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On Multimatrix Models Motivated by
Random Noncommutative Geometry I: The
Functional Renormalization Group as a
Flow in the Free Algebra

Carlos I. Pérez-Sánchez

Abstract. Random noncommutative geometry can be seen as a Euclidean
path-integral quantization approach to the theory defined by the Spectral
Action in noncommutative geometry (NCG). With the aim of investigat-
ing phase transitions in random NCG of arbitrary dimension, we study
the nonperturbative Functional Renormalization Group for multimatrix
models whose action consists of noncommutative polynomials in Hermit-
ian and anti-Hermitian matrices. Such structure is dictated by the Spec-
tral Action for the Dirac operator in Barrett’s spectral triple formulation
of fuzzy spaces. The present mathematically rigorous treatment puts for-
ward “coordinate-free” language that might be useful also elsewhere, all
the more so because our approach holds for general multimatrix models.
The toolkit is a noncommutative calculus on the free algebra that allows
to describe the generator of the renormalization group flow—a noncom-
mutative Laplacian introduced here—in terms of Voiculescu’s cyclic gra-
dient and Rota–Sagan–Stein noncommutative derivative. We explore the
algebraic structure of the Functional Renormalization Group equation
and, as an application of this formalism, we find the β-functions, identify
the fixed points in the large-N limit and obtain the critical exponents of
two-dimensional geometries in two different signatures.
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1. Introduction

Random Noncommutative Geometry (NCG), initiated by Barrett and Glaser
[11], is a path-integral approach to the quantization of noncommutative ge-
ometries. This problem is mathematically interesting [20, Sect. 18.4] and has
already been addressed by diverse methods in [18,28,57]. Also in physics, a
satisfactory answer would shed light on the quantum structure of spacetime
from a different angle. Namely, what seems to individuate a formulation of
quantum of gravity in terms of NCG-structures is that these provide a natu-
ral language to treat both pure gravity and gravity coupled with matter at a
geometrically indistinguishable footing. This holds for (the classical theory of)
established matter sectors like the Standard Model [7,17] and some theories
beyond it [21].

Although the last point evokes rather the mathematical elegance of the
NCG-applications, also from a pragmatic viewpoint it is important to stress
that the search for a quantum theory of gravity that is capable of incorporating
matter is of physical relevance: “matter matters” reads for instance in the
asymptotically safe road to quantum gravity [24] (see also [67]). Indeed, a
quick argument [31] based on the Renormalization Group (RG) discloses the
mutual importance of each sector to the other, concretely

• gravity loops like appear and influence matter and
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• in a similar way, matter modifies the gravity sector

in the RG-flow. This suggests that both ought to be simultaneously treated
and motivates us to develop, as a first step, the Functional Renormalization
Group in random NCG, where potentially both sectors might harmonically
coexist.

The Functional Renormalization Group Equation (FRGE; see the com-
prehensive up-to-date review [23]) is a modern framework describing the Wilso-
nian RG-flow [78] that governs the change of a quantum theory with scale.
From the technical viewpoint, in order to determine the effective action, the
FRGE—derived by Wetterich and Morris [55,77]—offers an alternative to
path-integration by replacing that task with a differential equation.

In this paper, the model of space(time) we focus on is an abstraction of
fuzzy spaces [27,30,71], whose elements were later assembled into a spectral
triple (the spin geometry object in NCG) called fuzzy geometry [8,12]. For
the future, in a broader NCG context, it would be desirable to relate the
FRGE to the newly investigated truncations in the spectral NCG formalism
[22,42,43] (see [29] for a preceding related idea), but for initial investigations
fuzzy geometries are interesting enough and also in line with them, e.g., for
the case of the sphere [76, Sect. 3.3].

One particular advantage of a fuzzy geometry being a spectral triple is
the contact with Connes’ NCG formalism, in particular, the ability to en-
code the geometry in a (Dirac) operator D that serves as path integration
variable in the quantum theory. Since fuzzy geometries are finite-dimensional,
one can provide a mathematically precise definition of the partition function
Z =

∫
e− Tr f(D)dD that corresponds to the Spectral Action Tr f(D), as far

as f is a polynomial, in contrast to the bump function f used originally by
Connes–Chamseddine [16]. In fact, this way to quantize fuzzy geometries was
shown [8,11] to lead to a certain class of multimatrix models further charac-
terized in [61].

On the physics side, finite-dimensionality should not be seen as a short-
age, as this dimension is related to energy or spatial resolution; in fact, rather
it is in line with the existence of a minimal or Planck’s length. This is in-
tuitively clear for the fuzzy sphere [41] on which—being spanned by finitely
many spherical harmonics—it is impossible to separate (i.e. to measure) points
lying arbitrarily near.

This discrete-dual picture (Fig. 1) can be interpreted as a pre-geometric
phase, analogous to having simplices as building blocks of spacetime in discrete
approaches to quantum gravity as Group Field Theory [9], Matrix Models
[25,38] or Tensor Models [46]. For those theories, but also for other approaches
(e.g., Causal Dynamical Triangulations [2]), it is important [1,26,34,36,65] to
explore phase transition to a manifold-like phase; in analogous way, the study
of a condensation of fuzzy geometries to a continuum is physically relevant
[40] (also addressed analytically in dimension-1 by [49]). With this picture in
mind, we estimate here candidates for such phase transition.
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Figure 1. A caricature of selected algebra elements of the
fuzzy sphere. The real part of spherical harmonics Y

m=�/2
� for

� = 4, 10, 20, 40

The largest part of this paper develops the mathematical formalism that
allows such exploration. On top of well-known quantum field theory (QFT)
techniques, the nonstandard results this paper bases on can be divided into
three classes:

• The models are originated in Random NCG [11]. Barrett’s characteri-
zation of Dirac operators makes contact with certain kind of multimatrix
models [8]. Their Spectral Action was systematically computed in [61],
organized by chord diagrams, which reappear here.

• The tool is the Functional Renormalization Group. The main idea of
the RG-flow parameter being the (logarithm of) the matrix size appeared
in [15] and consists in reducing the N + 1 square matrix ϕ to effectively
obtain a N ×N matrix field by integrating out the entries ϕa,N+1, ϕN+1,a

(a = 1, . . . N +1). Eichhorn and Koslowski provided the nonperturbative,
modern formulation of the Brezin–Zinn–Justin idea. They put it forward
for Hermitian matrix models in [32] (preceded by a similar approach to
scalar field theory on Moyal space [70] and followed by an extension to
tensor models [34]). They did not present a proof and in fact it will
be convenient to prove for multimatrix models the FRGE, as this equa-
tion actually dictates us the algebraic structure (needed for the so-called
FP−1-expansion [14, Sect. 2.2.2]) and exonerates us from making any
choice.

• Although the Eichhorn–Koslowski approach orients us to find suitable
truncations and their scalings to take the large-N limit were auxiliary,
the mathematical structure we deal with here is constructed from scratch
and does not rely on theirs (which turns out to be entirely replaced).
The language that facilitates this is abstract noncommutative alge-
bra. In order to state the RG-flow in “coordinate-free” fashion, we use
Voiculescu’s cyclic derivative [74] and the noncommutative derivative de-
fined by Rota–Sagan–Stein [68].

We do not assume familiarity with any of these references and offer a self-
contained approach.
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1.1. Organization, Strategy and Results

In Sect. 2 we develop the algebraic language needed for the rest of the paper.
We introduce a noncommutative (NC) Hessian and a NC-Laplacian on the free
algebra, given in terms of noncommutative differential operators defined by [68,
74,75]. A graphical method to compute this second-order operator is provided.
Section 2 prepares the algebraic structure that will turn out to emerge in the
proof of Wetterich–Morris equation for multimatrix models.

Section 3 briefly reviews fuzzy geometries and how their Spectral Action
is computed in terms of elements of the free algebra—in mathematics called
words or noncommutative polynomials and in QFT-terminology operators—
that define a certain class of multimatrix models. For two-dimensional fuzzy
geometries, we provide a characterization of allowed terms in the resulting
action functional.

In Sect. 4 the FRGE is proven to be governed by the NC-Hessian; in
Sect. 5 we introduce truncations and projections in order to compute the β-
functions. Also there, the “FP−1 expansion” is developed in the large-N limit,
and the tadpole approximation, corresponding to order one in that expansion,
is restated as a heat equation1 whose Laplacian is noncommutative (the one
of Sect. 2).

Once the formalism is ready, we do not directly proceed with fuzzy ge-
ometries, but in Sect. 6 we briefly reconsider the treatment of the FRGE for
Hermitian matrix models. A couple of points justify this interlude:

• It serves as a bridge from the index-computations in matrix models to
index-free ones proposed in the present paper.

• By using a well-known result to be reproduced by the FRGE, we calibrate
the infrared regulator (IR-regulator) that we shall use for the fuzzy ge-
ometry matrix models. With a quadratic, instead of the already studied
linear IR-regulator, the fixed point is closer to the exact value −1/12 for
gravity coupled with conformal matter.

• Finally, since the number of flowing operators for the Hermitian matrix
model is relatively small, it is helpful for the sake of clearer exposition to
present a case whose techniques fit in a couple of pages to prepare the
more complex fuzzy two-matrix models.
The actual application of the formalism appears in Sect. 7. We treat there

a class of two-matrix models that lies in an orthogonal direction to the well-
investigated two-matrix model that describes the Ising model [37,47,72], often
just referred to as “the two-matrix model”, due to its importance. To wit,
whilst in the Ising two-matrix model the (trace of) AB appears as the only
interaction mixing the two random matrices, A and B, NCG-models forbid
this very operator. Instead, these matrices interact via several elements of the
free algebra and its tensor powers, i.e. via (traces of) words

ABAB,A2B2, A3BAB, . . . and A ⊗ A,A2 ⊗ B2, A ⊗ A2BAB, . . .

1That a Laplacian plays a role in the Functional Renormalization Group and that this has
the form of is not a surprise [69, Sect. 3.3].
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whose exact form has been investigated in [61], also for higher dimensions. The
RG-flow we analyze does not take place inside the space of Dirac operators—in
which coupling constants of the same polynomial degree are correlated—but
we consider the general situation in which the symmetry breaking by the IR-
regulator kicks the RG-flow out to (couplings indexed by a larger subspace of
tensor products of) the free algebra.

For an arbitrary-dimensional fuzzy geometry the bare action—the start-
ing point of the RG-scale t = log Λ (or energy scale Λ)—is chosen in the space
of Dirac operators inside the full theory space, the space of running couplings.
The exact RG-path ends at the precise effective action at RG-scale2 t = −∞,
which is too hard to determine at present. Making the RG-flow computable
introduces two types of errors: on the one hand, deviations caused by pro-
jections that consider only operators with unbroken symmetries and, on the
other hand, errors due to truncations introduced in order to keep the number
of flowing parameters finite. This is depicted in Fig. 2 in a pessimistic scenario,
later improved in view of the results of Sect. 7.2.

The large number of the NC-polynomial interactions, on top of the ordi-
nary polynomials in each matrix, makes the projected and truncated RG-flow
still computationally demanding3 and at this stage a further simplification is
helpful. Namely, we look for critical exponents corresponding to solutions to
the fixed point equations that obey the duality A ↔ B, whenever the signa-
ture allows it. We find those solutions inside a hypercube in theory space (with
coordinates gi obeying |gi| ≤ 1), which, even if it is not the full exploration,
it exhausts the scope of the FP−1-expansion. Further improvements are dis-
cussed in Sect. 8, together with the conclusion. To ease the reading, some
oversized expressions involved in proofs are located outside the main text (see
Supplementary Material). Also “Appendix A” serves as a glossary and guide
on the notation.

2. Noncommutative Calculus

We address the noncommutative calculus in several (say n) variables. The ob-
ject of interest is the free algebra spanned by an alphabet of n letters x1, . . . , xn.
The elements of the free algebra are the linear span of words in those n letters,
the product being concatenation. Although the physical theories we address
are well described by the real version R〈n〉 of it, we consider the complex free
algebra C〈n〉. There exists in C〈n〉 an empty word, denoted by 1, that behaves
as multiplicative neutral. Other than 1, the letters of the alphabet do not
commute.

2Actually, it since Λ will be identified with the matrix size the lowest value for the RG-time
t is 0 = log 1 = log Λ0. But at this point “we do not know this yet”.
3For instance, at the sixth order the NCG-matrix model includes up to 48 operators in
a double-trace even-degree truncation. In contrast, in the same truncation, the Ising two-
matrix model would include at most 19 operators, but the RG-flow does not combine letters
in the latter case.
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Λ Chosen bare action S ΓN Λ

0 Full effective action Γ ΓN 0

� Interpolating action ΓN Λ ρ (projected & truncated)
RG-flow with truncation and projection
Moduli of Dirac operators theory space
RG-flow without truncation nor projection

g... Rest of coupling constants

Figure 2. Picture of the theory space and two hypersurfaces.
The lower one, which considers the modified Ward–Takahashi
identity (mWTI), is where the exact flow takes place. The
upper one is an approximation with finitely many parameters.
If ρ is small, the approximation ignoring the mWTI, together
with the truncation and projection for the approximated RG-
flow (≈ RG-flow) is assumed to not to be far apart from the
actual interpolating action

Rather than in the generators xi in the abstract free algebra, we are
interested in their realization as matrices,4 xi = Xi ∈ MN (C) for each i =
1, . . . , n. In contrast with the convention of taking self-adjoint generators, we
have reasons to allow anti-Hermitian generators and set instead

X∗
i = ±Xi if ei = ±1 (i = 1, . . . , n). (2.1a)

4This section is the mathematical background of the FRGE. So far, N is still fixed.
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In this section the signs ei are input; later these will be gained from the NCG-
structure, which additionally imposes

TrN (Xi) :=
N∑

a=1

(Xi)aa = 0 if ei = − 1. (2.1b)

When the n generators are N × N matrices, it will be convenient to denote
the free algebra by C〈n〉,N . Having fixed signs ei (i = 1, . . . , n), we let

MN =
{
(X1, . . . , Xn) | conditions (2.1) hold for each Xi ∈ MN (C)

}
, (2.2)

with some abuse of notation concerning the omitted parameters. The trace-
lessness condition (2.1b) is of no relevance in this section, but important later.

The empty word, which corresponds to the identity matrix 1N ∈ MN (C),
generates the constants. The elements of the free algebra that are not generated
by the empty word are referred to as fields:

C〈n〉,N =

constants︷︸︸︷
C · 1N ⊕ 〈X�1X�2 · · · X�k

| �j = 1, . . . , n and k 
= 0
︸ ︷︷ ︸

fields

〉. (2.3)

A similar terminology is employed for the analogous splitting of the tensor
product:

C〈n〉,N ⊗ C〈n〉,N =

constants︷ ︸︸ ︷
C · 1N ⊗ 1N ⊕ fields, (2.4)

whose fields in this case are given by

〈X�1X�2 · · · X�k
⊗ X�′

1
X�′

2
· · · X�′

r
| �′

j , �j = 1, . . . , nandr + k 
= 0〉. (2.5)

The free algebra is equipped with the trace of MN (C): TrN (Q) =
∑N

a=1 Qaa,
Q ∈ C〈n〉,N . Instead of making this trace a state, normalizing it as usual also
in probability, tr(1N ) = 1, we still stick to a trace satisfying TrN (1N ) = N in
order to make power-counting arguments comparable with other references.

