ( w̄23
N

)∆̄top+|Ȳtop|
, (2.77)

where we define:

a
(3)
(∆top)

(
w12
w23

∣∣∣∣τ) = 〈V(∆top)〉
∑

(∆L,YL)
D

(∆L,YL)
(∆1),(∆2)

D
(∆top)
(∆L,YL),(∆3)

(
w12
w23

)∆L+|YL| ( w̄12
w̄23

)∆̄L+|ȲL|

= 〈V(∆top)〉
∑
(∆L)

D
(∆L)
(∆1),(∆2)

D
(∆top)
(∆L),(∆3)

(
w12
w23

)∆L ( w̄12
w̄23

)∆̄L ∣∣∣∣F (3)
∆L

(
∆i
∣∣∣∣w12
w23

)∣∣∣∣2 .

(2.78)

For convenience we defined the three-point conformal block:

F (3)
∆L

(
∆i
∣∣∣∣w12
w23

)
=
∑
YL

(
w12
w23

)|YL|
Γ∆top

∆L,YL;∆3

∑
Y

|Y |=|YL|

H−1
Y ,YL (∆L) Γ∆L,Y

∆1,∆2
. (2.79)

By definition the function f
(3)
τ vanishes in the limit w23

N → 0, which is the plane limit regime.
Note that, contrary to the two-point analog f (2)τ , the three-point topological function depends
on the ratio w12

w23
which encodes the geometry of the fields insertion points.

The first sum in (2.76) adds up to:

1
D

(∆3)
(∆1),(∆2)

∑
Y3

D
(∆3,Y3)
(∆1),(∆2)

D
(0)
(∆3,Y3),(∆3)

(
w12
w23

)|Y3| ( w̄12
w̄23

)|Ȳ3|

=

∣∣∣∣∣1 + β
(∆3,{−1})
∆1,∆2

β0
(∆3,{−1}),∆3

w12
w23

+
(
β
(∆3,{−1,−1})
∆1,∆2

β0
(∆3,{−1,−1}),∆3

+ β
(∆3,{−2})
∆1,∆2

β0
(∆3,{−2}),∆3

) w2
12

w2
23

+ · · ·
∣∣∣∣∣
2

=

∣∣∣∣∣1− (∆1 − ∆2 + ∆3)
w12
w23

+
1
2 (∆1 − ∆2 + ∆3)(1 + ∆1 − ∆2 + ∆3)

w2
12

w2
23

+ · · ·
∣∣∣∣∣
2

=

∣∣∣∣1 + w12
w23

∣∣∣∣−2∆1+2∆2−2∆3

=

∣∣∣∣w23
w13

∣∣∣∣2∆1−2∆2+2∆3
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where the beta coefficients are (cf. Section 1.3):

β∆3,Y3
∆1,Y1;∆2,Y2

=
∑

|Y |=|Y3|
H−1
Y ,Y3

(∆3)Γ
∆3,Y
∆1,Y1;∆2,Y2

(2.80)

and are computed using the relations (1.46a). Finally,

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)〉

=
D

(∆3)
(∆1),(∆2)

|w12|2∆1+2∆2−2∆3 |w23|−2∆1+2∆2+2∆3 |w13|2∆1−2∆2+2∆3
+

f
(3)
τ

(
w12
w23

, w23
N

)
|w12|2∆1+2∆2 |w23|2∆3

.
(2.81)

2.5.3 Four-point function

The s−channel expansion of the four-point function 〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)V(∆4)(w4)〉τ
of four (primary, spin-less) fields is derived by inserting the OPEs of V(∆1)(w1)V(∆2)(w2) and
V(∆3)(w3)V(∆4)(w4):

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)V(∆4)(w4)〉τ
|w12|−2∆1−2∆2 |w34|−2∆3−2∆4

= 〈
∑

(∆L,YL)
D

(∆L,YL)
(∆1),(∆2)

w
∆L+|YL|
12 w̄

∆̄L+|ȲL|
12 V(∆L,YL)(w2)

×
∑

(∆R,YR)
D

(∆R,YR)
(∆3),(∆4)

w
∆R+|YR|
34 w̄

∆̄R+|ȲR|
34 V(∆R,YR)(w4)〉τ .

(2.82)

Inserting the expansion (2.66) of 〈V(∆L,YL)(w2)V(∆R,YR)(w4)〉τ ,

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)V(∆4)(w4)〉τ
|w12|−2∆1−2∆2 |w34|−2∆3−2∆4

=
∑

(∆L,YL)
(∆R,YR)

D
(∆L,YL)
(∆1),(∆2)

D
(∆R,YR)
(∆3),(∆4)

(
w12
w24

)∆L+|YL| ( w̄12
w̄24

)∆̄L+|ȲL| (w34
w24

)∆R+|YR| ( w̄34
w̄24

)∆̄R+|ȲR|

∑
(∆top,Ytop)

D
(∆top,Ytop)
(∆L,YL),(∆R,YR)

(
w24
N

)∆top+|Ytop| ( w̄24
N

)∆̄top+|Ȳtop|
〈V(∆top,Ytop)〉.

(2.83)

The plane limit P0 is given by the terms with ∆top = 0 and ∆L = ∆R, corresponding to diagrams
2.7a. It can be written as a function of the cross-ratio (1.62) z:

P0(z) =
∑
(∆,Y )

D
(∆,Y )
(∆1),(∆2)

D
(∆,Y )
(∆3),(∆4)

(
w12w34
w2

24

)∆+|Y | ( w̄12w̄34
w̄2

24

)∆̄+|Ȳ |

=
∑
(∆)

D
(∆)
(∆1),(∆2)

D
(∆)
(∆3),(∆4)

∣∣∣F (4)
(∆)(∆i|z)

∣∣∣2 ,
(2.84)

where F (4)
(∆)(∆i|z) is the s− channel four-point conformal block (1.65). We obtain:

〈V(∆1)(w1)V(∆2)(w2)V(∆3)(w3)V(∆4)(w4)〉τ

=
1

|w12|2∆1+2∆2 |w34|2∆3+2∆4

[
P0(z) + f (4)τ

(
w12
w24

, w34
w24

, w24
N

)]
,

(2.85)
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V(∆1)

V∆2

V(∆,Y )

Id

V(∆,Y )

V(∆3)

V(∆4)

(a) Diagrammatic representation of the
plane limit of the torus four-point func-
tion.

V(∆1)

V(∆2)

V(∆L,YL)

V(∆top,Ytop)

V(∆R,YR)

V(∆3)

V(∆4)

(b) Diagrammatic representation of the
torus corrections.

where we define:

f (4)τ

(
w12
w24

, w34
w24

, w24
N

)
=

∑
(∆top,Ytop)

a
(4)
(∆top,Ytop)

(
w12
w24

, w34
w24

; τ
)(

w24
N

)∆top+|Ytop| ( w̄24
N

)∆̄top+|Ȳtop|
.

(2.86)

f
(4)
τ accounts for the topological corrections represented by diagrams 2.7b, with:

a
(4)
(∆,Y )

(
w12
w24

, w34
w24

; τ
)
= 〈V(∆,Y )〉

∑
(∆L,YL),
(∆R,YR)

D
(∆L,YL)
(∆1),(∆2)

D
(∆R,YR)
(∆3),(∆4)

D
(∆,Y )
(∆L,YL),(∆R,YR)

×
(
w12
w24

)∆L+|YL| ( w̄12
w̄24

)∆̄L+|ȲL| (w34
w24

)∆R+|YR| ( w̄34
w̄24

)∆̄R+|ȲR|
.

(2.87)

Note that it depends on the two geometric ratios w12
w24

and w34
w24

.



3
ANALYTIC STRUCTURE OF THE RECURS ION REPRESENTATION
OF CONFORMAL BLOCKS

In Section 1.5 we introduced the recursion representation of the four-point conformal blocks. We
discussed the poles of the block, seen as a function of the internal dimension ∆ or of the central
charge:

• “physical” poles when ∆ = ∆m,n. These poles are also present in the level-by-level repre-
sentation (1.65), they reflect the structure of the Virasoro representations. The block is
well-defined if V∆ is degenerate, namely if the external dimensions satisfy the corresponding
fusion rule.

• “unphysical poles” for values of the central charge corresponding to b2 ∈ Q and for any
value of ∆: they come from resonances of the dimensions ∆m,−n = ∆r,s. They do not appear
in the level-by-level expansion (1.65) and are observed to cancel out.

In this chapter we are concerned with the second type of poles. In principle one could content
oneself with the fact that the poles are unphysical and that the block are still well defined for
b2 ∈ Q and arbitrary internal and external dimensions. The problem is practical: in a numerical
bootstrap study, the conformal blocks must be computed accurately to check crossing-symmetry
of four-point functions, and obtain accurate estimates of the structure constants. The most
efficient known way to compute conformal blocks is the recursion representation. It is then
needed to regularise the blocks at the (dense set of) points where the unphysical poles appear,
by taking the central charge slightly away from the rational value. While this regularisation
scheme works, the cancellation of two very large terms leads to non-negligible numerical error,
which can prevent the bootstrap analysis near these values of the central charge (see for instance
note 20 in Section 4.3 of [47]).
Finding a representation of the four-point conformal blocks which is both computationally effi-
cient and manifestly finite for any ∆’s and any c seems difficult. In this chapter we study the
function (1.71):

H∆(∆i|q) = 1 +
∑
mn≥1

(16q)mnRm,n(∆i)
∆− ∆m,n

H∆m,n+mn(∆i|q) =
∑
mn≥0

qmnHmn (∆|∆i) (3.1)

when the central charge becomes rational, b2 ∈ Q. From explicit checks at the lowest orders in
q we conjecture that cancellations occur at each order. In particular the poles are seen to be
artificial in the sense that this particular representation splits finite terms from the level-by-level
expansion (1.65) into sums of divergent terms. Indeed, writing the conformal block as:

F∆ (∆i|z) =
∑
|Y |

f|Y | (∆, ∆i) z|Y |, (3.2)

the coefficient at a given level |Y | is:

f|Y | = Γ∆3
∆4;∆,Y

∑
Y ′

|Y ′|=Y

H−1
Y ,Y ′(∆) Γ∆,Y ′

∆1,∆2
. (3.3)

49



50 analytic structure of the recursion representation of conformal blocks

For instance the order 2 term is

f2 =
Γ∆3

∆4;∆,{1,1}

(
(4∆ + c/2) Γ∆,{1,1}

∆1,∆2
− 6∆Γ∆,{2}

∆1,∆2

)
+ Γ∆3

∆4;∆,{2}

(
−6∆Γ∆,{1,1}

∆1,∆2
+ 4∆(2∆ + 1)Γ∆,{2}

∆1,∆2

)
32∆(∆− ∆1,2)(∆− ∆2,1)

(3.4)

where the inverse matrix elements H−1
Y ,Y ′ have been replaced by the entries of (1.44). For generic

∆’s, it is finite at rational c. In terms of the coefficients Hi of the recursion (3.1):

f2 = P (0)
2 (∆|∆i, c) +P (1)

2 (∆|∆i, c)H1 +P
(2)
2 (∆|∆i, c)H2 (3.5)

where

P (0)
2 (∆|∆i, c) =

1
256

− 3b−2 − 3b2 − 6 + 8(−7(∆2 + ∆3) + 9(∆1 + ∆4) (3.6)

+ 4(∆1 − ∆2 − ∆3 + ∆4)
2) + 4∆ (13 + 16(∆1 − ∆2 − ∆3 + ∆4)) + 32∆2


P (1)

2 (∆|∆i, c) =
1
8 (1 + ∆1 − ∆2 − ∆3 + ∆4 + ∆) (3.7)

P (2)
2 (∆|∆i, c) =

1
256 (3.8)

as can be found by expanding (1.68) in z. The H’s are by construction sums of rational functions
of ∆, for instance:

H1 =
R1,1

∆

H2 =
R2

1,1
∆

+
R1,2

∆− ∆1,2
+

R2,1
∆− ∆2,1

· · ·

(3.9)

The rewriting (3.5) corresponds then to a decomposition in partial fraction of (3.4). In the
general case at level |Y | it is this decomposition which introduces artificial divergences. Sketchily,
a rational term in f|Y | is decomposed as:

P(∆|∆i, c)
(∆− ∆r1,s1)(∆− ∆r2,s2)

=
P1(∆|∆i, c)
∆− ∆r1,s1

+
P2(∆|∆i, c)
∆− ∆r2,s2

+ finite terms

=
(∆− ∆r2,s2)P1(∆|∆i, c) + (∆− ∆r1,s1)P2(∆|∆i, c)

(∆− ∆r1,s1)(∆− ∆r2,s2)
+ finite

(3.10)

where all P’s are polynomials in ∆. The left-hand side is finite when the central charge is rational.
Namely P is finite in the limit ε → 0 of central charge b2

ε = Q + ε. Artificial poles are however
introduced by writing it instead as:

P(∆) = P(∆) + Pε(∆)−Pε(∆)
ε

(3.11)

for some polynomial Pε. Then the polynomials P1(∆) and P2(∆) in the right-hand side of (3.10)
are both divergent when ε→ 0:

(∆− ∆r2,s2)P1(∆) = ε−1Pε(∆) + finite (3.12)
(∆− ∆r1,s1)P2(∆) = −ε−1Pε(∆) + finite. (3.13)



analytic structure of the recursion representation of conformal blocks 51

An explicit computation of the order 3 coefficient f3 is performed in Appendix A of Article I,
both in the level-by-level and recursive representations. Taking the limit c → −2 (b2 = −1/2)
shows explicitely the mechanism sketched above.
In Article I the main object of study is the one-point block on the torus F (1)

∆int
(∆ext), for which a

similar recursion representation exists (cf. Chapter 2). This block is simpler than the four-point
block on the sphere, but its recursion shows the same cancellation structure at rational c. In
particular, explicit expressions could be found when the external field is set to the Identity,
namely when the one-point block F (1)

∆int
(q) becomes the character of the representation R∆int . It

is an expansion in q where the (integer) coefficient at each order gives the number of descendants
at the corresponding level. In that case the recursion has no poles. Instead, the recursion splits
the integer coefficients into sums of fractional terms. How these fractional terms combine to give
integer numbers shows the same structure as the pole cancellation in the four-point block.
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1 Introduction

1.1 The conformal bootstrap and Virasoro conformal blocks

In spite of the enormous progress in our understanding of 2D conformal field theories over

the past 35 years, important classes of two-dimensional conformal field theories remain to

be discovered, or at least better-understood. An outstanding example is critical percola-

tion, which is known to be a CFT with Virasoro central charge c = 0, but the correlation

functions of this CFT remain to be computed. Recently, new numerical 2D conformal boot-

straps that fully exploit the full 2D local conformal symmetries were developed and new

2D CFT’s were discovered [8, 12]. These 2D bootstraps are based on Virasoro conformal

blocks, and the corresponding solutions are functions of infinite-dimensional representa-

tions of local conformal transformations, as opposed to bootstraps that are valid in any

dimension, which are based on global conformal blocks, and the corresponding solutions

are functions of finite-dimensional representations of global conformal transformations.

1.2 Zamolodchikov’s recursion relation

To implement the new 2D bootstraps numerically, one needs to compute the 4-point confor-

mal blocks on the sphere efficiently. The most efficient known method to compute 4-point

conformal blocks on the sphere is Zamolodchikov’s recursion relation. In fact, solving the

2D bootstrap efficiently is what motivated Al. Zamolodchikov to develop the recursion

relations in the first place [14, 15]. There are two versions of Zamolodchikov’s recursion

relation, a hypergeometric version [14], and an elliptic version [15]. The elliptic version is

particularly efficient, and will be the focus of the present work, and to fully understand

this recursion relation, we will find it useful to consider a related recursion relation for

the 1-point conformal block on the torus, and its 0-point conformal block limit, which is a

Virasoro character.

1.3 The singularities

The 4-point conformal block on the sphere is a function of six parameters: the Virasoro

central charge, the conformal dimension of the Virasoro representation that flows in the

internal channel, and the conformal dimensions of the four external fields. The solution of
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the elliptic recursion relation displays a rich structure of poles. These poles are physical

in the sense that they correspond to the propagation of states for suitable choices of the

central charge and conformal dimensions. In a numerical 2D bootstrap based on Virasoro

conformal blocks that are computed using the elliptic recursion relation, one must deal

with these poles when exploring the space of possible crossing-symmetric CFT solutions.

This happens, for example, in studies of percolation in the 2D Ising model [9]. When

the central charge is such that one deals with minimal-model conformal blocks, additional

poles appear. These additional poles are non-physical and appear due to resonances of

conformal dimensions (see equation (2.11)) at rational values of the central charge. This

complication requires a careful study of the pole structure of the elliptic recursion relation

in the case of Virasoro minimal models, which is the aim of the present work.

1.4 The present work

We study the cancellation of the non-physical poles in computations of minimal-model

conformal blocks using Zamolodchikov’s elliptic recursion relation for the 4-point conformal

block on the sphere. But the 4-point conformal block on the sphere is not the only or

the simplest conformal block that can be computed using a recursion relation. In 2009,

Poghossian [10], and independently Fateev and Litvinov [3] proposed recursion relations

to compute Liouville 1-point conformal blocks on the torus. These recursion relations are

equivalent [6], and we use the Fateev-Litvinov version to study minimal-model 1-point

functions on the torus, and their 0-point limits (when the vertex operator insertion is

the identity) which are Virasoro minimal-model characters, as the simplest examples of

solutions of a Zamolodchikov-type elliptic recursion relation.

1.5 Outline of contents

In section 2, we recall basic facts related to the Virasoro algebra, its representations, and

conformal blocks. In section 3, we consider the 4-point conformal blocks on the sphere

as solutions of the recursion relation, study their singularities and their behaviour in the

context of the Virasoro generalized minimal models and minimal models. In section 4,

we consider the 1-point conformal block on the torus as solutions of the Fateev-Litvinov

recursion relation. In section 5, we study the solutions of the Fateev-Litvinov recursion

relations for the Virasoro minimal-model 1-point functions on the torus in the special

case where the inserted vertex operator is the identity and the 1-point function reduces

to the character of the irreducible highest-weight representation that flows in the torus.

In appendix A, we include the details of an explicit computation, and in appendix B, we

include technical details related to coefficients that appear in the recursion relations.

2 Virasoro algebra, representations and conformal blocks

We recall basic definitions related to the Virasoro algebra, representation theory, and con-

formal blocks. We refer the reader to the review [13].

2.1 The Virasoro algebra, generators and central charge

A Virasoro CFT is based on the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, n,m ∈ Z, (2.1)
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where the Virasoro generators Ln, n ∈ Z are the modes of the stress-energy tensor and c

is the central charge. The Liouville parametrization of the central charge is,

c = 1 + 6Q2, Q = b+ b−1, c ∈ C (2.2)

2.2 Verma modules

Given a highest-weight state |∆〉, with highest weight ∆, L0|∆〉 = ∆ |∆〉, the descendant

states L−n1 · · ·L−nN |∆〉, n1 > n2 > · · · > nN , form a basis of the Verma module V∆. A

general element in this basis is L−Y |∆ 〉, labeled by a Young diagram Y = (n1, · · · , nN ),

that has N non-zero parts, and,

L0 |L−Y ∆〉 = (∆ + |Y |) |L−Y ∆〉, (2.3)

where |Y | =
∑N

i=1 ni is the number of cells in the Young diagram Y . Using the state-

field correspondence, we use Φ∆ (x) for the primary field of conformal dimension ∆, and

L−Y Φ∆(x) for the descendant fields. We parametrize the conformal dimension ∆ by the

parameter Q, (2.2), and the charge α,

∆ = α (Q− α) (2.4)

2.3 Degenerate representations

A degenerate representation has a highest weight ∆m,n,

∆m,n = αm,n (Q− αm,n) , αm,n = −1

2
(m− 1) b− 1

2
(n− 1) b−1, (2.5)

and has a null state |χmn 〉 at level mn, 〈χmn |χmn〉 = 0. When a representation with high-

est weight ∆mn appears in the spectrum of a given CFT model, two situations can occur.

2.3.1 Null states vanish

The corresponding representation module Vm,n is the quotient of a reducible Verma module

by a non-trivial submodule,

Vmn =
V∆mn

V∆mn+mn
(2.6)

The representations Vmn form the spectrum of the Virasoro generalized minimal as well as

the minimal models. The vanishing of the null state implies the fusion rules. The fusions

of products of Vmn have simple expressions in the parametrization (2.4). For instance, the

fusion of Vmn with a Verma module Vα is a sum of mn Verma modules and takes the form,

Vmn × Vα =

1
2

(m−1)∑
i= 1

2
(1−m)

1
2

(n−1)∑
j= 1

2
(1−n)

Vα+ib+jb−1 , (2.7)

where the sums are in steps of 1.
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2.3.2 Null states do not vanish

Representations with non-vanishing null-states appear in Liouville field theory at c 6 1 [12],

and in computations of probabilities of non-local critical objects such as the left-right

passage probability of an SLE interface. We will not deal with this case in the present work.

2.4 The Virasoro minimal models

Mp p ′ , are labeled by two positive co-prime integers p and p ′, such that 0 < p < p ′. The

space of chiral states of Mp p ′ is generated by a Virasoro algebra with central charge,

b =

(
− p

′

p

) 1
2

(2.8)

The space of chiral states splits into (typically finitely-many) fully-degenerate irreducible

highest-weight modules Vmn labeled by two integers m and n, such that 0 < m < p, and

0 < n < p ′. From (2.5), ∆mn satisfies the negation relation, and the periodicity relation,

∆mn = ∆−m,−n, ∆m,n = ∆m+p, n+p ′ , (2.9)

which combine to give,

∆m,n = ∆m′, n′ , m′ = p−m, n′ = p ′ − n, (2.10)

as well as an infinite chain of relations that involve ‘resonant’ conformal dimensions,

∆m,n = ∆p+m, p ′+n = · · · (2.11)

Two pairs of indexes (m,n) and (r, s) are resonant if there are linked by a finite chain of

transformations (2.9). In this case we use the notation,

(m,n)↔ (r, s)±l , (2.12)

to indicate that there exists an integer l such that,

(m,n)↔ (r, s)±l =⇒ r = l p±m, s = l p ′ ± n, l ∈ N (2.13)

2.4.1 Remark

In our notation, 0 < p < p ′, and b =
√
−p ′/p is pure imaginary such that |b| > 0. One can

think of |b| as the magnitude of the positive screening charge α+ > 0. We normally take

the negative screening charge α− < 0, and the background charge,

− 2α0 = − (α+ + α−) , (2.14)

that is, the background charge can be screened by the sum of a single α+ and a single α−.
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2.5 The Virasoro conformal blocks

The conformal blocks are special functions of the Virasoro representations. We consider

the 4-point conformal blocks on the sphere, the 1-point conformal blocks on the torus, and

the 0-point conformal blocks on the torus, which are Virasoro characters. In all generality,

these conformal blocks are defined in terms of the p|Y | × p|Y | matrix S|Y | (Y, Y
′) of inner

products of descendants at level |Y |, where p|Y | is the number of partitions of |Y |,

S|Y |
(
Y, Y ′

)
= 〈L−Y ∆|L−Y ′∆〉, |Y | = |Y ′|, (2.15)

and the matrix elements,

〈L−Y1∆1|L−Y2Φ∆2(1)|L−Y3∆3〉 (2.16)

In Virasoro CFT’s, the Shapolavov matrix and the 3-point functions are completely deter-

mined by the Virasoro algebra (2.1). Note that this is not true anymore for more general

conformal chiral algebras such as the WN algebras [1, 2].

3 The 4-point conformal blocks on the sphere

We outline Zamolodchikov’s computation of the 4-point conformal block on the sphere, and

study its poles.

3.1 The 4-point conformal block on the sphere

Global conformal symmetry determines the dependences of four-point blocks on three of

the four positions zi, and we assume (zi) = (x, 0,∞, 1). The conformal block is a function

of six parameters, the central charge, the cross-ratio x, the conformal dimensions of the

four external fields ∆i, i = 1, · · · , 4, and the conformal dimension of the representation

that flows in the internal channel ∆int. In terms of the vertex-operators charges,

∆i = αi (Q− αi) , ∆int = αint (Q− αint) (3.1)

The 4-point conformal block on the sphere has an x-series expansion,

B (∆, x) = x−∆1−∆2+∆ int
(
1 + B1 (∆) x+ B2 (∆) x2 + · · ·

)
, (3.2)

where ∆ for the set of external and internal conformal dimensions (∆1,∆2,∆3,∆4,∆int),

and,

B|Y | (∆) =
∑
Y,Y ′

|Y |=|Y ′|

S
(−1)
|Y |

(
Y, Y ′

)
〈∆2 |Φ1(1)|L−Y ′∆ int 〉〈L−Y ∆int |Φ3(1)|∆4 〉, (3.3)

where Y ′ is any Young diagram such that |Y ′| = |Y |, and Φi is a primary field of conformal

dimension ∆i.
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3.2 The elliptic recursion relation

In [15], Zamolodchikov introduced an elliptic recursion relation of the same 4-point con-

formal blocks on the sphere.1 The recursion parameter q is a function of x

q =
1

16

(
x+

1

2
x2 +

21

64
x3 +

31

128
x4 +O

(
x5
))

, (3.4)

which follows from inverting,

x =
θ4

2 (q)

θ4
3 (q)

, (3.5)

where θ2 (q) and θ3 (q) are Jacobi theta functions,

θ2 (q) =

∞∑
n=−∞

q(n+1/2)2 , θ3 (q) =

∞∑
n=−∞

qn
2
, (3.6)

The conformal blocks can be written as,

B (∆, c, x) = x
c−1
24
−∆1−∆2 (1− x)

c−1
24
−∆2−∆3 (16q)∆int−Q

2

4 θ3 (q)3Q2−4(∆1+∆2+∆3+∆4)

×Hsph (∆ext,∆int, c, x) , (3.7)

where the elliptic variable q and function θ3(q) are defined in (3.4) and in (3.6) and we

use ∆ext for the set of external dimensions (∆1,∆2,∆3,∆4). The analytic structure of the

function Hsph (∆ext,∆int, c, x) is manifest in the following expansion,2

Hsph (∆ext,∆int, c, x) = 1 +
∑
rs>1

(16q)rs
Rsph
r,s (∆ext, c)

∆int −∆r,s
Hsph (∆ext,∆r,−s, c, x) , (3.8)

where,

Rsph
m,n (∆, c) =

1

rm,n
Pm,n (∆1,∆2)Pm,n (∆3,∆4) (3.9)

The factors Pm,n carries all dependence in Rsph
m,n (∆) on the external conformal dimensions

∆i, i = 1, · · · , 4. It is convenient to parametrize the conformal dimensions in terms of the

momenta λi and λm,n,

∆i =
c− 1

24
+ λ2

i , ∆m,n =
c− 1

24
+ λ2

m,n (3.10)

In terms of these variables, one has,

Pm,n (∆1,∆2) =
∏
ρ,σ

(λ1 + λ2 − λρ,σ) (λ1 − λ2 − λρ,σ)

ρ = 1−m, 3−m, · · · ,m− 1, σ = 1− n, 3− n, · · · , n− 1 (3.11)

The factor rm,n is given by,

rm,n = − 1

2

∏
ρ,σ

2λρ,σ,

ρ = 1−m, 2−m, · · · ,m, σ = 1− n, 2− n, · · · , n, (ρ, σ) 6= (0, 0), (m,n) (3.12)
1In [11], Poghossian extended Zamolodchikov’s elliptic recursion relation to a class of W3 Toda 4-point

conformal blocks on the sphere.
2Note that some closed form expression has been found in [7].
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3.3 The generalized minimal model

When the central charge is non-rational, but a degenerate representation V∆m,n flows in

the channel, the recursion relation (3.8) has a pole related to the presence of a null-state

at level mn in V∆m,n , and the corresponding Shapovalov matrix has a vanishing eigenvalue

that produces the singularity in the expansion (3.3).

3.3.1 The regularization ε

We introduce a regularization parameter ε,

∆int = ∆(ε)
m,n = ∆mn + ε (3.13)

The limit ε→ 0 in (3.8) exists only if the polynomial Pm,n(∆1,∆2) and/or Pm,n(∆3,∆4),

defined in (3.9) and in (3.11), vanish. Recall that Pm,n(∆1,∆2) vanishes when

(V∆1 ,V∆2 ,Vm,n) satisfy the fusion rules (2.7), that is to say when α2 = α1 + ib+ jb−1, with

i ∈ {(1−m)/2, (3−m)/2, · · · , (m− 1)/2} and j ∈ {(1− n)/2, (3−m)/2, · · · , (n− 1)/2}.
The generalized minimal model has a non-rational central charge, c /∈ Q, and a spectrum

formed by all the degenerate representations Vm,n with (m,n) ∈ N+. All the fields in the

spectrum satisfy the fusion rules (2.7), imposed by the condition χmn = 0. The conformal

blocks of the generalized minimal model can be obtained by using the recursion relation

with a simple limiting procedure. This consists in setting,

∆i = ∆(εi)
ri,si = ∆ri,si + εi, i = 1, · · · , 4, (3.14)

with εi → 0, i = 1, · · · , 4 of the same order of ε, εi = O (ε), and take the limit ε→ 0. Using,

Hsph
m,n (∆, c, x)

∆int −∆m,n
∝
Pm,n

(
∆

(ε)
r1,s1∆

(ε2)
r2,s2

)
Pm,n

(
∆

(ε3)
r3,s3∆

(ε4)
r4,s4

)
∆ε
m,n −∆m,n

∼ O (ε) , (3.15)

it is straightforward to see that the term Hsphm,n (∆, c, x)in (3.8) do not contribute. In the

generalized minimal models therefore, the conformal block with ∆int = ∆m,n is obtained

using the sum in (3.8) where the term (r, s) = (m,n) is omitted. We stress that, in

this procedure limit, the final result is independent of the exact relation between the

regularization parameters εi and ε. The only thing that matters is the fact that the εi and

ε are of the same order. As we will see later, this will not be the case for the computation

of the characters.

3.4 Minimal-model conformal blocks.

We address here the problem of how to obtain the conformal blocks of minimal models

Mp,p ′ from the recursion relation (3.8). The main observation is that, with respect to the

generalized minimal models, there are new poles appearing in (3.8). The location of these

extra poles do not depend neither on the internal channel field nor on the external fields.

They originate from the resonances in the conformal dimensions that occur when c ∈ Q.
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Let us consider for instance one conformal block of the Ising minimal model, M4,3. At

level 7, two terms appear,

Rsph
2,1 (∆ext, c)

∆int −∆2,1

Rsph
1,5 (∆ext, c)

∆2,−1 −∆1,5
, and

Rsph
1,3 (∆ext, c)

∆int −∆1,3

Rsph
4,1 (∆ext, c)

∆−1,3 −∆4,1
, (3.16)

that are singular due to the fact that at c = 1/2, (2,−1)→ (1, 5)− and (−1, 3)→ (4, 1)−.

Differently from the poles that originate when ∆int = ∆m,n, which are related to the null-

state at level mn, these other singularities can be considered an artifact of the recursion

relation in the sense that they are not related to any special properties of descendant states.

In the appendix we better explain this point with an explicit example.

3.4.1 The regularization ε′

In addition to (3.13), we introduce a regularization parameter ε′ to the central charge c,

b2 = −p
′

p
+ ε′, (3.17)

that is of the same order of ε, ε′ = O (ε).

3.5 Conjecture

We conjecture that, by setting (3.13), (3.14) and (3.17), the limit ε → 0 in the recursion

relation (3.8) exists and provides the correct minimal model conformal block.

3.6 Further example

We have checked that the two terms (3.16) combine to give a finite contribution. Another

example, at level 20, is the combination of the following five singular terms,

Rsph
1,1 (∆ext, c)(

∆
(ε)
1,1 −∆1,1

) Rsph
4,3 (∆ext, c)

(∆1,−1 −∆4,3)

Rsph
7,1 (∆ext, c)

(∆4,−3 −∆7,1)

+
Rsph

1,1 (∆ext, c)(
∆

(ε)
1,1 −∆1,1

) Rsph
2,5 (∆ext, c)

(∆1,−1 −∆2,5)

Rsph
1,9 (∆ext, c)

(∆2,−5 −∆1,9)

+
Rsph

2,3 (∆ext, c)(
∆

(ε)
1,1 −∆2,3

) Rsph
5,1 (∆ext, c)

(∆2,−3 −∆5,1)

Rsph
1,9 (∆ext, c)

(∆5,−1 −∆1,9)

+
Rsph

2,3 (∆ext, c)(
∆

(ε)
1,1 −∆2,3

) Rsph
1,7 (∆ext, c)

(∆2,−3 −∆1,7)

Rsph
7,1 (∆ext, c)

(∆1,−7 −∆7,1)
+

Rsph
4,5 (∆ext, c)(

∆
(ε)
1,1 −∆4,5

) (3.18)

to a finite contribution. If we can predict the singular terms that, at a given level, provide

finite contributions, we have not been able to obtain a compact formula for these. As we

will see in the following, we can control the contribution of these type of singularities in

the computation of a simpler symmetry function, the character.

– 8 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
3

4 1-point conformal blocks on the torus

We recall the Fateev-Litvinov recursion relation for the 1-point conformal block on the

torus, and introduce the structure of its poles.

4.1 The 1-point conformal block on the torus

The Virasoro 1-point conformal block on the torus consists of a single vertex-operator

insertion in a torus geometry, and a Virasoro irreducible highest-weight representation

flows in the single internal channel of the torus. This is a function of four parameters, the

central charge, the torus parameter q, the conformal dimension of the external field ∆ext,

and the conformal dimension of the internal channel ∆int. The conformal dimension of the

external vertex-operator is,

∆ext = αext (Q− αext) , (4.1)

and similarly, the conformal dimension of the representation that flows in the torus is,

∆int = αint (Q− αint) (4.2)

The torus 1-point conformal block has the q-series expansion,

F (∆, q) = 1 + F1 (∆) q + F2 (∆) q2 + · · · , (4.3)

where ∆ is a pair of conformal dimensions (∆ext, ∆int), and,

F|Y | (∆) =
∑
Y,Y ′

|Y |=|Y ′|

S
(−1)
|Y |

(
Y, Y ′

)
〈L−Y ∆int |Φext(1) |L−Y ′∆int〉 (4.4)

4.2 The recursion relation of Fateev and Litvinov [3]

The 1-point conformal block on the torus is,

F (∆ | q) =
q1/24

η(q)
H (∆ | q) , (4.5)

where,

q1/24

η(q)
=

∞∏
i=1

1

1− qi
= 1 + q + · · ·+ pN q

N + · · · , (4.6)

pN is the number of partitions of N ∈ N, and,

H (∆ | q) =

∞∑
N=0

HN (αext,∆int) q
N (4.7)

4.2.1 Remark

The factor q1/24/η(q) is the character of the Fock space of a free boson, and in (4.5), the

1-point function on the torus is written in terms of the free-boson of Feigin and Fuks [4, 5].

This will become clear once we take the αext → 0 limit, and 1-point function becomes a

character, in section 5.
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4.2.2 The recursion relation

The recursion comes in the definition of HN , the coefficients of the numerator of the

conformal block,

HN (αext,∆int) =
N∑

rs=1

Rtor
r,s (αext)

(∆int −∆r,s)
HN−rs (αext,∆−r,s) , H0 (αext,∆int) = 1 (4.8)

4.2.3 The Rtor
r,s numerators

Rtor
r,s (αext) =

1

4rr,s

∏
k

∏
l

(
k − 1

2
b+

l − 1

2
b−1 + αext

)
,

k = 1− 2r, 3− 2r, · · · , 2r − 1, l = 1− 2s, 3− 2s, · · · , 2s− 1, (4.9)

rr,s is given by formula (3.12).

4.2.4 Examples

The simplest coefficients HN , N = 1, 2, · · · , in (4.7) are,

H1 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
,

H2 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
H1 (αext,∆−1,1)

+
Rtor

1,2 (αext)

(∆int −∆1,2)
+

Rtor
2,1 (αext)

(∆int −∆2,1)
,

H3 (αext,∆int) =
Rtor

1,1 (αext)

(∆int −∆1,1)
H2 (αext,∆−1,1) +

Rtor
1,2 (αext)

(∆int −∆1,2)
H1 (αext,∆−1,2)

+
Rtor

2,1 (αext)

(∆int −∆2,1)
H1 (αext,∆−2,1) +

Rtor
1,3 (αext)

(∆int −∆1,3)
+

Rtor
3,1 (αext)

(∆int −∆3,1)

(4.10)

and so on.

4.3 Remark

Expanding (4.5), we obtain,

F (∆ext,∆int | q) = (H0) q0 + (H0 +H1) q + (2H0 +H1 +H2) q2 + · · ·

=

∞∑
N=0

N∑
k=0

p(N − k)Hkq
N (4.11)

From (4.11), the structure of the conformal block F (∆ | q) is clear. In particular, if ∆ext =

0, and HN = 0, for all N = 1, 2, · · · , we recover the character of the Fock space of a free

boson, which is the character of a generic non-minimal conformal field theory. If ∆ext = 0,

and HN = ±1, for appropriate values of N , null states and their descendants are removed

and one obtains the character of an irreducible fully-degenerate highest-weight module.

This will be discussed in detail in section 5.
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5 The 0-point functions on the torus: the characters

We discuss the derivation of the character of the representation corresponding to ∆int

using the recursion relation and a particular limiting procedure, in three cases: 1. general

central charge and general ∆int , 2. general central charge and degenerate representation

∆int = ∆m,n, and 3. minimal models Mp,p ′ characters.

5.1 General central charge and general ∆int

We introduce regularization parameter ε that we set to 0 at the end. We set the inserted

vertex-operator to be the identity, in the limit ε to zero,

αext = 2ε (5.1)

The factor 2 in the above definition is for convenience. For general r, s ∈ N, the term,

Rtor
r,s

(αext = 2ε)

(∆int −∆r,s)
= −ε (Q− 2αr,s)

(∆int −∆r,s)
+O

(
ε2
)
, (5.2)

vanishes in the limit ε → 0, provided that limε→0 ∆int 6= ∆r,s. All the Hi are then zero

and the expansion is given by (4.6). As expected, one finds the character χ∆int(q) of an

irreducible Verma module of dimension ∆int.

5.2 General central charge, ∆int = ∆m,n

First we set αext = 2ε. Differently from the previous case, here we encounter the pole

coming from the denominator (∆int −∆m,n).

5.2.1 Internal field regularization

We need to regularize the dimension of the internal field, and we set,

αint = αm,n + ε′, (5.3)

and we define,

∆(ε′)
m,n = αint (Q− αint) = ∆m,n + ε′ (Q− 2αm,n) +O

(
ε′ 2
)

(5.4)

For ε, ε′ � 1, the term,
Rtor
m,n (2ε)(

∆
(ε′)
m,n −∆m,n

) = −
ε+O

(
ε2
)

ε′ +O (ε′ 2)
(5.5)

The result of the limit (ε, ε′) → (0, 0) depends therefore on the way one reaches the point

(ε, ε′) = (0, 0). For instance, if one first sends ε → 0 and then ε′ → 0, all the Hi are zero

and the character of a general Verma module is found. This result can be interpreted by

saying that the null-state at level nm is not vanishing. Interestingly, such representation

appears for instance in the construction of the Liouville theory for c 6 1 [12]. By setting

ε′ = ε one finds instead that,

lim
ε→0

Rtor
m,n (αext = 2ε)(
∆

(ε)
m,n −∆m,n

) = −1, (5.6)
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for general b. The contribution (5.6) is the only non-zero term in Hmn, which is itself

the only non-zero Hi. This contribution Hmn = −1 at level mn corresponds to removing

the null state. From equation (4.11), you can see that the expansion is (keeping only the

non-zero terms),

F (∆ | q) = 1 + · · ·+ (pmn − 1) qmn + (pmn+1 − 1) qmn+1

+ · · ·+ (pmn+N − pN ) qmn+N + · · · (5.7)

This corresponds to quotienting out the module of the null state.We observe that the

condition ε′ = ε, providing the character of a degenerate representation Vm,n, assures that

the Coulomb gas fusion condition αint + αint = αext is satisfied for any value of ε.

5.3 Characters in minimal models

In the case of the minimal models, b2 = −p ′

p , where p and p ′ are coprime positive integers,

0 < p < p ′, we know that a fully-degenerate highest-weight module Vm,n has a null-state

at level mn, and another at level (p − m)(p ′ − n). We need first to solve the new poles

appearing in the term Hm′n′ =
Rtor
m′,n′ (2ε)(

∆
(ε′)
m,n−∆m′,n′

) , where ∆
(ε′)
m,n is defined in (5.3), 0 < m < p

and 0 < n < p ′, and m′ = p−m, and n′ = p ′ − n.

5.3.1 The regularization ε′′

We introduce a third regularization parameter ε
′′

to move away from the minimal model

point by setting

b =

√
−p
′

p
(1 + ε′′) (5.8)

For ε, ε′, ε′′ � 1,

Rtor
m′,n′ (2ε)(

∆
(ε′)
m,n −∆m′,n′

) = −
ε+O

(
ε2
)

−ε′ + 1
2

√
−pp ′ ε′′ +O (ε′ 2, ε′′ 2, ε′ ε′′)

(5.9)

Again, the final result depends on how we approach the point (ε, ε′, ε
′′
) = (0, 0, 0). In

order to obtain the minimal model character we have first to remove the null state at level

(p−m)(p ′ − n). This is obtained by setting,

ε′ → ε, ε′′ → 4√
− p p ′

ε, (5.10)

and taking the limit ε→ 0. Then both (5.6) and,

lim
ε→0

Rtor
m′,n′ (2ε)(

∆
(ε)
m,n −∆m′,n′

) = −1, (5.11)

are satisfied at the same time. The results (5.6) and (5.11) are not sufficient to prove that

one obtains in the limit the minimal model character. One has to consider that there are
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other terms, of the form,

Rtor
m1,n1

(2ε)(
∆

(ε)
m1,n1 −∆m1,n1

) Rtor
m2,n2

(2ε)

(∆−m1,n1 −∆m2,n2)
, (5.12)

that will contribute when “resonances” in the conformal dimension, such as ∆−m1,n1 =

∆m2,n2 , occur. The fact that there is an infinite number of resonances, or equivalently,

infinitely-many pairs (r, s) that correspond to the same conformal dimension ∆r,s, and that

the recursion relation expression for HN includes all resonances (r, s) such that rs 6 N

will thus play an important role. We are now in the position to give the exact contribution

of all the terms which do not vanish in the limit ε→ 0 (see appendix B for the derivation

of the following results). In the following we always assume that the integers (m,n) belong

to the minimal model Mp,p ′ Kac table, 0 < m < p, 0 < n < p ′. Concerning the terms

in the recursion that have at the denominator the dimension of the internal field ∆
(ε)
m,n, we

show in appendix B that,

if (m,n)↔ (r, s)±l =⇒ lim
ε→0

Rtor
r,s (2ε)

∆
(ε)
m,n −∆r,s

= − 1

22l−1±1(2l ± 1)

l− 1
2
± 1

2∏
k=1

4k2 − 1

k2
(5.13)

We consider now the terms of the type Rtor
r,s (2ε) /

(
∆m′,−n′ −∆r,s

)
. We define two integers

(l1, l2) from the Euclidean division of (r, s), (r, s) = (l1p+m, l2p
′ + n). We have,

if
(
m′,−n′

)
↔ (r, s)±l′ =⇒

lim
ε→0

Rtor
r,s

∆m′,−n′ −∆r,s
= − 1

22 l+1 l′

l∏
k=1

4k2 − 1

k2
, l = min (l1, l2) (5.14)

We will provide below the complete combinatorial structure of all the terms that contribute

to the character. All these terms are finite, but they are fractional and add up to integral

values.

5.4 Example 1. The Ising model, (p ′, p) = (4, 3), (m,n) = (1, 1)

We give here an explicit application of the previous formulas to the identity character of

the M4,3 minimal model. We set αest = 2ε, αint = ε and b = bε given by (5.10).

