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PREFACE

This course of lectures was presented during the Third International School on Sym-
metry in Integrable Systems and Nuclear Physics (SISNP-2013), organized by
the International Center for Advanced Studies at Yerevan State University and the Joint
Institute for Nuclear Research (Dubna, Russia). It was held in Tsakhkadzor from 3 to
13 July, 2013. The first School of this series was organized in Dubna in 1999 and the
previous one was held in Tsakhkadzor in 2011.

The program of the School including five/six 60 minutes duration lectures was sched-
uled for eight working days. More than 40 students and young researchers participated
in the School. Twenty-five Professors from ten countries presented the lectures on the
following topics: integrable and superintegrable systems, supersymmetries in quantum
mechanics and field theories, symmetries in atomic and nuclear physics, multiparticle
dynamics, Lie group and algebra contraction and its applications in high energy physics.

The School was supported by Joint Institute for Nuclear Research, Ministry of Science
and Education of the Republic of Armenia, and Alexander von Humboldt foundation.

We thank all the Lecturers who have sent their contributions to the Book of Lectures.
We would like also to thank Alexander Gusev and Or'ga Klimenko for their help on the
work of this Book of Lectures.

Editors



Invariant Differential Operators for

Non-compact Lie Groups:
The Reduced SU(4,4) Multiplets

V.K. Dobrev

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,
Sofia, Bulgaria

Abstract

In the present paper we continue the project of systematic construction of invariant
differential operators on the example of the non-compact algebras su(n,n). Earlier were
given the main multiplets of indecomposable elementary representations for n < 4, and
the reduced ones for n = 2,3. Here we give all reduced multiplets containing physically
relevant representations including the minimal ones for n = 4. Due to the recently
established parabolic relations the results are valid also for the algebras sl(8,R) and
su*(8) with suitably chosen maximal parabolic subalgebras.

1 Introduction

Invariant differential operators play very important role in the description of physical
symmetries. In a recent paper [1] we started the systematic explicit construction of
invariant differential operators. We gave an explicit description of the building blocks,
namely, the parabolic subgroups and subalgebras from which the necessary representations
are induced. Thus we have set the stage for study of different non-compact groups.

In the present paper we focus on the algebra su(n,n). These algebras belong to a
narrow class of algebras, which we call conformal Lie algebras’, which have very similar
properties to the canonical conformal algebras of Minkowski space-time. This class was
identified from our point of view in [2]. The same class was identified independently from
different considerations and under different names in [3,4].

This paper is a sequel of [5], and due to the lack of space we refer to it and to [6] for
motivations and extensive list of literature on the subject.

2 Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup
of G. Then we have an Iwasawa decomposition G = KAyN,, where A, is abelian
simply connected vector subgroup of G, Nj is a nilpotent simply connected subgroup of
G preserved by the action of Ap. Further, let Mj be the centralizer of Ap in K. Then the
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subgroup Py = MyApNy is a minimal parabolic subgroup of G. A parabolic subgroup
P = MAN is any subgroup of G which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representa-
tions induced from them generate all (admissible) irreducible representations of G [7-9].

Let v be a (non-unitary) character of A, v € A* let p fix an irreducible
representation D* of M on a vector space V,.

We call the induced representation y = Ind§(u®v®1) an elementary representation
of G [10]. Their spaces of functions are:

Cx = {F€C®(G,V,) | Flgman) = ™). D*(m™) F(g)} (2.1)

where a=exp(H)€ A, He A, me€ M, n € N. The representation action is the left
regular action:

(TX(9)F)g") = Flg7'9), 9d€C. (2:2)

For our purposes we need to restrict to mazimal parabolic subgroups P, so that
rank A = 1. Thus, for our representations the character v is parameterized by a real
number d, called the conformal weight or energy.

An important ingredient in our considerations are the highest/lowest weight represen-
tations of G. These can be realized as (factor-modules of) Verma modules V4 over G€,
where A € (H®)*, HC is a Cartan subalgebra of GC, weight A = A(x) is determined
uniquely from x [11,12].

Actually, since our ERs will be induced from finite-dimensional representations of
M (or their limits) the Verma modules are always reducible. Thus, it is more convenient
to use generalized Verma modules VA such that the role of the highest/lowest weight
vector vy is taken by the space V,,vo. For the generalized Verma modules (GVMs) the
reducibility is controlled only by the value of the conformal weight d. Relatedly, for
the intertwining differential operators only the reducibility w.r.t. non-compact roots is
essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [12,13]. The multiplet corresponding
to fixed values of the Casimirs may be depicted as a connected graph, the vertices of
which correspond to the reducible ERs and the lines between the vertices correspond to
intertwining operators. The explicit parametrization of the multiplets and of their ERs
is important for understanding of the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the inter-
twining differential operators. Actually, the data for each intertwining differential operator
consists of the pair (8, m), where f is a (non-compact) positive root of G€, m € IV,
such that the BGG [14] Verma module reducibility condition (for highest weight modules)
is fulfilled:

(A+p,BY) = m, B =28/(8,8). (2.3)

When (2.3) holds then the Verma module with shifted weight VA~™F (or VA-™8 for
GVM and § non-compact) is embedded in the Verma module VA (or VA). This em-
bedding is realized by a singular vector v, determined by a polynomial P3(G7) inthe
universal enveloping algebra (U(G-)) vo, G~ is the subalgebra of GC generated by the



negative root generators [15]. More explicitly, [12], Vg = Pgvo (or v5 5 =PrV,v
for GVMs). Then there exists [12] an intertwining differential operator

D Cxay — Cyia-mp) (2.4)

given explicitly by: .
Dg = Pz(G) (2.5)

where G- denotes the right action on the functions F, cf. (2.1).

3 The non-compact Lie algebra su(4,4)

Let G = su(4,4). This algebra has discrete series representations and highest/lowest
weight representations since the maximal compact subalgebra is K = u(1)@su(4)@su(4).

We choose a mazimal parabolic P = MAN such that A = s0(1,1), while
the factor M has the same finite-dimensional (nonunitary) representations as the
finite-dimensional (unitary) representations of the semi-simple subalgebra of K, i.e.,
M = sl(4,C)R, cf. [1]. Thus, these induced representations are representations of fi-
nite K-type [16]. Relatedly, the number of ERs in the corresponding multiplets is equal
to [W(GE, HE)|/[W(KE,HE)| = 70, cf. [6], where # is a Cartan subalgebra of both
G and K. Note also that K€ 2 u(1)C @ sl(4,C) @ sl(4,C) = ME @ AC. Finally, note
that dimp N = 16.

We label the signature of the ERs of G as follows:

x = {ni,n2,n3,n5,m6,n7;¢c}, n;€Zy, c=d—4 (3.6)

where the last entry of x labels the characters of A, and the first 6 entries are labels
of the finite-dimensional nonunitary irreps of M when all n; > 0 or limits of the latter
when some n; = 0.
Below we shall use the following conjugation on the finite-dimensional entries of the
signature:
(n1,n2,M3, 15,16, 17)" = (15, N6, N7, M1, M2, M3) (3.7)

The ERs in the multiplet are related also by intertwining integral operators introduced
in [17]. These operators are defined for any ER, the general action being:

G;(s : CX — CX/ s (38)
x = {ni,na,na,ns,me,m75 ¢}, X' = {(n1,n,m4,m5)"; —c}.
The above action on the signatures is also called restricted Weyl reflection, since it rep-
resents the nontrivial element of the 2-element restricted Weyl group which arises canon-
ically with every maximal parabolic subalgebra.
For the classification of the multiplets we shall need one more conjugation for the
entries of the M representations:

(n1, 2,73, 15,16, n7)* = (n7,7m6,75,n3,n2,7,) (3.9)



involving full reordering of the entries (unlike the conjugation (3.7) which just exchanges
the two su(4) sets of indices).

Further, we need the root system of the complexification G€ = si(8,C) . The positive
roots in terms of the simple roots are given standardly as:

aij a+--+oa;, 1<i<j<5,
; = o5, 1<3<7 (3.10)

From these the compact roots are those that form (by restriction) the root system of the
semisimple part of XC, the rest are noncompact, i.e.,

noncompact : o, 1<i1<4, 4<5<7. (3.11)

Further, we give the correspondence between the signatures x and the highest weight
A. The connection is through the Dynkin labels:

m; = (A+pe)) = A+p), i=1,...,7, (3.12)

where A = A(x), p is half the sum of the positive roots of G€. The explicit connection
Is:

ni=m;, ¢ = —3ims+my) = — 3(my+my+mg+2my+ms+ms+ms) (3.13)

where & = a;+---+ ay is the highest root.
We shall use also the so-called Harish-Chandra parameters:

mjkE(A-i-P,C!jk) = mj+---+mg, i<k, m;; =m; . (3.14)

Note that according to [6] all results about the classification of invariant operators
are valid also for the algebra sl(8,IR) with maximal parabolic P’ = M'A'N’, where
M' = sl(4,R) @ sl(4,R). This is due to the fact that PC = PC MT = MC =
sl(4,C) @ si(4,C). Furthermore, the results are valid also for the algebra su*(8) with
maximal parabolic P” = M” A”N”, where M" = su*(4)®su*(4) (noting that P"C = PC,
M€ 2 51(4,C) @ sl(4,C)).

4 Multiplets of SU(4,4)

4.1 Main multiplets

There are two types of multiplets: main and reduced. The multiplets of the main type
are in 1-to-1 correspondence with the finite-dimensional irreps of su(4,4), i.e., they are
labelled by the seven positive Dynkin labels m; € IN. In [5] we have given explicitly the
main multiplets for n = 2,3, 4, and the reduced for n = 2. In [18] we have given explicitly
the reduced for n = 3.

The main multiplet R* contains 70 ERs/GVMs whose signatures can be given in the
following pair-wise manner:

Xz = {(mi,mg,mg, ms, me, my)*; +i(ms +my) }
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x(__)to (1, ma, Mg, Mgs, M, mz)= 5 £3(ma —my) }
Xlio (mlsnl’l-s:m‘thGJMva)%: ilmu,s'r}
Xoil (my, mag, ms, ™y, Msg, M)~ ; £3Myzer }

X = (M2, ma, my, mas, me, mz)* ; £imy 57 )

X:1L_1 == (mhmzs-mas'msums&vm") 1m123.}
Xof = {(m1,ma, mas. Ma, M5, me7)* 5 Timusr}

Xp = (ma. m3, ma, mas, ms, M) ; £1 (mﬂ—mx)}
ngl &= (mm‘maymﬂ:mzhmss:mﬂ ﬂ: SMier }
Xiz = (1, M3, Mg, Mas, M5, mer)™ ; £imyaz }
Xos = (my, ma, Mgz, My, M5, M) ; -‘-g(mla —my)}
X3 = {(ma,ms,muys, myy. mss. m~) ;3 (ma" = ml)}

P
(]
N
f-h-\ Ay ey o gmy R A, i i, b iy gy (b b i, i e, e, b, (b, b b b, i,

Xziz = {(mia.m3. s, mza.ma,ms-:)" :I:%mm}

X::IES == (mlv 723, Myy, Tas, Ms, ms) ﬂ:-l*(mlg — mT) }
EE (ma, m3, Mys, Mg, Ms, 7)™ 3 £3(mr —my) }

Xzis = { (mu2, m3, myz, may, ms, ms)—‘ 2( 1 —mg)}

Xsg = { (ma,ma, mar, myg, ms, me)" 5 F3(m 1)}

X?i) = (ml Moy, M5, M3, Myg. m',') iimlﬁ.ﬁ’?}

X10 = (mlﬁ T34, s, T2g, TMas, m”) :':‘l'm“s?}

X;)::I: = (m Ma24, Msg, T3, My, m,—,,) £ mm,}

Xlzg = { (ma, maq, ms, My, g, mz)7; 13 (mm my) }

X}i = (m12)m34'm55vm23,m4;,,mﬁ7)i, i2m1v }

ngi = { (m1, may, ms7, mg3, masyma) ; £1(mis —ms) }

Xag = (Mg, My, ms, Mg, Mg, ma) T s £imyer }

Xor = {(mi3,my,mse. Mo, mas, mez)™ :’:*mlv}

ngi = (mu,mamms mzs,m4.m:7) ﬁ: mn}

X% = {(my, mes, me, ma, m,mm) G ml?‘r}

Xao = {(mas.myms.mi2, mys,mz)*; +3 2 (mer—my) }

X5 = {(ma,mas, mgs, mis, M5, mer)™ ; -n-i(mT —-my)}

Xz = {(mu2, maq, msr, ma3, ms, mg)™ ---a(mx my) }

Xf)jé = {(ml,mgs,m67,m3,m4,m56)i; +1 (mw —mz)}

Xio = {(ms, My, ms, My, Mas, M) 5 2(m57 —miz) }

Xa = {(mzs-m4,mss,77112,"135,17167)i ; :bz(m7 —m1)}

Xz = {(ma, Ma34, Ms7, M3, Mas, Me) ™ ; :F2m1 7}

Xy = {(mlg,m4,m57,m2,m35,m6)*; £5(m —m7) } (4.15)

The multiplets are given explicitly in Fig. 1 (first in [5]). The pairs A* are symmetric
w.I.t. to the bullet in the middle of the figure - this represents the Weyl symmetry realized
by the Knapp-Stein operators (3.8): Gks : Cyz ¢— Cy=.

Matters are arranged so that in every multiplet only the ER with signature x, con-
tains a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace
E. 'The latter corresponds to the finite-dimensional irrep of su(3,3) with signature
{m1,...,mz}. The subspace € is annihilated by the operator G, and is the image of
the operator G~ . The subspace £ is annihilated also by the intertwining differential
operator acting from x; to x; . When all m; =1 then dim £ =1, and in that case
£ is also the trivial one-dimensional UIR of the whole algebra §. Furthermore in that
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case the conformal weight is zero: d=3+c=3— %(ml +my+2mg+my +ms)),, ., = 0.

Analogously, in every multiplet only the ER with signature xg contains holomorphic
discrete series representation. This is guaranteed by the criterion [11] that for such an
ER all Harish-Chandra parameters for non-compact roots must be negative, i.e., in our
situation, m, < 0. [That this holds for our x* can be easily checked using the
signatures (77).]

Note that the ER x§ contains also the conjugate anti-holomorphic discrete se-
ries. The direct sum of the holomorphic and the antiholomorphic representations are
realized in an invariant subspace D of the ER x7. That subspace is annihilated by
the operator G~ , and is the image of the operator G*. Note that the correspond-
ing lowest weight GVM is infinitesimally equivalent only to the holomorphic discrete
series, while the conjugate highest weight GVM is infinitesimally equivalent to the anti-
holomorphic discrete series. The conformal weight of the ER x{& has the restriction
d=3+c=3+3(mi +mg+2mz +my+ms) > 6.

In Fig. 1 and below we use the notation: A* = A(x*). Each intertwining differential
operator Is represented by an arrow accompanied by a symbol 7; encoding the root
;i and the number my,, which is involved in the BGG criterion. This notation is used to
save space, but it can be used due to the fact that only intertwining differential operators
which are non-composite are displayed, and that the data 3, mg, which is involved in the
embedding V* <— VA~™88 turns out to involve only the m; corresponding to simple
roots, i.e., for each §,mg there exists i = i(8,mg, A) € {1,...,7}, such that mz = m,.
Hence the data oy, Ma;, 1s represented by ;. on the arrows.

4.2 Main reduced multiplets

There are seven types of main reduced multiplets, R, a = 1,..., 7, which may be obtained
from the main multiplet by setting formally m, = 0. Multiplets of type R:, R%, R3,
are conjugate to the multiplets of type R, R}, R?, resp., as follows. First we make the
conjugation on the roots and exchange all indices: 1 +— 7, 2 +— 6, 3 «— 5. With
this operation we obtain the diagrams of the conjugated cases from one another. For
the entries of the M representation we have further to employ the conjugation (3.9).
Then we obtain the signatures of the conjugated cases from one another. Thus, we give
explicitly only first four types.

The reduced multiplets of type Rj contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xg = {(ml,mz,mg,m5,m6,m7)i; :I:ém&}

Xio = {(m1,ma3,0,mz5,me,ms)*; £imiass }

Xo1 = {(m1,ma,ms5,0,mse, mz)*; E3Muze7 }

Xz = {(mi2,m3,0,mo35,mg, m7)*; +imy s}

Xi1 = {(m1, Moz, ms, M3, ms, m7)* ; +3miaer }
Xz = {(m1,mg, mgse,0,ms, mer)*; +3imyz7 }

X(;EO = { (mg, msa, 0,m13|5,m6,m7)i 3 i%(ms'] - ml) }
X5 = { (12, m3, ms, ma3, msg, m7)* 5 £1m, 67}

X = { (m1, maz, mse, m3, ms, mer) ™ ; +3mia7 }
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X0 {{m1, mg, m3 57,0, ms, mg)*; +3(miz —my) }
Xé = {(ma, ma, ms, m13, mse, mr)* ; £1(mer —my) }
Xp = { (m12, m3, msg, mas, ms, me?)i +imyz}

leta = { (ml,m23, Ms7, M3, M3, mﬁ) 3 %(mlg - m7) }
ngz = {(mz,m3,m56,m13,m5,m57)i ; ié‘(ﬂh —-my)}
Xa3 = {(ma2, m3, ms7, mas, ms, me)* ; £3(my —my) }
X32t3 = {(mg, m3, ms7, m13, M5, M)+ ; Fimio)}

ngloi = {(mu,0, ™s, Mg, Mg 6, M7)" ; ig‘ml,t‘ﬁ}

Xor = {(mus,0,msg, ma, mas, mer)*; +3myz}

Xz = { (m12, m35, me, mas, 0, msr)*; £im, 7}

X0y = { (m1, ma35, mg, M3, 0, ms7)* ; :‘-“%‘mlz,r}

X35 = {(mas,0,ms, mag, mg 56, m7)E; +3(mer —my) }
Xes = {(m1,mazs, me7, m3,0, mse)* ; +35(mya —ms) }
Xis = {(ms,0,ms,my, mag 56, m7)* ; +1(mer — ma) }
Xa1 = {(mas,0,msg, mia, mas, mez)*; +i(mr —my) }
Xaz = {(ms,0, Ms7, Mg, 35, Mg)™ ; :t%(m; —mz) } (4.16)

This may be called the main type of reduced multiplets since here in X¢ are contained
the limits of the (anti)holomorphic discrete series. The multiplets are given in Fig. 2a.

The reduced multiplets of type Rj contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xg = {(mi,m2,0,ms,ms. m7)=; L1 (mﬂ +my) }
Xio = {(m1,m2, my, mas. me, M) :k 32357 }
X = {(mi2,0,mqe, a5, mg, mz)*; £3 my 57}

+ =y
xn = {(mi,ma,mes, my, mes, mr)T  Limpae )
X2i1 = {(ma2,0,m45,m24, m“:m'():t: i"mm}
X12 = { (mlamh Mg, Ty, M3, mﬁ?) '2'7711')7 }

Xz = {(ma,0,my,miz s, mg, mr)*: :|:~(m57 —my)}
X3 = {(m2,0,mus, mipq, mss. 7717)‘ +i(me; —my) }

Xz2 = {(mn.0, m-xﬁ,mz.a,ms,msr)* +amyz )

X = {(m1,ma, myr, my, ms,mg)* : £1 (mu— mz) }
X3z = {(m2,0,mes myp 4, ms,mer)=: +3(m; —my) }
Xz = {(miz,0,myr. 71124,717.5'1715)* ¥( —m=) }
X5 = {(m20,mar, mizs. ms. mg ) s(miz)}
Xi)io {(m11m241ma 0, miss. m-) H :l:”_'mlz,m'}
Xio = {(muz,ma,ms, ma, mus,m7)* ; Limyer }
Xoi = {(miy,maq, mss,0, m45~m67) iEamigr }
Xso = {(maimy.ms mig,mug, mz)*; £1(mgr —m,y) }
X5 = {(mia, m, msg, ma, mys, ma-')i ;Eimys )

Xoa = { (M1, maq,ms7,0,mus, ms)™ iz(m:z —-mz) }
{ (m12, mus, ms, ma, my, msr) ™ s £3ma 7 }

12
ng: = { (ml M2 .45, mﬁnu my, m;ﬂ) :t mla }
X;ﬁ { (m" My, Msg. M3, Mas, 7"’67) é mr m1) }
Xlldz: { ( Tiy2, My, M7, Ma, Mas, mﬁ) f 2(1’?’21 ) }
X10:§ { (m17m2.451 Mgz, 0, my, msﬁ)i +1 (mlg — ms }

12



Xio = {(0,mq4,ms,m1, my 46, m7)%; +1(mer — mua) } (4.17)

The multiplets are given in Fig. 2b.
The reduced multiplets of type R§ contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

(ml 0 "-’-"32Tr"ﬁv?‘ruﬁ-7')?'7):"T S g(ma + m-’l) }
mlﬁovm&hm‘ﬁr,nﬁrm'f) (m‘a m-‘l)}

={

{(
Xar = {(m1,0,mas,my, msg, my)* ; 25 mxss"}
oy = {(m;,ma,m.,.mg.ms,m-,-) :!: 37157}
xXoo = {(mi1,0,ma6,ma, ms, mezr)=; £3 777137}
Xao = {(0,m3, me,miz5,ms,mr)*; l(msr—ml)}
Xrivt: = {(mhm:!umﬁ,mngmﬁs,m'r)i: :I:%m,m}
Y&ha = {(mlrovmii'?vm-i-m?nmﬁ)ii :I:%(m,_av mz) }
X5t = {(0,ms,mas,my 50, msg,m7)* ; ié(mm —m) }
ij?:: = {(mhm:hm-isvmm.ﬂls-ms'r) e nu,)
X§2 = { (0. mg, mas. M1 34, M5 Mg7) T ;L (m~ —my) }
Xz = {(m,ms, mar, maq, ms, me)= ; £3 (ml —mz)}
X?fs = { (0, mg, mqz, miy 34, M35, M) * : ?{(m; 2}
X,1§ = {("111"134»m5vm3'7n45,m~) kimyer }
X’zg = {(0,m3q, 5, m1 3, Migg, M7 )T 1(1lw,,—» —my) }
x'l:i: = {(mhma-h'rnss-ms-ﬂl45.ﬂ15,)+; +1 1?117}
X'g = [(ml,aamhm!'normss_.'ln') :l: I'Tl.l 57}
X;ib = {(ml.s,m4,m55,0,m35.vn5—) _:l: miz}
; I‘.?lj = { (my, mas, ms, m3, Ty, M257) T 27‘"17}
XE = {(ms, mq,ms,my, M5, m7)* ; £3(mg7 — my) }
Xa = {(0.maq, msg.my 3. 45, mﬁ")i. .-.*(m-.r— my) }
X’é = {(my, msq, ms7, M3, M5, mg) ™ ; ¥(m| - msz)}
\.;!*1 = {(m:!'m-hmuﬁv"llsmllaemﬁ ) (m7 = 1731)}
X% = {(O!muvaTvml,Iismdﬁ;mﬁ) ' 5 ‘mL,}
X;zi = { (ml,ﬂvmh sy, 0, maa,ma)i : :l:i(m] — m7) } (418}

The multiplets are given in Fig. 2c.

The reduced multiplets of type R} contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

0 = {(0,ma, m3,m5, ms, mz7)*; = (m,, +my) }
Xgo = {(0,ma, m3q, mys, mg, Mz )" ; :l: s(ms —my) }
X10 = {(0,ma3, my.mas, mg, mz7)* ; £imasr }

X01 = {(0.mg2, mas, My, mse,m7)* ; k3 7"23 o7 }

Xz = {(ma,ma,ma, mas,mg.mz)*: £1 m

Xlil = {(0, mas, mus, mas. 17155.7717) :l: Tll-')(;,}
Xz = {(0,m2,m,m4,ms,me7)* ; mw}
X:Z*:l { (ma, 77"¢31'1"ﬂ-15v77'11'4'7715«;,7'7'11-)i +1 mw}
Xiz = { (0, ma3, myg, may, ms, mez)®; £4 3Maz }
Xois {(0‘m27m37am417n5~m6)*; :E (mn —msz) }
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Xoa = {(ma,ms, mys, may, ms, Mer)™ ; =ims }
X?& {(0 M2z, May, M4, Ms, rnﬂ)i %( m')}
Xg = { (m2, ma, mu.mzmms,ms) =F2m7}
Xz)o {(0 TMa4, M5, M3, 'm-ia:m7) ﬂ: 7712.57}

X}ﬁ = {(m2, mas. ms, mas, maa,mvl ;:kgmsr}

Xor = { (0, 7m0, mzs. M3, s, mg7)* ; 2 mw}

Xy = { (m2, mas, msg, mn,mﬁ‘msv) Y sms }
Xoz = {(0,maq, ms7, ma, mys,ms)*; £1 (mﬂ —mz) }
Xg; {(0 TMas, Mg, T3, M4, m.‘i") = m2 7 }

ng = { (m23' My, M5, Ma, Mag, m?) : -'-2777'67 }

X = { (ma, maq, ms7, mag, s, mo) :Fz‘m-'r}
X;)E { (0, 125, Mz, mg, my, M) ™ s £ (ma —my) }
Xig = { (ms, ma, ms, 0, mag, mr)=; 11 (77167 ma) }
Xlalt = { (mas, my, mss, M2, mss, msl); +im:}

Xop = { (mas. ma.mzzr. mo. mas, ms )= :l:§m7} (4.19)

The multiplets are given in Fig. 2d.

