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We propose a paradigm to apply machine learning various databases which have emerged in the study 
of the string landscape. In particular, we establish neural networks as both classifiers and predictors 
and train them with a host of available data ranging from Calabi–Yau manifolds and vector bundles, to 
quiver representations for gauge theories, using a novel framework of recasting geometrical and physical 
data as pixelated images. We find that even a relatively simple neural network can learn many significant 
quantities to astounding accuracy in a matter of minutes and can also predict hithertofore unencountered 
results, whereby rendering the paradigm a valuable tool in physics as well as pure mathematics.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Whereas theoretical physics now inevitably resides in an Age 
where new physics, new mathematics and new data coexist in 
a symbiosis transcending disciplines, string theory has spear-
headed this vision. That it engenders the cross-fertilization be-
tween physics and pure mathematics is without dispute, that it 
also has been a testing ground for computational mathematics 
and “big data” is perhaps less known. With the advent of in-
creasingly powerful computers, from this fruitful dialogue has also 
arisen a plethora of data, ripe for mathematical experimentation. 
This emergence of data began with the incipience of string phe-
nomenology [1] where compactification of the heterotic string 
on Calabi–Yau threefolds (CY3) was widely believed to hold the 
ultimate geometric unification. A race, spanning the 1990s, to ex-
plicitly construct examples of Calabi–Yau (CY) manifolds ensued, 
beginning with the so-called complete intersection CY manifolds 
(CICYs) [2], proceeding to the hypersurfaces in weighted projec-
tive space [3], to elliptic fibrations [4] and ultimately culminating 
in the impressive (at least some 1010) list of CY3s from reflexive 
polytopes [5].

With the realization that the landscape of stringy vacua might 
in fact exceed the number of inequivalent CY3s [6] by hundreds 
of orders of magnitude, there was a vering of direction toward a 
more multi-verse or anthropic philosophy. Nevertheless, hints have 
emerged that the vastness of the landscape might well be mostly 
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infertile (cf. the swamp-land of [7]) and that we could live in a 
very special universe [8–10], a “des res” corner within a barren 
vista.

Thus, undaunted by the seeming over-abundance of possi-
ble vacua, fortified by the rapid growth of computing power 
and inspirited by the omnipresence of big data, the first two 
decades of the new millennium saw a return to the earlier prin-
ciple of creating and mining geometrical data; the notable fruits 
of this combined effort between pure and computational alge-
braic geometers as well as formally and phenomenologically in-
clined physicists have included (q.v. [11] for a review of the vari-
ous databases): (1) Continuing with Kreuzer–Skarke (KS) database 
[14–22]; (2) Generalizing the CICY construction [23–28]; (3) Find-
ing elliptic and K3 fibred CY for F-theory and string dualities [13,
14,28–32]; (4) D-brane world-volume theories as supersymmetric 
quiver gauge theories [33–41].

All of the above cases are accompanied by typically accessible 
data of considerable size, representing a concrete glimpse onto the 
string landscape, to which we shall refer as landscape data. For 
instance, the heterotic line bundles on CICYs are on the order of 
1010, the spectral-cover bundles on the elliptically fibred CY3, 106, 
the brane-configurations in the CY volume studies, 105, type II in-
tersecting brane models, 109, etc. Even by today’s measure, these 
constitute a fertile playground of data, the likes of which Google 
and IBM are constantly analysing. A natural course of action, there-
fore, is to do unto this landscape data, what Google et al. do each 
second of our lives: to machine-learn.

Let us be precise about what we mean by deep machine-learning
this landscape. Much of the aforementioned data have been the 
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brain-child of the marriage between physicists and mathemati-
cians, especially incarnated by applications of computational alge-
braic geometry, numerical algebraic geometry and combinatorial 
geometry to problems which arise from the classification in the 
physics and recast into a finite, algorithmic problem in the math-
ematics (cf. [12]). Obviously, computing power is a crucial lim-
itation. Unfortunately, in computational algebraic geometry – on 
which most of the data heavily rely, ranging from bundles stabil-
ity in heterotic compactification to Hilbert series in brane gauge 
theories – a decisive step is finding a Groebner basis, which is no-
toriously known to be unparallelizable and double-exponential in 
running time. Thus, much of the challenge in establishing the land-
scape data had been to either circumvent the direct calculation of 
the Groebner bases by harnessing of the geometric configuration 
– e.g., using the combinatorics when dealing with toric varieties. 
Still, many of the combinatorial calculations, be they triangulation 
of polytopes or finding dual cones, are still exponentially expen-
sive.