H1 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) , lim
ε→0

H1 = −1, H6 =
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) , lim
ε→0

H6 = −1

H11 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
2,5 (2ε)

(∆1,−1 −∆2,5)
+

Rtor
2,3 (2ε)(

∆
(ε)
1,1 −∆2,3

) Rtor
5,1 (2ε)

(∆2,−3 −∆5,1)
(5.15)

Using the fact that (1, 1) and (2, 3) are in the Kac table and that (1,−1) → (2, 5)−1 ,

(2,−3)→ (5, 1)+
1 , one has from (5.13) and (5.14),

lim
ε→0

H11 =

(
−1×−1

2

)
+

(
−1×−1

2

)
= 1 (5.16)

H13 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
4,3 (2ε)

(∆−1,1 −∆4,3)
+

Rtor
2,3 (2ε)(

∆
(ε)
1,1 −∆2,3

) R tor
1,7 (2ε)

(∆2,−3 −∆1,7)
(5.17)
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From (1,−1)→ (4, 3)+
1 , (2,−3)→ (1, 7)−1

lim
ε→0

H13 =

(
−1×−1

2

)
+

(
−1×−1

2

)
= 1, (5.18)

These two terms correspond to adding again the null states at level 11 and 13, which are

contained into the modules of both the null states at level 1 and 6, and were therefore

subtracted twice. Let us make another example at level 20,

H20 =
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
4,3 (2ε)

(∆1,−1 −∆4,3)

Rtor
7,1 (2ε)

(∆4,−3 −∆7,1)

+
Rtor

1,1 (2ε)(
∆

(ε)
1,1 −∆1,1

) Rtor
2,5 (2ε)

(∆1,−1 −∆2,5)

Rtor
1,9 (2ε)

(∆2,−5 −∆1,9)

+
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) Rtor
5,1 (2ε)

(∆2,−3 −∆5,1)

Rtor
1,9 (2ε)

(∆5,−1 −∆1,9)

+
Rtor

2,3 (2ε)(
∆

(ε)
1,1 −∆2,3

) Rtor
1,7 (2ε)

(∆2,−3 −∆1,7)

Rtor
7,1 (2ε)

(∆1,−7 −∆7,1)
+

Rtor
4,5 (2ε)(

∆
(ε)
1,1 −∆4,5

) (5.19)

From (5.13) and (5.14),

lim
ε→0

H20 =

(
−1×−1

2
×−1

2

)
+

(
−1×−1

2
×−1

2

)
+

(
−1×−1

2
×−1

4

)
+

(
−1×−1

2
×−1

4

)
− 1

4
= −1 (5.20)

Notice that this sum of terms which add up to an integer has exactly the same structure

as equation (3.18).

5.5 General case

We consider the character of a representation indexed by (m,n), 0 < m < p, 0 < n < p ′.

We provide here the explicit procedure to find all the terms that, in the limit (5.10), have

a finite fraction contribution that sums up, at a given level, to 1 or −1. We want to give a

procedure that takes into account all the singular terms appearing in the one-point torus

recursion relation in the minimal model limit. Given a pair of indices (m,n), we want

to find the set of pairs (r, s), that are resonant with (m,−n), (m,−n) ↔ (r, s)+
l , or with

(−m,n), (−m,n)↔ (r, s)+
l , where we used the notation defined in (2.13). These pairs are

obtained respectively by the two transformations,

v
(l)
1 : (m,n)→

(
r = lp+m, s = lp ′ − n

)
(m,−n)↔ (r, s)+

l (5.21)

v
(l)
2 : (m,n)→

(
r = lp−m, s = lp ′ + n

)
(−m,n)↔ (r, s)+

l (5.22)
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By using these transformations we generate the following diagram,

k = 0

(m,n)

∆m,n

(p+m, p ′ + n)

(2p+m, 2p ′ + n)

· · · · · ·

v
(l)
1

v
(l)
2

∆m,n

(p−m, p ′ − n)

(2p−m, 2p ′ − n)

· · · · · ·

v
(l)
1

v
(l)
2

k = 1

∆m,n +mn
(p+m, p ′ − n)

v
(l)
1

(2p+m, 2p ′ − n)

· · · · · ·

∆m,n +mn

(p−m, p ′ + n)

(2p−m, 2p ′ + n)

· · · · · ·

∆m,n + (p−m)(p ′ − n)

(m, 2p ′ − n)

v
(l)
1

v
(l)
2

(p+m, 3p ′ − n)

· · · · · ·

(2p−m,n)

v
(l)
1

v
(l)
2

(3p−m, p ′ + n)

· · · · · ·

∆m,n + (p−m)(p ′ − n)

k = 2

· · · · · ·

· · ·

· · ·

· · ·

· · ·

In the k = 0 column, we place the two groups of pairs, (r, s), which are resonant with

(m,n), (m,n)↔ (r, s)+
l and (m,n)↔ (r, s)−l . The column k = 1 is generated by applying

the transformations v
(l)
1 and v

(l)
2 to (m,n) and (p ′ −m, p− n). One obtains four families,

corresponding to the two set of pairs (r, s) resonant with (m,−n), (m,−n) ↔ (r, s)+
l

and (m,−n) ↔ (r, s)−l and associated to representation with dimension ∆m,n + mn, plus

the two sets of pairs in resonance with (p−m,n− p ′), (p−m,n− p ′) ↔ (r, s)+
l and

(p−m,n− p ′) ↔ (r, s)−l and associated to representation with dimension ∆m,n + (p′ −
m)(p− n). The column k = 2 is obtained by applying the transformations v

(l)
1 and v

(l)
2 to

(p+m, p ′ − n), (p−m, p ′ + n), (m, 2p ′ − n) and (2p−m,n) and so on. At each column

one can therefore identify four families of pairs that we indicate with the letters U1, D1

and U2, D2. Any pair of indices appearing in the diagram is identified by its family and

by two non-negative integers k and l, indicating respectively the column and the position

in the interior of each family,

U1(k, l)→
(

(k + l)p+m, (−1)kn+ lp ′ +
1− (−1)k

2
p ′
)

D1(k, l)→
(

(1 + l)p−m, (−1)k+1n+ (l + k)p ′ +
1− (−1)k+1

2
p ′
)
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U2(k, l)→
(
lp+m, (−1)kn+ (l + k)p ′ +

1− (−1)k

2
p ′
)

D2(k, l)→
(

(1 + l + k)p−m, (−1)k+1n+ lp ′ +
1− (−1)k+1

2
p ′
)

(5.23)

It is straightforward to obtain the action of the transformations v
(l)
1 and v

(l)
2 on each index,

v
(l′)
1 : U1(k, l)→ U1(k + 2l + 1, l′), U2(k, l)→ U1(k + 2l + 1, l′)

v
(l′)
1 : D1(k, l)→ D2(k + 2l + 1, l′), D2(k, l)→ D2(k + 2l + 1, l′)

v
(l′)
2 : U1(k, l)→ D1(k + 2l + 1, l′), U2(k, l)→ D1(k + 2l + 1, l′)

v
(l′)
2 : D1(k, l)→ U2(k + 2l + 1, l′), D2(k, l)→ U2(k + 2l + 1, l′). (5.24)

The above rules allow to write the chains of resonant terms in the recursion relation in

terms of words formed by the letters U1,2 and D1,2, whose sequences have to satisfy the

connections above. For instance, the terms in the example in (5.19), correspond to the

following words,

U1(0, 0)U1(1, 0)U1(2, 0)

U1(0, 0)D1(1, 0)U2(2, 0)

D1(0, 0)D2(1, 0)U2(2, 0)

D1(0, 0)U2(1, 0)U1(2, 0)

U1(0, 1)

As seen in this example, the words corresponding to a certain level N will all end either

with U or with D. The reason is that the last arrows of the chains must point to the

same dimension, so they must all point either to the 1 sector or all point to the 2 sector.

From (5.24), all U labels transform to a label in the 1 sector, while all D labels transform

to labels in the 2 sector. Since there always exists either a U1(0, 0)U1(1, 0) · · ·U1(K, 0) or

a D2(0, 0)D2(1, 0) · · ·D2(K, 0) chain, of length K + 1, the level N is either,

NU (K) =
K∑
k=0

(kp+m)

(
(−1)kn+

(
1− (−1)k

) p ′
2

)
, (5.25)

or

ND(K) =
K∑
k=0

((k + 1)p−m)

(
(−1)k+1n+

(
1− (−1)k+1

) p ′
2

)
(5.26)

Then, the contribution of each word is obtained by using formulas (5.13) and (5.14). For

instance,

U1(k1, l1)U1(k1 + 2l1 + 1, l2)→ lim
ε→0

Rtor
r2,s2(2ε)

∆r1,−s1 −∆r2,s2

,

with (r1, s1) = U1(k1, l1), (r2, s2) = U1(k1 + 2l1 + 1, l2) (5.27)
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Applying (5.14) with l′ = l1 + l2 + 1 and l = l2, one has,

U1(k1, l1)U1(k1 + 2l1 + 1, l2)→ − 1

22l2+1(l1 + l2 + 1)

l2∏
j=1

4λ2 − 1

λ2
(5.28)

In the same way, we find,

U2(k1, l1)D1(k1 + 2l1 + 1, l2) = D1(k1, l1)U2(k1 + 2l1 + 1, l2)

= D2(k1, l1)D2(k1 + 2l1 + 1, l2)

= U1(k1, l1)U1(k1 + 2l1 + 1)

= − 1

22l2+1(l1 + l2 + 1)

l2∏
λ=1

4λ2 − 1

λ2
(5.29)

and

U2(k1, l1)U1(k1 + 2l1 + 1) = D1(k1, l1)D2(k1 + 2l1 + 1, l2)

= D2(k1, l1)U2(k1 + 2l1 + 1, l2)

= U1(k1, l1)D1(k1 + 2l1 + 1, l2)

= − 1

22l2+1(k1 + l1 + l2 + 1)

l2∏
λ=1

4λ2 − 1

λ2
(5.30)

The non-trivial contribution at level N(K) is given by all possible chains starting with

U1(0, l0) or D1(0, l0), with constraint on the last terms: U1 or U2 if N = N1, D1 or D2

if N = N2. Note that given equalities (5.29) and (5.30), for fixed K and fixed {li}, the

contributions at levels N1(K) and N2(K) are equal. Therefore, to compute the contribution

at level N1(K) (resp. at level N2(K)), instead of constraining the chains to end by U (resp.

D), we can leave the ends of the chains free and divide by 2 at the end. The first terms of

the chains involve the internal dimension ∆ε
m,n,

U1(0, l0) =
Rtor
l0p+m,l0p ′+n

∆ε
m,n −∆l0p+m,l0p ′+n

= − 1

22l0(2l0 + 1)

l0∏
λ=1

4λ2 − 1

λ2
,

D1(0, l0) =
Rtor

(l0+1)p−m,(l0+1)p ′−n

∆ε
m,n −∆(l0+1)p−m,(l0+1)p ′−n

= − 1

22l0(2l0 + 1)

l0∏
λ=1

4λ2 − 1

λ2
(5.31)

We now need to specify the set {li}. Let us denote I the cardinal of this set. We then have

the constraint,

I +

I−1∑
i=0

2li = K + 1 (5.32)

By writing I = K + 1− 2a, the constraint is,

K−2a∑
i=0

li = a, (5.33)
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and the set {l0, l1, · · · , lK−2a} is therefore a partition of size K − 2a + 1 of the integer a,

{l0, l1, · · · , lK−2a} = p̃K−2a+1(a) in which zeroes are included, as well as all permutations.

For example the set of the partitions of size 3 of 3 is,

{(3, 0, 0), (0, 3, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1), (1, 1, 1)}. (5.34)

a then runs from 0 to a maximal a. If K is odd, K + 1 is even and Imin = K + 1− 2amax

is even. Therefore Imin = 2, and amax = (K − 1)/2. If K is even, K + 1 is odd and

Imin = K + 1 − 2amax is odd and equals 1. Therefore amax = K/2 and l0 = amax, all

other li being 0, and this chain consists of the single term (5.31). We can now give the

final formula for the contribution CN(K) that takes into account all the non-zero terms at

a given level N(K),

CN(K) =
1

2

[K−1
2

]∑
a=0

∑
{l0,··· ,lK−2a}=p̃K−2a+1(a)

∑
{X0,··· ,XK−2a}

X0 (0, l0)

×
K−1−2a∏
j=0

Xj

(
2

j−1∑
i=0

li + j, lj

)
Xj+1

(
2

j∑
i=0

li + j + 1, lj+1

)
+ δK(mod 2),0X0 (0,K/2) , (5.35)

where the Xj>1’s are U1,2 or D1,2, X0 is U1 or D1. From (5.29), (5.30) and (5.31),

CN(K) = − δK(mod 2),0

K/2∏
λ=1

4λ2 − 1

λ2

2K(K + 1)
+

[K−1
2

]∑
a=0

∑
{l0,...,lK−2a}=p̃K−2a+1(a)

−

l0∏
λ=1

4λ2 − 1

λ2

22l0(2l0 + 1)

×
K−1−2a∏
j=0

−

lj+1∏
λ=1

4λ2 − 1

λ2

22lj+1+1

(
1

lj + lj+1 + 1
+

1

lj + lj+1 + 1 + 2
∑j−1

i=0 li + j

)
.

(5.36)

We have checked numerically — up to order N ∼ 300 — that CN(K) = (−1)K+1.

6 Conclusions

We extended Zamolodchikov’s elliptic recursion relation for 4-point conformal blocks on

the sphere [15], and its analogue for 1-point functions on the torus [3, 10], originally derived

for conformal blocks in Liouville theory with non-rational central charge, to conformal field

theories with rational central charges, including the generalized minimal and minimal mod-

els. When the central charge is rational, solutions of the recursion relation have additional

poles that appear on a term by term basis. These poles are non physical in the sense that

they are artifacts of the recursion which splits perfectly well-defined terms into terms that

can be singular on their own but add up to finite contributions. We studied the structure
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of these non physical poles in two situations. 1. In 4-point conformal blocks on the sphere,

where we found that the singular terms add up to finite terms on the basis of examples,

and conjectured that this is the case in general, and that regularizing properly all the pa-

rameters entering the conformal block, one obtains the minimal model conformal block. 2.

In 1-point conformal blocks on the torus, in the limit where the vertex operator insertion is

the identity operator and the 1-point conformal block reduces to a 0-point conformal block,

which is a Virasoro character. In this case, the contributions of the non-physical poles are

fractions, and explicit expressions of these fractions were derived in (5.13) and (5.14). We

unveiled the combinatorial structure of these fractions found it to be reminiscent of that

in the Feigin-Fuks construction of minimal model characters [4], and used it to show that

the contribution of the non-physical poles add up to ±1. The non-physical poles of the

4-point conformal blocks also follow this combinatorial structure. A fine regularization

of the central charge is needed in the case of the 0-point functions, whereas the 4-point

function is not sensitive to the regularization used.
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A A direct computation at c = −2

At c = −2, which we can consider as theM(2, 1) minimal model, the first extra pole appear

at order 3 in the expansion of the conformal block. It is therefore possible to compare the

recursion result to the result one gets by hand, ie by computing the Shapovalov matrix of

inner products and the “matrix elements”,

〈L−Y ∆|Φ∆1(x)Φ∆2(0)〉/〈∆|Φ∆1(x)Φ∆2(0)〉,
〈Φ∆3(1)Φ∆4(∞)|L−Y ′∆〉/〈Φ∆3(1)Φ∆4(∞)|∆〉 (A.1)

which appear in (3.3). In the basis {L3
−1 |∆〉 , L−1 |Q2〉 , |Q3〉} where,

|Q2〉 =

(
L2
−1 −

2(2∆ + 1)

3
L−2

)
|∆〉 ,

|Q3〉 =
(
L3
−1 − 2(∆ + 1)L−2L−1 + ∆(∆ + 1)L−3

)
|∆〉 (A.2)
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are the quasi-primary states at levels 2 and 3, the Shapovalov matrix at level 3 is diagonal,

S(3) = diag (24∆(∆ + 1)(2∆ + 1),

64

9
(∆ + 2)(2∆ + 1)(∆−∆1,2)(∆−∆2,1),

6∆(∆ + 1)(∆ + 2)(∆−∆1,3)(∆−∆3,1)) (A.3)

Then the contribution of the quasi-primary at level 3 is,

PL (Q3 ; ∆1,∆2)PR (Q3 ; ∆3,∆4)

〈Q3|Q3〉
=

P2 (∆ ; ∆i)

6∆(∆ + 1)(∆ + 2)(∆−∆1,3)(∆−∆3,1)
(A.4)

where P2 (∆ ; ∆i) is a polynomial of order 2 in the internal dimension ∆:

P2 (∆ ; ∆i) = (∆1 −∆2)(∆3 −∆4)(∆1 + ∆2 − 1)(∆3 + ∆4 − 1)∆2

+ (∆1 −∆2)(∆3 −∆4)
{

(1− (∆1 + ∆2))
(
(∆3 −∆4)2 − (∆3 + ∆4)

)
+ (1− (∆3 + ∆4))

(
(∆1 −∆2)2 − (∆1 + ∆2)

)}
∆

+ (∆1 −∆2)(∆3 −∆4)
(
(∆1 −∆2)2 − (∆1 + ∆2)

)
×
(
(∆3 −∆4)2 − (∆3 + ∆4)

)
(A.5)

When c = −2, we have,

∆1,3 = 0, ∆3,1 = 3, (A.6)

and the contribution (A.4) of |Q3〉 is well-defined. However, if we decompose it in partial

fractions,

〈Q3|Φ∆1(0)|∆2〉〈∆3|Φ∆4(∞)|Q3〉
〈Q3|Q3〉

=
A

∆−∆1,1
+

B

∆−∆1,3
+

C

∆−∆3,1
+

A∆ +D

(∆ + 1)(∆ + 2)
,

(A.7)

we find,

A =
f1,1 (∆1,∆2) f1,1 (∆3,∆4)

2∆1,3∆3,1
,

B =
f1,3 (∆1,∆2) f1,3 (∆3,∆4)

∆1,3(∆1,3 −∆3,1)(1 + ∆1,3)(2 + ∆1,3)
,

C =
f3,1 (∆1,∆2) f3,1 (∆3,∆4)

∆3,1(∆1,3 −∆3,1)(1 + ∆3,1)(2 + ∆3,1)
, (A.8)

where we defined the function,

fr,s (∆i,∆j) = (∆i −∆j)
(
(∆i −∆j)

2 − (∆i + ∆j)(1 + ∆r,s) + ∆r,s

)
(A.9)

Notice that given equations (A.6), A and B become singular for c = −2. In fact we have,

lim
c→−2

A ∝ R1,1(∆i)R2,1(∆i)

∆1,−1 −∆2,1
, lim

c→−2
B ∝ R1,3(∆i), lim

c→−2
C ∝ R3,1(∆i) (A.10)

A and B are the terms that add to a finite contribution. In that sense, the extra poles are

artifacts of the recursion relation rewrites a well-defined quantity as a sum of terms that

are individually singular.
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B About Rtor
m,n

We prove that

Rtor
m,n (2ε) = −ε

(
mb+ nb−1

)
+O

(
ε2
)
, (B.1)

for general b and for all (m,n).

Rtor
m,n (α) =

1

4rm,n

∏
k,l

(
1− k

2
b+

1− l
2

b−1 − α
)
,

k = 1− 2m, 3− 2m, · · · , 2m− 1, l = 1− 2n, 3− 2n, · · · , 2n− 1 (B.2)

and,

rm,n = − 1

2

∏
ρ,σ

2λρ,σ,

ρ = 1−m, 2−m, · · · ,m, σ = 1− n, 2− n, · · · , n, (ρ, σ) 6= (0, 0), (m,n) (B.3)

which can be rewritten as,

rm,n =
1

2

m∏
i=1−m

n∏
j=1−n

(
i b+ j b−1

)
, (i, j) 6= (0, 0), (i, j) 6= (m,n), (B.4)

When the inserted operator is the identity, α = 2ε, we get,

Rtor
m,n = − ε∏

ij (i b+ j b′)

∏
(k,l) 6=(1,1)

(
1− k

2
b+

1− l
2

b−1

)
+O

(
ε2
)

(B.5)

We can call ρ = 1−k
2 and σ = 1−l

2 , then ρ goes from 1 − m, 2 − m, · · · ,m and σ from

1− n, 2− n, · · · , n. (k, l) 6= (1, 1)⇔ (ρ, σ) 6= (0, 0) and we get,

Rtor
m,n = − ε

 ∏
(i,j) 6=(0,0),(i,j) 6=(m,n)

(
ib+

j

b

)−1 ∏
(ρ,σ) 6=(0,0)

(
ρb+

σ

b

)
+O

(
ε2
)

= − ε
(
mb+ n b′

)
+O

(
ε2
)

(B.6)

This also implies that,

lim
ε→0

Rm,n (2ε)

ε (mb+ nb−1)
= −1 (B.7)

for all b, for all (m,n). When c ∈ Q, it can happen that the denominator rm,n vanishes.

We will show that the coefficients Rm,n (2ε) are always well-defined and express them in

closed form. Let’s first examine the space (m,n) for which rm,n ∼ εd. Let us start with

the case d = 1. rm,n = ε⇒ ∃(i1, j1) such that,

b2 = −j1
i1
, 1−m 6 i1 6 m, 1− n 6 j1 6 n, (i1, j1) 6= (m,n), (B.8)

so that,

rm,n = ε, (m,n) ∈ {p}×]p ′,∞[
⋃

]p,∞[×{p ′} (B.9)
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Figure 1. Degree d for the Ising model p = 4, p ′ = 3. Green dots are the values for which Dm,n 6= 0.

In the same way, rm,n = ε2 ⇒ ∃(i1, j1), (i2, j2) such that b2 = − j1
i1

= − j2
i2

with (i1, j1) 6=
(i2, j2), that is, (i1, j1) = (p, p ′) and (i2, j2) = (−p,−p ′), that is,

rm,n = ε2, (m,n) ∈]p,∞[×]p ′, 2p ′[
⋃

]p, 2p[×]p ′,∞[ (B.10)

We can generalize to rm,n = εd.

(m,n) ∈
{
d+ 1

2
p

}
×
]d+ 1

2
p ′,∞

[ ⋃ ]d+ 1

2
p,∞

[
×
{
d+ 1

2
p ′
}

d odd (B.11)

(m,n) ∈ ]
d

2
p,∞[×]

d

2
p ′,

(
d

2
+ 1

)
p ′
[ ⋃ ]d

2
p,

(
d

2
+ 1

)
p
[
×
]d
2
p ′,∞

[
d even (B.12)

This space is shown on figure 1 for the Ising model. Notice that odd d corresponds to the

borders of the cells (the fundamental cell being the Kac table). The physical states are not

located on the borders, so under the condition that Rtor
m,n (2ε) vanishes for odd d, we can

restrict only to even d. For even d, the coefficient Rtor
m,n is,

Rtor
m,n (2ε) = − 2ε

m√−p ′
p

+
n√
−p ′

p

+O (ε)

× d
2∏

k=1

b−1
(
±kpb2 ± kp ′ − 2εb

)
×
′∏(

ρb+ σb−1 − 2ε
)
× 1

2
∏ d

2
k=1 b

−1 (±kpb2 ± kp ′)×
∏′ (ρb+ σb−1)

(B.13)

where
∏′ is

∏m
ρ=1−m

∏n
σ=1−n with (0, 0), (m,n) and (±kp,±kp ′) excluded. Using the

regularization for the b,

b =

√
−p
′

p

(
1 +

4ε√
−pp ′

)
(B.14)
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we have,

±kpb2 ± kp ′ = ±4ε k

√
−p
′

p
+O

(
ε2
)
,

±kpb2 ± kp ′ − 2εb = 2ε

√
−p
′

p
(±2k − 1) +O

(
ε2
)

(B.15)

which gives,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

× 1

2d

d
2∏

k=1

4k2 − 1

k2
+O

(
ε2
)

(B.16)

for all (m,n) and d. For given (m,n), we can write m = lmp + m0, n = lnp
′ + n0 with

0 6 m0 < p and 0 6 n0 < p ′. Then,

d = 2 min (lm, ln) ≡ 2 l (B.17)

and we can write

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

× 1

22l

l∏
k=1

4k2 − 1

k2
+O

(
ε2
)

(B.18)

l = min (lm, ln). We need to check that the coefficient also vanishes when d is odd. In

that case,

Rtor
m,n (2ε) = − ε

m√−p ′
p

+
n√
−p ′

p

+O (ε)

× (d+ 1

2
pb2 +

d+ 1

2
p ′ − 2εb

)

×

d−1
2∏

k=1

b−1
(
±kpb2 ± kp ′ − 2εb

)
×
′∏(

ρb+ σb−1 − 2ε
)

× 1(
d+1

2 pb2 + d+1
2 p ′

)∏ d−1
2

k=1 b
−1 (±kpb2 ± kp ′)×

∏′ (ρb+ σb−1)
(B.19)

Using equation (B.15) we get,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

 d

2d−1(d+ 1)

d−1
2∏

k=1

4k2 − 1

k2
+O

(
ε2
)

(B.20)

Here d = 2 min (lm, ln)− 1 ≡ 2 l − 1 which yields,

Rtor
m,n (2ε) = −ε

m√−p ′
p

+
n√
−p ′

p

 2l − 1

22l−1 l

l−1∏
k=1

4k2 − 1

k2
+O

(
ε2
)

(B.21)
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These terms thus do not contribute in the computation of the character of a physical

field. Now we can figure out expressions for the terms in the recursion. The non-vanishing

terms that involve ∆int = ∆ε
m,n are of the type

Rtor
r,s(2ε)

∆ε
m,n−∆r,s

with (m,n)→ (r, s)±l Using the

regularization of b, we have,

∆ε
m,n −∆r,s = (±2l + 1)

m√−p ′
p

+
n√
−p ′

p

 ε+O
(
ε2
)

(B.22)

and using expression (4.9) with min (lr, ls) = l − 1
2 ±

1
2 , we get,

lim
ε→0

Rtor
r,s (2ε)

∆ε
m,n −∆r,s

= − 1

22(l− 1
2
± 1

2
)(2l ± 1)

l− 1
2
± 1

2∏
k=1

4k2 − 1

k2
(B.23)

The terms involving the extra poles are of the form
Rtor
r,s

∆m′,−n′−∆r,s
when (m′,−n′)→ (r, s)±l′ .

We get,

lim
ε→0

Rtor
r,s

∆m′,−n′ −∆r,s
= − 1

22l+1 l′

l∏
k=1

4k2 − 1

k2
, l = min(lr, ls). (B.24)
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Part II

R A N D O M F R AC TA L S O N T H E T O RU S





INTRODUCTION

This second part addresses the description of percolation models on the torus, using the confor-
mal field theory approach presented in Part I. Before focusing on each specific model, we define
the observables which will be studied in both cases. On a lattice, we define a general percolation
model by activating the sites (or bonds) randomly with probability p. For uncorrelated percola-
tion each site is activated independently of its neighbours [42], while for the models of Chapters
4 and 5 correlations are introduced. The connected sets of active sites or bonds are called clus-
ters, see Figures ia and ic. Of course these clusters are random objects of which we show here
particular configurations, and physical observables are obtained by averaging over many such
configurations. As shown on Figure ib the emergence of a percolating cluster (connecting the top
and bottom of the system as in Figure ic), at a critical value pc of the occupation probability,
defines the percolation phase transition. In the infinite size limit, the probability of an infinite
cluster jumps from 0 to 1 at p = pc. On the figure we have also plotted data points taken on a
finite N ×N lattice, where the transition has a finite width (see eg. Section 4.1 in [42]).

(a) a non-percolating con-
figuration (p = 0.58).
We show only the
largest cluster.

0.2

0.4

0.6

0.8

1

0 pc = 0.5927 · · · 1 p

pr
ob

[∞
cl
us
te
r ]

∞ size
finite lattice

(b) percolation transition (c) a percolating cluster
(p = 0.596)

Figure i: Cluster configurations and phase transition for uncorrelated site percolation on a 258 × 258
square lattice.

The clusters represent therefore the central object of study in percolation theory. More precisely,
the study of the percolative behaviour of a system is the study of the connectivity properties of
the clusters [72], namely of the probabilities that sites are connected to each others by clusters
(examples are given in Figures ii, iii). The question we ask is wether there exist, and what
is, the CFT which describes these probabilities in the scaling limit. The motivation to study
such observables is also that it represents a front door to find a CFT which may also describe
other observables. Taking again the example of pure percolation, it appears that several other
probabilities can be obtained from the CFT which describes the connectivities, such as the
probability that points lie on the boundary (perimeter) of the same cluster [73]. Nonetheless, for
the correlated percolation model considered in Chapter 5 it is not clear if the clusters and their
boundaries are described by the same CFT. We shall therefore focus on one type of observables,
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and we define precisely the object of our study as “the CFT which describes the scaling limit of
the clusters connectivities” of a given model.
As detailed in the first part, a CFT is defined by its spectrum (the set of fields) and its structure
constants. In this introduction we show in which way the fact that connectivities are probabilities
of geometric events constrains the CFT data. Ultimately, it will be made clear how their study
– either on the plane or on the torus, allows to determine this data.
We denote prob [σ] the probability that n given points fall into the cluster configuration σ.
Consider the simplest case n = 2: either the two points belong to the same cluster σ = 12 or
they do not, σ = 1; 2 (Figure iia). Since prob [12] + prob [1; 2] = 1 there is only one independent
probability, say prob [12]. With three points one obtains the five possible configurations of Figure
iib. They are not independent: for instance prob [123] + prob [12; 3] = prob [12]. It can be shown
that they can be all expressed in terms of prob [12] and prob [123] [74].

1 2

12

1 2

1; 2

(a)

1 2

3

123

1 2

3

1; 2; 3

1 2

3

13; 2

1 2

3

12; 3

1 2

3

1; 23

(b)

Figure ii: The different clusters configurations of two (left) and three (right) points.

The counting of independent probabilities in the general case has been worked out analogously
in [74]. We will be interested in the two-, three- and four-point connectivities. The space of
independent four-point connectivities is four-dimensional and is pictured in Figure iii.

1 2

3 4

1234

1 2

4 3

12; 34

1 2

4 3

14; 23

1 2

4 3

13; 24

Figure iii: The four independent four-point connectivities.

We now assume that the scaling limit of the connectivities prob [σ], denoted pσ, exist and is
given by the correlation functions of fields V∆ in a CFT:

pσ(z1, z2, · · · , zn) = d
(n)
0 〈V∆(z1)V∆(z2) · · ·V∆(zn)〉σ, (i)

with d
(n)
0 a non-universal constant. As will be made clear below, the correlation functions in

the right-hand side must have different s-channel spectra Sσ, in order to describe the spaces of
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connectivities of Figures ii and iii. We thus label them with an index σ. Consider first the case
n = 2. From (i) and the general form of the two-point function (1.58):

p12(z1, z2) = d
(2)
0 〈V∆(z1)V∆(z2)〉12 =

d
(2)
0

|z1 − z2|4∆ . (ii)

General percolation theory (see for instance Section 3.2 of [42]) tells us that the decay of p12 is
governed by the critical exponent η:

p12(z1, z2) ∼
1

|z1 − z2|η
. (iii)

Comparing with (ii) this fixes the dimension of the connectivity fields V∆ to be:

∆ =
η

4 . (iv)

With three points we get:

p123(z1, z2, z3) = d
(3)
0 〈V∆(z1)V∆(z2)V∆(z3)〉123 = d

(3)
0

D
(∆)
123

|z12|2∆ |z23|2∆ |z13|2∆ . (v)

We can already obtain non-trivial information on the CFT from the measurement of the two-
and three-point connectivities on the plane: indeed from (ii) and (v) we get

p123(z1, z2, z3)√
p12(z1, z2)p12(z2, z3)p12(z1, z3)

=
d
(3)
0[

d
(2)
0

] 3
2
D

(∆)
123. (vi)

Provided that the non-universal constants can be determined, or that d(3)0 =
[
d
(2)
0

] 3
2 , one obtains

D
(∆)
123 from the measurement of this ratio. This has been applied notably to pure percolation [75]

and to the Q−Potts model at different values of Q [76].
More CFT data can be obtained from measuring the two- and three-point connectivities on the
torus. This will be detailed in Chapters 4 and 5, but one can already foresee from the expressions
(2.66) and (2.81) of the two- and three-point functions on the torus, that more structure constants
are going to appear in (ii) and (v).
We now concentrate on aspects which, although still general, will be especially useful in the
discussion of the random cluster Potts model, in the next chapter. In Chapters 1 and 2 we
labelled structure constants according to the dimensions of the fields. To describe connectivities
we need to adopt the more precise notationD(∆′)

σ which stands for the structure constantD(∆′)
(∆),(∆)

appearing in the expansion of pσ. This is especially important for describing the four-point
connectivities, where we can have D(∆′)

σ1 6= D
(∆′)
σ2 . Consider now n = 4:

pσ(z1, z2, z3, z4) = d
(4)
0 〈V∆(z1)V∆(z2)V∆(z3)V∆(z4)〉σ (vii)

where σ can be one of the four cluster configurations of Figure iii: σ = 1234, 12; 34 13; 24 14; 23.
From (1.60) the four-point function of generic fields with the same dimension can be written:

〈
4∏
i=1

V∆(zi, z̄i)〉 = |z13z24|−4∆ 〈V∆(z)V∆(0)V∆(∞)V∆(1)〉 (viii)
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where z is the cross-ratio (1.62). The s-expansion z1 → z2 of the four-point function in the
right-hand side is given by (1.63):

〈V∆(z)V∆(0)V∆(∞)V∆(1)〉 =
∑

∆s∈S

[
D

(∆s)
(∆),(∆)

]2 ∣∣∣F (s)
∆s (∆|z)

∣∣∣2 (ix)

with S the s-channel spectrum. Using expression (ix) in (vii) we then obtain:

pσ(z1, z2, z3, z4) = d
(4)
0 |z13z24|−4∆ ∑

∆s∈Sσ

[
D(∆s)
σ

]2 ∣∣∣F (s)
∆s (∆|z)

∣∣∣2 (x)

where Sσ is the s-channel spectrum of the four-point function 〈∏4
i=1 V∆〉σ. Let us note a subtle but

very important point. The expansion (x) over the standard conformal blocks of Chapter 1 follows
from the assumption that the Hamiltonian, or equivalently L0 is diagonalisable (cf. Section 1.2).
It is now understood [48, 49, 77–79] (see also [80]) that the Potts CFT is a logarithmic CFT,
that is a CFT in which states do not fall into the standard representations of Section 1.2,
and where correlation functions, as a consequence, have logarithmic divergences (for reviews on
logCFTs see for instance [81, 82]). Nonetheless, it seems that the four-point connectivities in
the Potts model can be obtained using the standard conformal blocks expansion as in (x), as
made manifest by the bootstrap studies [44, 47] and by our results on the torus [51, 52]. This
expansion is not manifestly finite for all central charge: there are values of c at which structure
constants and conformal blocks diverge. These divergences seem to cancel out [47] so that the
expansion remains finite at all c. Indeed, as discussed in Section 1.6, by combining the usual
Virasoro conformal blocks one can obtain various behaviours as a function of the central charge:
in certain limits correlation functions might be finite, they might diverge, and they might also
show logarithmic behaviour [83, 84]. In the following we will therefore make the extra assumption
(x).
To see how the geometric behaviour of the connectivities leads to different spectra Sσ, let us
consider the pσ’s when the points 1 and 2 are brought close together, z1 → z2. We have for
instance:

p12;34
1→2∼ p12p34 ∼

1
|z12|4∆

1
|z34|4∆ (xi)

where we used equation (ii). From (x) the s-channel expansion of the corresponding four-point
function is, considering only the most dominant contribution:

p12;34(z1, z2, z3, z4) ∼ |z13z24|−4∆
[
D

(∆s)
12;34

]2
|z|−4∆+∆s + · · ·

∼

[
D

(∆s)
12;34

]2
|z12z34|4∆ z

∆s + · · ·
(xii)

Comparing with (xi), the field with the lowest dimension in the spectrum S12;34 must be the
Identity: S12;34 = {Id, · · · }, so that ∆s = 0 and D(∆s)

12;34 = 1 in the equation above.
However if we consider say p1234 we get a different behaviour when 1→ 2. To see this, we follow
the argument given in [46] and define the conditional probability pij|jk which is the probability
that i and j are in the same cluster, given that j and k are in the same cluster. We have for
instance

p123 = p12|23p23. (xiii)
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When 1 is close to 2, the probability that 1 and 2 are in the same cluster does not depend much
on the configuration of points 2, 3 and 4. In particular p12|23

1→2∼ p12|234 so that:

p1234 = p12|234p234
1→2∼ p12|23p234 =

p123
p234

p23 (xiv)

where we used (xiii). Using now (ii) and (v):

p1234
1→2∼ |z23|4∆

|z12z13z23|2∆ |z23z34z24|2∆D
(∆)
123D

(∆)
234

= |z13z24|−4∆ z−2∆D
(∆)
123D

(∆)
234.

(xv)

Comparing with the s-channel expansion (xi), the field with the lowest dimension in the spectrum
S1234 must be V∆: S1234 = {V∆, · · · }. In particular this spectrum does not contain the Identity.
We have that

[
D

(∆)
1234

]2
= D

(∆)
123D

(∆)
234 =

[
D

(∆)
123

]2
.

From these examples we conclude that the four-point s-channel spectra are in general different.
As one can convince her·himself by looking at Figure iii, only three s-channel spectra are
needed to write the expansions of the four-point connectivities in all possible channels. This is
summarised in the table below.

s−channel spectrum (1→ 2) t−channel spectrum (1→ 3) u−channel spectrum (1→ 4)
p1234 S1234 S1234 S1234

p12;34 S12;34 S13;24 S13;24

p13;24 S13;24 S12;34 S13;24

p14;23 S13;24 S13;24 S12;34

Table 3.1: The spectra of the four independent four-point connectivities in the s-, t- and u-channels are
given by the s-channel spectra S1234, S12;34 and S13;24.

As we review in the next chapter, the study of the four-point connectivity on the plane allowed,
under assumption (x) to make significant progress in the understanding of the random clusters
Potts CFT, by determining a consequent amount of the CFT data. On the torus, similarly to the
two- and three-point, the four-point connectivities allow to probe different structure constants.





4
THE RANDOM CLUSTERS Q−STATE POTTS MODEL

In this chapter, we present new predictions for the two-, three- and four-point connectivities
of the Potts model on the torus. They are obtained as s-channel expansions using the general
CFT techniques of Chapter 2, combined with the prediction of the s-channel spectra [45] and
with conjectures on the structure constants [43, 46] which we review below. So far, predictions
have been made for the connectivities on the infinite plane. To allow precise comparison with
numerical simulations, made on doubly-periodic lattices, we aimed at predicting the exact form
of the topological corrections. The importance of such topological effects was already pointed
out in [75], where the ratio of three- to two-point connectivities was measured on large torii to
extract the plane limit and check the conjecture [43]. We now understand and are able to predict
such effects (equation (5.6) in Article III). Besides, these results test the overall consistency of
the theory and the conjectures for the structure constants.
Most computations can be found in the published papers Article II and Article III, and we
do not reproduce them here. We rather provide additional details not given in the articles and
discuss our results in the light of very recent advances towards a full CFT solution. In the last
section we discuss further interesting points which have not been investigated in Article II and
Article III.

The random clusters Q−state Potts model is a family of geometrical models, defined on the
lattice by the partition function:

Z =
∑
G

p#bonds(1− p)#absent bondsQ#clusters. (4.1)

The sum is over subsets G of edges randomly occupied with probability p. Occupied edges
are called bonds. We will consider real1 Q ∈ [0, 4] where there exists a second-order phase
transition [86–88] of percolation type: namely there exists a value of p = pc at which a percolating
cluster emerges. Q = 1 corresponds to pure (uncorrelated) percolation. When Q 6= 1, the factor
Q#clusters induces long-range correlations, since the weight of a configuration depends on the
non-local organisation of the bonds into clusters (Figure 4.1).

1 Although we do not consider this case, the critical model can be defined also for complex values of Q [46, 48, 85].
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1

p5(1− p)7Q3

2

p6(1− p)6Q2

3

p6(1− p)6Q3

Figure 4.1: Starting from configuration 1, adding one bond may lead to configurations with different
weights: if the bond connects two clusters (pivotal bond) the number of clusters is reduced
(configuration 2). If the bond is not pivotal (configuration 3) the number of clusters remains
the same.

It is a well-established fact that the random clusters have a conformally invariant measure,
although rigorous proofs exist only at Q = 1 [33] and Q = 2 [34, 89].
The random cluster Potts model has two notable features. First it is integrable [90], and its
transfer matrix is related to a Temperley-Lieb-type algebraic structure (see for instance Chapter
4 in [91]). The representations of this algebra are known ([45] and references therein). In the
continuum limit they encode the spectrum of the Potts CFT. Secondly, some of the cluster
configurations can be mapped to height configurations [92]. In the continuum limit this height
becomes a scalar field described by the so-called Coulomb-gas CFT [22, 93, 94] (see also the
reviews in [65, 91]). This CFT describes models with central charge c ≤ 1 [95], and in particular
the minimal models. It also describes some universal properties of the random clusters Q−Potts
model, for generic Q: its spectrum, encoded in the torus partition function [94] (see Section 4.1.1)
and many two-point functions, in particular the two-point connectivity. However, higher point
connectivities cannot in general be described by the Coulomb-gas. Indeed, correlation functions
in this CFT should obey so-called charge neutrality, which translates into the fact that the
dimensions of the fields should satisfy specific relations for their correlator to be non-zero. This
relation cannot be satisfied, for instance, for the three-point function of the connectivity field
which is hence erroneously set to zero [96].
For a long time, which CFT describes the connectivities of the Potts clusters for all Q remained
an open problem. Indeed, this CFT escaped all classifications:

• it must be non-unitary, since the only unitary CFTs with central charge less than one are
the minimal models [22],

• it is non-rational: it involves an infinite number of Virasoro representations,

• only a subset of fields are degenerate, so that correlation functions do not satisfy in general
any differential equation,

• it is logarithmic, as discussed in the introduction ii.
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With the conjecture [43] for the three-point connectivity at Q = 1, which gave a meaning to
“mysterious”2 structure constants [97], a new line of research started, aiming at predicting the
three- and four-point connectivities for all Q. In the pioneering work [44] the first proposal for
consistent (crossing-symmetric) four-point functions describing the four-point connectivities was
made, by direct application of the bootstrap approach. This solution was subsequently under-
stood to describe a variation of the Potts model where some configurations have modified weights,
and to be connected with RSOS models [47, 98]. The full s-channel spectra were determined from
detailed study of the lattice algebra [45]. Very recent works [47, 48] provided significant progress
towards the determination of all the structure constants entering the four-point connectivities.

4.1 the potts model spectra

In Section 4.1.1 we discuss the spectrum of the Potts model given by its partition function. In
Section 4.1.2 we give the s-channel spectra of the four-point connectivities.

4.1.1 The torus partition function and the Potts spectrum

The set of fields in the Potts CFT is known to be given by the following spectrum [45, 94, 99]:

SPotts = SD,quot
1,N∗

⋃
S0,Z+ 1

2

⋃
M≥2

N|M ,(p,N)=1

SM ,Z+ p
N

. (4.2)

SD,quot
1,N∗ contains the diagonal degenerate fields: SD,quot

1,N∗ =
{
V D,quot
(1,n) ,n = 1, 2, · · ·

∣∣∣∆ = ∆̄ = ∆1,n
}
.

The two other sectors contain non-diagonal, non degenerate fields: Sr,s =
{
V(r,s)

∣∣∣∆, ∆̄ = ∆r,s, ∆r,−s
}
.

In this section we explain the different sectors of the spectrum 4.2 by examining the torus
partition function which, as seen in Section 2.4 of Chapter 2 encodes the set of scaling dimensions
and their multiplicities. For the Potts model it is given by [94]:

Z(q) = Ẑ(q) +
1
2 (Q− 1) [Zc(q|1)−Zc(q|1/2)] . (4.3)

The form most often encountered in the literature involves the exponents xe,m:

Zc(q|f) =
1

|η(q)|2
∑

e∈Z/f
m∈Zf

qxe,m q̄x̄e,m ,

xe,m, x̄e,m =
1
4

(
e

2β ± 2βm
)2

(4.4)

where β is the parametrisation of the central charge (0.5), and is related to Q by:

Q = 2 + 2 cos
(
2π(1− β2)

)
. (4.5)

In terms of the conformal dimension we have:

xe,m = ∆−2m,e/2 −
c− 1
24

x̄e,m = xe,−m = ∆2m,e/2 −
c− 1
24 ,

(4.6)

2 dixit Al. Zamolodchikov !



90 the random clusters q−state potts model

which allows to rewrite Zc in the familiar form (2.40) of Section 2.4:

Zc(q|f = 1) = q−c/24q̄−c/24 ∑
m∈2Z
e∈Z/2

q∆m,e q̄∆̄m,e (1 + q+ q̄+ · · · )

Zc(q|f =
1
2 ) = q−c/24q̄−c/24 ∑

m,e∈Z

q∆m,e q̄∆̄m,e (1 + q+ q̄+ · · · )
(4.7)

where · · · indicate the contributions of the other descendants, given by the expansion of the η
function in (4.4).
The function Ẑ is given by:

Ẑ(q) =
1

|η(q)|2

∑
p∈Z

(qq̄)xe0+2p,0 +
∞∑

M ,N=1
N divides M

Λ(M ,N)
∑
p∈Z

(p,N)=1

qx2p/N ,M/2 q̄x̄2p/N ,M/2


e0 = 2(1− β2).