4.3 Further reduction of multiplets

There are further reductions of the multiplets denoted by RY L ab=1,...,7, a < b,
which may be obtained from the main multiplet by setting formally m, = m; = 0. From
these 21 reductions 9 are conjugate to others under the used above conjugation. From
the remaining three do not contain representations of physical interest, i.e., induced from
finite-dimensional irreps of the M subalgebra. Thus, we present 9 multiplets.

The reduced multiplets of type R{; contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xo = {(0,mgz,0,ms,me,m7)*; £3 3(ms +m) }
Xio = {(0,ma, my, mus, ma,m-,») =L mzs*}
Xay = {(m2,0,my, my5,ms, mz)* i imsr}

X1i1 { (0,2, mus, g, M5, m7)+; i'mz_.s? }
Xn = {(ma,0,mys, mas, mss, mv) +img }
X1i2 { (0, mq, s, mmms,ma'r) i 777-27}
X2z = {(ma;0,mus, m2s, ms. m57) +3m7 }
Xiz = {(0,ma, maz, my, 5, m) ™ ; £3(ma—ms) }
Xas = {(m2,0,myzr, mag, msvms) ; ﬂ—imv }
XS(% { (0' Mz 4, M3, 0« Mys, m7) :t mZ 67 }
X: = { (o, My, ms, Mg, s, M7 ) sl m&-}
xe: = {(0,ma4,ms6,0,m4s, me7)" ; i_mz.?}
X5 = {(ma, my, mss, Mz, Mus, m;.-) H :I:%m-, }
Xéi; { (0, mz,4, ms7, 0,43, ms): ' il(mz —mz)}
ngi { (0, Mz 45, ms, 0, My, m5'r) *mz 7 }
Xlldzc { (ma, my, msz, ma, mus, ms) :F*m" }

= {

={

(
(0, ma 45, mg7, 0, iy, msgs)= ; ﬁ:é(mz mr) }
(0, 74, ms, 0, mage, m7)™ : £1(mer — ma) } (4.20)
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The multiplets are given in Fig. 3-13.
The reduced multiplets of type Rf, contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

x& = {(0,ma.m3,ms,ms, my)~; £

l1"‘123,5'1' }

X = {(Uvmas,o.ma.sams,mr)i +imasr}
xz = {(0,m2.m35,0,mss,m7)%; £1 mmsv}

a3, 0, ms, Ma, Mase. M)~

(0. mas s, me, M3, 0, ms7)= :i: mzv}

+1 3Me7 }

ms, 0,ms, 0, mas 55, m7)™ 1 3 (mer —ma) }
ma3, 0’ Msg, M2, M35, "77457')i 1 :{:Tl;m‘r }
{ (93,0, ms7,m2, M3 5,m6) " ¥§m?} (4.21)

Xz = {(ma,ms,0,my mms,mﬂ i E3msr }
xi = {0 mzhms'ma.mss»m?) i E3Magr }
X(?z { (0,/m2. m3 56, 0, s, 777-67) lmza?}
Xs = {(me,m3, ms, mag, mise, m?) ilmm}
X1i2 { (0,m23, M3, 3. M5, ma?) :l: mg-,-}
Xz = {(0,ma, m3s7,0,ms5.me)*; i (mm mz) }
X:2t2 { (m21m31 Msg, TNas, Ms, Tnﬁ'/) :t;m'f}
XZI% { (0 Mg, sy, M3, mﬁymﬁ) :t (mZ - ') }

= {(ma, ms, msz, mo3, ms, mﬁ) TF.,m-.' }

{

{

{

{

{

(
(01 Mas 5, M7, M3, 01 mﬁﬁ)i : i‘é(mQ T m?) }
(
(

<.
8
i

The multiplets are given in Fig. 3-14.
The reduced multiplets of type R}; contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xy = {(0,mz,mg,0,mg,m7)*; A(ma+m4)}
Xo1 = {(0 m'vaMvamﬁamT) ; 23 m2367}
X1 = {(0.mas, ma, may, ms, m7)* lzmz,a-f}

Xor = {(0,mg,mzy5,my,0, ms-,-) :I:-mzs }
X = {(mz,ma, my,may, mg. m;) H gmﬁ'l }

Xiz = {(0.ma23,ms6,ma4,0, mﬁ") :l:—-m-”}

0, ma, mase7,ma, 0, mg)~ ; il('mza mz) }

{(
X:2t2 = {(m2v m3, My, May, 0, 777.57)‘ : ‘mT}
Xiz = {(0,m08, magr, m34,0,me)*; i*(mz -mz) }
Xa3 = {(ma2,ms, mygr,mau,0, mg)*; F3ms }
Xoo = {(0,mas,0,m3,myg.m7)* ::l.‘.zn'l.gm}
Xis = {(ma,mss.0, a3, Mae. m7)* 2mm}
X;ﬁ - {(0 mﬂ!mﬁthlevaT) 'f}
X/1i1 = {(ma, mgy, ms, mn,m4,m57) m7}
X;)E = { (0 TMayg, Mgy, M3, My, mﬁ)i- :tl(mﬂ = m;) }
Xlsg = {(mas, my,0,m2, a5, m7)= ; £1 5Mey }
X4£ = {(mavmlosoymﬂﬁym'l) ‘--"(777'67_7712)}
X5 = {(mas, mq, mg, ma, may, mer)* ; £idmy } (4.22)

The multiplets are given in Fig. 3-15.
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The reduced multiplets of type Ris contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

xo = {(0,mz,m3.ms,0,ms)* :i:i(m,, +1m4) }
Xoo = { (0,2, m35,m45,0,m7)%; L(ms —my) }
X = {(0 Migs, My, s, 0,me)* ; £imass }

+
by

5 {mmn i

Xg:2 = {(0 ma, m35!mhmaxm7) ¥ .1_27?123 7 }

X:1t2 = { (0,3, M5, Mas, ms, m7)* ; £ima,- }

Xo3 = {(0,ma2,mar, my,ms,0); £1 (mgs-m7)}

Xop = {(mz:ma,mm‘m%ms,m-r) +1 3mz }

Xi:i = {(0 M3, M7, M3e, M3, 0) ('J’Tln — m- )}

Xz = {(ma, ma, myz, may. ms,0)% ; Fims}

xo1 = {(0,mag,mz,m3. mys.m7)%; £1 sMaz}

Xlljlz = { (m2, ma1, M3, M2z, Mys, M5 ) :l:—'m-}

xos = {(0,may,m57, M3, mes, 07 ; :l:-(mz —mz)}
nt

X0z = {(0,mas,0,my, my, m57)%; :t-im-:q}

Xﬁ = {(mg,mgy, ms7 ”mzs,m,;s,D) ¥2m?}

Xos = {(0,ma5,mz, m3. my, ms)*; :I: (mz —ms) }

Xt = { (maz.my, ma.mzemas.mf) i zms }
2 = {(ma, mdsm5.71m2|m35y0)i_; F5;m } (4.23)

The multiplets are given in Fig. 3-16.
The reduced multiplets of type R}, contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

XO (0, M2, M3, ms, me, 0)* ; —‘—g(mu +my) }
Xoo = {(0,m2,m3, mas,me, 0 ; £1(ma—my) }
Xm = {(0,ma3, my, mﬁsms»o)t; +2mgs6 }

Xm = {(0,ma, mas, my, mss,0)F; £3mings }

X20 = { (mg, m3, mas, mas, ms, 0)t i‘msu}

Xn = {(0, m231m45;m34:m3610) : “"177126}

= {(

{

{

{

{

{

Xo2 = {(0,ma, mzs, mq, ms,m6)"; gm.,S}

{ (ma, m3, s, mag, mss, 0)"' +ims}

Xz = {(0,mas, mss, mas, ms, me)~; :I: 37 }

{(m27m31m461”m s, mG)
{(0 Titag, s, 13, Tigs, 0) 'l_m2ﬁ}
{ (ma; maq, ms, M, 777.45,0)i +img )
{ (0, may, mss, ma, M5, me)t; 2 sma}
{ (ma, may, mss, Ma3, Mas. M) *; 0}
{(mﬂi’: Mg, s, M, Mgs, U) ﬂ:lmg}
{(0 Tas, e, TIlg, Ty, msﬁ)i; Zt:z—ﬂ’lg}
{ (m3, my, ms5, 0,m6,0)% ; £3(ms — ma) }

Xsi = {(mas, ms, mss, ma, mgs, meg)*; 0} (4.24)

The multiplets are given in Fig. 3-17.
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The reduced multiplets of type R}, contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

xo = {(m1,0,mg, ms, mg, m7)*; £im; }

Xo1 = {(m1,0,mys,0,mse,m7)" ; £3my 367 }

X:2k0 { (ml!' mg, 0’ M35, Mg, mf): : il?ﬂl.&? }

Xoy = {(m1.0.m336.0.ms.mer)*; £imuzz}

X::s% { (0,m3,0,m1 35 ms, mv)i 2(m57 -m) }

X:2t1 {(m1|m3!m5: m3:m551m7) ;43 ml 67}

Xos = {(m1,0,mg357,0,ms,mg)*; z(ml:i-m'n")}

Xa1 = {(0,m3,ms,my3,ms5, m7)* ; £4(mg7; — my) }

X:2t2 { (mhm3 Mss, M3, ﬂls,ms'f) ngT}

X::;tz { (0, m3, msg,my 3, ms. mez)™ ; F(‘m-.r —my)}
it o

X33 = {(m1,ma, msy,m3, ms, me)™ : £5(my —mz) }

Xz = {0, msvmsrymz.sem&mﬁ)i, T3 (mm)}

Xy = {(m13.0,ms,0,mas0,mr)*; 2imu }

Xor = {(my3,0,mss,0,my5, mgr ) +im;;}

Xiz = {(mi,mss,mg,ms,0, ms7)T ; £imy s}

Xz = {(ms,0,ms,my, mss. m?)i i 25 (mer —my) }

Xs1 = {(ms,0.mg5,m;, masymm) s Ez(my —my) }

Xy = {(mi3,0,msz,0,ms35,me)* ; £5(my —m7) } (4.25)

The multiplets are given in Fig. 3-24.
The reduced multiplets of type R3; contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

{ (mho YTL3,0 Mg, m-,')i a(ml 357+ 2'"14)}

M, Mag, 0, mg, g, m7) = Zt'ml,ST }
0, ma4, 0!m1.3’ Mis: m?)i : :I:E(mGT = ml) }

&
I

Xgl = {(m1,0,maq, my, me, m7)*; ilmlsﬁ?}
X = {(m1,0,may6,m4,0,me7)*; £1 3Mig7 }
X:i:l = {(mlvm-'l!m-hm.'ﬂsmﬁ’m7) gmlﬁ"}
Xga = {(m1,0.mz467,m4,0,me)=; i s(mya—mz) }
X5 = {(0.ma, my, myq, ms, my)™; £5 3{mez —my) }
X = {(mims, mys,mas, 0,mer)*; —zmu}
X’iz = {(0, Mg, Myg, M 34, 0,m67) ; 21(m-; —my)}
Xzz = {(m1,mamyer, maq, 0,m)=: £i(my —my) )
Xaa = {(0.ma, maegr,mise,0,m6)*; Fi(mys)}
= {(

{(
Xin = {(my,mgq, mg,ms, my, mer)*; £imy -}
X%Sf {(m1.37m¢v010$m34.61m7) d: mlﬁ'}
X}ti' { (my3,m4,me, 0, ms.,,mﬁ) +1 sy}
Xg { (ma, my,0,my, maq 5, m7)*; :i: (m5-; my) }
Xy = { (0, mas, mg, my 3, M4, Mg7) ™ :l:l(m-;—m;)}
Xs1 = {(ms,my, ms, m1, maq, mer)*; :I:g(m7—m1)} (4.26)

The multiplets are given in Fig. 3-25.
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The reduced multiplets of type R contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

X[)i = {(mllovmav s, O!m'f)i ;_iz(mu + m4) }’

Xio = {(my,0,maq, mys,0,m7)=; (ma —ma)}
XEJ = {(m, mz, Mg, 17135,0, m-,v) :]: 557 }

Xof = {(m;.0,mg5,my4, mmm‘f) i m137}

Xio = {(0 Mg, M4, Ty 3-5,0 m‘? : i TYL57 ml)}
Xois = {(my,0,m357,m4.7m5.0 3(miz—m:)}
Xz = { (m1,ms, mus, mag, ms, m'r) : 57?117}

X::stz = {(0, m31m45|m1,347m5vm7) :‘: (m7 —my)}

Xaz = {(m1, ms, masz, may, ms, 0)%; —-m7) }

Xi:ii:S = {(0 m3'm45 7: 7181 34, m5v0)i (ml 7)}

X1 = {(m1. mae, ms, mg, s, m‘*)*: :taml'?}

X%i = {(ml 3, My, m510 M3s. mT) :trm‘l?}

X2 = {(mlvmaﬁfo Mg, My, m57) ﬁml"'}

X5; = {(0,maq, ms, my 3, mys, m7)%5 i?(m'i_ml)}

X}E = {(my, m34.m5,nm3vm4-5:0) £5(my —my) }

X?i = {(mz.my, ms, my, mss, m;)f, —'f(m- —my) }

Xo2 = {(onmu,ma,v-mx.a,mas»o)"’; :Fgmu}

X2z = {(mys,my, msz,0,mzs,0)*; +3(my —ma2) } (4.27)

The multiplets are given in Fig. 3-26.
The reduced multiplets of type Rj; contain 36 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xoi = {(m1,m2,0,0,m5,m7)i; i%(m&+m4)}

X1i1 = {(mhfn'zamhmhm'ﬁ;m‘l)i; :tlmlzﬁT}
Xzil = {(mu-. 0,my, maq, M, m7)~; £2mier}
Xliz = {(my.ma, myg,my,0, megr )= T smyas )
x5 = {(m2,0,mqy,miq,ms,m .)i :t_;l(mey—-m!)}
X = {(mm 0,may5.ma4.0, ms‘r) s Eamyg )
X3z = {(m, ma. magr.my,0,me)= : 2E(muz —my) }
X5 = {(ma,0,mus,mize, 0,mer)*; £2(mz —my) }
X:;; - {(m1210 m-is‘hma-i‘o mﬁ) :‘:_(ml - ‘m7)}
X5 = {(ma,0,mygr,mi4,0, ms) Falmiz) }
Xe = {(m1,m24,0,0,my5,m7)=; :t ml?ﬁ?}
Xz = {(mi2. M4, 0,m2,mye,ms)"; £imygr }
I+
Xo1 = {(m]|m°49m570 mh”"ﬁ") == 327 }
1+ .
Xso = {(ma,my,0,m, myg,ms)™; —-Q(mGY my) }
I+ +
X11 = {(m , T4, Tg, Mg, My, Me7)~ ; ;1 mn}
Xl2j1: = { (ma, My, ms, 12, My mes) =3 (mr — my) }
Xos = {(mi.mas.mer.0, m-hﬂlﬁ)i (mnz-—m-)}
Xie = {(0,my,0,my,mags.mz)*; £1 (mg-—mlg)} (4.28)

The multiplets are given in Fig. 3-35.
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4.4 Yet further reduction of multiplets

There are further reductions of the multiplets denoted by R%,.,a,b,c=1,...,7,a<b<
¢, which may be obtained from the main multiplet by setting formally m, = my = m. =
0. From these reductions only six are non nonconjugate and contain representations of
physical interest.

The reduced multiplets of type Ri;s; contain 26 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xo:t = { (0' ma. 0, 0: mﬁ'm'l)i : :t%(mﬁ + ?n.l) }

x5 = {(0,m2,my, my, ms,mz)*; Eimaer }
ngl = { m2=0,m4,m2,4,m5,m7)i, -'-2"7-67}
X = {(0.m2,myg,ma,0,mer)=; £imaz }
Xp = {(ma!ovm'i,ﬁ!mz.ézolmﬁ") £ims}
X = {(0,mz, mye7,m4,0,me)"; 2(mg—'nw)}
X:Z% = {(mﬁ!osmd.ﬁemﬂ.bowmﬁ) :Fgm'?}
Xgﬁ = {(0 ﬂ‘Ig.;,O 0 m45,m1)*, j:,_zmz's-}
X = {(0.ma, me,0,my, mer)™; £imaz}
Xes = {(0.mg. mar,0,my, me)™ ; £3(ma—m7) }

X30 = {(mmmdtovﬂl‘hmd.ﬁymT)i—; i%mET}
Xio { (0,14, 0,0, mag, me)*; i%.(mﬁ'r“mz)}
= { (ma, my, mg, M2, m.;,mﬂ) s £imz } (4.29)

P
«
|

The multiplets are given in Fig. 3-135.

The reduced multiplets of type Ris;s contain 26 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xn = {(0,mg,0.ms,0,mz)*; £3(mz+my) }
XTD { (0, mg;my, mys, 0, m‘l)*. -‘-émQEr}
X;Tu { (m2,0, M4, Ma5,0,m7)=; £imss}
Xlz { (0. ma, mys, my, ‘mmm?)"‘ 2"12?}

Xz = {(ma2,0,maus,mag, mﬁ.mﬂ : -n-%"'h}

7(1*3 = { (0 M, Nys,7, 1t Ms, 0) 3 (m?. e m‘?) }
123 { (me, 0, mys5 7,ma 4, m35,0)% ; ¢2m7}

\m %(0 (Mg 4, M5, 0, M5, )™ --"mz -}

XL‘[ (mﬂvml!mﬁlmﬂnm-ﬁnm) :t my }

Xoz = {(0,m2,4,m57.0, s, 0)%; --'("lz —mgq) }

xoz = {(0,m245,0,0,mq,m57)"; £3maz}

x'{f» = { (ma,myyms 7, mo, m-as'o)*? :F%m?}

x% - { (0‘ Mo 45, M7y 0, m4,m5)* ' i%(mg - m.;-) } (430)

The multiplets are given in Fig. 3-136.

The reduced multiplets of type Ri;; contain 26 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

X(:)t = { (0’ m2101 Ms, Me, O)i; :{:%(m& + m4) }
X:IEO = { (0,777’21 My, Mys5, Me, 0)11 i%mZ,SS}
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Xoo = {(m2.0,m4,mz55.ms,0)%; & ~m55}

lekl = {(0 M3, M5, mhmsﬁwo) 41 mgs}

Xa1 = {(mz,0,mg, M2, Msg, 0)" 2m5}

Xz = {(0,ma,mug, my, ms, mg)* i ama}

Xg:z = {(ms,0, Tyg, Mo 4, M3, ms U}

Xoo = {(0,mas,ms,0,mys, 0)%; izmﬁ}

Xsdl: = {(0 Mz 4. Msg. 0 a5, 77'16)A :L‘ mg}

X.{S:g = {( o, My, M. m21m45|0) +1 'ﬂ’lﬁ}

Xo3 = { (0,245, mg, 0, my. mas) ; +3ms }

Xio = {(0,my,ms,0, ma 4, 0)%; (ms —ma)}
Xt = { (Mo, my, msg, ma, mas, mg) < ; 0} (4.31)

The multiplets are given in Fig. 3-137.

The reduced multiplets of type R}, contain 26 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xoo = {(0,ma,mz,ms, me, 0)%; timps g6 }
Xio = {(0.m23,0,m55,m6,0)=; £imoszs }
Xo1 = {(0,m2,7m35,0,m56.0); £3 mzss}
Xz = {(ma,ms,0 m"as:mmo) +3mss )

xi1 = {(0,ma3,ms,m3, mss, 0)=; £imag }
Xpz = {(0.ma,m335.0, ms,mg)‘ =3 mza}
X1 = {(m2vm3!m5 Tz3. Msg, 0) rfmﬁ}
Xi2 = {(0,ma3, mss, M3, ™5, m6) " ; £3mz }
X2z = {(m2.m3, mss. Mz, mS:’nﬁ) }

Xip = {(mas,0,ms5,ma,m356,0)*; i’mﬁ}

Xo5 = {(0,ma35,mg,ms,0, mse)i§ +amy }

Xig = {(ma,0,ms,0,ma356,0)*; i%(ms~m2)}

Xsi = {(mas,0,mse,ma, m35,me)*; 0} (4.32)

The multiplets are given in Fig. 3-147.
The reduced multiplets of type R3¢ contain 26 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

= {(my,0,mz,ms,0,mz); £1 77?-1357}
= {(m1,ms,0,m35,0,m7)*; £imyz5:}
= {(my,0,m353,0, m5,m7) 12"113. }
= {(0,7m3,0, mm,s,Om) *2(msz—my) }
Xga = {(m1,0,mg57,0,ms,0)%; +2 (mx,a my) }
= {(my,m3, m5.m3. ms, m?)i i imis}
X5z = {(0,m3,ms,my3. ms-ﬂ‘h')i +i (m7 —my)}
Xz3 = {(mi.ma. ms7,m3,ms, 0) HE. = i(1"1"11 z) }
= {(0:m3:m5.77m1.37m53 0) :‘Fg(ml 7)}
X’z? = {(m1.3107m5~0= m3,57m7) == ml?}
X1z = {(my,mgs,0,m3,0,ms7)*; Tm”}
Xa = {(ms,0,ms,my,mss m:)*; *3(my —my) }

§ﬁ+

D <dis

§ﬁ+
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Xzz = {(m13,0,ms7,0,ma5,0)*; £3(my —mq) } (4.33)

The multiplets are given in Fig. 3-246.

4.5 Last reduction of multiplets

There are further reductions of the multiplets - quadruple, etc., but only one quadruple
reduction contains representations of physical interest. Namely, this is the multiplet
Ri35;, which may be obtained from the main multiplet by setting formally m; = m; =
ms = My = 0.

The reduced multiplets of type Ri;s; contain 19 ERs/GVMs whose signatures can be
given in the following manner:

x5 = {(0.m3,0,0,mg.0)*; £3(ms+my)}

x5 = {(0.mg,my, my. mg, 0)F :l:mgs}

x5 = {(ma,0,mq, mz4,ms, 0)%; £ime }

X:Itz = {(0,m2, s, m4, 0, me)* i _.,TTIQ}

Xa2 = {(miomdﬁva-iomﬁ :0}

Xoo = {(0,m24,0,0,m45,0)*; +3 mge}

Xor = {(0,mz4,ms,0, mq,ms) +3ms }

X.% = {(m2, 4,0, my, mys,0)*; £1 me}

Xi6 = {(0,m4,0,0,mo46,0)*; :tl(me my) }

xor = { (ma, ma,me,ma, ma, me); 0} (4.34)

The multiplets are given in Fig. 3-1357. Note that the ER x31 is not in a pair and is
placed in the middle of the figure as the bullet. That ER contains the minimal irreps of
SU(4,4) characterized by three positive integers which are denoted in this context as
mg,my, mg. Each such irrep is the kernel of the three invariant differential operators
DT, Dy, Dz, which are of order my, mg, mg, resp., and correspond to the
noncompact roots os, g, Qs7, resp., cf. (2.5).

Acknowledgments

The author would like to thank the Organizers for the kind invitation to lecture at the
"Third International School on Symmetry and Integrable Systems” and at the " Humboldt
Kolleg on Symmetry and Integrable Systems”, Tsakhkadzor, Armenia, July, 2013. The
author has received partial support from COST action MP-1210.

21



7 "\ ﬂz ( \/Am g/’ 5
e m@@m&%ﬂ%ﬁv@»ﬂw 0 .
aA »QFJQ ’@/’4\ \»ﬂs )

AN

~ 224
1 Q
Az,
s



.hm X | Q
A Sk
X% /&«Ww

=

23



S

_lm
<!

<

<
L
o
uy,
S
§
B
B
-

fa
TRTAMN
Giie,

ki

i

8
-
%

o

i
gt



Fig. 2c. SU(4,4) reduced multiplets of type R}
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Fig. 2d. SU(4,4) reduced multiplets of type R}
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Fig. 3-13. SU(4,4) reduced multiplets of type R,
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Fig. 3-14. SU(4,4) reduced multiplets of type R},
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Fig. 3-15. SU(4,4) reduced multiplets of type Rig
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Fig. 3-16. SU(4,4) reduced multiplets of type R%;
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Fig. 3-17. SU(4,4) reduced multiplets of type R{,
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Fig. 3-24. SU(4,4) reduced multiplets of type R},
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Fig. 3-
ig. 3-26. SU(4,4) reduced multiplets of type Riq
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Fig. 3-35. SU(4,4) reduced multiplets of type Ris

Fig. 3-135. SU(4,4) reduced multiplets of type Rizg
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Fig. 3-136. SU(4,4) reduced multiplets of type Rl



Fig. 3-137. SU(4,4) reduced multiplets of type Rly;
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Fig. 3-147. SU(4,4) reduced multiplets of type Ri,,
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Fig. 3-246. SU(4,4) reduced multiplets of type Risq

Fig. 3-1357. SU(4,4) reduced multiplets of type Rf,s;
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Abstract

The pseudo-spin symmetry (PSS) in nuclei is the name for the quasi-degeneracy of a
pair of single-particle states with quantum numbers (n,[,j) and (0’ =n—1,0' = [+2, ' =
J+1). The PSS is known to exist in many cases, in spherical as well as deformed nuclei.
In these lectures, we will discuss this property of atomic nuclei in the framework of a
covariant energy-density functional theory (CEDFT) which can describe quantitatively
well the properties of spherical as well as deformed nuclei. In particular, we show how
perturbation theory can be used to investigate the PSS by relating the nuclear Dirac
Hamiltonian of CEDFT to relativistic harmonic oscillator (RHO) potentials.