The good news for our present purpose is that, much of the 
data have already been collected. Oftentimes, as we shall find out 
in our forthcoming case-studies, tremendous effort is needed for 
deceptively simple questions. Hence, to draw inferences from ac-
tual theoretical data by deep-learning therefrom would not only 
help identify undiscovered patterns but also aid in predicting re-
sults which would otherwise cost formidable computations. Subse-
quently, we propose our

Paradigm: To set-up neural networks (NN) to deep-learn the 
landscape data, to recognize unforeseeable patterns (as classi-
fiers) and to extrapolate to new results (as predictors).

Of course, this paradigm is useful not only to physicists but to 
also to mathematicians; for instance, could our NN be trained well 
enough to approximate bundle cohomology calculations? This, and 
a host of other examples, we will now examine.

Methodology Neural networks are known for their complexity, in-
volving usually a complicated directed graph each node of which 
is a “perceptron” (an activation function imitating a neuron) and 
amongst the multitude of which there are many arrows encoding 
input/output. Throughout this letter, we will use a rather simple 
multi-layer perceptron (MLP) consisting of 5 layers, three of which 
are hidden, with activation functions typically of the form of a 
logistic sigmoid or a hyperbolic tangent. The input layer is a lin-
ear layer of 100 to 1000 nodes, recognizing a tensor (as we will 
soon see, algebro-geometric objects such as Calabi–Yau manifolds 
or polytopes are generically configurations of integer tensors) and 
the output layer is a summation layer giving a number correspond-
ing to a Hodge number, or to rank of a cohomology group, etc. 
Such an MLP can be implemented, for instance, on the latest ver-
sions of Wolfram Mathematica. With 500–1000 training rounds, 
the running time is merely about 5–20 minutes on an ordinary 
laptop. It is reassuring and pleasantly surprising that even such a 
relatively simple NN can achieve the level of accuracy shortly to 
be presented.

This letter is a companion summary of the longer paper [42] where 
the interested reader can find more details of the computations and the 
data.

2. Results

With simple NNs, we proceed to analyse our landscape data, a 
fertile ground constituting more than 2 decades of many interna-
tional collaborations between physics and mathematicians. Using 
4 concrete case studies, we first “learn” from the inherent struc-
ture and then “predict” unseen properties; considering how diffi-
cult some of the calculations involved had been in establishing the 
databases, the usefulness of our paradigm is evident.

2.1. Case study 1: CY hypersurfaces in WP
4

One of the first datasets [3] to experimentally illustrate mir-
ror symmetry was that of hypersurfaces in weighted projective 
space WP

4. The ambient space WP
4[w0:w1:w2:w3:w4] with weights 

wi=0,...,4 ∈ Z+ is in general singular, but a generic enough homo-

geneous polynomial of degree 
4∑

i=0
wi which misses the singularities 

defines a hypersurface therein which is a smooth CY3 X . There are 
7555 inequivalent such configurations, each specified by a 5-vector 
�wi=0,...,4. The Euler characteristic χ of X is easily given in terms 
of the vector. However, as is usually the case, the individual Hodge 
numbers (h1,1, h2,1) are less amenable to a simple combinatorial 
formula. The original computation resorted to Landau–Ginzberg 
techniques to obtain the list of Hodge numbers [3]. One could in 
principle use adjunction and Euler sequences, and singularity res-
olution, but this is not an easy task to automate.

Suppose we have a simple question: how many such CY3s have a 
relatively large number of complex deformations? We can, for instance, 
consider h2,1 > 50 to be “large” and let training data be of the form 
wi → 1 or 0 depending on whether h2,1(X) > 50. Training the NN, 
with say 500 rounds, takes under a minute on an ordinary laptop. 
The result is an optimised continuous real output between 0 and 1, 
the rounding of which can then be compared with the actual data. 
An accuracy of 96.2 % is achieved almost effortlessly! To appreciate 
the predictive power of the network, suppose that we only had 
partial data. This is particularly relevant when for instance, due 
to computational limitations, a classification is not yet complete, 
or when a quantity in question has not been or could not be yet 
computed.