(4.8)

(p,N) denotes the greatest common divisor of p and N . The combinatorial coefficients Λ(M ,N)

are polynomials in Q. Their expression is given in [94], and a Mathematica notebook to compute
them can be found at [100]. Again we rewrite (4.8) in terms of the conformal dimensions:

Ẑ(q) = q−c/24q̄−c/24

∑
p∈Z

q∆1,p+1 q̄∆1,p+1(1 + q+ · · · )

+
∞∑

M ,N=1
N divides M

Λ(M ,N)
∑
p∈Z

(p,N)=1

q∆−M ,p/N q̄∆̄−M ,p/N (1 + q+ · · · )

 (4.9)

where we used that ∆0,1−β2+p = ∆1,p+1. The terms in the first sum of (4.9) with p < −1 can be
rewritten as diagonal descendant states since, for all β:

∆1,−n = ∆1,n + n

⇒
∑
n∈N∗

q∆1,−n q̄∆1,−n =
∑
n∈N∗

q∆1,n+nq̄∆1,n+n. (4.10)

The state with n = 0 simply drops out from the partition function since its multiplicity is:

1︸︷︷︸
p=−1 in Ẑ

+ 2×−1
2 (Q− 1)︸ ︷︷ ︸

m,e=±1,0 in Zc(1/2)

+ Λ(1, 1)︸ ︷︷ ︸
M=N=1,p=−1 in Ẑ

= 0 (4.11)

where we used that Λ(1, 1) = Q− 2. Therefore we can write (4.9) as:

Ẑ(q) = q−c/24q̄−c/24

 ∑
n∈N∗

q∆1,n q̄∆1,n(1 + q+ · · · )

+
∞∑

M ,N=1
N divides M

Λ(M ,N)
∑
p∈Z

(p,N)=1

q∆−M ,p/N q̄∆̄−M ,p/N (1 + q+ · · · )

 (4.12)
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The first sum corresponds to the spectrum SD,quot
1,N∗ and indicates that the primaries have mul-

tiplicity one. This spectrum contains in particular the identity V D,quot
1,1 and the energy V D,quot

1,2 .
In the full partition function the correct multiplicity of their descendants is ensured by cancel-
lations which occur between the different sums. Let us illustrate this in the simplest case of the
identity, which is degenerate at level 1. The term q̄ has multiplicity:

1︸︷︷︸
p=0 in Ẑ

+ 2×−1
2 (Q− 1)︸ ︷︷ ︸

m,e=±1 in Zc(1/2)

+ Λ(1, 1)︸ ︷︷ ︸
M=N=1,p=−1 in Ẑ

= 0
(4.13)

and similarly for the term q: L−1Id and L̄−1Id are quotiented out. The existence of these de-
generate fields in the spectrum has important consequences, as we will see in Sections 4.2 and
4.3.1.
The “magnetic” sector S0,Z+ 1

2
=
{
V0,1/2,V0,3/2, · · ·

}
contains states with scaling dimensions

∆ = ∆̄ = ∆0,Z+1/2. It contains notably the field V0,1/2. For the Potts model the dimension of
this field satisfies

∆0, 1
2
=
η

4 (4.14)

for all values of Q, where η is the exponent giving the decay of the two-point connectivity (see
the Introduction ii). We therefore identify V0,1/2 as the connectivity field. This identification is
also natural in the Coulomb-gas construction, where the insertion of two such fields correspond
to the propagation of a cluster. The fields in S0,Z+ 1

2
appear in the partition function Zc(f = 1)

where they are counted twice (m = 0, e = ±(N + 1/2)) so that their total multiplicity in (4.3)
is Q− 1. For instance in the 3−states Potts model there are 3− 1 = 2 connectivity fields V ±0, 1

2
,

which have the same dimension ∆0,1/2, but different fusion rules as has been discussed in Section
1.6.1. For generic value of Q the multiplicity Q− 1 of the connectivity field is non-integer.
SM ,Z+ p

N
contains in particular non-scalar fields. For general Q their multiplicities are non-integer

and non-positive.
The partition function (4.3) describes the spectrum of the random cluster Potts model for all
values of Q, but also reduces to the spectrum of particular theories, due to subtle cancellations
at specific values of Q. As a simple illustrative example, consider Q = 2 where (4.3) becomes:

Z(q) = q−1/48q̄−1/48
(
1 + q1/16q̄1/16 + q1/2q̄1/2 + q1/16+1q̄1/16 + · · ·

)
. (4.15)

This is the torus partition function of the Ising minimal model (2.57). Only three conformal
families remain, spanned by the diagonal primaries: the identity ∆1,1 = 0, the spin ∆0,1/2 =

∆2,2 = 1/16 and the energy ∆1,2 = 1/2. This is due to resonances between dimensions which
occur at rational values of the central charge:

∆r,s = ∆λq±r,λp±s ∀λ ∈ R, β2 = p/q (4.16)

and which causes the cancellation of an infinite number of terms in the partition function.

4.1.2 The spectra of the four-point connectivities

The s-channel spectra of the four-point connectivities is given in the table below. The t- and u-
channel spectra follow since the connectivities are related to each other by swapping the position
of the points zi, as explained in the introduction ii.
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s−channel spectrum
p1234 S0,Z+ 1

2

⋃
M∈2Z

Mp/N even

SM ,Z+ p
N
=
{
V(0, 1

2 )
,V(2,0),V(0, 3

2 )
,V(2,1), · · ·

}
p12;34 SD,quot

1,N∗
⋃
S0,Z+ 1

2

⋃
M∈2Z∗

Mp/N even

SM ,Z+ p
N
=
{
V D,quot
(1,1) ,V(0, 1

2 )
,V D,quot

(1,2) ,V(2,0), · · ·
}

p13;24, p14;23
⋃

M∈2Z∗
Mp/N∈Z

SM ,Z+ p
N
=
{
V(2,0),V(2, 1

2 )
,V(2,1),V(2, 3

2 )
, · · ·

}

Table 4.1: s-channel spectra of the different connectivities [45].

In Figure 4.2 we give the total dimensions of the fields in the full spectrum (4.2), which also
appear in the spectra 4.1.

Q

∆ + ∆̄

1 2 3 4

0

1

2

3

(1, 1)
(0, 1

2 )

(0, 3
2 )

(2, 0)

(1, 2)

(1, 3)

(2, 1)

Figure 4.2: The total dimension of the fields in the Potts spectra (4.2) and 4.1. Dimensions in the non-
diagonal sector (green) alternate with dimensions of diagonal fields (orange). This figure is
inspired from [46].

To make an explicit example we write below the first terms in the s-channel expansion of p1234.
From the general expression (x) and using the spectrum 4.1 and Figure 4.2 we find:

p1234(z1, z2, z3, z4) =
1

|z13z24|
4∆0, 1

2

[D(0, 1
2 )

1234

]2 ∣∣∣∣F (s)
∆
(0, 1

2 )

(
∆0, 1

2
|z
)∣∣∣∣2 + [D(2,0)

(1234

]2 ∣∣∣F (s)
∆(2,0)

(
∆0, 1

2
|z
)∣∣∣2

+

[
D

(0, 3
2 )

1234

]2 ∣∣∣∣F (s)
∆
(0, 3

2 )

(
∆0, 1

2
|z
)∣∣∣∣2 + · · ·


(4.17)
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with the higher order terms · · · corresponding to contributions of primaries of higher dimension.
Which contribution gives the subdominant term depends on the relative size of the dimensions
∆2,0 and ∆0,3/2, which varies with Q (cf. Figure 4.2). We can proceed similarly for the other
connectivities pσ. In the next section we explain which structure constantsD(∆r,s)

σ are determined
so far.
A very important feature of the Potts spectrum (4.2) and therefore 4.1, which made the analyses
[44, 46, 47] and [51, 52] possible, is that it is discrete and it is sparse. Namely the values of
the dimensions are well separated (except at some particular values of Q), which produces
well separated contributions in the four-point connectivity, as in (4.17). This is also true of
the connectivities on the torus as we will see below (4.24-4.26). It means that by measuring
numerically the four-point connectivity on the plane or the two-, three-, four-point connectivities
on the torus, one can access contributions of different orders and:

i check or determine numerically which fields contribute

ii estimate numerically the structure constants involved.

4.2 structure constants

The full set of structure constants of the CFT is not yet determined. To date:

• a subset of structure constants has been determined analytically [66]

• relations between the structure constants entering the different four-point connectivities
have been uncovered [47, 48]

• some constants have been determined using numerical conformal bootstrap [44, 46–48].

In this section we compile the results from the works [43, 44, 46, 47, 66] to give a clear picture
of which structure constants are known and which ones are not, so far. Most of this discussion
involves structure constants of the type D(r,s)

(0,1/2),(0,1/2) which are the ones entering the s-channel
spectra of the four-point connectivitiesand we adopt the notation introduced in the introduction
ii:

D(r,s)
σ , σ = 12, 123, 1234, 12, 34, 13, 24, 14, 23 (4.18)

indicating which is the connectivity whose expansion involves this particular constant.
It has been known since the work [43] that some structure constants involved in the connectivities
are related to the structure constants of Liouville theory. The first conjecture [43] was that the
three-point connectivity is given –using the notation above– by :

D
(0, 1

2 )
123 =

√
2C(0, 1

2 )

(0, 1
2 ),(0, 1

2 )
(4.19)

where C(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
is the structure constant of Liouville theory with central charge c ≤ 1 [65, 66,

97, 101, 102]. This conjecture was checked numerically [75, 76] and very precisely recently [48].
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In Liouville theory, there exist two degenerate fields V D,quot
(1,2) and V D,quot

(2,1) . As a consequence the
structure constants obey shift equations, and the following ratios are completely determined in
terms of Gamma functions:

C
(r+2,s)
(0, 1

2 ),(0, 1
2 )

C
(r,s)
(0, 1

2 ),(0, 1
2 )

=
γ2
(

1
2
[
1− r+ (s+ 1)β2])

γ
(

1
2 [1 + r− sβ2]

)
γ
(

1
2 [1 + r− (s+ 2)β2]

) (4.20a)

×
[
γ
(
1− r+ sβ2

)
γ
(
1− r+ (s+ 1)β2

)
γ
(
−r+ (s+ 1)β2

)
γ
(
−r+ (s+ 2)β2

)]− 1
2

C
(r,s+2)
(0, 1

2 ),(0, 1
2 )

C
(r,s)
(0, 1

2 ),(0, 1
2 )

=
γ2
(

1
2

[
1− r+ s+1

β2

])
γ
(

1
2

[
1 + r− s

β2

])
γ
(

1
2

[
1 + r− s+2

β2

]) (4.20b)

×
[
γ

(
1− r+ s

β2

)
γ

(
1− r+ s+ 1

β2

)
γ

(
−r+ s+ 1

β2

)
γ

(
−r+ s+ 2

β2

)]− 1
2

.

This is true for diagonal as well as non-diagonal fields [65, 66, 97, 101, 102]. The recursion
relations can be solved leading to the analytic expression for the structure constant C(r,s)

(0, 1
2 ),(0, 1

2 )
,

reported in Appendix B of Article III.
In the Potts model V(2,1) is not degenerate, only V

D,quot
(1,2) is (cf. (4.2)). From this degeneracy, the

structure constants with the second index shifted are related [47]:

D(r,s+1)
σ

D
(r,s)
σ

2

=


Γ(−r− s

β2 )Γ(1+r−
1+s
β2 )Γ( 1−r

2 + s
2β2 )Γ(

1+r
2 + s

2β2 )Γ(
1−r

2 + 1+s
2β2 )Γ(

1+r
2 + 1+s

2β2 )

Γ(r+ 1+s
β2 )Γ(1−r+ s

β2 )Γ(
1+r

2 −
1+s
2β2 )Γ(

1−r
2 −

1+s
2β2 )Γ(

1+r
2 −

s
2β2 )Γ(

1−r
2 −

s
2β2 )

, s 6= 0

Γ(r)Γ
(

1−r− 1
β2

)
Γ
(

1−r
2 + 1

2β2

)
Γ
(

1+r
2 + 1

2β2

)
Γ(1+r)Γ

(
−r+ 1

β2

)
Γ
(

1−r
2 −

1
2β2

)
Γ
(

1+r
2 −

1
2β2

) , s = 0.
(4.21)

For diagonal fields:D(1,s+1)D
σ

D
(1,s)D
σ

2

=
γ2
(

1+s
2β2

)
γ2
(

s
2β2

)
γ
(
s
β2

)
γ
(
−1 + 1+s

β2

) . (4.22)

Applying recursively (4.21) and (4.22) we see that many structure constants can be obtained
from a same structure constant. Namely:

D(1,n)D
σ = [(4.22)|s=n−1 × (4.22)|s=n−2 × · · · (4.22)|s=1]

1
2 D(1,1)D

σ , ∀n ∈N∗

D
(0,k+ 1

2 )
σ =

[
(4.21)| r=0

s=k−1+ 1
2

× (4.21)| r=0
s=k−2+ 1

2

× · · · (4.21)|r=0
s= 1

2

] 1
2

D
(0, 1

2 )
σ , ∀k ∈ Z

D
(2Z∗,k+ p

M
)

σ =

[
(4.21)| r=2Z∗

s=k−1+ p
M

× (4.21)| r=2Z∗
s=k−2+ p

M

× · · · (4.21)|r=2Z∗
s= p

M

] 1
2

D
(2Z∗, pM )
σ , ∀k ∈ Z.

In particular, as summarised in Table 4.2 all constants of the type D(1,N∗)D
σ and D(0,Z+ 1

2 )
σ are

known since they are related to the Liouville constants C(1,1)D
(0, 1

2 ),(0, 1
2 )

and C(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
. In addition

it has been found [47] that there exist other universal ratios relating:

1. structure constants with the first index shifted
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2. structure constants with different σ.

The existence of such relations has been established, and the ratios determined, for the structure
constants of the first states in the spectrum [47]:

D4, 1
2

1234

D
0, 1

2
1234

2

=
(Q− 2)(Q2 − 4Q+ 2)

Q(Q− 3)2

C
(4, 1

2 )

(0, 1
2 ),(0, 1

2 )

C
(0, 1

2 )

(0, 1
2 ),(0, 1

2 )


2

=
(Q− 2)(Q2 − 4Q+ 2)

Q(Q− 3)2 × (4.20b)2|r=2
s= 1

2

× (4.20b)2|r=0
s= 1

2

(4.23a)
D4, 1

2
12;34

D
4, 1

2
1234


2

=
2−Q

2 (4.23b)

[
D2,0

12;34

D2,0
1234

]2

=
1

1−Q (4.23c)

[
D4,0

12;34

D4,0
1234

]2

= −Q
5 − 7Q4 + 15Q3 − 10Q2 + 4Q− 2

2(Q2 − 3Q+ 1) (4.23d) D
2, 1

2
13;24

C
(0, 1

2 )

(0, 1
2 ),(0, 1

2 )


2

=
Q− 2

2

C
(2, 1

2 )

(0, 1
2 ),(0, 1

2 )

C
(0, 1

2 )

(0, 1
2 ),(0, 1

2 )


2

=
Q− 2

2 × (4.20b)2|r=0
s= 1

2

(4.23e)

D4, 1
2

13;24

D
2, 1

2
13;24


2

=
(Q− 1)(Q− 4)(Q2 − 4Q+ 2)

2Q(Q− 3)2

C
(4, 1

2 )

(0, 1
2 ),(0, 1

2 )

C
(2, 1

2 )

(0, 1
2 ),(0, 1

2 )


2

=
(Q− 1)(Q− 4)(Q2 − 4Q+ 2)

2Q(Q− 3)2 × (4.20b)2|r=2
s= 1

2

× (4.20b)2|r=0
s= 1

2

(4.23f)

[
D2,0

13;24

D2,0
1234

]2

=
2−Q

2 (4.23g)

[
D4,0

13;24

D4,0
1234

]2

= − (Q
2 − 4Q+ 2)(Q2 − 3Q− 2)

4 . (4.23h)

In Table 4.2 we summarise these findings: it gives a picture of the extent of our current knowledge
of the random Potts model3.

3 We have not included in this table the most recent findings of [48].
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(r, s)
σ 1234 12;34 13;24 14;23

(1, 1)D 0 1 0 0
(0, 1

2 )
√

2C(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
−
√

2C(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
0 0

(2, 1
2 ) 0 0 (4.23e) 1

2C
(0, 1

2 )

(0, 1
2 ),(0, 1

2 )
±iD(2, 1

2 )
13;24

(4, 1
2 ) (4.23a) 1

2D
(0, 1

2 )
1234 (4.23b) 1

2D
(4, 1

2 )
1234 (4.23f) 1

2D
(2, 1

2 )
13,24 ±D(4, 1

2 )
13;24

(2, 0) B (4.23c) 1
2D

(2,0)
1234 (4.23g) 1

2D
(2,0)
1234 ±D(2,0)

13;24

(4, 0) B (4.23d) 1
2D

(4,0)
1234 (4.23h) 1

2D
(4,0)
1234 ±D(4,0)

13;24

(4, 1
4 ) 0 0 B ±iD(4, 1

4 )
13;24

... . . .

Table 4.2: Structure constants D(r,s)
σ entering the different connectivities indexed by σ, for the first la-

bels r ∈ 2Z. The letter B indicates that the corresponding constant has been determined by
numerical bootstrap [47].

These structure constants are of the type D(r,s)
(0,1/2),(0,1/2). Solving the full CFT would amount to

find also the structure constants of the type D(r3,s3)
(r1,s1),(r2,s2)

which govern the OPEs of fields
Vr1,s1 , Vr2,s2 with different dimensions. As discussed in Section 4.3 the structure constants
D

(1,n)D,quot

(0,s1),(0,s2)
, s1 6= s2 ∈ Z + 1/2 enter the expansions of the connectivities on the square

torus. We do not know if all constants D(r3,s3)
(r1,s1),(r2,s2)

enter the expansions of physical correlation
functions.

4.3 connectivities on the torus

We now present our results on the torus.
Although the general case of a rectangular torus (M 6= N) contains interesting information which
we discuss in Section 4.3.2, we have mainly worked on a square torus with modular parameter
τ = i (cf. Section 2.2), parametrised by the coordinate w. Below we give our general result for
the connectivities, and explain the different expansions involved. Technical details about the
derivation are provided in Section 4.3.1. Our general prediction for the dominant topological
corrections to the s-channel expansions are:

p12 (w12,N |τ = i) =
1

|w12|
4∆0, 1

2

1 +
∑
n>1

a
(2)
(∆D,quot

1,n )
(τ )

∣∣∣∣w12
N

∣∣∣∣2∆D,quot
1,n

 (4.24)

p123 (w12,w13,w23,N |τ = i) =
D

(0, 1
2 )

(0, 1
2 ),(0, 1

2 )

|w12w13w23|
2∆0, 1

2

+
1∣∣w2

12w23
∣∣2∆0, 1

2

∑
n>1

a
(3)
(∆D,quot

1,n )

(
w12
w23
|τ
) ∣∣∣∣w23

N

∣∣∣∣2∆D,quot
1,n

(4.25)

p1234 (w12,w34,w24,N |τ = i) =
1

|w12w34|
4∆0, 1

2

p1234(w) +
∑
n>1

a
(4)
(∆D,quot

1,n )

(
w12
w24

, w34
w24
|τ
) ∣∣∣∣w24

N

∣∣∣∣2∆D,quot
1,n


(4.26)
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We recall (cf. Chapter 2) that each term correspond to the contribution of a particular field in
the CFT. Here there are several expansions involved, of which we compute the dominant terms:

1. the topological expansion in wij/N : we computed the leading and first sub-leading terms
corresponding to the contributions of V D,quot

(1,2) and V D,quot
(1,3) .

2. the expansions of the coefficients a(i)∆ . They are given by (2.68,2.78,2.87):

a
(2)
(∆D1,n)

(τ ) = 〈V(1,n)D〉τD
(1,n)D
(0, 1

2 ),(0, 1
2 )

(4.27)

a
(3)
(∆D1,n)

(
w12
w23
|τ
)
= 〈V(1,n)D〉τ

∑
∆L

D
(∆L)
(0, 1

2 ),(0, 1
2 )
D

(1,n)D
(∆L),(0, 1

2 )

∣∣∣∣∣
(
w12
w23

)∆L
∣∣∣∣∣
2

(4.28)

a
(4)
(∆D1,n)

(
w12
w24

, w34
w24
|τ
)
= 〈V(1,n)D〉τ

∑
∆L,∆R

D
(∆L)
(0, 1

2 ),(0, 1
2 )
D

(∆R)
(0, 1

2 ),(0, 1
2 )
D

(1,n)D
(∆L),(∆R)

∣∣∣∣∣
(
w12
w24

)∆L (w34
w24

)∆R
∣∣∣∣∣
2

(4.29)

where we used notation (0.1), and with the one-point function given by (2.20).
i. The one-point functions are expansions over the elliptic nome q = e2πiτ (see Section

2.3). They are given in Section 4.3.1.
ii. The coefficients a(3) and a(4) are themselves expansions over all –primary and descen-

dant fields VL, VR which satisfy the fusions at each node (see diagrams 4.5 below).
• We computed the contributions of the dominant and subdominant primary fields.
• In addition the contributions of the descendants of VL and VR were computed

up to order 2 (ie taking into account the contributions of level 1 and level 2
descendants).

3. Finally the plane four-point function in 4.29 is given by expansion (4.17) in the cross-ratio
w.

In (4.24-4.26) the structure constants D(r3,s3)
(r1,s1),(r2,s2)

are taken to be the Liouville structure con-
stants:

D
(r3,s3)
(r1,s1),(r2,s2)

=


√

2C(r3,s3)
(r1,s1),(r2,s2)

if ri, si = 0, Z + 1
2 , i = 1, 2, 3

C
(r3,s3)
(r1,s1),(r2,s2)

otherwise.
(4.30)

These structure constants can be conveniently computed for any Q from [100].
The agreement of (4.24-4.26) with the numerical data is excellent: not only it is good when com-
puting the dominant terms of the different expansions above, but most importantly it improves
when adding subleading contributions, as shown in Figure 4.3 for the topological expansion and
in Figure 4.4 for the a(i)’s expansion. Thus the spectra (4.1) and the Liouville structure constants
are consistent not only one the plane but also on the torus. Another observation, which is not
explained at the moment is that the topological contributions involve only the diagonal, degen-
erate sector SD,quot

1,N∗ . In the full spectrum (4.2), these diagonal fields are not the ones with the
smallest dimensions, as is visible in Figure 4.2. The fact that other fields with smaller dimension
do not contribute can have two origins:
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• either they do not appear in the corresponding fusion

• or their one-point function vanishes, so that a(i)(∆) = 0 (cf. (4.27-4.29)). This is the case of
the fields in S0,Z+ 1

2
for integer values of Q.

We give avenues to explore this issue in Section 4.3.2.
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Figure 4.3: Expansions (4.24) (a) and (4.26) (b) computed including only the dominant (dashed) and
both dominant and subdominant topological corrections (solid), and the comparison with
numerical data at Q = 3.25, where the dimension of the sub-dominant field V D(1,3) is small
(see Figure 4.2). Error bars are smaller that the marker size.
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Q = 2.75.

Figure 4.4: Convergence of the level expansion of the three-point function (left) and convergence of the
channel expansion of the four-point function (right). Dashed (resp. solid) correspond to com-
putation of a(i) to the dominant (resp. subdominant) orders.
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4.3.1 Constraints from SD,quot
1,N∗

The computation of the expansions (4.27-4.29) rely on the fact that the energy field is degenerate.
As seen in Section 4.2, this fact has the important consequence that some structure constants
are related by shift equations. In the topological expansions the degenerate fields V D,quot

(1,n) pro-
vide other types of constraints, which make some of the expansions (4.24-4.26) exact. These
constraints originate from the fusion rules that a degenerate field imposes at the different nodes
of a given diagram as shown in Figure 4.5:

• on which fields contribute to its one-point function

• on which fields appear in the intermediate channels VL,VR.

V

Vint

V D
(1,n)

V

V

V

VL
V

Vint

V D(1,n)

V

V

VL VR

Vint

V D,quot
(1,n)

V

V

Figure 4.5: The degenerate field V D,quot
(1,n) imposes fusion rules at the marked nodes.

One-point functions of 〈V D,quot
(1,2) 〉 and 〈V D,quot

(1,3) 〉

In particular the level 2 degeneracy of V D,quot
(1,2) puts strong constraints on the fields which con-

tribute to its one-point expansion (2.21). Indeed the fusion rules:

R×Rint → Rint from (2.16) (4.31)
R1,2 ×Rr,s = Rr,s±1 from degeneracy (4.32)

imply

αr,s±1 = αr,s or
αr,s±1 = Q− αr,s

(4.33)

The only solution is r, s = 0, 1/2, so that only the connectivity field flows in the internal channel
(see Figure 4.6). The expansion (2.21) then becomes exact:

V D,quot
(1,2)

V(0, 1
2 )

Figure 4.6

〈V D,quot
(1,2) 〉τ =

(2π)2∆(1,2)

Z(q, q̄) (Q− 1)C(0, 1
2 )

(0, 1
2 ),(1,2)Dq

∆
(0, 1

2 )
− c

24 q̄
∆
(0, 1

2 )
− c

24
∣∣∣∣F (1)

∆
(0, 1

2 )
(∆(1,2)|q)

∣∣∣∣2 (4.34)
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with the Q − 1 factor coming from the multiplicity of the connectivity field. In practice, to
compute this expansion we truncate the q series coming from the expansion of the partition
function, as well as the expansion of the conformal block.
Such reduction does not happen for the subleading field V D,quot

(1,3) : indeed from the fusion

R1,3 ×Rr,s = Rr,s−2 ⊕Rr,s ⊕Rr,s+2 (4.35)

any field can flow in the internal channel. The expansion (2.21) is therefore computed by includ-
ing the contributions of all fields of lowest dimension in the spectrum, ie from 4.2:

〈V D,quot
(1,3) 〉τ =

(2π)2∆(1,3)

|q|
c

12 Z(q, q̄)

2C(0, 1
2 )

(0, 1
2 ),(1,3)Dq

∆
(0, 1

2 ) q̄
∆
(0, 1

2 )

∣∣∣∣F (1)
∆
(0, 1

2 )
(∆(1,3)|q)

∣∣∣∣2
+C

(1,2)
(1,2),(1,3)Dq

∆(1,2) q̄∆(1,2)
∣∣∣F (1)

∆(1,2)
(∆(1,3)|q)

∣∣∣2
+C

(0, 3
2 )

(0, 3
2 ),(1,3)Dq

∆
(0, 3

2 ) q̄
∆
(0, 3

2 )

∣∣∣∣F (1)
∆
(0, 3

2 )
(∆(1,3)|q)

∣∣∣∣2
.

(4.36)

This is shown in Figure 4.7 for Q around 3, where the contribution of V D,quot
(1,3) in the topological

expansions (4.24-4.26) is visible numerically. For smaller Q the dimension ∆1,3 becomes very
large (cf. Figure 4.2) and the contribution of V D,quot

(1,3) can be neglected. Exactly at Q = 3 we
have (4.16):

V(0, 1
2 )

= V(3,3)

V(0, 3
2 )

= V(3,1)

V(1,3) = V(5,2).

The extra fusion rules imposed by the last equality reduce the possible internal fields to
{
V(3,3),V(1,2),V(1,3)

}
,

so that in that case we obtain the exact expansion:

〈V D,quot
(1,3) 〉τ

Q=3
=

(2π)2∆(1,3)

|q|
c

12 Z(q, q̄)

2C(3,3)D
(3,3)D,(1,3)Dq

∆(3,3) q̄∆(3,3)
∣∣∣F (1)

∆(3,3)
(∆(1,3)|q)

∣∣∣2
+C

(1,2)D
(1,2)D,(1,3)Dq

∆(1,2) q̄∆(1,2)
∣∣∣F (1)

∆(1,2)
(∆(1,3)|q)

∣∣∣2
+C

(1,3)D
(1,3)D,(1,3)Dq

∆(1,3) q̄∆(1,3)
∣∣∣F (1)

∆(1,3)
(∆(1,3)|q)

∣∣∣2
.

(4.37)

The last term is extremely small

C
(1,3)D
(1,3)D,(1,3)Dq

∆(1,3) q̄∆(1,3)
∣∣∣F (1)

∆(1,3)
(∆(1,3)|q)

∣∣∣2
C

(1,2)D
(1,2)D,(1,3)Dq

∆(1,2) q̄∆(1,2)
∣∣∣F (1)

∆(1,2)
(∆(1,3)|q)

∣∣∣2 ∼ 10−10. (4.38)

We compare in Figure 4.7 the exact expansion (4.37) with (4.36), which shows that the truncation
(4.36) gives a very good approximation at Q = 3.
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,3
)
〉 τ

=
i

Figure 4.7: 〈V D,quot
(1,3) 〉τ=i computed as expansion (4.36) (orange curve), and the exact value (4.37) at

Q = 3 (blue cross).

Constraints on the three-point

The fusion rule imposed by V D,quot
(1,2) at the node in diagram 4.5 reads:

R1,2 ×R0, 1
2
= R0, 1

2
⊕R0, 3

2
(4.39)

so that there only two possible intermediate channels:

VL = V(0, 1
2 )

VL = V(0, 3
2 )

.
(4.40)

The expansion of the coefficient a(3)
(∆D1,2)

(4.28) thus truncates to:

a
(3)
(∆D1,2)

= 〈V(1,2)D〉τ

√2C(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
C

(1,2)D
(0, 1

2 ),(0, 1
2 )

∣∣∣∣w12
w23

∣∣∣∣2∆
(0, 1

2 )
∣∣∣∣F (3)

∆
(0, 1

2 )

(
∆(1,2), ∆(0, 1

2 )

∣∣∣∣w12
w23

)∣∣∣∣2

+
√

2C(0, 3
2 )

(0, 1
2 ),(0, 1

2 )
C

(1,2)D
(0, 3

2 ),(0, 1
2 )

∣∣∣∣w12
w23

∣∣∣∣2∆
(0, 3

2 )
∣∣∣∣F (3)

∆
(0, 3

2 )

(
∆(1,2), ∆(0, 1

2 )

∣∣∣∣w12
w23

)∣∣∣∣2


(4.41)

with the contribution of the descendants contained in the three-point blocks (2.79). The com-
parison with the numerical points is given in Figure 4.4a, with the conformal block expansion
truncated to level one or to level 2.

Constraints on the four-point

Similarly for the four-point function the dimensions of VL and VR are constrained by V D,quot
(1,2) :

αrR,sR = αrL,sL±1. (4.42)
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From the fusion spectrum 4.1, Figure 4.2 and the constraint above, the dominant and first
subdominant contributions are given respectively by

dominant VL = VR = V(0, 1
2 )

subdominant VL = V(0, 1
2 )

VR = V(0, 3
2 )

.
(4.43)

The convergence of the channel expansion of a(4) (4.29) is shown in Figure 4.4b. Notably, the
agreement of this expansion, as well as (4.41) with the numerics4 provided a test that D(0, 3

2 )

(0, 1
2 ),(0, 1

2 )

is indeed given by
√

2C(0, 3
2 )

(0, 1
2 ),(0, 1

2 )
.

4.3.2 Further developments

In this section we point out an aspect which has not been investigated in the published articles.
We noted above that only the degenerate diagonal fields contribute to topological corrections
of the connectivities (4.24-4.26). The question is wether the other fields do not appear in the
fusion spectrum or if their contribution is zero because their one-point functions vanish.
The analysis in Article II and Article III has been done mainly on the square torus M = N . In
this case the one-point functions of non-scalar fields vanish by rotational invariance (see next
chapter for more details), and therefore they would not contribute to the connectivities (4.24-
4.26). However, on a non-square torus M 6= N we get in principle contributions from non-scalar
fields. As explained in details in the next chapter, we can directly probe such contributions by
taking the difference of connectivities measured along two different axes. Let us consider for
simplicity the two-point connectivity measured along two perpendicular axes w and w⊥:

|w|
4∆0, 1

2
(
p12(w)− p12(w

⊥)
)
= 4 d(2)0

{
a
(2)
T (τ )

∣∣∣∣wN
∣∣∣∣2 + a

(2)
(2,1)(τ )

∣∣∣∣wN
∣∣∣∣∆2,1+∆̄2,1

+ · · ·
}

(4.44)

where the leading contribution comes from the two stress-energy tensors T and T̄ which are
the non-scalar fields with the smallest dimensions ∆ + ∆̄ = 2. Looking at Figure 4.2, the next
contribution should come from the primary field V(2,1). The coefficient a(2)T =

2∆0,1/2
c 〈T 〉τ can

be computed for all Q (see Section 2.4.1 and next chapter). Prediction (4.44) has been tested
in Article II for Q = 1. In this particular case the dimension and spin of V(2,1) become precisely
equal to those of the stress-energy tensor (cf. Figure 4.2). We would like to repeat this analysis
for Q > 1, where the contribution of V(2,1) should become numerically visible. Namely, we could
measure:

a
(2)
(2,1)(τ ) = D

(2,1)
(0, 1

2 ),(0, 1
2 )
〈V(2,1)〉τ . (4.45)

It would be interesting to be able to extract the value of D(2,1)
(0, 1

2 ),(0, 1
2 )
, and see if it is given by one

of the constants D(2,1)
σ of Table 4.2.

4 The agreement is even better seen for values of Q at which singularities arise, such as the case Q = 2 discussed
in Section C.1 and D.1 of Article III.
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4.4 conclusion

The study of the connectivities of the random Potts model on the torus provided tests of con-
jectures on the underlying CFT, notably in what concerns the structure constants. These con-
jectures have been subsequently put on solid grounds by the (almost complete) determination
of the four-point connectivities [47, 48]. The analysis on the square torus showed that for all
connectivities the topological corrections are given by the diagonal, degenerate fields in the the-
ory. Wether the connectivity fields do not fuse onto the other fields in the spectrum, or wether
these latter do not appear in the expansions because their one-point functions vanish is an open
question. This question can be partially answered by carrying the same analysis on general,
rectangular torii, where non-scalar fields have generically non-zero one-point functions.
Importantly, the predictions of the torus effects provide a numerical test of the universality
class for other percolation systems, which can be applied to a large class of models (notably, no
knowledge of a lattice representation is required), and which goes beyond the determination of
critical exponents by probing non-trivial CFT data. In this way, our prediction for the torus
two-point connectivity of pure percolation will be of importance in the analysis of the random
surface model in the next chapter.

As a concluding note, the Potts CFT saga is an illustrative example of a fruitful combination
of bootstrap and lattice expertises. One can hope that all the pieces of the puzzle will fall in
place in the near future, with more structure constants being determined by precise numerical
bootstrap [48], and deeper study of the algebraic structure of the model [49].
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1.  Introduction

The critical point of a two-dimensional statistical model can be often characterised 
in terms of extended objects that, in the continuum limit, are described by conformal 
invariant fractal structures [1]. The study of these fractals provided new insights into 
the nature of critical phenomena paving the way to mathematically rigorous approaches 
[2]. On the one hand, many of the results found so far involve quantities related to 
two-point correlation functions of a conformal field theory (CFT). The only excep-
tions concern observables that satisfy some dierential equation and whose definition 
requires the existence of a boundary, such as crossing probabilities [3] or SLE interfaces 
[4]. On the other hand, the (bootstrap) solution of a CFT requires the knowledge of 
three- and four-point correlation functions. Besides some special cases [5, 6], the only 
known bootstrap solutions known to describe statistical critical points are the minimal 
models. These CFTs have been successful in providing the behaviour of local observ-
ables of critical systems, such as the Ising spin correlation function, but they are too 
simple to capture the geometry of conformal fractals. The description of these fractals 
hints therefore at the existence of a CFT whose solution remains an open puzzle.
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The random cluster Q-state Potts models [7] represent an ideal laboratory in this 

context. This is a one parameter family of models which includes as special cases 
the spanning forests (Q → 0) [8], the (bond) percolation (Q  =  1), the Ising (Q  =  2) 
and the three-state Potts (Q  =  3) spin models, as well as the permutation symmetric 
point of the Ashkin–Teller model (Q  =  4). For 0 � Q � 4, the Q-state Potts model 
has a critical point at which the clusters percolate and have a conformal invariant 
measure. Natural observables are the cluster connectivities, given by the probability 
that a number of lattice points belong to the same or dierent clusters [9–11]. The 
conjecture of Delfino and Viti on the three-point connectivities [12] has been at the 
origin of a series of papers [13–20] which unveiled important insights on the still 
unknown bootstrap solution.

In this paper we focus on the two-point connectivity on a torus. This study is moti-
vated by two facts:

	•	 �In order to increase the number of samplings, Monte Carlo measurements are 
conveniently taken on doubly periodic lattices [19]: a precise knowledge of topo-
logical corrections is therefore needed to extract the scaling plane limit which is 
then compared to the CFT on the sphere predictions.

	•	 �The torus topological eects encode informations on the set of states and on the 
three-point functions, which are the basic ingredients to solve a CFT.

In section 2 we review notions of CFT on a torus and provide the general formulas 
we will need. In section 3 we define the lattice observables and we provide analytical 
results on their universal finite size behaviours. These results are then compared with 
the numerical results in section 5, where details of the simulations are also discussed. 
The final conclusions are found in section 6.

2. Conformal field theory on a torus

2.1. Virasoro algebra and its representation

Consider first a CFT on a plane z ∈ (C
⋃{∞}) [21] with T (z) and T̄ (z̄) the holomorphic 

and anti-holomorphic component of the stress energy-tensor. The holomorphic stress-

energy modes L
(z)
n , defined in (A.1) form the Virasoro algebra Vc with central charge c:

[
L(z)
n ,L(z)

m

]
= (n − m)L

(z)
n+m +

c

12
n(n2 − 1)δn,m.� (2.1)

The anti-holomorphic modes L̄
(z)
n  are analogously defined and form a second Virasoro 

algebra Vc, with the same central charge, that commutes with (2.1).
A highest-weight representation of Vc is labelled by the conformal dimension ∆: 

it contains the primary field V∆, Ln|V∆〉 = 0 for n  >  0, and its descendants, obtained 
by acting with the negative modes on the primary state. Given a Young diagram 
Y = {n1,n2 · · · }, with ni ∈ N,ni � ni+1, the fields

V
(Y )
∆ = L

(z)
−Y V∆ = L

(z)
−n1

L
(z)
−n2

· · · V∆ (V
({0})
∆ = V∆)� (2.2)
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form a complete basis of the ∆ representation. The descendant V
(Y )
∆  has total dimen-

sion ∆+ |Y |, where |Y | = ∑
ni is called the level of the descendant. For general ∆, the 

number of independent descendants is therefore the number of partitions of |Y |. The 
inner product H∆(Y ,Y ′) between descendants is defined as:

H∆ (Y ,Y ′) = lim
z→∞

z2∆
〈
V∆(z)L

(0)
Y L

(0)
−Y ′V∆(0)

〉
,� (2.3)

and is completely defined by the algebra (2.1). For certain values of ∆, see (2.9), the 
representations are degenerate: they contain a descendant field, usually called the 
null state, which has vanishing norm. For unitary CFTs, the null state is set to zero. 
Otherwise, one can have CFTs where null states are not vanishing, like for instance 
in [22]. For the sake of simplicity, we will continue to denote the descendant states as 

V
(Y )
∆  even when the presence of a vanishing null state makes their number smaller than 

the number of partitions. In this case, the notation Y is meant to label the independent 
non-vanishing descendants.

The spectrum S of a CFT is formed by the representations of Vc ⊗ Vc appear-
ing in the theory and labelled by the holomorphic and anti-holomorphic dimen-
sions ∆, ∆̄. In order to simplify the formulas, we use the notations (∆)i = ∆i, ∆̄i and 
(∆,Y )i = (∆i,Yi), (∆̄i, Ȳi). In these notations, a Vc ⊗ Vc primary field and its descen-
dants are

V(∆)(z, z̄) = V∆(z)V∆̄(z̄), V(∆,Y )(z, z̄) = L
(z)
−Y L̄

(z̄)

−Ȳ
V∆(z)V∆̄(z̄).� (2.4)

The product of two primary fields (OPE) can be expanded in terms of the states 
appearing in the spectrum S [21]:

V(∆)1(z, z̄) V(∆)2(0) → a
(∆,Y )3
(∆)1,(∆)2

(z, z̄) V(∆,Y )3(0),� (2.5)
where the coecients are factorised as:

a
(∆,Y )3
(∆)1,(∆)2

(z, z̄) = C
(∆)3
(∆)1,(∆)2

β
(∆3,Y3)
∆1,∆2

(z) β
(∆̄,Ȳ3)

∆̄1,∆̄2
(z̄).� (2.6)

One factor is the (model dependent) structure constant C
(∆)3
(∆)1,(∆)2

, the other factor is 

fixed by the algebra (2.1):
β
(∆3,Y3)
∆1,∆2

(z) = z−∆1−∆2+∆3+|Y |
∑

Y ′
|Y ′|=|Y |

H−1
∆3

(Y ,Y ′) Γ(∆3,Y ′)
(∆2,{0}),(∆1,{0})),� (2.7)

where:

Γ
(∆3,Y3)
(∆1,Y1),(∆2,Y3)

=

〈
L
(∞)
−Y3

V∆3(∞)L
(1)
−Y2

V∆2(1)L
(0)
−Y1

V∆1(0)
〉

〈V∆3(∞)V∆2(1)V∆1(0)〉
.� (2.8)

Under the replacement ∆i → ∆̄i, the above formulas define β
(∆3,Ȳ3)

∆̄1,∆̄2
(z̄) too. The three-

point function (2.8) can be computed in an ecient way by the recursion formulas in [23].
In the study of the critical random Potts model, the following series of notations 

turns out to be very convenient. The conformal dimension can be parametrised as 
follows
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∆ = ∆(r,s) =
c − 1

24
+

1

4

(
rβ − s

β

)2

.� (2.9)
A representation is degenerate if r, s ∈ N∗, and has a null state at level rs. The symbols

V∆(r,s),∆(r,s)
= V(r,s)D , V∆(r,s),∆(r,−s)

= V(r,s)� (2.10)
indicate the diagonal and non-diagonal primary fields and the notations

(r, s)D, (r, s)� (2.11)
denote the representations associated to V(r,s)D and V(r,s) respectively. This allows us to 
use a lighter notations for the structure constants, for instance:

C
(r,s)D

(r1,s1),(r2,s2)
= C

(∆r3,s3 ,∆r3,s3 )

(∆r1,s1 ,∆r1,−s1),(∆r2,s2 ,∆r2,−s2)
.� (2.12)

A set of these representations is denoted as

SD
X = {(r, s)D}(r,s)∈X , SX = {(r, s)}(r,s)∈X ,� (2.13)

where X is a given set of pairs (r, s). A third set type is Squot
X  that contains the degener-

ate representations with vanishing null state.

2.2. Torus correlation functions

So far we have reviewed the properties of a CFT that do not depend on the topology of 
the surface. The theory of Virasoro algebra on general Riemann surfaces can be found 
in [24]. Let us consider now a CFT on a torus with periods ω1 and ω2. In the numerical 
simulations one usually considers doubly periodic rectangular lattices of size M × N , 
where M ,N ∈ R>0. We therefore set:

ω1 = iM , ω2 = N , τ =
ω1

ω2

= i
M

N
, q = e2πiτ .� (2.14)

The results we will obtain can be of course generalized to the case Re τ �= 0. In the fol-
lowing, we represent the torus as a finite cylinder of size N with the ends, at distance 
M = O(N), glued together. Accordingly, we use the map

w = −i
N

2π
ln z� (2.15)

sending the plane (z) to an infinite cylinder (w) of size N.

We define a general field V C,N
(∆,Y ) on the cylinder of size N as:

V C,N
(∆,Y )(w, w̄) = L

C,(w)
−Y L̄

C,(w̄)

−Ȳ
V C,N
(∆) (w, w̄),� (2.16)

where L
C,(w)
−n , L̄

C,(w)
−n  are the conformal generators on the cylinder. They are related to 

the fields on the cylinder of size N  =  1 by a factor arising from their transformation 
under (2.15), see appendix :
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V C,N
(∆,Y )(w, w̄) =

(
2π

N

)∆+∆̄+|Y |+|Ȳ |
V C,N=1
(∆,Y ) (w, w̄).� (2.17)

Henceforth, we will often omit the symbol C,N when the field on the cylinder is a pri-

mary, i.e. V C,N
(∆) (w) → V(∆)(w). The relation between L

C,(w)
−n  and L

(z)
−n is obtained using 

the transformation of T under the map (2.15) see appendix .