PACS numbers: 24.80.+y, 24.10.Jv, 21.60.Jz, 21.10.Pc
Keywords: pseudo-spin symmetry; Dirac equation; perturbation theory: nuclear struc-
ture

1 Introduction

The atomic nucleus is a rather complex many-body system which is nowadays well ex-
plored, and whose dynamical properties can be understood to a large extent in terms of
effective interactions between its constituents, the nucleons. In the long quest for mod-
elling the structure of atomic nuclei which started over a century ago, some fundamental
concepts emerged at very early stages. For the purpose of the present study, we shall
concentrate on two of these concepts: 1) the existence of an average nuclear and electric
mean field resulting from the two-body interactions among the constituent nucleons; 2)
the existence of certain symmetries which are inherent to the nature of the nuclear mean
field.

One of the earliest nuclear mean field models is the 3-dimensional harmonic oscillator
potential. Very soon it turned out that the empirical data required that an additional
spin-orbit potential - of the form Vys(r)ls - should be added to the central harmonic
oscillator potential. In this way, it became possible to account for the observed energy
splitting between the two members j5 =1+ % and jo =1 - % of a spin-orbit doublet.
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states are labelled by the principal quantum number n{n = 1.2,..), the orbital angular
momentum [(l = 0,1,2,...), the total angular momentum J(7 = 1 £ 3) and its third
component m(m = —j.—j +1,..7 — 1,7). The spin-orbit potential lifts the degeneracy
between the states having the same principal quantum number »n and orbital angular
morentum [ but different total angular momentum, j, = I+ 1 and j. = I - 3. This
situation is very familiar in the mean field picture of atomic nuclei. For example, if one
looks at the empirical single-proton spectrum of a nucleus like 0. it can be scen that
the 1p2 occupied level is located about 6.3 MeV below the 1p3 occupied level, a direet
evidence of the effect of the proton spin-orbit potential.

The first suggestion of a possible near-degeneracy of the two members of a pseudo-spin
doublet was made as early as 1969, by Arima, Harvey and Shimizu (1] and by Hecht and
Adler [2]. In & single-particle picture, a pseudo-spin doublet is composed of the two single-
particle states (nij) and (n' =n—1.I'=1+2,7 = j+1). Sometimes, one introduces
an extra quantum number, the pseudo-orbital angular momentum [ = [+ 1= — 1 to
characterize a pseudo-spin doublet.

In fact, looking back at the first single-particle energy schemes suggested by Goep-
pert Mayer[3] and by Haxel et al.[4] one can see many occurrences of empirical near-
degeneracies of pseudo-spin doublets: 1d3 — 2s1.1f3 — 2p3, 197 — 2d2.2d3 — 351,108 -
2f%,2f% — 3p, etc... There was no systematic explanation or predictions of such near-
degeneracies. These cases are also mentioned by J.N. Ginocchio[5, 6]. In his comprehen-
sive article of 2005 on relativistic symmetry in nuclei[7] he showed the systematic trend of
the measured pseudo-spin splitting of the 3s3 —2d2 and 2d2 — 1gZ neutron levels through-
out the Sb isotopic chain, and of the 3s3 — 2d3 neutron levels in the Tl isotopic chain.
In the Sb chain those splittings vary monotonously from +10% to —10% of Aw while in
the T1 chain they are between 3% and 6% of hw. Thus, it seems that the pseudo-spin
partners have a tendency to stay not too far apart although their degeneracy is far from
quantitative.

It is, however, difficult to find a general explanation to the fact that sometimes the
degeneracies seem well obeyed and sometimes somewhat violated. In the 1990’s the rela-
tivistic mean field (RMF) models became very popular, and they gave the hope to provide
a theoretical framework for understanding the occurrence or breaking of the pseudo-spin
symmetry (PSS) in nuclei [8]. In the rest of this contribution we shall use the relativistic
framework to discuss the PSS and its breaking in atomic nuclei.

2 General properties of pseudo-spin symmetry in nu-
clei

The natural framework for discussing the PSS in atomic nuclei is to start from a micro-
scopic independent particle model where the nucleons - neutrons and protons - are moving
in a mean field created self-consistently by their mutual 2-body interactions. In this paper
we adopt the covariant approach in which the nucleon wave functions are solutions of &
Dirac equation rather than of a Schrodinger equation, and where the nucleon-nucleon ef-
fective interactions are mediated by the coupling of nucleon fields to meson-like fields. At
this point, it is worthwhile to recall that there is a situation where the PSS is well obeyed,
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it is when the single-particle states are eigenstates of a Dirac equation with Lorentz scalar
and vector potentials, Uy and U, such that Us + U, = constant at all points in space.
At large distance, both U, and U, must vanish, therefore this constant value of U, + U,
should be zero. However, in order to have bound single-particle states U + U, must be
negative in the interior region of the nucleus, hence the impossibility to realize strictly
the condition U, + U, = constant. This is clearly illustrated by Fig. 8 of Ref.[7] which
shows typical U, and U, potentials calculated in 'O and 2*8Pb.

The covariant and self-consistent approach to nuclear systems is widely used since the
pioneering work of Walecka and of Serot [9]. mostly in its Dirac-Hartree version (called
the Relativistic Mean Field (RMF) approach in the literature [10]), and pairing was
added for non-closed shell nuclei. In parallel, methods for treating the exchange (Fack)
terms were developed [11] and successful Relativistic Hartree-Fock (RHF) Lagrangians
were proposed for incorporating effects coming from pion-nucleon or p(tensor)-nucleon
couplings [12] which are absent in the RMF models.

The general method is to start from a covariant Lagrangian density containing nu-
cleonic fields, mesonic fields and meson-nucleon couplings. By applying the variational
principle one can write down a nucleonic Hamiltonian containing one- and two-body
terms, and where the two-body nucleonic interactions are mediated by effective mesonic
fields. This method has been carried out to determine the interaction parameters of the
model and to calculate extensively the properties of atomic nuclei throughout the periodic
table [13]. It has been extended to treat the case of nuclei with pairing correlations. by
adding a Gogny-type pairing force and solving the full RHF-Bogoliubov (RHFB) set of
equations[14].

In any case, the common feature of all RMF and RHF models is that they lead to
self-consistent mean field scalar and vector potentials (Us and U,) such that U, + U, is
about -80 to -60 MeV in the nuclear interior, and going to zero beyond the nuclear surface.
Thus, the strict PSS condition U, + U, = 0 cannot be fulfilled cverywhere. Nevertheless,
the covariant framework is quite suitable for studying the PSS and its breaking, as wc
shall see in the remaining part of this contribution.

In the RMF as well as in the RHF model, a very systematic feature emerges if one
compares the wave functions of two pseudo-spin partner states, e.g., a = (nlj) and o' =
(n=n-11=1+2,35 = j+1). This is illustrated by Fig.1 where are shown the upper
components G and lower components F' of the neutron states (a = 2s1/2,a" = 1d3/2)
(left panels). The right panels of Fig.1 show a similar comparison for the pair of neutron
states (a = 3s1/2,a’ = 2d3/2). The calculations are done [15] for the doubly closed-shell
nucleus ¥2Sn using a density-dependent relativistic Hartree-Fock (DDRHF) model with
a typical interaction PKO1. It is remarkable that the lower components F of the wave
functions of the two pseudospin partners are very similar, whereas the upper components
G show marked differences, especially in the case of the 251/2 — 1d3/2 pair of states.
The fact that the lower components are very close to cach other is somehow related to
the PSS. Since the single-particle energies depend more on the upper than on the lower
components of the wave functions, the net effect on the single-particle energies is that
the 251/2 level is at some 3 MeV above the 1d3/2 level, whereas the energy difference
between the 3s1/2 and 2d3/2 levels is less than 200 keV.
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Figure 1: (Color online) The upper and lower components, G and F, of the radial wave
functions for the neutron pseudospin partners 251/2—1d3/2 (left panels) and 3s1/2—2d3/2
(right panels), in the nucleus *32Sn. The DDRHF calculations are done with the PKO1

parameter set.
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3 Perturbation theory approach to PSS

Recently, the perturbation theory approach was used to investigate the symmetries of the
Dirac Hamiltonian and their breaking in atomic nuclei[16]. The PSS as well as the spin
symmetry (SS) were discussed in that work. It will be illuminating to consider here the
case of PSS to understand the mechanism of its breaking. We will follow the method
introduced in Ref.[16]. The actual numerical applications presented are done in RMF
approximation for the representative nucleus **2Sn with interaction PK1{17].

In spherical symmetry, the radial Dirac equations of the RMF model can be cast in
the form

HY = EV¥ (1

with S(r) + M B G
)+ M e ) = (r .
H:( %+§ —Agr)—M)’dnd\p_(F(r))’ (2)

where £(r) = S(r) + V(r) and A(r) = S(r) — V(r) denote the combinations of the scalar
and vector potentials, and & is defined as k = (I — 7)(25 + 1). Taking the nuclens ¥2Sn as
an example, the potentials £(r) and A(r) for ncutrons calculated by self-consistent RAMF
theory are shown in Fig. 2. The typical valucs of £(r) and A(r) in the nuclear interior
arc about 70 MeV and 700 MeV, respectively.
In order to apply the Rayleigh-Schrédinger perturbation theory, we split the Dirac
Hamiltonian H in Eq. (2) as
H = Hy+ W, (3)

where Hy leads to the exact spin (pscudospin) svinmetry and W ois identified as the
corresponding symmetry breaking potential. In the case ol the spin and pseudospin SU(2)
symmetry limits [18] the Dirac Hamiltonians with exact symmetries read

S T+M L4k o+ M —-L4s
HSS = dr © o Hrss — 0 ST Ty ,
0 (—;r+$ —A(,—,M)’ 0 ( L2 A-M ) ()

whereas their spin- and pseudo-spin symmetry breaking potentials are

0 0 -5 0 .
W/SS:(O A“_A)-' I"qu=< 0 0 0>’ (o)

where Ay, Ly arc constant whercas A, £ are position-dependent.

For studying the relationship between the eigenstates of H and Hy by perturbation
theory, it is equivalent to use the definitions H = Hy + W and Hy = H — . Since
the spectrum of H has discrete eigenstates which have no counterparts in Hy, the eigen-
energics and wave functions (E;. v;) of Hy are expanded on the complete set of cigenstates
W,,,) of H for all the calculations discussed here below. i.c., the ground state cigen-cuergy
Ey and wave function ¢y of Hy are expanded as

EO — E(U) + E(l) + E(g) + .- . (6(1)
Yy = Zam‘l/,.. with @, =alY +al) +a® ... (6b)
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Figure 2: (Color online) Single-particle potentials for neutrons in the nucleus 32Sn. The
self-consistent potentials calculated by RMF theory with PK1 [17] are shown as solid
lines. The potentials —Ag — M in HyS and Ty + M in HSS are illustrated as dashed,
and dash-dotted lines, respectively.
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Figure 3: (Color online) Single-particle energies of spin doublets 1f (upper panel) and
pseudospin doublets 1d (lower pancl) obtained hy RMF theory, and by the first, second.
and third order perturbation calculations, as well as those at the exact symmetry limits.

In contrast to adopting the Schrédinger-like equations as done in the previous studies
5, 8], it is clearly shown that the operators H, Hy and W used in the present calculations
are all Hermitian, and they do not contain any singularity. This allows us to perform the
order-by-order perturbation calculations. In addition, it should also be noticed that only
W corresponds to the symmetry breaking potential within the present decomposition,
thus the ambiguity caused by the strong cancellations among the different terms in the
Schrodinger-like equations can also be avoided. Therefore, the present method can provide
a clear and quantitative way for investigating the perturbative nature of SS and PSS. This
method can be universally applied to the cases where the nature of the symmetry is either
perturbative or non-perturbative. When the nature of the symmetry is perturbative, the
link between the single-particle states in realistic nuclei and their counterparts in the
syminetry limits can be constructed. If the symmetry is non-perturbative, the divergence
of the perturbation series can be found explicitly.

In the present calculations, as illustrated with dashed and dash-dotted lines in Fig. 2,
the constant potentials in Eqs. (4-5) are chosen as —Ag— M = —350 MeV and &g+ M =
900 MeV. We have checked that the convergence of the perturbation calculations are not
sensitive to these values.

Let us then use the model of Figure 2 to examine as a specific example the pertur-
bation corrections to the single-particle energies of the spin doublets 1f and pseudospin
doublets 1d. In Fig. 3, from left to right, the single-particle energies obtained by self-
consistent RMF theory, and their counterparts obtained by the first, second, and third
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order perturbation calculations, as well as those obtained at the exact synunetry limits
are shown. It can be seen clearly that the energy degeneracy of the spin doublets is well
restored by the second order perturbation calculations. However. the energy degeneracy
of the pseudospin doublets cannot be restored up to the third order perturbation calenla-
tions. Moreover, there exist no discrete eigenstates of HESS. Thus, the link between the
pseudospin doublets in realistic nuclei and their counterparts in the S+ V' = Const limit
is still unclear.

Thus, from the perturbative point of view, a path can be established between the
Dirac Hamiltonian in realistic nuclei and the symmetry limit of S — V' = Const. This is
not the case for the limit S+V = Const. This confirms in an explicit way that the nature
of PSS is non-perturbative, if the Dirac Hamiltonian with S + V = Const is regarded as
the symmetry limit.

4 Conclusion

In these notes, we have introduced the issue of PSS in nuclear systems. This question
originates from the empirical observation that pairs of pseudo-spin partners sometimes
seenl to be nearly degenerate. This degeneracy may appear in empirical observations, or
in predictions of simple potential models. On the other hand, there are also numerous
situations where the PSS is not obeyed.

An analogous issuc is offered by the question of the observed splitting of spin-orhit
partners, which is the opposite situation. In this latter case, it is known for a long time
that this splitting is caused by a spin-orbit component in the nuclear mean field.

This second issue can be handled by considering in the nuclear Hamiltonian a spin-
symmetric part (which keeps the spin-orbit partner states degenerate) an a spin-symmetry
breaking component (the spin-orbit potential) which causes the non-degeneracy of the
spin-orbit partner states. We have seen that, using a relativistic nuclear model. one
can understand by perturbation theory how to relate the non-degenerate situation (the
realistic case) to the degenerate situation (the limiting case).

Then, coming back to the first issue one can try the same perturbative method, again
with the same total Hamiltonian but separated into a pseudo-spin conserving part and a
pscudo-spin non-conserving part. Then, one finds that the limiting case has no solution.
Thus, the degeneracy of PSS partners does not happen - at least not systematically - in
the realistic case, nor in the limiting case.
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Abstract

The paper is devoted to the description of the contraction (or limit transition) method
in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As
opposed to the standard Wigner-Inénii contractions based on insertion of one or several
zero tending parameters in group (algebra) structure the alternative approach, which is
connected with consideration of algebraic structures over Pimenov algebra with commu-
tative nilpotent generators is used. The definitions of orthogonal and unitary Cayley-
Klein groups are given. It is shown that the basic algebraic constructions, characterizing
Cayley-Klein groups can be found using simple transformations from the corresponding
constructions for classical groups. The theorem on the classifications of transitions is
proved, which shows that all Cayley-Klein groups can be obtained not only from simple
classical groups. As a starting point one can choose any pseudogroup as well. As applica-
tions of the developed approach to physics the kinematics groups and contractions of the
Electroweak Model at the level of classical gauge fields are regarded. The interpretations
of kinematics as spaces of constant curvature are given. Two possible contractions of the
Electroweak Model are discussed and are interpreted as zero and infinite energy limits of
the modified Electroweak Model with the contracted gauge group.

1 Introduction

Group-Theoretical Methods are essential part of modern theoretical and mathematical
physics. It is enough to remind that the most advanced theory of fundamental interactions,
namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(1).
All types of classical groups of infinite series: orthogonal, unitary and symplectic as well
as inhomogeneous groups, which are semidirect products of their subgroups, are used
in different areas of physics. Euclidean, Lobachevsky, Galilei, Lorentz, Poincaré, (anti)
de Sitter groups are the bases for space and space-time symmetries. Supergroups and
supersymmetric models in the field theory predict the existence of new supersymmetric
partners of known elementary particles. Quantum deformations of Lie groups and Lie
algebras lead to non-commutative space-time models (or kinematics).
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Contractions of Lie groups is the method for receiving new Lie groups from the initial
ones. In the standard E. Wigner and E. Inénii approach [34] continuous parameter ¢ is
introduced in such a way that in the limit ¢ — 0 group operation is changed but Lie
group structure and its dimension are conserved. It is well known that studying non-
degenerate structures is easier then the degenerate ones. So one represent a general Lic
group as semidirect product of semisimple and solvable groups and reduce the problem
of Lie groups classification to the classifications of semisimple and solvable groups. But,
while the classification of semisimple groups was established long ago there is no hope
to find the classification of solvable groups [12]. In general, a contracted group is a
semidirect product of its subgroups. In particular, a contraction of semisimple groups
gives non-semisimple ones. Therefore, the contraction method is a tool for studying of
non-semisimple groups starting from the well known semisimple (or simple) Lie groups.

The method of contractions (limit transitions) was extended later to other types of
groups and algebras. Graded contractions [43, 44] additionally conserve grading of Lic
algebra. Lie bialgebra contractions (3] conserve both Lie algebra structure and cocominu-
tator. Contractions of Hopf algebras (or quantum groups) are introduced in such a way
[8, 9] that in the limit ¢ — 0 new expressions for coproduct, counit and antipode appcar
which satisfies Hopf algebra axioms. All this gives rise to the following generalization of
the notion of group contraction on contraction of algebraic structures [25].

Definition. Contraction of algebraic structure (M, ) is the map ¢, dependent on
parameter €

et (M, %) = (N, ), (1)
where (N, x') is an algebraic structure of the same type, which is isomorphic (A4, *) when
¢ # 0 and non-isomorphic when ¢ = 0.

There is another approach [23] to the description of non-semisimple Lie groups (al-
gebras) and corresponding quantum groups based on their consideration over Pimeunov
algebra P, () with nilpotent commutative generators. In this approach the motion groups
of constant curvature spaces (or Cayley Klein groups) are realized as matrix groups of
special form over I°,(¢) and can be obtained from the simple classical orthogonal group
by substitution of its matrix elements for Pimenov algebra elements. It turns out that
such substitution coincides with the introduction of Wigner Inénii contraction parameter
¢ [34]. So our approach demonstrates that the existence of the corresponding structures
over algebra P,(¢) is the mathematical base of the contraction method.

It should be noted that both approaches supplement each other and in the final anal-
ysis give the same results. Nilpotent generators are more suitable in the mathematical
consideration of contractions whereas the contraction parameter continuously tending to
zero more corresponds to physical intuition according to which a physical system contin-
uously changes its state and smoothly goes into its limit state.

It is well known in geometry (see, for example, review [58]) that there are 3" different
geometries of dimension n, which admit the motion group of maximal order. R.I. Pimenov
suggested [48, 51] a unified axiomatic description of all 3™ geometries of constant curvature
(or Cayley-Klein geometries) and demonstrated that all these geometries can be locally
simulated in some region of n-dimension spherical space with named coordinates, which
can be real, imaginary and nilpotent ones. According to Erlanger programm by F. Klein
the main content in geometry is its motion group whereas the properties of transforming
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objects are secondary. The motion group of n-dimensional spherical space is isomorphic
to the orthogonal group SO(n + 1). In their turn the groups obtained fromt SO(n 4 1) by
contractions and analytical continuations are isomorphic to the motion groups of Cayley
Klein spaces. This correspondence provides the geometrical interpretation of Cavley-
Klein contraction scheme. By analogy this interpretation is transferred to the contractions
of other algebraic structures.

The method for achieving this goal is the method of transitions, which has clear
geametrical meaning, and is based on the introduction of a set of contraction parameters
J = (J1,---,Jn), each of them taking three values: a real unit, an imaginary unit and a
nilpotent unit.

The method of transitions between groups apart from being of interest for group theory
itself is of interest for theoretical physics too. If there is a group-theoretical description of
a physical system then the contraction of its symmetry group corresponds to some limit
case of the system under consideration. So the reformulation of the system description in
terms of the transition method and the subsequent physical interpretations of contraction
parameters j gives an opportunity to study different limit behaviours of the physical
system. An example of such approach is given for the Electroweak Model of elementary
particle interactions.

It is likely that developed formalism is an essential tool to construct * general theory
of physical systems” according to which ”it is necessary to turn from group-invariant
study of a single physical theory in Klein understanding (i.e. characterized by symmetry
group) to a simultaneous study of a set of limit theories. Then some physical and geo-
metrical properties will be the invariant properties of all set of theories and they should
be considered in the first place. Other properties will be relevant only for the particular
representatives and will be changed under limit transition from one theory to another”
[59].

2 Dual Numbers and Pimenov Algebra

2.1 Dual numbers

Dual numbers were introduced by W.K. Clifford [10] as far back as in the XIX century.
They were used by A.P. Kotel'nikov [39] for constructing his theory of screws in three-
dimensional spaces of Euclid, Lobachevsky and Riemann, by B.A. Rosenfeld (53, 54], for
description of non-Euclidean spaces, by R.I. Pimenov [48, 49, 51] for axiomatic study
of spaces with a constant curvature. Some applications of dual numbers in kinematics
can be found in the work by I.M. Yaglom [57]. The applications of dual numbers in
geometry and in theory of group representations were discussed by V.V. Kisil [36]. Fine
distinctions between the quantum and classical mechanics were investigated with the help
of dual numbers [37, 38]. The theory of dual numbers as number systems is exposed in
monographs by D.N. Zeiliger [60] and A.Sh. Bloch [6]. Nevertheless, it is impossible to
say that dual numbers are well-known, so we start with their description.

Definition. By the associative algebra of rank n over the real numbers field R we
mean n-dimensional vector space over this field, on which the operation of multiplication
is defined, associative a(bc) = (ab)c, distributive in respect to addition (a + b)c = ac+ be
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and related with the multiplication of elements by real numbers as follows (ka)b = k(ab) =
a(kb), where a, b, ¢ are the elements of algebra; k is a real number. If there is such element
e of algebra that for any element a of algebra the relations ae = ea = a are valid, then
the clement e is called a unit.

Definition. Dual numbers a = ageg +aj€;. ap,a; € R are the elements of associative
algebra of rank 2 with the unit and the generators satisfying the following conditions:
Cg = €y, €pC)] = €€y, C% =0.

This associative algebra is commutative and eq is its unit. Therefore, further we shall
write 1 instead of e; and denote generator €; by ¢; (the Greek letter "iota”) and call it &
(purely) dual unit.

For a sum, a product and a quotient of dual numbers a and b we have

a+b=(ap+ uay)+ (bp+ t1by) = ag + by + ¢ 1{a; + by),

ab = (ag + v1a1)(bo + t1b1) = agbo + t1(a1bg + aghy),

a _ ag+ua; _an+ (a] b1>.

P e

Division can not always be carried out. Purely dual numbers a(¢; do not have au inverse
element. Therefore dual numbers do not form a number field. As an algebraic structure
they perforin a ring. Dual numbers are equal a = b, if their real parts are equal a, = by
and their purely dual parts are equal a; = b;. Thus. the equation a;t, = by has the
unique solution a; = by for oy, by # 0. This fact can be written formally as ¢;/4; = 1 and
this is how the last relation has to be interpreted, because division 1/: is not defined.
Functions of dual variable z = zy + 1,x) are defined by their Taylor expansion
Of (wo)
flx) = flzo) + ) ——=, (3)
0.17(]
where all terms with coeflicients /2,43, ... arc omitted. In particular, for dual + we have
sing = sinag + nrycoscy.  sin(ee) = or.

COSX = COSTo — 412y 8inwrg,  cos(r.ry) = L. (1)

According to (3), the difference of two functions of dual variable can be presented as

F@) = hw) = Flan) = hleo) + 0, (M - "”(‘”")) . (5)

dag o1y
therelore, if real parts f(x0) and h(wo) of functions coincide, then functions f(x) and h(x)
also coincide. Using this fact, D.N. Zeiliger shows [60] that in the domain of dual numbers
all identities of algebra and trigonometry, all theorems of differential and integral calenlus

remain valid.  In particular, the derivative of a function of a dual variable over a dual
variable can Le found as

U(r) _0f(r) (a'zf(n-(n) |

dx Oy ord

(6)
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2.2 Pimenov algebra

Let us consider now a more general sitnation, where several nilpotent units are taken as
generators of associative algebra with a unit. (Further on we will use the name nilpotent
unit instead of dual unit). R.]1. Pimenov was the first who introduced [48, 49, 51| several
nilpotent commutative units and used them for the unified axiomatic description of spaces
with constant curvature. Therefore we name such algebra as 2 Pimenov algebra and denote
it as P (1).

Definition. Pimenov algebra P, (¢) is an associative algebra with a unit and n nilpo-
tent generators t1,1y,...,t, with properties: telp = Lt # 0, k #p, 2 =0, pk =
1,2,...,n.

Any element of P,(¢) is a linear combination of monomials bhylhy - - by k1 < Ky <
... < kr, which together with a unit element make a basis in algebra as in a linear space
of dimension 2™ . . )

a=ag+z Z Ok, krlky - - - Lk (7)

r=1ky,.. kr=1

This notation becomes unique, if we put an additional requirement k; < ko < ... < k; or
condition of symmetry of coefficients Qk, ..k, 10 respect to indices ki, ...k,. Two elements
a,b of algebra P,(t) coincide, if their coefficients in the expansion (7) are equal, ie,
ag = by, @g,. .k = bi,..k. Asin the case of dual numbers, this definition of equality of the
elements of algebra Pp(v) is expressed in the possibility of cancellation of equal (with the
same index) nilpotent units tx/ty =1, k= 1,2,...,n (but not ix/tm OF tm/tx. k # m,
as far as such expressions are not defined).