2.1. Differential Operators on the Free Algebra

We now elaborate on the next operators, due to Rota–Sagan–Stein [68] (in
one variable to Turnbull [73]) and to Voiculescu [74]. The noncommutative
derivative—called also the free difference quotient [44,75]—with respect to
the j-th variable xj , denoted by ∂xj , is defined on generators by

∂xj : C〈n〉 → C〈n〉 ⊗ C〈n〉

x�1 · · · x�k

→

k∑

i=1

δj
�i

· x�1 · · · x�i−1 ⊗ x�i+1 · · · x�k
. (2.6)

The tensor product keeps track of the spot (in monomial) the derivative acted
on. Moreover, the cyclic derivative Dxj with respect to the j-th variable is
defined by

Dxj = m̃ ◦ ∂xj where m̃ : C〈n〉 ⊗ C〈n〉 → C〈n〉, m̃(A ⊗ B) = BA. (2.7)
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Example. In the free algebra generated by the Latin alphabet A, . . . , Z, one
has

∂E(FREENESS) = FR ⊗ ENESS + FRE ⊗ NESS + FREEN ⊗ SS,

but notice that (if 1 is the empty word) ∂S(FREENESS) = FREENE⊗S+FREENES⊗
1. For the cyclic derivative it holds:

DE(FREENESS) = m̃
(
FR ⊗ ENESS + FRE ⊗ NESS + FREEN ⊗ SS

)

= ENESSFR + NESSFRE + SSFREEN.

Using the same rules for the abstract derivatives on C〈n〉 for C〈n〉,N , one
can make the following

Proposition 2.1. Let Y = Xi be any of the generators of C〈n〉,N . For any
Q ∈ C〈n〉,N , the derivatives ∂Y and DY enjoy the following properties:

1. the abstract derivative is realized by the derivative with respect to a ma-
trix:

∂Y
ab =

δ

δYba
, (2.8)

that is, letting (U ⊗ V )ab;cd = UabVcd (U, V ∈ C〈n〉,N ), one has

[(∂Y Q)(X)]ab;cd =
δ

δYbc
[Q(X)]ad for X = (X1, . . . , Xn) ∈ MN .

2. The cyclic derivative equals the noncommutative derivative of the trace:

∂Y Tr Q = DY Q. (2.9)

Proof. Let Q ∈ C〈n〉. Since the trace is linear, one can verify the property on
a monomial Q(X) = X�1 · · · X�k

and then obtain

δ

δ(Xi)bc
Q(X)ad =

δ

δ(Xi)bc
(X�1 · · · X�k

)ad

=
k∑

j=1

(X�1 · · · X�j−1)ar

δ(X�j
)rs

δ(Xi)bc
(X�j−1 · · · X�k

)sd

=
∑

i=�j

(X�1 · · · X�j−1)ab(X�j−1 · · · X�k
)cd

=
∑

i=�j

(X�1 · · · X�j−1 ⊗ X�j−1 · · · X�k
)ab;cd

=
[
(∂XiQ)(X)

]
ab;cd

.

To obtain the second statement, notice that ∂Xi

ab Tr Q is obtained from the last
equation by setting a = d and summing,

∂Xi

cb Tr[Q(X)] =
∑

a

{
(∂XiQ)(X)

}
ab;ca

=
∑

a

∑

i=�j

(X�1 · · · X�j−1 ⊗ X�j−1 · · · X�k
)ab;ca
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= m̃

⎧
⎨

⎩

∑

a

∑

i=�j

(X�1 · · · X�j−1 ⊗ X�j−1 · · · X�k
)ab;ca

=
{
[(m̃ ◦ ∂Xi)Q](X)

}
cb

=
[
(DXiQ)(X)

]
cb

,

where the last line follows just by the definition of cyclic derivative. �

Definition 2.2. The noncommutative Hessian (NC-Hessian) is the operator

Hess : im TrN → Mn(C) ⊗ C
⊗ 2
〈n〉,N (2.10)

whose (ij)-entry (1 ≤ i, j ≤ n) in the first tensor factor is

(Hess TrN P )ij := (∂Xi ◦ ∂Xj TrN P ) ∈ C
⊗ 2
〈n〉,N . (2.11)

Here, TrN : C〈n〉,N → C is the ordinary trace of MN (C) ⊃ C〈n〉,N . Alterna-
tively,

Hess =

⎛

⎜
⎜
⎜
⎝

∂X1 ◦ ∂X1 ∂X1 ◦ ∂X2 · · · ∂X1 ◦ ∂Xn

∂X2 ◦ ∂X1 ∂X2 ◦ ∂X2 · · · ∂X2 ◦ ∂Xn

...
...

. . .
...

∂Xn ◦ ∂X1 ∂Xn ◦ ∂X2 · · · ∂Xn ◦ ∂Xn

⎞

⎟
⎟
⎟
⎠

.

It will be convenient to introduce a closely related Hessian, Hessg, modified by
the5 “signature” g = diag(e1, . . . , en),

(Hessg TrN P )ij := (ei)δij (∂Xi ◦ ∂Xj TrN P ) ∈ C
⊗ 2
〈n〉,N , (2.12)

so

Hessg =

⎛

⎜
⎜
⎜
⎝

e1∂
X1 ◦ ∂X1 ∂X1 ◦ ∂X2 · · · ∂X1 ◦ ∂Xn

∂X2 ◦ ∂X1 e2∂
X2 ◦ ∂X2 · · · ∂X2 ◦ ∂Xn

...
...

. . .
...

∂Xn ◦ ∂X1 ∂Xn ◦ ∂X2 · · · en∂Xn ◦ ∂Xn

⎞

⎟
⎟
⎟
⎠

.

Tracing the NC-Hessian Hessg with help of the signature yields the noncom-
mutative Laplacian ∇2, that is the map

∇2 : im TrN → C
⊗ 2
〈n〉,N given by ∇2 :=

n∑

i=1

ei(∂Xi ◦ ∂Xi). (2.13)

We abbreviate ∂Xi ◦ ∂Xi = (∂Xj )2 = ∇2
j , so ∇2 =

∑n
j=1 ej∇2

j .

We remark that the Hessian matrix (of NC-polynomials in C
⊗ 2
〈n〉 ) is not

symmetric. Clearly, the NC-Laplacian and the NC-Hessian vanish on degree
< 2. On larger words, we compute them with aid of:

Proposition 2.3. Consider a monomial Q ∈ C〈n〉,N , Q = X�1X�2 · · · X�k
with

k ≥ 2. Then, for i, j = 1, . . . , n

(∂Xi ◦ ∂Xj )TrN Q =
∑

π=(uv)

δj
�u

δi
�v

π1(Q) ⊗ π2(Q), (2.14)

5Later it will be clear this terminology—by now we use quotation marks.



Vol. 22 (2021) On random NCG Multimatrix Models: the Functional RG 3105

where the sum runs over all (directed) pairings π = (uv) between the letters of
the word Q distributed on a circle:

X�k
X�1

X�2

...

X�u−1

X�uX�u+1

. . .

X�v

. .
.

π = (uv)

(2.15)

In Eq. (2.14), π1(Q) and π2(Q) are the words between X�u
and X�u

. They
fulfill that π2(Q)X�u

π1(Q)X�v
matches Q up to cyclic reordering.

As a particular case in that definition: for π matching contiguous letters,
that is if v = u±1, one has the empty word in between, π{1

2

}(Q) = 1N . Notice

that by (2) of Claim 2.1,

∂Xi∂Xj TrN Q = ∂XiDXj Q

= ∂Xi

(∑

u

δj
�u

X�u+1X�u+2 · · · X�k
X�1X�2 · · · X�u−1

)

=
∑

u

δj
�u

∑

v �=u

δi
�v

X�u+1X�u+2 · · · X�v−1

⊗ X�v+1 · · · X�k
X�1X�2 · · · X�u−1

=
∑

u

δj
�u

∑

v �=u

δi
�v

π1(Q) ⊗ π2(Q), where π = (uv). �

Before we give some examples, notice that since for the NC-Laplacian
both pairings π = (uv) and (vu) appear, one can replace the expression
∇2 TrN Q =

∑n
j=1 ej

∑
π=(uv) δj

�v
δj
�u

π1(Q) ⊗ π2(Q) by a more symmetric one,

∇2 TrN Q =
n∑

j=1

ej

∑

π={uv}
(undirected)

δj
�v

δj
�u

{
π1(Q) ⊗ π2(Q) + π2(Q) ⊗ π1(Q)

}
.

(2.16)

These differential operators can be extended to products of traces using the
same formulae that defines them in the single-trace case, but they require
additional structure. Namely, the NC-Laplacian satisfies the rule

∇2 Tr⊗2(P ⊗ Q) = ∇2(Tr P · Tr Q)

= (∇2 Tr P ) · Tr Q + (∇2 Tr Q) · Tr P

+
∑

j

ej

{
DXj P ⊗τ DXj Q + DXj Q ⊗τ DXj P

}
, , (2.17)

in terms of a tensor product ⊗τ that does not receive the next natural matrix
coordinates for monomials U,W ∈ C〈n〉,

(U ⊗ W )ab;cd := UabWcd, (2.18a)
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but twisted ones with respect to the transposition τ = (13) ∈ Sym(4) of the
four indices,

(U ⊗τ W )a1a2;a3a4 := (U ⊗ W )aτ(1)aτ(2);aτ(3)aτ(4) , (2.18b)

or more clearly

(U ⊗τ W )ab;cd = UcbWad. (2.18c)

Before seeing how τ twists the product on C
⊗ 2
〈n〉 , in the next section, notice

how expression (2.17) follows directly from a slightly more general one that
we do prove:

Proposition 2.4. The NC-Hessian of a product of traces is

Hess(Tr P Tr Q) = TrQHess(Tr P ) + Tr P Hess Tr Q + Δ(P,Q) (2.19)

where the last term is the matrix with entries

[Δ(P,Q)]ij = DXiP ⊗τ DXj Q + DXiQ ⊗τ DXj P ∈ C
⊗ 2
〈n〉 .

The matrix just defined satisfies Δ(P,Q) = Δ(Q,P ) evidently—which
is important since P and Q in Hess(Tr P Tr Q) are interchangeable—but, like
the Hessian, it is not symmetric in general, [Δ(P,Q)]ij 
= [Δ(P,Q)]ji .

It is convenient to split P = ∂Xi∂Xj Tr P ∈ C〈n〉 ⊗ C〈n〉 using (a con-
venient upper-index version of) Sweedler’s notation P =

∑
P(1) ⊗ P(2). The

transition to the index notation can be expressed as6

∂Xi

cb ∂
Xj

ad Tr P =
∑

Pab;cd =
∑

P(1)
ab P(2)

cd ,

which follows by direct computation (and is moreover supported by [44, Eq. 4]).
The coordinates of the (i, j)-matrix block of a Hessian are Hess

(Tr P )ij|ab;cd := (Hess(Tr P )ij)ab;cd. We compute these for the product of
traces:

Hess(Tr P Tr Q)ij|ab;cd

= ∂Xi

cb ∂
Xj

ad (Tr P Tr Q)

= (Hess(Tr P )ij)ab;cd Tr Q + Tr Q(Hess(Tr P )ij)ab;cd

+ DXi

cb PD
Xj

ad Q + DXi

cb QD
Xj

ad P

= (Tr QHess Tr P + TrP Hess Tr Q)ij|ab;cd

+ (DXiP ⊗τ DXj Q + DXiQ ⊗τ DXj P )ab;cd. �
From the last proposition, one can easily show a similar rule holds re-

placing everywhere by its version Hessσ modified by σ = diag(e1, . . . , en) and
the Δ-matrix by Δσ(P,Q) which has diagonal entries Δσ

ii(P,Q) = eiΔii(P,Q)
and else those of Δ.

In the following, we sketch the action of the operator ∂Xj graphically.
The convention is that the first letter of a word is the first after the cut (arrow
tail) and the last letter corresponds to the one before the cut (arrow head).

6Other choices are possible. However, if one applies these operators to products of traces,
as is the case treated here, at least one of the products will show this braiding.
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• One can represent the elements of im TrN as words on circles. For the
NC-derivative ∂Xj : im TrN → C〈n〉 one has

(2.20)

where the ends of the line in the last figure are joined (multiplied).
• In the next representation, each arrow belongs to a different tensor factor.

Thus, ∂Xj : C〈n〉 → C
⊗ 2
〈n〉 acts as

Together, the two last pictures give the graphical interpretation of the
proof of the proposition above.

• Similarly, ∂Xj : C
⊗ k
〈n〉 → C

⊗ k+1
〈n〉 j-cuts at all places of each tensor-factor

(line):

(2.21)

Example. The next examples shall be useful below:
• On C〈n〉,N it holds ∇2 Tr(XiXj) =

∑n
k=1 2eiδ

k
i δk

j 1N ⊗1N = 2eiδ
i
j1N ⊗1N

from the last statement, since only the empty word is between the two
letters.

• On C〈1〉,N = C〈X〉 with X∗ = X, ∇2 = (∂X)2 and (m ≥ 2)

∇2 TrN
(Xm

m

)
=

m−2∑

�=0

X� ⊗ Xm−2−�. (2.22)

Now is evident that, even though C〈1〉,N consists of ordinary polynomials,
NC-derivatives are not ordinary.

Example. We compute a NC-Hessian and a NC-Laplacian on C〈2〉 = C〈A,B〉.
With aid of Claim 2.3 and setting g = diag(e1, e2) = diag(ea, eb):

Hessg{Tr(ABAB)} =
(

ea∂
A ◦ ∂A ∂A ◦ ∂B

∂B ◦ ∂A eb∂
B ◦ ∂B

)

Tr(ABAB)

= 2
(

eaB ⊗ B AB ⊗ 1 + 1 ⊗ BA
BA ⊗ 1 + 1 ⊗ AB ebA ⊗ A

)

(2.23)
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which also explicitly shows the asymmetry of the Hessian. To compute, say,
the entry (12) of this matrix, which corresponds to the operator ∂A ◦ ∂B , one
has four matches: distributing the word ABAB on a circle as in 2.15, with
the arrow tail at any letter B, the tip of the arrow can pair the A left (or
clockwise) to it or the A to its right (counterclockwise). According to Claim
2.3 these contributions are, respectively, 1 ⊗ BA and AB ⊗ 1 for each letter B
in the word, hence the factor 2. The Laplacian is the trace of it,

∇2 Tr(ABAB) = Tr2
(
Hessg Tr(ABAB)

)
= 2eaB ⊗ B + 2ebA ⊗ A.

2.2. The Algebraic Structure

We consider sums of monomials which either have the form X ⊗ Y or X ⊗τ Y
inside the same algebra:

An = C
⊗ 2
〈n〉 ⊕ C

⊗τ2
〈n〉 and An,N = C

⊗ 2
〈n〉,N ⊕ C

⊗τ2
〈n〉,N , (2.24)

where the second symbol emphasizes the matrix realization of the free algebra.
On An,N there is a product × defined in coordinates by

[(U ⊗ϑ W ) × (P ⊗� Q)]ab;cd := (U ⊗ϑ W )ax;cy(P ⊗� Q)xb;yd, (2.25)

where ϑ,
 represent the twist τ or its absence, and the sums are implicit. The
twisted structure modifies the product according to:

Proposition 2.5. For monomials U,W,P,Q ∈ C〈n〉 one has

(U ⊗ W ) × (P ⊗ Q) = UP ⊗ WQ, (2.26a)
(U ⊗ W ) × (P ⊗τ Q) = WP ⊗τ UQ, (2.26b)
(U ⊗τ W ) × (P ⊗ Q) = UP ⊗τ WQ, (2.26c)

(U ⊗τ W ) × (P ⊗τ Q) = WP ⊗ UQ. (2.26d)

These rules can be remembered by identifying tensor product of mono-
mials U ⊗ W with the block diagonal element diag(U,W ) ∈ M2(C〈n〉) and
each twisted product U ⊗τ W with the anti-diagonal jdiag(U,W ) =

(
0 W
U 0

)

for j =
(

0 1
1 0

)
. Then, the rules (2.26) are just ar restatement of matrix multi-

plication in M2(C〈n〉), but we do not state it a such since it does not work for
polynomials. But in fact Eq. (2.26) can be proven in coordinates:
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Proof. We prove the second rule: for a, . . . , d = 1, . . . , N , one has

((U ⊗ W ) × (P ⊗τ Q))ab;cd = (U ⊗ W )am;co(P ⊗τ Q)mb;od

= UamWcoPobQmd (implicit o,m sum)

= (UamQmd)(WcoPob) = (WP )cb(UQ)ad

= (WP ⊗τ UQ)ab;cd

and that rule follows. The first rule (2.26) is obvious, the two left unproven
are verified in similar way. �

As a caveat, notice that

(1 ⊗τ 1) × (P ⊗ Q) = P ⊗τ Q but (P ⊗ Q) × (1 ⊗τ 1) = Q ⊗τ P.