The torus function 
〈∏

i V(∆i)

〉
τ
 corresponds to the trace of the ons. The one-point 

torus correlation function can be associated with the following diagram:

where Sint ∈ S is the set of representations that propagate along the M direction 
and whose fusion with themselves contains the representation (∆). It takes the form:

〈V(∆)〉τ =
1

Z
TrSint

(
qL

C,(∞)
0 q̄L̄

C,(∞)
0 V(∆)(0)

)
=

1

Z

∑

(∆int)∈Sint

C
(∆)
(∆int),(∆int)

F∆int
∆ (q) F ∆̄int

∆̄
(q̄),� (2.18)

where L
C,(∞)
0 = L

(0)
0 − c

24
 and F∆int

∆ (q) is the torus conformal block:

F∆int
∆ (q) = q∆int− c

24 q̄∆̄int− c
24

∑

Y ,Y ′
|Y |=|Y ′|

q|Y |H−1
∆int

(Y ,Y ′) Γ
(∆int,Y

′)
(∆int,Y ),(∆,{∅})

= q∆int− c
24 q̄∆̄int− c

24

(
1 +

2∆int +∆(∆ − 1)

2∆int

q + · · ·
)�

(2.19)

see (2.3)–(2.8). The torus partition function Z can be related to the identity one-point 
function, for which Sint = S,

Z = TrS
(
qL

C,(∞)
0 q̄L̄

C,(∞)
0

)
=

∑

(∆int)∈S
F∆int

0 (q) F ∆̄int
0 (q̄).

� (2.20)

The computation of F∆int
0 (q) using recursion relations is discussed in [25].

The s-channel expansion of the torus two-point function 
〈
V(∆)1(w)V(∆)2(0)

〉
τ
 is 

described by the diagram:
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where Sint contains the fields appearing in the fusion V(∆)1V(∆)2 and Sint2 is the spec-

trum of the one-point torus function of the fields in Sint. One can show, see appendix, 
that the two-point torus function can be expanded as:

〈V(∆)1(w)V(∆)2(0)〉τ =

(
N

2π

)−∆1−∆2−∆̄1−∆̄2 ∑

(∆,Y )int∈Sint

a
(∆,Y )int
(∆)1,(∆)2

(
2πw

N

) 〈
V C
(∆,Y )

〉
τ
.

� (2.21)

3. Q-Potts random cluster model

Let us consider a rectangular lattice N × M with periodic boundary conditions in the 
two directions. The edges of the graph carry a bond with probability p , or no bond with 
probability 1  −  p . According to these bonds, the lattice is split into a disjoint union 
of connected clusters. The random cluster Q-state Potts model [26] is defined by the 
partition function

ZQ =
∑

G
Q#clustersp#bonds(1 − p)#edges without bond.

� (3.1)
At the critical value

p = pc =

√
Q√

Q+ 1
,� (3.2)

the probability that there exists a percolating cluster jumps from 0 to 1, in the limit of 
infinite lattice size. The model becomes conformally invariant in the scaling limit, and 
has central charge c:

c = 1 − 6
(
β − β−1

)2
, Q = 4 cos2 πβ2 with

1

2
� β2 � 1 .� (3.3)

The scaling limit ZQ of the Potts partition function (3.1) at the critical point (3.2) was 
computed in [27]:
ZQ = equation (4.8) of [27], with e0 → 2 − 2β2, g → 4β2, hs,r → ∆(−2r, s

2
).� (3.4)

The corresponding total spectrum is:

SPotts = SD,quot
(1,N∗)

⋃

j�2
M|j,p∧M=1

S( j,Z+ p
M

)

⋃
S(0,Z+ 1

2
).

� (3.5)

The multiplicities associated to the above sectors have also been computed [27] and, 
for general Q, assume general real values. We refer the reader to [18] for a derivation of 

(3.5) from the representations of Temperley–Lieb type algebras. SD,quot
(1,N∗)  is the thermal 

sector [28] and contains the identity and the energy field:

Identity field = V(1,1)D , Energy field = V(1,2)D .

The space of n-point cluster connectivities has been defined in [9]. Here we will focus 
only on the two-point connectivities:
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p12 = Probability(w1,w2 are in the same cluster).� (3.6)
At the critical point (3.2) and in the plane limit N ,M → ∞, the Coulomb gas approach 
[29] determines the scaling limit of the probability p 12 :

Plane scaling limit : p12 = c0 |w|−4∆
(0, 12 ) , w = w1 − w2,� (3.7)

where c0 is a non-universal constant, see section 5. From the above equation one sees 
that, in the plane, the two-point connectivity is related to the plane two-point function 
of the

Connectivity field = V(0, 1
2
),� (3.8)

belonging to the magnetic sector S(0,Z+ 1
2
) [30]. It is natural to assume that the relation 

between p 12 and the V(0, 1
2
) two-point function holds on the torus, i.e.:

Torus scaling limit : p12 = c0

〈
V(0, 1

2
)(w)V(0, 1

2
)(0)

〉
τ
, w = w1 − w2.� (3.9)

Let us mention that a rigorous proof of (3.2) has been obtained recently in [31] where 
the behaviour of the probability (3.6) in the sub-critical regime p   <  p c and on the torus 
was also studied.

4. Two-point Potts torus connectivity

According to Monte Carlo simulations (see section 5) while (0, 1
2
) is the field in (3.5) with 

the smallest non-zero conformal dimension, the leading topological correction is given 
by the energy state (1,2)D. The contribution from the second thermal operator (1,3)D is 

also visible at Q ∼ 3. Based on these observations, we assume that 
〈
V(0, 1

2
)(w)V(0, 1

2
)(0)

〉
τ
 

is given by (2.21) with Sint = SD,quot
(1,N∗) . In particular we compute the contributions of the 

first three dominant channels:

Sint = {(1, 1)D, (1, 2)D, (1, 3)D}.� (4.1)
The agreement between Monte Carlo and analytic results presented below confirms  

that this truncated spectrum (4.1) provides a good approximation to 
〈
V(0, 1

2
)(w)V(0, 1

2
)(0)

〉
τ
. 

Some arguments going in this direction come also from the analysis in [18, 20] where 
the spectrum of all independent four-point connectivities has been determined. In 
particular, it was shown that the asymptotic of the probability p12 ∩ p34 (related 
to P0 + P1 in [20]), in the limit z2 − z1 → 0 and z3 − z2 � 1, is dominated by the 
low lying states (1, 1)D, (1, 2)D, (1, 3)D, (2, 0), · · ·. In this limit one expects that 
p12 ∩ p34 ∼ p12 p34 + corrections, where the corrections are produced by the configurations 
which correlate the p 12 and p 13 probabilities and which are associated to the state (2, 0) 
[20].
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In the limit:

N → ∞,
M

N
→ O(1), 1 � w � N ,� (4.2)

using the expression for the two-point function (2.21) with the internal spectrum (4.1) 
we obtain the following N−1 expansion

〈
V(0, 1

2
)(w)V(0, 1

2
)(0)

〉
τ
= |w|−4∆

(0, 12 )
∑

X∈{(1,1)D,(1,2)D,(1,3)D}
CX

(0, 1
2
),(0, 1

2
)

∣∣∣∣
2πw

N

∣∣∣∣
2∆X

(〈VX〉τ

+

(
2π

N

)2

β
{2}
X

(
w2

〈
L
C,(0)
−2 VX

〉
τ
+ w̄2

〈
L̄
C,(0)
−2 VX

〉
τ

)

+

(
2π

N

)3

β
{3}
X

(
w3

〈
L
C,(0)
−3 VX

〉
τ
+ w̄3

〈
L̄

C,(0)
−3 VX

〉
τ

)
+ · · ·

)
,

�

(4.3)

where we set βY
X = β

(∆X ,Y )
∆

(0, 12 )
,∆

(0, 12 )
. Note that descendants of the type LC

−1L
C
−Y VX are total 

derivatives and their torus one-point functions vanish.
The main message here is that the leading topological correction for the two-point 

connectivity is given, for 1 � Q � 4 by the energy (1,2)D state. Given two-points w1,w2 
on a torus (2.14) and at distance r = |w1 − w2|, the scaling limit of the probability (3.6) 
is:

p12 =
c0

r
4∆

(0, 12 )

[
1 +

( r

N

)2∆(1,2)

(
(2π)2∆(1,2)

ZQ(q)
(Q − 1)

[
C

(1,2)D

(0, 1
2
),(0, 1

2
)

]2
q
2

(
∆

(0, 12 )
− c

24

)

(1 +O(q))

)

+O

(( r

N

)2
) ]

�

(4.4)

where c0 is a non-universal constant evaluated in table 1, and C
(1,2)D

(0,1/2),(0,1/2) is given in 

(4.16). At the critical percolation Q  =  1 point, we have:

Table 1.  c0 and c1 from a fit of the numerical data to the form (5.1). The last 
column contains the analytical determination in (4.11a).
Q c0 c1 c(1,2)
1 0.747 19 0.356 0.357 07
1.25 0.733 23 0.392 0.393 023
2 + cos 3π

5
0.726 93 0.414 0.411 442

1.5 0.721 78 0.4343 0.427 244
1.75 0.711 99 0.459 0.458 989
2.0 0.703 37 0.488 0.488 863
2.25 0.695 56 0.518 0.517 293
2.5 0.688 27 0.551 0.544 607
2.75 0.681 13 0.578 0.571 079
3.0 0.673 76 (2) 0.599 0.596 962
3.25 0.665 55 (5) 0.627 0.622 532
2 +

√
2 0.659 02 (7) 0.642 0.639 326
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p12 =
c0

r
5
24

[
1 +

( r

N

) 5
4

(
(2π)

5
4π

√
3

(
4

9

Γ(7
4
)

Γ(1
4
)

)2

e−
5π
24

M
N +O

(
e−

53
24

πM
N

))

+O

(( r

N

)2
) ]

.

�

(4.5)

The formula (4.4) represents, at the best of our knowledge, a new analytic result on 
the universal properties of general Q random Potts critical clusters and, in particular, 
of the critical percolation clusters (4.5). The derivation of (4.4) and (4.5), of the next 
r
N

 sub-leading topological terms and of the systematic computation of the q expansion, 
are given below.

4.1.  Identity channel contributions

The leading contribution to (4.3) comes from the identity. In particular we have:

Leading : |w|−4∆
(0, 12 ) (plane limit) ,� (4.6a)

Sub-leading : |w|−4∆
(0, 12 )

[ (w

N

)2

cT +
( w̄

N

)2

cT̄

]
� (4.6b)

Next to sub-leading : O

(
1

N4

)
.� (4.6c)

The dominant term corresponds to the plane limit while the sub-leading factors cT and 
cT̄ :

cT =
2∆(0, 1

2
)

c

〈
T C〉

τ
, cT̄ =

2∆(0, 1
2
)

c

〈
T̄ C〉

τ
� (4.7)

are proportional to the stress energy one-point function, with

〈T C〉τ = iπ∂τ log ZQ.� (4.8)

1 1.5 2 2.5 3 3.5 4

0

5 · 10−2

0.1

0.15

0.2

Q

c T
M
N

= ∞
M
N

= 5
M
N

= 2.5
M
N

= 1

Figure 1.  The contribution cT of the stress-energy tensor, as a function of Q and 

for different values of the aspect ratio MN .
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In figure 1 we plot cT as a function of Q and for dierent τ , i.e. for dierent ratios 
M
N

: for a square torus, M  =  N and 〈T C〉τ = 〈T̄ C〉τ = 0, for all Q. This is the reason the 
N−2 corrections were not visible in the fits in [20]. In the cylinder limit M/N → ∞ 

one recovers the well known result 〈T C〉i∞ = (2π)2 c
24

. It is interesting to stress that 

the limc→0

2∆
(0, 12 )

c

〈
T C〉

τ
 is finite and dierent from zero. No subtleties, arising from the 

existence at c  =  0 of a logarithmic partner of the stress energy tensor, seem to emerge. 
Indeed one can write

Z = 1 +O(Q − 1)� (4.9)
which gives a finite limit for

cT = −
2∆(0, 1

2
)

c
2π2q∂qZ.� (4.10)

The next corrections from the identity channel appear at order N−4 and are related 
to the propagation of the identity descendants 〈T CT̄ C〉τ, 〈LC

−4Id〉τ and 〈L̄C
−4Id〉τ.

4.2. Energy channel contributions

Besides the identity, the energy V(1,2)D field has the lowest dimension in SD,quot
(1,N∗) . The  

(1, 2)D contribution to (4.3) is given by

Leading : |w|−4∆
(0, 12 )

( |w|
N

)2∆(1,2)

c(1,2),� (4.11a)

Sub-leading : O

(
1

N2∆(1,2)+4

)
� (4.11b)

where:

c(1,2) = (2π)2∆(1,2) C
(1,2)D

(0, 1
2
),(0, 1

2
)

〈
V(1,2)D

〉
τ
.� (4.12)

We can compute the one-point function 
〈
V(1,2)D

〉
τ
 by using the vanishing of the (1,2)D 

null state, which determines the OPE [21]:
V(1,2) × V(r,s) → V(r,s+1) ⊕ V(r,s−1)� (4.13)

(0, 1
2
) is the only representation which satisfies both the above OPE and

V(1,2) × V(0, 1
2
) → V(0, 1

2
).� (4.14)

Therefore the one-point function 
〈
V(1,2)D

〉
τ
 gets contribution only from the propagation 

of the (0, 1
2
) state, i.e. Sint = {(0, 1

2
)} in (2.18). This property was pointed out in [32] 

where the energy one-point function for minimal models was computed in terms of a 
Coulomb gas integral. Collecting all these facts, we obtain:
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〈V(1,2)D〉τ =
Q − 1

ZQ

C
(1,2)D

(0, 1
2
),(0, 1

2
)

∣∣∣∣F
∆

(0, 12 )

∆(1,2)
(q)

∣∣∣∣
2

=
Q − 1

ZQ

C
(1,2)D

(0, 1
2
),(0, 1

2
)
|q|2

(
∆

(0, 12 )
− c

24

) ∣∣∣∣∣1 +
2∆(0, 1

2
) +∆(1,2)(∆(1,2) − 1)

2∆(0, 1
2
)

q + · · ·
∣∣∣∣∣

2�

(4.15)

where the factor Q  −  1 comes from the multiplicity of the S(0,Z+ 1
2
) sector computed in 

[27] and the structure constant is given by:

C
(1,2)D

(0, 1
2
),(0, 1

2
)
= β4 γ

(
−1

2

)

γ
(
− 1

2β2

)
√

γ

(
1

β2

)
γ

(
2 − 2

β2

)
, γ(x) =

Γ(x)

Γ(1 − x)
.� (4.16)

The next energy contributions come from the descendants LC
−2V(1,2)D and L̄C

−2V(1,2)D. 
The null state in the representation (1,2)D is

χ =
(
−β2(L

(1)
−1)

2 + L
(1)
−2

)
V(1,2)D(1).� (4.17)

Using (A.4)

L
C,(0)
−2 =

(
2πi

N

)2 (
L
(1)
−2 − c

24
− 13

12
L
(1)
0

)
� (4.18)

and setting the null vector to zero

L
(1)
−2V(1,2)D(1) = β2(L

(1)
−1)

2 V(1,2)D(1)� (4.19)
leads to

〈
L
C,(0)
−2 V(1,2)D(0)

〉
τ
=

〈
L̄
C,(0)
−2 V(1,2)D(0)

〉
τ
= 0,� (4.20)

which explains why the sub-leading corrections in (4.11a) are found in the fourth level 
descendants of the energy (the third level descendant is a total derivative). Using the 
expression of the one-point function (4.15) in (4.11a) with r = |w|, one obtains our 
result (4.4).

At the critical percolation point Q  =  1, the bond probabilities, associated to the 
energy field (see next section), are independent. The CFT energy one-point function 
(4.15), which actually probes the fluctuation induced corrections to the bulk constant 
value, vanishes at Q  =  1. On the other hand, the vanishing of the one-point function is 
exactly cancelled by the divergence in the structure constant (4.16), thus providing a 

non-zero contribution to limQ→1 C
(1,2)D

(0,1/2),(0,1/2)〈V(1,2)D〉τ . The result is given in (4.5).
When M �= N, we have seen that we have a N−2 contribution of the energy ten-

sor to the topological corrections. Even if this term is sub-leading in the parameter r
N

, 
r = |w|, in finite size simulations it can interfere or even be dominant with respect to 

the energy contribution. In figure 2 we plot as function of Q, and for dierent ratios 
M
N

, the regimes of r
N

 dominated by the energy (below the curve) or by the stress-energy 
(above the curve) topological corrections:
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4.3.  (1, 3)D channel contributions

(1,3)D has a dimension 4 � 2∆(1,3) � 2 for 1 � Q � 4, decreasing with Q. Despite this 
relatively high dimension, the term

Leading : |w|−4∆
(0, 12 )

( |w|
N

)2∆(1,3)

c(1,3)� (4.21a)

Sub-leading :O

(
1

N2∆(1,3)+2

)
� (4.21b)

where:

c(1,3) = (2π)2∆(1,3) C
(1,3)D

(0, 1
2
),(0, 1

2
)

〈
V(1,3)D(0)

〉
τ� (4.22)

provides a visible contribution when Q � 3, see next section 5.4.

We consider then 
〈
V(1,3)D

〉
τ
. Dierently from the case of the energy field, the fusion 

rule imposed by the vanishing of the (1,3)D null state:

V∆(1,3)
× V∆(r,s)

→ V∆(r,s+2)
⊕ V∆(r,s)

⊕ V∆(r,s−2)
,� (4.23)

does not fix the representations contributing to its one-point function, since the fusion 
V∆(1,3)

× V∆(r,s)
→ V∆(r,s)

 is allowed for all r, s. This can be seen also from the fact that 

the structure constant C
(1,3)D

(∆),(∆) is dierent from zero for any ∆ and c [21]. Parametrising 

∆ as in (2.9), one has, for three diagonal (spinless) fields [33]:

C
(1,3)D

(r,s)D,(r,s)D
=

√√√√γ3( 1
β2 )γ(2 − 2

β2 )γ(2 − 3
β2 )

γ( 2
β2 )

γ2(r + 1−s
β2 )

γ2(1 + r − 1+s
β2 )

.� (4.24)

The above value of the structure constant can be derived either from the vanishing 
of the third level null state of (1,3)D or from a Coulomb gas integral, as the three 
vertex fields satisfy the charge neutrality condition. One can expect on solid grounds 

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

Q

r N

M
N

= 5
M
N

= 3.5
M
N

= 2

Figure 2.  Regimes of r
N
 dominated by the energy (resp. the stress-energy tensor) 

contribution below (resp. above) the curve, as a function of Q, and for different 

ratios M
N
.
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that C
(1,3)D

(r,s)D,(r,s)D
 describes certain three-point correlation functions in the Q-state 

Potts model. In [15] for instance, the structure constant C
(1,3)D

(1,0),(1,0) has been checked 

to correspond to the scaling limit of certain lattice transfer matrix amplitudes. In the 

case of two non-diagonal fields, C
(1,3)D

(r,s),(r,s) has been shown in [15, 34] to be given by 

C
(1,3)D

(r,s),(r,s) =
√

C
(1,3)D

(r,s)D,(r,s)D
C

(1,3)D

(r,−s)D,(r,−s)D
.

One can expect that all the states X in the Potts spectrum (3.5), such that C
(1,3)D

X,X �= 0 

contribute to 
〈
V(1,3)D

〉
τ
. However, one has to pay special attention, in particular when 

using truncations in the s-channel spectrum: there can be highly non-trivial cancel-
lations between states. This is known to be the case when the central charge takes 
rational values, and a finite number of states in the spectrum closes under OPE (see 
section 5 of [35] and references therein).

We obtain:

〈
V(1,3)D

〉
τ
=

1

ZQ

(
(Q − 1)C

(1,3)D

(0, 1
2
),(0, 1

2
)

∣∣∣∣F
∆

(0, 12 )

∆(1,3)
(q)

∣∣∣∣
2

+ C
(1,3)D

(1,2)D,(1,2)D

∣∣∣F∆(1,2)

∆(1,3)
(q)

∣∣∣
2

+(Q − 1)C
(1,3)D

(0, 3
2
),(0, 3

2
)

∣∣∣∣F
∆

(0, 32 )

∆(1,3)
(q)

∣∣∣∣
2

+
Q(Q − 3)

2
C

(1,3)D

(2,0),(2,0)

∣∣∣F∆(2,0)

∆(1,3)
(q)

∣∣∣
2

+ · · ·
)
,

�

(4.25)

where  ⋯  indicates next sub-leading contributions. In the above formula, the Q depen-
dent prefactors come again from the multiplicity of the states propagating in the torus. 
In the following figure, the value c(1,3) in (4.22) for M  =  N is plotted as a function of Q 
in the region of Q where the comparison with Monte Carlo results is possible:

In figure 3 we tagged the values of Q at which Monte Carlo data have been taken.

At Q  =  3, only three channels (Sint = {(0, 1
2
), (1, 2)D, (1, 3)D}) contribute to 

〈
V D
(1,3)(0)

〉
τ
,  

so we expect that, for Q ∼ 3, {(0, 12), (1, 2)D} produce the main contributions, while all 
others are suppressed by some power of Q  −  3.

5. Monte Carlo simulation and CFT comparisons

5.1. General results for the two-point correlation functions

We collected data on square lattices of size N × N with periodic boundary conditions 
on both directions, thus having the topology of a torus (2.14) with M  =  N (for M �= N 
see next subsection). We considered various linear sizes N up to N  =  8192. The prob-
ability (3.6) is computed by considering the lattice points (x, y) and (x+ r, y) or (x, y) 
and (x, y + r) and next averaging over x and y . We took data for Q  =  1  +  n/4 for 

n = 1, · · · 9 and Q = 2 + 2 cos 3π
5
, 2 +

√
2. For each value of Q, we averaged over 106 

independent samples generated with the Chayes–Machta algorithm [36, 37]. This algo-
rithm is a generalisation of the Swendsen–Wang algorithm for non integer values of Q.

In figure 4, we present the rescaled correlation function r
4∆

(0, 12 )p12(r) as a function 

of r for various values of Q as shown in the caption. While we observe a plateau for a 
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value � 0.7, we also see that there exist strong deviations for large r. This is due to the 

fact that we work on a torus, thus we expect topological corrections which have a maxi-

mum at r = N
2
. We also need to take into account the small size corrections which, as 

can be observed in figure 4, will be present only for small sizes up to r � 10. A general 

form of fit for the rescaled function r
4∆

(0, 12 )p12(r) is given by :

f(N , r) = c0

(
1 +

∑

j�1

cj

( r

N

)dj

)
(
1 + g1 r

−g2
)
.� (5.1)

The above form of fit is factorised into three factors. The first factor c0 is the non-uni-
versal normalisation of the lattice two-point functions. The second part, with param
eters cj , (j � 1) encodes the torus corrections: dj  and cj  are the universal quantities to 
be compared respectively to the dimensions and the factors computed in the previous 
sections using CFT, see (4.4). The third factor takes into account the small size correc-

tions. In the case of the Ising model, an exact computation shows that this correction 

is described by this form with g2  =  2 and a small coecient g1 =
1
64 [38].

A first numerical result is that the dominant topological correction is of the form (
r
N

)
2∆(1,2), i.e. d1 ∼ 2∆(1,2). In figure  5, we show the behaviour of r

4∆
(0, 12 )p12(r) − c0 

with c0 the constant part corresponding to the value of the plateau and this for vari-

ous values of Q = 1, · · · 3 as shown in the caption and for N  =  8192. We observe that 
the correction is a power of r. We do a fit in the range r ∈ [50–200] obtaining the 
powers d1  =  {1.251,1.115,0.997,0.898,0.793} for Q ∈ [1, 3], which are very close to the 
corresponding set of values of 2∆(1,2) = {1.25, 1.1776, 1, 0.8982, 0.8}. The best fit is also 
shown in figure 5 as thin lines. Note that these fits agree with the numerical data also 
for much larger distances, r  >  200. In the case of Q  =  2, the exact result for the two-
point function [27] is :

Q = 2, r2
〈
V(0, 1

2
)(r)V(0, 1

2
)(0)

〉
τ=i

= 1 + 0.488 863
r

N
+ 0.211 556

( r

N

)4

+ · · · .
� (5.2)

This explains that the leading correction alone gives already a very good fit as shown 
in figure 5. We observe that this is also true for other values of Q, in agreement with 
our results (4.4) for N  =  M.

In table 1, we give the numerical results for c0 and c1 obtained with a fit while keep-
ing only the leading topological correction and fixing d1 = 2∆(1,2). The fit is done with 
numerical data r ∈ [6, 2048]. With this range of data, we obtain a good fit (measured 
with the goodness of fit) for each value of Q. The numerical errors on c0 and c1 are 
indicated in the table either in parenthesis or smaller than one last digit. These fits 
also take into account small distance corrections. We obtained g1 � 0.02 and g2 � 2 for 
not too large values of Q. Further details on these fits are found in [20]. In table 1, we 
also show in the last column the values c(1,2) computed in section 4.2. The agreement 
is excellent with the numerical value c1, in particular for small values of Q. For large 
values of Q, we expect that larger corrections have to be taken into account. In order 
to check the presence of larger corrections we can simply attempt a fit to the form (5.1) 
while adding a second correction c2(r/N)d2. We will come back to this point later.
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5.2. Non-square torus

In this section we extend our results to non-square lattices. We checked the agreement 

between analytical and numerical results for various aspect ratios M
N

 and for dierent 
Q’s. Here we present results for M

N
= 2 and Q  =  1, which involves taking a non-trivial 

limit, see section 4.1. In this regime, the topological correction coming from the stress-
energy tensor is non-zero and is given by (4.10). We consider the correlation measured 

in the vertical (v) (resp. horizontal (h)) directions. The coecients c
(v)
T , c

(h)
T  of 

(
r
N

)
2 

(resp. 
(

r
M

)
2) and c

(v)
(1,2), c

(h)
(1,2) of 

(
r
N

)
2∆(1,2) (resp. 

(
r
M

)
2∆(1,2)) are,

c
(v)
T = 2 cT (

M

N
) = 0.175 608 c

(h)
T = 2

(
M

N

)−2

cT (
N

M
) = −0.175 608

c
(v)
(1,2) = c(1,2)(

M

N
) = 0.185 569 c

(h)
(1,2) =

(
M

N

)−2∆(1,2)

c(1,2)(
N

M
) = 0.185 557.

In figure 6 we show the numerical results and the best fits (dashed lines). We obtain

c
(h)
T = −0.165(2) c

(v)
T = 0.192(2)

c
(h)
(1,2) = 0.183(1) c

(v)
(1,2) = 0.180(4).

The agreement is good. We also show in the inset the dierence between vertical and 
horizontal correlations. This measures directly the contribution of the stress-energy 

tensor since the contribution of the energy cancels. We obtain c
(v−h)
T = 0.172(1).

5.3. Link with one-point correlation function

We compare now the value of c1 and the theoretical prediction c(1,2) in (4.12) to the 

torus one-point function of the lattice energy field 
〈
εlatt

〉
τ
. The lattice energy field can 

be written in terms of the fields in the thermal series SD,quot
(1,N∗) , see section 3, giving:

〈
εlatt

〉
τ
= e0 +

1

N2 ∆(1,2)
e1 + · · ·� (5.3)

where e0 is the usual bulk energy density, associated to the identity V(1,1)D field, and 
the sub-leading term e1 is related to the energy V(1,2)D field:

e1 = (2π)
2∆

(0, 12 ) N−1
ε

〈
V(1,2)D

〉
τ
.� (5.4)

In the above formula, Nε is the normalisation relating the lattice to the scaling energy 

field and is computed by determining the energy-energy correlation 
〈
εlatt(x)εlatt(0)

〉
τ
, in 

a similar way as we evaluate c0 for the connectivity function.
In practice, we define the energy operator εlatt(x) as the probability that it contains 

a FK bond. For a given cluster configuration, bo(x) is the probability that the site 
x = (x1, x2) is in the same FK cluster as the site (x1 + 1, x2) and bv(x) is the probability 
that the site x is in the same FK cluster as the site (x1, x2 + 1). Then the energy opera-
tor is defined as

εlatt(x) = bo(x) + bv(x) − 1.� (5.5)
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This subtraction corresponds to imposing e0  =  0 in (5.3). e1 is obtained by measuring 〈
εlatt

〉
τ
 and fitting to the form (5.3). The constant Nε is fixed by measuring the two-

point energy operator. The measurement for the one-point correlation function have 
been done on small lattices, up to N  =  256 for the computation of e1 and with 100 
million samples for each size. We need to use many samples (and then not too big lat-
tices), since 2∆(1,2) = O(1) and then the deviation from the infinite size is very small. 
The same is also true for Nε: it is determined from the two-point energy function which 
decreases very quickly as a function of the distance. The fits were done for distances 
r  =  8–30 where we ignored small size and topological corrections. As a comparison, the 
measurements for c1 from the two-point correlation function have been done on very 

large lattices, N  =  8192. In figure 7, we compare the result C
(1,2)D

(0, 1
2
),(0, 1

2
)
Nε e1 (shown in 

green) with c1 computed numerically (shown as red circles) and with c(1,2) of (4.12) 
(shown as blue circles). The agreement between the two measured quantities and the 

analytical result is very good.

In the limit Q → 1, we observe that C
(1,2)D

(0, 1
2
),(0, 1

2
)
Nε e1 converges to the measured value 

c1 and c(1,2). Indeed, we can check numerically that, for Q � 1, one has e1 � 0.25 (Q − 1) 
while Nε � 5.0 (Q − 1)−0.5.

Table 2.  Comparison of the dimensions of the fourh descendant of the energy, 

and of the field V(1,3), and thus of the sub-dominants r
N
 corrections, for different 

values of Q.

Q 2∆(1,2) + 4 2∆(1,3)

1 5.25 4
2 5 3.33
3 4.8 2.8

2.8 3 3.2 3.4
2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

2.75

3

3.25

2 +
√
2

Q

c (
1
,3
)

Figure 3.  The coefficient c(1,3), computed for values of Q close to 3, where it 
produces a visible contribution. We tagged the values of Q at which Monte Carlo 
data has been taken.
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5.4. Further corrections

We want to check numerically the existence of further topological corrections. We 
expect that there exist corrections of order 4 from the descendants of the identity, 
see section 4.1 and of order 2∆(1,2) + 4 from the energy descendants, see section 4.2. 
There exist also the contribution of order 2∆(1,3), see section 4.3. In table 2 we give a 
comparison of their respective dimensions.

For Q  <  3 the coecient c(1,3) becomes very small (see figure 3 in section 4.3), while 
the dimension 2∆(1,3) is large and comparable to the dimensions of the descendant fields. 
Numerically it will then be dicult to distinguish the dierent contributions for small Q’s.

We first compare our numerical data to a fit of the form

f(N , r) = c0

(
1 + c1

( r

N

)d1
+ c2

( r

N

)d2
)
(1 + g1r

−g2) .� (5.6)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

100 101 102 103

Q=1
Q=1.5

Q=2
Q=2.5

Q=3

Figure 4.  Rescaled two-point connectivity for the Q Potts models at N  =  8192 for 
various values of Q as shown in the caption.

10-4

10-3

10-2

10-1

101 102 103

Figure 5.  Same data as in figure 4 with the subtraction of the plateau. The thin 
lines corresponds to best fit as discussed in the text.
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Here d2 is an eective dimension which takes into account all possible higher correc-
tions, while we assume the value d1 = 2∆(1,2) and we take for c1 = c(1,2), see (4.12). 
Even so, it is a dicult task since we are left with five parameters. One could try to 
ignore the small distance corrections by considering only data at large distances, say 
r > rmin = 50. This is what we have done for determining the power corresponding to 
the dominant correction. We consider a fit in the range rmin � r � rmax, with rmin = 50 
and rmax = 4096. For the second correction, the fit gives a much less clear image. 
We observe that the second correction is much larger than d1 = 2∆(1,2) and its value 
decreases with Q. We measure c2 � 0.44 and d2 � 5.3 for Q  =  1 ; c2 � 0.35 and d2 � 4.4 
for Q  =  2; c2 � 0.29 and d2 � 3.6 for Q  =  3. We only quote approximate numbers for 
c2 and d2 since they depend on the range rmin and rmax. Still we observe that only for 

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

100 101 102 103

h
v

-0.01
 0

 0.01
 0.02
 0.03
 0.04
 0.05

100 101 102 103

v-h

Figure 6.  Rescaled two-point connectivity for Q  =  1 and M
N

= 2, at N  =  8192. We 
show separately the vertical and horizontal connectivities. The inset contains the 
dierence between these two connectivities.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1  1.5  2  2.5  3

Figure 7. C(1,2)D

(0, 1
2
),(0, 1

2
)
Nεe1 versus Q compared to the numerical values c1 shown as 

red circles and the analytical predictions c(1,2) shown as blue circles.
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large values of Q, i.e. Q � 3, we have a dimension d2  <  4. This is in agreement with 
what we expect since it is only for Q close to 3 that the exponent 2∆(1,3) is smaller than 
4 and c(1,3) becomes non negligible. For smaller values of Q, our numerics are not able 
to give further information.

For Q  =  3, we can improve by trying a fit to the form

f(N , r) = c0

(
1 + c1

( r

N

)d1
+ c2

( r

N

)d2
+ c3

( r

N

)d3
) (

1 + g1 r
−g2

)
,� (5.7)

while imposing the dimensions d1 = 2∆(1,2), d2 = 2∆(1,3) and d3  =  4 or 2∆(1,2) + 4. In a 
fit with r � 50, we obtain a value of c2 in the range 0.05  −  0.08 (the smallest value is 
obtained for d3  =  4 and the largest for d3 = 2∆(1,2) + 4 = 4.8), that is comparable with 
the prediction c(1,3) � 0.07 given by (4.22) for Q  =  3 (see figure 3).

6. Conclusions

In this paper we considered the two-point connectivity p 12 (3.6) of the critical Q-random 
cluster Potts model (3.1) on a torus of parameters (2.14). We focused on the universal 
corrections to the plane scaling limit of p 12 originating from the torus topology for gen-
eral values of Q ∈ [1, 4]. Combining CFT techniques with Monte Carlo insights, which 
suggested the ansatz (4.1), we have computed analytically the first dominant correc-
tions to p 12 in the limit (4.2). The theoretical results on p 12, summarised in (4.4), found 
a very good agreement with Monte Carlo measurements, as shown in figure 5 and in 
table 1. Moreover, we tested the CFT one-point torus energy function (4.15) against 
Monte Carlo measurements of the corresponding lattice observable, obtaining again a 
very good agreement, as shown in figure 7.

Our theoretical results probe non trivial features of the CFT describing the Q-state 
random Potts model, such as the multiplicities of the spectrum (3.5) or the validity of 
the three-point functions (4.16) and (4.24) for general values of the central charge. The 
topological corrections furnish a subtle characterisation of the Potts random clusters 
which goes beyond the computation of their fractal dimension. As a special case, we 
obtained the result (4.5) that represents a new universal behaviour of critical percola-
tion. The study of the torus two-point connectivity represents, together with the plane 
three-point connectivity [39], a natural and powerful method to test various conjec-
tures related to critical percolation.
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Appendix. The s-channel expansion of the torus two-point function

The Virasoro generators are the modes of the stress-energy tensor. On the plane 
z ∈ C

⋃{∞}, they are defined as:
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L(z)
n V(∆,Y )(z, z̄) =

1

2πi

∮

Cz
d z′ (z′ − z)n+1 T (z′)V(∆,Y )(z, z̄), n ∈ Z.� (A.1)

Under a conformal map z′ = f(z), a primary operator transforms:

V(∆)(z, z̄) = f ′(z)∆f̄ ′(z̄)∆̄ V(∆)( f(z), f̄(z̄)),� (A.2)
while the transformation of the Virasoro generators takes the form [24]3:

L(z)
n =

c

12

1

2πi

∮

z

dy(y − z)n+1{ f , y} +
1

2πi

∮

z

dy
∑

m

L
( f(z))
m [ f ′(y)]2

( f(y) − f(z))m+2
(y − z)n+1

=
c

12

1

2πi

∮

z

dy(y − z)n+1{ f , y} + [ f ′(z)]−nL( f(z))
n +

1 − n

2
f ′′( f ′)−n−2L

( f(z))
n+1

+
(2 − n

6
f ′f ′′′ +

1

8
(n2 + n − 4)( f ′′)2

)
( f ′)−n−4L

( f(z))
n+2 + · · ·

�

(A.3)
where { f , y} is the Schwarzian derivative.

To compute torus correlation functions, one needs to know the transformation of 
(A.1) under the map (2.15). For finite w, one obtains for instance:

L
(z)
0 = L

C,(w)
0

L
(z)
−1 = z−1

(
N

2πi

) (
L
C,(w)
−1 − 2πi

N
L
C,(w)
0

)

L
(z)
−2 = z−2

(
N

2πi

)2
(
L
C,(w)
−2 − 3

2

2πi

N
L
C,(w)
−1 +

13

12

(
2πi

N

)2

L
C,(w)
0 +

(
2πi

N

)2
c

24

)

· · ·
� (A.4)

The modes with L
C,(w=∞)
n , obtained from L

(0)
n  are instead related to contour integrals 

that are non-contractible on the cylinder. One finds for instance:

L
(0)
−n = L

C,(∞)
−n +

c

24
δn,0.� (A.5)

Using the above relation, one can easily verify that the one-point torus function of total 

derivative 〈LC,(0)
−1 V(∆)〉τ ∝ 〈(L(1)

−1 + L
(1)
0 )V(∆)〉 vanishes, as can be seen from the vanishing 

of the matrix elements (2.8):
〈
L
(∞)
Y ′ V(∆′)L

(1)
−1V(∆)L

(0)
−Y V(∆′)

〉
+

〈
L
(∞)
Y ′ V(∆′)L

(1)
0 V(∆)L

(0)
−Y V(∆′)

〉

= (|Y | − |Y ′| − ∆+∆)
〈
L
(∞)
Y ′ V(∆′)V(∆)L

(0)
−Y V(∆′)

〉
= 0.

� (A.6)
For the two-point function one obtains using (2.15):

〈V(∆1)(w1, w̄1)V(∆2)(w2, w̄2)〉τ =
1

Z
TrSint

(
qL

C,(∞)
0 q̄L̄

C,(∞)
0 V(∆1)(w1, w̄1)V(∆2)(w2, w̄2)

)
.� (A.7)

Using (A.2) under the map (2.15)4 and the OPE (2.5), we find:

3 Note that there is a misprint in [24] for the term m  =  n  +  2 , as can be checked explicitly in the case f (z)  =  z2.
4 Note that the is drop since the dimensions of our fields satisfy ∆ − ∆̄ ∈ 2Z.
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V(∆1)(w1, w̄1)V(∆2)(w2, w̄2) =

(
2π

N

)∆1+∆2
(
2π

N

)∆̄1+∆̄2

z∆1
1 z∆2

2 z̄∆̄1
1 z̄∆̄2

2 V(∆1)(z1, z̄1)V(∆2)(z2, z̄2)

=

(
2π

N

)∆1+∆2
(
2π

N

)∆̄1+∆̄2

z∆1
1 z∆2

2 z̄∆̄1
1 z̄∆̄2

2

×
∑

(∆,Y )

C
(∆)
(∆)1,(∆)2

z−∆1−∆2+∆+Y
12 z̄−∆̄1−∆̄2+∆̄+Ȳ

12 β̃
(∆,Y )
∆1,∆2

β̃
(∆̄,Ȳ )

∆̄1,∆̄2
V(∆,Y )(z2, z̄2)

� (A.8)
where we made explicit the z dependence of the coecients (2.7): β(∆,Y )

∆1,∆2
(z12) =  

z−∆1−∆2+∆+Y
12 β̃

(∆,Y )
∆1,∆2

. Mapping V(∆,Y )(z2, z̄2) back to the cylinder:

V(∆,Y )(z2, z̄2) =

(
2πi

N

)−∆−Y

z−∆−Y
2

(
−2πi

N

)−∆̄−Ȳ

z̄−∆̄−Ȳ
2

(
LC,w2

−Y + · · ·
) (

L̄C,w̄2

−Ȳ
+ · · ·

)
V C
(∆)(w2, w̄2)

where 
(
LC,w2

−Y + · · ·
)
 is a linear combination of generators on the cylinder as in relations 

(A.4). We can now take the trace, and writing only the holomorphic part we get:

〈V(∆1)(w1)V(∆2)(w2)〉τ =

(
2π

N

)∆1+∆2
(
z2
z1

)∆2
(
1 − z2

z1

)−∆1−∆2

×
∑

(∆,Y )∈Sint

C
(∆)
(∆)1,(∆)2

β̃
(∆,Y )
∆1,∆2

(
2πi

N

)−∆−Y (
z2
z1

)−∆−Y (
1 − z2

z1

)∆+Y

〈
(
LC,w2

−Y + · · ·
)
V C
(∆)(w2)〉τ .

� (A.9)
Writing z2

z1
= e−

2πi
N

w12 and expanding the exponentials, one has:

〈V(∆1)(w1)V(∆2)(w2)〉τ = w−∆1−∆2
12

∑

(∆)∈Sint

w∆
12C

(∆)
(∆)1,(∆)2

(
〈V(∆)(w2)〉τ

+ w12

{
2πi

N

∆1 − ∆2 +∆

2
+ β̃

(∆,1)
∆1,∆2

(L
C,(w2)
−1 − 2πi

N
L
C,(w2)
0 )

}
〈V(∆)(w2)〉τ +O(w2

12)

)

= w−∆1−∆2
12

∑

(∆)∈Sint

w∆
12C

(∆)
(∆)1,(∆)2

(
〈V(∆)(w2)〉τ

+ w12β̃
(∆,1)
∆1,∆2

〈LC,(w2)
−1 V(∆)(w2)〉τ +O(w2

12)

)
.

�

(A.10)

We assume that such cancellations occur at every order in w12. Using the notation 

(2.16), we can finally arrive at equation  (2.21). Notice that the coecients a
(∆,Y )int
(∆)1,(∆)2

 

are evaluated using the generators on the plane, while the descendant fields V C
(∆,Y ) are 

obtained by acting with the cylinder generators.
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1. Introduction

The two-dimensional Q-Potts model is a one-parameter family of models which describe

random clusters on a lattice [1] and admit for Q � 4 a continuous transition between a

percolating and a non-percolating cluster phase [2]. At the critical point the clusters form

conformal invariant fractal structures whose description challenges our understanding

of the fractal geometry in critical phenomena [3]. For more than thirty years, physicists

have been trying to solve the conformal field theories (CFT) that capture, for general

Q ∈ R, Q � 4, the continuum limit of the critical Q-Potts models. Despite many impor-

tant results, in particular the computation of the partition function [4], the derivation

of exact formulas for many critical exponents [5] and the progress in the representation

theory of the Temperley–Lieb type algebras underlying these models [6, 7], the problem

of defining the correct CFT solution remains an open issue. In particular, the knowl-

edge of the CFT structure constants, which determine the small-distance asymptotic

behavior of the CFT many-point correlation functions, is missing. A remarkable proposal

was done in [8], where the so-called c � 1 Liouville structure constants [9–11]—until

then considered non-physical—were conjectured to describe the three-point connectiv-

ity, i.e. the probability that three given points belong to the same cluster. Inspired

by this result, new crossing-symmetric solutions, based on the c � 1 Liouville-type

constants, have been found [12–16], and some of them proposed to describe four-

point cluster connectivities [13, 14]. In [17] it was argued, and numerically shown,

that there are states which provide a non-vanishing contribution to the connec-

tivities but that are not taken into account by these bootstrap solutions. These

contributions are, for general values of Q, very small and the bootstrap solutions

remain a very good approximation (within the Monte Carlo simulation precision) to

the cluster connectivities.

In [18], we considered the effects of the torus lattice topology on the two-point

Potts connectivity, which probe non-trivial structure constants of the theory. Putting

together the exact analysis in [17] and the results in [13, 14], we were able to capture

the dominant torus corrections to the infinite plane results. In this paper, we complete

this work by considering the torus corrections of three- and four-point connectivities,

which are expected to test much more non-trivial structure constants. Indeed these

corrections contain structure constants which do not satisfy any differential equations,

contrary to the two-point case.

In section 2 we give the framework within which our problem is stated. In section 3 we

outline the CFT approach to study universal finite-size effects on the torus. In section 4

we define the Q-Potts model and the lattice observables we will consider and we review

the relevant results about the CFT describing the critical Q-Potts model. In section 5

we give the new theoretical predictions about the three- and four-point connectivities.

These predictions are compared to Monte Carlo simulations. In section 6 we summarise

and discuss the results.

https://doi.org/10.1088/1742-5468/ab7c5e 3
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Figure 1. Scaling limit of multi-point observables on double-periodic lattices.