Here it is appropriate to compare Pimenov algebra P, (1) with Grassmann algebra
T5.(€), i.e. associative algebra with a unit, where a set of nilpotent generators 1, e, . . . s €9ms
0 exhibits the properties of anticommutativity exe, = —€,6x #0, p# k, p,k=1,...,2n.
Any element f of Grassmann algebra I'z,(€) can be expressed [5] as

2n 2n
FEO=FO+3 > ferk€r--- € (8)

r=1ky, ,kr=1

The representation is unique, if one requires k; < ko < ... < k. or puts on condition of
skew-symmetry fi, . in respect to indices ki,..., k.. If in the expansion (8) only the
terms with an even r differ from zero, then the element f is called even in respect to the
set of canonical generators ¢, if in the expansion (8) only the terms with an odd r differ
from zero, then f is called an odd element. As a linear space, Grassmann algebra splits
into even I'), and odd I'y, subspaces: T'y,(e) = I'9, + T, where '}, is not only subspace,
but also a subalgebra.

Let us consider nonzero products €zx_1€2k, £ = 1,2,....n of the generators of Grass-
mann algebra I'y,(€). It is easy to see that these products possess the same propertics as
generators ix = €g_1€2¢, kK = 1,2,...,n. Thus Pimenov algebra P,(.) is a subalgebra of
the even part I'), of Grassmann algebra 'y, (€). It is worth mentioning that even products
of Grassmannian anticommuting generators are also called para-Grassmannian variables.
The latter are employed for classical and quantum descriptions of massive and massless

particlies with an integer spin [11, 14, 15] and in theory of strings [61].
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3 Cayley—Klein Orthogonal Groups and Algebras

3.1 Three fundamental geometries on a line

Let us introduce elliptic geometry on a line. Let us consider a circle S} = {z§* + z;? = 1}
on the Euclid plane R,. The rotations z'* = g(¢*)z", i.e.

5 = zhcos et — rising’, (9)
23 = z}sing* + zf cos p*

of group SO(2) bring the circle into itself. Let us identify diametrically the opposite
points of the circle and introduce an internal coordinate w* = z}/xj. Then the following
transformations correspond to the rotations (9) in Ry for ¢* € (=7/2.7/2):

’ w* —a*
1+ wa*’

w* a* =tang*, a" €R. (10)

These transformations make a group of translations (motions) G, of an elliptic line with
the rule of composition
o a'+al )
a’t = —-. 11
1—a*a} (1)
Let us consider the representation of the group SO(2) in the space of differentiable
functions on Ry, defined by the left shifts

T(g(#"))f(z") = flg7" (0")z"). (12)
The generator of the representation

X*f(a") =

g =0; {13)

corresponding to the transformation (9), can be easily found:

. 0

X' (z5,2}) = 27— — zp—.
( 0 1) ]31‘6 001:;

(14)

For the representation of group G; by the left shifts in space of differentiable functions on
clliptic line the generator Z*, corresponding to the transformation (10), can be written as

* * - 8
Z'(w)=1+w 2)W (15)

It is worth mentioning that matrix generator

. (0 -1
r=(17) &

corresponds to rotations g(¢*) € SO(2).
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The transformation of Euclidean plane R, consisting of multiplication of Cartesian
coordinate z; by parameter j;, namely

#: Ry — Ry(j1)

$Ty = To, T} = jiz), (17)
where j; = 1,.,4, brings R, into plane R;(7,); the geometry of the latter is defined by
metrics %(j1) = x + j222. It is easy to see that Ry(j, = 1) is Minkowski plane and
Rs(j) = 1,) is Galilean plane.

Our main idea is that the transformation of geometries (17) induces the transformation
of the corresponding motion groups and their algebras. Let us show how to derive these
transformations.

The definition of angle measure in Euclidean plane 1?; is determined by the ratio
7§ [zf, which under the transformation (17) turns into 7,7, /24, i.e. angles are transformed
according to the rule ¢g* = ji. The asterisk marks the initial quantities (coordinates,
angles, generators and so on). The transformed quantities are denoted by the same
symbols without asterisk. Changing the coordinates in (9) according to (17) and the
angles according to the derived transformation rule and multiplying both sides of the
second equation by ji ™, we get the rotations in the plane Ro(j):

T = T COS f1p — L1Jy sin jrp,
’ 1oi . (18)

Ty = Zo3; SIN 1y + z, cos Jy¢p,

which make group S0(2:7,). According to (1), cosyp = 1, singe = L1, therefore
the transformations of group SO(2:¢;) are Galilean transformations and the elements
of group SO(2;i) are Lorentz transformations, if 7y is interpreted as time, and

as a spatial coordinate. The domain of definition ®(j;) of the group parameter ¢ is
(1) = (-=/2,7/2), ®(;) = (i) = R.

The rotations (18) preserve the circle S;(j;) = {22 + j2&2 = 1} (Fig. 1) in the plane
Ry(jy1). the identification of diametrically opposite points gives the upper semicircle (for
ji = 1) and the connected component of the sphere (circle), passing throngh the point
(zo = 1, 2y = 0). for j; = (.. The internal coordinate on the circle w* is transformed
according to the rule gw* = jijw. Substituting in (10) and canceling j; out of both sides
we get the formula for translations on & line:

o w—a

1
=———, a=—tanjp € R, 19
1+]12’UJ0. n ne ( )

which make group G,(5;), i.e. the group of motions of the elliptic line Si(1) for 5, =1,
the parabolic line Sy(i;) for j; = 41, and the hyperbolic line S, () for j, = 4.

In the space of differentiable functions on R (j;) the generator X (z) of the representa-
tion of group SO(2; ji) is defined by the relation (13), where all quantities are taken with-
out asterisks. Under the transformation (17) derivative d/dyp* turns Ji(d/dyp), thercfore.
to obtain derivative d/de the generator X* must be multiplied by ji, L.e. the generators
X*(#z) and X(z) are interrclated by the transformation

d 0
- * N _ 2.~ .
X(z) = 1 X (¢z") TS 920 Ioazl (20)
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Figure 1: The circles of unit radius on the planes Ry(j;)

The generator Z is transformed according to the same rule:
4 * :2,..2 9
Z(w) =2 (¢w’) = (1 + jw’) 5 - (21)

The transformation rule for the matrix generator of the rotation Y is as follows:

—3 —42
Y=.M‘H)=jl(j?l 7 ) - (? ) ) (22)

Expressions (18)-(22) describe Cayley Klein space and group in the traditional way
with the help of real coordinates, generators and so on. Sucli approach was used in
[23]. There is another way of describing Cayley Klein spaces with the help of the named
(i.c. having onc of names: real, nilpotent, imaginary) coordinates of the form jyz,
when under transformation (17) and the substitution é¢* = ji¢ in (9) both sides of the
second cequation are not multiplied by 77!, Then the rotations on the plane Ry( J1) with
coordinates xy, jyz; arc written in the form

‘T:) — COSj]QP _Silljl“t:\ Lo (23)
) sinig  cosiip )\ o )
These rotations form group SO(2; j,), whose matrix generator is as follows
s 0 -5
Y=5Y"=| | » 24
W ( 0 ) (24)

The symbol Y* instead of Y*(—) in (22) means that the generator Y* (16) is not trans-
formed. It is the the second approach that we shall use in this book. One of its advantages
is that for 7; = ¢; the rotation matrix (23) from group SO(2; )

1 —p -
( uy 1 ) ’ (25)

depend on group paramecter ¢, whereas for j; — 0 it is equal to the unit matrix.
The group of motions G,(j;) of one-dimensional Cayley-Klein space S;(j,) is closely
connected with rotation group SO(2; 71) in space Ry(j;). Therefore, under Caylev-Klein
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space we shall further mean both S,(j;) and Ra(j1), and under their groups of motion
both G1(j1) and SO(2; j;). We shall follow the same rule in the case of higher dimensions.

We have studied comprehensively the simplest case of groups SO(2; jy). G;(j;) becanse
here the main ideas of methods of transitions reveal themseclves in the most ¢lear way,
not aggravated with mathematical calculations. These ideas are as follows: (&) to define
the transformation (17) from Euclidean space to arbitrary Cayley—Klein space; (b) to
find the rules of transformations of motion generators ete. of the group; (¢} using the
approach exposed in (b), to derive motion.generators etc. of Cayley-Klein group from
the corresponding quantities of classical orthogonal group. The method of transitions, in
spite of its simplicity, enables us to describe all Cayley-Klein groups, being aware of only
classical orthogonal ones.

3.2 Nine Cayley—Klein groups
Mapping
¢ : Rs — Ras(j)
$Tp = To, T} =N1T1,  GTy = Ji1jaTa, (26)
where 7 = (j1,42), j1 = 1,11,4, jo = 1, ¢s,1, turns three-dimensional Euclidean space into
spaces R3(j), on the spheres (or connected components of spheres) of which
S2(7) = {a§ + 4zt + jissal = 1} (27)

nine geometries of Cayley-Klein planes are realized. The interrelation of the geometries
and values of parameters j is clear from Fig. 2.

Rotation angle ¢,, in the coordinate plane {z,,z,}, r < s, 7,5 = 0,1, 2, is determined
by the ratio /. and under the mapping (26) is transformed as @}, — (. s), where

max ik

Gky= [l 4 (kk) =1 (28)

=min(i,k)+1

Therefore for one-parametric rotations in the plane {z,,z,} of space R3(j) the following
relations are valid

(0,7)zl. = z,.(0,7) cos (¢rs(7, 8)) — z5(0, s) sin (@r4(7, 5))

(0,8)z, = z.(0, ) sin(wrs(r, 5)) + z5(0, 5) cos(p,(r, 5)). (29)

The rest of the coordinates is not changed z;, = x,, p # 7, 5.
It is easy to find the matrix generators of the rotations (29)

0 -5 O 00 0
Yo=hYa=|7 0 0 [, Yu=50Y,=|0 0 —j |,

0 0 0 0 72 0
0 0 —juj
Yo=hpYp=] 0 0 O . (30)
Jij2 00
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Figure 2: Cayley-Klein planes. The fibers are shown by thick lines and the light cone
in (1 + 1) kinematics are shown by dashed lines. Internal coordinates take values r =
x1/%0, T2 = T2/To
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They make a basis of Lie algebra so(3; j). The rule of transformations for the generators
of representation of group SO(3; 7) in the space of differentiable functions on Rs(y) by left
shifts coincides with the rule of transformations for parameters p,; and can be written as
follows [18. 20]:

Xos(z) = (r,8) X7, (02%), (31)
and the generators themselves as
, 0 0
_ 2 — :
Xrs(x) = (r,5) iy (32)

Knowing the generators, one can evaluate their commutators. But we shall derive
the commutators from the commutation relations of algebra so(3). Let us introduce new
notations for the generators X3, = H*, X, = P*, Xi, = K*. As it is well-known, the
commutators of Lic algebra so(3) can be written as follows:

[H*.P|=K*, [P"K'|=H", [H'.KY=-P" (33)

Generators of algebra so(3) are transformed according to the rule H = HH P =
NpP K = 5K ie H*=ji'H, P* = j'j;'P, K* = j;'K. Substituting these
expressions in (33) and multiplying each commutator by a factor, equal to the denomina-
tor on the left side of each equation, i.e. the first — by J3ja, the sccond — by j j3, and
the third — by jij,, we get commutators of algebra Lie for group SO(3; ):

[H,P) = jiK, [P.K]=j3H. [H,K]=-P. (34)

Cayley-Klein spaces S,(j) (or spaces of constant curvature) for j, = 1,1, 14, Jo = oyt
can serve as models of kinematics, i.e. space time geometries. In this case internal
coardinate t = x;/zo can be interpreted as the temporal axis, and internal coordinate
T = Ip/T¢ as the spatial one. Then H is the generator of the temporal shift, P is
the generator of the spatial shift, and K is the generator of Galilean transformation for
J2 = iy or Lorentz transformation for j, = i. The semispherical group SO(3;1,12) (or
Newton group) is isomorphic to the cylindrical group, which describes movement of a
point on a cylindrical surface. This group is interpreted as the E(2)-like little group for
massless particles [35].

The final relations should not involve division by a nilpotent number. This requirement
suggests the way of finding the rule of transformations for algebraic constructions. Let
an algebraic quantity Q* = Q"(A], ..., AL) be expressed in terms of quartities Ay AL
with a known rule of transformation under mapping . for example, 4; = J;4;,... 4, =
Je A, where coefficients Ji, ..., Ji are some products of parameters J- Substituting 4j =
Ji Ay, .. A; = J; ' Ag in the relation for Q*, we get the formula Q (I Ay, . TN A).
involving, in general, indeterminate expressions, when parameters j are equal to the
nilpotent units. For this reason the last formula should be multiplied by such minimal
coefficient J that the final formula would not involve indeterminate expressions:

Q=JQ(J A, .., JAL). (35)
Then (35) is the rule of transformation for quantity @ under mapping .
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Such method, stemmed out directly from the definition of coincidence of elements of
Pimenov algebra P,(:) turns out to be very useful and further will be widely employed.
The rule of transformation (35) for algebraic quantity Q. derived from the requirement of
absence of indeterminate expressions for nilpotent values of parameters j, is automatically
satisfied for imaginary values of these parameters.

Let us exemplify this rule by Casimir operator. The only Casimir operator for algebra
s0(3) is

Cy(H*,..)=H?+P? 4+ K2 (36)
Substituting H* = j71H, P* = j7i5'P, K* = j7'K in (36), we get
Gy H...) =T *H* + ji")5 " P* + 53 ° K. (37)

The most singular factor for j, = ¢; and j, = ¢ is coefficient (j;j2)~2 of the term P2.
Multiplying both sides of the equation (37) by (jij2)?, we get rid of the indeterminate
expressions and derive the rule of transformation and Casimir operator for algebra so(3; 5):

Ca(§: H....) = j155C5 (5, ' H, ...) = 3 H? + P* + jiK*. (38
As it is known, Casimir operator for two dimensional Galilean algebra so(3;:),u;) is
Cat1,t2) = P? (see, for example, [10]), for Poincaré algebra so(3;t1,7) is C(i1,4) =
P? — H?, for algebra s0(3;7;1) = s0(2, 1) is Ca(i.1) = H? + P? — K? (see [45]). All these
Casimir operators can be obtained from (38) for the corresponding values of parameters
7.

Nl

The matrix generators (30) make the basis of fundamental representation of Lie algebra
50(3; 7) of group SO(3: 7). Using exponential mapping one can put in correspondence to
the genceral element

0 =5 —hjare
Y(r;j) =nYo +mYe+mYe=| 5 0 —Jjars (39)
Jujare Jara 0
of algebra. s0(3; j) the finite rotation g(r: j) = exp Y (r; j):

. ..sinr B 1 —cosr
g9(r;j) = Ecos(r) + Y(rij)——+7Y /(FJ)T,
2.9 o -
) 1273 —NJprars J1J2TTs
Y'(r;j) = | —jugsrars  isird —Jijarire
J1J2Tirs  —jijarira 72
r? = gt + g + fars, (40)

acting on vector (o, j171, j1j222)" € Ra(j) with the named components.

The disadvantage of the general paramctrization (39), (40) is the complexity of the
composition rule for parameters r under group multiplication. F.I. Fedorov [12] has pro-
posed parametrization of rotation group SO(3) for which the group composition law is es-
pecially simple. It turns out that it is possible to construct analogues of such paramnetriza-
tion for all groups SO(3;j) [21]. The matrix of the finite rotations of group SO(3;4) can
be written as follows

Ao lrel) o el +e0)
9(c:) = 1—c(j) =1+2 1+ ¢(j)
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0 —jfes jijse

ci=| & 0 —ji
—Cy C1 0
(4) = 736 + jiiic + jic, (41)

and parameters c¢” correspond to matrix g(c”; 7) = g(c;7)g(c’; 7). These parameters can
be expressed in terms of ¢ and ¢’ as follows

o c+c'+c,c;

1—(c, c); (42)

Here the scalar product of vectors ¢ and ¢’ is given by (41), and the vector product is
given by

[e,¢]; = (s7le, ¢'l, [e, €]s, F3le, ), (43)
where [c, ¢/];, are components of usual vector product in Ra.

E.P. Wigner and E. Inénii [34] have introduced the operation of contraction (limit
transition) of groups, algebras and their representations. Under this operation the gener-
ators of the initial group (algebra) undergo transformation, depending on a parameter ¢,
so that for € # 0 this transformation is non-singular and for € — 0 it becomes singular. If
the limits of the transformed generators exist for ¢ — 0, then they are the generators of a
new {contracted) group (algebra), non isomorphic to the initial one. It is worth mention-
ing that the transformation (31) of the generators of algebra so(3) for the nilpotent values
of parameters j is Wigner-Inonii contraction. Really, X7 (¢z*) is the singularly trans-
formed generator of initial algebra so(3). the product (r, s) plays the role of parameter ¢,
tending to zero, and the resulted generators X, (x) are the generators of the contracted
algebra so(3; 7).

Comparing the rule of transformation for generators (31) and the expression (39) for
a general element of algebra so(3), we find that for the imaginary values of parameters
J some of the real group parameters ry become imaginary, i.e. they are analytically
continued from the field of real numbers to the field of complex numbers. In this case
orthogonal group SO(3) is transformed into pseudoorthogonal group SO(p, q), p+q = 3.
When parameters j take nilpotent values, real group parameters r; become elements of
Pimenov algebra P (1) of the special form and we get the contraction of group SO(3). Thus,
from the point of view of the group transformation under mapping ¢, both operations —
analytical continuation of groups and contraction of groups different at first sight - have
the same nature: the continuation of real group parameters to the complex numbers field
or to Pimenov algebra P(v).

3.3 Extension to higher dimensions

Cayley—klein geometries of the dimension n are realized on spheres

$.00) = {(&,2) = 22 + 3(0, k)% = 1) (1)

k=1

in the spaces Rn41(j) resulting from Euclidean space R, under mapping

¢ : Rny1 = Rogi(7)
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oxy =1zg. ozp=(0,k)ze, k=1,2.....m, (15)
where j = (j1,--..Jn) Jk = Lk, 4, & = 1,2,...,n. If all parameters are equal to one
Jk = 1, then ¢ is identical mapping, if all or some parameters are imaginary j, = ¢ and
the other are equal to 1, then we obtain pseudoeuclidean spaces of different signature.
The space Rn41(7) is called non-fiber, if no of the parameters ji,...,j, take nilpotent
value.

Definition. The space R,11(7) is called (ki, ks, . ... kp)-fiber space, if 1 < k; < k; <
. < ky <nand jy =k, -, Ik, = e, and other ji = 1,1.

These fiberings are trivial [7] and can be characterized by a set of consequently nested
projections pry, pra, . .., pry, where for pr; the base is the subspace, spanncd over the basis
vector {Zo.Z1,...,Tk,—1}, and the fiber is the subspace, spanned over {zk,, Tk, 41, -Tn};
for pro the base is the subspace {Zx,,Zk 1. ..., Tro—1}, and the fiber is the subspace
{Zky, Ty 415 - - -, To } and so on.

From the mathematical point of view the fibering in the space R,41(j) is trivial,
ie. its global and local structures are the same. From the physical point of view the
fibering gives an opportunity to model quantities of different physical dimensions. For
example, in Galilean space, which is realized on the sphere S4(ty, to, 1, 1), there are time
t =z, [t] = sec and space R3 = {2, 3,4}, [x] = sm, k = 2, 3,4 variables.

Definition. Group SO(n + 1;j) consists of all the transformations of the space
R, (j) with unit determinant, keeping invariant the quadratic form (44).

The totality of all possible values of parameters j gives 3" different Cayley Klein spaces
R, .;(J) and geometries S, (7). It is customary to identify the spaces (and their group of
motions), if their metrics have the same signature, i.e., for example, space Rj(1, ) with
metric 2+ 1] —z% and space Rg(7, 1) with metric 23 — 22 +23. But we have fixed Cartesian
coordinate axes in R,,41(j) ascribing to thein fixed numbers, and for this reason in our case
spaces R3(1,7) and Rs(i,7) (and, correspondingly groups SO(3;1,7) and SO(3;1%,7)} arc
different. Groups SO(3;1,7) = SO(2,1) and SO(3;i,1) = SO(1,2) are also considered to
be different. This was made for convenience of applications of method being developed.

Really, the application of some mathematical formalism in a concrete science means
first of all substantial interpretation of base mathematical constructions. For example,
if we interpret in space Ry4(i,1,1) with metric z3 — z? — 22 — 22 the first Cartesian
coordinate zo as the time axis and the other z,,2;, 73 as the space axes, then we get
relativistic kinematic (space-time model). In this example the substantial interpretation
of coordinates is the numbers of Cartesian coordinate axes: axis number one, axis number
two etc.

The rotations in the two-dimensional plane {z,,z,}, the rule of transformation for
representation generators and the generators themselves are given, correspondingly, by
(29), (31), (32), where r,s = 0,1,...,n, r < s. For the non-zero elements of the matrix
generators of rotations the following relations are valid: (Y;5)sr = — (Yrs)rs = (7, 8). The
commutation relations for Lie algebra so(n + 1; ) can be most simply derived from the
commutators of algebra so(n + 1). as it has been done in section 3.2. The non-zero
commutators are

2
(11,81)°Xs)s5, T1 =72, 81 < 82,
¥ — 2
[XTISI'XT2S2.| - (1"2,32) XTI"'2? T < T9, 8§ = 89, (46)
—Xris2s 7 < Ty =8 < Ss.
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Algebra so(n + 1) has [(n + 1)/2] independent Casimir operators, where [z] is the
integer part of a number T. As it is known [4], for even n = 2k Casimir operators are
given by

C;p(X:s) = Z X;azX(:gaa X¢:2p01 ! (47)

a,...,ap=0
where p = 1,2,... k. For odd n = 2k + 1 the operator

C::(X:s) = z €ajaa. 'a"X‘:l“2X;iﬂ4 X (48)

AnQn41)?
a1,.,an=0

where €5, o, is a completely antisymmetric unit tensor, must be added to the operators
(47).

Casimir operators C3, can be defined in another way [13] as a sum of principal mi-
nors of order 2p for antisymmetric matrix A, composed of generators X le. (A)ys =
X7 (A)sr = —X,. To obtain Casimir operators of algebra so(n + 1; j) we use the method
of section 3.2. We find X}, = (r,5)7'X,, from (31) and substitute in (47). The most
singular coefficient (0,n)% is that of the term Xg,Xno... X, in (47). To eliminate it
in the minimal manner we multiply C';,, by (0,n)%. Thus, the rule of transformation for

Casimir operators C’g,, is
Copls Xrs) = (0.0)C3,((r, 8) ™' X,.), (49)

and Casimir operators themselves turn out to be

n

é?p(]) = Z (0 77 2p H(’u Sv ] a|az Yag,,alv (50)

ai,...,azp=0

where 7, = min(ay, @v+1), S» = Max(ay,ay41), v = 1,2,...,2p — 1, 5, = min(ay, ayp),
82p = max(ay, agp). )

For operators Cy, and C., the expression without singular terms can be obtained, mul-
tiplying them by factor g, equal to the least common denominator of coefficients of terms,
arising after the substitution of generators X for X*. This least common denominator
can be found by induction [19]. We restrict ourselves with the final expressions for the
rule of transformations for these Casimir operators:

n—p+1
C2p ]ers) = (H ]12,:n.712lmm+1 H ]2’)) Czp Krs(T, 5) )7
m=1 l=p
p=12,...,k,
e )
. (7 m 7 4 -
Cr’; (]1 er) = J(n+])/2 H Jm]nl—m+1 Cn (XYS(T’ S) ) (51)
m=1

Operator Cy,(j) (or C'(5)) commutes with all generators X, of algebra so(n + 1;5).
Really, evaluating zero commutator [Cy, X/,], we get the same terms with the opposite
signs. Under the transformations (31), (49) both terms are multiplied by the same com-
bination of parameters, which is a product of even powers of paramcters. Thercfore, both
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terms either change their sign, or vanish. or do not change their sign, but in all cases
their sum is equal to zero. Moreover, operators Coy(j) for p = 1,2,...,k are linearly
independent because they consist of the different powers of generators X,,.

The next question to be cleared up is as follows: do [(n+1)/2] Casimir operators (51)
exhaust all the invariant operators of algebra so(n + 1;5)? The answer is given by the
following theorem.

Theorem. For any set of values of parameters j the number of invariant operators of
algebra so(n + 1;7) is [(n + 1)/2].

The proof is given in [23]. Thus, all invariant operators of algebra so(n + 1;j) are
polynomial and are given by (51).