For monomials P,Q,U,W ∈ C〈n〉, we let also

[(U ⊗ϑ W ) � (P ⊗� Q)]ab;cd := (U ⊗ϑ W )ab;xy(P ⊗� Q)yx;cd,

where 
,ϑ stand for either τ or an empty label.

Proposition 2.6. It follows that

(U ⊗τ W ) � (P ⊗τ Q) = PU ⊗τ WQ, (2.27a)

(U ⊗ W ) � (P ⊗τ Q) = U ⊗ PWQ, (2.27b)

(U ⊗τ W ) � (P ⊗ Q) = WPU ⊗ Q, (2.27c)

(U ⊗ W ) � (P ⊗ Q) = Tr(WP )U ⊗ Q (2.27d)

We prove only the first one, the other proofs being similar:

((U ⊗τ W ) � (P ⊗τ Q))ab;cd = (U ⊗τ W )ab;xy(P ⊗τ Q)yx;cd

= PcxUxbWayQyd = (PU)cb(WQ)ad

= (PU ⊗ WQ)cb;ad

= (PU ⊗τ WQ)ab;cd. �
One can replace the new product by ×, namely using

(U ⊗τ W ) � (P ⊗τ Q) = (P ⊗τ W ) × (U ⊗ Q), (2.28)

which holds due to

[(U ⊗τ W ) � (P ⊗τ Q)]ab;cd = (PU ⊗τ WQ)ab;cd = PcxUxbWayQyd

= (U ⊗τ W )ab;xy(P ⊗τ Q)yx;cd.

Notice that in Eq. (2.28) τ no longer acts on the matrix indices and it has
been transferred to the factors:

(Y1 ⊗τ Y2) � (Y3 ⊗τ Y4) = (Yτ(1) ⊗τ Yτ(2)) × (Yτ(3) ⊗ Yτ(4)).

Since (PU ⊗τ WQ)ab;cd = (PU ⊗ WQ)cb;ad, another useful expression for the
sequel is

[(U ⊗τ W ) � (P ⊗τ Q)]ab;cd = (U ⊗ W )xb;ay(P ⊗ Q)cy;xd. (2.29)
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Also, while the product × loses the twist, (1 ⊗τ 1)×2 = (1 ⊗ 1), the � product
preserves it (1 ⊗τ 1)	2 = (1 ⊗τ 1) and in fact (1 ⊗τ 1) is the unit element:

(1 ⊗τ 1) � (P ⊗τ Q) = P ⊗τ Q, (2.30a)

(U ⊗τ W ) � (1 ⊗τ 1) = U ⊗τ W, (2.30b)

(1 ⊗τ 1) � (P ⊗ Q) = P ⊗ Q, (2.30c)

(U ⊗ W ) � (1 ⊗τ 1) = U ⊗ W, (2.30d)

which follows from Proposition 2.6. Although it might be clear from the def-
inition of � that on C

⊗τ2
〈n〉 it is associative—since there the first factor right

multiplication and in the second ordinary matrix multiplication—it is reassur-
ing to see that it is also associative if untwisted elements are implied:

Proposition 2.7. The product � is associative on An.

Let A,B,C,D,U,W,P,Q, T, S,X, Y ∈ C〈n〉. Using Proposition 2.6 one
verifies straightforwardly that either bracketing,

{
(U ⊗τ W + P ⊗ Q) � (T ⊗τ S + X ⊗ Y )

}
� (A ⊗τ B + C ⊗ D)

or

(U ⊗τ W + P ⊗ Q) �
{
(T ⊗τ S + X ⊗ Y ) � (A ⊗τ B + C ⊗ D)

}
,

yields due to the cyclicity of the trace the same result, namely:

ATU ⊗τ WSB + P ⊗ (ATQSB) + WXU ⊗ AY B

+ Tr(QX) · (P ⊗ AY B) + WSCTU ⊗ D + Tr(TQSC) · (P ⊗ D)

+ Tr(Y C) · WXU ⊗ D + Tr(XQ) · Tr(Y C) · (P ⊗ D). �
For the sequel, more important than the Hessian is its twisted version

Definition 2.8. The twisted NC-Hessian Hessτ
σ is given by

Hessτ
σ := (1 ⊗τ 1) × Hessσ .

In other words, by Proposition 2.26, Hessτ
σ is obtained from Hessσ after

exchanging the products ⊗τ and ⊗.

Example. We exemplify computing the product of Hessτ
σ(AABB), namely

(
ea(1 ⊗τ BB + BB ⊗τ 1) 1 ⊗τ AB + BA ⊗τ 1 + A ⊗τ B + B ⊗τ A

1 ⊗τ BA + AB ⊗τ 1 + A ⊗τ B + B ⊗τ A eb(1 ⊗τ AA + AA ⊗τ 1)

)

,

with Hessτ
σ

[
Tr ATr(ABB)

]
,

(
ea(1 ⊗ BB + BB ⊗ 1) Tr A(B ⊗τ 1 + 1 ⊗τ B) + 1 ⊗ AB + 1 ⊗ BA

Tr A(B ⊗τ 1 + 1 ⊗τ B) + AB ⊗ 1 + BA ⊗ 1 eb Tr A(A ⊗τ 1 + 1 ⊗τ A)

)

.

The diagonal7 of Hessτ
σ[Tr ATr(ABB)] � Hessτ

σ(AABB) =
(P ∗

∗ Q
)
, which is

computed entrywise with �, is given by (recall e2
a = e2

b = 1)

P = TrA{1 ⊗ BBA + ABB ⊗ 1 + A ⊗ BB + 2B ⊗ BA + 2AB ⊗ B

7 The ∗ entries of products of two Hessians are uninteresting in this paper (unless one wants
to compute the third order the RG-flow).
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+ BB ⊗ A} + 1 ⊗τ AABB + 2 · 1 ⊗τ ABAB + 2 · 1 ⊗τ ABBA

+ 2 · 1 ⊗τ BABA + 1 ⊗τ BBAA + 2 · 1 ⊗τ BBBB + 2BB ⊗τ BB,

and

Q = TrA{1 ⊗ BAB + BAB ⊗ 1 + A ⊗ BB + B ⊗ AB + B ⊗ BA

+ AB ⊗ B + BA ⊗ B + BB ⊗ A + 1 ⊗ AAA + AAA ⊗ 1

+ A ⊗ AA + AA ⊗ A} + 2AB ⊗τ AB

+ 2AB ⊗τ BA + 2BA ⊗τ AB + 2BA ⊗τ BA.

The Mn(C)-trace (here for n = 2, P + Q) of products of Hessians—or rather
of their anti-commutator—will be shown to be fundamental for the RG-flow.
The absolute (not only cyclic) order in the letters of the expressions for the
twisted or untwisted Hessians of cyclic NC-polynomials absolutely matters. If
one continues taking products of Hessians the order of the matrix factors does
matter too (which is why one gets bulky expressions now). Only at the final
stage, when we take traces, we can cyclically permute.

3. Random Noncommutative Geometries and Multimatrix
Models

We briefly recall the foundations of fuzzy geometries, known to be rephrasable
in terms of matrix algebras [66], in Barrett’s matrix geometry setting [8]. The
original definition is given in terms of spectral triples, but in that definition
the axioms implying the Dirac operator can be directly replaced by a charac-
terization these boil down to.

3.1. Fuzzy Geometries as Spectral Triples

Given a signature (p, q) ∈ Z
2
≥0, a fuzzy (p, q)-geometry consists of a quintuple

(MN (C), V ⊗ MN (C), D, J, γ)

whose elements we describe next. The inner product space V is given the
structure of C�(p, q) = C�(R(p,q))-module. The action c of the Clifford algebra
on the basis elements θμ of R

(p,q) = (Rp+q,diag(+p,−q)), where the subindex
in each sign means its repetition that many times, yields gamma-matrices
γμ = c(θμ). We assume that they satisfy,

(γμ)2 = +1, μ = 1, . . . , p, γμ Hermitian, (3.1a)

(γμ)2 = −1, μ = p + 1, . . . , p + q, γμ anti-Hermitian, (3.1b)

that is, one has Hermitian or anti-Hermitian gamma-matrices according to
whether μ is a time-like (1 ≤ μ ≤ p) or a spatial index (p < μ ≤ p + q).
This in turn yields the chirality γ = (−i)s(s+1)/2γ1 · · · γp+q, being s := q − p
the KO-dimension. The inner product of V together with the Hilbert–Schmidt
inner product on MN (C) endow H = V ⊗MN (C) with the structure of Hilbert
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space the matrix algebra acts on in the natural way, ignoring V . Moreover,
the KO-dimension determines three signs ε, ε′, ε′′ ∈ {−1,+1} via

s ≡ q − p (mod 8) 0 1 2 3 4 5 6 7
ε + + − − − − + +
ε′ + − + + + − + +
ε′′ + + − + + + − +

The operator J = C ⊗ (complex conjugation) on H defines the real structure.
Here, C : V → V is anti-unitary and satisfies C2 = ε and Cγμ = ε′γμC for each
μ = 1, . . . , p + q. Last, but most importantly, D, the Dirac operator, is a self-
adjoint operator on H that satisfies the order-one condition [[D,Y ′], JY J−1] =
0 for each Y, Y ′ ∈ MN (C). The signs in the table above imply, as part of the
definition,

J2 = ε, JD = ε′DJ, JΓ = ε′′ΓJ.

After the axioms are solved [8], for an even dimension q + p (thus even KO-
dimension), the Dirac operator has the form

D =
∑

μ

γμ ⊗ kμ +
∑

μ,ν,ρ

γμγνγρ ⊗ kμνρ + . . .

+
∑

μ,ν,ρ

γμ̂νρ ⊗ kμ̂νρ +
∑

μ̂

γμ̂ ⊗ kμ̂, (3.2)

where

• γα = γμ1γμ2 · · · γμi2r−1 means the product of all indices included in an
increasingly ordered multi-index α = (μ1 · · · μi2r−1). The hatted indices
are those omitted from the list {1, 2, . . . , p+q}. Notice that the sum runs
only over multi-indices of odd cardinality; and

• for any Y ∈ MN (C), kα are commutators or anti-commutators deter-
mined by α via kα(Y ) = XαY + eαY Xα, being Xα ∈ MN (C) self-adjoint
if eα = +1 and traceless anti-Hermitian if eα = −1.

For the first p + q values of i, ei can be read off from diag(e1, . . . , ep+q), the
signature; however, if p + q ≥ 3, the number n of matrices that parametrize D
exceeds p + q. This is also true for odd p + q, for instance, in signature (0, 3)
the Dirac operator can be written as

D = {H, • } + 𝒾[L1, • ] + 𝒿[L2, • ] + 𝓀[L3, • ],

where Li ∈ su(N) for each i and 𝒾,𝒿,𝓀 are the quaternion units as a
realization of the pertaining gamma-matrices. In odd dimensions, the chirality
is trivial, which is why the anti-commutator term with a the Hermitian N ×N
matrix H has a trivial coefficient, instead of a product of three different gam-
mas matrices.

The complete criterion [61, Appendix A] that fully determines the signs
in (2.1a) for even-dimensional fuzzy geometries implies multi-indices α, namely

eα = (−1)u+r−1 2r = #(α) + 1, u = #{ spatial indices in α}. (3.3)
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After a signature (p, q) and the matrix size N are chosen, notice that the
items (MN (C), V ⊗ MN (C), J, γ), called also a fermionic system, are fixed.

We let Mp,q
N be the space of all the Dirac operators that complete the

four objects into a fuzzy geometry. This spectral triple is finite-dimensional
but does not fall into the classification made by Krajewski and Paschke–Sitarz
[50,64]. Using Eqs. (3.2) and (3.3) one can obtain Mp,q

N in terms of su(N) and
HN , the Hermitian matrices in MN (C). For instance M0,4

N = H
×4
N × su(N)×4

for the Riemannian 4-geometry and M1,3
N = H

×2
N ×su(N)×6 for the Lorentzian

case. However, the for formalism below it suffices to know the space of Dirac
operators for two-dimensional fuzzy geometries:

Mp,q
N =

⎧
⎪⎨

⎪⎩

su(N) × su(N) (p, q) = (0, 2)
HN × su(N) (p, q) = (1, 1)
HN × HN (p, q) = (2, 0)

When we work in fixed signature, we write MN = Mp,q
N , as above in Eq. (2.2).

3.2. The Spectral Action for Fuzzy Geometries

We review how to compute the Spectral Action Tr f(D), in order to see its re-
lation with chord diagrams, simultaneously setting the terminology for Sect. 7.
We restrict the discussion below to two-dimensional geometry with otherwise
arbitrary signature.

As remarked in [11], the computable spectral actions Tr f(D) require f ,
which in the original Connes–Chamseddine formulation is a bump function
around the origin, rather to be a polynomial, with f(x) → +∞ as |x| → ∞.
We thus restrict to positive, even powers of the Dirac operator, TrDm, which
according to [61], can be computed from chord diagrams (C.D.) of m points. A
chord diagram consists of a circumference with m marked points and m/2 arcs
joining them. These diagrams encode traces of products of gamma matrices.
For two-dimensional geometries, the description is relative simple, as no multi-
indices are required:

1
2

Tr Dm =
∑

χ
(m-point C.D.)

a(χ), (3.4)

where the value a(χ) of the diagram χ is defined by

a(χ) =
∑

μ1,...,μm=1,2

χμ1···μm

{
∑

Υ∈Pm

sgn[μ(Υ )]

· TrN

( →∏

r∈{1,...,m}\Υ

Xμr

)

× TrN

( ←∏

r∈Υ

Xμr

)}

. (3.5)
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Herein, for an m-point chord diagram and for each μ1, . . . , μm = 1, 2, one
defines

χμ1...μm = (−1)#{simple crossings of chords in χ}
m∏

v,u=1
v∼χu

(
eμv

δμvμu
)
, (3.6)

where v ∼χ u means that the point u and v are joined by a chord of χ, and
eμv

are the signs in the signature diag(e1, e2) of the fuzzy two-dimensional
geometry. The rest of the elements is given by:

• Pm is the power set of {1, 2, . . . ,m}
• for any Υ = {i, j, . . . , k} ∈ Pm, μ(Υ ) is the ordered set (μi, μj , . . . , μk)

and sgn[μ(Υ )] =
∏

r∈Υ eμr
, which is a sign

• X1 = A, X2 = B are the (random) matrices
• the arrows on the product indicate the order in which it is performed;

the right arrow preserves the order of the set one sums over and the left
arrow inverts it.
A quick way to see that the Spectral Action is real, as it should be, bases

on the observation that for each word w originated by a chord diagram χ, its
adjoint w∗ is originated by the mirror image of χ, denoted by χ∗. But this
being a chord diagram, it also appears summed in Eq. (3.4).

