
5.42.2

Stability Analysis of Stable Circular
Orbit in Multi-Static Black Hole
Spacetime

Zefang Fan, Yu Wang and Xianggao Wang

Article

https://doi.org/10.3390/sym16091140

https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com
https://doi.org/10.3390/sym16091140


Citation: Fan, Z.; Wang, Y.; Wang, X.

Stability Analysis of Stable Circular

Orbit in Multi-Static Black Hole

Spacetime. Symmetry 2024, 16, 1140.

https://doi.org/10.3390/

sym16091140

Academic Editors: Charalampos

Moustakidis and Stefano Profumo

Received: 31 May 2024

Revised: 1 August 2024

Accepted: 6 August 2024

Published: 3 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Stability Analysis of Stable Circular Orbit in Multi-Static Black
Hole Spacetime

Zefang Fan, Yu Wang * and Xianggao Wang

Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology,

Guangxi University, Nanning 530004, China; 2307301022@st.gxu.edu.cn (Z.F.); wangxg@gxu.edu.cn (X.W.)

* Correspondence: 2107401023@st.gxu.edu.cn

Abstract: We herein study the circular orbit stability of a static black hole system composed of

multiple Reissner–Nordstrom (RN) black holes. By comparing the circular orbits of two static black

holes, three static black holes (TBHs), four static black holes and five static black holes at different

spacetime, we find that the continuity of their stable circular orbits changes, i.e., the peaks of the

effective potentials are transformed from single-peaked to bi-peaked, and that the distance a between

the black holes is the main reason for this change. This characteristic is completely different from

the continuity of the stable circular orbit interval of any kind of single black hole in the past. After

calculation, we obtain several critical values that lead to the change in circular orbit stability. The

three fundamental frequencies (orbital frequency, radial local frequency, and vertical local frequency)

are derived and compared for two different spacetimes of double and three black holes. We also

analyse the effect of the black hole distance a on the three fundamental frequencies of circular orbits.

Keywords: effective potential; RN black holes; ISCO; three frequencies

1. Introduction

A hundred years ago, Einstein predicted the existence of gravitational waves; however,
it has been difficult to confirm them for a long time. Most local galaxies, nearly all of
them, are thought to harbour a massive black hole at their centre. Theoretically, black
holes, neutron stars, and other celestial bodies are capable of colliding and merging to
produce gravitational waves [1]. Since 2015, scientists have detected ten gravitational
waves resulting from the mergers of black holes, as well as one produced by the collision
of two neutron stars [2,3]. The discovery of gravitational waves has greatly advanced the
study of phenomena around binary black hole systems [4].

Scientists have also discovered a mysterious black hole phenomenon, which is that
three black holes are attracted to each other, in a situation that is about to merge [5,6]. These
three black holes are all supermassive black holes; if they merge, they will produce a huge
amount of energy, this discovery is very important for scientists. Research utilising the Sloan
Digital Sky Survey (SDSS) data reveals that approximately 0.2 percent of merging systems
feature three galaxies [7]. The galaxy SDSS J0849+1114 has been identified as the first
discovered triple type 2 Seyfert nucleus. The scientists made the breakthrough using the
Dual Imaging Spectrograph on the 3.5-metre telescope at Cape Apache Observatory [8,9].
Therefore, scientists estimate that this newly formed galaxy must be hiding many secrets.
One of the most obvious findings is that there is more than one supermassive black hole
in this galaxy, and they are rapidly accumulating matter, which is why the anomalous
data appear [10]. It is believed that analogous configurations were more prevalent in the
primordial cosmos, a time when the collision of galaxies was considered to occur at a higher
rate [11,12]. Therefore, the study of multi-static black hole systems is of great significance
for us to reveal the laws of the Universe, and it hints at its future impact.

Investigating the dynamics of particles under intense gravitational forces is of paramount
significance, both within the domains of astrophysics and the framework of gravitational
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theory. This challenge continues to be one of the most fundamental issues within the
context of multi-static black hole systems. Certainly, the emergence of the three black
hole shadows referred to is contingent upon the dynamics of particles lacking mass [13].
Alternatively, the behaviour of massive particles within binary black hole systems has been
examined in relation to gravitational wave emissions triggered by the influence of a third
body [14–17] and the emergence of several accretion disks [18,19]. In these scenarios, the
preservation of stable circular orbits is essential, with the innermost stable circular orbit
(ISCO) being especially significant [20,21].