2. Scaling limit of multi-point observables on double-periodic lattices

Consider a lattice statistical model that undergoes a second-order phase transition, and
define it on an M × N square lattice of mesh a0 = 1 with double-periodic boundary
conditions. The lattice has then the topology of a torus with nome q:

q = e2πiτ , τ = i
M

N
. (2.1)

To characterise the universality class, one defines a lattice observable O(w1, . . . , wn), with
w1, . . . , wn indicating points on the torus, and studies its scaling limit P(w1, . . . , wn) at
the critical point, see figure 1. Supposing that O is multiplicatively renormalisable (see
chapter 2 in [19]) one has:

P (w1, w2, . . . , wn) = lim
N→∞

M
N =O(1)

N 2nΔO(w1, . . . , wn) (2.2)

where 2Δ is the scaling dimension associated to the lattice observable. One may
think for instance of the n-point Ising spin correlation function at the ferromag-
netic–paramagnetic transition. In this case the scaling dimension is 2Δ = 1

8
, as rigorously

proven in [20]. The basic assumptions we will work with are:

• the system is conformal invariant;

• when wi − wj � 1, P(w1, . . . , wn) is given by the torus n-point correlation function
of spinless primary fields with scaling dimension 2Δ; and

• the corresponding CFT has a discrete spectrum.

The limit

|wi − wj|
N

→ 0 (2.3)

corresponds to the infinite plane limit. In the n = 2, 3 case, the conformal invariance
fixes the spatial dependence:

P (w1, w2)
w12
N →0−−−−→ c

(2)
0

|w12|4Δ
, P (w1, w2, w3)

wij
N →0−−−−→c

(3)
0

D

|w12w13w23|2Δ
, (2.4)

https://doi.org/10.1088/1742-5468/ab7c5e 4
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where D is an universal constant. For n = 4:

P (w1, w2, w3, w4)
wij
N →0−−−−→ c

(4)
0

|w12w34|4Δ
P (z) , z =

w12w34

w13w24

, (2.5)

which means that the problem has been reduced to the computation of a function P(z),

with z the cross-ratio. The c
(n)
0 in the above expressions are non-universal constants.

In this paper we will study the behavior of P(w1, . . . , wn) when the distances between
points

0 <
|wi − wj |

N
� 1, (2.6)

are small but different from zero. In this case we expect corrections to the infinite plane
limit coming from the torus topology:

P (w1, w2) =
c
(2)
0

|w12|4Δ
[
1 + f (2)

τ

(w12

N

)]
(2.7)

P (w1, w2, w3) =
c
(3)
0

|w12|4Δ|w23|2Δ

[
D

∣∣∣∣
w12

w23

∣∣∣∣
2Δ∣∣∣∣
(

1 +
w12

w23

)∣∣∣∣
−2Δ

+ f (3)
τ

(
w12

w23

,
w23

N

)]

(2.8)

P (w1, w2, w3, w4) =
c
(4)
0

|w12|4Δ|w34|4Δ
[
P

(
w12w34

w13w24

)
+ f (4)

τ

(
w12w34

w13w24
,
w24

N

)]
.

(2.9)

The functions fτ , symmetric under the replacements N ↔ M, τ ↔ −τ−1, encode
the corrections to the infinite plane limit. The assumption that P(w1, . . . , wn) is
given by a correlator of local fields in some CFT can be considered quite opti-
mistic if it is applied to non-local observables, such as the geometric proper-
ties of critical fractals. Actually we will study these types of observables, namely
the n-point connectivities of critical Potts clusters. However, we will show that
the CFT approach not only well describes the plane limit of the cluster con-
nectivities [13, 14] but also captures the very non-trivial effects of the lattice
topology. The functions fτ are known only in a few cases, namely when the CFT is
the compactified free boson [21, 22], as in the case of the Ising energy and spin correla-
tion functions, or when a Coulomb gas description is available [23, 24]. However, as we
will show below, these functions can always be expressed as multiple series expansions.
This approach is useful for lattice sizes N � 1 and location of points {wi} for which
the series converge quickly.

https://doi.org/10.1088/1742-5468/ab7c5e 5
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3. Conformal field theory approach

We outline here how to compute the large N expansion of the functions fτ in (2.7)–(2.9).
Let us consider a CFT with:

central charge: c, and spectrum: S (3.1)

defined on the torus (2.1). The central charge c is the parameter that defines the alge-
bra of the conformal generators, the Virasoro algebra (A.1). The set of the Virasoro
representations entering a CFT forms its spectrum S. We refer the reader to [25] for
an introduction to CFT. Henceforth we indicate V(Δ) a primary field with (Δ) = Δ, Δ̄
its left and right dimensions. The notation (Δ) will refer either to the highest weight
state associated to V(Δ) or to the entire representation formed by the set of descen-
dants states. The symbol (Δ, Y ) = Δ, Y , Δ̄, Ȳ denotes one of the descendant states with
dimensions Δ + |Y| and Δ̄ + |Ȳ |, where |Y|, |Ȳ | ∈ N are the levels of the descendant: as
reviewed in appendix A, this notation comes from the fact that the descendant states
forming a basis of an irreducible representation are labeled by the Young tableaux Y, Ȳ
with number of boxes |Y| and |Ȳ|.

A CFT is solved when, in addition to the central charge and the spectrum, the

structure constants D
(Δ3)
(Δ1),(Δ2)

, defined in (A.5) and in (A.8), are known.

Suppose we consider a case where the CFT is solved. In particular we are interested
in the functions:

〈V(Δ1)(w1) · · ·V(Δn)(wn)〉, n = 2, 3, 4 (3.2)

where 〈· · ·〉 denotes the CFT correlation on the torus (2.1). Notice that V(Δ) may
not be uniquely defined by its scaling dimensions. This is the case, for instance,
when the CFT has an additional symmetry with multiplicities in the representations.

3.1. CFT partition function

The CFT partition function Z takes the form:

Z =
∑

(Δ)∈S
qΔ−c/24q̄Δ̄−c/24 [1 + O(q, q̄)] , (3.3)

where q is the nome given in (2.1) and the terms in the square brackets corre-
spond to all the contributions of order O(q|Y |q̄|Ȳ |), coming from the descendants
states (Δ, Y ).

3.2. One-point function

The one-point function 〈V(Δ,Y )〉 on a torus of size N has the expression [26]:

https://doi.org/10.1088/1742-5468/ab7c5e 6
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〈
V(Δ,Y )

〉
=

1

Z

(2π)Δ+|Y |+Δ̄+|Ȳ |

NΔ+Δ̄+|Y |+|Ȳ |

∑

(Δ′)∈S
D

(Δ′)
(Δ),(Δ′)q

Δ′−c/24q̄Δ′−c/24 [1 + O(q, q̄)]

=
1

NΔ+Δ̄+|Y |+|Ȳ |
〈
V(Δ,Y )

〉
(N=1)

, (3.4)

where in order to make the dependence on N more explicit, we introduced, as in [18],
the notation 〈· · ·〉(N=1) to indicate a CFT correlation computed on the torus (2.1) with
N = 1.

The representations (Δ
′
) contributing to the one-point V(Δ,Y ) torus function are the

ones for which the structure constant D
(Δ′)
(Δ),(Δ′) does not vanish, and which satisfy the

fusion rule (Δ
′
) × (Δ

′
) → (Δ). Each term appearing in the sum (3.4) is given in (A.10)

and can be represented in figure 2:

Figure 2. Diagrammatic representation of the torus one-point function.

where we denote D
(Δ3,Y3)
(Δ1,Y1),(Δ2,Y2)

the constant associated to the three-point function of

descendant fields, which is directly proportional to D
(Δ3)
(Δ1),(Δ2)

, see (A.6).

3.3. Two-point function

The two-point function 〈V(Δ1)(w1)V(Δ2)(w2)〉 can be represented in the form:

〈V(Δ1)(w1)V(Δ2)(w2)〉 =
1

|w12|2Δ1+2Δ2

∑

(Δtop)∈S
D

(Δtop)

(Δ1),(Δ2)

(w12

N

)Δtop
(w̄12

N

)Δ̄top

×
[〈

V(Δtop)

〉
(N=1)

+ O
(w12

N
,
w̄12

N

)]
. (3.5)

The contributions in the square bracket come from the descendants V(Δtop,Ytop). The
1/N scaling of the topological corrections is then determined by the fields V(Δtop,Ytop).
Each of these terms is given in appendix A.3 and is associated to figure 3:

https://doi.org/10.1088/1742-5468/ab7c5e 7
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Figure 3. Diagrammatic representation of the torus two-point function.

When the field V(Δtop,Ytop) = Id is the identity field, i.e. Δtop = Δ̄top = 0, |Ytop| = |Ȳtop| = 0
and with 〈Id〉 = 1, one recovers the plane limit (the primary fields are normalised such

that DId
(Δ1),(Δ2)

= 1). Setting (Δ1) = (Δ2) = (Δ), we find the expansion of f
(2)
τ

(
w12

N

)
in

(2.7):

f (2)
τ

(w12

N

)
=D

(Δ)min

(Δ),(Δ)

(w12

N

)Δmin
(w̄12

N

)Δ̄min〈
V(Δ)min

〉
(N=1)

+ o

(
1

NΔmin+Δ̄min

)
,

(3.6)

where V(Δ)min
is the state among the V(Δtop) appearing in the (Δ) ⊗ (Δ) fusion with lowest

dimensions Δmin, Δ̄min. Note that the assumption made in section 2 of the discreteness
of the spectrum S implies that the dimensions of the fields are discretely spaced. A more
detailed treatment of the two-point function can be found in [18].

3.4. Three-point function

In the channel expansion where w1 → w2, 〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)〉 can be expressed
as:

〈
V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)

〉
= |w12|−2Δ1−2Δ2

∑

(ΔL)∈S
D

(ΔL)
(Δ1),(Δ2)

wΔL
12 w̄Δ̄L

12

×
[〈

V(ΔL)(w2)V(Δ3)(w3)
〉

+ O (w12, w̄12)
]
.

(3.7)

The contributions in the square brackets come from the descendants of V(Δ)L and are
given in appendix C. Expanding the two-point function, similarly to what has been done
above, one finds that each of these corrections can be associated to figure 4:

https://doi.org/10.1088/1742-5468/ab7c5e 8
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Figure 4. Diagrammatic representation of the torus three-point function.

The terms with Δtop = Δ̄top = 0, |Ytop| = |Ȳtop| = 0 add up to give the plane limit.
We can specify now to the case (Δ1) = (Δ2) = (Δ3) = (Δ) and give the form of the

double expansion of f
(3)
τ in (2.8):

f (3)
τ

(
w12

w23
,
w23

N

)
= c

(3)
min

(
w12

w23
, τ

)(w23

N

)Δmin
(w̄23

N

)Δ̄min

+ o

(
1

NΔmin+Δ̄min

)
.

(3.8)

The coefficient c
(3)
min is given by:

c
(3)
min

(
w12

w23
, τ

)
=

〈
V(Δmin)

〉 ∑

(ΔL,YL)∈S
D

(ΔL,YL)
(Δ),(Δ)D

(Δmin)
(ΔL,YL),(Δ)

(
w12

w23

)ΔL+|YL|(
w̄12

w̄23

)Δ̄L+|ȲL|
.

(3.9)

The field V(Δmin) corresponds to the state with lowest dimensions Δmin, Δ̄min appearing
in the (ΔL) ⊗ (Δ) fusion, and therefore it can be different from the one appearing in
(3.6).

3.5. Four-point function

In the s- channel, the four-point function admits the following expansion:

〈
V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)V(Δ4)(w4)

〉

=
∑

(ΔL),(ΔR)∈S
D

(ΔL)
(Δ1),(Δ2)

D
(ΔR)
(Δ3),(Δ4)

wΔl−Δ1−Δ2
12 w̄Δ̄L−Δ̄1−Δ̄2

12 wΔR−Δ3−Δ4
34 w̄Δ̄R−Δ̄3−Δ̄4

34

×
[〈

V(ΔL)(w2)V(ΔR)(w4)
〉

+ O (w12, w̄12, w34, w̄34)
]
. (3.10)

As explained in appendix D, each term of the above sum is represented in
figure 5:

https://doi.org/10.1088/1742-5468/ab7c5e 9
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Figure 5. Diagrammatic representation of the torus four-point function.

The sum over the diagrams with Δtop = Δ̄top = 0, |Ytop| = |Ȳtop| = 0 coincides with
the s- channel expansion of the plane four-point correlation function [25]. Setting

(Δi) = (Δ), i = 1, . . . , 4, the multi-series expansion of f
(4)
τ in (2.9) takes the form:

f (4)
τ

(
w12

w24

,
w34

w24

,
w24

N

)
= c

(4)
min

(
w12

w24

,
w34

w24

, τ

)(w24

N

)Δmin
(w̄24

N

)Δ̄min

+ o

(
1

NΔmin+Δ̄min

)
,

(3.11)

where:

c
(4)
min

(
w12

w24

,
w34

w24

, τ

)
=
〈
V(Δmin)

〉 ∑

(ΔL,YL),
(ΔR,YR)∈S

D
(ΔL,YL)
(Δ),(Δ)D

(ΔR,YR)
(Δ),(Δ) D

(Δmin)
(ΔL,YL),(ΔR,YR)

×
(

w12

w24

)ΔL+|YL|(
w̄12

w̄24

)Δ̄L+|ȲL|(
w34

w24

)ΔR+|YR|
×
(

w̄34

w̄24

)Δ̄R+|ȲR|
.

(3.12)

4. Q−Potts random cluster model: CFT versus Monte Carlo results

We want to apply the above formulas to the study of the connectivities of the Q-Potts
clusters.

https://doi.org/10.1088/1742-5468/ab7c5e 10
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4.1. Lattice model and multi-point connectivities

Let us consider a double-periodic square lattice with parameters (2.1) whose edges can
carry a bond or not. The random cluster Q-state Potts model [27] on such a lattice is
defined by the partition function

ZQ =
∑

G
Q#clustersp#bonds(1 − p)#edges without bond, (4.1)

where G denotes one of the possible bond configurations and p ∈ [0, 1]. The clusters
percolate at the critical value

p = pc =

√
Q√

Q + 1
, (4.2)

The lattice multi-point observables O at p = pc we consider is:

O(w1, . . . , wn) = Probability(w1, w2, . . . , wn are in the same cluster). (4.3)

For n = 2, 3 the above probabilities scan the space of all possible connectivities, while,
for n = 4, the space of connectivities is four dimensional [28], see also [9, 12–14, 17, 18,
24, 29, 30]. Here we will focus only on the above type of connectivity.

4.2. The CFT describing the critical Potts cluster model: state of the art

We parametrise the central charge c and the conformal dimension Δ as follows:

c = 1 − 6
(
β − β−1

)2
, Δ = Δ(r,s) =

c − 1

24
+

1

4

(
rβ − s

β

)2

. (4.4)

A representation is degenerate if r, s ∈ N∗, and has a null state at level rs. The symbols

VΔ(r,s),Δ(r,s)
= V(r,s)D , VΔ(r,s),Δ(r,−s)

= V(r,s) (4.5)

indicate the diagonal and non-diagonal primary fields. The notations

(r, s)D, (r, s) (4.6)

denote the representations associated to V(r,s)D and V(r,s) respectively. This allows us to
use a lighter notation for the structure constants, for instance:

D
(r,s)D

(r1,s1),(r2,s2)
= D

(Δr3,s3
,Δr3,s3

)

(Δr1,s1
,Δr1,−s1),(Δr2,s2

,Δr2,−s2)
. (4.7)

A set of these representations is denoted as

SD
X = {(r, s)D}(r,s)∈X , SX = {(r, s)}(r,s)∈X, (4.8)

where X is a given set of pairs (r, s). A third set type is Squot
X that contains the degenerate

representations with vanishing null state.
What do we know about the CFT describing the critical Potts clusters? We know

https://doi.org/10.1088/1742-5468/ab7c5e 11
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• the central charge c(β). In the β parametrisation (4.4), the critical Q-Potts model
is related to a CFT with:

Q = 4 cos2 π β2 with
1

2
� β2 � 1. (4.9)

• the spectrum S = SPotts [4]

SPotts = SD,quot
(1,N∗)

⋃

j�2
M |j,p∧M=1

S(j,Z+ p
M )

⋃
S(0,Z+ 1

2)
. (4.10)

The multiplicities associated to the above sectors have also been computed [4] and,
for general Q, assume general real values. We refer the reader to [17] and references
therein for a detailed discussion of (4.10).

We do not know:

• the CFT Potts model structure constants. In other words, for general Q, a complete
bootstrap solution of the Potts CFT has not been found yet.

The informations on the central charge and on the spectrum allow the compu-
tation of certain probabilities on the torus, such as the cluster wrapping probability
[30–32], as well as the determination of different critical exponents or equivalently of
the plane two-point functions. Using a Coulomb gas technique [33], the scaling limit
p12(w1, w2) of O(w1, w2) is obtained as

p12(w1, w2) = lim
N→∞

N/M=O(1)

N
4Δ

(0, 12 )O(w1, w2), (4.11)

and the plane limit

p12(w1, w2)
w12
N →0−−−−→ =

c0

|w1 − w2|
4Δ

(0, 12)
, (4.12)

is given by the two-point function of fields V(0, 1
2 )

, for this reason called the connectiv-

ity fields. This result implies also that the cluster fractal dimension is 2 − 2Δ(0, 1
2 )

. In

(4.12), c0 corresponds to the non-universal constant c
(2)
0 appearing in (2.7) and has been

computed numerically in [13, 14, 18]. In [18], we set:

p12(w1, w2) = c0

〈
V(0, 1

2 )
(w1)V(0, 1

2 )
(w2)

〉
, (4.13)

and we made the assumption that the connectivity fields entering the two-point function
admit the following fusion

V(0, 1
2 )

⊗ V(0, 1
2 )

= V(1,1)D ⊕ V(1,2)D ⊕ V(1,3)D + · · · (4.14)

The representations in SD,quot
(1,N∗) have vanishing null-states, and this fixes their fusion rules

[25]. For instance, for the field (1, 2)D one has:

V(1,2)D × V(r,s) = V(r,s+1) ⊕ V(r,s−1). (4.15)

https://doi.org/10.1088/1742-5468/ab7c5e 12
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Moreover, the structure constants D
(1,s)D

(Δ1)(Δ2)
can be exactly computed and expressed in

terms of Γ functions [25]. In [18] we showed that using (4.14), we obtained very good
predictions for p12. Following (4.11), we define the scaling limits:

p12···n(w1, w2, . . . , wn) = lim
N→∞

N/M=O(1)

N
2nΔ

(0, 12 )O(w1, w2, . . . , wn). (4.16)

The plane limits of p123 and p1234 have been at the center of an intense research activity
in the last few years as they may directly probe the CFT structure constants. Let
us consider the plane limit of p123 first. As explained in [34], if the plane p12 can
be rewritten in terms of an equivalent local model [33], this is no more true for p123

which keeps its non-local nature. Despite this, an important progress was done in [8]
where the plane limit of p123 was conjectured to be given by a CFT three-point correlator
of fields V(0, 1

2 )
:

p123(w1, w2, w3)
w12
N →0−−−−→c

(3)
0

D
(0, 1

2 )
(0, 1

2 ),(0, 1
2 )

|w12w13w24|
2Δ

(0, 12)
. (4.17)

The conjecture in [8] is even stronger, as it proposes a value for the structure
constant:

D
(0, 1

2 )
(0, 1

2 ),(0, 1
2 )

=
√

2C
(0, 1

2 )
(0, 1

2 ),(0, 1
2)

, (4.18)

where the C
(Δ3)
(Δ1),(Δ2)

are the c � 1 Liouville structure constants [9–11, 15], defined in

appendix B. The factor
√

2 in (4.17) originates from a two-fold multiplicity of the
theory [8, 34]. Equation (4.17) has been numerically checked in [34–37]. Finally, the

non-universal constant c
(3)
0 was verified, for a square lattice, to be strictly related to c

(2)
0

[36]:

c
(3)
0 = (c

(2)
0 )

3
2 = c

3
2
0 . (4.19)

The above result is consistent with the fact that one can associate a non-universal

normalisation c
1
2
0 to each field V(0, 1

2 )
.In [17] the full space of n = 4 connectivities has

been considered and the set of representations entering the corresponding s- channel,
i.e. small z see (2.5), determined. For p1234 the result is:

p1234(w1, w2, w3, w4)
wij
N →0−−−−→ c2

0|w12w34|
−4Δ

(0, 12)P0(z)

P0(z) =
∑

(0,s)

s∈ 2N+1
2

(
D

(0,s)

(0 1
2 ),(0, 1

2 )

)2

|z|2Δ(0,s) (1 + O(z, z̄))

+
∑

(r,s)
r∈2Z∗,s∈Q,rs∈2Z

(
D

(r,s)

(0 1
2 ),(0, 1

2 )

)2

zΔ(r,s) z̄Δ(r,−s) (1 + O(z, z̄)) (4.20)

https://doi.org/10.1088/1742-5468/ab7c5e 13
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In [13, 14] it has been shown that using—whenever they are well defined—the c � 1
Liouville structure constants provides an extremely good approximation to the plane
n = 4 connectivities. The dominant terms for P0(z) are:

P0(z) = 2

(
C

(0, 1
2 )

(0, 1
2)(0, 1

2)

)2

|z|
2Δ

(0, 12 ) (1 + O(z)) +

(
D

(2,0)

(0, 1
2),(0, 1

2 )

)2

× |z|2Δ(2,0) (1 + O(z)) + 2

(
C

(0, 3
2 )

(0, 1
2 ),(0, 1

2)

)2

|z|
2Δ

(0, 32 ) (1 + O(z)) + · · · (4.21)

The value of

(
D

(2,0)

(0, 1
2),(0, 1

2 )

)2

has been determined numerically in [14] when Q = 1.

5. The dominant torus corrections to p123 and p1234

We present here the new results concerning the dominant torus correction of p123 and
p1234, defined in (4.16). Analogously to what we have done for p12 [18], see (4.13), we
assume that

p123 = c
3
2
0

〈
V(0, 1

2 )
(w1)V(0, 1

2 )
(w2)V(0, 1

2 )
(w3)

〉

p1234 = c2
0

〈
V(0, 1

2 )
(w1)V(0, 1

2 )
(w2)V(0, 1

2 )
(w3)V(0, 1

2 )
(w4)

〉
,

(5.1)

and we apply the CFT approach outlined in section 3 by using the fusions (4.14) and
(4.15) and the following one:

V(0, 1
2 )

⊗ V(0, 1
2 )

= ⊕
s∈ 2N+1

2

V(0,s) ⊕
(r,s)

r∈2Z∗,s∈Q,rs∈2Z

V(r,s) (5.2)

This fusion comes from (4.17) and (4.20). We will use the Liouville constants C
(0,2N+1)

(0, 1
2 ),(0, 1

2 )
for the connectivity sector. There are no predictions for the other structure constants.
Luckily we will in general not need them as they produce sub-dominant diagrams for the
values of Q, 1 � Q � 4 considered here. The only exception is the channel (2, 0) which
produces a small but visible contribution at Q = 1. In this case we will use the value for

D
(2,0)

(0, 1
2),(0, 1

2 )
found numerically in [14]. The fusion (5.2) is not in principle contradictory

with (4.14). Indeed, there may exist different fields V(0, 1
2 )

with the same dimension but

with different fusion rules. This fact can be well understood for Q = 3 where the pri-
mary fields carry a Z3 charge. In this case there are two fields, V ±1

(0, 1
2 )

with Z3 charge ±1.

The fields V +

(0, 1
2)

V −
(0, 1

2 )
→ V(1,1) ⊕ V(1,2) · · · fuse into the Z3 neutral sector, where one finds

the identity V(1,1), while the two fields V +

(0, 1
2 )

V +

(0, 1
2 )

→ V −
(0, 1

2 )
⊕ V −

(0, 1
2 )

⊕ · · · fuse into the

sector of charge −1. For general Q however, we do not fully understand how to char-
acterise the primary fields V(0, 1

2 )
to describe the space of connectivity (see also the

https://doi.org/10.1088/1742-5468/ab7c5e 14
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discussion in appendix C.3 of [14]). Analogously to the n = 2 case [18], we find
using (4.14), (4.15) and (5.2), that the dominant topological corrections to p123

and p1234 are associated to the energy one-point function
〈
V(1,2)D

〉
. Comparing

with (3.8) and (3.11) we have that Δmin = Δ(1,2)D . We stress the fact that the

fusions (4.14) and (5.2) produce diagrams proportional to
〈
V(0, 1

2 )

〉
and which

would be dominant, as Δ(0, 1
2 )

< Δ(1,2) ∀Q. However we conjecture that the one-

point function of the connectivity field vanishes for any Q. If this is easy to
show by symmetry argument for Q = 2, 3, 4, we could not prove it for general Q.
The agreement of our results with the Monte Carlo measurements supports this

conjecture. The computation of the functions f
(3)
τ and f

(4)
τ in (2.8) and (2.9) is based on

two approximations.

• We compute only the diagrams that contribute to the dominant torus correction,
which is sufficient in general for comparison with the numerical data. The only
exception are the diagrams proportional to

〈
V(1,3)D

〉
which produce a sub-dominant

contribution that is visible numerically near Q = 3. Higher 1/N corrections com-
ing from descendant fields could in principle be computed but are expected to
give very sub-dominant contributions.

• For any dominant diagram, we compute the contributions of the descendants at
levels one and two. As explained in the next subsection, we expect the contribution
of level three to be negligible.

5.1. Three-point connectivity p123

Using the fusion (4.15), the only contributions of order O
((

w23

N

)2Δ(1,2)

)
come from

the fusion channels V(0, 1
2 )

× V(0, 1
2 )

→ V(0, 1
2 )

and V(0, 1
2 )

× V(0, 1
2 )

→ V(0, 3
2 )

, represented

respectively by figures 6(a) and (b).

Figure 6. Diagrammatic representation of the two channels contributing to the
topological corrections of the three-point connectivity.

As detailed in appendix C we can compute the coefficient c
(3)
(1,2)

(
w12

w23
, τ
)

defined
as:

p123 =
c

3
2
0

|w12w23w13|2Δ(0, 12 )

[
D +

∣∣∣∣
w13

w12

∣∣∣∣
2Δ

(0, 12 )

c
(3)
(1,2)

(
w12

w23
, τ

)∣∣∣w23

N

∣∣∣
2Δ(1,2)

+ subleading

]
. (5.3)
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Figure 7. Comparison of the analytic c
(3)
(1,2) with the corresponding numerical coef-

ficient, for different values of Q, for the isosceles geometry. In the figure we compare

the coefficients computed to order w12
w23

(dashed) and
(

w12
w23

)2

(solid).

In particular, to compare with the Monte Carlo numerical data we set τ = i (i.e. M = N),
and we fix the three points w1, w2, w3 at the vertices of isosceles triangles. First we
consider the configuration (w1, w2, w3) = (0, r, ir), also considered in [36] and compute

the coefficient c
(3),an
(1,2) = c

(3)
(1,2)

(
1√
2
, τ = i

)
at level 2, see equation (C.7) in the appendix.

The comparison with the Monte Carlo results c
(3),MC
(1,2) , for different values of Q, is given

in figure 7. In the figure we show the convergence of our expansion, computed to

order w12

w23
ie to level one (dashed) and

(
w12

w23

)2

i.e. to level two (solid). The contribu-

tion of order
(

w12

w23

)3

is expected to be negligible, below the precision of the numerical

measurements.
We test also the CFT predictions for triangles of different shapes. We took new

Monte Carlo measurements by setting the points at: (w1, w2, w3) = ((k − i)r, (k + i)r, 0).
We refer the reader to [13, 14, 36] for the details on the measurement of the three-

point correlations. We compute the coefficient c
(3),an
(1,2) = c

(3)
(1,2)

(
2√

k2+1
, τ = i

)
which now

depends on k. The comparison with the Monte Carlo measurements, taken at Q = 1
and for different values of k is shown in figure 8(a). For large k we expect our w12

w23

expansion to converge better, however the numerical measurements get less precise
for large k, which explains the deviation between analytical and numerical points in
figure 8(a). Still, the agreement is good.

In figure 8(b), we plotted the ratio

R(w1, w2, w3) =
p123(w1, w2, w3)√

p12(w1, w2)p23(w2, w3)p13(w1, w3)
(5.4)

at Q = 1. This ratio was considered in [8, 37]. Using our expression (5.3) for p123 and
the result in [18] for p12,
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Figure 8. (a)Comparison of the analytic c
(3)
(1,2) with the corresponding numerical

coefficient, for different values of the geometric parameter k. (b) Comparison of
the ratio (5.5) with the Monte Carlo data. At short distances the numerical point
deviate significantly since this regime is not captured by the CFT description.

R =
D

(0, 1
2)

(0, 1
2 ),(0, 1

2 )

(
1 + c

(3)
1,2

∣∣w23

N

∣∣2Δ(1,2) + · · ·
)

∏
i<j

(
1 + c

(2)
1,2

∣∣wij

N

∣∣2Δ(1,2) + · · ·
) 1

2

= D
(0, 1

2 )
(0, 1

2 ),(0, 1
2 )

[
1 +

(∣∣∣w23

r

∣∣∣
2Δ(1,2)

c
(3)
1,2 − 1

2
c
(2)
1,2

∑

i<j

∣∣∣wij

r

∣∣∣
2Δ(1,2)

)
×
( r

N

)2Δ(1,2)

+ · · ·
]

.

(5.5)

In particular in [37] the quantity ln

(
D

(0, 1
2 )

(0, 1
2 ),(0, 1

2 )
− R

)
was studied numerically for per-

colation, as a function of the log of the distance between the points. From (5.5), the
behavior is,

ln

(
D

(0, 1
2 )

(0, 1
2),(0, 1

2 )
− R

)
= ln

⎡
⎢⎣

D
(0, 1

2 )
(0, 1

2 ),(0, 1
2 )

(
1
2
c
(2)
1,2

∑
i<j

∣∣wij

r

∣∣2Δ(1,2) −
∣∣w23

r

∣∣2Δ(1,2)c
(3)
1,2

)

N 2Δ(1,2)

⎤
⎥⎦

+ 2Δ(1,2) ln r. (5.6)

Then for any configuration of points the slope equals 2Δ(1,2) = 1.25 for percolation. With
the points at the vertices of an equilateral triangle, this slope was measured in [37] to be
∼ 1.3 in the regime where the distance between points is large, which is in fair agreement
with our prediction. Note that for equilateral as well as isosceles triangles parametrised

with k, the coefficient
(∣∣w23

r

∣∣2Δ(1,2)c
(3)
1,2 − 1

2
c
(2)
1,2

∑
i<j

∣∣wij

r

∣∣2Δ(1,2)

)
is negative, resulting in a

decrease of the ratio R when r approaches N/2.
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5.2. Four-point connectivity p1234

According to the s- channel fusion for p1234(w1, w2, w3, w4), see [14, 17], the main topo-

logical corrections are of order O
((

w24

N

)2Δ(1,2)

)
. We define the associated coefficient

c
(4)
(1,2)

(
w12

w24
, w34

w24
, τ
)

as:

p1234 =
c2
0

|w12w34|
4Δ

(0, 12 )

[
P0 (z) + c

(4)
(1,2)

(
w12

w24
,
w34

w24
, τ

)(w24

N

)2Δ(1,2)

+ subleading

]
,

(5.7)

We compute the dominant contributions to the coefficient c
(4)
(1,2) which, for all values of

Q, come from the terms associated to figures 9 and 10. Each contribution is of order
zΔL+ΔR.

Figure 9. Diagrammatic representation of the leading contribution to the topolog-
ical corrections of the four-point connectivity.

Figure 10. Diagrammatic representation of the sub-leading contribution to the
topological corrections of the four-point connectivity.

The next contribution would come from figure 11, for which the structure constants
are unknown. However this contribution would be of order3 zΔ(2,0)+Δ(2,1)+1, which is very
sub-dominant.

3 V(2,1) is not a diagonal field (see appendix D).
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Figure 11. Diagrammatic representation of the next to sub-leading contribution to
the topological corrections of the four-point connectivity. This contribution is not
visible numerically.

Figure 12. Numerical and analytic rescaled four-point connectivity at Q = 2.75,
for different values of the cross-ratio z (a) and for z = 0.5 (b) where we show the
convergence of the level expansion.

To compare our expansion of (5.7) with the numerical simulations we take again
τ = i and we fix the four points w1, w2, w3, w4 at the vertices of a rectangle, i.e.
(w1, w2, w3, w4) = (ir, 0, λr, (λ + i)r). The cross ratio is

z =
w12w34

w13w24
=

1

λ2 + 1
.

In figure 12(a) we plot the function r
8Δ

(0, 12)p1234(r, z) at Q = 2.75 and for different values
of the cross-ratio z. For z = 0.5, we show in figure 12(b) the convergence of the level
expansion (see appendix D). Taking λ � 5 ensures that we can truncate the expansion
at level 2 and still obtain good agreement with the numerical data. In the following we
will take λ = 5 corresponding to z = 0.038 4615.

In figure 13(a), we compute the connectivity including the contributions of the dom-

inant figure 9 and first sub-dominant figure 10 in c
(4)
(1,2). Note that the value Q = 2.75

chosen for these plots is arbitrary.
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Figure 13. Numerical and analytic rescaled four-point connectivity. In (a) we show

the convergence of the diagrammatic expansion of c
(4)
(1,2)

. In (b) we show the effect
of the contribution of the sub-dominant field V (1,3) when Q is close to 3.

5.2.1. Q > 2. When Q > 2 the topological correction coming from the field V(1,3)D,
while being still sub dominant, produces a visible effect. We illustrate this for Q = 3.25

on figure 13(b), where the term c
(4)
(1,3)

(
w12

w24
, w34

w24
, τ
)(

w24

N

)2Δ(1,3) is included (solid line) or not

(dashed line) in the expansion of the connectivity.

5.2.2. Q = 2. As explained in appendices B and D, some structure constants entering
the computation of both the plane limit and the first topological correction diverge
at Q = 2. In particular the contribution of the

(
0, 3

2

)
channel to the plane limit is

divergent. As explained in sections 2.2 and 3.3 of [14], for rational central charge the
diverging contributions of channels with the same dimension (here

(
0, 3

2

)
and (2, 0))

cancel each other in (4.20) to give a finite limit.
However, as detailed in appendix D.1 the contribution of the same channel

(
0, 3

2

)

to the topological correction (figure 10) has a finite limit. Below we show the con-

nectivity computed including (solid) or not (dashed) this contribution in c
(4)
(1,2). The

comparison with the numerical data seems to indicate that this channel must be included
in the topological corrections (figure 14(a)).

5.2.3. Q < 2. In this section we will only consider the case Q = 1. For other values
of Q the computation of the connectivity is similar to what we showed before. Note
however that for 1 � Q � 2, considering that 2Δ(2,0) < 2Δ(0, 3

2 )
the contribution of (2, 0)

to the plane limit (4.21) is dominant over
(
0, 3

2

)
. This contribution cannot be computed

using our approach since the structure constant D
(2,0)

(0, 1
2 ),(0, 1

2)
is unknown for arbitrary Q.

Nonetheless, the contribution of this field is very small (∼5.10−5 at Q = 1) and sim-
ply neglecting it gives a good agreement with the numerical data, for all Q ∈ [1, 4].
We plot in figure 14 the connectivity at Q = 1, whose expression involves non-trivial
limits of the structure constants, detailed in appendices B and D. We include the con-
tribution of V(2,0) in the plane four-point function (4.21) using the structure constant
computed numerically in [14], though this contribution is very small.
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Figure 14. Numerical and analytic rescaled four-point connectivity in the special
limits Q = 2 and Q = 1. In (a) we show that one must include the finite Q → 2
limit of the contribution of the

(
0, 3

2

)
channel. In (b) the expression involves the

non-trivial Q → 1 limits of the structure constants, and include the contribution of
V (2,0) in the plane four-point function.

6. Conclusions

In this paper we completed the work initiated in [18] where the two-point connectiv-
ity of critical Potts clusters living on a torus had been considered. We focused on the
three-point and four-point connectivities p123 and p1234 defined in (4.11). Motivated by
the understanding of the CFT which describes the critical Potts clusters, the study of
these higher-point connectivities is particularly interesting as it probes more fusion rules
than the two-point connectivity. Moreover, contrary to the two-point connectivity, the
three- and four-point connectivities cannot be written in terms of local correlation func-
tions. In the CFT approach, explained in section 3, we used the informations coming
from the works [14, 17]. In particular we used the fusion rules (4.14), (4.15) and (5.2)
and the c � 1 Liouville structure constants. We computed the dominant figures 6(a)
and (b) for p123 and figures 9–11 for p1234. A very satisfying agreement with the
corresponding Monte Carlo measurements was found.

We showed that the leading topological corrections for p123 and p1234 are expected
to scale with the size as N−x, where x = 2Δ(1,2)D , i.e. with an exponent which is the
energy scaling dimension. Note that we worked with square tori, for which the cor-
rection coming from the stress-energy tensor vanishes. For non-square tori, depending
on the aspect ratio M/N this latter contribution can become dominant [18].

The results presented here further support the fact that the use of c � 1 Liouville-
type constants provides a very good description of Potts clusters, even when they
live on a non-trivial topology. For Q = 1 (percolation) and Q = 2 (Ising) we showed
in sections 5.2.2, 5.2.3 and in appendices C and D subtle cancellations of the sin-
gularities appearing in the Liouville constants. More generally, although the CFT
approach uses correlations of local fields, it remains valid for describing these geometrical
objects.

We stress the fact that, although our results are based on functions (the Liouville-
type constants in this case) which are very singular in Q, they turn out to have a
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smooth dependence on Q as required by statistical physics applications, due to the
aforementioned cancellations. An interesting open question is studying more systemat-
ically these fine-tuned cancellations. In particular, one can expect these cancellations
to be put in relation, in the spirit of [38], with the logarithmic features arising from
the study of the integrable structures of the lattice model. Finally, the universal results
we obtained for pure percolation can be used for testing models that are conjectured
to be in the same universality class, such as, for instance, the long-range percolation
appearing in the study of quantum chaos [39].
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Appendix A. CFT definitions and notations

A.1. Kinematic data

We first recall that for a CFT on a plane z ∈ (C
⋃{∞}) [25] with T(z) and T̄ (z̄)

the holomorphic and anti-holomorphic component of the stress energy-tensor, the
holomorphic stress-energy modes Ln form the Virasoro algebra Vc with central
charge c:

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn,m. (A.1)

The anti-holomorphic modes L̄n are analogously defined and form a second
Virasoro algebra Vc, with the same central charge, that commutes with (A.1).
A highest-weight representation of Vc is labeled by the conformal dimension Δ:
it contains the primary field VΔ, Ln|VΔ〉 = 0 for n > 0, and its descendants,
obtained by acting with the negative modes on the primary state. Given a Young
diagram Y = {n1, n2 · · ·}, with ni ∈ N, ni � ni+1, the fields

V
(Y )
Δ = L−Y VΔ = L−n1

L−n2
· · ·VΔ(V

({0})
Δ = VΔ) (A.2)

form a complete basis of the Δ representation. The descendant V
(Y )
Δ has total dimension

Δ + |Y|, where |Y| =
∑

ni is called the level of the descendant. For general Δ, the
number of independent descendants is therefore the number of partitions of |Y|. The
inner product HΔ(Y, Y ′) between descendants is defined as:

HΔ (Y , Y ′) = lim
z→∞

z2Δ 〈VΔ(z)LY L−Y ′VΔ(0)〉 , (A.3)

and is completely determined by the algebra (A.1). The spectrum S of a CFT is
formed by the representations of Vc ⊗ Vc appearing in the theory and labeled by the
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holomorphic and anti-holomorphic dimensions Δ, Δ̄. In order to simplify the formu-
las, we use the notations (Δi) = Δi, Δ̄i and (Δi, Yi) = (Δi, Yi), (Δ̄i, Ȳi). The s- chan-
nel expansion of the four-point conformal block is also completely determined by the
algebra (A.1):

F (s)
Δ (Δi|z) = zΔ

(
1 +

(Δ + Δ1 − Δ2)(Δ + Δ4 − Δ3)

2Δ
z + O(z2)

)
(A.4)

A.2. Dynamic data

The product of two fields (OPE) can be expanded in terms of the states appearing in
the spectrum S [25]:

V(Δ1,Y1)(z, z̄)V(Δ2,Y2)(0) →z−Δ1−|Y1|−Δ2−|Y2|+Δ3+|Y3|D(Δ3,Y3)
(Δ1,Y1),(Δ2,Y2)

V(Δ3,Y3)(0), (A.5)

where the coefficients are factorised as:

D
(Δ3,Y3)
(Δ1,Y1),(Δ2,Y2)

= D
(Δ3)
(Δ1),(Δ2)

β
(Δ3,Y )
(Δ1,Y1),(Δ2,Y2)

β
(Δ̄3,Ȳ3)

(Δ̄1,Ȳ1),(Δ̄2,Ȳ2)
. (A.6)

One factor is fixed by the algebra (A.1):

β
(Δ3,Y3)
(Δ1,Y1),(Δ2,Y2)

=
∑

Y ,|Y |=|Y3|
H−1

Δ3
(Y , Y3) Γ

(Δ3,Y )
(Δ2,Y2),(Δ1,Y1))

, (A.7)

where the Virasoro matrix elements Γ
(Δ3,Y )
(Δ2,Y2),(Δ1,Y1)

relate three states (i.e. are associated

to the knots of the conformal block diagrams) and are completely determined by the
commutation relation (A.1). They can be computed using the recursion relations in [29].

The other factor is the (model dependent) structure constant D
(Δ3)
(Δ1),(Δ2)

. These constants

can be defined as:

D
(Δ3)
(Δ1),(Δ2)

=
〈
V(Δ1)(∞)V(Δ2)(1)V(Δ2)(0)

〉
Plane

, (A.8)

where 〈· · ·〉Plane is the CFT correlator on the infinite plane. The three-point functions
determine the fusions between the different representations appearing in the spectrum.
Note that, as also recently pointed out in [40], a more solid definition of structure
constants is based on the four-point function. There can be indeed subtleties as the
ones discussed in section 5.3 of [38]. In the case under consideration here, we can safely
define the structure constants as in (A.8).

A.3. One- and two- point functions on the torus

We recall here the topological expansion of the two-point function of primary or
descendant (spin-less) fields:
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〈V(Δ1,Y1)(w1)V(Δ2,Y2)(w2)〉
|w12|−2Δ1−2Δ2w

−|Y1|−|Y2|
12 w̄

−|Ȳ1|−|Ȳ2|
12

=
∑

(Δtop,Y )

D
(Δtop,Y )

(Δ1,Y1),(Δ2,Y2)

(w12

N

)Δtop+|Y |(w̄12

N

)Δ̄top+|Ȳ |
〈V(Δtop,Y )〉(N=1)

=
∑

(Δtop)

D
(Δtop)

(Δ1),(Δ2)

(w12

N

)Δtop
(w̄12

N

)Δ̄top [
β

(Δtop)

(Δ1,Y1),(Δ2,Y2)
β

(Δ̄top)

(Δ1,Ȳ1),(Δ2,Ȳ2)
〈V(Δtop)〉(N=1)

+ β
(Δtop,−1)

(Δ1,Y1),(Δ2,Y2)
β

(Δ̄top)

(Δ1,Ȳ1),(Δ2,Ȳ2)
〈L−1V(Δtop)〉(N=1)

w12

N

+ β
(Δtop)

(Δ1,Y1),(Δ2,Y2)
β

(Δ̄top,−1)

(Δ1,Ȳ1),(Δ2,Ȳ2)
〈L̄−1V(Δtop)〉(N=1)

w̄12

N
+ O

(w12

N

w̄12

N

)]
. (A.9)

The torus one-point function can be expanded in the elliptic nome q as [26]:

〈
V(Δ,Y )

〉
N=1

=
(2π)Δ+|Y |+Δ̄+|Ȳ |

Z

∑

(Δ′,Y ′)

D
(Δ′,Y ′)
(Δ,Y ),(Δ′,Y ′)q

Δ′−c/24+|Y ′|q̄Δ̄′−c/24+|Ȳ ′|

=
(2π)Δ+|Y |+Δ̄+|Ȳ |

Z

∑

(Δ′)

D
(Δ′)
(Δ),(Δ′)q

Δ′−c/24q̄Δ̄′−c/24
∣∣∣1 + β

(Δ′,−1)

(Δ,Y ),(Δ′,−1)
q

+
(
β

(Δ′,{−1,−1})
(Δ,Y ),(Δ′,{−1,−1}) + β

(Δ′,−2)

(Δ,Y ),(Δ′,−2)

)
q2 + · · ·

∣∣∣
2

. (A.10)

Appendix B. c � 1 Liouville structure constants

The Liouville structure constants are the unique solutions of certain bootstrap equations
for central charge c � 1 [15]. The structure constant of fields with dimensions Δ1, Δ2, Δ3

is given by [9–11]:

C
(Δ3)
(Δ1),(Δ2)

= −A(β)
Υβ(α1 + α2 + α3 + 2β − 1/β)

∏
σ∈S3

Υβ(ασ(1) + ασ(2) − ασ(3) + β)√∏3
j=1 Υβ(2αj + β)Υβ(2αj + 2β − 1/β)

(B.1)

where the charges α are related to the dimensions Δ by Δ = iα
(

c−1
24

− iα
)
, and,

A(β) =
ββ−2−β2−1

Υβ(β)

√
γ(β2)γ(β−2 − 1), γ(x) =

Γ(x)

Γ(1 − x)
. (B.2)

The special function Υβ obeys the shift equations,

Υβ(x + β) = Υβ(x)β1−2βx γ(βx) (B.3a)

Υβ

(
x +

1

β

)
= Υβ(x)β2 x

β −1γ

(
x

β

)
(B.3b)
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Υβ

(
β +

1

β
− x

)
= Υβ(x). (B.3c)

Υβ has simple zeroes for x ∈
(
−βN − 1

β
N
)

∪
(
βN∗ + 1

β
N∗
)
. When one of the fields is

degenerate, (B.1) can be written in terms of gamma functions. Some constants entering
the computation of the connectivities of the Q-Potts model become singular for special
values of Q:

C
(1,2)D

(0, 1
2 ),(0, 1

2 )
= −4β4 Γ

(
1 + 1

2
β−2

)

Γ
(
−1

2
β−2

)
√

23−4β−2Γ
(

3
2
− β−2

)

Γ
(
−1

2
+ β−2

)

=
4

9

Γ
(

7
4

)

Γ
(

1
4

)
√

π
√

3

Q − 1
, Q → 1 (B.4a)

C
(1,2)D

(0, 1
2 ),(0, 3

2 )
= β2

[
− Γ(2 − 2β−2)Γ

(
−1

2
β−2

)
Γ(β−2)Γ

(
3
2
β−2

)

Γ
(
1 − 3

2
β−2

)
Γ
(
1 + 1

2
β−2

)
Γ(−1 + 2β−2)Γ(−β−2)

]1/2

= −1

3

√
π
√

3

Q − 1

Γ
(
−3

4

)
Γ
(

9
4

)

Γ
(
−5

4

)
Γ
(

7
4

) , Q → 1

∝ 1/

√
Γ

(
1 − 3

2
β−2

)
∼
√

Q − 2, Q → 2 (B.4b)

C
(0, 3

2)
(0, 1

2 ),(0, 1
2 )

∝
√

Γ

(
1 − 3

2
β−2

)
∼ 1√

Q − 2
. (B.4c)

Appendix C. Derivation of the three-point corrections

We write the s-channel expansion of the three-point function
〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)〉 of spin-less fields4 by inserting the OPE V(Δ1)(w1)V(Δ2)(w2):

〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)〉
|w12|−2Δ1−2Δ2

=
∑

(ΔL)∈S
(YL)

D
(ΔL,YL)
(Δ1),(Δ2)

w
ΔL+|YL|
12 w̄

Δ̄L+|ȲL|
12

〈
V(ΔL,YL)(w2)V(Δ3)(w3)

〉
.