(3.7)

When the running indices in Eq. (3.5) take a particular value, we color the
chords of the corresponding chord diagram: green, if at the ends of the chords
there is a matrix A and violet8 if it is B. To a fixed word, say B4AB2A3,
generally many diagrams contribute,

(3.8)

and we now show that for certain words their sum cannot vanish. (This will
lead to the well-definedness of the chosen truncation schemes in the FRGE.)

Lemma 3.1. Given any word w ∈ C〈2〉 = C〈A,B〉 of even degree in each of its
generators, degA(w),degB(w) ∈ 2Z≥0, it holds

[TrN w](Tr Dm) 
= 0, for m = degA(w) + degB(w).

8In the printed version green is just light gray and violet is black.
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That is, TrN w has nonzero coefficient in the Spectral Action for a suitable
power of the Dirac operator D.

Proof. We use a chord diagram argument. The general situation is that not
only one chord diagram gives rise to w. Although the existence of such dia-
gram having m chords is trivial to exhibit, there exists the risk that all those
diagrams add up to zero. We now verify that this is impossible.

Suppose that [TrN w]a(χ) does not vanish. This does not fix χ but leaves
still a freedom of exchanging all green chord ends, corresponding to A, among
themselves and the same for and all violet ones, which correspond to B. (As a
matter of illustration, for the word B4AB2A3 above the first line shows such
moves among B-chords and the lower the A-chords.) All the diagrams χ′ with
[TrN w]a(χ′) 
= 0 are obtained by either of these moves applied to the initial
χ, hence the number of such χ′ is

#{degA(w)-point C.D.’s} × #{ degB(w)-point C.D.’s}
= (degA(w) − 1)!! × (degB(w) − 1)!!,

which by assumption is the product of odd numbers, thus itself odd. No-
tice that the value of the diagrams χ′ might only differ from χ by a sign,
which is determined by the crossings of the chords. Indeed, in Eq. (3.5) the
terms inside the curly bracket are fixed by hypothesis, and in (3.6) the prod-
uct

∏m
v,u=1; v∼u

(
eμv

δμvμu
)

is the same. This implies that all the diagrams
contributing to w never can cancel, as the sum

∑2�−1
r=1 εr never does (for

� ∈ N, εr ∈ {−1,+1}). Therefore, the coefficient [TrN w](Tr Dm) of TrN w
in Tr Dm is by Eq. (3.4) nonzero. �

Given an m-point C.D., a nontrivial partition is a set Υ ∈ Pm which is
neither empty, nor is complement is, Υ c 
= ∅. Such an Υ splits a diagram into
product of traces of two words. These words can be read off from the diagram,
according to (3.5) one counterclockwise the other clockwise. For instance,

Υc

Υ

produces TrN (BAB2A) from Υ c (denoted by a shaded region) and
TrN (BAB4A3) from Υ . These nontrivial subsets Υ play the main role in the
next

Lemma 3.2. Let C〈2〉 = C〈A,B〉, as before. The coefficient of the double-trace
TrN (w1)TrN (w2) in the Spectral Action is nontrivial for any word w = w1 ⊗
w2 ∈ C〈2〉 ⊗ C〈2〉 satisfying degA(w1) + degA(w2),degB(w1) + degB(w2) ∈
2Z≥0:

[Tr⊗2
N w](Tr Dm) 
= 0, for m =

∑
r=1,2 degA(wr) + degB(wr).
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Proof. We use a similar, albeit longer, argument to the single-trace case of
Lemma 3.1. Since otherwise the statement reduces to Lemma 3.1 above, we
assume that neither w1 nor w2 is the trivial word 1N . This means that only
nontrivial partitions (Υ, Υ c 
= ∅) can generate w, that is, if a(χ) 
= 0, then w is
listed in

∑

μr=1,2

χμ1···μm

{
∑

Υ∈P m
Υ,Υ c �=∅

sgn[μ(Υ )] · TrN

( →∏

r∈{1,...,m}\Υ

Xμr

)

· TrN

( ←∏

r∈Υ

Xμr

)}

,

(3.9)

with the condition that the first and the second traces yield simultaneously
TrN w1 and TrN w2, in either correspondence. To wit, we have the following
cases:

• Case I. If {TrN (w∗
1),TrN (w∗

2)} = {TrN (w1),TrN (w2)} as sets.

• Case II. If the trace of both adjoint words are different, that is if TrN (w∗
1) 
=

TrN (w1),TrN (w2) as well as TrN (w∗
2) 
= TrN (w1), TrN (w2).

• Case III. For {r, l} = {1, 2}, if one coincides, TrN (w∗
r) = TrN (wv), then

the other does not, TrN (w∗
l ) 
= TrN (wu), {u, v} = {1, 2}.

In the first case, if Υ ∈ Pm originates these words, so does Υ c, and their
contribution to the previous sum is doubled, for sgn[μ(Υ )] = sgn[μ(Υ c)]. Hence,
in Case I, we can sum over half of the elements encompassed inside the curly
brackets in (3.9). Since we excluded the trivial partitions, the total of sets in
that sum is #(Pm)−2 = 2m −2 = 2 · (2m−1 −1). By hypothesis, the result of
(3.9) is twice the sum over half elements, which is 2m−1 − 1. But in Cases II
and III, we also can do so, since Υ c does not reproduce the word w1 ⊗ w2, so
we can ignore the half of the sets (3.9). In any case, the sum is a multiple of
2 (Case I) of, or directly (Cases II-III), a sum over 2m−1 − 1 elements, which
is an odd number, since w1 ⊗ w2 is not the trivial word and thus m > 1.
Since the three cases are the only possibilities given the two words, the partial
conclusion is that the set Υ in (3.9) runs over an odd number of independent
elements.

Again, finding a C.D. χ that generates w is not hard: one puts together
the letters w1w

∗
2 and joins by chords, matching letters. And again, this dia-

gram is ambiguous up to a factor of (degA(w1w
∗
2) − 1)!! × (degB(w1w

∗
2) − 1)!!.

Considering the initial paragraph, the total number of terms is

(2m−1 − 1) · (degA(w1w
∗
2) − 1)!! × (degB(w1w

∗
2) − 1)!! ∈ 2N + 1, (3.10)

since the sum of all such diagrams is the product of (3.10) with the nonre-
dundant odd number. By the same token as before, the sum over all the signs
listed in Eq. (3.10) cannot vanish. �

Concrete expressions for f(z) = 1
4

(
z2

2 + z4

4 + z6

6

)
are given below.9 From

now on, we agree to write down rather the operators Tr⊗ 2 should be applied

9The common 1/4 factor results from removing redundant partitions by a set Υ and its
complement Υ in Eq. (3.5), and from 1/ dimC(V ) = 1/2.
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to, in order to get the actual monomials in the action. As for the signs, it is
convenient to set ea := e1 and eb := e2.

• Quadratic operators:

1N ⊗
(ea

2
A2 +

eb
2

B2
)

+
1
2
(A ⊗ A) +

1
2
(B ⊗ B). (3.11)

• Quartic operators:

1N ⊗
(1

4
A4 +

1
4
B4 + eaebA

2B2 − 1
2
eaebABAB

)

+ AB ⊗ AB + 2eaebA
2 ⊗ B2 + (eaA3 + ebAB2) ⊗ A

+ (eaA2B + ebB
3) ⊗ B + 3A2 ⊗ A2 + 3B2 ⊗ B2. (3.12)

• Sextic operators: The part bearing a 1N factor is:

1N ⊗
{
eaA

6 + 6ebA
4B2 − 6ebA

2(AB)2 + 3eb(A2B)2

+ ebB
6 + 6eaA

2B4 − 6eaB
2(BA)2 + 3ea(B2A)2

}
, (3.13a)

and bi-trace terms are:

A ⊗ (2A5 + 2AB4 + 6eaebA
3B2 − 2eaebA

2BAB)

+ B ⊗ (2B5 + 2BA4 + 6ebeaB
3A2 − 2ebeaB

2ABA)

+ 8AB ⊗ [eaA3B + ebB
3A]

+ A2 ⊗
{
eb[8A2B2 − 2BABA] + ea[5A4 + B4]

}

+ B2 ⊗
{
ea[8B2A2 − 2ABAB] + eb[5B4 + A4]

}

+
10
3

(A3 ⊗ A3) + 4eaeb(AB2 ⊗ A3) + 6(A2B ⊗ A2B)

+
10
3

(B3 ⊗ B3) + 4ebea(BA2 ⊗ B3) + 6(B2A ⊗ B2A). (3.13b)

Notice that neither

A · A · A · A · A · B, A · A · A · B · B · B, A · A · B · A · B · B,

A · A · B · B · A · B, A · B · A · B · A · B, A · B · B · B · B · B.

nor their cyclic permutations are allowed. The same holds for any nontrivial
partition of these into two tensor factors (e.g., A ·A⊗A ·A ·A ·B), as they are
not compatible with chord diagrams, in the sense mentioned at the beginning
of this subsection. We also remark that ⊗τ -products do not appear in the
Spectral Action.

4. Deriving the Functional Renormalization Group Equation

We are interested in a nonperturbative approach and pursue the RG-flow gov-
erned by Wetterich–Morris equation (or FRGE). Polchinski equation10 [62,
Eq. 27] can be more suitable in a perturbative approach.

10For Polchinski equation, a review [51] on tensor models might include complex matrix
models as a rank-2 case. This can be used as starting point for a perturbative approach for
these multimatrix models.
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We start with the bare action S[Φ] that describes the model at an “en-
ergy” scale Λ ∈ N (ultraviolet cutoff ). Let Φ be an n-tuple of matrices Φ =
(ϕ1, . . . , ϕn) ∈ MΛ, but the following discussion can be easily be made more
general taking Φ ∈ MN (C)n. Motivated by fuzzy geometries, the bare action
S is assumed to be a functional of the form

S[Φ] = ΓΛ[Φ] = Λ · Tr P +
∑

α

(Tr ⊗Tr)(Ψα ⊗ Υα), (4.1)

being P and each Ψα and Υα in the finite sum a noncommutative polynomial
in the n matrices, P, Ψα, Υα ∈ R〈n〉 = R〈ϕ1, . . . , ϕn〉. The trace Tr = TrΛ is
that of MΛ(C).

Our derivation of Wetterich–Morris equation for multimatrix models is
inspired by the ordinary QFT-derivation (e.g., [39]) for the first steps. Let

exp(W[J ]) := Z[J ] :=
∫

MΛ

e−S[Φ]+Tr(J·Φ)dμΛ(Φ), (4.2)

being J = (J1, . . . , Jn) ∈ MN an n-tuple of matrix sources J i, and J · Φ =∑n
i=1 J iϕi the sum of the n matrix products. Here, dμΛ(Φ) is the product

Lebesgue measure on MΛ, for which the notations
∫

Λ
[dϕ]( • ) and

∫
Λ

Dϕ( • )
are also common, mostly in physics.

The fundamental object is the effective action Γ , obtained by the Le-
gendre transform of the free energy W[J ],

Γ [X] = sup
J

(
Tr(J · X) − W[J ]

)
. (4.3)

Here, X denotes the n-tuple X = (X1, . . . , Xn) of classical fields Xi :=
∂JiW[J ] = 〈ϕi〉. The supremum creates the dependence J = J [X] and yields a
functional depending only on X. Notice that since J ∈ MN , each source obeys
the same (anti)-Hermiticity relation (J i)∗ = eiJ

i as ϕi, for each i = 1, . . . , n.
As a consequence, (J · Φ)∗ = (Φ · J) and the classical fields obey the expected
rules:

X∗
i =

(
∂JiW[J ]

)∗ = ∂(Ji)∗
(W[J ]) = eiXi.

The effective action Γ [X] contains all the quantum fluctuations at all
energy scales. In practice, one uses an interpolating average effective action
that incorporates only the fluctuations that are stepwise integrated out; the
average effective action ΓN [X] results after integration of the modes having an
energy larger than N (i.e. matrix indices larger than N), while lower degrees
of freedom not yet integrated. The parameter N serves as a threshold splitting
the modes in high and low; the latter sit in the N × N block. Lowering N
makes ΓN [X] to approximate the full effective action Γ .

The progressive elimination of degrees of freedom is obtained by adding
a mass-like term

(ΔSN )[Φ] =
1
2

Λ∑

a,b,c,d=1

n∑

i=1

ei(ϕi)ba(Rτ
N )ab;cd(ϕi)dc, (Λ ≥ N ∈ N). (4.4)
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This regulator has been adapted from that of Eichhorn–Koslowski to the mul-
timatrix case.11 Typically the function Rτ

N : {1, . . . , Λ}4 → R restricts the
sum to some N -dependent region, but the sum limits in Eq. (4.4) allow for a
freedom of regulators Rτ

N . Here, Rτ
N is not meant as a matrix: in particular

its k-th power (Rτ
N )k does not imply k − 1 sums but rather the k-th power

pointwise. This can be guaranteed by assuming

(Rτ
N )ab;cd = rN (a, c)(1 ⊗τ 1)ab;cd = rN (a, c)δb

cδ
d
a (4.5a)

for a R-valued function rN , and to satisfy

(Rτ
N )ab;cd = (Rτ

N )ba;dc and (Rτ
N )ab;cd = (Rτ

N )dc;ba, (4.5b)

which hold by imposing rN (a, c) = rN (c, a) for all a, c. Since τ implies a twist
in the product, we stress that Rτ

N is not a multiple of the identity, only

(RN )ab;cd := rN (a, c)δabδcd = rN (a, c)(1 ⊗ 1)ab;cd = (1 ⊗ 1)cd;ab (4.6)

is. The choice of RN is arbitrary up to the following three conditions12:
1. (RN )ab;cd > 0 for low modes, i.e. max{a, b, c, d}/N → 0
2. (RN )ab;cd → 0 for high modes, i.e. N/ min{a, b, c, d} → 0
3. (RN )ab;cd → ∞ as N → Λ → ∞

which have the following effect, respectively:
1. the infrared (IR) regulator suppresses low modes: as a result these are

not integrated out, unlike high modes, which do contribute to the average
effective action ΓN

2. is an initial condition for low N , i.e. ensures that one eventually recovers
the full quantum effective action by lowering N

3. is an initial condition for large N and ensures that one can recover the
bare action S as N → Λ → ∞ via the saddle-point approximation.
Thus, incorporating ΔSN to the action IR-regulates the functional

exp
(
WN [J ]

)
:= ZN [J ] :=

∫

MΛ

e−S[ϕ]−ΔSN [ϕ]+Tr(J·ϕ)dμΛ(Φ) (4.7)

in terms of which one can obtain the interpolating average effective action

ΓN [X] := sup
J

(
Tr(J · X) − WN [J ]

)
− (ΔSN )[X]. (4.8)

In practice, one uses the FRGE in order to determine it, instead of performing
the path-integral. This equation is usually displayed in physics in terms of a
supertrace STr we next define on the superspace Mn(C) ⊗ An,Λ = Mn(An,Λ).
Typical elements there form an n × n matrix T with entries

(Tij) =
∑

T (1)
ij ⊗ T (2)

ij .

11The next treatment holds for 1n ⊗ RN → ω ⊗ (1 ⊗τ 1) with ω ∈ Mn(C) diagonal, but we
stay with the easiest choice.
12This is customary to state in FRGE-papers. This condition deserves a mathematical study
itself, in order to find a precise characterization. This is left as a perspective and commented
on later.
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Figure 3. The idea behind the regulator RN and its loga-
rithmic derivative, here illustrated with a ‘bump function’: RN

protects the IR degrees of freedom, while those higher than
N are integrated out. Thus, N is the “momentum threshold”
that splits modes into high- and low-momenta

for some matrices T (1)
ij , T (2)

ij ∈ C〈n〉,Λ, whose four remaining entries we separate
using a vertical bar, to avoid confusion:

T = (Tij|ab;cd) i,j=1,...,n
a,b,c,d=1,...,Λ

∈ Mn(C ⊗ 2
〈n〉,Λ) = Mn(An,Λ).