4 Cayley—Klein Unitary Groups and Algebras

4.1 Definitions, generators, commutators

Special unitary groups SU(n + 1:j) are connected with complex Cayley Klein spaces
C..41(7) which come out from (n+1)-dimensional complex space C,,;; under the mapping

o: Chur = Chpa(9)

¢z =25, odzp = (0,k)z, k=1,2,...,n, (52)
where z3, z; € Cpy1, 20, 2k € Crya(f) are complex Cartesian coordinates; j = (ji, ... . jn),
each of paramcters ji takes three values: ji = 1,14, 7. Quadratic form (2*, 2%) = 37 _o |25 |?

of the space C,4; turns into quadratic form
n
) 5
(z,2) = |zo|* + D (0, k)* |24 ? (63)
k=1

of the space Cp41(j) under the mapping (52). Here |z| = (2% + »2)/2 is absolute valuc
(modulus) of complex number 2z = x + jyi, and 2 is complex vector: z = (20,210 -+, 2n).
Definition of complex fiber space is similar to the real fiber space in section 3.3.
Definition. Group SU(n + 1; ) consists of all transformations of space C,.+1(j) with
unit determinant, keeping invariant the quadratic form (53).
In the (ky, kg, . . ., k,)-fiber space C,+(j) we have p+1 quadratic forms, which remains
invariant under transformations of group SU(n + 1; 7). Under transformations of group
SU(n + 1; j), which do not affect coordinates zy, 21, ..., 2z, _1, the form

kep1—1

(Z,Z)_H_l: Z (k$=a)zlza|21 (54)

a=ks

where s = 0,1,...,p, ko = 0, remains invariant. For s = p the summation over a goes up
to n.

The mapping (52) induces the transition of classical group SU (n 4+ 1) into group
SU(n+1;j), correspondingly, of algebra su(n+1) into algebra su(n+1; 7). All (n+1)2-1
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generators of algebra su(n + 1) are Hermitian matrices. However, because the commu-
tators for Hermitian generators are not symmetric, usually one prefers matrix generators
AL, kym=0,1,2,... n of general linear algebra 9lnsa(R), such that (4], Jem = 1 and
all other matrix elements vanish. (The asterisk means that A* is a generator of a classical
algebra.) The commutators of generators A* satisfy the following relations

[Akm: Apg] = Omp ALy ~ OkgApr, (35)

where 0, is Kronecker symbol. Independent Hermitian generators of algebra su(n + 1)
are given by the equations

3 1
Qo= 5(AL + A3), Li = S (45 — AL),

* i * *
P = §(Ak-1.k—1 - Akk)1 (56)

wherer=0,1,....n—1, s=r+1r+2,...,n, k=1,2,...,n.
Matrix generators A* are transformed under the mapping (52) as follows:

A'rs(j) = (Tx S)A;w Akk(]) = A/‘ck (57)
The commutators of generators A(j) can be easily found [31]:
[Akma qu] = (k~ m)(p7 Q) ((smpAkq(ks Q)_l - ékpApm(myp)_l) . (58)

Hermitian generators (56) are transformed in the same way under transition from alge-
bra su(n + 1) to algebra su(n + 1; 7). This enables to find matrix generators of algebra
su(n +1;5) for the case, when group SU(n + 1;j) acts in the space Cp11(j) with named
coordinates

Qrs(j) = (Tw 8)Qrs  Les(h) = (r S)L:s: Pi(j) = P (59)
We do not cite the commutation relations for these generators because they are cumber-
some. They can be found, using (58).

Let us cite one more realization of generators for unitary group. If group GL,4; acts
via left translations in the space of analytic functions on C,., then the generators of its
algebra are X7, = 2*%07, where 0 = E;L.,,. Hermitian generators of algebra su(n + 1) can
be expressed in terms of X, using (56), in which A* must be changed for X*. Under the
mapping 9 they are transformed according to the rule

Zap = (a,b) Z5y(2"), (60)

where Zg, = Qrs, Lrs, Px = Pri. Generators X, are transformed in a similar way, and
this gives us
Xk = 260k, Xor = 2,05, Xrs = (1,5)%2,0;, (61)
where k=1,2,...,n,7,s=0,1,...,n, 7 <s.
The matrix generators (59) make a basis of Lie algebra su(n + 1;j). To the general
element of the algebra

n{n+1)/2 n
Z(u,v,w;j) = > (wQe(d) + veLe(h) + > wibi, (62)
t=1 k=1
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where index ¢ is connected with the indices 7, s, 7 < s. by relation

r(r—1 .
t=s+r(n—1)—(f), (63)
and the group parameters uq, v;, wy are real, corresponds a finite group transformation of
group SU(n + 1;5)

W, v, w; ) = exp{Z(u, v, w; j)}. (64)
According to Cayley—Hamilton theorem, matrix W can be algebraically expressed in terms
of matrices Z™, m = 0,1,2,...,n, but one can to derive it explicitly only for groups

SU(2; j1) and SU(3; j1, 32), which will be discussed in the next sections.

4.2 Unitary group SU(2;j1)

The group SU(2;7,) is the simplest one from unitary Cayley—Klein groups. Definition.
The set of all transformations of the space Cy(7;), leaving invariant the quadratic form
|z0|? + 52|21]%, make up the special unitary Cayley-Klein group SU(2;j1).

The group SU(2; j1) acts on the space Cy(y)

() = ( jfi; ) - ( 33 7 ) ( I ) = u(j1)2(51),

detu(jr) = laf* + 3187 = 1. u(ii)u’() = 1. (65)

Here the bar notes complex conjugation. Constructing generators of algebra su(2;7;)
according to (59), we get

S, _t{1 0 _tf0 5 _L1f0 -5 ;
P1—2(0 _1>= QOI—Q(jl 0)-, Lm—2<jl N (66)

and find commutation relations
(P, Qo) = Loty  [Low, Pl = Qo1, [Qor, Lot] = jiP1. (67)

The generators (66) for j; = 1 up to factors coincide with Pauli matrices. It is also worth
mentioning that if under contraction j; = ¢ the dimension (number of linearly indepen-
dent generators) of general linear group GL(2; j;) (or its algebra) diminishes, because the
generator Ap(¢1) vanishes, then for special unitary groups (algebras) in complex Cayley
Klein spaces the dimension of the groups (algebras) for any (including nilpotent) values
of parameters remains unchanged.

One-dimensional subgroup, corresponding to the generators (66), are as follows:

1. L. 1=
) ) cosijir  isinijyr
T, 71) = exprQ = o2t 2:
gu(rs ) pQm(j) ( isinijir cosijr ) ’

1, a1
— . CoS 5718 —Sin;ji$
ga(si1) = expsLoy(s1) = ( 2J1 3 ) ‘

sinijis  cosijis
eiw/? 0
9s(w) = expwh = ( 0 emiw/2 | (68)
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and to general element Z = rQq; + sLo; + whP, of algebra su(2; ;) we, using exponential
mapping, put in correspondence the matrix of finite transformation of group SU(2; J1),
which can be easily found

g wig) =expz = Sz Fiising —giising )
]lésln% cos% — i%sing
V() =+ 3C7, (=s+ir (69)

In Buler parametrization [56] transformations from group SU(2;7,) can be written as

9, 0,w; 51) = g3(v: 1)1 (6; 51) gs(w; j1) =

iute 2 0 —E2 . L L
= €7 cosiy €eF dsingig (70)
ez isinj § e cos g
where group parameters (Euler angles) are in the bounds
(0: 7‘_)! ]l =1
0<p<2m, -2r<w<2r, HecO()= (0,00), J1=1¢ (71)

(—00,0), 71 =1

Let us note, that for j; = 1 matrices (i, 0, w: j;) coincide with matrices (1.1.3-4), ch. I1I
in [56], for j, = 7 they coincide with the matrices ( 1.3.4-5), ch. VI in [56], and for j, = o,
they describe Euclidean group SU(2;1,) in Euler parametrization.

5 Classification of Transitions between Cayley—Klein
Spaces and Groups

In the previous sections we have found orthogonal and unitary groups in Cayley -Klein
spaces and shown that their generators, Casimir operators and other algebraic construc-
tions can be obtained by transformation of the corresponding constructions for classical
groups. Such approach is natural and is justified by the fact that classical groups and
their characteristic algebraical constructions are well studicd. But is such approach the
only one? Is it possible to take one of the groups in Cayley-Klein space as the initial one?
The positive answer to this question is given by the following theorem on the structure
of transitions between groups.

Let us define (formally) the transition from the space C,.;(j) and the generators
Zu(2; j) of unitary group SU(n+1; ;) to the space C,41(5’) and the generators Zon(2'5 5")
via transformations, which can be obtained from the transformations (52) and (60), sub-
stituting in the latter the parameters j; for jij; :

¢ : Coni(j) = Cona(5)

I3
7 7 / 7 -1
'z =2y, ¢z = 2, H]m]m, k=1,2,....n,

m=]
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max(a,b)

Za(@:) = II 500 Za('z 7). (72)

{=1+min(a.b)

The inverse transitions can be obtained from (72) by the change of the dashed paramcters
j' for the undashed parameters j and vice versa. Applying (72) to the quadratic form
(53) and the generators (61), we obtain

n k
(=".2) = lzol* + > lzl® T m

k=1 m=1
Xix = 240, Xow = 204, Xpw = ( [ 3170 (73)
1=14+r

i.c. quadratic form in space C,.,(j’) and generators of group SU(n + 1; j').

However, the constructed transitions do not make sense for all groups and spaces,
because for the nilpotent values of parameters j the expressions tf ', tp, - 1,;] for k # m are
not defined. We have defined in section 2 only the expressions ¢ - L,:l =1, k=12....n
So if for some k we put ji = t, then the transformations (72) will be defined and give us
(73) only in the case when the dashed parameter with the same number is equal to the
same nilpotent number, i.c. ji = 4.

The transitions from space R,,+1(7) to space Rp4+1(j), and from groups SO(n + 1. ),
Sp(n: 7) to groups SO(n+1;7"), Sp(n; j') as well, can be. correspondingly, obtained from
the transition (45), (31) by the same substitution of parameters jy for jij, ' Similarly
can be justified the permissibility of these relations. Let us introduce the notations:
G(j) = SO(n + 1;)), SU(n +1;3), Sp(n: j). R(j) = Rasi(7). Coui(f), Ra(i) » Rul))
and denote the transformation of group generators by the symbol ®G(j5) = G(j). Easy
analysis of the transformations (72) and their inverse transformations from the point of
view of adinissibility of the transitions [24] implies the following theoren.

Transitions classification theorem. I. Let G(j) be a group in non-fiber space R(})
and G(j") be a group in arbitrary space R(j’), then G(j’) = $G(j). If R(5') is a non-fiber
space, then ¥ is one-to-one mapping, and G(j) = ¥V1G(5").

IL. Let G(j) be a group in (ky, ks, ..., k,)-fiber space R(j) and G(j') be a group in

(M, ma, ..., my)-fiber space R(j), then G(j') = ¥G(j), if the st of integers (k... .. k)
is involved in the set of numbers (m....,m,). The inverse transition G(j) = & 'G(j) is
valid if and only if p=q, ky =my.... k, =m,.

It follows from the theorem that the group G(j) for any set of values of the parameters
J can be obtained not only from a classical group, but from a group in an arbitrary non-
fiber Cayley Klein space, i.e. from pseudoorthogonal, pseudounitary or pseudosymplectic
groups. It is naturally that the transitions between other algebraic constructions, in
particular between Casimir operators, are described by this theorem as well.

6 Kinematics as Spaces of Constant Curvature

Possible kinematic groups, i.c. groups of motion for four-dimensional models of space-
time (kincmatics), satisfying natural physical postulates: 1) space is isotropic; 2) spatial
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property of being even inversion of time are automorphisms of kinematic groups; 3) boosts
(rotations in spatial-temporal plane) make a non-compact subgroups are described by
H. Bacry and J.-M. Levy-Leblond [1]. In [2] H. Bacry and J. Nuyts rejected postulates 2)
and 3) and obtained a more wider set of groups with spatial isotropy. Now we shall bring
the geometric interpretation of kinematics [22, 33].

All kinematic groups are 10-dimensional; for this reason kinematics from the geomet-
rical point of view, should be among four-dimensional maximally homogeneois spaces —
spaces of constant curvature, which groups of motions are of dimension 10. These spaces
are realized on the connected components of the sphere

Sa(9) ={x5+ 3_(0,k)2f = 1}. (74)
k=1

Let us introduce internal (Beltramian) coordinates & = zx/zo, k = 1, 2,3,4 on S4(j5).
The generators (32) of group SO(4; j) can be expressed in terms of the internal coordinates
£ via formulas

4
Xos(§) = =01 — (0,8)°6, > &Ok, Ok = /0K,
k=1

Xrs(u) = &8, + (r, .5')2530,., r<s, rs=123,14 (75)

and satisfy the commutation relations (46). The generator Xo,(u) has a meaning of
generator for translation along the s-th Beltrami axis, and X,.,(u) is generator of rotation
in two-dimensional plane {¢,, &}

Physical postulates 1)-3) can be expressed in terms of parameters 5. Postulate 1) means
that under the transformations (45) three Beltrami coordinates should be multiplied by
the same quantity and interpreted as a temporal axis of kinematics. It is possible in two
cases:

A) for j3 = jy = 1, when coordinates &, &, & are multiplied by the product j,j, and
called spatial and £ is multiplied by j, and called temporal;

B) for j, = ja = 1, when the spatial coordinates & = 1, k = 1,2, 3 are multiplied by
J1, and temporal coordinate & =t is multiplied by the product j,js.

Postulate 3) imposes restrictions on the character of rotations in two-dimensional
planes, spanned over temporal and spatial axes of kinematics. requiring these rotations to
be Lorentzian and Galilean. In terms of parameters j this gives jo = 1o, in the case A)
and jy = 4,1 in the case B). The requirements of postulate 2) can be taken into account
by the definition of space with the constant curvature as a connected component of the
sphere (74).

In the case A) the kinematic generators H, P = (P, P, P3) (spatial-temporal trans-
lations), J = (Ji1, J2, J3) (rotations), K = (K}, Ky, K3) (boosts) are expressed in terms
of generators (75) in accordance with above mentioned interpretation by the relations
H=—Xo1, Pr = —Xoxt+1, Ke = ~X1p11, /1 = Xay, Jo = —Xog, J3 = KXoz, k=1,2,3,
and satisfy the commutation relations

[H,J]=0, [H,K]=P, [HP]=—j’K

[P,P] =323, [K,K]|=j21, [P, K| =—j26uH. (76)
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Here [X,Y] = Z means (X, Y]] = exmZm, where ey, is the antisymmetric unit tensor.
The spaces of constant curvature S;(j1,J2,1,1) = Si(j1.72), 1 = 1, 01,2, Jo = 12,1 are
shown at Fig. 2 (see section 3.2), where the spatial axis r should be imagined as a three-
dimensional space. Semispherical group SO(5; 1, t2) and semihyperbolic group SO(5; 1, t2)
correspond to Newton groups Ni (sometimes the latter are called Hooke groups). The
interpretation of other groups is well-known.

In the case of B) the temporal and spatial axes of kinematics are expressed in another
way in terms of Beltramian coordinates of space with the constant curvature; correspond-
ingly, the geometrical generators X (£) obtain another kinematic interpretation: H = Xoq,
P = — X, K = Xklh J = X23, Jo = = X3, J3 = X129 and satisfy the commutation
relations

J.3)=7J, [J,P]=P. [JK]=K,
[H7 J] =0, {H7 K] = —prs [H, P] = JllzKa
[P,P] =723, [K.K|=j4, [P,K|=0uH. (77)

The value of parameter j; = i, as it can be readily understood, does not lead to new
kinematics, because SO(5;71,1.1,7) for 71 = 1,.1.% is, correspondingly, de Sitter group,
Poincaré group and anti-de Sitter group.

Kinematic Carroll group [19] of motions of the flat Carroll space, first described
in physical terms by J.-M. Levy-Leblond [40] corresponds to the values of paramecters
j1 = t1, j4 = t4. Comparing the commutators (77) with the commutators in the paper
[1] by H. Bacry and J.-M. Levy-Leblond, we find that group SO(5;1,1,1,14) coincides
with kinematic group I1S0O(4), and group SO(5;1, 1. 1,¢4) is "para-Poincaré” group F’. As
paramneter j; determines the sign of the space curvature (curvature is positive for j, = 1,
zero for j; = ; and negative for j; = i) we conclude that group SO(5;1,1,1.t4) (or
IS0O(4)) is the group of motions of Carroll kinematics with a positive curvature, group
SO(5;1,1,1,44) (or P') is the group of motions of Carroll kinematics with a negative
curvature. Such interpretation of kinematic groups 1SO(4) and P’, as far as it can be
seen, was not recognized by the authors of [1], and this fact, by the way, is reflected in
the names and notations of these groups. Further Carroll kinematics will be denoted as
C4(j1), and their kinematic groups as G(j;) = SO(5; j1, 1,1, ta).

H. Bacry and J.-M. Levy-Leblond [1] have described 11 kinematical groups. Nine of
them have obtained geometrical interpretation as spaces of constant curvature. The rest
two kinematics — ”para-Galilean” and static — can not be identified with any of the
spaces of constant curvature. For example, kinematic "para-Galilean” group is obtained
from Galilean group SO(5;¢1,t2) by substitution P — K, K — P, i.e. under the new
interpretation of generators , in which the generators of spatial translations of Galilean
kinematics are claimed to be the generators of boosts of "para-Galilean” kinematics,
and the generators of Galilean boosts — to be the generators of spatial ”para-Galilean”
translations.

7 Standard Electroweak Model

The standard Electroweak Model (Weinberg-Glashow-Salam theory) is a gauge theory
based on the group SU(2) x U(1) and gives a good description of electroweak processes
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(46, 47, 55]. Mathematically this theory is very complicated with nonlinear dynamics of
the involved fields.

The Electroweak Model involve particles with integer spins: photon, responsible for
electromagnetic interactions, neutral Z° and charged W* bosons, which are week inter-
action carriers. For each subgroup SU(2) and U(1) of the gauge group its own coupling
constants g and g’ are introduced. Complex space C, of the fundamental representation
é1
®2
fields A, (z) for the group SU(2) take their values in Lie algebra su(2)

of the group SU(2) is interpreted as the space of matter fields ¢ = ) € C,. Gauge

Aue) = —ig Y TuAk (), (718)

k=1

where matrices Tk, connected with Pauli matrices 7% by the following relations

1, 1(01 1, 1(0 —i
T“T‘E(l 0)’ T2_2T_2(i 0)’

_1s_1(10

submit commutation relations [Tk,T,] = icxrT; and represent the algebra su(2) with
structure constants Cryr = €xpr. The gauge fields (78) are as follows in the matrix form:

‘ A A
ae) =i (g BT, (50)
1

For the group U(1) with generator ¥ = 11 the gauge field takes the form

_ .9 (B, 0
B,(z) = g ( 0 B, ) (81)
and has stress tensor By, = d,B, — 0, B,,. For the field A,(z) its stress tensor is given by
F(2) = Fu(z) + [Au(z), Au(2)] (82)

and has the components

3
Fl=FL +g(A2A - BA) =F. +9 3 crmArAT,

it

k,m=1
F, =F2 +g(AA, — ALA) =F2 +g¢ Z EnmALAL,
kym=1
3
F =FhL+9(AAL—A2A)=F3,+g 3 eumALAT, (83)
k,m=1
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where F¥, = 8,A5 — 8, AL is the stress tensor for Abel group. Boson sector of Electroweak
Model is characterized by Lagrangian

Lg=Ls+ L¢, (84)
which comprises two parts: the gauge fields Lagrangian

1 1

2 2 _
Ls= ;qur(FIW) - Z(BHV) -
1 1
= —lEL? + (FLY + (R - 3(Bu Y, (85)
and the matter fields Lagrangian
1
Lo = 5(D,8)' Dyt = V() (56)
The potential is taken in the special form
A 2
— t \2
V(g) =7 (s'6-")", (87)
where A, v are constants. Covariant derivative
3
D¢ = 8,0 — ig (Z TkAﬁ) ¢ —ig'YB,¢ (88)
k=1

for the matter fields ¢, ¢, is given by
1 ? 'y
Dy¢r = Outy — 5(91431 +9'Bu)br - Eg(At —iA2),

Dy = Bua + 5(04% - g B,)gs — (AL +iA2)6:. (89)

Space-time variables are numbered by Greek indexes p,v,...=0,1,2,3.
To obtain vector boson masses the special mechanism of spontaneous symmetry break-
ing (or Higgs mechanism) is used. One of Lagrangian Lp ground states

vac 0
é =(v), Ak=B,=0 (90)
is taken as vacuum of the model, and then small field excitations
$1(z), ¢o(z) =v+x(z), Ai(z), Bu(z) (91)
with respect to this vacuum are regarded. Matrix Q = Y + T3 = (1) 8 ) . which

annihilates the ground state Q¢"® = 0, is the generator of electromagnetic subgroup
U(1)em- New gauge fields are introduced

1 1 ;42 _ 1 3y
E (AF F ZA“), Zy = —?]-2_}_—9,2- (QA,, —9g Bu),

rt __
Wk =
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Ay = —s (443 + gB, )s (92)
\/52+—r2 "
where W * are complex fields W =W}, and Z,, A, are real fields.
Boeon Lagrangian (84) can be rewrltten in the form

Lp =LY + L% (93)
As usual, the second order terms
1 1 1
Lg>=§( x)* —Em z wB + 55 2,2, ~
_Z]:I"/]:pv - W+ W_ + mWW’+W’ (94)

where 2, = 8,7, — 0.2, Fu = 0,4, — 0,A,, W5, = 8,W= — §,W3, describe
the spectrum of boson partlcles and higher- order terms L are mterpreted as their
mteractums So, Lagrangian (94) describes charged W-bosons with identical mass My =
39v, massless photon A,, m4 = 0, neutral Z-boson with mass m, — $VoT+ g7 and
Higes boson x, my = V2 v. W- and Z-bosons were observed expenmentalh and have
masses my = 80 GeV, m; = 91 GeV. Higgs boson with the mass of 125 GeV was detected
at LHC in 2012.

Besides gauge bosons, there are fermions in the Electroweak Model. The fermion
sector is represented by leptons and quarks. Leptons are fermions, which do not interact
strongly. There are three types of charged leptons in Nature: electron e, muon p=, 7-
muon 7~ and three types of neutrinos v, v, v, as well as the corresponding antiparticles.
Neutrino masses, if they exist, are extremely small, therefore in the Electroweak Model
neutrinos are considered as massless particles. Neutrinos are fermions of left chirality, i.e.
their spin projection is opposite to the direction of movement. The name "left fermion”
, is used in this case. Pairs (or generations) of leptons (ve,e™), (v, u”), (v, 77) have
identical properties with respect to all interactions. Therefore it is sufficient to discuss
only one generation, for example, (v,,e™).

The lepton Lagrangian is taken in the form

Ly = L}i7,D, Ly + elit, D, e, — h.Jel (¢ L)) + (Lig)e,], (95)

where L, = ( : is SU(2)-doublet (vector in the space C,), e, is SU(2)-singlet (scalar

with respect of SU(2)), h. is a constant. All fields e,, e;, v are in their turn two-component
Lorentz spinors. Here 7, are Pauli matrixes, 7o = 75 = 1, 7% = —7%. The above mentioned
division of the fields on doublets and singlets is based on the experimental fact that only
the left components of an electron and a neutrino interact with W#*-boson fields, but the
right components do not interacted with W=*-boson.

The covariant derivatives of the lepton fields D,L; in (95) are given by the formula
(88) for Y = —3 with L, instead of ¢, and D,e, = (8, +1g'B,)e,. For the new ficlds (92)
these derivatives are as follows

D.e. = O,e. +ig'Aye, cosb, — ig' Z,e,.sin b,

74



D,=8,~ L% (Wit + WiT.) -

—ico-: 52 (T — Qsin®8,) - ie4,Q, (96)

where Ty = T; £ Ty, and e is electron charge

0 3
O:Y+T3|Y=—%:(g _1). e:L_

e g : 9 -
=—— cosb, =———, sinf,=——. 97
g sin @, Vgt + g7 v g= + g~ (o7)

Then lepton Lagrangian (95) can be rewritten in the form

Ly = elif 0,00+ V]iT, 0,0 + elir, e, + Wi Zu+
w

2cosf

9 ts - - gcos 20w ;.
+$eh”’u v — ee;rTuA,,e, + ma}‘rpZMeH—

+iu,T FWhe — ¢ cosOuelr, A e, + ¢ sinbelr,Z,e.—
V2 “

—heleldber + el goc, + eldly + vl dre). (98)

The first three terms are kinetic terms of the left electron, the left neutrino and the right
electron. The last four terms with the multiplier h, are mass terms of the electron. The
rest of the terms describe the clectron and neutrino interactions with the gauge bosons
Ay, 2, WE.

The next two lepton generations are introduced in the same way. They arc left SU(2)-

doublets |
M vy Y == 99
( Iz >,’ ( T ),‘ 2 (%)

Hry Ty, Y=-1L (100)

The complete lepton Lagrangian is giveu by the sum

and right SU(2)-singlets

Lp=Lpe+Lru+ Ly, (101)

where each summand has the structure (98) with its own constants he, hy, A-.

Quarks are strong interacting fermions. Six types of quarks are known. From the
viewpoint of electroweak interactions all known quarks are divided into three generations:
(u,d), (¢,8) and (t,0). Electroweak interactions of all quark generations are identical,
therefore we discuss quarks of the first gencration in the beginning. The quark Lagrangian
is given by

Lo= Qlti":uDﬂQl + uliT#Dudr_

—hald!(¢'Qu) + (Qld)dr] — hulul (#'Q) + (Q )], (102)
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where the left fields u- and d-quark of the first generation form doublet Q= ( g

dy
relative to the electroweak group SU(2), and the right fields u,, d. are SU(2)-singlats,
@i = €ti.egp = 1,65 = —1 are conjugate representation of the group SU(2), at last |

hy. hy are constant multipliers for mass terms. All fields W, dy, Uy, d. are two-component
Lorentz spinors.