(C.1)

The plane limit is given by the term ΔL = Δ3 corresponding to figures C.1(a) while the
topological corrections are associated to figures C.1(b).

4 For simplicity of notation we derive the result for spin-less fields; it is straightforward to extend it to fields with spin.
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Figure C.1. Diagrammatic representation of the plane limit (a) and the topological
corrections (b) of the torus three-point function.

Accordingly we write (C.1) as,

〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)〉
|w12|−2Δ1−2Δ2|w23|2Δ3

=

∣∣∣∣
w12

w23

∣∣∣∣
2Δ3∑

(Y )

D
(Δ3,Y )
(Δ1),(Δ2)

DId
(Δ3,Y ),(Δ3)

(
w12

w23

)|Y |(
w̄12

w̄23

)|Ȳ |

+
∑

(ΔL,YL)
(Δtop,Ytop)

D
(ΔL,YL)
(Δ1),(Δ2)

D
(Δtop,Ytop)

(ΔL,YL),(Δ3)

(
w12

w23

)ΔL+|YL|(
w̄12

w̄23

)Δ̄L+|ȲL|

×
(w23

N

)Δtop+|Ytop|(w̄23

N

)Δ̄top+|Ȳtop|〈
V(Δtop,Ytop)

〉
N=1

. (C.2)

Let us detail how to recover the plane limit from the first sum. We compute,

∑

Y

β
(Δ3,Y )
Δ1,Δ2

β
(Δ3,Ȳ )
Δ1,Δ2

βId
(Δ3,Y ),Δ3

βId
(Δ3,Ȳ ),Δ3

(
w12

w23

)|Y |(
w̄12

w̄23

)|Ȳ |

=

∣∣∣∣1 + β
(Δ3,−1)
Δ1,Δ2

βId
(Δ3,−1),Δ3

w12

w23
+
(
β

(Δ3,{−1,−1})
Δ1,Δ2

βId
(Δ3,{−1,−1}),Δ3

+ β
(Δ3,−2)
Δ1,Δ2

βId
(Δ3,−2),Δ3

) w2
12

w2
23

+ · · ·
∣∣∣∣
2

. (C.3)

Computing the coefficients using (A.7) and the relations in [29] we find

∣∣∣∣1 − (Δ1 − Δ2 + Δ3)
w12

w23
+

1

2
(Δ1 − Δ2 + Δ3)(1 + Δ1 − Δ2 + Δ3)

w2
12

w2
23

+ · · ·
∣∣∣∣
2

=

∣∣∣∣1 +
w12

w23

∣∣∣∣
−2Δ1+2Δ2−2Δ3

=

∣∣∣∣
w23

w13

∣∣∣∣
2Δ1−2Δ2+2Δ3

(C.4)

and therefore
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〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)〉

=
1

|w12|2Δ1+2Δ2|w23|2Δ3

[
D

(Δ3)
(Δ1),(Δ2)

|w12|−2Δ3|w23|−2Δ1+2Δ2|w13|2Δ1−2Δ2+2Δ3
+ f (3)

τ

(
w12

w23

,
w23

N

)]

(C.5)

with the function f
(3)
τ defined in (2.8):

f (3)
τ

(
w12

w23

,
w23

N

)
=

∑

(Δtop,Ytop)

c
(3)
(Δtop,Ytop)

(
w12

w23

)(w23

N

)Δtop+|Ytop|(w̄23

N

)Δ̄top+|Ȳtop|

(C.6)

and c
(3)
(Δtop,Ytop)

(
w12

w23

)
given in (3.9). Specialising to the Q-Potts model, we took Δ1 = Δ2 =

Δ3 = Δ(0, 1
2 )

and we computed the most dominant 1/N correction to the plane three-

point function, corresponding to Δtop = Δmin = Δ(1,2). As explained in section 5.1, the
fusion (4.15) of V(1,2) imposes that either ΔL = Δ(0, 1

2 )
or ΔL = Δ(0, 3

2 )
corresponding to

figures 6(a) and (b). The level expansion of c
(3)
(1,2) is similar to (C.3) and was also carried

out to level 2 i.e. |YL| = 2 in (3.9), which showed sufficient precision for comparison with
the numerical results:

c
(3)
(1,2)

(
w12

w23

)
=〈V(1,2)〉(N=1)

{
D

(0, 1
2 )

(0, 1
2 ),(0, 1

2)
D

(1,2)

(0, 1
2 ),(0, 1

2 )

∣∣∣∣
w12

w23

∣∣∣∣
2Δ

(0, 12 )

×
∣∣∣∣1 + β

(0, 1
2 ,−1)

(0, 1
2),(0, 1

2 )
β

(1,2)

(0, 1
2 ,−1),(0, 1

2 )
w12

w23

+ O

(
w2

12

w2
23

)∣∣∣∣
2

+ D
(0, 3

2 )
(0, 1

2 ),(0, 1
2 )

D
(1,2)

(0, 3
2 ),(0, 1

2 )

∣∣∣∣
w12

w23

∣∣∣∣
2Δ

(0, 32 )

×
∣∣∣∣1 + β

(0, 3
2 ,−1)

(0, 1
2),(0, 1

2 )
β

(1,2)

(0, 3
2 ,−1),(0, 1

2 )
w12

w23

+ O

(
w2

12

w2
23

)∣∣∣∣
2
}

(C.7)

C.1. Special cases: Q = 1 and Q = 2

• When Q = 1, the 1√
Q−1

singularities in D
(1,2)D

(0, 1
2 ),(0, 1

2 )
and in D

(1,2)D

(0, 1
2 ),(0, 3

2)
(resp. figures 6(a)

and (b)) are canceled in (C.7) by the factor
√

Q − 1 in the energy one-point function

〈V(1,2)D〉N=1 =
Q − 1

ZQ
D

(1,2)D

(0, 1
2 ),(0, 1

2 )
|q|

2

(
Δ
(0, 12 )

− c
24

)

|1 + O(q)|2, (C.8)

yielding a finite, non-zero limit for c
(3)
(1,2).
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• When Q = 2, the zero and the pole in (B.4b) and (B.4c) cancel in the product

C
(0, 3

2 )
(0, 1

2 ),(0, 1
2 )

C
(1,2)D

(0, 3
2),(0, 1

2 )
, giving a finite contribution of the

(
0, 3

2

)
channel 6(b) to c

(3)
(1,2).

Appendix D. Derivation of the four-point corrections

We write the s-channel expansion of the four-point function
〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)V(Δ4)(w4)〉 of four (primary, spin-less) fields by inserting the
OPEs of V(Δ1)(w1)V(Δ2)(w2) and V(Δ3)(w3)V(Δ4)(w4):

V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)V(Δ4)(w4)

|w12|−2Δ1−2Δ2 |w34|−2Δ3−2Δ4

=
∑

(ΔL,YL)

D
(ΔL,YL)
(Δ1),(Δ2)

w
ΔL+|YL|
12 w̄

Δ̄L+|ȲL|
12 V(ΔL,YL)(w2)

∑

(ΔR,YR)

D
(ΔR,YR)
(Δ3),(Δ4)

w
ΔR+|YR|
34 w̄

Δ̄R+|ȲR|
34 V(ΔR,YR)(w4).

(D.1)

Inserting the expansion (A.9) of 〈V(ΔL,YL)(w2)V(ΔR,YR)(w4)〉,

〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)V(Δ4)(w4)〉
|w12|−2Δ1−2Δ2 |w34|−2Δ3−2Δ4

=
∑

(ΔL,YL)
(ΔR,YR)

D
(ΔL,YL)
(Δ1),(Δ2)

D
(ΔR,YR)
(Δ3),(Δ4)

D
(Δ,Y )
(ΔL,YL),(ΔR,YR)

(
w12

w24

)ΔL+|YL|

×
(

w̄12

w̄24

)Δ̄L+|ȲL|(
w34

w24

)ΔR+|YR|(
w̄34

w̄24

)Δ̄R+|ȲR|

×
∑

(Δtop,Ytop)

(w24

N

)Δtop+|Ytop|(w̄24

N

)Δ̄top+|Ȳtop|
〈V(Δtop,Ytop)〉. (D.2)

The plane limit P0 is given by the terms with Δtop = 0 and ΔL = ΔR, corresponding to
figure D.1.
and can be written as a function of the cross-ratio z:

P0(z) =
∑

(Δ)

D
(Δ)
(Δ1),(Δ2)

D
(Δ)
(Δ3),(Δ4)

∣∣∣F (s)
(Δ)(Δi|z)

∣∣∣
2

(D.3)

where F (s)
(Δ)(Δi|z) is the s- channel four-point conformal block (A.4). Then,

〈V(Δ1)(w1)V(Δ2)(w2)V(Δ3)(w3)V(Δ4)(w4)〉

=
1

|w12|2Δ1+2Δ2|w34|2Δ3+2Δ4

[
P0(z) + f (4)

τ

(
w12

w24
,
w34

w24
,
w24

N

)]
(D.4)
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Figure D.1. Diagrammatic representation of the plane limit of the torus
four-point function.

with

f (4)
τ

(
w12

w24
,
w34

w24
,
w24

N

)
=

∑

(Δtop,Ytop)

c
(4)
(Δtop,Ytop)

(
w12

w24
,
w34

w24
, τ

)(w24

N

)Δtop+|Ytop|(w̄24

N

)Δ̄top+|Ȳtop|
,

(D.5)

where c
(4)
(Δtop,Ytop)

(
w12

w24
, w34

w24
, τ
)

is given by (3.12). The contribution of each diagram of the

type in figure 5 to c(4) is of order z
1
2 (ΔL+Δ̄L+ΔR+Δ̄R) = zΔL+Δr− 1

2 (sL+sR). The non-diagonal
fields in the spectrum of the Q-Potts model have spins S(r,s) = −rs: those with non-zero
spin give therefore very sub-dominant contributions to the four-point connectivity.

D.1. Special cases: Q = 1 and Q = 2

• When Q = 1, the 1√
Q−1

singularities in D
(1,2)D

(0, 1
2 ),(0, 1

2 )
and in D

(1,2)D

(0, 1
2 ),(0, 3

2 )
(resp. figures 9

and 10) are canceled by the factor
√

Q − 1 in the energy one-point function, exactly
as in the three-point case.

• When Q = 2, again as in the three-point case, the zero and the pole in (B.4b)
and (B.4c) coming from the contribution of figure 10 cancel in the product

C
(0, 3

2 )
(0, 1

2 ),(0, 1
2 )

C
(1,2)D

(0, 3
2),(0, 1

2 )
. The contribution of the

(
0, 3

2

)
channel to c

(4)
(1,2) is therefore finite,

contrary to the contribution of the same channel to the plane four-point function. In
that latter case, the divergences of the different channels with the same dimension
cancel each other.
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5
PERCOLATION OF RANDOM SURFACES

In this chapter we study another continuous family of models, parametrised by the strength of
the asymptotic decay of the site-site correlation. Namely, denoting the site occupation by θ:

θ(r) =

 1 if the site at position r is occupied

0 otherwise
(5.1)

the probability that two sites at distance r are occupied decays algebraically:

E [θ(r)θ(0)]−E [θ(r)]E [θ(0)] r�1∼ r2H , H < 0. (5.2)

H is a negative real number, called Hurst exponent. We will indeed show in the next sections
that the decay above can be obtained by considering the excursion sets (sites where the height is
higher than some level) of a random surface characterised by its Hurst exponent (or roughness)
H. For each value of H there exist a critical occupation probability at which the level clusters
percolate. When the site occupation is spatially uncorrelated, pure percolation is recovered.
This line of models therefore coincides with the Q−Potts line at the pure percolation point, as
sketched in Figure 5.1 below. However, the way correlations are introduced differ in the two
models, leading to different universal properties of the random clusters. While the Potts CFT is
on the way to being solved, the level clusters of random surfaces are much less understood.

H

0

Q

4

pure percolation
1 −1Q−Potts model

integrable
conformally invariant
critical exponents X
3&4-point: almost X

percolation of random surfaces
non-integrable

conformal invariance: unclear
critical exponents: ν

Figure 5.1

Indeed, only the behaviour of the thermal exponent ν with H is conjectured, while the magnetic
exponent β has been estimated numerically. We recall that for the Potts model, all critical
exponents were determined exactly from the Coulomb-gas CFT. Here, not only do we ignore
what CFT gives the critical exponents, but even the question of conformal invariance of the
percolation clusters had not been clearly answered so far.
The aim of the work Article IV was primarily to investigate the presence of conformal invariance
in this model. We developed a new method of analysis of percolation-type systems, which exploits
the information contained in the two-point torus connectivity. By probing the existence of a
traceless stress-energy tensor, it is a direct method to establish the conformal invariance of the

159
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measure of the random clusters. Further features of the potential underlying CFT can also be
investigated. The strategy is to make the following assumptions:

1. The clusters are conformally invariant.

2. There exist a (unkown) CFT whose correlators describe the cluster connectivities. In par-
ticular the two-point torus connectivity is given by a torus two-point function.

3. As for pure percolation, the spectrum is discrete and the energy field gives the dominant
torus correction to the two-point connectivity.

If the above is satisfied, then the behaviour of the connectivity with the geometry of the torus is
(rather strongly) constrained by conformal invariance. This is clear from the results of Chapter
2, which we exploit in a precise way. Comparison with numerical measurements then allows
to confirm or not the inital assumptions and in particular settle on the question of conformal
invariance.
Throughout this chapter we show that for the model of percolation of random surfaces this
method allowed us to:

1. Establish firmly the conformal invariance of the clusters.

2. Show that the torus two-point connectivity is well described by the torus two-point function
of a field in a CFT.

3. Probe the first terms in the torus partition function of this CFT.

4. Show that the energy field is not degenerate.

5. Estimate numerically quantities involving crucial data of a CFT: the central charge, struc-
ture constants and multiplicities.

In Section 5.1 we define precisely the model of percolation of random surfaces. In Section 5.2
we review the state of the art: we discuss the relevance of correlations and what is known of the
universality class of the new critical points. We also comment on previous works which studied
the potential conformal invariance of the system. In Section 5.3 we explain in details our protocol
to test conformal invariance of a percolation-type critical point. In Section 5.4 we explain how
the two-point torus connectivity allows to obtain important information on the underlying CFT,
notably ragarding points 3-5 above. We discuss the results obtained for the particular model
we consider. This method is however general and can very well be applied to other models for
which conformal invariance and/or the nature of the CFT are questioned. Finally in Section 5.5
we discuss how to similarly exploit the three-point connectivity to complete our results on the
CFT of percolation of random surfaces.

5.1 percolation of random surfaces

A correlated percolation system can be obtained by cutting a two-dimensional random surface
u(x) at some height –or level, h. Namely we define the site occupation θ(x) as:

θ(x) =

 1 u(x) ≥ h

0 u(x) < h.
(5.3)
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The set of occupied sites is called excursion set and its connected components at a given level,
the level clusters. To have a more relaxing and pleasant image in mind, one can imagine the
random surface as a landscape of hills flooded with water up to some height, as in the picture
below (inspired from [103]). At low height, lakes are disconnected. Increasing the height, these
isolated lakes connect and a waterway (or percolating cluster) eventually emerges1.

A central point is that the long-distance site-site correlation E [θ(x)θ(y)] inherits its behaviour
from the long-distance covariance of the random surface E [u(x)u(y)]. We are thus interested
in surfaces u such that the covariance decays algebraically:

E [u(x)u(y)]−E [u(x)]E [u(y)] ∼ |x− y|2H , |x− y| � 1 (5.4)

so that the site-site correlation is given by (5.2):

E [θ(r)θ(0)]−E [θ(r)]E [θ(0)] = E [θ(x)θ(y)]− p2(h) ∼ |x− y|2H , |x− y| � 1. (5.5)

The mean occupation is translation invariant, E [θ(x)] = E [θ(0)] = p(h). We consider real
H < 0, where for each value of H there exist a level h = f(H) corresponding to a critical phase
transition (see introduction of Article IV).

5.1.1 Why study such a model ?

There are several motivations for studying such long-range correlated percolation surfaces. First,
many physical phenomena can be described with a correlated percolation model (see for instance
the review [104]). Algebraic decay of the correlation is moreover found in many cases, such as:
a fluid flow in a porous medium [105, 106], the turbulent motion of a fluid [107], the growth of
cities [108] . . . .
Secondly, the properties of the percolation surface allow to access properties of the random
function itself, as pointed out in [109] where the quantum eigenfunctions of chaotic systems are
studied through their level clusters.
Of particular interest to us, from a bootstrap point of view, is that it provides a new line
of critical points where scale invariance enlarges to conformal invariance. While this holds for

1 Note that this corresponds to taking the altitude as −u.
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models defined from local, unitary Hamiltonians [110, 111], it is not so evident for non-unitary
models. In particular, the model under consideration here is highly non-local in its definition.
It has indeed been shown to be equivalent to a random cluster Q−Potts model with quenched,
long-range correlated disorder, in the Q → 1 limit [53]. While the partition function of the
non-disordered random cluster Potts model can be rewritten in terms of local (albeit complex)
Boltzmann weights [91], it is not known wether this is possible in the presence of disorder. We will
see below that the potential CFT describing this new line of critical points does not correspond
to any known CFT, and might represent therefore a new bootstrap solution.

5.1.2 Discrete fractional Gaussian surface

There is a certain freedom in choosing the random function u, since the important property is
the long-distance behaviour of its covariance (5.4), which is independent of microscopic details.
The full details on how the function is generated are given in Appendix A of Article IV and we
only report here the necessary equations.
The random function is a discrete fractional Gaussian surface. It is a real function, defined on a
discrete M ×N lattice: x = (x1,x2) ∈ [0, 1, · · · ,N − 1]× [0, 1, · · · ,M − 1] by:

u(x) = 1
norm

∑
k
λ
−H+1

2
k ŵ(k)eikx, H ∈ [−1, 0]. (5.6)

The randomness is contained in ŵ(k): it is the Fourier transform of a random surface w(x)
whose heights at each point are completely uncorrelated. Namely:

E [w(x)w(y)]−E [w(x)]E [w(y)] ∝ δx1,y1δx2,y2 . (5.7)

Correlations are induced by the factor λ−
H+1

2
k , whose definitions2 are given in Appendix A of

Article IV.
When H = −1, λ−

H+1
2

k = 1 and u = w. Cutting the function (cf. (5.3)) produces a surface of
uncorrelated, aka pure, percolation. When H ∈]1, 0[, we have instead:

E
[
|u(x)− u(y)|2

]
∼ |x− y|2H , |x− y| � 1 (5.8)

and at H = 0 the correlation shows logarithmic decay: the scaling limit of u behaves as a
Gaussian free field3.
In Section 5.2 we discuss what happens then to the long-distance properties of the corresponding
percolation surface.

5.1.3 An aside: who was Mr. Hurst ?

Originally the Hurst exponent describes the behaviour of the autocorrelation of a process evolv-
ing with time: for positive H ∈ [0, 1] the profile of our function u (5.8), parametrised by t

describes a fractional Brownian motion WH(t):

E
[
|WH(t1)−WH(t2)|2

]
∼ |t2 − t1|2H , |t2 − t1| � 1. (5.9)

2 We use two different types of factors. We show that this, as well as the distribution of w, does not affect the
long-distance properties of the percolation clusters.

3 See also the choice of λ in Article IV such that u coincides with the Gaussian free field at H = 0, with its
covariance satisfying the (discrete) Laplace equation.



5.2 state of the art 163

For H = 1/2 this is the usual Brownian motion, which has independent increments. When
H > 1/2 (H < 1/2) the increments are positively (negatively) correlated.
The denomination comes from the name of British physicist Harold Edwin Hurst (1880-1978).
Hurst worked in Egypt and studied the fluctuations of the water level of the Nile. The huge river,
subject to both drought and flood, needed to be controlled with strategically built reservoirs,
for crop irrigation as well as to prevent the floods, which caused massive people displacements.
As Hurst noted [112], a consistent policy cannot be laid down from the sole knowledge of the
past year behaviour, as “the past is never exactly repeated”. A more involved model must be
sought since in particular, the behaviour of the water level within a year is not observed to be
independent from the past years (H 6= 1/2). Interestingly, by studying the river statistics as
well as other phenomena (the growth of tree rings in Canada, the wheat prices,...) Hurst noticed
that the time behaviour seems to be described by the same value of H ∼ 0.75, pointing at some
universality... Eventually, Hurst plan was selected for the building of the Aswan High Dam in
the 50’s (although geopolitical considerations took over, so that the actual dam was not built
according to Hurst recommendations [113]).

5.2 state of the art

As seen in Section 5.1.2, the case H = −1 corresponds to uncorrelated sites, namely:

E [θ(x)θ(y)]− p2(h) ∼ δ (|x− y|) . (5.10)

Therefore, the long-distance properties of the clusters at the critical level are given by the
universality class of pure percolation. Now we turn on the correlations, H > −1. We expect
that for H close to −1, correlations decay fast enough so as to preserve the pure long-distance
properties: in other words, correlations are not relevant and the clusters remain in the pure
percolation universality class. The question is then: does there exist a value of H ∈]− 1, 0] such
that correlations become relevant, and the universality class changes ?
This question has been answered by Weinrib [53]. With the site-site correlation decaying as
(5.5), one can ask for which range of H a consistent phase transition characterised by νpure exist.
Namely, for which values of H do the correlation lengths ξV in different regions of size V diverge
at the same value pc of the site occupation: ξV ∼ (pV − pc)−ν

pure . For this to occur, fluctuations
in the average site occupation pV of the region of size V must be small when p approaches
pc. Taking the region to have typical size ξ, one finds that these fluctuations behave at long
distances as [53]:

E[p2
ξ ]−E[pξ]

2

(pc − p)2 ∼ 1
(pc − p)2Hνpure+2 , H > −1. (5.11)

This goes to zero if H νpure + 1 < 0, so that such transition is inconsistent when:

H νpure + 1 > 0⇔ H > −3
4 (5.12)

and new critical behaviour emerges4. The use of this extended Harris criterion allows also to
predict the new values of the thermal exponent for H ∈ [−3/4, 0]:

ν = − 1
H

(5.13)

4 Rigorous arguments can be found in Section 3.1 of the introduction of [114] as well as in [115].
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sketched in Figure 5.2.

H

ν,Df

−1
2

Df = Dpure
f = 91

48

Df = 2

ν = νpure = 4
3

ν = − 1
H

ν =∞

Pure percolation
Line of new critical points

−1 −3
4

0

Figure 5.2: Summary of the state of the art. The black curve gives the theoretical prediction [53] for
the thermal exponent ν, while the gray lines sketch the behaviour of the fractal dimension
observed in numerical studies [54, 116, 117].

Prediction (5.13) has been subsequently confirmed in numerous numerical works [54, 116–119].
There is no theoretical prediction concerning the other main exponent which characterise the
transition, the magnetic exponent β. In [54, 116, 117] the fractal dimension of the clusters,
Df = 2− β/ν [42] is measured (see for instance Appendix B of Article IV). We report in Figure
5.2 its observed behaviour with H. For H ∈ [−1,−3/4] the numerical values of [54, 116, 117] are
in agreement with the pure percolation value Df = Dpure

f , consistently with the prediction [53]
that the universality class is pure percolation. ForH > −3/4, while ν starts varying continuously,
the the fractal dimension seems to remain constant Df

within error bars
= Dpure

f up to some value of
H estimated to be H ∼ −1/2 [54, 117]. For H > −1/2, Df increases to reach the value Df = 2
of the free Gaussian field [120–122] at H = 0. Such behaviour is not understood. In particular,
perturbative renormalisation group analysis [53] fails to predict it, and it is not determined at
present whether the fractal dimension varies very slowly with H, or is truly “superuniversal”
and remains fixed to the pure value. In the latter case, this behaviour would contrast with most
continuous families of models, where all critical exponents vary continuously. For instance in the
Q−Potts model every scaling dimension is a continuous function of the central charge, as seen
from the torus partition function (4.3). There exist nonetheless models where the dimensions
of one or several fields are superuniversal. This is the case of the self-dual critical line of the
Ashkin-Teller model, along which the dimensions of the spin and disorder fields are fixed [69,
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123]. It has also been conjectured that the thermal exponent of the disordered Q−state Potts
model keeps the same value for all Q ≥ 2 [124, 125].
Besides the determination of critical exponents, an important question is the presence of con-
formal invariance in this model. We know that the random clusters of pure percolation are
conformally invariant [33], but what about those of the new critical points H ∈ [−3/4, 0] ? If
they are conformally invariant as well, does there exist a consistent CFT describing them, and
what is this CFT ?
The question of conformal invariance in these correlated percolation systems has been investi-
gated through study of the boundaries of the level clusters, and their potential equivalence with
Schramm Loewner Evolution (SLE) traces [107, 126, 127]. In this approach the boundaries of
the percolating clusters are considered as a growing curve, starting from the boundary of the
system. If the measure of this curve is conformally invariant, then its evolution in the scaling
limit can be described by a Brownian motion (see [32] for a review of SLE). By checking wether
the clusters boundaries obey the SLE statistics, one can in principle test their conformal in-
variance. In [107] the percolating clusters boundaries are studied for H = −2/3 and conformal
invariance is ruled out. In [126, 127] the complete (also called hull) and accessible (also called
external) perimeters of the percolating clusters are studied, and are found to obey the SLE
statistics. Their conformal invariance is therefore conjectured, for all H ∈ [−1, 0]. The diffusion
constants κ and κ̃ of the Brownian motion associated to both perimeters are estimated. They
satisfy the duality relation κ = 16/κ̃ [41, 128]. In addition, the fractal dimensions dcomplete

f

and daccessible
f of both perimeters are estimated numerically, see also [116]. They both show sig-

nificant variation for −3/4 ≤ H ≤ 0, contrary to the fractal dimension of clusters which is
observed to stay constant for −1 ≤ H ≤ −1/2 (cf. Figure 5.2). Actually from the results in
[116, 126, 127] one can wonder wether the fractal dimensions of the boundaries remain equal
to their pure percolation values for H ∈ [−1,−3/4] (when the system is conjectured to be in
the pure percolation universality class). For all H the numerical values are found to agree with
the relation (dcomplete

f − 1)(daccessible
f − 1) = 1, satisfied by the perimeters of the Potts clusters

[41]. Nevertheless these clusters are not the Potts clusters, as is visible from the behaviour of
the fractal dimension Df with H in Figure 5.2, and as we further argue in Section 5.4.2.
The results of the next sections are based on a completely different approach, which probes
directly statistical properties of the clusters, and not of their boundary. This provides first a direct
test of the conformal invariance of their measure, and shows further that the CFTs describing the
Potts and random surface clusters are different. The relation between the statistical properties
of the bulk and boundaries of these latter remains notheless mysterious.

5.3 conformal invariance of percolating random surfaces

Our exploration tool is the scaling limit p12 of the torus two-point connectivity. As explained in
the introduction ii, assumptions 1 and 2 translate into the following assumption:

p12(x1, x2)torus = d
(2)
0 〈V∆σ (x1)V∆σ (x2)〉τ , (5.14)

with d
(2)
0 a non-universal constant. The connectivity field is denoted V∆σ , in analogy with the

Potts model where it is identified with the spin field(s). It has dimensions ∆σ = ∆̄σ =
2−Df

2 so
that the two-point connectivity is given in the plane limit by:

p12(x1, x2) ∼
1

|x1 − x2|4−2Df
(5.15)
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where we have used that the decay is given by the exponent η (cf. (iv)) and the scaling relation
η = 4− 2Df (see for instance Section 3.3 of [42]).
We take complex coordinate w on the M ×N torus, such that the real (resp. imaginary) axis
w ∈ R (resp.iR) is parallel to the N (resp.M) direction. The two-point function 〈V∆σ (w)V∆σ (0)〉
can be written as the s-expansion (2.66) derived in Chapter 2:

〈V∆σ (w)V∆σ (0)〉τ =
1

|w|4∆σ

∑
∆,∆̄∈S

D(∆)
σ,σ

(
w

N

)∆ ( w̄
N

)∆̄
〈V∆,∆̄〉τ (5.16)

where the sum is over primary and descendant fields in the fusion spectrum S of the two spin
fields. This spectrum is a priori unknown. Separating the contributions of scalar fields and fields
with spin s = ∆− ∆̄ we get:

〈V∆σ (w)V∆σ (0)〉τ =
1

|w|4∆σ

{ ∑
∆=∆̄

D(∆)
σ,σ

∣∣∣∣wN
∣∣∣∣2∆
〈V∆,∆〉τ

+
∑

∆−∆̄>0
D(∆)
σ,σ

((
w

N

)∆ ( w̄
N

)∆̄
〈V∆,∆̄〉+

(
w

N

)∆̄ ( w̄
N

)∆
〈V∆̄,∆〉τ

)}
.
(5.17)

Writing the complex coordinate w = r eiθ and using that 〈V∆,∆̄〉 = 〈V∆̄,∆〉:

〈V∆σ (w)V∆σ (0)〉τ =
1

r4∆σ

{ ∑
∆=∆̄

D(∆)
σ,σ〈V∆,∆〉τ

(
r

N

)2∆

+
∑

∆−∆̄>0
D(∆)
σ,σ2 cos (θ[∆− ∆̄])〈V∆,∆̄〉τ

(
r

N

)∆+∆̄ } (5.18)

so we can write:

p12(w) =
d
(2)
0

r4∆σ

∑
∆−∆̄≥0

D(∆)
σ,σ (2− δ∆,∆̄) cos (θ[∆− ∆̄])〈V∆,∆̄〉τ

(
r

N

)∆+∆̄
. (5.19)

The behaviour of the two-point connectivity depends therefore on two geometrical parameters:
the aspect ratio through the dependence of the one-point functions on the modular parameter q:
〈V∆,∆̄〉 = 〈V∆,∆̄〉q=e−2πM/N (see Section 2.3), and the angle θ at which the connectivity is measured.
When M = N , the system is isotropic. Every direction being equivalent, the connectivity does
not depend on θ. Indeed on the square torus the non-scalar contributions vanish since:

〈V∆,∆̄〉q=e−2π
∆ 6=∆̄
= 0 (5.20)

by rotational invariance. TakingM 6= N amounts to introduce anisotropy: how much is measured
by the contributions of the fields with spin. This is clearly seen by considering the connectivity
measured in a direction perpendicular to w ie w⊥ = iw = rei(θ+π/2). The difference of the two
connectivities is:

p12(w)− p12(w
⊥) =

d
(2)
0

r4∆σ

∑
∆−∆̄>0

D(∆)
σ,σ2

(
cos (θ[∆− ∆̄])

− cos ([θ+ π/2][∆− ∆̄])
)
〈V(∆)〉

(
r

N

)∆+∆̄
(5.21)
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in which the contributions of scalar fields cancel out. Note that, for all aspect ratios this difference
must also vanish when θ = π/4, since in that case the two perpendicular directions are equivalent:
p12

(
r√
2 (i+ 1)

)
= p12

(
r√
2 (i− 1)

)
∀r. From (5.21) this implies that only fields with ∆− ∆̄ =

2k, k ∈ Z give a non-zero contribution to p12. Hence we have:

p12(w) =
d
(2)
0

r4∆σ

∑
∆−∆̄=2k
k≥0

D(∆)
σ,σ (2− δ∆,∆̄) cos (θ[∆− ∆̄]) 〈V(∆)〉

(
r

N

)∆+∆̄
(5.22a)

p12(w
⊥) =

d
(2)
0

r4∆σ

∑
∆−∆̄=2k
k≥0

D(∆)
σ,σ (2− δ∆,∆̄)(−1)

∆−∆̄
2 cos (θ[∆− ∆̄]) 〈V(∆)〉

(
r

N

)∆+∆̄
(5.22b)

and

p12(w)− p12(w
⊥) =

d
(2)
0

r4∆σ

∑
∆−∆̄

=2mod4

D(∆)
σ,σ4 cos(θ[∆− ∆̄])〈V(∆)〉

(
r

N

)∆+∆̄
. (5.23)

We know that the first dominant field contributing to (5.22a) must be the identity, in order to
get back the plane limit (5.15). From assumption 3 the next dominant primary field in the fusion
spectrum S with non-zero one-point function5 is the energy field:

p12(w) =
d
(2)
0

r4∆σ

(
1 +Dε

σ,σ〈Vε〉
(
r

N

)2∆ε
+ · · ·

)
. (5.24)

This assumption is motivated by what has been observed in [46, 51] for the Q−state Potts model,
and in particular in the pure percolation limit Q→ 1.
The numerical results obtained for the exponent of the first topological correction confirm this
assumption for H . −1/2 as shown in Figure 3.5 of the article. This is a non-trivial piece of
information: which fields enter the connectivity fusion is not an easy question, as we discussed
in the case of the Potts model in Chapter 4. For greater H, as discussed in the article, strong
non-universal effects prevent an accurate numerical analysis of the connectivity (5.22a).
But first and foremost, measuring (5.23) allows to test conformal invariance. Indeed, if the
identity belongs to S, then also its descendants must appear in the expansion (5.22a). Two very
important descendants of the identity are the level 2 descendants L−2Id and L̄−2Id: the stress-
energy tensor fields T and T̄ . By their very definition they represent the most direct manifestation
of conformal invariance. They also probe the anisotropy of the system, since they are the (non-
scalar) fields with the lowest possible dimension ∆ + ∆̄ = 2, and provide the dominant term in
(5.23):

p12(w)− p12(w
⊥) =

d
(2)
0

r4∆σ
42∆σ
c

cos(2θ)〈T 〉τ
(
r

N

)2
+ · · · (5.25)

where we have replaced DT
σ,σ = 2∆σ

c . The above equation tells us that we can check numerically
both the dimension and the spin of the first contribution, by determining the exponent and
coefficient of the first r/N term, and the behaviour of the latter with θ. Of course, even if the

5 Fields whose one-point function vanishes for symmetry reasons could indeed belong to S but not contribute to
the connectivity, cf. Chapter 4.
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stress tensors are present, numerical fits of the connectivity difference to the form (5.25) might
give an effective exponent different from 2 if the higher order terms · · · are not negligible. We
assume that the higher order corrections come from the next descendants of the identity, as is
the case for pure percolation. To contribute they must have spin ∆− ∆̄ = 2 mod4 = 2, 6, · · · . As
shown in the Table below, the only such descendants up to order 6 are L−6Id, L−4L−2Id and
L−4L̄−2Id, L2

−2L̄−2Id as well as their antiholomorphic partners.

Y Ȳ Y + Ȳ Y − Ȳ
2 2 4 0
4 0 4
6 0 6
4 2 6 2
3 3 0

Table 5.1: Descendants of the identity are of the type L−k1 · · ·L−knL̄−k̄1 · · · L̄−k̄nId with
∑
ki

= Y and∑
k̄i

= Ȳ . The ones which can contribute to (5.25) have spin Y − Ȳ = 2, 6 (we exclude
Y , Ȳ = 1 since the identity is degenerate at level 1 and Y , Ȳ = 3 since L−3Id ∝ L−1L−2Id
whose one-point function vanishes, see (2.36,2.37).)

From (5.23) we then get:

p12(w)− p12(w
⊥) =

d
(2)
0

r4∆σ
4

2∆σ
c

cos(2θ)〈T 〉τ
(
r

N

)2

+ (a6 cos(6θ) + a2 cos(2θ))
(
r

N

)6


(5.26)

with

a6 = DL−6Id
σ,σ 〈L−6Id〉+DL−4L−2Id

σ,σ 〈L−4L−2Id〉 (5.27a)

a2 = DL−4L̄−2Id
σ,σ 〈L−4L̄−2Id〉+D

L2
−2L̄−2Id

σ,σ 〈L2
−2L̄−2Id〉. (5.27b)

Taking into account these higher order term in the numerical fits, the results obtained confirm
beautifully the cos(2θ) dependence of the order 2 term, as shown in Figure 3.7 in the article.
The order 6 term fairly agrees with the predicted θ dependence (5.26), though numerical preci-
sion is difficult to achieve for these subleading corrections (see Figure 3.8). Moreover, although
numerical study of the connectivity (5.22a) is difficult for H > −1/2 as mentioned above, the
non-universal effects cancel out in the difference (5.23), making the above analysis possible on
the whole range of H6. Our assumptions, the CFT prediction and the numerical results are
thereby self-consistent and establish the conformal invariance of the line H ∈ [−1, 0[.

5.4 the cft of percolation of random surfaces

Exploiting the θ dependence of the torus connectivity allowed to establish conformal invariance.
Further information can be extracted from its M/N dependence, through the behaviours of the

6 When H becomes very close to zero however it becomes difficult to evaluate precisely the percolation threshold.
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stress-energy tensor and the energy field one-point functions. In Section 5.4.1 we show that from
the former we can access the low-lying spectrum of the theory. In Section 5.4.2 we show that
the energy field is not degenerate. In Section 5.4.3 we discuss the numerical estimates obtained
for quantities involving the central charge and the energy structure constant. Finally in Section
5.4.4 we show that for H ∈ [−1,−3/4] the numerical data for the two-point connectivity agrees
perfectly with the predictions of pure percolation. This strengthens the conjecture [53] that the
system is described by the pure percolation universality class for this range of H.

5.4.1 The spectrum

From (5.26), the behaviour of the quantity d(2)0
2∆σ
c 〈T 〉τ with τ can be obtained by measuring

the connectivity difference on torii of different aspect ratios, at fixed value of θ (taken to be zero
for convenience, see Section 3.3 of the article for the numerical details). From general conformal
field theory on the torus we know that the stress-energy tensor one-point function, viewed as
a function of the elliptic nome q, is related to the torus partition function (cf. (2.56)). It is
thereby related to the spectrum of the theory. If this latter is discrete, 〈T 〉τ can be expanded as
in equation (5.28):

〈T 〉τ = (2π)2
c

24 + n∆,∆̄
(
c

24 − ∆
)
q∆q̄∆̄ + · · ·

1 + n∆,∆̄q
∆q̄∆̄ + · · ·

= (2π)2
(
c

24 − n∆,∆̄∆q∆q̄∆̄ + · · ·
)

(5.28)

∆, ∆̄ are the dimensions of the lowest-lying field V∆,∆̄ (besides the Identity), which has general
multiplicity n∆,∆̄ ∈ R. Measuring directly this one-point function on a thin torus q → 0 (namely,
a cylinder) would give an estimate of the central charge. This is possible for instance when a
lattice representation of the stress-energy tensor is available, which is not the case here. The
quantity we access through the connectivity (5.26) is

d
(2)
0

2∆σ
c
〈T 〉τ = d

(2)
0

(2−Df )π
2

6

(
1− 24∆

n∆,∆̄
c
q∆q̄∆̄ + · · ·

)
(5.29)

and unfortunately the central charge drops from the dominant term. The numerical fits of this
quantity as a function of q show that the first low-lying state has dimension ∆ = ∆σ (Figure 3.16
of the article), at least in the range of H where the fractal dimension is Df = Dpure

f (cf. Figure
5.2). In the range of H where this dimension changes, the numerics are not accurate enough
to give a prediction. This is actually to be expected if the dominant contribution in (5.29) is
indeed given by Vσ for all H: when H approaches zero, the fractal dimension approaches 2, and
∆σ =

2−Df
2 goes to zero.

Note that this result is consistent with assumption 3 that the spectrum is the one of pure
percolation, while relying only on assumptions 1 and 2.

5.4.2 Non-degeneracy of the energy field

In the CFT of pure percolation, the energy field is degenerate: Vε = V quot
(1,2) (cf. previous chap-

ter). In this section we argue that our numerical results for the correlated percolation problem
are incompatible with such degeneracy. Indeed let us suppose that the energy field is degener-
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ate: Vε = V quot
(1,2) . Then the only contribution to its one-point function is given by a field with

dimension ∆0,1/2 (cf. Section 4.3.1 in the previous chapter):

〈V quot
(1,2) 〉τ = (2π)2∆(1,2)n∆0, 1

2
D

(0, 1
2 )

(0, 1
2 ),(1,2)quotq

∆0, 1
2 q̄

∆0, 1
2 + o

(
q

∆0, 1
2 q̄

∆0, 1
2

)
(5.30)

with the higher order terms coming from the q expansion of 1/Z(q, q̄) in (4.34). Taking q = q̄ =

e−2πM/N this one-point function behaves as:

log〈V quot
(1,2) 〉τ ∼ log

[
(2π)2∆(1,2)n∆0, 1

2
D

(0, 1
2 )

(0, 1
2 ),(1,2)quot

]
+ 2∆0, 1

2
log q. (5.31)

Namely in a log-log plot it should have slope 2∆0, 1
2
. Now, if ∆ε = ∆(1,2), using that:

∆ε = 1− 1
2ν = 1 + H

2 , (prediction [53]) (5.32)

∆(1,2) = −
1
2 +

3
4β
−2, (degenerate dimension (0.8c)) (5.33)

we can directly solve for β and relate the central charge to H as:

c = −6 + 11H + 4H2

3 +H
. (5.34)

Then the central charge would vary continuously for H ∈ [−3/4, 0] as shown in Figure 5.3.

−1 −0.8 −0.6 −0.4 −0.2 0

−2

−1.5

−1

−0.5

0

H

c

Figure 5.3: Behaviour of the central charge with H, under the assumption that ∆ε = ∆1,2 for all H.

This implies that ∆0,1/2, being a continuously varying function of the central charge:

∆0, 1
2
=

1
2

(
1− 3

8β
−2 − 1

2β
2
)

(5.35)

should change continuously with H > −3/4, so that the slope in (5.31) should change upon
increasing H. This is not what we observe numerically. Indeed, by measuring (5.24) on torii of
different aspect ratios, we obtain the behaviour of 〈Vε〉τ with q. It follows the CFT prediction
for a generic one-point function (2.20), namely:

log〈Vε〉τ ∼ a+ 2∆ log q (5.36)
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as shown in Figure 3.10 of Article IV, where ∆ is the most dominant dimension in the expansion
(2.20). For the range of H accessible to numerical analysis of the connectivity, H ∈ [−1,−1/2],
we find that the slope 2∆ is given by 2∆ = 2 −Df = 2∆σ (Table 3.11 of Article IV) and
is in particular constant for −3/4 < H . −1/2, consistently with Figure 5.2. This result is
incompatible with 〈Vε〉τ being given by (5.30) and hence the energy field is not degenerate.
This is an important result: we have seen in Chapter 4 that the presence of the degenerate field
V quot
(1,2) in the spectrum of the Potts model leads to shift relations between the structure constants.