We let also 1 = 1n ⊗ 1Λ ⊗ 1Λ, lest our notation becomes very loaded (which is
a neutral element if An is endowed with ×) but also notice that according to
Eq. (2.30) only 1τ = 1n⊗1Λ⊗τ 1Λ acts as a unit with respect to the �-product.
The supertrace is given by

STr = Trn ⊗TrAn
: Mn(An) → C (4.9a)

STr(Q) =
n∑

i=1

Λ∑

a,b=1

Qii|aa;bb =
n∑

i=1

Λ∑

a,b,c,d=1

Qii|ab;cd(δb
aδd

c ). (4.9b)

Since knowing the matrix size will be useful, we use Tr⊗2
Λ sometimes instead

of TrA2 , but as the next n = 2 example shows, it is important to be careful
with twisted products whose factors are merged inside a same trace:

STr
(

1 ⊗ A4 ∗
∗ B2 ⊗τ B2

)

= TrA2(1 ⊗ A4 + B2 ⊗τ B2)

= Λ Tr(A4) + Tr(B4).

Proposition 4.1. The interpolating effective action ΓN of a matrix model with
X = (X1, . . . , Xn) ∈ Mp,q

N satisfies for each N ≤ Λ Wetterich–Morris equa-
tion, which reads

∂tΓN [X] =
1
2

STr
(

∂tR
τ
N

Hessτ
σ ΓN [X] + Rτ

N

)

, (FRGE)

being t = log N the RG-flow parameter and σ = diag(e1, . . . , en) with X∗
i =

±Xi iff ei = ±1. These signs are determined by the signature (p, q) of the fuzzy
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geometry that originates the matrix model—which for dimensions p + q ≤ 2
coincides with g = diag(e1, . . . , ep+q)—and else are given by Eq. (3.3). The
quotient of operators is meant with respect to the × product.

Also n = 2 if p + q = 2 and n = 8 if p + q = 4, with general rule
n = 2p+q−1 as far as p+q is even [61] and RN is economic notation for 1n⊗RN .
After the proof, we provide the strategy to compute the RHS. The quantity
in the “denominator” of the FRGE requires some care; its well-definedness is
addressed in Sect. 5.2.

Proof. Directly from the definition of the interpolating action one has

∂tΓN [X] = (∂tΓN )[X] = ∂t

{
sup

J

(
Tr(J · X) − WN [J ]

)
− (ΔSN )[X]

}

= −∂tWN [J ] − ∂t(ΔSN )[X]

= − 1
ZN [J ]

∫
(−∂tΔSN )e−S−ΔSN+Tr(J·ϕ)dμΛ(Φ)

− 1
2

Λ∑

a,b,c,d=1

n∑

i=1

ei(Xi)ab(∂tR
τ
N )ab;cd(Xi)cd. (4.10)

Recalling that Xi = Z−1
N ∂JiZN , one can use

δ2WN [J ]
δJ i

ba δJ i
dc

= −〈(ϕi)ab〉〈(ϕi)cd〉 +
1

ZN [J ]
δ2ZN [J ]
δJ i

ba δJ i
dc

(no i sum)

= −(Xi)ab(Xi)cd

+
1

ZN [J ]

∫
(ϕi)ab(ϕi)cd · e−S−ΔSN+Tr(J·ϕ)dμΛ(Φ)

in order to re-express ∂t(ΔSN ) appearing in the integrand in the first term,
ZN [J ]−1

∫
(−∂tΔSN )e−S−ΔSN+Tr(J·ϕ)dμΛ(Φ), of Eq. (4.10) to obtain

∂tΓN [X] =
1
2

Λ∑

a,b,c,d

n∑

i=1

(
δ2WN [J ]
δJ i

ba δJ i
dc

)

· ei · (∂tR
τ
N )ab;cd. (4.11)
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The rest relies on the use of the superspace chain rule

δijδuxδvy =
δ(Xi)uv

δ(Xj)xy
=

n∑

k=1

∑

l,m

δ(Xi)uv

δJk
lm

δJk
lm

δ(Xj)xy
(4.12)

=
∑

k=1,...,n
l,m=1,...,Λ

{
∂Xj

yx ∂Xk

lm ΓN [X] + ekδjk(Rτ
N )lm;yx

}
·
(

δ2WN [J ]
δJk

lmδJ i
vu

)

.

Passing from the first to the second line is implied by taking the derivative
with respect to Xj of the IR-regulated quantum equation of motion, that is of

∂Xk

ab ΓN = ∂Xk

ab

(
Tr(X · J) − WN [J ] − ΔSN [X]

)

= Jk
ab + Tr(X · ∂Xk

ab J) − ∂Xk

ab WN [J ] − ek Tr((Rτ
N )ab;····Xk)

= Jk
ab − ek Tr((Rτ

N )ab;····Xk).

In the second line ∂Xk

ab J is a matrix (for fixed a, b) and the trace Tr(X ·∂Xk

ab J),
which equals ∂Xk

ab WN [J ] by the chain rule, is taken with respect to those tacit
indices of J . In the other trace-term, the shown indices a, b are excluded, so
traces are taken for the remaining ones (the dots in Rτ

N ); the symmetries (4.5)
of Rτ

N have been used too. Hence, indeed

δJk
pq

δXj
xy

= ∂Xj
yx ∂Xk

pq ΓN [X] + ejδjk(Rτ
N )pq;yx

=
(
e
δjk

k {Hess ΓN [X]}jk + ejδjkRN

)
px;yq

,

after Eq. (4.6) and the index symmetries implied by it. Denoting by ·n the
product in the Mn(C) tensor factor (of the superspace), one can moreover
replace (HessJ WN )ki = ∂Jk

∂JiWN [J ] by the inverse13 of

Hess ΓN + (σ ⊗ RN ) = σ ·n (Hessσ ΓN + 1n ⊗ RN ),

after using σ = diag(e1, . . . , en) and the fact that 1/ei = ei (since ei = ±).
One has

∂tΓN [X] =
1
2

Λ∑

a,b,c,d

n∑

i=1

(

ei
δ2WN [J ]
δJ i

ba δJ i
dc

)

(∂tR
τ
N )ab;cd

=
1
2

Λ∑

a,b,c,d

n∑

i=1

(HessJ
σ WN [J ])ii|cb;ad(∂tR

τ
N )ab;cd. (4.13)

The result follows from Eq. (4.11), after realizing that the LHS of (4.12) is
δijδuxδvy = (1n ⊗1⊗τ 1)ij|yx;uv = (1τ )ij|yx;uv. In order to invert14 the Hessian

13See discussion after the proof.
14 One could feel tempted to state

{
∂

Xj

ab ∂Xk
xy ΓN [X] + ejδjk(RN )ab;xy

}−1 !
= ∂Jk

yx ∂Ji

cd WN [J ].
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of W, we use

{Hessσ ΓN [X] + RN}ij|xb;ay(HessJ
σ W[J ])jk|cx;yd

= {Hessσ ΓN [X] + RN}ij|τ(ab;xy)(HessJ
σ W[J ])jk|τ(yx;cd)

= (1n ⊗ 1 ⊗τ 1)ik|ab;cd (4.14)

where the � product and the twisted Hessian can now be recognized. Therefore,

∂tΓN [X] =
1
2

Trn

{ Λ∑

a,b,c,d

(
[Hessτ

σ ΓN [X] + 1n ⊗ Rτ
N ]−1

)
ab;cd

× (∂tR
τ
N )ab;cd

}

=
1
2

Trn ⊗TrAn

{
(Hessτ

σ ΓN + Rτ
N )−1 × (∂tR

τ
N )
}
. (4.15)

We renamed indices and we used the symmetry (Rτ
N )ab;cd = (Rτ

N )ba;cd. �

The RHS of the FRGE is usually interpreted in terms of a ribbon loop

, the thick ribbon being the full propagator. For the present FRGE this
picture is obtained by interpreting the ribbon as the supertrace Trn ⊗Tr⊗2

Λ ,

(4.16)

The source marked with a crossed circle is the RG-time derivative term.
In order to stress the meaning of the last equation, we consider an ordinary
Hermitian n-matrix model. Proposition 4.1 then restricts to signature (n, 0),
so each ei = 1, i = 1, . . . , n.

Corollary 4.2 (FRGE for Hermitian multimatrix models). Wetterich–Morris
equation for Hermitian n-matrix models is given by

∂tΓN [X] =
1
2

STr
(

∂tR
τ
N

Hessτ ΓN [X] + Rτ
N

)

. (4.17)

Proof. It is immediate from Proposition 4.1, since for Hermitian matrices one
has σ = 1n. �

5. Techniques to Compute the Renormalization Group Flow

The next sections explain how to compute the RHS of the FRGE.

Footnote 14 continued
Although this expression is probably clearer than Eq. (4.14), first one has to invert in
superspace, and only thereafter, take the matrix entries.
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5.1. Projection and Truncations

The RG-flow generates the infinitely many operators that the symmetries al-
low. Feasibility forces us first to project each matrix Xi to a N × N matrix
X

(N)
i and then truncate ΓN [X(N)] to Ansätze implying finitely many opera-

tors OI indexed by words I of the free algebra. Since this projection will be
assumed for the rest of this paper, for the sake of lightness we agree to write
X(N) as X. Some truncation schemes are:

• Single trace truncation:

ΓN [X] = N
∑

I

ḡI(N)TrN (OI(X)).

• Bi-tracial truncation:

ΓN [X] = N
∑

I

ḡI(N)TrN (OI(X)) (5.1)

+
∑

I,I′
ḡI|I′(N)(TrN ⊗TrN )(

OI|I′ (X)
︷ ︸︸ ︷
OI(X) ⊗ OI′(X)). (5.2)

• Degree-k truncation:

ΓN [X] =
∑

I1,...,Iα∑
ν degOIν (X)≤k

(ḡI1|I2|...|Iα
)(N)

Nk−1
Tr⊗j

N

( α⊗

ν=1

OIν
(X)

)

,

where ḡ...(N) are the coupling constant, to be later renormalized to g...(N),
the physical value.

We warn that this choice will be taken together with the assumption of
N being large. The price to be paid is the un ability to recover the full effective
action (which otherwise would be obtained by limN→1 ΓN ) not only because
N is large, but also because we compute in a projection.

5.2. The FP−1 Expansion in the Large-N Limit

Based on the procedure introduced in [32] for Hermitian matrix models—which
soon will be modified—we split the full propagator, for us Hessσ ΓN [X] +
RN = P ⊕ F [X], into field-dependent and field-independent parts. In our
multimatrix case, with signs σ = diag(e1, . . . , en) given by Eq. (2.1a), we get
F [X] := Hessσ ΓN [X] − (Hessσ ΓN

∣
∣
X=0

) and P := RN + (Hessσ ΓN

∣
∣
X=0

). We
now simplify the treatment assuming that

Zi ≡ Zj =: Z, when ei = ej := e for all i, j,

for the rest of the paper. This is not the most general case and particularly
excludes for the time being mixed signatures left for later study; however,
this simplification has the advantage of leading to a P that is the identity
matrix multiplied by a function {1, . . . , Λ}4 → C denoted by the same letter,
P = (e2Z + RN )1 = (Z + RN )1 since e2 = 1. Notice that both Z and RN

being always positive P is invertible. In particular, powers P � of P are meant
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pointwise (not as a matrix or tensor). One therefore has the commutation of
P with the field part F [X],

P × F [X] = F [X] × P, for all X ∈ Mp,q
N . (5.3a)

It is important to realize in which sense the regulated Hessian of the interpolat-
ing action is an inverse of the Hessian of WN in source space, as this defines the
way we have to take the Neumann series to invert Hessτ

σ Γ + Rτ
N . Although

in the Mn(C) factor of superspace this is an ordinary matrix product—see
the groupoid property in the indices i, j, k inside the proof of the FRGE,
{Hessσ ΓN [X] + RN}ij|xb;ay(HessJ

σ W[J ])jk|cx;yd = (1n ⊗ 1 ⊗τ 1)ik|ab;cd—each
entry of that matrix is multiplied according the product �; this product is
easier to recognize in Eq. (2.29). That is to say, the way to invert in FRGE
the regulated Hessian as dictated by the proof of the FRGE, is the algebra
Mn(An, �) and not Mn(An,×). The commutation Eq. (5.3) can be replaced
by

Pτ � Fτ [X] = Fτ [X] � Pτ , for all X ∈ Mp,q
N . (5.3b)

since for (An, �) the unit is 1 ⊗τ 1 and Pτ can be treated as a scalar function.
We take the Neumann series of the twisted version (Hessτ

σ ΓN [X] + Rτ
N )−1.

Namely by Eq. (5.3b),
∞∑

k=0

(−1)kP−1
τ �

{
P−1

τ Fτ [X]
}	k =

∞∑

k=0

(−1)k
{
P−(k+1)

τ Fτ [X]	k
}
. (5.4)

Underlying this structure is the independence of P from the matrices X =
{Xj}. Thus, when evaluated, (Pτ )� sits in the constant part of An,Λ, so pow-
ers of Pτ act on the field part by scalar multiplication. On the other hand,
(Fτ [X])	k does mean the matrix product in the field part (2.5) of An,Λ. Then,
using the associativity of � (Proposition 2.7), it is routine to check that the
series (5.4) serves as inverse of Pτ ⊕ Fτ [X] in the sense that their product in
either order yields 1τ = 1n ⊗ 1Λ ⊗τ 1Λ. Therefore,

1
Hessτ

σ ΓN [X] + Rτ
N

=
∞∑

k=0

(−1)k
[
P−(k+1)

τ (F 	k
τ )
]
. (5.5)

Assuming a truncation necessitates a compatible supertrace, STrN . Since func-
tions G : {1, . . . , Λ}4 → C act multiplicatively on the fields, we let

STrN
(
G · W [X]

)
=
( Λ∑

a,b,c,d=1

Gab;cd

)

· (Trn ⊗TrN ⊗TrN )
(
WN [X]

)
(5.6)

for W a field (deg W 
= 0) in Mn(C) ⊗ An,Λ. Here, WN is the same matrix of
words W projected to Mn(C) ⊗ An,N . Also, STr is defined to be identically
zero on the ‘constants’ of the free algebra (in the terminology of Sect. 2), or

STrN (L) = 0 if L ∈ C · (1n ⊗ 1N ⊗ 1N ) or L ∈ C · (1n ⊗ 1N ⊗τ 1N ). (5.7)

This follows from any of the previous Ansätze for ΓN , but it holds in general
on physical grounds, since that constant part in the action corresponds to the
vacuum energy [55]. However, the constant part of the algebra cannot be fully
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ignored since is the one that regulates the RG-flow and that part appears
multiplying the fields.

Remark 5.1. It would be interesting to answer whether the vanishing of STrN (L)
(here and in the physics literature, as part of the definition) yields constraints
on the IR-regulator. Namely, to explore the conditions that the equation
STrN (P−11N ⊗ 1N ) = 0 imposes on RN , if one does not automatically in-
clude in the definition the condition (5.7).