Binary black hole systems scattered throughout the Universe are multifaceted and of
ever-changing complexity. Numerical relativity methods, if utilised, can be of great benefit
in explaining the phenomena occurring in these complex systems. In addition, the use of
analytical techniques is essential to obtain a qualitative understanding of these phenomena.
Therefore, we usually use a static and axisymmetric dihole spacetime as a simplified
model [22]. There are some dihole solutions of Einstein’s equations with these symmetries,
such as the Weyl spacetime [23], the Majumdar–Papapetrou (MP) spacetime [24,25], and
the two-Kerr spacetime [26]. Studying such a spacetime phenomenon can provide us with
valuable insights and strong indications for multi-static black hole occurrences, enhancing
our understanding of the multi-static black hole issue.

Numerous studies have explored the stability of circular orbits around static black
holes, yet the objective of this paper is to clarify the properties of stable circular orbits
within environments containing multiple black holes [4,27–33]. We conduct a comparative
study of the circular orbits in systems involving a single black hole, two static black holes,
and progress to systems with three, four, and five static black holes across five different
spacetime scenarios. A particularly intriguing aspect of this research is the investigation into
how the continuity of the innermost stable circular orbits in multi-black hole configurations
alters. To achieve this, we delve into the stable circular orbits along the axis of symmetry
in a dihole system, which is situated in a spacetime hosting two equal-mass TBHs—an
exact solution to the Einstein–Maxwell equations and comprising two extreme RN black
holes. We predict that with changes in ‘a’, the peak of the effective potential that determines
stable circular orbits may evolve a shift from a single peak to a bimodal form. Previous
research has indicated that the stable circular orbits in the MP dihole spacetime exhibit a
range of behaviours. For instance, the stability of orbits for massive particles is not uniform,
and stable photon orbits can be found within regions that are otherwise unstable. These
findings are also relevant to the TBH spacetime [34,35].

This paper focuses on analysing the dependence of the sequence of stable circular
orbits on the separation distance. Firstly, we divide the parameter range, at each boundary
of which the stabilising circular orbits are discontinuous. Further, we analyse the one-
dimensional effective potential of spacetime. Finally, we also analyse the effect of the
multiple black hole spacing a on the three fundamental frequencies of circular orbits
(orbital frequency, radial local frequency, and vertical local frequency). It is important
to note that the effect on the frequencies is similar to that of stabilising circular orbits.
Therefore, ISCO represents a circular orbit stabilised with a minimum radius. We find that
the position of the ISCO becomes discontinuous at a certain distance and obtain a figure of
ISCO for different black hole spacetime.

The structure of this paper is organised as follows: Section 2 outlines the spacetime
metric and the equations of motion for black holes. Section 3 examines the stability of
circular orbits within a multi-static black hole spacetime, using the example of a three-black
hole system. Section 4 delves into the one-dimensional effective potentials for spacetime
containing two and three black holes. In Section 5, we calculate the three fundamental
frequencies (orbital frequency, radial local frequency, and vertical local frequency) for
circular orbits in a multi-static black hole environment, discovering that when the black hole
separation distance a approaches zero, the outcomes resemble those of the Schwarzschild
black hole [36]. The paper concludes with Section 6, which offers a summary and discussion
of the findings. Throughout the paper, we adopt the units where G = 1 and c = 1.
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2. Multi-Static Black Hole Spacetime Metric and Equations of Motion

The metric of spacetime encodes essential information about it, and our investigation
starts with the genesis of multi-static black holes. The MP spacetime metric is expressed
as follows:

ds2 = −U−2 (⃗r)dt2 + U2 (⃗r)d⃗r · d⃗r, (1)

where

d⃗r · d⃗r = dx2 + dy2 + dz2, (2)

while

Rµν −
1

2
gµνR = κTµν. (3)

We set Tµν = 0. The quantity U in this context satisfies the Einstein field Equation (3),
which can be directly simplified to the Laplace Equation (4).

▽2U =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= 0. (4)

The pertinent solution was provided in Hawking’s publication [37]:

U(x) = 1 + ∑
i

mi

ri
, (5)

ri =
[

(x − xi)
2 + (y − yi)

2 + (z − zi)
2
]

1
2
. (6)

This U is analogous to a gravitational potential, where i moves from 1 to 3. In
this context, r⃗ denotes the vector that indicates the position within the plane of a three-
dimensional space, known as the background space. The schematic diagram of the static
linear triple black hole system studied in this paper is shown in Figure 1.