Therefore, let us pretend that we have only data available for 
the first 3000 out of the 7555 (X, h2,1) pairs. We repeat the pro-
cedure on the 3000, and then test against the full 7555. We find 
that 6078 cases were actually correct. Thus, with rather incomplete 
training data, the NN has learnt, in under a minute, our question 
and predicted new results to 80% accuracy.

Emboldened, let us move onto another question, of importance 
to string phenomenology: Given a configuration, can one tell whether 
χ is a multiple of 3? In the early days of heterotic string compactifi-
cation, this question was decisive on whether the model admitted 
3 generation of particles in the low-energy effective gauge theory. 
Again, we can define a binary function taking the value of 1 if 
χ mod 3 ≡ 0 and 0 otherwise. Training with the NN, we achieve 
82% accuracy with 1000 training rounds, taking about 2 minutes; 
these figures are certainly expected to improve with increasing 
number of training rounds and with more layers or more nodes 
in the NN.

The astute reader might question at this stage why we have 
adhered to binary queries. Why not train the NN to answer a direct 
query, i.e., to try for instance to learn and predict the value of 
h2,1 itself? This is a matter of spread in the present dataset: we 
have only some 104 inputs yet we can see that the values of h1,1

ranges from 1 to almost 500. We do not have enough data here 
to make more accurate statements. This is precisely in line with 
our philosophy, the power of deep-learning the landscape lies in 
rapid estimates, in identifying patterns and drawing inferences and 
in avoiding intense computations.
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Fig. 1. We realize the set of 7890 CICYs (Calabi–Yau threefolds as complete inter-
sections in products of projective spaces) as 12 × 15 matrices, padding with zeros 
where necessary. Then all CICY configurations are such matrices with entries in 
{0, 1, 2, 3, 4, 5}. We consider these as pixel colours and draw a typical CICY in (a), 
with 0 being purple. In (b), we average over all such matrices component-wise, and 
draw the “average” CICY as a pixelated image. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

2.2. Case study 2: CICYs

Having warmed up, let us move onto complete intersection 
Calabi–Yau threefolds (CICYs) in products of projective spaces. This 
is both the first Calabi–Yau database (or, for that matter, the first 
database in algebraic geometry) [2] and the most heavily studied 
recently for string phenomenology [23–26,28]. It has the obvious 
advantage that the ambient space is smooth by choice.

Briefly, CICYs embed as K homogeneous polynomials in Pn1 ×
. . . × P

nm , of multi-degree qr
j , with complete intersection meaning 

that K =
m∑

r=1
nr − 3 and CY condition implying 

K∑

j=1
qr

j = nr + 1 ∀ r =
1, . . . , m. The construction of CICYs is thus reduced to a combina-
torial problem of classifying the integer matrices. The most famous 
CICY is, of course, [4|5] or simply the matrix [5], denoting the 
quintic hypersurface in P4. It was shown that such configurations 
are finite in number and the best available computer at the time 
(1990’s), viz., the super-computer at CERN [2], was employed. A 
total of 7890 inequivalent manifolds were found, corresponding to 
matrices with entries qr

j ∈ [0, 5], of size ranging from 1 ×1 to max-
imum number of rows and columns being 12 and 15, respectively.

This representation is much in the standard way to represent 
an image: to pixelate it into blocks of m × n, each of which car-
rying a colour info, for example, a 3-vector encapturing the RGB 
data. Therefore, we can represent all the 7890 CICYs into 12 × 15
matrices over Z/6Z, embedded starting from the upper-left cor-
ner, say, and padding with zeros everywhere else, as illustrated in 
Fig. 1. To view a CICY as a pixelated image, and indeed, to use im-
age processing to address problems in geometry and mathematical 
physics, is an entirely new idea worthy of extensive exploration.