Having in mind that these two families of models originate from the pure percolation point by
introducing long-range correlations (Figure 5.1), it would be interesting to understand what
preserves the degeneracy in one case, and destroys it in the other. In particular, is degeneracy
of the energy field related to the integrability of the model ?

5.4.3 More numerical results and how to go further

In the preceeding sections we analysed the behaviours of 〈T 〉τ and 〈Vε〉τ with q, through the
exponent of the dominant term in the q expansion. A byproduct of this analysis is the obtention
of the associated coefficients: from the stress-tensor contribution we obtain the ratio nσ/c (cf.
(5.29)), and from the energy contribution we obtain nσ

[
Dσ
σ,ε

]2
(cf. equation (2.14) of Article

IV). The values for the accessible range of H are given in Tables 3.18 and 3.12 of Article IV.
In Figure 5.4a we report the numerical values of c/nσ for different Hs. It is intriguing that,
despite the numerical errors this ratio seems to stay fairly constant with H in that interval. For
comparison we plot in Figure 5.4b the same ratio for the Q−Potts model. It seems that both
central charge and spin multiplicity nσ vary in a way that their ratio has a small dependence
on H, at least in the range which has been analysed. In any case, this asks for a more thorough
and accurate investigation, and especially for a direct estimation of the central charge, in the
whole range of H.
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Figure 5.4: Left: numerical estimates of the ratio c/nσ. The blue cross corresponds to the exact value
for pure percolation obtained as the limit Q→ 1 of the Potts model in Article II. Right: the
same ratio in the Potts model, where the multiplicity n0,1/2 = Q− 1 (cf. Section 4.1.1).



172 percolation of random surfaces

In Figure 5.5 we report the numerical values of Table 3.12 for the quantity
[
Dε
σ,σ

]2
nσ. They are

obtained from the behaviour of the coefficient of the dominant correction in (5.24) with q:

Dε
σ,σ〈Vε〉τ = (2π)2∆εnσ

[
Dε
σ,σ

]2
q2∆σ + o

(
q2∆σ

)
(5.37)

The structure constant Dε
σ,σ and the multiplicity nσ appear as a product in this coefficient, so

that we cannot estimate them separately from measurements of Dε
σ,σ〈Vε〉τ . However, in prin-

ciple one can measure directly the one-point function 〈Vε〉τ , which has an interpretation in
terms of occupation probability (see for instance Section 5.3 in Article II). Taking the ratio[
Dε
σ,σ〈Vε〉τ

]
from p12

/ [〈Vε〉τ ]direct, one obtains Dε
σ,σ. This allows then to estimate nσ from the

values in Table 3.12. Importantly, from the values of nσ/c in Table 3.18 one can obtain a rough
estimate of the central charge for different Hs.
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σ σ
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] 2 n σ

Figure 5.5: Numerical values from Table 3.12 of Article IV. The blue cross is the pure percolation value
obtained as the Q→ 1 limit of the exact formula for the Potts model, (4.5) in Article II.

5.4.4 Regime of irrelevant correlations

The fact that for H ∈ [−1,−3/4] the system is described by the pure percolation universality
class has been tested at the level of critical exponents, by numerical estimation of ν and Df

[54, 116–119, 129]. Nevertheless, although the numerical results for these two exponents show
convincingly that they stay equal to their pure value (see for instance Figure 4 in [118], Figure
4 (a) in [116] and Figure 8 in [129]), it is less clear of other critical exponents such as the
fractal dimensions of the boundaries [116, 126]. In [126] it is even conjectured, on the basis of
the numerical results, that the fractal dimension of the complete perimeter of the percolating
cluster varies continuously for H ∈ [−1, 0].
On the other hand the results on the two-point torus connectivity give strong evidence that
the random clusters belong to the pure percolation universality class. They represent a test at
the level of highly non-trivial data of the CFT. In particular, the first term in the s-channel
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expansion (5.24) is known exactly from the limit Q → 1 of the connectivity in the Q−Potts
model [51]:

p12(r,M = N) =
d
(2)
0

r
5

24

1 + (2π)
5
4π
√

3
(

4
9

Γ( 7
4 )

Γ( 1
4 )

)2

e−
5π
24

(
r

N

) 5
4
+ · · ·

 . (5.38)

This expression involves notably the limit Q→ 1 of the quantity nσ
[
Dε
σ,σ

]2
. In Figure 5.6a we

show the numerical data of the connectivity for Hurst exponent −1 < H < −3/4. The agreement
with the prediction (5.38) is excellent7. By comparison, when H > −3/4 a significant deviation
from (5.38) is found, as shown in Figure 5.6b. The behaviour is consistent with the fact that the
exponent of r/N increases.
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Figure 5.6: Left: numerical data for Hurst exponent H = −7/8 ∈]− 1,−3/4]. Right: numerical data for
Hurst exponent H = −2/3 > −3/4, where the first topological correction is of order (r/N)

4
3 .

In both figures the black curve gives the prediction (5.38) from the CFT of pure percolation.

5.5 the three-point connectivity

The results of the previous sections are based on full exploitation of the information contained
in the torus two-point connectivity. The three-point function on the plane is also an important
quantity since it is constrained by global conformal invariance to the form (1.59). It follows that
the ratio:

R(w1,w2,w3) =
p123(w1,w2,w3)√

p12(w1,w2)p23(w2,w3)p13(w1,w3)
(5.39)

7 Further agreement could be found for the rightmost point by computing expansion (5.38) to the next order, ie
order 6.
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becomes constant in the plane limit and is proportional to the structure constant of three
connectivity fields Dσ

σ,σ:

R(w1,w2,w3)
plane limit→ d

(3)
0[

d
(2)
0

]3/2D
σ
σ,σ. (5.40)

This ratio was studied for instance to determine the constant Dσ
σ,σ of the Potts model [75] (cf.

Introduction of Chapter 4). This was made possible by the fact that for the Potts model [76]:

d
(3)
0 =

[
d
(2)
0

]3/2
. (5.41)

The ratio (5.39) was also studied in [130] to show numerically the global conformal invariance
of a loop ensemble defined on rough surfaces driven by KPZ dynamics. The constant was shown
numerically to coincide with the pure percolation one: d(3)0 /

[
d
(2)
0

]3/2
Dσ
σ,σ =

√
2Cσσ,σ (cf. Section

4.2). Hence in that case too (5.41) seems to be verified. Therefore, in these two models the ratio
(5.39) is an universal quantity.
It turns out that (5.41) does not hold for the percolation of random surfaces, as shown in Figure
5.7a. This implies that unfortunately one cannot measure Dσ

σ,σ in this way. The ratio (5.39)
is nonetheless an interesting object. Indeed, because of the strong non-universal effects in the
two-point connectivity, less results were obtained in the regime of H where the fractal dimension
changes (H & −1/2). These effects are also present in the three-point connectivity, but cancel
in the ratio (5.39) as is visible in Figure 5.7b. This ratio can then be used to carry out a similar
analysis as the one described in Section 5.4.

M = N = 211
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Figure 5.7: Ratio (5.39) measured for w1,w2,w3 at the vertices of an isosceles triangle with w12 = w13 = r.
Left: R is measured for two values of H < −3/4 where the system should be in the pure
percolation universality class. There is a significant increase when H 6= −1. Right: the Hurst
exponents are greater than −1/2, where non-universal effects in the two- and three-point
connectivities are strong.

Indeed from the analysis of the topological corrections of the ratio R, one can obtain the same
information as from the two-point connectivity. The points are taken to be at the vertices of an
isosceles triangle:
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w1 = 0
w2 = r eiθ

w3 = ir eiθ

w12 = −r eiθ

w13 = −r ei(θ+
π
2 )

w23 = r
√

2 ei(θ−
π
4 )

From the general expressions (2.66) and (2.81) and proceeding as in Section 5.3, we get:

p12(r, θ) =
d
(2)
0

r4∆σ

(
1 + a(2)ε

(
r

N

)2∆ε
+ 2 cos(2θ)a(2)T

(
r

N

)2
+ · · ·

)
(5.42a)

p13(r, θ) =
d
(2)
0

r4∆σ

(
1 + a(2)ε

(
r

N

)2∆ε
− 2 cos(2θ)a(2)T

(
r

N

)2
+ · · ·

)
(5.42b)

p23(r, θ) =
d
(2)
0

(
√

2 r)4∆σ

1 + a(2)ε

(√
2 r
N

)2∆ε

+ 2 sin(2θ)a(2)T

(√
2 r
N

)2

+ · · ·

 (5.42c)

p123(r, θ) =
d
(3)
0

(
√

2 r3)2∆σ

Dσ
σ,σ + a(3)ε

(√
2 r
N

)2∆ε

+ 2 sin(2θ)a(3)T

(√
2 r
N

)2

+ · · ·

 .

(5.42d)

The coefficients a(2), a(3) are given by (2.68, 2.78):

a
(2)
V = DV

σ,σ〈V 〉τ (5.43a)

a
(3)
V ∼ D

σ
σ,σD

V
σ,σ2−∆σ〈V 〉τ , (5.43b)

where we took into account only the dominant contribution in (5.43b). Note that the contribution
of the stress-tensor (and of any non-scalar field) drops from p23 and p123 when θ = 0 modπ2 ,
consistentely with the arguments given in Section5.3. Taking the ratio (5.39) and expanding in
r/N we obtain at dominant orders:

R(r, θ) = d
(3)
0[

d
(2)
0

]3/2D
σ
σ,σ

1+Dε
σ,σ〈Vε〉τ

(
2∆ε−∆σ − 1− 2∆ε−1

)( r

N

)2∆ε

+2 sin(2θ) 2−Df

c
〈T 〉τ

(
21−∆σ − 1

)( r

N

)2
+ · · ·

.

(5.44)

At θ = 0 one should be able to determine Dε
σ,σ〈Vε〉τ with good precision, since the contribution

of T vanishes so that the next correction is of order higher than 2. Conversely, taking:

R(r, θ)−R(r, θ+ π

2 ) =
d
(3)
0[

d
(2)
0

]3/2D
σ
σ,σ × 42−Df

c
〈T 〉τ

(
21−∆σ − 1

)
sin(2θ) (5.45)

at say, θ = π/4 one obtains 〈T 〉τ . Measuring these quantities as functions of the aspect ratio
one can follow the same analysis as in Section 5.4.3. and thereby explore the line −1/2 ≤ H < 0.
It would be especially interesting to see wether nσ/c shows variation in this range of H.
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5.6 conclusion

We have developed a new method to analyse a percolation-type transition, based on the exploita-
tion of the topological corrections to the two-point connectivity. This method allows to directly
test conformal invariance of the random clusters measure. In addition we obtain information on
the underlying CFT. Applying this method to the percolation of random surfaces we showed that
the clusters are conformally invariant. We obtained the first features of the (almost completely
unknown) underlying CFT, beyond the critical exponents.
In the range H ∈ [−1,−3/4], the numerical measurements of the connectivity show excellent
agreement with the predictions of the CFT of pure percolation. This gives strong support to
the conjecture that the system is described by the pure percolation universality class for these
values of H. Indeed it is not only true concerning the thermal and magnetic exponents, but also
at the level of finer CFT data, through quantities involving the spin multiplicity and the energy
structure constant.
The main results in the range of H where correlations become relevant are that the low-lying
states in the spectrum stay the same as in pure percolation, and that the energy field becomes
non-degenerate. Further work, based on direct measurement of the energy one-point function,
could permit to evaluate the central charge, the spin multiplicity and the energy structure con-
stant separately. Obtaining estimates of the central charge for different values of H is especially
crucial. It would allow notably a comparison with the values of the central charge that one can
compute from the values of the diffusion coefficient κ obtained in [126, 127].

Solving completely this new CFT appears as an extremely difficult task, given that the CFT of
pure percolation is still not fully solved today. In particular, the non-degeneracy of the energy
field let us foresee that the relations between the structure constants, which proved crucial in
understanding the pure percolation CFT (cf. previous chapter), are absent here. Nevertheless,
there are a number of interesting aspects which can be explored without the need of a complete
CFT solution.
First the model offers another example of a statistical system where a non-local quantity –
the connectivity– is given by a correlator of local fields in a (conformal) quantum field theory.
Understanding what features of a system make this relation hold is a vast open question. We
learn from this model that integrability is not a necessary condition.
It also offers an example where the ratio of three- to two-point connectivities is not universal.
This is quite unexpected from what has been observed in other models, belonging to the Potts
universality class.
Of particular importance is the intriguing property that the bulk fractal dimension Df seems
to be superuniversal, ie. remains the same in different universality classes, up to some threshold
value H ∼ −1/2. Understanding if this is really the case and how such behaviour arises are
open problems in their own right. Even more puzzling are the facts, indicated by the previous
numerical results [116, 126, 127], that the fractal dimensions of the boundaries of the percolating
cluster seem to vary continuously as soon as correlations are turned on (H > −1), and that their
values seem to coincide with the fractal dimensions of the Potts clusters boundaries [41]. In this
chapter we have given arguments that the statistical properties of the interior of the clusters are
not given by the Potts universality class, and one can wonder wether the same CFT describes
both the interior and the boundaries of these clusters.
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At a more general level it remains to be understood what features make models with the same
asymptotic decay of correlations fall into disctinct universality classes. As an example, the nodal
clusters (level clusters at level zero) of the vorticity field of a turbulent fluid [107], or the ones of
random wavefunctions of chaotic systems [109, 131] belong to the pure percolation universality
class, although the decay of correlations in these models correspond to values of H > −3/4.
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Abstract

We consider discrete random fractal surfaces with negative Hurst exponent H < 0. A
random colouring of the lattice is provided by activating the sites at which the surface
height is greater than a given level h. The set of activated sites is usually denoted as
the excursion set. The connected components of this set, the level clusters, define a
one-parameter (H) family of percolation models with long-range correlation in the site
occupation. The level clusters percolate at a finite value h = hc and for H ≤ −3

4 the
phase transition is expected to remain in the same universality class of the pure (i.e.
uncorrelated) percolation. For −3

4 < H < 0 instead, there is a line of critical points
with continously varying exponents. The universality class of these points, in particular
concerning the conformal invariance of the level clusters, is poorly understood. By com-
bining the Conformal Field Theory and the numerical approach, we provide new insights
on these phases. We focus on the connectivity function, defined as the probability that
two sites belong to the same level cluster. In our simulations, the surfaces are defined
on a lattice torus of size M × N. We show that the topological effects on the connec-
tivity function make manifest the conformal invariance for all the critical line H < 0.
In particular, exploiting the anisotropy of the rectangular torus (M 6= N), we directly
test the presence of the two components of the traceless stress-energy tensor. Moreover,
we probe the spectrum and the structure constants of the underlying Conformal Field
Theory. Finally, we observed that the corrections to the scaling clearly point out a break-
ing of integrability moving from the pure percolation point to the long-range correlated
one.
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1 Introduction

The percolative properties of random fractal surfaces have been studied for a long time [1–
4]. The universality class of their critical points remains a very active subject of research in
the mathematical [5–7] and in the theoretical physics [8] communities, mainly because they
challenge our understanding of both the emergence of conformal symmetry and of the way
this symmetry is implemented.
Let us consider a random stationary function u(x) on a lattice u(x) : Z2→ R which satisfies:

E [u(x)] = 0, E
�
(u(x)− u(y))2

�∼ C(H) |x− y|2 H (|x− y|>> 1) , (1)

where E [· · · ] is the average over the instances of u(x), the symbol ∼ stands for asymptotically
equivalent and C(H) is some constant depending on H. The number H, H ∈ R, is the surface
roughness exponent [9], also known as Hurst exponent. The fractional Gaussian surfaces [7]
that we consider here, see (4) below, is a class of random surfaces which satisfy the above
properties. For positive H > 0, the function u(x) is a fractional Brownian surface with un-
bounded height fluctuations, E

�
u(x)2

�
=∞. The fluctuations remain unbounded also for

H = 0 in which case the covariance decreases logarithmically, E [u(x)u(0)] ∼ − log |x|. For
negative exponent H < 0, u(x) is a long-ranged correlated surface with bounded fluctuations,
E
�
u(x)2

�
<∞.

A random partition of the lattice is obtained by setting a level h, h ∈ R, and by declaring that
a site x is activated (not activated) if θh(x) = 1 (θh(x) = 0), where θh(x) : Z2→ {0, 1}:

θh(x) =

¨
0, u(x)< h

1, u(x)≥ h.
(2)

A site is therefore activated with probability p(h):

p(h) = E [θh(x)] , (3)

2
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where we use the translational invariance in law. The set of activated points is usually known
as the excursion set [10]. The study of the connected components of the excursion set, here-
after referred to as level clusters, defines a site percolation model [8, 11]. For general values
of H there is a finite value of h= hc > −∞ below which a level cluster of infinite size is found
with probability one [12]. This is the percolation critical point. Note that the characterisation
of the class of random fields which permit percolation has been given in [2, 13, 14]. Close
to the critical point, the main scaling behaviours are described by two critical exponents, the
correlation length ν and the order parameter β exponents [11]. In particular, they determine
the scaling of the hc width distribution with the size of the system, see (56), and the Hausdorff
dimension Df of the level cluster, Df = 2−β/ν. For H > 0, due to unbounded fluctuations of
u(x) and to the strong correlations, the level clusters are compact (i.e. without holes) regions
with fractal dimension Df = 2. The exponent ν is infinite ν =∞, as one can see from the
fact that the hc width distribution remains finite in the thermodynamic limit (self-averaging is
broken) [12]. At H > 0 the transition is not critical. At the point H = 0, the fluctuations of the
surface remain unbounded and the fractal dimension remains Df = 2, as argued in [15] and re-
cently proven in [16,17] for the Gaussian free field. For negative roughness exponent instead,
the surface fluctuations are bounded, the correlation length exponent ν is finite (ν <∞) and
a genuine continous transition of percolation type occurs. Correspondingly, the level clusters
have a richer fractal structure with Df < 2.
In this paper we consider random surfaces with negative roughness exponent. If not stated
otherwise, we take H < 0 henceforth. We generate a fractional Gaussian process on a flat
torus of dimension M × N . The surface u(x) takes the form

u(x)∝
∑

k

λ
− H+1

2
k ŵ(k) ei k x. (4)

In the above equation λk and ei k x are respectively the eigenvalues and the eigenvectors of
the discrete Laplacian operator ∆xu(x) =

∑
y,|y−x|=1 (u(y)− u(x)) on the flat torus, and the

ŵ(k) are independent normally distributed random variables. The basic idea is to obtain cor-
related variables by convoluting uncorrelated ones. For H = 0 the function u(x) is the discrete
two-dimensional Gaussian free field on the torus. The role of open boundary conditions in
one-dimensional fractional Gaussian processes is discussed in [18–20]. We generate also a
second type of long range correlated random surface where the ŵ(k) are drawn by a different
distribution. Full details on how we generate the surfaces are given in Appendix A.
The probability of activating two distant sites inherits the long-range correlation of the random
surfaces:

E [θh(x)θh(y)]− p(h)2 ∼ C ′(H)|x− y|2H (|x− y| →∞), (5)

where C ′(H) is some constant depending on H and on the chosen distribution. For H = −1 the
surfaces we generate are an instance of the two-dimensional white noise where the probabili-
ties of activating two different sites are uncorrelated (C ′(−1) = 0 in the above equation). The
point H = −1 corresponds therefore to the pure percolation point. In Figure 1 we show in-
stances of the surfaces (4) and the corresponding excursion set and level clusters at the critical
point.

3
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Hurst
Exp.

Fractional Gaussian Surface Excursion Set at hc Level Clusters

−7/8

−5/8

−2/8

Figure 1: Instances of the fractional Gaussian surfaces (4) for
H ∈ {−7/8,−5/8,−2/8}, generated on a M×N square lattice with M = 2N , N = 26.
The excursion sets (white points) corresponding to level h = hc from Table 10 are
shown in the second column, while the third column shows the level clusters. The
yellow points in the third column are the points belonging to the percolating level
cluster. Note that by increasing H, i.e. the correlation, the level clusters have less
holes. This is consistent with the prediction that the fractal dimension Df → 2 for
H → 0−.

The common understanding is that the percolating universal properties only depend on the
asympotic behaviour of the covariance (1) and therefore on H. In [21] an extended Harris
criterion was proposed, according to which the universality class remains the one of pure
percolation for H < −3/4. Recent new arguments, based on the fractal dimension of the
pivotal points support this prediction [22,23]. The exponents ν and Df are expected to be

ν= νpure =
4
3

, Df = Dpure
f =

91
48

, for H ≤ −3
4

, (6)

where νpure and Dpure
f are the pure percolation (H = −1) exponents. The fact that the system

behaves as pure percolation for H < −2 was put on more rigorous grounds by [5, 24]. For
−3/4 < H < 0 instead, the slower decay allows the correlation to change the large distance
behaviour of the system, as was also argued in [3]. In particular, it was shown in [21] that
there is a new line of critical points with an exponent ν= νlong which varies continuously with
H:

ν= νlong = − 1
H

, −3
4
< H < 0. (7)

The above prediction was supported by many numerical works, see for instance [3, 4, 12, 25,
26]. There are no theoretical predition for Df in the range −3/4 < H < 0. In Figure 1 the
level clusters become visibly more compact by increasing the value of H. One can expect then
Df to increase when H → 0−. Even if the numerical results are not conclusive about the value

of Dlong
f , there are strong evidences that [12,25–27]:

Df = Dpure
f for H ≤ −1

2
, and Dpure

f < Df < 2 for − 1
2
< H < 0. (8)

In Appendix B, we numerically compute Df . The results, summarised in Table 12, support the
above scenario. The following diagram summarises the actual state of the art:

4
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H

ν, Df

ν= νpure = 4
3 ν= νlong = − 1

H

ν=∞

Df = Dpure
f = 91

48

Df = 2

Pure percolation, RG arguments [21]

Line of new critical points [21]

−2 −1 −3
4

0−1
2

Figure 2

We stress the fact that the results mentioned above are based on the assumption that the
kernel has a definite sign at large distances. For other important classes of random functions,
this is not true anymore. This is the case for instance of the random plane wave [28]: this
random function has an oscillating kernel which decays with an exponent H = −1/4, and the
universality class of its percolation transition is conjectured to be the one of pure percolation
[29].
Most of the results on critical pure percolation have been discovered by using conformal in-
variance [30]whose emergence has been rigourously proven in [31]. The values (6) have
been predicted by the conformal field theory (CFT) approach [32,33], which allowed also the
computation of the full partition function [34] and the derivation of exact formulas for cluster
crossing probabilities [35]. Contrary to statistical models with local and positive Boltzmann
weights, whose critical points are described by the unitary minimal models [36], the critical
point of pure percolation is described by a non-unitary and logarithmic CFT [37,38]. This CFT
is not fully known, but very recent results have paved the way to its complete solution [37–43].
The line of new critical points shown in Figure 2 remains by far less understood. As we will
discuss below, even the emergence of conformal invariance is debated. Moreover, if these
points are conformal invariant we expect that the corresponding CFT does not coincide with
any of the known solutions, due to the highly non-local nature of the lattice model. This will
be indeed confirmed by the results presented in this paper.

Recent numerical results have shown the emergence of conformal invariance [44], while
in [45], where a random surface with H = −2/3 was considered, conformal symmetry has been
ruled out. These papers check if the boundary of the percolation level cluster is described by a
Stochastic Loewner Evolution (SLE) process [46]. The SLE numerical tests are in general very
subtle and, in some cases not conclusive, as argued for instance in [47]. Moreover we observe
that, in case of a positive SLE test as in [44], one expects the boundaries of the level clusters
to be described by the loops of the O(n)models either in their dense or critical phases [48]. In
these models, the fractal dimensions of the loops Db and of their interior Df vary with n [49].
For instance, in the O(n) dense phase, they are related by Df = Db(2−3Db)/(4(1−Db)). This

5
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scenario is not consistent with the numerical findings for the level clusters of long-range corre-
lated random surfaces, as can be directly seen from the fact that Df does not show significant
variation for −3/4 < H < −1/2 while Db does [44]. Moreover, we provide further evidences
that the line −3/4 < H < 0 is not the one of the O(n) models. This point illustrates the fact
that many fundamental questions remain open.

Our objective is to test conformal invariance and to extract new information about these
critical points. We use a completely different protocol based on the study of the level clusters
and their connectivity function. This is the probability that two sites belong to the same level
cluster, see (10). Because the random surfaces have double periodicity, the level clusters live
on a torus. For pure percolation, signatures of conformal invariance were shown to be encoded
in toric boundary conditions effects in the connectivity function [50]. These effects depend
on a non trivial combination of the two exponents ν and Df , fixed by conformal invariance.
Moreover, when the lattice is rectangular, M 6= N , a soft breaking of rotational symmetry
is introduced. Using this anisotropy, we show that the connectivity function directly probes
the existence of the two components of a traceless stress-energy tensor. The existence of this
pair of fields is the most basic manifestation of conformal symmetry. Finally, we provide the
first numerical measurements of quantities related to the conformal spectrum and structure
constants of this new conformal critical points.

In Section 2 we define the connectivity function and we give the theoretical predictions
for the toric effects. We discuss the main ideas behind the CFT approach on which these
predictions are based. In Section 3 we provide the numerical evidences on the connectivity
function. In Appendix A we provide full details on how we generate the random surfaces and
in Appendix B, on how we locate the critical percolation point and compute the exponents ν
and Df .

2 Critical two-point connectivity of level clusters

In this section we consider the two-point connectivity p12(x1,x2), referred to as simply corre-
lation function in [11]. Defining the event:

Conn(x1,x2) = x1 and x2 belong to the same level cluster, (9)

we define:
p12(x1 − x2) = E [Conn(x1,x2)] , (10)

where translational invariance in law has been taken into account. A study of two-point con-
nectivity for general Gaussian random surfaces can be found in [51] where the large h asymp-
totic behaviour of (10) has been considered. Here we are interested in the behaviour of this
probability at the critical point h= hc .

2.1 Scaling limit in the infinite plane M , N =∞
Let us consider first the regime in which toric size effects are negligeable. It corresponds to
M , N =∞, i.e. the infinite plane limit.
At the critical point, h = hc , we have p12(x) ∼ |x|−η, where η is the standard notation for
the anomalous dimension of the two-point function [11]. Percolation theory tells us that η is
directly related to the level cluster dimension Df via the scaling relation η = 4 − 2Df [52].
One has therefore:

p12(x1 − x2) =
d0

|x1 − x2|2(2−Df )
(|x1 − x2|>> 1, M , N =∞) , (11)

6
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where d0 is a non-universal constant which we evaluate numerically, see Table 1. We can
use (11) to determine Df . The corresponding values are denoted as D(2)f in Table 12. The

good agreement with the values D(1)f , obtained using the scaling of the average mass of the
percolating level cluster (see Appendix B), confirms that we are sitting sufficiently close to the
critical value hc .
In Figure 3 we show the behaviour of p12(x1 − x2) for H = −5/8. One can easily notice a
region |x1 − x2| ∈ [10,100] where the form (11) is well satisfied.

100 101 102

10−1.00

10−0.80

10−0.60

10−0.40

|x1 − x2|

p 1
2
(x

1
−x

2
)

N = M = 210

Figure 3: Two-point connectivity (10) for H = −5/8 and N = M = 210. The data
points were obtained by averaging over 105 instances of the surface and over the
N2 locations of point x1 (cf. Section 3). According to Table 10, the level h has
been set to hc = −0.1985. The continuous line shows the prediction (11) with
Df = D(2)f = 1.892, see Table 12. For distances 6< |x1 − x2|< 100 the data matches
very well with the infinite plane prediction. For larger distances, the effect of the
toric boundary conditions becomes visible.

2.2 Scaling limit in the torus: M , N <∞.

As can be seen in Figure 3, when the distance between points approaches N/2, the data points
start to deviate from the power-law behaviour: the contributions of the paths connecting the
two points on the other side of the torus become non negligeable. We say that the topological
corrections become visible. We expect these corrections to provide sub-leading |x|/N terms
in (11) of universal nature. These effects have been studied in [50] for pure percolation
(H = −1).
In the scaling limit, our system lives on a flat torus Tq of periods M and N and nome q:

Tq : q = e−2π M
N . (12)

As the connectivity between two points always depend on the vector connecting them, it is
convenient to introduce the vector x,x⊥ ∈ Tq that have polar coordinates |x| and θ :

x ∈ Tq, x= |x|(cos(θ ), sin(θ )), x⊥ = |x|(− sin(θ ), cos(θ )). (13)

We propose the following form for the scaling limit of p12 on a torus:

p12(x) =
d0

|x|2(2−Df )

�
1+ cν (q)

� |x|
N

�2− 1
ν

+ 2cT (q) cos(2θ )
� |x|

N

�2

+ o

�� |x|
N

�2��
, (14)

7
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which has been established in [50] for pure percolation and for the more general random clus-
ter Q−Potts model. The coefficients cν (q), and cT (q), given in (19), are universal coefficients
which depend only on the geometry of the torus. To explain the origin of (14) and the infor-
mation we can extract from this formula, we need to recall some basic definitions and notions
on CFT.

2.3 Basic notions of CFT

A CFT is a massless quantum field theory in which each (quantum) field V∆,∆̄(x) is charac-
terised by a pair of numbers (∆, ∆̄), called left and right conformal dimensions, which give
the scaling dimension (∆phys =∆+ ∆̄) and the spin (s =∆− ∆̄) of the field. The set of fields
entering a CFT is called the spectrum S of the theory, S = ⊕(∆,∆̄)V(∆,∆̄). The most important
landmark of conformal invariance is the existence of two fields, commonly denoted as T and
T̄ , with left-right dimensions (∆, ∆̄) = (2, 0) and (∆, ∆̄) = (0, 2). These fields are the con-
served (chiral) Noether current associated to the conformal symmetry, and they correspond to
the components of the traceless stress-energy tensor field.
In the CFT approach to statistical models, there is a correspondence between lattice operators
and fields V∆,∆̄(x). In particular, the long distance behaviour of lattice observables is described
by the correlation functions of the fields V∆,∆̄(x). Scale invariance fixes the infinite plane limit
of the two-point functions. For a spinless field V∆,∆ we have:



V∆,∆(x)V∆,∆(0)

�
q = |x|−4∆

� |x|
N
→ 0

�
, (15)

where 〈· · · 〉q denotes the torus CFT correlation function on Tq. A quantum field theory is
completely solved if we can compute all its correlation functions. For a CFT, one needs two
basic inputs: the spectrum S and the structure constants CV3

V1,V2
. The latter are real constants

associated to the amplitude with which two fields V1 and V2 fuse into a third one V3. Said in
other words, the constants CV3

V1,V2
determine the short-distance behaviour of the CFT correlation

functions which is encoded, in the CFT jargon, in the Operator Product Expansion (OPE).
Among all the fields in a CFT, a major role is played by the density energy field ε = V∆ε ,∆ε and
the magnetic (order parameter) field σ = V∆σ,∆σ , which are the (spinless) fields with the low-
est scaling dimension in the thermal and magnetic sector. Their names come from the fact that,
in a ferromagnetic/paramagnetic type transition, these are the fields which couple respectively
to the temperature and to the magnetic field. Their dimensions∆ε and∆σ give the exponents
ν and β of a critical point [53, Chapter 3]. In terms of ν and Df = (4−η)/2= 2−β/ν [11, Sec-
tion 3.3] we have:

∆ε = 1− 1
2ν

, ∆σ = 1− Df

2
. (16)

2.4 Three main assumptions

Our prediction (14) is based on three assumptions which have been verified for pure perco-
lation [50, 54]. The first two assumptions are more general and concern the fact that the
connectivity, which is non-local in nature, can be studied by correlations of local fields in a
CFT.

• 1: The system is conformally invariant in the scaling limit.

• 2: The scaling limit of the connectivity (10) is described by the two spin field torus
correlator:

p12(x) = d0 〈σ(x)σ(0)〉q . (17)

8
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The two-point function 〈σσ〉q can be expressed as an (s-channel) expansion:

p12(x) = d0 〈σ (x)σ(0)〉q

=
d0

|x|4∆σ
∑

V∆,∆̄∈S
∆≥∆̄

(2−δ∆,∆̄) C
V∆,∆̄
σ,σ



V∆,∆̄

�
q cos

�
(∆− ∆̄) θ�

� |x|
N

�∆+∆̄
, (18)

with x = |x|(cos(θ ), sin(θ )), see (13). In general, p12 does not get contributions from all the
fields in the spectrum S, since structure constants C

V∆,∆̄
σ,σ and/or one-point functions



V∆,∆̄

�
q

may vanish. We refer the reader to [50] for a detailed derivation of the above formula which
is a direct consequence of the existence of an operator algebra and of the symmetry between
the holomorphic and anti-holomorphic sectors. This latter symmetry is very natural for CFTs
without boundaries and implies that if a field with spin s > 0 enters in the spectrum, then
also its anti-holomorphic partner does, with the same physical dimension and with spin with
opposite sign −s. The expansion (18) is then valid for almost all the CFTs. The information
which characterise a specific CFT is encoded in the spectrum S and in the structure constants
C

V∆,∆̄
σ,σ . In the case of pure percolation, for instance, the spectrum is known but not the structure

constants, even if very recent progresses have paved the way to their determination [43]. The
plane limit M , N =∞ is recovered by noting that all the one-point functions



V∆,∆̄

�
q vanish

but the identity one 〈Id〉q =


V0,0

�
q = 1. One obtains p12(x) = d0|x|−4∆σ (M , N =∞). Note

that, in the infinite plane limit, one can prove for pure percolation (or more generally for the
O(n) models in their dense or critical phases) that p12 is given by the correlator of two spin
fields σ, see for instance [49,55]. The exponent η is therefore η= 4∆σ which, by (16) gives
equation (11).
It has been shown in [50] that the first dominant terms in the above series can be computed
for pure percolation. Our third assumption is motivated by a generalisation of these results to
the case of long-range percolation:

• 3: The identity field (∆ = ∆̄ = 0), the density energy density field ε and the stress-
energy tensor fields T (∆ = 2, ∆̄ = 0), T̄ (∆ = 0, ∆̄ = 2) are the fields with the lowest
conformal dimension that appear in the fusion of two fieldsσ and whose torus one-point
function does not vanish.

Using the above assumption in the expansion (18), one obtains expression (14) with the co-
efficients cν (q) and cT (q) given by:

cν (q) = Cεσ,σ 〈ε〉q , cT (q) = C T
σ,σ 〈T 〉q =

2∆σ
c
〈T 〉q , (19)

where c is the CFT central charge (which provides for instance the universal Casimir amplitude
[56]). We refer the reader to [50,54] for a detailed explication of the CFT techniques used to
study the topological effects.
Let us detail further the information one can extract from cν(q) and cT (q). The spectrum S and
some structure constants CV3

V1,V2
enter in the determination of these coefficients. For a general

CFT, the spectrum defines the torus partition function [57]:

Z(q) = q−
c

12

∑
V∆,∆̄∈S

nV∆,∆̄
q∆+∆̄, (20)

where nV∆,∆̄
is the multiplicity of the field V∆,∆̄. For small values of q, the leading contributions

to the partition function are given by the representations with the smallest physical dimensions.
The Identity field V0,0 has the lowest physical dimension 0, with nId = 1. We will assume that

9
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the sub-leading contribution to the partition function is given by a spinless field V∆,∆ with
multiplicity nV∆,∆

. For non unitary CFTs, the number nV∆,∆̄
can take general real values. This

is the case of the Q− state Potts model [34], in which the sub-dominant contribution is given
by the spin field σ with multiplicity nσ =Q− 1.
In a general CFT, one-point torus functions can be expressed in the variable q, in a way similar
to the partition function (20). As detailed in [50], the three assumptions of Section 2.4 lead
to the following form for the energy density one-point torus function:

〈ε〉q =
(2π)2∆ε

Z(q)
Cεσ,σ nσq2∆σ− c

12 (1+O(q)) . (21)

The coefficient cν(q), given by (19), can therefore be expanded in q as:

cν(q) = (2π)
2∆ε

�
Cεσ,σ

�2
nσq2∆σ + o(q2∆σ). (22)

In a similar way, using the formula [57]:

〈T 〉q = −(2π)2q ∂qlnZ(q), (23)

and expression (20) of the partition function, the coefficient cT (q) (given by (19)) admits the
following small q expansion:

cT (q) =
(2− Df )π2

6

�
1− 24∆

nV∆,∆

c
q2∆ + · · ·

�
. (24)

The above three assumptions do not put any constraint on the dimension ∆ and multiplicity
nV∆,∆

of the field giving the leading contribution to (24). For pure percolation, for which the
partition function (20) is known exactly, this leading contribution is given by the spin field σ:

cT (q) =
(2− Df )π2

6

�
1− 12(2− Df )

nσ
c

q2−Df + · · ·
�

. (25)

In that case the ratio nσ/c can be obtained as the limit Q→ 1 of the analogous expression for
the Q− Potts model. Using the fact that in this limit the central charge cQ ∼Q−1 (|Q−1| � 1),
the limit c→ 0 of nσ/c yields a finite non-zero limit, nσ/c = 4π/(5

p
3).

2.5 Numerical protocols for testing CFT predictions

We have seen that, by using a CFT approach, the topological effects on p12 encode in princi-
ple highly non-trivial information about the critical point. We discuss now how to efficiently
extract this information from a numerical study of p12 and how to interpret these results.
The torus shape can be exploited to disentangle the contributions of sub-leading and sub-sub
leading terms in (14). This can be done by comparing the connectivities p12(x2 − x1) and
p12(x3 − x1) between pairs of points x2 and x1 and x3 and x1 that are aligned on orthogonal
axes, as illustrated in Figure 4. Note that similar ideas were used in [50].
Let us consider first the square torus, M = N or q = e−2π and the case where x2 − x1 = xh

and x3−x1 = xv with xh = |x|(1, 0) and xv = |x|(0,1). As the two cycles are equivalent, one has
p12(xh) = p12(xv). From (14) and (18), p12(xh) − p12(xv) ∼
4
∑
∆−∆̄6=0 C

V∆,∆̄
σ,σ



V∆,∆̄

�
q=e−2π N−∆−∆̄, which implies



V∆,∆̄

�
q=e−2π = 0 if ∆ − ∆̄ 6= 0. In par-

ticular 〈T 〉q=e−2π = 0 and therefore:

cT (e
−2π) = 0. (26)

10
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The connectivity (14) therefore reduces to:

p12(x) =
d0

|x|2(2−Df )

�
1+ cν (q)

� |x|
N

�2− 1
ν

+ o

�� |x|
N

�2��
, for M = N . (27)

Let us consider now the rectangular torus M > N with again x2 − x1 = xh and x3 − x1 = xv .
In Figure 5 we show the corresponding measurements of p12(xh) and p12(xv) when M = 2N .
The two connectivities are now different, which is explained by the simple fact that the paths
closing on the other side of the small cycle (N) start to contribute for smaller distances than
the ones closing on the largest one (M). From (14) and for general x we have:

p12(x)− p12(x
⊥) =

d0

|x|2(2−Df )

�
4cos(2θ )

2∆σ
c
〈T 〉q

� |x|
N

�2

+ o

�� |x|
N

�2��
, (28)

where x and x⊥ are parametrised as in (13), and cT (q) has been replaced by its expression
(19).

x2

x

x3

x⊥

θ

N

M

x1

x2

x

x⊥
x3

θ = π
4

N

M

x1

Figure 4: Left: We take three points x1,x2,x3 on the torus lattice Z2/(NZ × MZ)
such that x2 − x1 = x and x3 − x1 = x⊥, see (13). We measure p12(x) and p12(x⊥),
defined in (10). Right: When θ = π/4, x and x⊥ are symmetric by reflection with
respect to the axis parallel to the M axis and passing through x1(dashed line). This
implies p12(x) = p12(x⊥) for θ = π/4.

Equation (28) is a clear consequence of the fact that, whenever an anisotropy is introduced,
the response of the system is bound to be determined by the stress-energy tensor components
T and T̄ (see for instance Section 11.3 in [53]). It is interesting to note that Monte Carlo
algorithms, based on the properties of rectangular torii [58,59], have been proposed to mea-
sure the central charge and the leading fields in the partition function [60]. However, these
methods can be applied to statistical models for which a direct lattice representation of the
stress-energy tensor is available, such as the Ising model or the RSOS models [61]. In our case
we do not know the stress-energy lattice representation. Actually, away from the pure percola-
tion point H = −1, we do not even know the energy density lattice representation. This is also
the reason why the connectivity functions are the most natural observables to study universal
critical amplitudes of non-local models. Note that other non-scalar observables have been de-
fined and discussed in [62,63], where the angular dependence of their two-point function has
been measured by Monte-Carlo simulations.
From the expansion (18) of the connectivity, the difference (28) gets in general contributions
only from fields with a non-zero spin. By lattice symmetry arguments, this difference vanishes
for θ = π/4, as shown in Figure 4. One can directly see from (18) that the only fields which
may contribute to (28) are fields with spin ∆− ∆̄= 2 mod4. For instance one expects in (28)
a contribution from fields with (∆, ∆̄) = (6, 0) and (∆, ∆̄) = (4, 2). These fields exist in any
CFT as, said in CFT jargon, they correspond to the higher level descendants of the identity:
L−6V0,0, L−4 L−2V0,0 and L−4 L̄−2, L2

−2 L̄−2V0,0. In pure percolation there are no fields in the
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10−3 10−2 10−1

0.35

0.36

0.37

0.38

0.39

|x|/N

|x|2(2−Df )p12(xh)
|x|2(2−Df )p12(xv)

Figure 5: The connectivity measured for H = −2/3, along the small cycle (circles)
and the long cycle (crosses) of a torus with M/N = 2, N = 210. The data points
were obtained by averaging over 105 instances of the surface and over the N × M
locations of x (cf. Section 3. The connectivity measured along the long cycle of the
torus is always smaller than the connectivity measured along the small cycle.

spectrum with spin greater than 2 and physical dimension ∆ + ∆̄ < 6. If we assume this is
true also for correlated percolation H > −1, then we have:

p12(x)− p12(x
⊥) =

d0

|x|2(2−Df )

�
4cos(2θ )cT (q)

� |x|
N

�2

+ 4
�
cos(2θ )c6,2(q) + cos(6θ )c6,6(q)

�� |x|
N

�6

+ o
�� x

N

�6��
.

(29)

Assuming that the identity descendants are the only fields contributing to c6,2 and c6,6, these
coefficients can be fixed by computing the inner products and the matrix elements between
the 11 identity descendants existing at level 6. We refer the reader to [50,54] and references
therein for the details of the general procedure. However, the numerical determination of
these coefficients is not accurate enough for this cumbersome computation to be worth it. As
a matter of fact we use this order 6 term as a fitting parameter to obtain better estimations of
the order 2 coefficient.

2.6 Numerical evidences

We summarise here the main numerical results for p12 and the conclusions we can draw by
comparing these results with the CFT predictions.

2.6.1 Conformal invariance

The quantity (14) is, first of all, a powerful test of conformal invariance. Via the numerical
simulation of the connectivity we test two predictions:

• The dominant topological correction shows a precise interplay between the exponents ν
and Df . In particular the leading correction behaves as |x|2(2Df −2)(|x|/N)2−1/ν. This ef-
fect is more clearly seen on the square torus, see (27). Figure 9 shows that the numerical
results for the values H < −1/2 agree with this prediction.
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• The sub-leading term is∝ |x|2(2Df −2) cos(2θ )(|x|/N)2. As explained above, the presence
of such term implies the existence of a pair of fields with scaling dimension ∆+ ∆̄ = 2,
which corresponds to the power 2 in the (|x|/N)2 decay, and with spin ∆ − ∆̄ = ±2,
which fixes the θ dependence. If such fields exist, they correspond by definition to the
stress-energy tensor components T and T̄ . The presence of T and T̄ is the most basic and
direct consequence of conformal invariance. In numerical simulations, the sub-leading
term is seen by considering a rectangular torus. Figures 10 and 11 show clearly the
(|x|/N)2 decay and the cos(2θ ) dependence. Figure 12 shows further that the data is
well described by the form (29).

2.6.2 Spectrum and structure constants

• The values of cν(q) for different values of q have been measured for −1 < H < −1/2
and reported in Table 2. The results support the fact that for H ≤ −3/4 the universality
class is the one of pure percolation. Note that this a highly non-trivial verification, as it
not only based on the values of critical exponents, but on the values of constants which
depend on the spectrum and fusion coefficients of the theory. For H > −3/4, the data
are quite well consistent with the CFT prediction (21), as shown in Figure 13. This is
also consistent with the fact that the fusion between two spin field produces an energy
field.