Figure 1. Static linear triple black hole schematic diagram.
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We focus on the spacetime properties of static linear triple black holes and give the met-
ric and canonical fields of the TBH spacetime in the following isotropic coordinate system:

ds2 = gµνdxµdxν =
−dt2

U2
+ U2(dρ2 + ρ2dφ2 + dz2). (7)

In order to simplify subsequent computations, the covariant elements of the metric
tensor are expressed as follows:

gtt = −U−2, (8)

gρρ = U2, (9)

gφφ = U2ρ2, (10)

gzz = U2, (11)

Aµdxµ = Aνgµνdxµ = ΦU−2dt = U−1dt, (12)

Φ(⃗r) = U(⃗r). (13)

Equation (13) can be introduced through Equation (12). Equation (13) indicates that the
electrostatic potential is equivalent to the gravitational potential. In a spacetime governed
by this equation, black holes can exist at various positions. If these black holes possess
identical charges, they can maintain a state of mutual static equilibrium, which gives
rise to a static spacetime. After a transformation of coordinates, we obtain the explicit
representation of U in cylindrical coordinate systems:

U(ρ, z) = 1 +
M1

√

ρ2 + (z − a)2
+

M2
√

ρ2 + (z + a)2
+

M3
√

ρ2 + z2
. (14)

In the context of this discussion, Mi (i = 1, 2, 3) denotes the masses of three extreme
RN black holes. The masses M1 and M2 are positioned at z = ±a (with a ≥ 0), while M3

is situated at z = 0. It is important to note that we employ cylindrical coordinates in the
spatial geometry, defined as x = ρ cos φ and y = ρ sin ϕ, where x and y correspond to the
Cartesian coordinates.

Using this analogy, it becomes evident that the Lagrangian for freely falling particles
in curved spacetime is as follows:

L =
1

2
gµν ẋµ ẋν =

1

2

[

−
ṫ2

U2
+ U2

(

ρ̇2 + ρ2φ̇2 + ż2
)

]

. (15)

The key aspect is the derivative with respect to the affine parameter. Given that the
TBH spacetime is static and axisymmetric, the variables t and the angular coordinate φ do
not appear explicitly in the Lagrangian, leading to the conservation of energy and angular
momentum. Observe that the conserved quantity corresponds to a specific component
of the covariant quantity. Upon returning to the TBH spacetime, it is straightforward to
observe that the coordinates t and φ are cyclic, implying that the conserved quantities for
the moving particles are the momenta pt and pφ.

E =
ṫ

U2
, L = ρ2U2φ̇. (16)

We can assume that the energy E is positive. The Euler–Lagrangian equation is
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d

dt

∂L

∂q̇α
−

∂L

∂qα
= 0. (17)

We can now derive the equations of motion for z and ρ in four-dimensional spacetime
coordinates by employing the Lagrange equation, as depicted below:

U2z̈ − [ṫ2U−3 + U(ρ̇2 + ρ2φ̇2 + ż2)]Uz = 0, (18)

U2ρ̈ − [U2φ̇2ρ + (U−3 ṫ2 + U(ρ̇2 + ρ2φ̇2 + ż2))Uρ] = 0, (19)

where the partial derivatives of the potential energy function U with respect to the coordi-
nates z and ρ are denoted as Uz and Uρ, respectively.

3. Stability Conditions for Circular Orbits in Multi-Static Black Hole Spacetime

Let us take TBHs as an example. In order to simplify the calculations, we examine
time-like particles that orbit in a circle on a symmetric plane, which must adhere to these
conditions: z = 0. The radius and ordinate of the particle’s circular orbit remain constant
over proper time, with ρ̇ = ż = 0. Clearly, the acceleration terms must also equal to zero,
ρ̈ = z̈ = 0. From this, we can deduce the following:

Vz = 0, (20)

Vρ = 0, (21)

where Vi = ∂iV for i = z, ρ. Consequently, circular orbits are achieved at the station-
ary points of V, where the values of V are positive. After simplification, we obtain the
following equations:

Uz = 0, (22)