The left fields of the next quark generations

(5) (&) i

are described by SU(2)-doublets, and the right fields are SU(2)-singlets

2 1
Cry tr, Y= 5; Sry b'r: Y = _g- (104)

The covariant derivatives are given by the formulae
. 3 Tk 4k 1
D,Q =108,— zg; §A” —1g aBu Q,

.2 ., 1
Dyar = (ay -9 §Bp) Qr, Dpfr = <8u +1ig gB#) fre (105)

where a = u,c,t and f = d,s,b, but Q, now denote the left fields of all three quark
generations. The complete quark Lagrangian is the sum

Lo = Loa) + Loes) + Lot (106)

where each term has the structure (102) with its own constants h., hy, Ae, hs, he, .
Lagrangian of the Standard Electroweak Model is the sum

L=Lz+L,+ Lo, (107)

of hoson Lg (84), (93), lepton Ly, (98), (101) and quark L, (102), (106) Lagrangians.

8 The Electroweak Model with Contracted Gauge
Group

As far as all three lepton and quark generations behave in the same way, we shall further
consider only the first gencrations. Contracted gauge group SU(2;j) x U(1) acts in
the boson, lepton and quark sectors. The contracted group SU(2; j) is obtained by the
consistent rescaling of the fundamental representation of the group SU(2) and the space

C, [28, 29): y _ _
2() = ( 7 ) - ( 2 ’;j’) ({j; ) = u(j)z())
detu(y) = o + /1B =1, w()u'(s) =1, (108)
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where contraction parameter 7 — 0 or is equal to the nilpotent unit j = ¢. The hermitian
form 2'2(j) = j%|21|? + |2.|?. remains invariant under this rescaling. The actions of the
unitary group U(1) and the electromagnetic subgroup U(1)en, in the fiber space Cy(t)
with the base {2»} and the fiber {z,} are given by the same matrices as in the space Cs.
The space Cz(j) of the fundamental representation of SU(2; j) group can be obtained
from C; substituting z; by jz;. The substitution z; — jz; induces the substitution of the

Lie algebra generators
T =Ty, Tp— T Ta—Ts. (109)

As far as the gauge fields take their values in Lie algebra, we can substitute the gauge
fields instead of transforming the generators (109), namely:

A, = JA,, Al AL AL A, B, B, (110)
Indeed, due to commutativity and associativity of multiplication by j we have

su(2:) 3 {A,GT) + ALUT) + ALT)

= {GANT + (ADT: + A2T;}. (111)
For the gauge ficlds (92) the substitutions (110) are as follows:
Wi = jWE 2,5 2Z,, A, A, (112)
The left lepton L; = ( :ﬁ ) and quark Q; = ( Z‘ ) fields are SU(2)-doublets, so their
1

components are transformed in the similar way as the components of the vector =, namcly:
vy — jI/[, € —r e, u — jll[,. ([1 - dl. (113)

The right lepton and quark fields are SU(2)-singlets and therefore are not changed.
After the transformations (112), (113) and spontancous symmetry breaking (90} the
boson Lagrangian (84)-(86) can be represented in the form [27, 29):

Lp(j) = LY () + LE'(G) =
1

1 1 1 . 1
= 5 (BI‘X)Z _ ETI1§X2 — ZZ",,Z,“, + E'ITZZZZ“Z‘L — Z]:’W]:'w+

. 1 . _ int/
{5 - mt W+ L), (114)
where as usual the second order terms deseribe the boson particles content of the model.
Higher order terms

&
8 cos? By,

intf - am; 92 4 A y
let(]) (211)2 Xz - _X1+

(Zu)2X _/\U)(3+ 1

~ 2cos Ov
+ j2{—21:g (wiw, — WiW) (Fusinfy + 2, cosbiy) + gW Wy x—
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—%e (4. (WiaW: - wWowy) - 4, (Wawr —wiw)] -
—%g cos O [Z, (Wi, W, - WL W)) -2, (Whw, - W W] +
g - —i7+)2 r—2] € +\2 -\? 2
+Z [(m Wy = WiWE) + wiwsx ] —Z{[(Wﬂ) +(wy) ] (A,)2—
~2 (WrW}+ Wyw;) A,A, + [(W,jf)2 + (W;ﬂ (A“)"’} -
_-‘7; costw {[(W)" + (W) | @ =2 (Wpws s wyw;) 2,2,+
+ [(W;“)2 + (W,,‘)z] (ZM)Z} _ egcos ew{W‘fW;A,,Zy +WIWSAZ,—
_% (Wiw; + Wrw)) (4,2, + AUZ“)}} (115)

are regarded as their interactions. The lepton Lagrangian (98) in terms of electron and
neutrino fields takes the form [30]

LL(J) = eziﬂlal-tel + eIiTuaﬂer - me(e:el + elfer)'*‘

gcos20y 4. fo , "
e 7.2, —ee|T,Ae; — g cosOyel T, A e+
2cos49w'”“l 1Ty g wep T Aulr

+¢'sin el Z,e, + jz{uﬁf#aﬂw + Y72+
w

_9
2cosf
+% [1/,17"#11/:61 + e,fi'#"V;w] } =Lry+3°Ly. (116)

The quark Lagrangian (102) in terms of u- and d-quarks fields can be written as

Lo(j) = d'i7,8,d + dlir,8,d, — ma(dld + d'd,) — gd*%“A“d—

1 2 !
B cogew (E T3 sin” '9"'> d'7,2,d - gg' cos B,di 7, A,d,+

1 . . )
+§g’ sinf,d!7,2,d, + ]2{ufzr#3,‘u +uliT,0,u,—

g 1 2. -
—my(ulu + ufu,) + o (5 -3 sin® 0.‘,) ulF, Z,ut

2e .. g - R
+?ufTﬂA,‘u + == [UtT#W:d +di7, W, u] +

V2
2, i 20 t _
+§g cos Opul T, A u, — 39 sin Ouulr,Z,u, =

= Lgp +j2LQJ, (117)

where m, = hev/\/i and m, = hyv/ \/5, mg = hqv/ NG represent electron and quark
masses.
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The complete Lagrangian of the modified model is the suin
L(7) = Ls(j) + Lo(j) + Lo(j) = Ly + 5°Ly. (118)

The boson Lagrangian Lg(j) was discussed in [27, 29], where it was shown that masses
of all particles involved in the Electroweak Model remain the same under the contraction
7% = 0 in both formulations: the standard one [27] and without Higgs boson [29]. In
this limit the contribution j2L; of neutrino, W-boson and u-quark fields as well as their
interactions with the other fields to the Lagrangian (118) become vanishingly small in
comparison with the contribution L, of electron, d-quark and the remaining boson fields.
So Lagrangian (118) describes a very rare interaction of neutrino fields with the matter,
which consists of quarks and leptons in the Standard Electroweak Model. On the other
hand, the contribution of the neutrino part j2L; to the complete Lagrangian is risen
when the parameter j* is increased, which corresponds to the experimental facts. It
follows from this that the contraction parameter is connected with neutrino energy and
this dependence can be obtained from the experimental data.

9 Description of Physical Systems and Group Con-
tractions

The standard way of describing a physical system in the field theory is its decomposition
on independent more or less simple subsystems, which can be exactly described, and then
introducing interactions between them. In Lagrangian formalism this implies that some
terms describe independent subsystems (free fields) and the rest of the terms correspond
to interactions between the fields. When the subsystems do not interact with each other
the composed system is a formal unification of the subsystems and symmetry group of
the whole system is the direct product G = G; x Ga, where G, and G, are symmetry
groups of the subsystems. The Electroweak Model gives a nice example of such approach.
Indeed, there are free boson, lepton and quark fields in Lagrangian and the terms which
describe interactions between these fields.

The operation of group contraction transforms a simple or semisimple group G to
a non-semisimple one with the structure of a semidirect product G = ARG;, where
A is Abel and G; C G is an untouched subgroup. At the same time the fundamental
representation space of the group G is fibered under the contraction in such a way that the
subgroup G| acts in the fiber. The gauge theory with a contracted gauge group describes
a physical system, which is divided on two subsystems S, and S t. One subsystem S,
includes all fields from the base and the other subsystem S; is built from fiber felds. S,
forms a closed system since according to semi-Riemannian geometry [50, 26] the properties
of the base do not depend on the points of the fiber, which physically means that the
fields from the fiber do not interact with the fields from the base. On the contrary the
properties of the fiber depend on the points of the base, therefore the subsystem S, exerts
influence upon Sy. More precisely, the fields from the base are outer (or background)
fields for the subsystem Sy and specify outer conditions in every fiber.

In particular, the simple group SU(2) is contracted to the non-semisimple group
SU(2;¢), which is isomorphic to the Euclid group E(2) = A3 ®S0(1), where Abel sub-
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group A, is generated by the translations [27, 28, 29]. The fields space of the Standard
Electroweak Model is fibered after the contraction in such a w ay that neutrino, W-boson
and u-quark fields are in the fiber, whereas all the other fields are in the base.

The simple and the best known example of fiber space is the non- velativistic space—
time with one-dimensional base, which is interpreted as time, and three-dimensional fiber,
which is interpreted as proper space. It is well known, that in non-relativistic physics the
timnce is absolute and does not depend on the space coordinates, while the space properties
can be changed in time. The simplest demonstration of this fact is Galilei transformation
t' =t, ¥’ = z 4 vt. The space-time of the special relativity is transformed to the non-
relativistic space-time when a dimensional parameter - the velocity of light ¢ - tends
to the infinity and a dimensionless parameter tends to zero =0

10 Rarely Neutrino-Matter Interactions

To discover the connection of gauge group contraction with the limiting case of the Elec-
troweak Model and to establish the physical meaning of the contraction parameter we
consider neutrino elastic scattering on electrons and quarks. The corresponding diagrams
for the neutral and charged currents interactions are represented in Fig. 3 and F ig. 1.

v 14 €

Figure 3: Neutrino elastic scattering on electron

Under substitutions (112), (113) both vertices of diagram in Fig. 3, a) are multiplicd
by j2, as it follows from lepton Lagrangian (116). The propagator of virtual ficlds ¥
according to boson Lagrangian (114) is multiplied by j72. Indecd. a propagator is an
inverse operator toan operator of a free field, but the later for W-ficlds is multiplied by
2
’ So on the whole the probability amplitude for charged weak current interactions is
transformed as My — j2My.. For the diagram in Fig. 3. b) only one vertex is inultipliced
by 72, whereas the second vertex and the propagator of Z virtual field do not change, so the
corresponding amplitude for neutral weak current interactions is transformed in a similar
way Mz — j2M . Cross-scction is proportionate to squared amplitude, so neutrino-
electron scattering cross-scction is proportionate to j%. For low cnergics s < mi, this
crass-section makes a principal contribution to the clectron-neutrino interaction and is as
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follows [46]
4 -
Ove = G%Sf(f) = g_,lf(f) (119)
mw
where Gp = 10_5"_% = 1,17 - 1075 GeV~? is Fermi constant, s is squared energy in
4 -
center-of-mass system, £ = sinf,, f(£) = f(£)/32 is the function of Weinberg angle. The
cross-section in the laboratory system for neutrino energy m. < E, < my is given by
[52]
Ove = G%"meEvg(E) (120)

On the other hand, taking into account that the contraction parameter j is dimensionless,
we can write down

Ove = jdao = (GF'S)(GFf(é)) (121)
and obtain v
7(8) = \/Grsm T (122)

So the contraction parameter is expressed in terms of Fermi constant and the fundamental
parameters of the Electroweak Model.

d

Figure 4: Neutrino elastic scattering on quarks

Neutrino elastic scattering on quarks by means of neutral and charged currents is
pictured in Fig. 4. Cross-sections for neutrino-quarks scattering are obtained in a way
similar to the lepton case and arc as follows [46]

0, = Gpsf(€)), of = Gsh(€). (123)

Nucleons are some composite constructions of quarks, therefore some form-factors appear
in the expressions for neutrino-nucleons scattering cross-sections. The final expression

O = GsF(£) (124)

coincides with (119), ie. this cross-section is transformed as ( 121) with the contraction
parameter (122). At low energies scattering interactions make the leading contribution to
the total neutrino-matter cross-section, therefore it has the same properties (121), (122)
with respect to contraction of the gauge group.
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We have shown that contraction of the gauge group of the Standard Electroweak Model
corresponds to its low-energy limit. The zero tending contraction parameter depends cn
neutrino energy and determines the energy dependence of the neutrino-matter interaction
cross-section.

The limit transition ¢ — oo in special relativity resulted in the notion of group con-
traction [34]. In the Electroweak Model the notion of group contraction is used on the
contrary to explain the experimentally verified fundamental limit process of nature: a
decrease of the neutrinos-matter cross-section when neutrino energy tends to zero.

11 Electroweak Model at Infinite Energy

In the previous section we have shown that contraction of the gauge group of the Standard
Electroweak Model corresponds to its low-energy limit. In this limit the first components
of the lepton and quark doublets become infinitely small in comparison with their second
components. On the contrary, when energy increases the first components of the doublets
become greater then their second ones. In the infinite energy limit the second compo-
nents of the lepton and quark doublets will be infinitely small as compared with their
second components. To describe this limit we introduce instead of (108) new contraction
parameter ¢ and new consistent rescaling of the group SU(2) and the space C, as follows

w0=(4)=(5 7)(4)-somo

detu(c) = |al? + B2 =1, u(e)ul(e) =1, (125)

where ¢ — 0. Both contracted groups SU(2;7) (108) and SU(2;¢) (125) are the same and
are isomorphic to Euclid group E(2), but the space Cy(c) is splited in the limit ¢ — 0 on
the one-dimension base {z,} and the one-dimension fiber {z,}. From the mathematical
point of view it is not important if the first or the second Cartesian axis forms the
base of fibering and in this sence constructions (108) and (125) arc equivalent. But the
doublet components are interpreted as certain physical fields, therefore the fundamental
representations (108) and (125) of the same contracted unitary group lead to different
limit cases of the Electroweak Model, namely, its zero energy and infinite energy limits.

In the second contraction schemne (125) all gauge bosons are transformed according to
the rules (112) with the natural substitution of j by €. Iustead of (113) the lepton and
quark fields are transformed now as follows

e, — €€y, d; — fd[, vy = v — Uy (126)

The next reason for inequality of the first and second doublet components is the special

mechanism of spontaneous symmetry breaking, which is used to generate mass of vector

hosons and other elementary particles of the model. In this mechanism one of Lagrangian

ground states ¢"*¢ = ( 0 ) is taken as vacuum of the model and then small field
v

excitations v+ x(z) with respect to this vacuum are regarded. So Higgs boson field x and
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the constant v are multiplied by e. As far as masses of all particlies are proportionate to
v we obtain the following transformation rule for contraction (125)

X EX, U—ev, my—emy, (127)

where p = x, W, Z,e,u,d.
After transformations (112), (126)—(127) the boson Lagrangian of the Electroweak
Model can be represented in the form

LB(C) = 423,, - 4.7:5,,+€2L132+€ gW W X+€ LB4,

1 A ?
Lpa=myWiw, - 5m§x - dvx® — Zx‘ + %WI W, x*+

97 (wiwy —wywy)*,

1 1
Lpa=3 0ux)* + ;mzz (2,)* -
2
T gm g 73242
W Mo v o (Z”) X+8cos29W( w) X

—2ig (W:Wy‘ - W‘W*) (}',,., sinfw + 2, cos 9w) -
L [Au (Wit wr —wowi) + - eA (Wi w, —wowi| -

2 nv g

—%g cosbu [Z, (Wa W, ~ W W) - 2, (WiWy - Waw)] -
2

=

() + (2] (a2} - g;c050w {{we)+ o)) -

—2 (WiW + WiW; ) 2,2, + [(W,f)2 + (W;)2] (Z”)2} _

(W) + (W)"| (2 = 2 (W + W ws) Audue

—egcos b [WiW; A,Z, + W)W, AZ,—
1 _ _
5 (WaWs + Ww)) (4,2, + A.,Z#)} . (128)
In terms of electron and neutrino fields the lepton Lagrangian takes the form
Li(e) =Lpo+ Lo = vfif,d,u + elit,d.e, + ¢'sinOyel7,Z, e, —
—g' cosfyelm, ALe. + LulTﬁtZ“l/[ + €28 efi7,8,e1 — me(ele, + ele,)+
2cos b,

gcos26,, ;. ~ ~ o
2cosé clfuZues = celuhyer + % (";‘TMW:el +e T, ’/1)} : (129)
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In terms of u- and d-quarks fields the quark Lagrangian can be written as
Lg(€) = Lop — emy(ulu + ufu,) + € Lg.,,

. . . 1
Loo = dlma,,d, + u;fzr,,a,‘ul + uiz'r,,a,,ur — gg' cos gdeTuA“d,--l-

1 1 2
+3g sin 6. dTT,‘Z d. + u,T“A,‘u,+ g (— — Zsin?6 )'UIT#Z w+

3 cos b, 3

2 2
+§g' cos OWUIT,,A,,ur — gg' siné, ulT,,Z,ﬂLr,
Lgs = dji7,0,d; — ma(d!d; + d}d.) — gd}ﬁ,A“d,—
g 1 2 . .
" cosby (5 3 sin* 9"’) d’T"Z d+ 2 [Uz T WHd + d! W u,] (130)

The complete Lagrangian of the modified model is given by the sum L(e) = Ly(e) +
L (€) + Lg(e) and for the infinite energy (for € = 0) is equal to

L= —ZZ;, - 4}‘3,, + V}iT, 0,0 + ufiT, 0w + eli,d e+

+d}i7,8,dy + uliT,duur + LG (Ay. Z,),

; ~ 1 2
LA, 2,) = I/;T/‘Z‘,l/l + 9. <— — —sin Gw) u,T“Z w+

_9
2cos 8, cos 8, 3

2e 4. . 1
+—3-u,TT,,A#u1 + ¢'sinbyelm,Z,e, — ¢’ cosbyelm,ALe, — gg' cos By, di T, A d+

1 2 2
+§g’ sin Gwd}r,,Z‘,d, + gg’ cos Gu,ul‘r,,A“u, - gg’ sin H,Uui'r,‘Z“ur. (131)

The limit model includes only massless particles: neutral massless Z-bosons Z, and pho-
tons A,, massless right electrons e, and neutrinos v;, and massless left and right quarks
uy, Ur, dr. The electroweak interactions become long-range because they are mediated by
the massless neutral Z-bosons and photons. There are no interactions between particlies
of different kind, for example neutrinos interact only with each other by neutral currents,
Similar higher energies can exist in the early Universe after inflation and reheating on the
first stages of the Hot Big Bang [17, 41]. The electrowcak phase transition and neutrino
decoupling which take place during the first second after the Big Bang [16] are apparently
in correspondence with the infinity energy limit of the Electroweak Model (131). The
mass term of u-quark in the complete Lagrangian is proportional to ¢ whereas the mass
terms of electron and d-quark are multiplied by €2, so u-quark first restores its mass in
the evolution of the Universe.
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1 Introduction

A possibility of existence of high-rank nuclear symmetries related to the geometric prop-
erties, usually understood as some deformations of nuclei, has been shown several years
ago [1]. One of the most reach symmetry is the tetrahedral/octahedral symmetry which
can produce large shell gaps in the single particle spectra because of the characteristic
for these point groups four-fold degeneracy. Large degeneracy of the energy spectrum
increases the average level spacing [2, 3]. This leads to the specific tetrahedral-magic
shell-closures for nucleon numbers 32, 40, 56, 64, 70, 90-94, 112, and 136-138.

There were several experiments related to the problem of ‘tetrahedral’ nuclei per-
formed. For example see Ref.[4, 5]. In the Rare Earth nuclei such as 15215634, 154156 )y,
164Fr, 14Yb, but also in the Actinides in 230-2347J there were found some interesting prop-
erties suggesting existence of searched symmetries, however, the results are not unique
[6, 7].

The word cvpuerpior (symmetry) comes from Greek language: oup ('together’) and
ueTpwy ('measure’). Before the contemporary physics the symmetry was rather related to
such notions as beauty, perfectness, harmony or ‘proper proportions’. The contemporary
meaning of the symmetry concept was invented more or less in Renaissance.

2 Space-time versus intrinsic symmetries

The most striking property of the space-time is its symmetry. The space-time symmetry
group Ggr corresponds to a relativistic group as, for example Poincara group in the theory
of special relativity. In numerous relativistic and non-relativistic models of the space-time
considered in physics, one considers the various space-time symmetry groups. The second
kind of important physical symmetries are intrinsic symnetries G;, which commute with
the space time symmetries Gsr. The intrinsic Symmetries can have two origins:
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Figure 1: Platonic solids: tetrahedron, cube, octahedron, icosahedron, dodecahedron.

o the first type describes these intrinsic properties of the physical body which are
independent of the space and time structure, e.g. the symmetries related the isospin,
conservation of the electric charge, conservation of the particle number and so on.
The corresponding symetry group we denote here as G,

e the second type is determined by the geometric properties of the physical body.
One of the most important geometric feature is shape of the body. These kinds
of symmetries leads to the so called intrinsic groups consisted of the geometric
transformations constructed in the intrinsic frame of the body. In this paper the
intrinsic groups are labelled by the bar symbol over the group name, e.g. G.

In this lecture we are interested only in the second kind of the intrinsic symmetries.

In case of a nucleus (non-relativistic description), let us assume, that this nucleus is
considered in the the coordinate frame in which center of mass is fixed in the position
space. The remaining non-relativistic space-time symmetry is the orthogonal group O(3).
Every nuclear collective Hamiltonian has to be invariant in respect to this orthogonal
group O(3). However, the nucleus can have additional geometric intrinsic symmetry
group which is a subgroup of the corresponding intrinsic orthogonal group G C O(3). It
implies that, in the case of non-relativistic description of a nucleus the general intrinsic
symmetries collected in the group G can be considered as the direct product:

Gine = G x Ge. (1)

Historically, the most known symmetries are related to the geometric symmetries of some
solids invented by Platon (428 - 347 BC). In three dimensional space there is known 5
Platonic solids which are the regular, convex polyhedrons. They are constructed from
the faces which are congruent, regular polygons: triangles, squares or pentagons. These §
Platonic solids are called: tetrahedron, cube, octahedron, dodecahedron and icosahedron,

see Fig. 1
The proof of existence of only five Platonic solids is based on the Euler’s formula:

V+F=E+2 (2)

where V, F, E denote the total number of V = vertices, F' = faces and E = edges. There
is an open question: do exist the nuclear Platonic solids in the Universe? We will have
this problem in our mind in the following text.

Many scientists was and still is fascinated by the notion of symmetry. One of the
first was Johannes Kepler who believed in symmetry and proposed the palnetary model
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Figure 2: The Kepler’s planetary model, http:// en.wikipedia.org/wiki/ File:Kepler-solar-
system-2.png.

Figure 3: Point groups chains.

built from the Paltonic solids Similarly, in the contemporary physics we are searching for
elementary particles, nuclear magic numbers, universal properties of matter etc., using the
symmetry building block called the irreducible representations of the symmetry groups.

Above we have mentioned that there is an open problem about existence of nuclei
having symmetries of Platonic solids. These symmetries are related to the so called
point groups consisted of transformations which leave one or more points of the three
dimensional space unchanged. The most important is a set of 32 point groups shown
on the Fig. 3. The dashed line denote not-invariant subgroup. Adding translations to
point groups one gets 230 crystalographic space groups, 14 Bravais’ lattices and 7 crystal
lattices.

Because of relatively large degeneration of the energy spectra of the Hamiltonians
invariant in respect to the tetrahedral and octahedral symmetries, both the tetrahedral
and octahedral groups are the first candidates for analysis of nuclear point symmetries.
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Figure 4: The tetrahedral surfaces for three different values of the deformation parameters
a3z = 0.1,0.2 and 0.3, respectively.

In the simplest case, the tetrahedrally invariant shapes are generated by the defor-
mation tensor aszg, where the deformation parameters are identified with the expansion
coefficients of the nuclear surface:

R(;6,) = Ro (1 + a6, «s)) . (3)

An

The examples of the simplest tetrahedrally invariant surfaces are determined, eg. by the
following equation

R(a;0,¢) = Ro (1 4 asa(Yax(0,8) + Y3 _2(6,9)) . (4)

The equation (3) allows to write down equation for different shapes of a nucleus clas-
sified in respect to the multipolarity A.

Usually it is assumed that the dipole parameters o, describe a shift of the surface.
It is only an approximation which has to be always verified in a given application. In
Fig. (5) there is presented an effect of the dipole deformation on the quadrupole shape.
In the right figure it is seen that the dipole deformation not only shifts the surface but it
also change its shape. In the figures below only the non-zero parameters are explicitely
written in their captions. One of the problems related to the above parametrization of
the nuclear surface is that for larger deformations one can get quite unphysical surfaces,
an example of such pure quadrupole surface are presented in Fig. (6). On the other hand,
the regular quadrupole shapes are of the expected form, see Fig. (7).

3 Collective variables

The deformation parameters of the nuclear surface can be used as the collective variables,
like in the Bohr type collective models. However, one can obtained the more general
description assuming q;,q; and g3 are curvelinear coordinates in R%. Then the most
general equation of the nuclear surface can be written as

@ = qx(u,v) where k = 1,2,3, (5)

92



Figure 5: The shape for az = —1.50 (left) and the shape for ayg = 1.50, ag9 = —1.50
(right).

Figure 6: The monster quadrupole shapes, asy = —5.50 (left), ayp = 9.0, azy = —5.50
(right)

Figure 7: The regular quadrupole shapes, as = 0.30 (left), g0 = —0.3 age = 0.3 (right).
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where (u,v) € § C R? are two real continuous parameters.