• We could measure with good precision the dependence of the coefficient cT (q) with q.
Figure 15 shows that (25) is satisfied, and that the dimension of the most dominant field
coincides with the dimension of the spin field.

3 Numerical results on two point connectivity

We generate the random surfaces (48, 52) and we measure the connectivity (10) of its level
clusters, for the following set of values of H:

H = −7
8

, −2
3

, −5
8

, −21
40

, −19
40

, −3
8

, −1
4

(30)

which are representative for the line −1 ≤ H < 0. Due to the periodicity properties (55), we
have a site percolation model on a doubly-periodic lattice of size M × N , i.e. the toric lattice
Z2/(NZ+MZ)). In the square torus case (M = N), p12(x) = p12(|x|). Without losing gener-
ality we measure p12 between pairs of points x1 and x2, aligned on the vertical or horizontal
axes. For each H in (30), the data are taken for distances |x1 − x2| = |x| = 1, 2, 4, · · · , N/2,
|x| = 3, 6,12, · · · , 3N/8. For the rectangular torus, M 6= N , we measure the connectivity
between the points x1 and x2, and between x1 and x3, x3 − x1 = (x2 − x1)⊥ = x⊥, see
Figure 4. When x and x⊥ are aligned with the cycles of the torus (θ = 0), measurements
are taken for aspect ratios M/N = 1, 2 · · ·5, and for distances |x| = 1, 2, 4, · · · , N/2, and
|x|= 3,6, 12, · · · , 3N/8. Fixing the aspect ratio, we measured p12(x) for non-zero angles θ . On
the lattice, angles are of the form θ = arctan

�
a2
a1

�
, with a2 (resp.a1) a given number of lattice

sites in the M (resp.N) direction. Distances are then taken to be |x| =
q

a2
1 + a2

2 (1, 2,4, · · · ),
|x| =

q
a2

1 + a2
2 (3, 6,12, · · · ), such that |x| ≤ N/2. We chose angles θ = 0, arctan(1/4),

arctan(1/3), arctan(1/2), arctan(2/3), for fixed aspect ratio M/N = 3.
Exploiting the translational invariance of the surface distribution, we average over the position
x1 for each instance of u(x), and then over 105 instances. In the scaling limit, the dependence
of p12(x) with respect to the lattice size N is expected to be of the form |x|/N . Plotting the
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connectivity as a function of |x|/N , we observe that the corrections to the scaling are still visible
as the data points for different sizes do not collapse at large distances. In Figure 6a we show
the data for H = −5/8 and for lattice sizes M = N = 29 − 212. One can see that the scaling
limit is still not attained. These non-universal effects become even more important for larger
H. As shown in Figure 6b for H = −3/8, even the infinite plane scaling limit is not clearly
attained at the sizes of our simulations. Of course these non-universal effects make the analysis
of the universal topological effects less precise, in particular for studying the contributions of
the spinless fields. On the other hand, we observed that the non-universal effects are less
important for the surface (52) generated by the kernel Ŝ2(k), at least for values of H < −1/2.
This is shown in 7b. For values of H < −1/2 and for the two surfaces (48) and (52) we could
determine the non-universal constant d0, as well as the dimension of the leading spinless
contribution. For this latter, the consistency of the results obtained from the two surfaces
makes the verification of the CFT predictions more solid. The coefficient cν and its dependence
on the aspect ratio, on the other hand, could only be determined with sufficient precision for
the surface (52).

10−3 10−2 10−1 100

0.36

0.38

0.4

|x|/N

|x|
2(

2−
D

f
) p

12
(|x
|)

N = 29

N = 210

N = 211

N = 212

(a) H = −5/8

10−3 10−2 10−1 100
0.36

0.37

0.38

0.39

0.4

0.41

|x|
N

(b) H = −3/8

Figure 6: Convergence of the data points generated with surface (48), on the square
torus of different sizes, for H = −5/8 (a) and H = −3/8 (b). Error bars are smaller
than the marker size and we do not display them.

A very remarkable fact is that, for both surfaces, these corrections to the scaling terms cancel
when one takes the differences between connectivities. This is shown in Figure 8 for the
same values of H. The corrections may originate, for instance, from the fact that we are not
sufficiently close to the critical point. More generally, any perturbation that drives the system
out of the critical point and that does not break rotational invariance is related to a spinless
field, whose contributions to the connectivity are isotropic. This explains why they disappear
by taking the difference p12(x)− p12(x⊥). This mechanism allows to test the contribution of
the fields with spin, and therefore of the stress-energy tensor, with a very good precision. For
H < −1/2, our determination of the constants d0 allowed moreover to acces the value of the
universal coefficient cT (q). For H > −1/2, we could only determine the behaviour of d0 cT (q)
with q.
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10−3 10−2 10−1 100

0.36

0.38

0.4

|x|/N

|x|
2(

2−
D

f
) p

12
(|x
|)

N = 29

N = 210

N = 211

N = 212

(a) H = −5/8

10−3 10−2 10−1 100
0.36

0.37

0.38

0.39

0.4

0.41

|x|
N

(b) H = −3/8

Figure 7: Convergence of the data points generated using the surface (52), on the
square torus of different sizes, for H < −5/8 (a) and H = −3/8 (b).
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0

1

2

3

4
·10−2

|x|
N

|x|
2(

2−
D

f
)
� p 1

2
(x
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p 1
2
(x
⊥ )
� N = 29

N = 210

N = 211

(a) H = −5/8

10−3 10−2 10−1 100

0

1

2

3
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·10−2

|x|
N

(b) H = −3/8

Figure 8: Convergence of the data points for the difference of connectivities (28) on
rectangular torus M = 2N , for H = −5/8 (a) and H = −3/8 (b).

3.1 Plane limit

For N = M = 212, we fit the data points for |x| ∈ [4, 128], expected to be well described by
the infinite plane limit (11) (see Figure 3), to the form

p12(x)∼ |x|−2(2−D(2)f ). (31)

The values D(2)f of the fractal dimension are given in Table 12. To extract the topological
corrections (27), we fit our numerical data to the form:

|x|2(2−D(2)f )p12(r) = d0

�
1+

d1

|x|b1

��
1+ cν

� |x|
N

�2−1/ν�
. (32)

The first factor takes into account the non-universal, small distance effects due to the lattice.
We refer the reader to [39,41] for a more detailed discussion of these ultraviolet corrections.
The values of d0 are reported in Table 1. The numerical values for the universal coefficient cν
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are given in Table 2. They were obtained from the data generated using kernel (50), which
converge faster to the scaling limit, and for which the agreement with (32) is excellent. This
is shown in Figure 9.

Table 1: Non universal constant d0 determined from the fit (32), for surfaces gener-
ated (1) with kernel (46) and (2) with kernel (50).

H d(1)0 d(2)0
-7/8 0.3438(1) 0.3433(2)
-2/3 0.3490(1) 0.3482(1)
-5/8 0.3521(5) 0.3495(1)

-21/40 0.357(1) 0.355(9)

10−2 10−1

10−3

10−2

10−1

|x|/N

|x|
2(

2−
D

f
) p

12
(x
)−

d 0

H = −7/8
H = −2/3
H = −5/8

Figure 9: Numerical data for |x|2(2−Df )p12(x)−d0 for H = −7/8,−2/3,−21/40, from
surfaces (48) (circles) and (52) (squares). The lines show the prediction (27) with
the exponent 2− 1/ν(H) given by (7).

3.2 Evidences of conformal invariance

With M 6= N , and following prediction (28), the quantity log
h
|x|2(2−D(2)f )

�
p12(x)− p12(x⊥)

�i

should follow a line of slope 2. This is very clear for H < −1/2, as shown in Figure 10.
When H > −1/2, the slope increases significantly: either there is no order 2 term (conformal
invariance is broken), or this term is still present, with higher-order corrections making the
effective slope significantly greater than 2. Assuming the latter and that the difference of
connectivities is described by (29) on the whole line H < 0, we fit our data for different angles
θ to the form:

|x|2(2−D(2)f )
�
p12(x)− p12(x

⊥)
�
= c2(θ )

� |x|
N

�2

+ c6(θ )
� |x|

N

�6

. (33)

This fit shows good consistency with the data for all values of H, and allows to determine
c2(θ ) with good precision. In Figure 11 we show that c2(θ ) has the expected behaviour (18):
c2(θ ) ∝ cos(2θ ). This makes manifest the presence of a field with conformal dimension 2
and spin 2, and therefore of conformal invariance for all H < 0.
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Figure 10: Difference of connectivities (28) for H = −2/3, measured for
M/N = 2, N = 211 and θ = 0. The best fit line has slope ∼ 2.07, indicating the
presence of the stress-energy tensor.

M/N = 3
N = 210

0 0.2 0.4 0.6 0.8

0

5 · 10−2

0.1

0.15

0.2

θ

c 2
(θ
)

(a) H = −2/3

0 0.2 0.4 0.6 0.8

0

5 · 10−2

0.1

0.15

0.2

θ

(b) H = −3/10

Figure 11: Values of c2(θ ) from fit (33), for different angles θ , for H < −1/2 (a) and
H > −1/2 (b). The curves show the prediction c2(θ ) = c2(0) cos(2θ ).

The behaviour of the order 6 coefficient is also in fair agreement with prediction (29), as
shown in Figure 12.
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Figure 12: Values of c6(θ ) from fit (33), for different angles θ , for
H < −1/2 (a) and H > −1/2 (b). The curves are fits to the form (29):
c6(θ ) = c6,2 cos(2θ ) + c6,6 cos(6θ ).

3.3 Spectrum and structure constants

Setting θ to zero, we varied the aspect ratio and obtained cν and cT as functions of M/N ,
given in Tables 2 and 5.

The coefficient cν is obtained by fitting the sum of connectivities 1
2 |x|2(2−D(2)f )

�
p12(x) + p12(x⊥)

�
to the form (32). Taking the sum allows to remove the order 2 contributions of the stress-tensor
fields.

Table 2: Best fit parameter cν(M/N), for different aspect ratios M/N . These val-
ues were obtained with the surface (52), which showed better convergence. When
H > −1/2, the non-universal effects are too strong and are not described by the fit
(32).

H
M/N

1 2 3 4

percolation 0.355402 0.185569 0.0964413 0.0501208
-7/8 0.371(5) 0.170(5) 0.13(1) 0.040(5)
-2/3 0.352(4) 0.22(2) 0.135(5) 0.090(5)
-5/8 0.327(3) 0.15(1) 0.130(5) 0.075(5)

Figure 13 shows that the behaviour of cν(q) is in fair agreement with prediction (21):

cν(q)∼ qx , (34)

with the slope x given by the dimension of the spin field x = 2∆σ = 2− Df , see Table 3. We
point out that this behaviour is incompatible with the fact that the energy field is degenerate
at level 2. Indeed, if it was degenerate the slope x = 2∆σ would be a continuously varying
function of the central charge [50] and would be expected to show significant variation with H.
In general, the presence of degenerate fields is a crucial feature of a CFT [64], which in some
cases allow to solve the theory [65–68]. For pure percolation, the energy field is degenerate,
which leads to relations between the different structure constants of the theory [43,68,69].
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Figure 13: cν as a function of q and the best fit line, for H = −2/3.

Table 3: Exponent x determining the behaviour of cν(q) with q (34), obtained from
fitting log cν(q). These values are to be compared to the value of the spin dimension,
which remains equal to the pure percolation value 2−Dpure

f ∼ 0.104 when H < −1/2.

H x
-7/8 0.10(1)
-2/3 0.08(2)
-5/8 0.08(1)

Setting x to 2 − Df , a fit of cν(q) as a function of q2−Df gives an estimation of the quantity�
Cεσ,σ

�2
nσ (see 22), given in Table 4.

Table 4: Estimation of the coefficient
�
Cεσ,σ

�2
nσ. The percolation prediction was

computed in [50].

H
�
Cεσ,σ

�2
nσ

pure percolation π
p

3
�

4
9
Γ (7/4)
Γ (1/4)

�2 ∼ 0.069

-7/8 0.07(1)
-2/3 0.05(1)
-5/8 0.04(1)

Conversely, to obtain cT (q) we fit the difference |x|2(2−D(2)f )
�
p12(x)− p12(x⊥)

�
to the form:

|x|2(2−D(2)f )
�
p12(x)− p12(x

⊥)
�
= c2(q)

� |x|
N

�2

+ c6(q)
� |x|

N

�6

, (35)

where
c2(q) = 4d0 cT (q). (36)

The values we obtained for cT (q), for both types of surfaces, are given in Tables 5, 6. Figure
14 shows the consistency betwwen the two sets of values, as expected from universality.
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Table 5: Best fit parameter c2(M/N)/d0 for different aspect ratios M/N , for surfaces
(48). The first line gives the numerical value of prediction (25) for pure percolation.

H
M/N

1 2 3 4 5

pure percolation 0 0.3496 0.5109 0.5947 0.6383
-7/8 0 0.376(5) 0.531(5) 0.610(5) 0.645(5)
-2/3 0 0.383(5) 0.547(5) 0.607(5) 0.640(5)
-5/8 0 0.395(5) 0.555(5 ) 0.619(5) 0.641(5)

Table 6: Best fit parameter c2(M/N)/d0 for different aspect ratios M/N , for surfaces
(52).

H
M/N

1 2 3 4 5

-7/8 0 0.355(5) 0.493(5) 0.596(5) 0.602(5)
-2/3 0 0.340(5) 0.494(5) 0.574(5) 0.600(5)
-5/8 0 0.363(5) 0.494(5) 0.581(5) 0.613(5)

1 2 3 4 5

0

0.2

0.4

0.6

M/N

c 2
(M
/
N
)/

d 0

H = −7/8
H = −2/3
H = −5/8

Figure 14: Comparison of the numerical values obtained for the universal quan-
tity c2(M/N)/d0, for different Hurst exponents, for surfaces (48) (circles) and (52)
(squares).

Following prediction (24), we fit the quantity log
�
2

2−Df
3 π2 − c2(q)

d0

�
as a function of log q to a

line. This is shown in Figure 15, and we obtain values for the dominant dimension ∆ close to
the dimension of the spin field, see Table 7.
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Figure 15: Numerical values at H = −2/3, for the quantities
log

�
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2−Df
3 π2 − c2(q)/d0

�
(left) and c2(q)/d0 (right), together with the corre-

sponding best fit lines.

Table 7: Values of the dimension 2∆ of the most dominant field obtained from fitting
log

�
2

2−Df
3 π2 − c2(q)

d0

�
, (1) for surfaces (48) and (2) for surfaces (52).

H 2∆(1) 2∆(2)

-7/8 0.12(1) 0.10(1)
-2/3 0.11(1) 0.09(1)
-5/8 0.12(1) 0.10(1)

Assuming that this dimension is indeed the one of the spin field, 2∆ = 2∆σ = 2− Df , we fit
c2(q)/d0 as a function of q2−Df :

c2(q)/d0 = c2(0)/d0 + a y, y = q2−Df , (37)

see Figure 15. In particular, from (24):

1
12(2− Df )

a
c2(0)/d0

=
nσ
c

. (38)

The values of the cylinder (q→ 0) limit and of the ratio nσ/c obtained are given in Tables 8
and 9.

Table 8: Cylinder limit c2(0)/d0 and ratio of the spin field multiplicity nσ to the
central charge c, obtained from fit (37), for surfaces (48).

H c2(0)/d0 nσ/c

pure percolation
2(2−Df )π2

3 ∼ 0.6854 4π
5
p

3
∼ 1.4510

-7/8 0.71(2) 1.51(7)
-2/3 0.71(2) 1.50(9)
-5/8 0.72(2) 1.5(1)
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Table 9: Cylinder limit c2(0)/d0 and ratio of the spin field multiplicity nσ to the
central charge c, obtained from fit (37), for surfaces (52).

H c2(0)/d0 n/c
-7/8 0.67(2) 1.51(8)
-2/3 0.66(2) 1.52(5)
-5/8 0.68(2) 1.51(7)

When H > −1/2, we could not determine the value of the plateau d0, so we cannot de-
termine the leading dimension in the expansion (24) as above. In Figure 16 we show the
behaviour of c2(q) with q2−Df (H), with Df (H) from Table 12. The points corresponding to
large M/N deviate significantly from a line. This could be explained by the fact that, when
H → 0, the fractal dimension Df → 2, so that the coefficient of the q2−Df term in (24) becomes
small and subleading terms in this expansion become non-negligeable.
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H = −19/40
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Figure 16: Behaviour of the coefficient c2(q) in the range H > −1/2.

4 Conclusion

In this paper we have studied the percolative properties of fractional random surfaces with
negative Hurst exponent H. Via the connected components of their excursion sets, the level
clusters, this problem is reformulated in terms of a long-range correlated two-dimensional
site percolation model. The main motivation here was to better understand the universality of
their percolation critical points, in particular in the region−3/4< H < 0 where the correlation
effects drive the system into universality classes different from the one of pure percolation.
When the problem is defined on a rectangular domain of size M × N with toric boundary
conditions, we argued that the two-point connectivity (10) represents an excellent observable
to test conformal invariance. On the basis of three main assumptions, explained in Section
2.4, we predicted the leading contributions to the toric corrections, see (14) and (29). We
tested these predictions by generating two types of fractional random surfaces (48) and (52),
expected to have the same long distances behaviour. The comparison between the theory and
the numerical simulations is summarised in Section 2.6. The main result is shown in Figure
10 and in Figure 11 and points out, for the first time, the existence of the two components
of a traceless stress-energy tensor for all H < 0. Furthermore, the two point connectivity
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on rectangular torus lattices gives access to the spectrum and to some fundamental structure
constants of the underlying CFT, still unknown for any H < 0. Importantly, we find that the
energy field in this CFT cannot be degenerate, whereas this is the case for pure percolation.
We show that the leading contribution to the conformal partition function is the magnetic field
σ with scaling dimension 2− Df , as shown in Figure 15 and in Table 7. The ratio nσ/c of the
multiplicity of the magnetic field to the central charge has also been determined numerically
with quite good precision, and it is reported in Table 8. Finally, we succeeded in evaluating

the product
�
Cεσ,σ

�2
nσ, directly proportional to the fusion between the thermal and magnetic

field. The results are given in Table 4. We conclude by noting that the fact that, for H < −3/4,
the long-range correlation is irrelevant is a very established one. Nevertheless, the results
in Table 4 verify this conjecture at the level of the structure constants of the theory, which
encode much more information than the critical exponents. At the best of our knowledge,
this is the first time such verification has been done. A last noteworthy observation concerns
the corrections to the scaling of the critical level, when using the Binder method to locate the
critical point (see Appendix B). From the values of the corresponding exponent ω given in
Table 11, we argue that the long-range correlations break the integrability of the model.
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A Fractional Gaussian surfaces

To generate a random function u(x) satisfying the properties (1), we use a method based on
the Fourier Filtering Method [9]. The principle is to create correlated random variables by
linearly combining uncorrelated ones. Let us first briefly sketch the method. Given a set of
uncorrelated random variable w(x), E [w(x)w(y)] = δx,y, one can define, via a convolution, a
new set of random variables u(x):

u(x) =
∑

y

S(x− y)w(y). (39)

The convolution kernel S(x) is a non-random function which determines the u(x) covariance
function:

E [u(x)u(y)] =
∑

z

S(x− z)S(y− z). (40)

By Fourier transforming both sides of the above equation, one can see that the large distance
asymptotics (1) is determined by the small k asymptotics of Ŝ(k)2, where Ŝ(k) is the Fourier
transform of S(x). In particular, Ŝ(k)∼ |k|−H−1(for |k|<< 1).

We apply this procedure to generate random long-range correlated surfaces. We consider
a domain [0, · · · , N − 1]× [0, · · · , M − 1] ⊂ Z2 where x= (x1, x2) denotes a lattice site:

x= (x1, x2), x1 = 0, · · ·N − 1

and
x2 = 0, · · · , M − 1. (41)
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A random function w(x) is generated by drawing its values independently at each point by an
initial Gaussian distribution P(w) =N (0, 1). The probability distribution function P [w(x)] is
therefore:

P [w(x)] =
∏

x

e−
w(x)2

2p
2π

. (42)

The discrete Fourier transform of w(x) is defined as:

ŵ(k) =
1

N M

∑
x

w(x)e−i k x =
1

N M

N−1∑
x1=0

M−1∑
x2=0

w(x1, x2)e
−2πi

�
x1

k1
N +x2

k2
M

�
, (43)

where

k= 2π
�

k1

N
,

k2

M

�
, k1 = 0, · · · , N − 1, k2 = 0, · · · , M − 1. (44)

From (42) one has:

E [ŵ(k)] = 0, E [ŵ(k)ŵ(p)] = δk1,N−p1
δk2,M−p2

. (45)

We use the convolution kernel:

Ŝ(k) =

(
= λ

− H+1
2

k , for k1, k2 6= 0

= 1 for k1 = k2 = 0,
(46)

where:

λk =
�

2cos
�

2π
N

k1

�
+ 2cos

�
2π
M

k2

�
− 4

�
. (47)

We generate the random surface u(x) by doing the following inverse Fourier transform:

u(x) =
1

norm

∑
k

Ŝ(k) ŵ(k) ei k x, norm=
∑

k

Ŝ2(k). (48)
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(x
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H = −3/8
H = −21/40

H = −2/3

Figure 17: Numerical measurement of E [u(x)u(y)] for different values of the Hurst
exponent, on square lattices of size M = N = 28. The lines have slopes −2H.

The universal properties do not depend on the initial distribution P [w(x)] distribution nor
on the precise form of the kernel as long as Ŝ(k) has the same small k asymptotic behaviour
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[70]. As we explain in Section 3, we find useful to generate long-range correlated random
surfaces by using another distribution P2 [w(x)] for w(x) and a different kernel. In particular,
the P2 [w(x)] is determined by the uniform distribution:

P2 [w(x)] =
∏

x

P(w(x)), P(w(x)) =

¨
1, |w(x)|<

p
3

N

0, |w(x)|>
p

3
N

(49)

and the kernel:

Ŝ2(k) =

¨
|k|−H−1 for k 6= (0, 0),
1 for k= (0, 0)

, (50)

where:

|k|= 2π
N

q
k2

1 + k2
2, k1, k2 = −N/2, · · ·N/2− 1. (51)

The second kind of surfaces we generate are

u(x) =
1

norm

∑
k

Ŝ2(k) ŵ2(k) ei k x, norm=
∑

k

Ŝ2
2(k), (52)

where we indicated as ŵ2(k) the Fourier transforms of the random function w(x) of law (49).
In the above equations we assumed M = N , but the generalization to M 6= N is straightfor-
ward. Note that, due to the (Lyupanov) central limit theorem, ŵ2(k) is described in the large
N limit by a Gaussian distribution and the function u(x) can be considered an instance of a
fractional Gaussian surface. For H < 0, the surface u(x), generated by (48) or by (52):

• is real, u(x) ∈ R, from the property (45) and the symmetry of the kernel (46)

• satisfies (1). In Figure 17 we show the numerical measurements of E [u(x)u(y)] for the
surface (48)and for different values of the roughness exponent. The data points are
compared to the power law decay |x− y|2H .

• has a zero mode which vanishes in law:

E [û(0)] = 0. (53)

• is normalised such that:
E
�
u(x)2

�
= 1. (54)

Note that, in the thermodynamic limit, the normalisation constant in (48) is finite for
negative H, as norm ∼ N2 H + O(1) (N >> 1, M/N = O(1)). The surface fluctuations
are thus bounded.

• satisfies periodic boundary conditions in both directions

u(x+ t) = u(x), for t= (n N , m M), n, m ∈ N. (55)

B Percolation phase transition: critical level hc and the critical ex-
ponents ν and Df

We study here the critical percolative properties of the level clusters of the surface (48) and
(52). In particular we determine numerically the critical level hc and the exponents ν and Df .
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B.1 Critical level and correlation length exponent ν

For a sign-symmetric random function u(x) on the Euclidean space, x ∈ R2, the critical level is
hc = 0 by symmetry argument [13]. Our function u(x) is defined on a lattice and hc is expected
to be negative. We determine the critical level hc by the standard procedure of percolation
theory [11]. We consider square domains of different sizes N × N . We determine the average
E [hc(N)] of the level hc(N) at which a level cluster connecting the top and the bottom of the
lattice appears. This quantity scales with the size of the lattice as:

E [hc(N)]− hc ∼ N−
1
ν . (56)

The data point for E [hc(N)], shown in Figure 18 as a function of N H for different values of
H, are very well described by a linear interpolation, thus confirming the predition (7). Fitting
the data to the form (56) with ν= νlong, we obtain the values of hc reported in Table 10.

0 0.1 0.2 0.3

−0.22

−0.2

−0.18

−0.16

N H

E
[h

c(
N
)]

H = −7/8
H = −21/40
H = −3/8

Figure 18: E [hc(N)] for N = 24, · · ·27 as a function of N H . The lines are the best
fits to the form (56) with ν= −1/H for different Hs. The intercepts with the vertical
N H = 0 axis (N →∞ limit), give the estimation for hc .

Table 10: Critical level obtained from scaling (56), for the surfaces (48).

H hc

-7/8 -0.2238(1)
-2/3 -0.2034(1)
-5/8 -0.1985(1)

-21/40 -0.1860(2)
-19/40 -0.1775(3)

-3/8 -0.1670(5)
-3/10 -0.1570(5)

Another way to determine the critical point is based on the Binder method. We apply this
method to study the surface (52). Defining the moments Mm as:

Mm =
∞∑
i=0

imni , (57)
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with ni the number of level clusters composed of i sites, one computes the ratio rBin
N (h)

rBin
N (h) =

E
�
M4

�

E [M2]
2 , (58)

where the average E[· · · ] is weighted by the distribution (49). The ratio rBin
N (h) depends on

the level h and on the system size N through a scaling relation of the type:

rBin
N (h) = f

�
(h− hc)N

1
ν

�
+ a N−ω, (59)

where the function f is some scaling function, and the term a N−ω, with a a non-universal
prefactor, is a correction to the scaling term. The interpretation of ω is discussed below. From
(59), one can find the point hc(N) where the curves rBin

N (h) and rBin
2N (h) intersect [71] and use

the fitting form:

hc(N) = hc +
a

N x
, (60)

to determine hc , with x a free parameter. For each value in (30), we compute (58) for sizes
N = 2s, s = 4, · · · , 9 and N = 3 × 2s, s = 3, · · · , 7 averaged over 105 instances. We inter-
polate the curves and find their intersections. The Binder method shows less precision for H
approaching 0. Indeed the correlation length exponent ν = −1/H increases fast, making the
size effects much smaller. The curves rBin

N (h) and rBin
N (h) tend to be parallel, and localising

their crossing point becomes difficult. In Figure 19 we show the scaling of the crossing points
hc(N) for some values of H. Once the critical point is located, the thermal exponent ν can be
estimated by using that:

d
dh

rBin
N (h)|h=hc

∼ N1/ν. (61)

In Table 11 we give the values of hc obtained from (60), and the values of ν obtained from
(61). These latter are in fair agreement with the prediction (6, 7). Setting ν to (7) we estimate
the values of ω as ω= x − 1/ν.

Table 11: Values of the critical level hc obtained with the Binder method. The ν
exponent is obtained from equation (61), and the value of the exponent w is obtained
from scaling (60), with ν set to (7). The measurements have been taken for the
surface (52).

H hc ν ω

-1 -0.3210(9) 1.33(2) 2.00(5)
-7/8 -0.3075(5) 1.46(8) 1.00(5)
-2/3 -0.2793(5) 1.67(5) 0.8(1)
-5/8 -0.2722(5) 1.9(1) 1.0(1)

It is quite interesting to comment on the exponent ω, which determines the correction to the
scaling. The exponent ω is expected to be the conformal dimension of the first irrelevant
thermal field. In [72] is was observed that, when the model is integrable, the corrections
to the scaling are always associated to irrelevant fields that appear in the fusion between
relevant ones. To be more specific, the authors of [72] considered those statistical models that
are described by rational CFTs. The spectrum of these CFTs contain a finite set of primary
fields, which close under Operator Product Algebra and which are listed in the so-called Kac
Table. When these models are integrable, the correction to scaling are therefore determined by
fields inside the Kac table. In the pure percolation CFT, the (relevant) energy density ε field,
ε = V1,2 generate by fusion with itself an infinite series of irrelevant fields with dimension
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Figure 19: Values of hc(N) obtained from the crossing of the curves rBin
N (h) and

rBin
N (h), defined in (58). Measurements have been taken for the surface (52).

∆1,n, n = 3, 4, ... (note that we have used the standard minimal model notation Vr,s and ∆r,s
for the field and conformal dimension). In the case of pure percolation, which is an integrable
model, the value of ω is therefore expected to be given by the lowest irrelevant thermal field
dimension,ω= 2∆1,3 = 2. A discussion of this exponent can be found for instance in Appendix
D of [73]. In the case of pure percolation, we find indeed ω= 2. We observe in Table 11 that,
when H 6= −1, a non-universal correction with ω∼ 1 to the scaling dominates. v

B.2 Fractal dimension Df

At the critical point h = hc , the level clusters have fractal dimension Df . This dimension
determines the scaling of the average mass (i.e. number of points) Al of a level cluster with
respect to its length l, Al ∼ lDf . The length of a level cluster can be defined as its radius of
gyration. One effective way to measure Df is to consider the percolating level cluster whose
size is of the same order of the system size, l ∼ N . To determine Df , we use then the following
relation:

E [# sites of the p.l.c.]∼ N Df , p.l.c.=percolating level cluster. (62)

A representative example of a numerical measurement of the above average is shown in Figure
20a, for H = −2/3. To remove the small sizes effects, we perform fits with the successive lower
sizes removed, and expect the best fit parameter to converge to the fractal dimension, as in
Figure 20b. The values D(1)f obtained are given in Table 12.
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Table 12: Fractal dimensions obtained (1) from the scaling of the largest cluster (62)
and (2) from the power-law decay of the two-point connectivity (11), and compari-
son with previous numerical work [25].

H D(1)f D(2)f Df [25]
-7/8 1.8955(5) 1.8945(2) 1.8964(2)
-2/3 1.8960(10) 1.893(1)
-5/8 1.8955(6) 1.892(1) 1.8950(3)

-21/40 1.8965(10) 1.8910(5)
-19/40 1.8955(8) 1.8897(5)
-3/8 1.904(1) 1.8970(5) 1.9006(4)
-1/4 1.917(1) 1.906(1) 1.9128(5)

References

[1] A. L. Efros, Physics and geometry of disorder: Percolation theory, Science for Everyone.
Mir Publishers, ISBN 0828532915,9780828532914 (1987).

[2] S. A. Molchanov and A. K. Stepanov, Percolation in random fields. I, Theor. Math. Phys.
55, 478 (1983), doi:10.1007/BF01015808.

[3] M. B. Isichenko and J. Kalda, Statistical topography. I. Fractal dimension of coastlines and
number-area rule for Islands, J. Nonlinear Sci. 1, 255 (1991), doi:10.1007/BF01238814.

[4] S. Prakash, S. Havlin, M. Schwartz and H. Eugene Stanley, Structural and dynam-
ical properties of long-range correlated percolation, Phys. Rev. A 46, R1724 (1992),
doi:10.1103/PhysRevA.46.R1724.

[5] V. Beffara and D. Gayet, Percolation of random nodal lines, Publ. math. IHES 126, 131
(2017), doi:10.1007/s10240-017-0093-0.

29



SciPost Phys. 9, 050 (2020)

[6] A. Rivera and H. Vanneuville, The critical threshold for Bargmann–Fock percolation, An-
nales Henri Lebesgue 3, 169 (2020), doi:10.5802/ahl.29.

[7] A. Rivera, Statistical mechanics of Gaussian fields, Ph.D. thesis (2018).

[8] A. Ali Saberi, Recent advances in percolation theory and its applications, Phys. Rep. 578,
1 (2015), doi:10.1016/j.physrep.2015.03.003.

[9] M. Barnsley, R. Devaney, B. Mandelbrot, H.-O. Peitgen, D. Saupe and R. Voss, The science
of fractal images, Springer-Verlag, Berlin, Heidelberg, ISBN 0387966080 (1988).

[10] R. J. Adler and J. E. Taylor, Random fields and geometry, Springer monographs in Math-
ematics, Springer (2007).

[11] D. Stauffer and A. Aharony, Introduction to percolation theory, Oxford University Press,
New York (1971).

[12] J. Schmittbuhl, J. -P Vilotte and S. Roux, Percolation through self-affine surfaces, J. Phys.
A: Math. Gen. 26, 6115 (1993), doi:10.1088/0305-4470/26/22/014.

[13] S. A. Molchanov and A. K. Stepanov, Percolation in random fields. II, Theor. Math. Phys.
55, 592 (1983), doi:10.1007/BF01015170.

[14] S. A. Molchanov and A. K. Stepanov, Percolation in random fields. III, Theor. Math. Phys.
67, 434 (1986), doi:10.1007/BF01118150.

[15] J. L. Lebowitz and H. Saleur, Percolation in strongly correlated systems, Phys. A: Stat.
Mech. Appl. 138, 194 (1986), doi:10.1016/0378-4371(86)90180-9.

[16] J. Aru, T. Lupu and A. Sepúlveda, First passage sets of the 2D continuum Gaussian free field,
Probab. Theory Relat. Fields 176, 1303 (2019), doi:10.1007/s00440-019-00941-1.

[17] L. Schoug, A. Sepúlveda and F. Viklund, Dimension of two-valued sets via imaginary chaos
(2019), arXiv:1910.09294.

[18] A. Rosso, R. Santachiara and W. Krauth, Geometry of Gaussian signals, J. Stat. Mech.
L08001 (2005), doi:10.1088/1742-5468/2005/08/l08001.

[19] R. Santachiara, F. Stauffer and D. C. Cabra, Entanglement properties and momentum distri-
butions of hard-core anyons on a ring, J. Stat. Mech. L05003 (2007), doi:10.1088/1742-
5468/2007/05/l05003.

[20] A. Zoia, A. Rosso and M. Kardar, Fractional Laplacian in bounded domains, Phys. Rev. E
76, 021116 (2007), doi:10.1103/physreve.76.021116.

[21] A. Weinrib, Long-range correlated percolation, Phys. Rev. B 29, 387 (1984),
doi:10.1103/PhysRevB.29.387.

[22] H. Vanneuville, Private communivation .

[23] D. Beliaev, S. Muirhead and A. Rivera, A covariance formula for topological events of
smooth Gaussian fields (2018), arXiv:1811.08169.

[24] A. Rivera and H. Vanneuville, Quasi-independence for nodal lines, Ann. Inst. H. Poincaré
Probab. Statist. 55, 1679 (2019), doi:10.1214/18-AIHP931.

30



SciPost Phys. 9, 050 (2020)

[25] J. Zierenberg, N. Fricke, M. Marenz, F. P. Spitzner, V. Blavatska and W. Janke, Percolation
thresholds and fractal dimensions for square and cubic lattices with long-range correlated
defects, Phys. Rev. E 96, 062125 (2017), doi:10.1103/physreve.96.062125.
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SUMMARY AND OUTLOOK

summary

In this thesis we have explored new bootstrap solutions describing geometric observables of
critical percolation phenomena. We studied these systems in the scaling limit, in a field theory
framework, by assuming that probabilities of non-local nature can be described by correlations
of local quantum fields. Our approach relied on the exploitation of the universal finite size effects
induced by a toroidal geometry, together with the constraints imposed by conformal symmetry
and self-consistency of the theory.

This approach provided exact results on the critical behaviour of two families of correlated
percolation models, the Q−state Potts model and the model of percolation of random surfaces.
For the Q−state Potts model we obtained the topological corrections to the two-, three- and
four-point connectivities. These results provide notably new predictions for universal observables
of critical pure percolation. Moreover we tested the consistency of the recent bootstrap solution
[44–49] on the torus.
For the random surfaces models, where conformal invariance remained debated, we provided
strong evidence that the percolation clusters are conformally invariant. We also verified the
important conjecture of Weinrib that the system remains in the pure percolation universality
class when the roughness of the surface H ∈ [−1,−3/4]. This verification was done at the level
of highly non-trivial observables, and goes beyond the matching of the main critical exponents.
In addition we obtained the first features of the unknown CFT describing this line of critical
points. We expect this CFT to be a new bootstrap solution, offering new challenges in our
understanding of the space of consistent conformal field theories. Indeed as we mentioned in
Chapter 5, these correlated percolation systems can be considered as systems with quenched,
long-range correlated disorder. One can therefore expect the corresponding CFT to display
features of geometric phenomena (it could be for instance logarithmic), as well as new features
coming from the presence of disorder.
All in all, it is manifest that the space of two-dimensional CFTs is far from being completely
charted.

outlook

Besides the follow-up issues listed at the end of the respective chapters, we would like to point
at especially interesting, more general open questions arising from our results.

Bulk and boundaries of correlated percolation clusters

It is established that the fractal dimensions of the bulk and boundaries of the clusters in the
O(n) models are related [41], all of them being continuous functions of the central charge of the
corresponding CFT.
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Surprisingly, this does not seem to hold for the clusters of the random surface models, as discussed
in Chapter 5. Indeed several numerical works support the fact that the boundaries are described
by SLEκ curves, so that their fractal dimensions match those of the loops of the O(n) models.
Conversely, the observed behaviour of the bulk fractal dimension, as well as our results on the
two-point connectivity, exclude that the clusters belong to the O(n) universality class. One can
then wonder if the bulk and boundaries of the clusters are described by the same CFT.
In the conclusion of Chapter 5 we highlighted a few research avenues to make progress on this
issue, and notably on how to obtain estimates of the central charge, which is a crucial parameter
(albeit not sufficient) in the identification of a CFT. It would be interesting to investigate the
relations between the bulk and boundary of clusters in other families of percolation models, see
notably next project below.

Disordered Potts model

Many interesting open problems in two dimensions concern the effect of quenched disorder on
critical behaviour [132]. As we have recalled above, the correlated percolation model of Chapter
5 corresponds to a system with long-range correlated disorder, whose effect is to drive the system
to new universality classes. A simpler model to study such effects is provided by the Q−state
Potts model with uncorrelated disorder [133]. Many results have been obtained for this model,
both from perturbative and numerical analyses as reviewed in details in [134]. In particular these
critical points are believed to be conformally invariant, and several critical exponents have been
determined, as well as the central charge. The central open question today is the identification
of the CFT describing this family of models.
In this context we propose an analytic and numerical approach to the problem, based on the
study of the torus connectivities, which would notably allow to determine the spin-spin-energy
structure constants of this CFT. We would like to numerically measure the torus connectivities
of the disordered model and obtain numerical estimates of the CFT data (structure constants,
central charge and multiplicities), following the analysis of Chapter 5. In addition, in this simpler
problem we can in principle compute perturbatively some of this CFT data, and compare with
the numerical results.
Besides obtaining new results on this unkown CFT, this analysis would also make connection
with the preceeding question, in that it would allow to compare the statistical properties of the
clusters with what is known of their boundaries from previous studies.

To complete the loop started in the introduction, critical phenomena are, two centuries after
their discovery, more fascinating and challenging than ever. It is quite astonishing to look how
far the progress in their description has come, unveiling beautiful mathematical structures as
well as making connections with high energy or quantum physics. Chances are, there will be
more to discover !
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A
ELL IPT IC FUNCTIONS

The elliptic theta functions are defined as:

θ

[
a

b

]
(z|τ ) =

∑
n∈Z

q
1
2 (n−a/2)2

e2πi(z−b/2)(n−a/2), a, b = 0, 1 (A.1)

where q is the elliptic nome

q = e2πiτ . (A.2)

The usual notation is:

θ1 = θ

[1
1

]
θ2 = θ

[1
0

]
(A.3)

θ3 = θ

[0
0

]
θ4 = θ

[0
1

]
. (A.4)

We define also the Dedekind eta function:

η(τ ) = q1/24
∞∏
n=1

(1− qn). (A.5)

We will give here a few useful properties of these functions. A complete list can be found for
example in [135].
From the product representation of the theta functions:

θ1(z|τ ) = 2q1/8 sin(πz)
∞∏
n=1

(1− qn)(1− qne2πiz)(1− qne−2πiz), (A.6a)

θ2(z|τ ) = 2q1/8 cos(πz)
∞∏
n=1

(1− qn)(1 + qne2πiz)(1 + qne−2πiz), (A.6b)

θ3(z|τ ) =
∞∏
n=1

(1− qn)(1 + qn−1/2e2πiz)(1 + qn−1/2e−2πiz), (A.6c)

θ4(z|τ ) =
∞∏
n=1

(1− qn)(1− qn−1/2e2πiz)(1− qn−1/2e−2πiz), (A.6d)

we deduce that:

∂(2k)θ1(z|τ )|z=0 = 0 (A.7a)
∂(2k+1)θν(z|τ )|z=0 = 0, ν = 2, 3, 4. (A.7b)

A useful identity is:

∂zθ1(z|τ )|z=0 ≡ θ′1 = 2πη3(τ ). (A.8)
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titre : Nouvelles solutions de bootstrap conforme et modèles de percolation sur le tore

mots clés : bootstrap conforme, modèles critiques, géométrie d'ensembles fractals

résumé : Les propriétés géométriques des

phénomènes critiques ont généré un intérêt croissant

en physique théorique ainsi qu'en mathématiques

au cours des trente dernières années. Les systèmes

de percolation sont l'exemple par excellence de tels

phénomènes géométriques, où la transition de phase

est caractérisée par le comportement de degrés de lib-

erté non-locaux, les amas de percolation. Au point

critique, ces amas sont des exemples d'objets aléa-

toires dont la mesure est invariante conforme, c'est à

dire invariante sous tout changement d'échelle local.

Nous ne savons en général pas caractériser complète-

ment ces amas, ni même pour le modèle le plus sim-

ple de la percolation pure. En deux dimensions, la

présence de la symétrie conforme a des conséquences

particulièrement importantes. Dans cette thèse nous

examinons les implications de cette symétrie sur les

propriétés universelles des systèmes critiques bidi-

mensionels, en utilisant une approche dite de boot-

strap conforme.

La première partie détaille les implications générales

de l'invariance conforme, en examinant ses con-

séquences sur les fonctions de corrélation. Sont con-

sidérés en particulier les e�ets induits par une topolo-

gie de tore, ce qui est appliqué dans la deuxième

partie de la thèse à l'étude de modèle statistiques

particuliers. Nous discutons également les propriétés

analytiques des fonctions de corrélation et présen-

tons des résultats sur des questions techniques liées

à l'implémentation de méthodes numériques de boot-

srap conforme en deux dimensions. La seconde par-

tie est dédiée à l'étude de deux familles particulières

de modèles critiques de percolation avec des cor-

rélations de longue portée : le modèle d'amas aléa-

toires de Potts à Q états, et un modèle de percola-

tion de surfaces aléatoires. Nous explorons les pro-

priétés percolatoires de ces modèles en étudiant les

propriétés de connectivité des amas, c'est à dire les

probabilités que des points appartiennent au même

amas. Nous avons réalisé que les connectivités sur le

tore représentent des observables très intéressantes.

En les décrivant comme fonction de corrélation de

champs quantiques dans une théorie des champs con-

forme, nous obtenons de nouveaux résultats sur les

classes d'universalité de ces modèles.

title: New conformal bootstrap solutions and percolation models on the torus

keywords: conformal bootstrap, critical phenomena, geometry of fractal sets

The geometric properties of critical phenomena

have generated an increasing interest in theoretical

physics and mathematics over the last thirty years.

Percolation-type systems are a paradigm of such geo-

metric phenomena, their phase transition being char-

acterised by the behaviour of non-local degrees of

freedom: the percolation clusters. At criticality, such

clusters are examples of random objects with a con-

formally invariant measure, namely invariant under

all local rescalings. Even in the simplest percolation

model �pure percolation, we do not know how to

fully characterise these clusters. In two dimensions,

the presence of conformal symmetry has especially

important implications. In this thesis we investigate

the consequences of this symmetry on the univer-

sal properties of two-dimensional critical statistical

models, by using a conformal bootstrap approach.

The �rst part details the general implications of con-

formal invariance, by examining its consequences on

correlation functions. Are addressed in particular the

e�ects induced by the torus topology, applied in the

second part to the study of speci�c statistical mod-

els. We also examine the analytic properties of cor-

relation functions and present results on technical

questions related to the implementation of numeri-

cal conformal bootstrap methods in two dimensions.

The second part is devoted to the study of two spe-

ci�c families of critical long-range correlated perco-

lation models: the random cluster Q−state Potts

model and the percolation of random surfaces. We

investigate the percolative properties of these mod-

els by studying the clusters connectivity properties,

namely the probability that points belong to the

same cluster. We �nd that the connectivities on a

torus represent particularly interesting observables.

By describing them as correlation functions of quan-

tum �elds in a conformal �eld theory, we obtain new

results on the universality classes of these models.
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