Uρ = −
ρ

(ρ2 + z2)
3
2

−
ρ

(ρ2 + (z − a)2)
3
2

−
ρ

(ρ2 + (z + a)2)
3
2

. (23)

L2 = L2
0(ρ, z) := −

ρ3U2Uρ

U + 2ρUρ
. (24)

E2 = E2
0(ρ, z) := V

(

ρ, z; L2
0

)

. (25)

Equation (24) corresponds to the angular momentum of a particle in the class of
circular orbits, while Equation (25) represents its associated energy. We stipulate that the
square of the angular momentum must be greater than zero, which implies that the effective
potential energy must also be greater than zero. Consequently, the particle’s motion along
the circular orbit must adhere to the following criteria: Uz = 0, L2 = L2

0 ≥ 0, and E2 = E2
0 .

Next, we examine the stability of the circular orbit. Stability theory posits that a circular
orbit is stable if the effective potential reaches a minimum at that orbit. Conversely, if
the effective potential attains a local maximum or a saddle point, the orbit is considered
unstable. To ascertain the stability of the circular orbit, we utilize the Hessian matrix, the
elements of which are given as Vij = ∂i∂jV, and then we define the determinant and trace
of the Hessian matrix:

h
(

ρ, z; L2
)

= det Vij = VρρVzz − VρzVzρ, (26)

k
(

ρ, z; L2
)

= Tr Vij = Vρρ + Vzz. (27)
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We can summarize the stability analysis of circular orbits as follows: (1) A circular orbit
is stable at a point of minimum potential V if and only if h > 0 , k > 0. (2) A circular orbit
is unstable at a point of minimum potential V if and only if h > 0 , k < 0, or h < 0. As a
sequence of stable circular orbits shifts to an unstable sequence at a particular radius, the
circular orbit at this critical radius is termed an edge-stable circular orbit, and the potential V
displays an inflection point (i.e., h = 0). Herein, we refer to the smallest edge-stable circular
orbit as the ISCO. In the remainder of the article, we investigate the circular orbits of equal
mass M1 = M2 = M3 in the TBH spacetime. We employ units where Mi = 1 for i = 1, 2, 3.

We express the trace and determinant of the Hessian matrix for circular orbits in the
following manner:

h0(ρ, z) = h
(

ρ, z; L2
0

)∣

∣

∣

Uz=0
, (28)

k0(ρ, z) = k
(

ρ, z; L2
0

)∣

∣

∣

Uz=0
. (29)

Based on this, we can deduce the domain of motion for the circular orbit in the
given example:

D =
{

(ρ, z)|h0 > 0, k0 > 0, L2
0 > 0

}

. (30)

In the z = 0 plane, the marginally stable circular orbits satisfy the following condi-
tions:

Vρ = 0. (31)

Vρρ = 0. (32)

By means of the system of joint equations, the edge-stabilised circular orbits and their
angular momentum magnitudes corresponding to different a are solved, and the minimum
value of the edge-stabilised circular orbit is the innermost stable circular orbit. We present
the results in Table 1.

Table 1. The solution of equations, where M1 = M2 = M3 = M.

a/M j/M ρ/M

3.00 3.57 1.31

2.09 4.47 0.96

2.09 7.96 5.11

2.09 7.96 5.24

1.50 5.28 0.82

1.50 9.45 2.67

1.50 8.20 11.48

1.09 8.08 0.65

1.09 1046136.59 1.61

1.09 8.34 8.29

0.85 56136.62 0.54

0.85 8.40 8.58

0.80 8.41 8.64

0.70 8.43 8.72

0.40 8.46 8.91

0 8.48 13.19
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By calculation, we can discern that when a is greater than 2.09, the stable circular
orbits are continuous, and this sequence can extend from the innermost stable circular
orbit to infinity. However, when a = 2.09, the sequence of stable circular orbits is no longer
continuous and will be interspersed with a sequence of unstable circular orbits ranging
from a radius of 7.11 to 7.24, while when it is beyond 7.24, it is once again a sequence of
stable circular orbits. When a = 1.09, angular momentum divergence occurs, which means
that the edge-stabilised circular orbit at a radius of 1.61 will disappear. When a is less than
1.09, two sets of normal solutions appear. When a = 0.85, the angular momentum diverges
again, indicating that the original innermost stable circular orbit, ρ = 0.54, is about to vanish.
When a is less than 0.85, a set of normal solutions emerges, where the sequence of stable
circular orbits is no longer interrupted. We have selected four values and depicted this
region in Figure 2.

a=5
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z
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-10

-5

0

5

10

ρ

z

a=0

5 10 15 20
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-5

0

5

10

ρ

z

Figure 2. Figure of stabilised regions at different separation distances a.