Assume the functions g, € L?(S) are square integrable functions, where the compact
subset S C R? of variables parametrizes the surface in the space of a single-nucleon.

Let the set of the three vectors {e,(u,v)} gives the orthonormal basis in the space

LX(S)
(enlem) = /du; dv; p(u, v)en (8, v)* em(u, v) = Spm, (6)
s

where p(u,v) > 0 is the appropriate weight function.
Using of this basis allows for expansion of the surface (5) in the following form

qr(u,v) = Z Qi en(u, ). (7)

The basis should be chosen to have a physical meaning determined by a set of commuting
physical observables A;, where [ = 1,2,... 7 i.e.

Aen(u,v) = amen(u,v), foralll =1,2,...,r (8)

In this case, the expansion coefficients

Op g = /Sdudv p(u,v) en(u, v)*ge(u, v) (9)

can be used as new variables describing the nuclear surface in terms of the observables
A}
{ ’}I‘he very well known example of this procedure is the description of the nuclear surface
with the expansion (3). In this case one needs to identified the variables in the three
dimensional space with the spherical variables {g; = 7,¢> = 0,93 = ¢} and asume u =
6,v = ¢. The equation of the surface r = R(6,¢) € I:z(SO(Z)) can be expanded into
eigenfunctions of the angular momentum observables A; = J? and A, = J,, where J?
is square of the total angular momentum and J, denotes its third component. In this
case the basis e,{u,v) = Yinm(0, ¢) consists of the spherical harmonic functions. As the
result one obtains the equation (3). In practice, in the nuclear physics, the equation of
the nuclear surface written in the laboratory frame (in this case we label the deformation
parameters with the superscript (lab), agf;b)) usually has the additional coefficient c(a('eb))
in front of the equation (3), which allows to satisfy the volume conservation condition for
the nuclear matter. The reality of the radius R(6,¢), its invariance in respect to the

space rotations R($2) and the space inversion C; leads to the standard relations for the

. . lab
expansion coefficients af\, u):

(lab)

A—p”

This condition can be obtained by making use of the reality of the radius r = R(9, ¢)
and properties of the spherical harmonic functions

R(o36,6) = B*(a*9;6,6)
D ahnYou(6,6) = 3ol (-1, (0, 9). (10
Ap

A

» Reality of the surface: (af\lzb))* =a
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¢ Rotational properties of the surface: R(Q)a(lab) > D L0 )af\li,b), where D), (Q)

denotes the Wigner functions of the rotation group and the operator R(Q) represents
the rotation operator parametrized with the Euler angles Q = (4, Q,, Q3).

This condition follows from the transformation properties of the spherical harmonic
functions and invariance of the radius 7 = R(f, @) of the surface in respect to the
space inversion:

R(Q)R(a'; 0, ¢) = R(a"; 6, $)
R@)R(@";6,) = R (R@)al™; R@){9,6})

- Ry (1 + 3 (R@al?) ROV, ¢))
— R, (1 +> (R(Q a‘;';”’) ZD ()Y, (6, ¢)) (11)
A

Comparing the equation of the surface before and after rotation results in the trans-
formation properties of the deformation parameters in respect to the space rotation.

e Space inversion transformation: Ca(l“b) (- I)Aaf\[:b).

This property follows directly from the properties of the spherical harmonics and
invariance of the radius :

CiR(a";0,9) = R(a;6, )
CiR(a(;6,¢) = (1+Z M (C1Mu(6,9)). (12)

As above, comparing both expressions before and after the transformation of the
surface gives the transformation properties of the deformation parameters.

These properties show that the deformation parameters (collective variables) af\lﬂb) are

the covariant components of the spherical tensor of the rank A (tensor in respect to the
rotation group SO(3)). The important property of these tensors is existence of the scalar
product of two tensors. Let £, and 7 be the tensor of the same multipolarity, then the
scalar product is defined as

E-m=Y g™, (13)
pv

where the metric tensor is generated by the Clebsch-Gordan coefficients of the rotation
group (AxpnAopia|Aps)
9" = V2XA+1(ApAv|00) = (-1)*5;". (14)

The scalars (rotational invariants) obtained in this way play an important role in de-
scription of nuclear collective motion. For example, the total multipole deformation of a
nucleus is proportional to the multiplication operator B,\

Brib(a'®®) = Bry(alia), (15)
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Figure 8: The spin orientation probability for a rotating system. The chosen wave functions
are proportional to some combinations of the Wigner functions: % ~ D3,,(Q) — D3 _o(9) (left)
and ¥ ~ D3,5(Q) — D?VI,—:;(Q) (right).

where

lab lab lab la lab
B =af™ ol = 3" ol [(~1)#al™) Z|a<°)| €R. (16)

nv

This kind of invariants is important in construction of the collectlve Hamiltonians. For
example, the classical harmonic oscillator Hamiltonian

1 (tab) . (tab) , 1
Hhr) = Z |:2—B:C1/()\a ) : a; ) + EB/\wiﬁE:I (17)
A

is constructed from such invariants and finally it is invariant in respect to the rotation
graup as it is required in physics.

4 Intrinsic frame

The classical rotation is well understood phenomenon in which the orientation of a body
is changing with time. Contrary, the quantum rotation allows to determine only the
prabability of a given orientation and there is no time variable in the wave function. The
quantum rotation can be presented in the graphical form as the surface drawn by the end
of the vector pointing out in the same direction as the spin of a rotating body and its
lentgh equal to the probability of finding a given orientation of the spin, see Fig. (8) .
The notion of the quantum rotational motion allows to deﬁne the rotating intrinsic
frame, e.g. the body fixed frame, for the collective variables {a,\# )} The corresponding
colective variables in the intrinsic frame we denote by {a,,}. They can be obtained by the

quantum rotation of the laboratory collective variables {c ,\ab)} with the rotation operator
R()

ax = R(Q)a{™ (18)
assuming, in addition, that the rotation group SO(3) > R(Q) parameters, repesented by

the Euler angles Q = (Q;,(»,3), are considered as a part of intrinsic variables. The
intrinsic variables a are invariant in respect to the laboratory rotations R(Q). It is
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important to notice that inclusion of the Euler angles into the set of intrinsic variables
makes this set of variables redundant, 3 variable more than needed. It implies that, the
definition of the intrinsic frame requires three additional conditions which recover the
same number of variables in both frames

Fi(a,Q) =0, wherek=1,2,3. (19)

In this way one can obtain a new description of a physical system, e.g. a nucleus, in which
the rotational motion can be directly described by the Euler angles.

5 Intrinsic groups

There is an intersting question: how to investigate symmetries of a nucleus in the intrinsic
frame. A part of symmetries, eg. trnaslational symmetry are not seen in the intrinsic
frame. Due to the general principles, the nuclear Hamiltonian has to be invariant in
respect to the orthogonal group O(3) defined in the laboratory frame. On the other hand.
it is obvious, that the nucleus should have some geometrical symmetries related to its
shape. The transformations furnishing an intrinsic symmetry group have to be defined in
the intrinsic frame. In group theory, there is known the notion of left and right shift on
the group magnifold. This idea was used to define the so called intrinsic groups which, in
fact, act in the intrinsic frame.
A convenient definition was formulated in [15] in the following form:

for each element g of the group G, one can define a corresponding operator § in the group
linear space Lg as:

39) = |Sg), for all |S) € Lg, (20)

where all elements inside the ket vectors S = > 9cG €9, here ¢, are the complex numbers,
form a group algebra of the group G.

In this definition the notion of the group linear space Lg is used. This space is defined
as the linear space spanned by all possible formal linear combinations of the elements of
the group G

L= {|s> 11S) = "cyg, where ¢, € c} ; (21)
9€G

1t looks like the group algebra mentioned above, but, it is important that the elements of
Lg have to be considered only as vectors, not as the elements of the group algebra.

The group formed by the collection of the operators g is called the intrinsic group G
related to the group G.

One of the most important property of the intrinsic group G is that this group com-
mutes with its partner group G

[G,G]=0. (22)

The groups G and G are antyisomorphic. The required anti-isomorphism between the
partner groups G and G is given by

¢c: G — G, where ¢¢(3) =g and 6c(39') = ¢c(7)dc(3). (23)
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This property suggests that the partner groups G and G have a lot of common properties
as e.g. similar structure of representations, decompositions of the Kronecker products, the
Clebsch-Gordan coefficients and many others.

As an example let us consider a relation among representations of both groups. Be-
cause the partner groups commute one can find common basis |I'mk) for representations
of the group G and the group G. The representations are defined as:

g|Pmk) = ZA‘” m'k), (24)
gllmk) = ZAS},Z )| Tmk’). (25)

To compare both representation one can use as the basis the generalized projection oper-
ators (elements of the group linear space L)

|ka> . card(G) QGZGAmk(g) g, (26)

where dim[I'] denotes the dimension of the representation I' and card(G) is the number
of elements in the group G. This allows to calculate (25)

3|Tmk) dm”zﬂwm

card
- cilrrnril[l;) ZE; g9y
C?::[lg) %;;%:Amk’(g *Ak? 9)9 = ZAkk’ )|ITmk'), (27)
where Afm)n,( ) are matrix elements of the representation I' of the group G. Comparing

both expression one can see that the matrices of both representations are related. The
representations of the intrinsic group are transposed representations of the partner group

Af(G) = AR 9). (28)

A bit different are definitions of irreducible tensors in respect to the laboratory group G
and the intrinsic group G. By definition the irreducible tensors in respect to the laboratory

group G transform as - -
TG =3 A" (29)
[

The tensors in respect to the intrinsic group G, due to the anti-isomorphism between both
groups, have to be defined in the following way

~—(I‘)_—1 _ ZA(I‘) -1 T(I‘). (30)
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As an example, let us consider the action of the intrinsic group in the collective space
consisted of the square integrable functions of the deformation parameters and the Euler
angles. The intrinsic rotation operators R(gy, ) € SO(3), xS0(3), (the indices o and
show the variables which are affected by the corresponding group) are defined as follaws

R(3:1,5)f (2, Q) = f({Gr0}, Qa(3)7), (31)

where g; € SO(3), and g, € SO(3),,. The action of the group SO(3), onto the deformation
variables is a bit non-standard and is given by the following equation

1o, = Z D}y (¢c(31) oy (32)
"

The intrinsic group SO(3) corresponding to the ‘laboratory’ rotation group SO(3) de-
fined in the laboratory frame consists of all rotations R(g, g) for which the deformation
parameters and the Euler angles are rotated with the same angles.

The required anti-isomorphism between the partner groups SO(3) and SO(3) is given
by (23).

It is important to notice that, in general, not all transformations (g, g2) € SO(3), x
S0G)q

(91,92): (@, Q) — («, ) (33)
are allowed in the intrinsic frame. They are allowed if they do not break the conditions
which define the intrinsic frame (19)

(91, 92)Fe (0, Q) = Fi(§10, Q55 1) = 0, where k =1,2,3. (34)

For example, in the case of the quadrupole colective variables ap with the standard Bohr
condition which define the intrinsic frame: as +; = 0 and agy = as_9, the allowed intrinsic

rotations R(gy, g2) € SO(3), x SO(3)q have to fulfil the following conditions

R(g1,ec)ass1 = 0 and R(g1,ec)am = R(G1,ec)az-2, (35)

where the second argument represents the unit element of the group SO(3),,. The Bohr
conditions allow for the arbitrary rotations g, € SO(3),,.

Using the conditions (35) the allowed rotations of the deformation parameters o have
to satisfy the following equations

Dg,il(gl_l) 0,

D%, + Dina(at) = o,

Dg(ar) = D§ _,(a") = o,
D%, o(ar") + D3 5(3r") = D2,(a") + DaL(ar). (36)

In this case, the octahedral point group O, C SO(3),, acting only on the variables «
provide the solution of the set of equations (36).
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6 Uniqueness of quantum states

In practice, the transformation to the intrinsic frame is not a one-to-one function. For
the further purpose it is useful to define a group of intrinsic transformations k € Gs:

(@) 5 (@), (37)
where oo = {@,,} and which leave invariant the corresponding laboratory coordinates:

ol (o!, ) = a0, ),
Fi(o', Q) = Fi(a,Q) =0, for k=1,2,3, (38)

where o2 (a, Q) = R(QV)a, see (18).

The group G, we call the symmetrization group.

The symmetrization group decomposes the collective manifold into orbits of physically
equivalent points. Let the function (e denotes a state vector of a nucleus in the
laboratory frame. The corresponding state vector in the intrinsic frame has to fulfil the
obvious equation

(o, Q) = Tllab)(glably (39)

which represents the fact that the wave function of the physical system written in the
laboratory frame has to be a well and uniquelly defined function.

However, after the transformation of the intrinsic variable with the elements of the
symmetrization group we do not change the laboratory state vector

q/(()", Ql) — ‘P(lab)(a(lab)) (40)
This implies the uniqueness condition for the states in the intrinsic frame
U, ) = ¥(o, Q). (41)

This is a very well known but not fully solved problem in the collective models of the
Bohr type.

In principle, there are two possibilities to achieve uniqueness of transformation from
the laboratory o the intrinsic frame:

e first, one can define the appropriate region of the intrinsic collective variables in
which the transformation from the laboratory to intrinsic frame is a one-to-one
function,

e second, one can allow for the whole range of collective variables but then one needs
to fulfil the symmetrization condition for physical states. The symmetrization con-
dition can be expressed as invariance of the intrinsic state vectors in respect to all
transformations k € G,

h¥(a, Q) = ¥(a, Q), (42)

where the group G; is the symmetrization group.
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As an example, let us came back to the very well know example of the quadrupole variables
(@20, @22, ) with the Bohr conditions which define the intrinsic frame (35).

Using the conditions (35) one can see that the allowed rotations of the deformation
parameters o have to satisfy Eqgs. (36) which are fulfilled by the rotations belonging to
the octahedral point group O, C SO(3) The required invariance of the transformation
formula from laboratory to the intrinsic frame (38) implies that both rotations (g;, §;) €
0O, x Oq have to be rotations about the same angles § = (61,05,05) , ie. 1 = §()
and g, = go(9). This considerations suggest that the symmetrization group is equal to
the octahedral group G, = O C O, x Oq transforming simultaneously the deformation
parameters and the Euler angles by the same rotation. Because the quadrupole variables
are invariant in respect to the space inversion, this transformation should be formally
added to the symmetrization group, in this way one obtains G, = Oj.

Obviously, instead of the standard Bohr conditions the following alternative definition
of the intrinsic frame can be used:

e the collective variables are now chosen as (g, a2, ),
e the conditions which define the intrinsic frame (variables) are now assumed as
Flyz(a, Q) = Q940 = 0 and F3((I, Q) =aQg +ay_] = 0. (43)

These definitions lead to the equations for allowed rotations and the symmetrization
group:

Dixn(g9) =

Diz 1( ) = Diz,-l(g)
Diy(9) + D2, o(9)

D?l (9) - D%,—l(g)

0
0
0
D% _\(9) - D?-u(g)‘ (44)

The allowed rotations are now given by DQQ X SO(3) . The symmetrization group, in
turn, is given by much smaller group D, C Dza x Do. .o than in the previous case.

We see that using of different condition defining the intrinsic frame lead to formally
different structure of the colective spaces.

This considerations born an interesting question. Do both sets of collective variables

set 1.: Qp, Qa2 = Qa_3, Q4] = 0, (45)
set 2.0 Oy, Qp = —0h ), Oy =0 (46)
describe the same set of shapes? Do are they physically equivalent?

To answer these questions one needs to check if there exists the one-to-one relation
between both frames. The required transformation is given by

1i,
Qgp = *50207 (47)

. 1 /3 .
axp = exp(—2if) (5 \/;‘1,20 + 10’21) ' (48)
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where the rotation angle 6, can be calculated from the following formula

3
oy, cos(26,) = %\/;0/20 sin(26;),
1r
b2 =03 = 7 (49)

In fact, the angles 61, 65,03 parametrize the rotation which transform the second set of
variables into the first one.

7 An example of a symmetry structure of the collective
configuration space

Let us denote by X, Xo and Xaq the configuration spaces consisted of: a) the labo-
ratory variables a("*?), b) the intrinsic deformation parameters o and c) the full intrinsic
configuration space, respectively.

Let us consider again the case of the collective space consisted of Bohr variables
(a0, a92) which are equivalent to the popular polar parametrization of nuclear shapes

(B,7), where

o0 =fcosy and g = -ﬁ— sinvy. (50)

V2
The symmetrization group O (inversion omitted) is generated by the following rotations
Ry = Cyy, Ry = Cyz, R3 = R(n/2,m/2,7), where Cy, denote the rotation by the angle
27 /n around the ¢ axis.

To find the region of uniquenes of transformation from the laboratory to the intrinsic
frame one needs to construct the orbits obtained from the action of the symmetrization
group G, = O onto the full intrinsic configuration space Xaq. In our case the orbits are
represented by the following sets

orb(61 /80)70390> = {(/Ba’Ya Q) : (ﬁ”y, Q) = §(ﬁ01 Yo, QO)1 ge 6} - (51)

Every orbit consists of 24 elements of the configuration space X,q which correspond to
the same laboratory deformation. Here, we have used the polar parametrization of thes
quadrupole variable due to the simpler action of the octahedral group on these variable
than on the agg, gy themselves

- N 27 N

gB=p, gvef{ty, £(y—k3)h k=123, §2=20g (52)
Formally, to have one-to-one transformation from the laboratory to the intrinsic frame
one needs to construct the following quotient of the collective configuration space X,q:

XS, = Xan/orb(0), (53)

[s2

where two points of the collective magnifold (8,7, ') and (8", ", ") belong to the same
equivalent class of intrinsic points if both points belong to the same orbit, i.e.

(8,7, ) = (8",9",9") mod(orb(0))
iff there exists the point {8y, Y0, %) € Xan
such that (,Blv ’Y,) QI)1 (ﬂ”l 'Y", Q") € Ol'b(6; 1307 Yo, QO) (54)
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Figure 9: 6 equivalent regions, each region consists of 4 orbits of the symmetrization group

0]

The above construction leads to a problem with the notion of the angular momentum
operators because in the configuration space X&, for the fixed shape the Euler angles
are restricted to a subset of the full range of the angles, e.g. the points (8,7,Q) and
(8,7,9QC,), where q = z,y, z represent a nucleus of the same shape and the same space
orientation in respect to the laboratory frame, though the Euler angles are different.

To recover the angular momentum as the physical observable one needs to join some
orbits in such a way to obtain the full range of angles. This can be achieved by the
appropriate restriction of the symmetrization group. The restricted symmetrization group
O, x 1q, where the symbol 1 denotes the trivial group consisted of the unit element
only, allows to construct the new 6 elements orbits

Orb(aa X iﬂ, 130)701 QO) =
(B0, 1,) 7 = 10,230 = 20), 200 - 21)) (59)

and subsequently the collective configuration space in which the Euler angles have the
required physical range

X5 = Xaq/orb(O, x 1g). (56)

However, in this way we again obtain not invertible transformation from the laberatory
to the intrinsic frame. On the other hand, in this case only six (not 24) points in the
intrinsic frame correspond to one point cr““b) in the laboratory frame, see Fig. (9).

This means that we loose the uniqueness of transformations between the laboratory
and the intrinsic frames which was the most important feature we wanted to obtain by
our construction.

The same considerations one can performe for the example of the alternative choice
of the collective variable (a9, ap1). In this case the symmetrization group Dy (inversion
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ommited) consists of the following rotations {eg, Cys, Cay, Co.}. The orbits (4 elements
each) can be written as

orb(Dg; digo, tar, ) = { (&0, &1, $2), (&20, 821, 2C2y ),
(620, =21, 2C2y), (G20, — &1, 2C5.)}. (57)

In this case we have a very simple action of the group operations onto the collective
magnifold

C_'z;uazo =Q2, a=21I,Y,2 C_'Z;aam = —Q2, @4=Y,2z
C2:aQ = QCa. (58)

Despite of this, again, one needs to join orbits in such a way to recover full range of
angles, to have well defined angular momentum quantum numbers. The restricted group
D2 .2 X 1 leads to a set of two elements orbits

orb(Dae X 1a; bing, ta1, ) = {(&ao, @21,2) : @z = £éin }. (59)
And the corresponding collective configuration space is given by
X3S = Xaa/orb(Dga x 1) =

U U U {(a20, 021, 2), (@20, 021, D)} . (60)

a20€R a21€R4+ Q€SO(3)

Finally we get NOT INVERTIBLE (1 to 2)-transformation from the laboratory to the
intrinsic frame. This is a typical situation in practical applications.

An alternative way to describe the space of quantum states is to use the space of square
integrable functions ¥: X,q — C with symmetrization condition for quantum states 1.
However, it is important to notice that, in this case, the arguments of the quantum states
(collective functions) run over the full configuration space X,q.

8 Symmetrization

An idea expressed in the last sentences of the previous section requires a bit more detailed
analysis of a structure of the space of states. The physical state spacc consists of all the
functions ¢: X, — C which fulfil the symmetrization condition

K={6(e,Q): §op =, for all g € G,}. (61)

The collective Hamiltonians H are generally defined in the wider space K., consisted of
all square integrable functions, not only symmetrized. In fact, to have physical solutions
one needs to restrict, in some way, the Hamiltonian H to the physical subspace K
There are two possible procedures:

coll -

1. PrOJectlon First, the Hamiltonian H is projected onto the physical space K:
H, = PcHPx. Second, one needs to solve it in the space of symmetrized functions
K. An important notice: in this case the Hamiltonian #, = PcHPe has the
symmetry provided by the symmetrization group G,.
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2. Selection. First, one can solve the Hamiltonian 7 in the full (in general not
symmetrized) space of states K and afterward one needs to choose the solutions
belonging to the space of symmetrized states K.

An open question is which procedure is physical?

To show differences and similarities between both approaches one needs to define the
projection operator onto the scalar representation of the symmetrization group G,) in the
space K:

. 1 -
Po=—_ g. 62
* card(G;) _Z_ g (62)
G€G,
The first procedure ‘Projection’ creates a new Hamiltonian from the original one
H, = BcHP (63)
’HII‘IJI;V) = El;vl\pl;u)' (64)

In this case the action of the projection operator }S,C|\I/1;,,) = |¥;,,) € K is closed within
the physical state space.

The Hamiltonian #; can be expressed in terms of its eigenvectors and eigenvalues by
making use of the spectral theorem

= Er|¥1,) (1. (65)

As it was mentioned earlier, the Hamiltonian ?:[1 has the intrinsic symmetry which is not
smaller than the symmetrization group G,. Sometimes it can have even a larger symmetry
group. It happens independently of the symmetry of the original Hamiltonian .

The second procedure ‘Selection’ requires first to solve the original Hamiltonian H in
the full (in general not physical) space of states K

H| o) = E,|W,,). (66)

The next step is to choose the solutions which fulfil the symmetrization condition (42).

Let us dentoe these eigenstates of (66) by |¥s.,,) and the corresponding eigenenergies F,,
by EZ;ny

PelUsn) = [Ug0) = [Wan)x. (67)

This set of the symmetrized states and the corresponding eigenenergies allow to construct
(by the spectral theorem) the effective Hamiltonian which fulfiles the required conditions:
its action is closed within the physical subspace X and it is invariant in respect to the
symmetrization group. This effective Hamiltonian H, can be written down as

7:[2 = ZE:);nI‘I’?;n)ICK:(‘I’Z;ﬂI' (68)

Both Hamiltonians #, and #, can be related. Let us assume that the kets |Uy.,) € K
are the symmetrized eigenvectors of the full Hamiltonian ’}:[, then

7:l|q’2;n>)c = E2;n|\1/2;n)lc = "ql"l’mn)lC = E2;n|‘1’2;n)lc (69)
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and the solutions obtained from the second procedure are also the solutions which we
obtain from the first procedure.

However, the OPPOSITE property is not TRUE.

To show this conjecture let us consider the eigenstates of the effective Hamiltonian 1

?‘21"1’1-.,) = EI'VI\I,I'U>‘ (70)

Then, in general, putting the projection operator B (it projects onto the physical sub-
space) and Qx = 1 — P, into Eq. (70) one obtains

H|U,,) = {7:11 + (PcHQx + QcHPe) + Qx'qun} |Wy,) =
En| %) + QeH|Ty,) # c|¥y,,), (71)

where ¢ is the proportionality coefficient.

We see that the projected hamiltonian %, can provide more solutions than the ‘gener-
ating’ Hamiltonian # used with the second procedure. It means that both symmetrization
procedures are not equivalent and can lead to different physical quantum models.

One needs to notice that the ‘Selection’ procedure is used in the standard Bohr-like
colective nuclear models.

As a pattern/example let us consider the Bohr Hamiltonian in the case of quadrupole
variables 3,7, Q

”qBohr = ﬂvib(ﬁy 7) + ”qrot(Q) + ?'A‘vr (61 Y Q): (72)
where the vibrational part of the Hamiltonian is
- hz 10,0 1 7] 0 2}
b = 3 VB, 73
Ron = =35 5058 55 ~ TR O B Ve ()
the “rigid” rotation part is given by
N J?
Hrot l ‘7‘: N (74)
Ic_l 23 Yk

and the coupling part which describes discrepances beetween the terms with the con-
stant. moment of inertia and the hydrodinamical moment of inertia which depends on the
vibrational variables 3, is of the following form

o= g 3 ”5)

k=1,2,3

This is not the difficult exercise to check that the vibrational sub-Hamiltonian has an
octahedral symmetry: . -

Sym(’H,,ib) = Oh;a- (76)
It is sufficient to check invariance of the vibrational sub-Hamiltonian with respect to the
generators of the group Oj,q, represented by the following rotations

Rl_ -(0 ™ 0) (ﬂ)'Y)_)(ﬂ)'Y)a
Rs (W/Q,”/ZW): (B,7) = (B,y—7/3). (77)
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The easiest way to proceed is to notice that the sub-Hamiltonian ﬁvib(ﬁ ) = 7-2,,1»,,(6 /03,0/0"
is a function of invariants of the group Op.q.