Proposition 5.2. The RG-flow is generated by the noncommutative Laplacian
scaled by � :=

∑
a,b,c,d(∂tRN ·P−2)ab;cd. That is, in the ‘tadpole approximation’,

the FRGE is given by

∂tΓN [X] = −1
2
�TrN ⊗TrN

(
∇2ΓN

)
. (5.8)

Proof. The tadpole approximation means to cut Eq. (5.5) to k = 1. It is
immediate that one can undo the twists from the Hessian and Rτ

N altogether,
with that of ∂tR

τ
N since in this simple case � is not implied. By Eq. (5.6) this

means that

∂tΓN [X] = +
1
2

STrN

{∑

i

∂tRN

Hessσ ΓN + RN

}

= −1
2

{ ∑

a,b,c,d

(∂tRN · P−2)ab;cd

}

Trn ⊗TrN ⊗TrN
(
F [X]

)

= −1
2
�Trn ⊗TrN ⊗TrN

{
F [X] + F [0]

}

were Eq. (5.7) has been used from the first to the second line, and from there
to the third too. Now, F [X]+F [0] = Hessσ ΓN [X], which traced over the first
Mn(C) factor, is by definition the NC-Laplacian. �

We next justify the approximation given in Eqs. (5.6)–(5.7) and relate
it with the definition of STr. Notice that the support of the function G

(N)
k :

{1, . . . , Λ}4 → R given by G
(N)
k = (∂tRN ) · P−(k+1) becomes an N -dependent

region of {1, . . . , Λ}4. Generally, one cannot find a function fn(N) such that
STr(G(N)

k · W [X]) = fk(N) · Trn ⊗TrAn,N
(WN [X]), or explicitly such that

Λ∑

a,b,c,d=1

[G(N)
k ]ba;dc(W [X])ab;cd = fk(N)Trn ⊗TrN ⊗TrN (WN [X]k)

holds for a W [X] ∈ Mn(An,Λ) in the field part of the free algebra, with
WN [X] ∈ Mn(An,N ). What is done in practice is to assume this replace-
ment, but in return to let the function fk(N) be governed by the FRGE. We
moreover use a regulator RN whose support is inside {1, . . . , N}4.

In order to exploit the FRGE, one needs to compute the first powers of
the expansion (5.4). Defining h̃k(N) =

∑Λ
a,b,c,d(G

(N)
k )ab;cd, which, since neither
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∂tRN nor P−(k+1) have field dependence, equals

h̃k(N) =
Λ∑

a,b,c,d=1

(∂tRN )ab;cdP
−(k+1)
ab;cd , (5.9)

one obtains after projecting

∂tΓN [X]
(FRGE)

=
1
2

STrτ
N

( ∞∑

k=0

(−1)kG
(N)
k · {Fτ [X]}	k

)

(5.6)&(5.7)
=

1
2

∞∑

n=1

(−1)kh̃k(N)(Trn ⊗Tr⊗τ2
N )

{
Fτ [X]

}	k

=
1
2
(Trn ⊗Tr⊗τ2

N )
{

− h̃1(N)Fτ [X]

+ h̃2(N)
(
Fτ [X]

)	2 + . . .
}
. (5.10)

where TrN ⊗τ TrN (Q) = TrAn
((1N ⊗τ 1N ) × Q) in terms of which we STrτ

N .
That twist comes from Rτ

N , whose untwisted part was absorbed in the functions
G

(N)
k . We remark that Eq. (5.6) does not take into account the symmetry

breaking caused by the regulator RN , which is related to ignoring the modified
Ward–Takahashi15 identity [54] caused by RN .

From this point on, we focus on large-N results and con-
sider the fields as projected matrices of size N × N . Terms
of order O(N−1) will be often ignored in our computations.
Also, since F is not needed again, we rename Fτ to F .

6. “Coordinate-Free” Matrix Models

We cross-check that, notwithstanding the somewhat different statements, our
purely algebraic approach yields, for the Hermitian case with n = 1, the results
that [32] presented in “coordinates” (that is, written with matrix entries). Here,
we also calibrate the IR-regulator for later use in Sect. 7.

The interpolating action ΓN [X] is given by (applying Tr⊗2
N to) the next

operators that define our truncation:

Z

2N
1N ⊗ X2 +

ḡ4

4N
1N ⊗ X4 +

ḡ6

6N
1N ⊗ X6

+
ḡ2|2
8

X2 ⊗ X2 +
ḡ2|4
8

X2 ⊗ X4.

Since n = 1, the NC-Laplacian equals the NC-Hessian ∂2, which on TrO for
an operator O ∈ C〈1〉 equals (∂ ◦D)O(X) by Claim 2.1. So, by Claim 2.3 and
Eq. (2.17) one gets

15Regarding the Ward–Takahashi identity [59,60] of tensor models, a sister theory of matrix
models, the progress of the WTI-constrained RG-flow is reviewed in [13]. See also [52].
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1
2N

∂2 TrA1,N

(
1N ⊗ X2

)
= 1N ⊗ 1N

1
4N

∂2 TrA1,N

(
1N ⊗ X4

)
= X ⊗ X + 1N ⊗ X2 + X2 ⊗ 1N

1
8
∂2 TrA1,N

(
X2 ⊗ X2

)
= X ⊗τ X + 1N ⊗ 1N TrN

(X2

2

)

1
6N

∂2 TrA1,N

(
1N ⊗ X6

)
= X ⊗ X3 + 1N ⊗ X4 + X2 ⊗ X2

+ X3 ⊗ X + X4 ⊗ 1N

1
8
∂2 TrA1,N

(
X2 ⊗ X4

)
= X ⊗τ X3 + X3 ⊗τ X + 1N ⊗ 1N TrN

(X4

4

)

+
{
X2 ⊗ 1N + X ⊗ X + 1N ⊗ X2

}
TrN

(X2

2

)
.

One now “twists” these equations. The expression for F [X] = Hessτ Γ [X] −
Z(1N ⊗τ 1N ) follows from the first equation in this list (after exchange of the
tensor product with the twisted version). We keep odd-degree operators in
F , even if we first included even-degree ones, since we need powers of F and
even-degree operators are generated from odd-degree ones.

By neglecting odd-degree after taking the �-powers of F [X], as well as
truncating them to degree-six operators, the FP−1 expansion (5.10) in this
setting reads:

∂tΓN [X] = −1
2

h̃1

N2

{
(N2 + 2)ḡ2|2 + 4N ḡ4

}
TrN

(
X2

2

)

+
{

− h̃1

N2

(
(4 +

N2

2
)ḡ2|4 + 4N ḡ6

)

+
h̃2

N2

(
12ḡ2|2ḡ4 + 4N ḡ2

4

)}
TrN

(
X4

4

)

+
{ h̃2

N2

(
(8 + N2)ḡ2

2|2 + 8N ḡ2|2ḡ4 + 12ḡ2
4

)
(6.1)

− h̃1

N2
(4N ḡ2|4 + 4ḡ6)

}1
8

Tr2N (X2)

+
{ h̃2

N2
(36ḡ2|4ḡ4 + 30ḡ2|2ḡ6 + 12N ḡ4ḡ6)

− h̃3

N2
(81ḡ2|2ḡ2

4 + 6N ḡ3
4)
}

TrN

(
X6

6

)

+
{ h̃2

N2
(ḡ2|4((38 + N2)ḡ2|2 + 12N ḡ4) + 8N ḡ2|2ḡ6 + 48ḡ4ḡ6)

− h̃3

N2
(72ḡ2

2|2ḡ4 + 12N ḡ2|2ḡ2
4 + 48ḡ3

4)
}

TrN

(
X2

2

)

TrN

(
X4

4

)

,

up to the third nontrivial term (hr = 0 for r ≥ 4) in the FP−1-expansion.
This equation was obtained using the product rules of Proposition 2.26: For
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instance, the cubic term in ḡ4 in the fifth line of (6.1) comes from P−4F 	3,
more concretely from

−(h̃3/2N2)ḡ3
4 Tr⊗τ2

N

[
(X2 ⊗τ 1N )	3 + (1N ⊗τ X2)	3 + . . .

]
,

where the dots omit other terms in the cube of F . Graphically, the ḡ3
4-contribution

to ḡ6 is (cf. Eq. (4.16) too)

(6.2)

We let hk = limN→∞ Zkh̃k(N)/N2, which due to Eq. (5.9) is independent of Z,
and choose later an explicit regulator RN that makes hk only dependent on k in
the large-N limit. Thereafter, the contributions to the β-functions coming from
quantum fluctuations16 can be read off from Eq. (6.1). To state the quantum
fluctuations in terms of the renormalized quantities (without bar), one needs
to find the way these scale with Z and N . We let ḡ2k = ZakN−bkg2k and
ḡu|2k−u = ZjkN−ikgu|2k−u (for even u, with 0 < u < 2k).

To solve for ak, bk, ik, jk, one asks the equation βI = ∂tgI to remain finite
for each operator OI as N → ∞. This leads to

ḡ4 = Z2N−1g4, ḡ6 = Z3N−2g6,

ḡ2|2 = Z2N−2g2|2, and ḡ2|4 = Z3N−3g2|4.

These scalings, together with the quantum fluctuations from Eq. (6.1), yield
for the anomalous dimension η = −∂t log Z and the β-functions in the large-N
limit:

η = h1

(1
2
g2|2 + 2g4

)
, (6.3a)

β4 = (1 + 2η)g4 + 4h2g
2
4 − h1

(
4g6 +

g2|4
2

)
, (6.3b)

β2|2 = (2 + 2η)g2|2 − 4h1(g2|4 + g6)

+ h2(g2
2|2 + 8g2|2g4 + 12g2

4), (6.3c)

β6 = (2 + 3η)g6 + 12g4g6h2 − 6g3
4h3, (6.3d)

β2|4 = (3 + 3η)g2|4 + h2(g2|2g2|4 + 8g2|2g6

+ 12g2|4g4 + 48g4g6) − h3

(
12g2|2g2

4 + 48g3
4

)
. (6.3e)

We only are in debt with the explicit regulator (Rτ
N )ab;cd = rN (a, c)δd

aδb
c for

rN defined on {1, . . . , Λ}2 and given by

rN (a, b) = Z ·
[

N2

a2 + b2
− 1
]

· ΘDN
(a, b), (6.4)

16These are the coefficients of a ∂tΓN [X] in the operator in question.
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Figure 4. The plot shows the support of the chosen IR-
regulator rN (a, b), contained in the square R

+
≤N × R

+
≤N . (The

white quarter of disk means a truncation of the graph around
the origin.)

being ΘDN
(a, b) the indicator function in the disc a2 + b2 ≤ N2.

It turns out that for this regulator, Zkh̃k/N2 indeed converges to a num-
ber hk independent of N , when this parameter is large. The first values are in
fact

h1 =
π

24
(6 − 5η), h2 =

π

48
(8 − 7η), h3 =

π

80
(10 − 9η). (6.5)

Inserting the four fixed point equations, i.e. βg
�
I
|η�

=η(g
�

) = 0 for I = 2, 4, 2|2
and 2|4, one finds, on top of the Gaussian trivial fixed point (gI = 0 for each I),
several fixed points, tagged here with a little black diamond. The interesting
one to be reproduced is expected be −1/12, the critical value of g4 for gravity
coupled to conformal matter [25]. The latter has been identified in [32], who
report g

�

4 |[32] = −0.056 using the very same truncation.17 In contrast, we get

17The same authors report the possibility to obtain the exact solution in [33] by imposing
it and then solving for the regulator (in the tadpole approximation); but our aim here is to
compare regulators in the same truncation.
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η
� = −0.2494, g

�

4 = −0.08791, g
�

2|2 = −0.17415,

g
�

6 = −0.003386, g
�

2|4 = −0.02423. (6.6)

This fixed point, obtained with the IR-regulator rN of Eq. (6.4) gets far closer
(g�

4 = −0.08791) to the exact value gc = −1/12 = −0.0833̄, which suggests
that we should stick to our rN for the two-matrix models treated next.

7. Two-Matrix Models from Noncommutative Geometries

7.1. Theory Space

The conventions for the coupling constants are the following, with numerical
factors incorporated later. For

n1, . . . , n2t, l2, . . . , k2t−1, l2t−1 ∈ Z>0 and l1, l2t, k1, k2t ∈ Z≥0,

we associate with each operator the following coupling constants:

a2k ↔ A2k (k ≥ 2) (7.1a)

b2k ↔ B2k (k ≥ 2) (7.1b)

cn1n2···n2t
↔ An1Bn2 · · · An2t−1Bn2t

︸ ︷︷ ︸ (7.1c)

dl1l2···l2s|k1k2···k2t
↔

AB-alternating
︷ ︸︸ ︷
Al1Bl2 · · · Bl2s ⊗

AB-alternating
︷ ︸︸ ︷
Ak1Bk2 · · · Bk2t (7.1d)

Notice the alternating convention in the letters. For coupling constants of
type c and d (mnemonics: ‘combined’ and ‘disconnected’) some care is needed.
Operators can always begin with the highest power of A, which for c is never
zero—otherwise the respective operator is a pure power of either A or of B—
in order to reduce the number of constants. This is due to the possibility to
cyclicly reorder (∼) the words, as these appear inside a trace. Only the first
and last parameters can be zero for d-constants. In order to include an odd
number of powers of the letters, the last integer is allowed to be zero. If this
is so, we agree to omit the rightmost zero.

Both conventions are illustrated with ABA ⊗ BAB ∼ ABAB0 ⊗ AB2,
whose coupling constant is d1110|12 = d111|12. On the other hand a leftmost zero
is important: from the definition dl1l2···lt|I 
= d0l1l2···lt|I , since Al1Bl2 · · · Bl2t 
=
A0Bl1Al2 · · · Al2t . Notice that d has to satisfy a symmetry condition: dI|I′ =
dI′|I for any integer multi-indices I, I ′ (since the respective operators do), so
we only keep one of the two.

As before, a bar on a coupling constant, ā, . . . , d̄, denotes its unrenormal-
ized value, whose N -dependence we do not show, for the sake of keeping the
notation compact.

7.2. Compatibility of the RG-Flow with the Spectral Action

We now prove that in the double-trace truncation the RG-flow does not gen-
erate more operators than those allowed by the NCG-structure.
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Proposition 7.1. Pick a two-matrix model that includes finitely many single-
trace operators TrN Q, Q ∈ C〈n〉,N , and assume that each of them appears
(probably with other coefficient) in the Spectral Action for certain fuzzy two-
dimensional geometry. Then, the RG-flow generates at any order in the FP−1-
expansion exclusively operators that appear again, generally with a different
nonzero coefficient, in the Spectral Action Tr f(D), which in the worst case
would require a suitable (generally higher-degree) polynomial f .

Proof. Suppose that TrN Q, with Q ∈ C〈n〉,N , features in the Spectral Ac-
tion for a fuzzy geometry. First, we show that the NC-polynomial (∂A ◦
∂A TrN Q)	k ∈ A2 appears for each k ∈ Z≥1 in the Spectral Action for the
same fuzzy geometry—we argue later for the most general case containing
mixed derivatives. From (2.16), ∂A ◦ ∂A TrN Q contains two powers of A less
than the original NC-polynomial Q, which, since it appears in the Spectral
Action, has an even degree degA(Q),degB(Q) ∈ 2Z≥0. Therefore, so does the
double derivative, and by Lemmas 3.1 and 3.2, ∂A ◦ ∂A TrN Q appears in the
Spectral Action. The condition holds for any power (∂A◦∂A TrN Q)	k since the
even-degree conditions are still satisfied and therefore each monomial w1 ⊗ w2

or w1 ⊗τ w2 in (∂A ◦ ∂A TrN Q)	k appears in the Spectral Action Tr f(D) for
a polynomial f with nonzero coefficient in degree m, being m = m(w1, w2)
given by Lemma 3.2.