Similarly, we have obtained a figure of stable circular orbital regions of other black
hole spacetimes for further comparative analyses, as shown in Figure 3.

We have visualised the stability of the innermost circular orbits for systems with two,
four, and five black holes. The stability of circular orbits varies across different spacetimes.
This is intriguing, as we can clearly observe that the stability region’s continuity shifts with
the variation in the distance a.
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Figure 3. Regions of circular orbital stability in different black hole spacetimes.

4. One-Dimensional Effective Potential Analysis

To study this phenomenon further, we take the example of a TBH spacetime and anal-
yse its one-dimensional effective potential. From Equation (25), it can be introduced that

V
(

ρ, z; L2
)

=
L2

ρ2U4
+

1

U2
. (33)

Letting z = 0, L = 30, we choose a = 0.9, 1, 1.1 for plotting, and we can obtain the one-
dimensional effective potential as a function of ρ. As shown in Figure 4, we can clearly see
that the one-dimensional effective potential has a bimodal structure, resembling a potential
energy well, which is very helpful for us in order to study the properties of multi-static
black holes.

To further investigate the one-dimensional effective potential when the separation
distance a = 1, L = 20, we take different values of z and find that the image of the one-
dimensional effective potential has a bimodal structure only when z = 0, as shown in
Figure 5.

Next, with the separation distance set at a = 1, we alter the mass ratio of the three
black holes by changing the mass of M3, and we observe that the bimodal structure of the
one-dimensional effective potential becomes increasingly pronounced as M3 increases, as
shown in Figure 6.
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Figure 4. One-dimensional effective potential for different values of the separation distance a.
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Figure 5. One-dimensional effective potential for different values of z.

ν=1
ν=3
ν=6
ν=9

0 2 4 6 8 10
0

1

2

3

4

5

6

7

ρ/M

V
e
ff

z=0 a=1 one-dimensional effective potential

Figure 6. One-dimensional effective potential at different mass ratios when the separation distance

a = 1.

To further investigate the bi-peak structure of the one-dimensional effective potential,
we vary the value of the angular momentum L and find that the larger the angular mo-
mentum, the larger the effective potential. The bimodal structure of the one-dimensional
effective potential also becomes more pronounced, as shown in Figure 7.

Similarly, we obtain the figure of the one-dimensional effective potential for other
black hole spacetimes. As shown in Figure 8.
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Figure 7. One-dimensional effective potential at different angular momentum L.
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Figure 8. One-dimensional effective potential for two black holes, four black holes, and five

black holes.

We find that when the number of black holes is even, the effective potential becomes
progressively smaller with distance from infinity and, importantly, the bimodal structure
of the one-dimensional effective potential can only be seen when the number of black holes
is odd.

5. Three Fundamental Frequencies in Equatorial Circular Orbit in Multi-Static Black
Hole Spacetimes

The equatorial circular orbit is described by three fundamental frequencies: (1) Orbital
frequency νφ: This frequency characterizes the circular orbit of an object in the black hole’s
equatorial plane. It is proportional to the object’s angular velocity as it orbits the black
hole. (2) Radial local frequency νρ: This frequency represents the object’s radial oscillations,
which occur perpendicular to the orbital plane and affect the distance between the object
and the black hole. It corresponds to the rate at which the object moves radially, reflecting
its oscillatory motion within the black hole’s gravitational potential well. (3) Vertical local
frequency νz: This describes the frequency of an object’s motion in the longitudinal direction
and refers to the frequency at which the object oscillates above and below the equatorial
plane of the black hole.