Can we deep-learn, say the full list of Hodge numbers? As 
usual, the Euler number is relatively easy to obtain and there is 
a combinatorial formula in terms of the integers qr

j , whilst the 
individual Hodge numbers (h1,1, h2,1) involve some non-trivial ad-
junction and sequence-chasing, which luckily had been performed 
for us [2]. Again, we set up a list of training rules (padded con-
figuration matrix → h1,1) and find that the NN can be trained to 
an accuracy of 99.91% in under 10 minutes! What about the NN 
as a predictor, which is obviously a more salient question? Suppose 
the NN were trained with the first 5000 of the data, then, checking 
against the full dataset comprising of configurations/images the NN 
has never before seen, we achieve 77% accuracy. Considering (1) 
that we have only trained the NN for a mere 6 minutes, (2) that it 
has seen only a little over half of the data, (3) that it is rather el-
ementary with only 5 forward layers, and (4) that the variation of 
the output is integral ranging from 0 to 19, with no room for con-
tinuous tuning, such accuracy with so little effort is quite amazing.
2.3. Case study 3: bundle cohomology

The subject of vector bundle cohomology has, since the so-
named “generalized embedding” [1] of heterotic compactification 
on smooth CY3 X endowed with a (poly-)stable holomorphic vec-
tor bundle V , become one of the most active dialogues between 
algebraic geometry and theoretical physics. The realization [9] that 
the theoretical possibility of [1] can be concretely achieved by a 
judicious choice of (X, V ) to give the exact MSSM spectrum in-
duced much activity in establishing relatively large datasets to see 
how often this might occur statistically [11,18,22,24,31], culminat-
ing in [25,26] which found some 200 out of a scan of 1010 bundles 
which have exact MSSM content.

Upon this vast landscape let us take an insightful glimpse by 
taking the dataset of [31], which are SU (n) vector bundles V
on elliptically fibred CY3. By virtue of a spectral-cover construc-
tion [4,30], these bundles are guaranteed to be stable and hence 
preserves N = 1 supersymmetry in the low-effective action, to-
gether with GUT gauge groups E6, S O (10) and SU (5) respectively 
for n = 3, 4, 5. We take the base of the elliptic fibration – of 
which there is a finite list [29] – as the r-th Hirzebruch surface 
(r = 0, 1, . . . , 12 denoting the inequivalent ways which P1 can it-
self fibre over P1 to give a complex surface), in which case the 
stable SU (n) bundle is described by 5 numbers (r, n, a, b, λ), with 
(a, b) ∈ Z+ and λ ∈ Z/2 being coefficients which specify the bun-
dle via the spectral cover. This ordered 5-vector will constitute 
our neural input. The database of viable models was set up in 
[31], viable meaning that the bundle-cohomology groups of V are 
such that h0(X, V ) = h3(X, V ) = 0 and 

∣
∣h1(X, V ) − h2(X, V )

∣
∣ ≡

0 ( mod3), where the first is a necessary condition for stability 
and the second, that the GUT theory has the potential to allow 
for 3 net generations of particles upon breaking to MSSM by Wil-
son lines. Over all the Hirzebruch-based CY3, 14,264 models were 
found; a sizeable play-ground.

Suppose the output be a 2-vector, indicating (I) what the gauge 
group is, as denoted by n, and (II) whether there are more gen-
erations than anti-generations, as denoted by the sign of the dif-
ference h1(X, V ) − h2(X, V ); this is clearly a phenomenologically 
interesting question. With 1000 training rounds on a NN with an 
output linear layer, and with the dataset consisting of entries in 
the form (r, n, a, b, λ) → (n, Sign(h1(X, V ) − h2(X, V ))), in about 
10 minutes, we achieve 100% accuracy (i.e., the neural network has 
completely learnt the data). Training with partial data, say 8000 
points, a little over half, achieves 68.9% predicative accuracy over 
the entire set.

2.4. Case study 4: quiver gauge theories

As a final example let us tackle affine varieties in the context 
of quiver representations. Physically, these correspond to world-
volume gauge theories coming from D-brane probes of geometric 
singularities in string theory, as well as the space of vacua for 
classes of supersymmetric gauge theories in various dimension; 
they have been data-mined since the early days of AdS/CFT (cf. [33,
34]). When the geometry concerned is an affine toric CY variety, 
the realization of brane-tiling [35] has become the correct way to 
understand the gauge theory and since then databases have begun 
to be compiled [36,37].