The argument is still true for different NC-polynomials Qi appearing in
the original Spectral Action and the even-degree argument holds not only for
powers of double derivatives of these, but can be clearly extended to

∑

j1,j2,...,jr

(∂Xi ◦ ∂Xj1 TrN Q1) � (∂Xj1 ◦ ∂Xj2 TrN Q2)�

· · · � (∂Xjr ◦ ∂Xi TrN Qr+1)

since in the product the same derivative ∂Xk (Xk ∈ {A,B}) appears an even
number of times. All the NC-polynomials generated by the supertrace in the
FRGE are of this form, and having even degree in both matrices, the argument
above leads in this case to the result. �

Proposition 7.1 says that if the bare action would contain only single-
trace operators, then all the operators that the RG-flow generates, including
double-trace operators, are compatible with the structure of fuzzy geometries.
This implies that for a realistic bare action, which includes only double-trace
operators as dictated by the Spectral Action for a fuzzy two-dimensional ge-
ometry, the RG-flow generates (up to triple traces excluded in the truncation)
exclusively NCG-compatible operators. Both structures can therefore be seen
as highly compatible.
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Table 1. Quadratic and quartic operators and their coupling
constants

Degree Operators Coupling constant Scalings

Quadratic 1N ⊗ (A · A) 1
2
Zaea *

1N ⊗ (B · B) 1
2
Zbeb *

A ⊗ A 1
2
d̄1|1 1/N

B ⊗ B 1
2
d̄01|01 1/N

Quartic 1N ⊗ (A · A · A · A) 1
4
ā4 1/N

1N ⊗ (B · B · B · B) 1
4
b̄4 1/N

1N ⊗ (A · A · B · B) c̄22eaeb 1/N

1N ⊗ (A · B · A · B) − 1
2
c̄1111eaeb 1/N

(A · B) ⊗ (A · B) d̄11|11 1/N2

(A · A) ⊗ (B · B) 2d̄2|02eaeb 1/N2

A ⊗ (A · A · A) d̄1|3ea 1/N2

A ⊗ (A · B · B) d̄1|12eb 1/N2

B ⊗ (A · A · B) d̄01|21ea 1/N2

B ⊗ (B · B · B) d̄01|03eb 1/N2

(A · A) ⊗ (A · A) 3d̄2|2 1/N2

(B · B) ⊗ (B · B) 3d̄02|02 1/N2

Notice that A ⊗ B and 1N ⊗ A · B (the latter appearing in the Ising two-matrix model) are
forbidden. The scalings corresponding to the quadratic connected operators are in the

wave function renormalization Za, Zb, which are in each case determined by the RG-flow

7.3. The Truncated Effective Action

The model we adopt includes all the operators appearing in the Spectral Ac-
tion for fuzzy geometries computed in [61] up to the sixth degree. For two-
dimensional fuzzy geometries,

ΓN [A,B] = TrA2

{

1N ⊗ P (A,B) +
∑

α

Ψα(A,B) ⊗ Υα(A,B)

}

,

where P, Ψα, Υα ∈ C〈2〉 = C〈A,B〉 are given, degree by degree by Tables 1
and 2. There, a dot means the usual matrix product. The number of running
coupling constants turns out to depend not only on the dimension, but also on
the signature of the fuzzy geometry, see Table 3. We stress that for the quartic
and quadratic operators we do take the coupling constants with the symmetry
factors and signs present in the NCG-action. For the sextic operators we drop
the numerical normalization factors, in order to avoid rational coefficients.

7.4. The β-Functions

We present now the set of equations satisfied by the fixed points
g

�
• = {a�

• , b
�

• , c
�

• , d
�
•|•}, determined by the vanishing of all β-functions β • =
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Table 2. Sextic operators, with their running coupling con-
stants and scalings

Sextic Operators NCG coefficient value Coupling constant Scalings

1N ⊗ (A · A · A · A · A · A) ea ā6 1/N2

1N ⊗ (A · A · A · A · B · B) 6eb c̄42 1/N2

1N ⊗ (A · A · A · B · A · B) −6eb c̄3111 1/N2

1N ⊗ (A · A · B · A · A · B) 3eb c̄2121 1/N2

1N ⊗ (B · B · B · B · B · B) eb b̄6 1/N2

1N ⊗ (A · A · B · B · B · B) 6ea c̄24 1/N2

1N ⊗ (A · B · B · B · A · B) −6ea c̄1311 1/N2

1N ⊗ (A · B · B · A · B · B) 3ea c̄1212 1/N2

A ⊗ (A · A · A · A · A) 2 d̄1|5 1/N3

A ⊗ (A · B · B · B · B) 2 d̄1|14 1/N3

A ⊗ (A · A · A · B · B) 6eaeb d̄1|32 1/N3

A ⊗ (A · A · B · A · B) −2eaeb d̄1|2111 1/N3

B ⊗ (A · A · A · A · B) 2 d̄01|41 1/N3

B ⊗ (A · A · B · B · B) 6eaeb d̄1|23 1/N3

B ⊗ (A · B · B · A · B) −2eaeb d̄01|1211 1/N3

B ⊗ (B · B · B · B · B) 2 d̄01|05 1/N3

(A · B) ⊗ (A · A · A · B) 8ea d̄11|31 1/N3

(A · B) ⊗ (A · B · B · B) 8eb d̄11|13 1/N3

(A · A) ⊗ (A · A · B · B) 8eb d̄2|22 1/N3

(A · A) ⊗ (A · B · A · B) −2eb d̄2|1111 1/N3

(A · A) ⊗ (A · A · A · A) 5ea d̄2|4 1/N3

(A · A) ⊗ (B · B · B · B) ea d̄2|04 1/N3

(B · B) ⊗ (A · A · B · B) 8ea d̄02|22 1/N3

(B · B) ⊗ (A · B · A · B) −2ea d̄02|1111 1/N3

(B · B) ⊗ (B · B · B · B) 5eb d̄02|04 1/N3

(B · B) ⊗ (A · A · A · A) eb d̄02|4 1/N3

(A · A · A) ⊗ (A · A · A) 10
3

d̄3|3 1/N3

(A · B · B) ⊗ (A · A · A) 4eaeb d̄12|3 1/N3

(A · A · B) ⊗ (A · A · B) 6 d̄21|21 1/N3

(B · B · B) ⊗ (B · B · B) 10
3

d̄03|03 1/N3

(A · A · B) ⊗ (B · B · B) 4eaeb d̄21|03 1/N3

(A · B · B) ⊗ (A · B · B) 6 d̄12|12 1/N3

Table 3. Number of operators for each signature

Geometry Signature KO-dim. # Operators in the RG-flow # Operators with duality

‘Double time’ (+, +) 6 48 26
Lorentzian (+, −) 0 41 –
Riemannian (−, −) 2 34 19

There is no duality for the (1,1) geometry

∂tg •. We recall that

hk = lim
N→∞

1
N2

Λ∑

a,b,c,d=1

(∂tRN )ab;cd

P
(k+1)
ab;cd

,
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which are real numbers in the case of the quadratic regulator of Sect. 6 and
whose values are given by Eq. (6.5). The next result is more transparent if one
does not specify these coefficients yet (and holds for any RN verifying that
these hk are all independent of N).
Theorem 7.2. Assuming Za = Zb =: Z, to the second order in the FP−1

expansion (hr = 0, r ≥ 3), in the double-trace and sixth-degree truncation,
the β-functions of the two-matrix model corresponding to a two-dimensional
fuzzy geometry with signature diag(ea, eb) are given in the large-N limit by the
following blocks of equations:

First, the degree-2 operators yield the anomalous dimension and following
relations:

2h1(a4 + c22 + 2d2|02 + 6d2|2) = ηa

2h1(b4 + c22 + 6d02|02 + 2d2|02) = ηb

−h1[ea(a4 − c1111) + 2d1|12 + 6d1|3] + d1|1(η + 1) = β(d1|1)

−h1[eb(b4 − c1111) + 6d01|03 + 2d01|21] + d01|01(η + 1) = β(d01|01)

The next block encompasses the connected quartic couplings:
h2

(
4a24 + 4c222

)
+ a4(2η + 1)

−h1(24a6ea + 4c42eb + 4d02|4eb + 4d2|4ea) = β(a4)

h2

(
4b24 + 4c222

)
+ b4(2η + 1)

−h1(24b6eb + 4c24ea + 4d02|04eb + 4d2|04ea) = β(b4)

−h1

(
2eac1212 + eb2c2121 + 3eac24 + 3ebc42 + ead02|22 + ebd2|22

)

+h2

(
2a4c22 + 2b4c22 + 2eaebc

2
1111 + 2eaebc

2
22

)
+ c22(2η + 1) = β(c22)

8eaebc1111c22h2 + c1111(2η + 1)

+h1

(
4eac1311 + 4ebc3111 + 2ead02|1111 + 2ebd2|1111

)
= β(c1111)

The β-functions for the connected sextic couplings are

2h2(6a4a6 + eaebc22c42) + a6(3η + 2) = β(a6)

2h2(6b4b6 + eaebc22c24) + b6(3η + 2) = β(b6)

4h2{a4c3111 + eaeb[c22(c1311 + 2c3111)

−c1111(2c2121 + c42)]} + c3111(3η + 2) = β(c3111)

2h2[2a4c2121 + eaeb(−2c1111c3111
+4c2121c22 + c22c24)] + c2121(3η + 2) = β(c2121)

2h2[a4c24 + 3b4c24 + 2eaeb(c22(3b6 + c2121 + c24 + c42)

−c1111c1311)] + c24(3η + 2) = β(c24)

4h2{b4c1311 + eaeb[c22(2c1311 + c3111)

−c1111(2c1212 + c24)]} + c1311(3η + 2) = β(c1311)

2h2[2b4c1212 + eaeb(c22(4c1212 + c42)

−2c1111c1311)] + c1212(3η + 2) = β(c1212)

2h2[3a4c42 + 2eaeb(3a6c22 − c1111c3111 + c1212c22

+c22c24 + c22c42) + b4c42] + c42(3η + 2) = β(c42)
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Table 4. Hessians of some second- and fourth-order opera-
tors

Operator Its Hessσ

Tr(A4)

(
4ea(1 ⊗ A2 + A2 ⊗ 1 + A ⊗ A) 0

0 0

)

Tr2 B

(
0 0

0 2eb1 ⊗τ 1

)

Tr(ABAB)

(
2eaB ⊗ B 2(1 ⊗ BA + AB ⊗ 1)

2(1 ⊗ AB + BA ⊗ 1) 2ebA ⊗ A

)

Tr(A)Tr(A3)

⎛

⎜
⎝

3ea[Tr(A)(A ⊗ 1 + 1 ⊗ A) 0
+1 ⊗τ A2 + A2 ⊗τ 1]

0 0

⎞

⎟
⎠

Tr A2 Tr B2

(
2ea1 ⊗ 1 Tr B2 4A ⊗τ B

4B ⊗τ A 2eb1 ⊗ 1Tr A2

)

Tr2 A2

(
4ea(1 ⊗ 1 Tr A2 + 2A ⊗τ A) 0

0 0

)

And a last block of β-functions for the disconnected couplings is located
in Section III of Supplementary Material.

Proof. We address first the first order in the FP−1-expansion. This part of
the proof consists of the following steps:

• Step 1. The computation of the second-order derivatives of all the oper-
ators, determine the NC-Hessians to insert in the FP−1-expansion. We
now give the NC-Hessians computed using Claim 2.3 as well as their
trace, the NC-Laplacian using Eq. (2.17). We write some of them down
up in Table 4 to quartic operators; those omitted might be obtained by
the exchange A ↔ B, ea ↔ eb (and adjusting the matrix structure).

The expressions for Hessσ Tr(AABB) and Hessσ{Tr(A)Tr(ABB)},
the quartic operators missing in Table 4 were already given in Example
2.2 and show that the complexity rapidly grows. For the sake of readabil-
ity, the bulkier sixth-degree operators completing the running 34 or 48
involved in the flow, are located in Section II of Supplementary Material.

• Step 2. To the first order, one computes the regularized NC-Laplacian
F = eaFaa + ebFbb of the effective action in terms of

Faa = (∂A ◦ ∂A)ΓN [A,B] − (∂A ◦ ∂A)ΓN [A,B]
∣
∣
A=B=0

and of

Fbb = (∂B ◦ ∂B)ΓN [A,B] − (∂B ◦ ∂B)ΓN [A,B]
∣
∣
A=B=0

.

• Step 3. One takes the double traces of the resulting expression. The
h1-terms, i.e. the trace Tr⊗2

N of the NC-Laplacian, read as in Section IV
of the Supplementary Material. From that expression one can deduce
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some of the quantum fluctuations. In the large-N limit, according to the
scalings given in Tables 1 and 2, the matching of the h1 coefficients in the
fixed point equations given in the statement can be verified. The scaling
N−m(Q) of the coupling constant gQ that corresponds with the operator
Q ∈ C〈2〉 ⊗ C〈2〉 determines the coefficient of the form

(
degA(Q) + degB(Q)

2
η + m(Q)

)

× gQ,

appearing in the βQ-function.
We now sketch the second order: Having computed in Step 1 the 48

NC-Hessians, one �-squares the (48 − 2) Hessians appearing in F (the two
subtracted operators are A2 and B2 whose Hessian is absorbed in P ). The
∼ 103 matrices of size 2×2 with NC-polynomial entries are omitted, but each
of these was computed as in Example 2.2. Then, one traces F 	2 in superspace
to collect quantum fluctuations for each operator. Taking the large-N limit of
these leads to the results. �

7.5. Dualities

It is convenient to look for dual solutions while aiming at determining the fixed
points from the vanishing β-functions. The duality is meant in the following
sense. To reduce the number of fixed-point equations, one makes some of them
redundant by imposing the A ↔ B duality for couples of operators that allow
it. Thus, e.g.,

TrN (A3BAB) ↔ TrN (B3ABA).

is reflected in the duality c1311 ↔ c3111. Imposing dualities does not halve
the number of running constants, since some operators, e.g., TrN (ABAB), are
invariant under the A ↔ B exchange (self-dual). With this in mind, we have
the following list:

Remark 7.3. For the geometries (2, 0) and (0, 2) a duality in the effective action
is manifest. Therefore, the β-functions together with the equations for the
anomalous dimensions ηb and ηa are invariant under the following exchange
for the (2,0)-geometry:

ηb ↔ ηa, d1|1 ↔ d01|01, d01|03 ↔ d1|3,
d01|21 ↔ d1|12, d02|02 ↔ d2|2, b6 ↔ a6,

c1311 ↔ c3111, c1212 ↔ c2121, d01|05 ↔ d1|5,
d01|41 ↔ d1|14, d01|1211 ↔ d1|2111, d11|13 ↔ d11|31,

d02|4d02|1111 ↔ d2|1111, d02|04 ↔ d2|4, d03|03 ↔ d3|3,
d21|03 ↔ d12|3, d12|12 ↔ d21|21. d01|23 ↔ d1|32,

b4 ↔ a4, c24 ↔ c42, ↔ d2|04,
d02|22 ↔ d2|22,

For the (0,2)-geometry, one excludes from this list the exchanges implying

d01|01, d01|03, d01|21, d01|05, d01|23, d01|41, and d01|1211. (7.2)
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Proof. For both geometries ea = eb holds. The duality is straightforwardly ver-
ified by inspecting the 48 equations. For the (0, 2)-geometry, TrN B = 0 which
means that we make d01|I ≡ 0, where I stands for any index combination,
which is the list (7.2). (Also TrN A = 0 but excluding all d01| •’s automatically
excludes all d1| •’s.) �

7.6. Methods and Results for the Geometry (0, 2), or (−,−)

The fixed-point equations are the simultaneous zeros of all the β-functions
listed in Theorem 7.2 (and the two first equations there for the anomalous
dimension). These are the eigenvalues of the stability matrix

−Eig
{(

∂βI(η
�
, g•)

∂gI′

)∣
∣
∣
∣
g

�

}

I,I′
, (7.3)

where I, I ′ run over the flowing coupling constants. While analyzing the solu-
tions:

• We exclude the Gaussian fixed point g
�
• = 0 with critical exponents

determined by the scalings.
• We report fixed points with at least one nonvanishing connected coupling

(a, b, c types; but solutions with only nonvanishing d-type do exist).
• We do not report solutions that lead to imaginary critical exponents.