Now let us see how the fundamental frequencies νφ, νρ, and νz can be calculated.
Take the frequency projection of a static TBH as an example. The derivation of the orbital
frequency requires the geodesic equation to be written first:

d

dτ

(

gµν ẋν
)

=
1

2

(

∂µgνρ

)

ẋν ẋρ. (34)

For equatorial circular orbits, ρ̇ = ż = ρ̈ = 0. In this case, the above equation
reduces to

(

∂ρgtt

)

ṫ2 +
(

∂ρgφφ

)

φ̇2 = 0, (35)

Angular velocity of orbit Ω = φ̇/ṫ:
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Ω± = ±
√

−
(

∂ρgtt

)

/
(

∂ρgφφ

)

. (36)

For the calculation of the radial and vertical local frequencies, we proceed as follows.
In the linear category, small perturbations in the radial and vertical directions around the
equatorial circular orbit can be considered independently. In the context of radial motion,
assume that ż = 0, and write ρ̇ = ṫ( dρ/dt).

(

dρ

dt

)2

=
1

gρρ ṫ2
Veff, (37)

Deriving (37) for the coordinate t, we obtain

d2ρ

dt2
=

1

2

∂

∂ρ

(

1

gρρ ṫ2
Veff

)

=
Veff

2

∂

∂ρ

(

1

gρρ ṫ2

)

+
1

2gρρ ṫ2

∂Veff

∂ρ
. (38)

Assuming that there is a small displacement near the orbit, ρ = ρ0 + δρ, one has

d2ρ

dt2
=

d2δρ

dt2
, (39)

Veff

(

ρ0 + δρ

)

= Veff (ρ0) +

(

∂Veff

∂ρ

)

ρ=ρ0

δρ + O
(

δ2ρ
)

, (40)

(

∂Veff

∂ρ

)

ρ=ρ0+δρ

=

(

∂Veff

∂ρ

)

ρ=ρ0

+

(

∂2Veff

∂ρ2

)

ρ=ρ0

+ O
(

δ2ρ
)

. (41)

By the small displacement deviating from the orbit, z = z0 + δz, the expression in
z coordinate is obtained and the high-order small quantity is ignored, respectively. The
following differential equation is obtained:

d2δρ

dt2
+ Ω2

ρδρ = 0. (42)

d2δz

dt2
+ Ω2

zδz = 0. (43)

In the cylindrical coordinate, from Equations (36), (42), and (43), the three fundamental
angular velocities are

Ω2
ρ = −

1

2gρρ ṫ2

∂2Veff

∂ρ2
, (44)

Ω2
z = −

1

2gzz ṫ2

∂2Veff

∂z2
, (45)

Ω2
φ = −

(

∂ρgtt

)

/
(

∂ρgφφ

)

. (46)

Therefore, we obtain

νρ =

√

−
1

2gρρ ṫ2

∂2Veff

∂ρ2
/2π, (47)

νz =

√

−
1

2gzz ṫ2

∂2Veff

∂z2
/2π, (48)

νφ =
√

−
(

∂ρgtt

)

/
(

∂ρgφφ

)

/2π. (49)
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Through Equations (47)–(49), in the plane of z = 0, let a = 0, so as to obtain the image
of coincident orbital frequency and vertical local frequency, which is similar to the case of
the Schwarzschild black hole. We draw a diagram of three fundamental frequencies, as
shown in Figure 9.

νφ
νρ
νz

0 5 10 15 20
0.00

0.01

0.02

0.03

0.04

ρ/M

νM
a=0 Three fundamental frequencies

Figure 9. Three fundamental frequencies of a three-black-hole spacetime when a = 0.

In Figure 9, we can see that the orbital frequency and the vertical local frequency
basically coincide in the second half.

By means of Figure 10, we can find that the radial local frequency is discontinu-
ous, while its intermittent interval coincides exactly with the intermittent interval of the
stabilisation region at a = 1.5 in Figure 2.
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a=1.5 Three fundamental frequencies

Figure 10. Three fundamental frequencies of a three-black-hole spacetime when a = 1.5.

Figure 11 shows us that the orbital frequencies also have a bimodal structure when
a = 1, which is the same as in the figure of the one-dimensional effective potential.
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Figure 11. Three fundamental frequencies of a three-black-hole spacetime when a = 1.
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Again, we can obtain the three fundamental frequencies of the two black holes as
a comparison.

As shown in Figure 12, we obtain the three fundamental frequencies of the double-
black-hole spacetime, where the orbital and vertical local frequencies essentially coincide
in the second half of the image, thus once again verifying that the case a = 0 is correct.

νφ
νρ
νz

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

ρ/M

νM
a=0 Three fundamental frequencies

Figure 12. The three fundamental frequencies of the two-black-hole spacetime when a = 0.