The input data consists of a quiver (directed graph) and a rela-
tion imposed by a polynomial super-potential (q.v. [11] for a rapid 
review). We can succinctly encode the above information into 
two matrices, which again can be turned into a pixelated image: 
(1) D-term matrix Q D , which comes from the kernel of the inci-
dence matrix d of the quiver, each column of which corresponds 
to an arrow with −1 as head and +1 as tail and 0 otherwise; 
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(2) F-term matrix Q F each column of which documents where and 
with what exponent the field corresponding to the arrow appears 
in ∂W . Concatenating Q D and Q F gives the so-call total charge 
matrix Q t of the moduli space as a toric variety (q.v. §2 of [34]
for the precise procedure). The combinatorics and geometry of the 
above is a long story spanning a lustrum of research to uncover 
followed by a decade of still-ongoing investigations.

In the first database of [36], a host of examples were tabulated. 
A total of 375 quiver theories much like the above were catalogued 
(a catalogue which has recently been vastly expanded in [37]). 
Though not very large, this gives us a playground to test some of 
our ideas. The input data is the total charge matrix Q t , the max-
imal of whose number of rows and columns are, respectively 33 
and 36, and all taking values in {−3, −2, . . . , 3, 4}. Now, suppose 
we wish to know the number of points of the toric diagram associ-
ated to the moduli space, which is clearly an important quantity. In 
principle, this can be computed (albeit computationally intensive): 
the integer kernel of Q t should give a matrix whose columns are 
the coordinates of the toric diagram, with multiplicity (associated 
to the perfect matchings of the bipartite tiling). Training with our 
NN with the full list achieves, in under 5 minutes, 99.5% accuracy.

2.5. A sanity check

Lest the readers’ optimism be elevated to unreasonable heights 
by the string of successes with the NNs, it is imperative that we 
be aware of deep-learning’s limitations. We therefore finish with 
a sanity check that a NN is not some omnipotent oracle capable 
of predicting any pattern. An example which must be doomed to 
failure is the primes (or, for that matter, the zeros of the Riemann 
zeta function). Indeed, if an NN could learn some unexpected pat-
tern in the primes, this would be a rather frightening prospect for 
mathematics. We test the sequence of primes (i.e., data of the form 
i -> Prime[i]) with our NN, and achieve no better than a 0.1% 
accuracy. Our NN is utterly useless against this formidable chal-
lenge; we are better off trying a simple regression against some 
n log(n) curve, as dictated by the prime number theorem. This is 
a sobering exercise as well as a further justification of the various 
case studied above, that it is indeed meaningful to deep-learn the 
landscape data and that our visual representation of geometrical 
configurations is an efficient methodology.

3. Discussion

There are many questions in theoretical physics, or even in pure 
mathematics, for which one would only desire a qualitative, ap-
proximate, or partial answer, and whose full solution would often 
either be beyond the current scope, conceptual or computational, 
or would have taken considerable effort to attain. Typical such 
questions could be “what is the likelihood of finding a universe 
with three generations of particles within the landscape of string 
vacua or inflationary scenarios”, or “what percentage of known 
Calabi–Yau manifolds has Hodge numbers within a prescribed 
range”? Attempting to address these profound questions have, with 
the ever-increasing power of computers, engendered our commu-
nity’s version of “big data”, which though perhaps humble com-
pared to some other fields, do comprise, especially considering the 
abstract nature of the problems at hand, of significant information 
often resulting from intense dialogue between teams of physicists 
and mathematicians for many years.

On the still-ripening fruits of this labour the philosophy of the 
last decade or so, particularly for the string phenomenology and 
computational geometry community, has been to (I) create larger 
and larger datasets and (II) scan through them to test the likeli-
hood of certain salient features. Now that the data is augmenting 
in size and availability, it is only natural to follow the standard 
procedures of the data-mining community. In this letter, we have 
proposed the paradigm of applying deep-learning, via neural net-
works, such data. The purpose is twofold, the neural network can 
act as

Classifiers: by association of input configuration with a requisite 
quantity, and pattern-match over a given dataset;

Predictors: by extrapolating to hithertofore unencountered con-
figurations, having deep-learnt a given (partial) dataset.