That is, the reported solutions correspond all to solely real eigenvalues
of the stability matrix Eq. (7.3).

• We only report solutions with coupling constants inside the |g•| ≤ 1
hypercube. This restriction is due to our approach, which uses the FP−1-
expansion. Without this restriction, the operators kept in the truncation
would be less important than those we dropped.

Under these criteria, from the ∼ 600 fixed point solutions for the (0, 2)
geometry, we obtain a unique solution with a single positive eigenvalue, or in
other words, a single relevant direction:

θ = +0.2749. (7.4)

The values of the coupling constants corresponding to it read

η
� = −0.3625 a

�

4 = −0.07972 a
�

6 = 0 c
�

1111 = 0
c

�

2121 = 0 c
�

22 = −0.03986 c
�

3111 = 0 c
�

42 = 0
d

�

2|02 = −0.01337 d
�

2|04 = 0 d
�

2|1111 = 0 d
�

12|3 = 0

d
�

11|11 = −0.004201 d
�

2|4 = 0 d
�

2|22 = 0 d
�

11|31 = 0

d
�

2|2 = −0.005156 d
�

21|21 = 0 d
�

3|3 = 0.

7.7. Results for the Geometry (2, 0), or (+,+)

We report now the fixed points under the same criteria listed for the (0, 2)
geometry (Sect. 7.6), which restricts the ∼ 600 real solutions to a few we
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now describe. If we further impose that the solution has precisely one relevant
direction, then that critical exponent is unique and given by

θ = +0.2749 (7.5)

and the corresponding fixed point has the coupling constants:

η
� = −0.3625 a

�

4 = −0.07972 a
�

6 = 0 c
�

1111 = 0
c

�

22 = −0.03986 c
�

2121 = 0 c
�

3111 = 0 c
�

42 = 0
d

�

2|02 = −0.01337 d
�

2|04 = 0 d
�

2|1111 = 0 d
�

1|5 = 0

d
�

2|2 = −0.005156 d
�

2|22 = 0 d
�

2|4 = 0 d
�

12|3 = 0

d
�

1|12 = −0.00985 d
�

3|3 = 0 d
�

21|21 = 0 d
�

1|14 = 0

d
�

1|3 = −0.00985 d
�

1|2111 = 0 d
�

1|32 = 0

d
�

01|01 = −0.2543 d
�

11|11 = −0.004201 d
�

11|31 = 0. (7.6)

Solutions with more connected nonvanishing coupling constants exist (e.g.,
c1111 
= 0 relevant for the ABAB-model [3,4,36,48]), but they require two
relevant directions (in this truncation). These are located in Table A and B of
the Supplementary Material . In particular, the agreement with the result of
[48] for the A4-coupling is remarkable:

a
�

4 = −0.07972 ≈ − 1
4π

= (a�

4 )|[48](= −0.079577...) (7.7)

if one takes into account the flipped sign convention for (a�

4 )|[48] (called −α
there). Also notice that

c
�

22 = −0.03986 ≈ − 1
8π

(= −0.039788...)

8. Conclusion and Discussion

Fuzzy geometry has elsewhere [10,40] motivated intrinsically random noncom-
mutative geometric, numerical methods and statistical tools. Here, we use the
fact that random NCG is in line with (Euclidean) QFT in order to explore
fuzzy geometries via the Functional Renormalization Group for the multima-
trix models these boil down to.

Using differential operators based on abstract algebra, noncommutative
calculus was useful to describe the Functional Renormalization Group for gen-
eral multimatrix models. This paper focused on those derived from fuzzy spec-
tral triples, which therefore allow both Hermitian and anti-Hermitian random
matrices. We introduced a NC-Hessian—a nonsymmetric(!) matrix of noncom-
mutative derivatives—and a NC-Laplacian18 on the free algebra. The latter is
given by

∇2 = ∇ ◦ D = noncommutative divergence ◦ cyclic gradient,

18These differential operators are treated more in detail in a companion paper [58].
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wherein the noncommutative divergence is the operator

∇Q =
n∑

i=1

ei∂
XiQi for Q = (Q1, . . . , Qn) ∈ C

n
〈n〉

and the cyclic gradient D Φ = (DX1Φ, . . . ,DXnΦ) for Φ ∈ C〈n〉 = C〈X1, . . . , Xn〉.
The NC-Hessian governs the exact Wetterich–Morris FRGE and ∇2 does so
in the tadpole approximation, where it has the form of a noncommutative
heat equation (Proposition 5.2). One advantage of the present analysis is the
ability to drop the assumption made by [32] that P commutes with F [X]—
supposed there to hold in a certain approximation scheme. This turns out to
be a consequence of the structure of the free algebra.

The coordinate-free setting common to algebrists speeds up computations
and facilitates writing proofs, which can be taken as a tool for more mathemat-
ical works implying the functional RG. Introducing that elegant language was
“priced” at introducing ⊗τ , a new (twisted) product additional to Kronecker’s.
In fact,

the RG-flow for n-matrix models takes place in the algebra Mn(An,N )
of matrices over An = (C〈n〉,N )⊗2 ⊕ (C〈n〉,N )⊗τ2 with �-product19

given by Proposition 2.6,
where C〈n〉,N is the free algebra generated by n matrices of size N × N , and
the RG-time20 is log N . Importantly, this �-multiplication is not chosen by us
here just because it satisfies nice mathematical properties, rather the FRGE
dictates it. In that sense, to present the proof of a “standard result” sometimes
pays off. Since many of the operators that appear in free algebra were origi-
nated in matrix theory (see [44,68,75]), we remark that the �-product given
in Proposition 2.6 (which, concretely for matrices had to be proven here) can
be taken as a definition in abstract algebra, as no reference to matrix size or
entries is made, replacing the trace TrN by a state ϕ : An → C, whose cyclicity
renders � associative (by Proposition 2.7):

(U ⊗τ W ) � (P ⊗τ Q) = PU ⊗τ WQ, (8.1a)

(U ⊗ W ) � (P ⊗τ Q) = U ⊗ PWQ, (8.1b)

(U ⊗τ W ) � (P ⊗ Q) = WPU ⊗ Q, (8.1c)

(U ⊗ W ) � (P ⊗ Q) = ϕ(WP )U ⊗ Q. (8.1d)

Similarly, the “obvious” product in Proposition 2.26, which resembles (only
for monomials though) matrix multiplication on M2(C〈n〉), suggests that the
algebra Mn(M2(C〈n〉)) could be relevant21 for an additional description of the
FRGE, if one trades the product � by × using relations like Eq. (2.28).

19This similar notation is otherwise, also in noncommutative field theory, a known product.
But our here does not refer to Moyal product.
20The right RG-parameter was not discovered here, but it was long known since [6,15].
21 If the FRGE were not a second-order NC-differential equation, the number 2 would not
appear in Mn(M2(C〈n〉)). The number 2 should not be confused with the two of two-matrix

models, or the number of products of traces allowed here, which is also two.
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Most of our findings rely on the algebraic structure of the RG-flow but
important part of the conclusion are the critical exponents for each geom-
etry. For matrix models corresponding to two-dimensional fuzzy geometries,
the β-functions were extracted (Theorem 7.2) and the fixed point equations
were numerically solved. The critical exponents found here—for the (0, 2) and
(2, 0) geometries θ = +0.27491—were obtained from all the fixed point so-
lutions as the unique solution that featured a single relevant direction. The
fixed-point coupling constants do require a matrix mix, e.g., the coupling c22
corresponding to the operator ABBA is nonvanishing (see Sect. I in Supple-
mentary Material, where we report fixed points with two relevant directions
for where more nonvanishing mixed operators in the flow, e.g., ABAB).

It is also remarkable that the operators that appear here in the (2, 0) ge-
ometry (of (+,+) signature) are all generated by the RG-flow of the Hermitian
two-matrix ABAB-model, whose exact solution by Kazakov–Zinn–Justin [48]
predicts a critical value 1/4π for the common coupling constant of the opera-
tors22 − 1

4 Tr(A4 + B4) and − 1
2 Tr(ABAB). In view of Eq. (7.7), we obtained

for the coupling of A4 and B4 a strikingly close value

our prediction = 1.00179 × exact solution.

However, the prediction of the other coupling does not enjoy the same success.
Concerning the NCG-structure, we showed in Sect. 7.2 that a truncation

by operator-degree and by number of traces was consistent with the structure
of the Spectral Action for fuzzy two-dimensional geometries. Due the complex-
ity23 of the free algebra C〈2〉, it is not obvious that the RG-flow should respect
this structure. For example, recall that in the Hermitian random matrix model
the operators Xm ⊗X l, with m and l odd, are generated by the RG-flow; these
are removed by hand (in the truncations used in Sect. 6 and [32]). In contrast,
truncations for fuzzy geometries do not require to drop other operators than
triple traces and operators that exceed a maximum degree. Notwithstanding
this high compatibility, as perspective, it remains to improve the precision of
the present results. We identify possible error sources in the computation of
the fixed points as well as improvements to our approach:

• Extending the exploration from the examined hypercubes to a larger
region and estimation of residues in order to look for fixed points that
correspond to Dirac operators (i.e. obey a relation between the coefficients
similar to that of Tables 1, 2). This would allow to compare with Monte-
Carlo simulations for the true Dirac operator of fuzzy geometries [40].

• The exact RG-flow should consider operators that are not pure traces of
elements in the free algebra, but that are smeared with functions resulting
from the IR-regulator.

22Mind the flipped sign convention. Also that the couplings of the operators A4 and B4

have to coincide.
23Thinking of words in C〈2〉 as sequences of 0’s and 1’s, this algebra has enough “memory

space” for any digitizable data.
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• Addressing the solution removing the duality imposed here; otherwise we
might miss important fixed points for which the A ↔ B symmetry is
broken.

• Another improvement that might lead to accuracy is to consider more
terms (h3 
= 0) in the FP−1-expansion. With 48 running operators, this
analysis requires time.

• The arbitrariness in the definition of the IR-regulator RN might affect the
numerical results. For this paper, this regulator has been calibrated by
imposing on it to lead to a good approximation to the expected solution
for Hermitian matrix models, but the lack of “uniqueness” of RN is un-
satisfying. More constrictions on RN should be thoroughly investigated.
An important guide24 in order to achieve the optimization of the matrix
IR-regulator is [53]. The adaptation of that idea from the bosonic QFT-
case to the matrix case might be might sound straightforward , but the
different sort of propagators should be taken into account—this actually
requires some care.)

Further related directions are:
• The NC-differential operators that we employed here govern also the

Schwinger–Dyson of entirely general multimatrix models [45,56]. Based
on it, one can continue the investigations using Topological Recursion [19,
35] to address a solution of the models treated here. For one-dimensional
geometries [5] report progress in this topic, using different analytic meth-
ods. Also, multimatrix models are known to be related to free probability
whose tools might be helpful for this task. This paper puts a common
language forward, at least.

• In order to obtain the present results, we studied geometries whose effec-
tive action was manifestly symmetric in both random matrices and for
which the theory space was reducible to nonredundant couplings. The
search for fixed points in the absence of the dualities, which for instance
for the (1, 1)-geometry means 41 flowing operators in the present trun-
cation, was postponed. However, the formalism is appropriate for these
and higher-dimensional ones.

• Adding matter fields to these models can be accomplished by random
almost-commutative geometries (in progress [63]). With the FRGE de-
veloped here, one has a tool to delve into fuzzy geometries coupled to
simplified matter sectors, e.g., Maxwell or Yang–Mills(–Higgs) theories.
This brings us even closer to the original motivation (Sect. 1).
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Appendix A. Glossary, Conventions, Other Notations

1N Identity matrix in MN (C), corresponding to the empty word of
C〈n〉,N

· Sum of matrix products X · J =
∑n

i=1 XiJ
i; also sometimes an

ordinary matrix product
� Tags a fixed point (RG-context)

�k k-th fixed point
� Product on An

× (When not applied to scalars) is obvious product on An (A ⊗ B) ×
(C ⊗ D) = AC × BD (see Proposition 2.26)

⊗τ Twisted tensor product
∗ Adjoint of a matrix, i.e. mainly dagger in physics

∇2 Noncommutative Laplacian
∇2

τ Twisted NC-Laplacian (trace of the twisted NC-Hessian)
∇2

i Abbreviates ∂Xi ◦ ∂Xi

♦
A,B random matrices in the two-dimensional fuzzy geometries

a, b, c, d indices corresponding to matrix entries
An C

⊗2
〈n〉 ⊕ C

⊗τ2
〈n〉

aI renormalized coupling constant associated with an operator OI(A)
bI coupling constant associated with OI(B)
cI coupling constant associated with OI(A,B)

dI|I′ coupling constant associated a disconnected operator OI(A,B) ⊗
OI′(A,B) on either matrix

C〈n〉 free algebra in n generators

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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C〈n〉,N free algebra in n generators in MN (C)
D Dirac operator

Dj ,DXj cyclic derivative with respect to Xj

∂j , ∂Xj noncommutative derivative with respect to Xj

ei signs; ei = +1 if Xi is Hermitian, and ei = −1 if it is anti-
Hermitian

field a nontrivial word in the free algebra, or in C
⊗ k
〈n〉,N

ḡI , ḡ• coupling constants (not yet renormalized)
gI , g• renormalized coupling constants
h̃k(N) corresponds with [ṘP k+1] of [32] only before an IR-regulator is

specified (mind the shift)
Hessσ noncommutative Hessian with diagonal entries scaled by σ =

diag(e1, · · · , en)
Hessτ

σ twisted NC-Hessian
hk(N) corresponds to h̃k(N)/N2 = [ṘP k+1]/N2 (cf [32])

I generic index corresponding to (allowed) elements of C〈n〉
i, j indices corresponding typically to i, j = 1, . . . , n
J sources (QFT-context)
Λ is a large integer that serves as (globally in this paper, absolute)

UV-cutoff that verifies Λ ≥ N (Λ corresponds to N ′ in [33])
MN the space of matrices parametrizing the space of Dirac operators,

shorthand for Mp,q
N

n the number of (random) matrices; number of generators of the free
algebra. Caveat: in general n does not coincide with the dimension
p + q of the fuzzy geometry that originates the matrix model

N is the “energy scale”, here an integer that verifies Λ ≥ N . Often
here, N is assumed also large

operator in QFT-slang for monomial in the effective/bare action. Thus, in
our setting, an operator is a NC-polynomial

OI(X) operator in the random matrix (or matrices) X
p number of + signs in the signature of a fuzzy geometry
q number of minus signs in the same context

q ± p dimension � KO-dimension of a fuzzy geometry
RN IR-regulator (cutoff function)
STr supertrace (no reference to supersymmetry)

STrN supertrace in the truncation scheme
t t is the logarithm of the scale, here t = log N

Tr,TrN traces on MΛ(C) and MN (C) respectively
Trk

N Q bracket-saving notation for [TrN (Q)]k

τ permutation τ = (13) ∈ Sym(4) or “twist”
ΔSN mass-like (quadratic in the fields) IR-regulator term

W[J ],WN [J ] free energy (logarithm of the partition function)
X n-tuple of matrices, X = (X1, . . . , Xn)
Xi random matrix obtained by Xi = 〈ϕi〉; the averaged field ϕi,

Sect. 4
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Z wave function renormalization constant
Z,ZN partition functions; the second one IR-regulated
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