Next, we explored the frequency variation when a = 1 and obtained Figure 13. As
expected, the discontinuity interval of the radial local frequency again matches exactly the
discontinuity interval at a = 1 for the double-black-hole spacetime in Figure 3. This reflects
the nature of spacetime and also indicates that the frequencies are closely related to the
stability of circular orbits.
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ρ/M

νM

a=1 Three fundamental frequencies

Figure 13. The three fundamental frequencies of the two-black-hole spacetime when a = 1.

6. Summary and Discussion

We study stable circular orbits in a static black hole spacetime of the Majumdar–
Papapetrou type with equal unit mass, and we consider the circular orbital sequences of
test particles in a static black hole spacetime. By comparing the circular orbits of two, three,
four and five static black holes at different spacetime scales, we find that the continuity of
their stable circular orbits on the equatorial plane changes, that is, the peak of the effective
potential changes from a single peak to a bimodal structure, and the distance a between the
black holes is the main reason for this change. This feature is completely different from the
continuity of the stable circular orbital intervals of any black hole found in the past. We
further plot the one-dimensional effective potential of different spacetimes, and find that
the parity of the number of black holes has an important effect on the effective potential.
We also analyse the effect of the black hole spacing a on the three fundamental frequencies
of the circular orbit, and compare the three fundamental frequencies in two and three
static black hole spacetimes. An important finding is that when the distance a changes, the
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continuity of the fundamental orbital frequency synchronizes with the continuity of the
ISCO, indicating a close correlation between these two physical quantities.

We highlight the significance of orbital frequency. For example, under certain condi-
tions, the radial frequency may become zero, meaning that the orbit may become unstable
and the object may fall into a black hole or be thrown out to infinity. Under certain con-
ditions, resonance phenomena can occur between these frequencies, leading to complex
orbital behaviour. This is important for understanding high-energy astrophysical phenom-
ena around black holes. The orbital fundamental frequency is an important parameter
for analysing gravitational wave radiation. When an object orbits a black hole, it emits
gravitational waves at frequencies that are tied to these three fundamental frequencies. Con-
sequently, comprehending these frequencies is instrumental in forecasting and examining
the gravitational wave emissions from black hole systems. Knowledge of these frequencies
helps to explain some observed astrophysical phenomena, such as the characterisation of
black holes in X-ray binary systems, and the radiation mechanism of active galactic nuclei.
Overall, the three orbital fundamental frequencies in the black hole spacetime provide
crucial information to understand and characterise the laws of motion of celestial bodies
in strong gravitational fields and have a wide range of applications in astrophysics and
gravitational wave astronomy.

We present a systematic approach to finding stationary orbits and suggest methods for
determining whether these orbits are stable or unstable. Using these methods, we identify
a typical sequence of circular orbits for each model and indicate the parts of them that
exhibit stable behaviour. These orbits are balanced by Newtonian gravity and centrifugal
forces. Stabilised circular orbits can also be balanced by other mechanisms. Like the
familiar Schwarzschild black hole, particles near the event horizon experience higher-order
relativistic effects. Conversely, due to the absence of an event horizon on the symmetry
plane of this evenly static black hole spacetime, the centrifugal barrier experienced by
particles necessarily tends towards infinity at the centre. As a result, a stable equilibrium
point arises radially, achieved through the balance of higher-order relativistic gravitational
and centrifugal forces. Furthermore, if this point is also located in a vertically bounded
region, a stable circular orbit emerges. And this region of stability of the circular orbit is
tied to the three orbital fundamental frequencies, which is very common for a spacetime
where there is no horizon at the centre of the system.

This model does not fully reflect real astrophysical conditions, particularly the impact
of black hole spin on ISCO and orbit stability. The stability of multi-black hole systems is
uncertain. The effects of spin on spacetime are complex, influencing orbit frequencies and
Lagrange points. Dark matter halos are also a focus, altering the gravitational potential and
influencing ISCO positions and orbit stability. The presence of dark matter can change the
effective potential’s shape, affecting orbital stability and fundamental frequencies. Further
research is needed to fully understand these complex interactions. While these effects are
currently unknown, we plan to explore them in future work. The study of these changes
will lead to a better understanding of the distribution and nature of dark matter in the
Universe and its potential impact on astrophysical phenomena.
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