This is, of course, the archetypal means by which Google deep-
learns the internet and hand-writing recognition software adapts 
to the reader’s esoteric script.

It is intriguing that by going through a wealth of concrete ex-
amples from what we have dubbed landscape data, some of whose 
creation the author had been a part, this philosophy remains en-
lightening. Specifically, we have taken test cases from a range of 
problems in mathematical physics, algebraic geometry and repre-
sentation theory, such as CY datasets, classification of stable vector 
bundles, and catalogues of quiver varieties and brane tilings. We 
subsequently saw that even relatively simple NN can deep-learning 
to extraordinary accuracy.

In some sense, this is not surprising, there is underlying struc-
ture to any classification problem in our context, which may not 
be manifest. Indeed, what is novel is to look at the likes of a CICY 
or a quiver theory as a pixelated image, no different from a hand-
written digit, for whose analysis machine-learning has become the 
de facto method and a blossoming industry. The landscape data, be 
they work of human hands, elements of Nature or conceptions of Mathe-
matics, have inherent structure, sometimes more efficiently uncovered by 
AI via deep-learning. Thereby, one can rapidly obtain results, before 
embarking on finding a reductionist framework for a fundamental 
theory explaining the results or proceed to intensive computations 
from first principles. This paradigm is especially useful when clas-
sification problems become intractable, which is often the case, 
here a pragmatic approach would be to deep-learn partial clas-
sification results and predict future outcome.

Under this rubric, the possibilities are endless. Several imme-
diate and pertinent directions spring to mind. First, the largest 
dataset in algebraic geometry/string theory is the Kreuzer–Skarke 
list [5,20,21] of reflexive polytopes in dimension 4 from each of 
which many CY manifolds (compact and non-compact) can be con-
structed. To discover hidden patterns is an ongoing enterprise [14,
17] and the help of deep-learning would be a most welcome one. 
Next, the issue of bundle stability and cohomology is a central 
problem in heterotic phenomenology as well as algebraic geom-
etry. In many ways, this is a perfect problem for machine-learning: 
the input is usually encodable into an integer matrix or a list of 
matrices, representing the coefficients in an expansion into effec-
tive divisor classes, the output is simply a vector of integers (in 
the case of cohomology) or a binary answer (with respective to a 
given Kahler class, the bundle is either stable or not). The brute-
force way involves the usual spectral sequences and determining 
all coboundary maps or finding the lattices of subsheafs, expensive 
by any standards. In the case of stability checking, this is an enor-
mous effort to arrive at a yes/no query. With increasing number of 
explicitly known examples of stable bundles constructed from first 
principles, to deep-learn this and then estimate the probability of 
a given bundle being stable would be tremendous time-saver.

To give an idea the high non-triviality of our venture, suppose 
we wanted to know how many CY3 can be constructed from the 
famous Kreuzer–Skarke (KS) list of 473 million reflexive polytopes. 
Only recently [21] was a systematic triangulation carried out on 
a cluster, up to h1,1 = 7 (above which even the state-of-art com-
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puter is powerless), and � 100, 000 manifolds were found from 
� 25, 000 polytopes. The KS list has h1,1 going up to 496, thus 
we have not even touched the tip of the iceberg in answering the 
simplest question of enumerating CY3s. Here, the NN would be 
extremely useful in predicting an estimate, having learnt the data 
from [21], which already took ∼ 5000 core-hours with traditional 
methods on the cluster; this is currently under investigation.

We hope the reader has been persuaded by not only the scope 
but also the feasibility of our proposed paradigm, a paradigm of 
increasing importance in an Age where even the most abstruse 
of mathematics or the most theoretical of physics cannot avoid 
compilations of and investigations on perpetually growing datasets. 
The case studies of deep-learning such landscape of data here pre-
sented are but a few nuggets in an unfathomably vast gold-mine, 
rich with new science yet to be discovered.
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