In a similar way one can find the symmetry of the rotational sub-Hamiltonian. It has
simple, dihedral symmetry acting on the Euler angles of the system

Sym(ﬁrot) = f)‘2h;$'l- (78)

This group has two generators which transform the collective variables and the angular
momenta operators in the following way

CZy . (:3,7) - (ﬂ; 7)) JI? - JI%:
Co: (B = (B7), Ji— Ik (79)

Similarly as in the previous case the rotational sub-Hamiltonian H,o () = Hrot(Jz, Jy, J2)
is a function of the invariants of the dihedral group ﬁgh;g. The coupling term H,- has a
bit more complicated symmetry group represented by the direct product of two groups
which, in fact does not contain the symmetrization groups as a subgroup:

611,& X ﬁzh,ﬂ ) 6};- (80)

The last property, that the symmetrization group is not a symmetry of the Bohr Hamilto-
nian shows that the Bohr Hamiltonian can be treated only as the generating Hamiltonian
which after either the ‘Projection’ or ‘Selection’ symmetrization procedure can be con-
verted into the physical quantum Hamiltonian in the intrinsic frame. Traditionally, the
‘Selection’ symmetrization procedure is used.

8.1 Summary

In this short lecture we wanted to show the main ingredients which allow to prepare
description of a physical system in the intrinsic frame. In this introduction to the problem
of physics in the intrinsic frames, to make the lecture as simple as possible, we have used
only the rotation intrinsic frame. However, a generalization to other kinds of the intrinsic
frames is traightforward.
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Abstract

These five lectures collect elementary facts about 4D supersymmetric theories with
emphasis on A = 1 supersymmetry, as well as the basic notions of supersymmetric quan-
tum mechanics. Contents: I. From symmetries to supersymmetry; II. Basic features of
supersymmetry; III. Representations of supersymmetry: IV. Superspace and superfields;
V. Supersymmetric quantum mechanics.

1 Lecture I: From symmetries to supersymmetry

1.1 Groups and symmetries

Symmetries play the central role in physics: They underlie all the theorics of interest
known to date. Their basis is the Group Theory.

¢ Gravity: Based on the local diffeomorphism group of the space-time,
Diff R, z™ = 2™ ().

o Maxwell theory and its non-abelian generalization, Yang-Mills theory: Based on the
gauge groups U(1) and SU(n), with group parameters being arbitrary functions of
the space-time point.

e Standard model, the unification of the electro-week theory and quantum chremo-
dynamics: [Gauge U(2)ew. @ SU(3).] ® [Global Flavor SU(N)y (broken)].

» String theory: Diffeomorphisms of the worldsheet (z, z).

o Supergravity, Superstrings, Superbrancs: Supersymmetry (local, global,
conformal, ....).
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Group: Some manifold G = {g,}, n = 1,2,..., such that the following axioms are
valid:

1. Closedness under the appropriate product:
9-92=9g3€G;

2. The existence of the unit element 7 € G:
g-I=1I-g=g;

3. The existence of the inverse element for any g, € G:

997 =g g=1;
4. Associativity of the product:
(91-92) g3 =91 (92 93) -

Simplest examples: 1) (1, —1) with respect to the standard multiplication; 2)integer num-
bers, with respect to the summation, with 0 as the unit element, etc.

Types of groups: 1) finite groups; 2) infinite countable groups; 3) continuous or topolog-
ical groups (Lie groups). We will be interested in the third type.

e Lie groups:

G={9(z)} z:=(z'2%...,27), r(rank)=DimG,
9(z) - 9(¥) = g(2(z.y)) €G. 9(0) =1, 2(0.9)=y, 2(z,0)==x.

For Lie groups, one can always parametrize their elements, in a vicinity of the unit element,
.
i / !
g(z) = exp{z'Ti}, [T:.Ti] = cliles Cik = —Cly s

where T; are generators and c}, are structure constants.

The generators T; span the algebra called Lie algebra. The Lie algebra is specified by its
structure constants which, in virtue of the Jacob: identity

[’I‘ly [Tk: ’111]] + [Ey [ﬂaTk]] + [Tk, [T:u T;” = 07
satisfy the fundamental relation

m —
Cmcfm + C;:Cfm + Cit sz =0.
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Example: The group SU(2):

g= exp{'[’)\aTa} s (71(1)t =T, [Taa Tb] = 1€abc 1y ;o Gy b7 ¢c=123 2
EabcEdee 1 EcacEbed T EdecEacs = 0.

There are two vast classes of symmetries in the Nature:

e L. Internal symmetries: Isotopic SU(2), flavor SU(n), etc. Their main feature:
They are realized as transformations of fields without affecting the space-time co-
ordinates. The generators are matrices acting on some external indices of fields, no
any z-derivatives are present.

Example: Realization of SU(2) on the doublet of fields ;(z) (“neutron - proton™)

1 1 1
Ua)kvk(x) [50}1: _Ub] = gbe70c -

() = ihug : :

Ta0p = 6abI + 7'€abcac ’

o, are Pauli matrices:

(01 (0 (1 0
gy = 10 y O2 = i 0 y 03 = 0 -1 -

e II. Space-time symmetries: Lorentz, Poincaré and conformal groups. Generators
in the realization on fields involve z-derivatives.
Example: Transformation of the scalar field (z) in the Poincaré group:

§p(z) 1= —ic™ P — ™ Lnp(z) = —c™Onip(z) — w['""%(zmaﬂ — Tn0m)plz)

1 1
P, = ;37" . Lpn = ;(;zm(?n —2,0m), myn=0,1,2,3.
i

1.2 Invariant Lagrangians

The primary fundamental symmetry principle is the invariance of the action:

S:/Ma:£(¢A,a¢,4,¢,,,...), 88 = ¢ 5¢A—0(—)5£ OmA™ .

Example: The free Lagrangian of the scalar field

£, = 50"9(a)ond(a)

transforms under the Poincaré group as

1
Bl = ~ 2 0n (W T $0,0), 6.LY. = — c B (8700 ).
f 2 free
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whence the invariance of the relevant action follows.

In the systems with few scalar fields one can realize internal symmetries. The free La-
grangian of one complex field

L3, = 0" ¢(z)0nd(x)
Is invariant under U(1) symmetry
06 =1Xo, 06 = —i)o,

three real scalar fields can be joined into a triplet of the group SU (2):

3 , -
ACS'T)PP = _()non( )Omf)a(-’) 00, = Euh(‘/\bé = 6[’.(]'1)?( =
One more possibility to construct SU(2) invariant Lagrangian is to join two complex
scalar fields into SU(2) doublet
LY = "0 (2)0md™(x)

ree

| ! a - 1 —
5(;’)0 = 3/\/:(0'"):?(915 s 6¢a = _EAtl(Ua)g(/)d .= 6[:(4 -

free

Extending the sets of ficlds (and adding interaction terms), we can further enlarge internal
syrimetries.

The characteristic feature of all these symmetries is that the group parameters are ordinary
comruting numbers, and so the group transformations do not mix bosonic fields (Bose-
Einstein statistics, integer spins 0,1,...) with fermionic fields (Fermi-Dirac statistics,
hall-integer spins 1/2,3/2,...). The bosonic and fermionic parts of the Lagrangian arc
invariant sepurately.

1.3 Supersymmetry as symmetry between bosons and fermions

Let us now consider a sum of the free Lagrangians of the massless complex scalar field
w(x) and the Weyl fermionic field v (x)

£¢+u'/ = 0”19')6"1'»4 - _[ l" m ur: ml’ - 0". Q{J(X(O'm)ud’b")o} .
where (0™)ae = (6aa. (0%)aa) are the so called sigma matrices, the basic object of (he
spinor two-component formalism of the Lorentz group (they are invariant under simul-
tancous Lorentz transformation of the vector m = 0,1,2, 3, and spinor a, &« — 1,2 indices).
The evident symrmetries of this Lagrangian are Poincaré and phase U(1) symmelyics which

scparately act on (z) and ¥°(z).
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However, there is a new much less obvious symmetry. Namely, this Lagrangian transforms
by a total derivative under the following transformations mixing bosonic and fermionic
fields

(SQO = —Ga’l_ba7 (5(5 = —‘l/T}dEd N (S’l;’)a = 2i(am)adE"’6m<p .

One sees that the transformation parameters ¢, & have the dimension cm!/2, so these
transformations do not define an internal symmetry (the relevant group parameters would
be dimensionless). Moreover, for the action to be invariant, these parameters should anti-
commute among themselves and with the fermionic fields, {¢, ¢} = {¢.&} = {¢(7). v} = 0.
and commute with the scalar field, [¢(€), ¢] = 0, and with the parameters of the ordinary
syminetries, e.g., [e(€),c™] =0.

To see which kind of algebraic structure is behind this invariance one needs to consider
the Lie bracket of two successive transformations on the scalar o(z):

. we _ me L
(5152 - (5251)<P = —(63511#"0) - (61 521/10) =2 (GIUmGZ — €20 61) (73171&;).
Thus the result is an infinitesimnal 4-translation with the parameter i (e10™€, — €20™8)).

Rewriting the ¢ variation in the form
599 =1 (EaQo + g('xQd) @
and taking into account that the spinor parameters anticommute with Q,, Q%, we find that

the above Lie bracket structure is cquivalent to the following anticommutation relations
for the supergenerators

{Qus @3} =2(™)opPr: Pr= 5
{erv Qﬂ} . {Qé: Qﬂ} = 01
[Pms Qa] = [Pm; Qa] =0.

This is what is called A" = 1 Poincaré superalgebra.

2 Lecture II: Basic features of supersymmetry

The full set of the (anti)commutation relations of the A = 1 Poincaré superalgebra reads
{Qm Q/j} =2 (Um)a,épm s
{QﬂaQﬁ} = {Qd) Qﬂ} = 0'
[Pnly Qa] = [va Q(x] . 01 (21)
1 - g ~
[Jmm Qa] = _5 (Umn)fQﬂ 3 [Jm'm Qd] =3 (‘_7mn)aﬁQ5 3
[Jmna Rq] =1 (nnst . nmsp‘n) 3
[Jmm qu] =1 (nnstq - nmanq + nansm - quan) 3
[Ry Qa] = Qo 3 [R« Qd] - _Q(x [Ra Pm] = [R’ Jmn] =0.

N | o=
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Here Jmn = Lyn + Sin are the full Lorentz group generators (Smn is the spin part acting
on the external vector and spinor indices) and R is a generator of an extra internal U (1)
symmetry (the so-called R symmetry). Also,

B

a !

(am&n _ o,na_m)

M| .

Nmn = dlag(]-: _]-a _11 _]-) 3 (Umn)g =
- 5 1, _ ; Ly . .
(D_nm)fI _ 5 (oman _ anom)g ) sméa _ (5“"‘: _Uaaa) )
Some important common features and consequences of supersymmetry can be figured out
just from these (anti)commutation relations.

e The Poincaré superalgebra is an example of Z,-graded algebra. The latter is defined
in the following way: one ascribes parities £1 to all its elements, calling them, re-
spectively, even (parity +1) and odd (parity —1) elements, and requires the structure
relations to respect these parities:

[0dd, odd] ~ even, [even,odd] ~ odd, [even,even] ~ even.

From the above (anti)commutation relations we observe that the spinor generators
Qa: Qa can be assigned the parity -1 and so they are odd; all bosonic generators can
be assigned the parity +1 and so they are even.

e Lie superalgebras satisfy the same axioms as the Lie algebras, the difference is that
the relevant generators satisfy the graded Jacobi identities because the fermionic
generators are subject to the anticommutation relations. E.g..

{[B:, F2], F3} = {[F3. B1), Fa} + [{F2, F3}, B1] = 0,
{F, B} B+ ({(Fs, AL}, B+ [{Fo. F3}. F) =0,

where B, is a bosonic generator and Fy, Fy, F3 are fermionic ones.

« Since the generators Qq, Qe are fermionic, irreducible multiplets of supersymmetry
(supermultiplets) should unify bosons with fermions. Action of the spinor generators
on the bosonic state yields a fermionic state and vice versa.

e Since the translation operator P, is non-vanishing on any field given on the Minkowski
space, the same should be true for the spinor generators as well. So any ficld should
belong to a non-trivial supermultiplet.

e It follows from the relations [P, Qa] = [Pm, Qs = 0 that [P%,Q.] = [P?,Q.] = 0.
The operator P?? is a Casimir of the Poincaré group, P? =m?. Soitis also a Casimir
of the Poincaré supergroup. Hence all components of the irreducible supermultiplet
should have the same mass. No mass degeneracy between bosons and fermious is
observed in Nature, so supersymmetry should be broken in one or another way.

e In any representation of supersymmetry, such that the operator P, is invertible,
there should be equal numbers of bosons and fermions.
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e In any supersymmetric theory the energy P should be non-negative. Indeed, from
the basic anticommutator it follows

3 (1Qal? +1Qa?) = 4P > 0.

a=1,2

o Rigid supersymmetry, with constant parameters, implies the translation invariance.
Gauge supersymmetry, with the parameters being arbitrary functions of the space-
time point, implies the invariance under arbitrary diffeomorphisms of the Minkowski
space. Hence the theory of gauged supersymmetry necessarily contains gravity. The
theory of gauged supersymmetry is supergravity. Its basic gauge fields are graviton
(spin 2) and gravitino (spin 3/2).

2.1 Extended supersymmetry

Supersymmetry allows one to evade the famous Coleman-Mandula theorem about impos-
sibility of non-trivial unification of the space-tine symmetries with the internal ones. It
states that any symmetry of such type (in dimensions > 3), under the standard assumnp-
tions about the spin-statistics relation, is inevitably reduced to the direct product of the
Poincaré group and the internal symmetry group.

The arguments of this theorem do not apply to superalgebras, when one deals with
both commutation and anticomnmutation relations. Haag, Lopushanski, and Sohnius
showed that the most general superextension of the Poincaré group algebra is given by
the following relations

{@L Qi) = 26; (0™) P
{QL, Q3 =apZ, {Qui,Qp;} = €432,
5,98 = =i (850 = 8104 ) o 173.Qund = (5 — 850
T3, 1] = i (8T — &T7) .
where T} ((T})' = =T], T} = 0) are generators of the group SU(N). The generators

Z49 = — 77, Zu = —Z;; are central charges, they commute with all generators except the

SU(N) ones
[Z,Z] = [Z:Z] = [Z'P] = [ZJ] = [Z’Q] = [ZQ] =0.

The relevant supergroup is called A -extended Poincaré supergroup.

Due to the property that the spinor generators Q;,Qék carry the internal symmetry
indices, the supermultiplets of extended supersymmetries join fields having not only dif-
ferent statistics and spins, but also belonging to different representations of the internal
symmetry group U(N). In other words, in the framework of extended supersymmetry the
actual unification of the space-time and internal symmetries comes about. The relevant
supergravitics involve, as a subsector, gauge theories of internal symmetries, i.c. they
yield non-trivial unifications of Einstein gravity with Yang-Mills theories.

115



2.2  Avuxiliary fields

Arn important ingredient of supersymmetric theories is the auziliary fields. They ensure
the closedness of the supersymmetry transformations off mass shell.

Let us come back to the realization of A" = 1 supersymmetry on the fields ¢ (z), v, (2)
and calculate Lie bracket of the odd transformations on v, (x):

((51(52 - 52(51)1{‘),’, e (61(77"62 - f20'"€|) Omu'zo, <+ 27 [Cl(,(_2d(0-’7n)d'381n1//)5 — (1 e d 2)] B

The first term in the r.h.s. is the translation one, as for ¢(z). However, there is one extra
term. It is clear that the Lie bracket should have the same form on all members of the
supermultiplet, i.e. reduce to translations. The condition of vanishing of the second term
is

G Om = 0" 0 = 0.

But this is just the free equation of motion for 4, (z). Thus N' = 1 supersymmetry is
closed only on-shell, i.e. modulo equations of motion.

How to secure the off-shell closure? The way out is to introduce a new field F(x) of
non-canonical dimension cm™ and to extend the free action of ¢, ¥, as

l ; m X3 « Lo ™m ey i
Lorerr = 000 = 2 [67(07 a0t = O™ (™o | + FF.

It is invariant, up to a total derivative, under the modified transformations having the
correct closure for all fields:

5¢ = _anas 5"4")0 = _2i(gm)adéd0m¢ - 260F1 0F = _igi(olm)adam'wa . (22)
The auxiliary fields satisfy the algebraic cquations of motion
F=F=0.

After substitution of this solution back in the Lagrangian and supersymmetry transforma-
tions. we reproduce the previous on-shell realization. The auxiliary fields do not propagate
also in the quantum case, posscssing delta-function propagators.

The only (but very important!) role of the auxiliary fields is just to ensure the correct
off-shell realization of supersymmetry, such that it docs not depend on the precise choice
of the invariant Lagrangian, like in the cases of ordinary symmctries.

The simplest non-trivial choice is
ry i, 9 s p el _m TG o
L:Wz e 0'"(P0-m¢ - Z [1;’0((7"')11661111;}‘ - dmw (0 )al.iw ] + FF
1 5 1 )
+ [m (¢F = wa> +g (¢'F - 5¢>u5w) + c.c.} .

This model was the first example of renormalizeble supersymmetric quantum field theory
and it is called the Wess-Zumino model, after names of its discoverers. The Lagrangian
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Ly is invariant under the same transformations as the free Lagrangian we have consid-
ered before.

The Wess-Zumino model Lagrangian was originally found by the “trying and error”
method. The systematic way of constructing invariant off-shell Lagrangians is the su-
perfield method which we will discuss in the Lectures IV and V.

Using this systematic method, one can equally construct more general Lagrangians of
the fields (¢, v,, F), invariant under the same linear off-shell N' = 1 supersymmetry
transformations (2.2). After eliminating the auxiliary fields from these Lagrangians by
their equations of motion, we will obtain the Lagrangians in terms of the physical fields
(¢, ¥o) only. These physical Lagrangians are invariant under the nonlinear on-shell N = 1
supersymmetry transformations the precise form of which depends on the form of the on-
shell Lagrangian, though it is uniquely specified by the off-shell Lagrangian.

To summarize, the fields (¢, %, F') form the set closed under the off-shell N = 1 super-
symmetry transformations, and it is impossible to select any lesser closed set of fields in it.
Thus these fields constitute the simplest irreducible multiplet of A/ = 1 supersymmetry.
It is called scalar N' =1 supermultiplet.

3 Lecture III: Representations of supersymmetry

The fields on Minkowski space are distributed over the irreducible multiplets of the
Poincaré group according to the eigenvalues of two Casimirs of this group: the square
of P, (which is 7?) and the square of the Pauli-Lubanski vector (which o s(s+ 1), where
s is the spin of the field). For the case of zero mass the diverse Poincaré group mmlti-
plets are characterized by the helicity, the projection of spin on the dircction of motion.
What about irreps of supersymmetry? Once again, the contents of the supermultiplets
are different for massive and massless cases.

3.1 Massive case
Choose the rest frame
P = (m.0,0,0).
In this frame
a) {Qu: Qs} = {Qs, Q3} = 05 (b) {Qu.Qs} =2md 4

ie. N = 1 superalgebra becomes the Clifford algebra of two mutually cou]ugated
fermionic creation and destruction operators. Q4 and Q,. Define the “Clifford vacuum”
|s > as the irrep of the Poincaré group with mass m and spin s:

Qsls >=10.
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An irrep of the full supersymmetry can be then produced by the successive action of Q4
on the vacuum

State Spin # of components
s) s 25 +1
Qals) s+1/2 45+ 2
(Q)?|s) s 2s+1

Here (Q)% = Q4Q%. Further acting by @ yields zero. Thus the full number of states is
2%(2s + 1), one half being fermions and the second one bosons. The dimensionality of the
Clifford vacuum (the number of independent states in it) is just djs» = 25 + 1.

Since off shell 12 # 0, this spin contents characterizes any off-shell supermultiplet. E.g.,
the scalar multiplet corresponds to s = 0: In this case s + 1 /2 =1/2 and we are left just
with two complex scalars and one Weyl fermion.

Thus massive A = 1 supermultiplets are entirely specified by the spin s of their Clifford
vacua. This spin is called superspin Y of the given N = 1 supermultiplet. Each multiplet
with P2 # 0 and superspin Y involves the following set of spins '

1
2 1
The scalar supermultiplet (Y = 0) contains spins 1/2, (0)? and describes N = 1 matter.
The supermultiplet with ¥ = 1/2 involves states with spins 1, (1/2)2,0 and stands for the
gauge supermultiplet. The supermultiplet with ¥ = 3/2 has the spin content (3/2)%,2, 1.
It is the so-called N' = 1 Weyl supermultiplet. It corresponds to conformal N = 1
supcrgravity.

1
Y, = Y- .
,Y+2,} Y

3.2 Massless case
We can choose the frame
P, =(p,0,0,p), P™P,=0.
The only non-zero anticommutator in this frame is
{QaaQ_ﬁ} =2p(I +0)aa:
The full set of the antcommutation relations is
{@:,Qi} =4p, iQhQ‘)} ={Q2,Q5} ={Q2.Q;} =0,
{Qa, Qs = {Qs,Qs} =0.
Then one can define the Clifford vacuum |A > with the helicity A by the conditions
Q1A >= @Qa2|A >=Qs|A >=0.

The only creation operator is Q;. Due to its nilpotency, (Q;)? = 0, the procedure of
constructing the irreducible set of states terminates at the 1st step:

State Helicity # of components
[A) A 1
Qi) A—1/2 1
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Thus in N = 1 supersymmetry the massless supermultiplets are formed by pairs of states
with the adjacent helicities, [A), |[A=1/2). In particular, massless particle with zero helirity
should be accompanied by a particle with the helicity —1/2, a particle with A = 1/2 should
be paired with a particle having A = 0, helicities &1 can be embedded either into the
multiplets (1,1/2), (—1/2,-1), or (—1,-3/2), (3/2,1), the minimal embeddings for the
helicities £2 are into the multiplets (2,3/2) and (—3/2, —2), etc. The multiplets with the
opposite helicities are related through CPT conjugation.

3.3 Massless multiplets of N extended supersymmetry

In this case (without central charges) the only non-vanishing anticommutator is

{Q1,Q;} = 45}p, (3.3)
The Clifford vacuum |\ > is defined by
Q1Y) = Q3A) = Qul)) =0, (3.4)

and the irreducible tower of states is constructed by acting on the vacuum by A/ indepen-
dent creation operators Q;,:

State Helicity # of components
Y A 1
_ Qiil’\> A-1/2 N
Q1:Q1;1N) A-1 NN -1)/2
@MY A-NP2 1

For N = 2 supersymmetry, irreps arc formed by the states |A), |A — 1/2)2, |\ — 1), ete.

Recall that the multiplets with opposite helicities ean be obtained via CPT conjugation.
Of special interest are the so-called “seif-conjugated” multiplets which, from the very
beginning, involve the full spectrum of helicities from A to —\. Equating

A=N/2=-) = A=N/4, (3.5)

we find that, up to A = 8, there exist the following self-conjugated massless supermulti-
plets

N = 2 matter multiplet: 1/2,(0)%, —1/2;

N = 4 gauge multiplet: 1,(1/2)%, (0)°, (~=1/2)%, —1;

N = 8 supergravity multiplet: 2,(3/2)%, (1)%, (1/2)%®, (0),

(=1/2)%, (-1)®, (-3/2)%, -2.

Note that for A" > 8 the massless supermultiplets would include helicities > 2. The
relevant theories are called “higher-spin theories” and, for self-consistency at the full
interaction level, they should include the whole infinite set of such spins (helicities).

Such complicated theories are under intensive study at present. but their consideration is
beyond the scope of my lectures.
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4 Lecture IV: Superspace and superfields

4.1 Superspace

When considering one or another symmetry and constructing physical models invariant
with respect to it, it is very important to find out the proper space and/or the funda-
mental multiplet on which this symmetry is realized in the most natural and simplest way.

The Poincaré group has a natural rcalization in the Minkowski space z™,m = 0,1.2, 3,
as the group of lincar rotations and shifts of z™ preserving the flat invariant inter-

val ds? = nndz™da”. Analogously, supersymmetry has a natural realization in the
Minkowski superspace.

The translation generators I, can be realized as shifts of 2™, 2™ = 2™ + ¢™. In the case

of N' = 1 supersymmetry we have additional spinor generators Q,, Q4 and anticommuting

parameters ¢®, @, Then it is natural to introduce new spinor coordinates 6%, 8% having

the same dimension cm!/? as the spinor parameters and to realize the spinorial generators
as shifts of these new coordinates
6 =6+ ¢, 0¥ =6%+&.
Tl extended manifold
M(4|4) — (I'm.’ 00, e_d) )

is called N’ = 1 Minkowski superspace.
Its natural gencralization is

M(4|4N) _ (.,L.m! 62, gm')’
and it is called N extended Minkowski superspace.

The spinor coordinates are called odd or Grassmann coordinates and have the Grassmann
parity —1, while ™ are even coordinates having the Grassmann parity +1

[b2,2™) = [p*".2™) = 0. {67.67} = {67,6°*} = 0.
The spinor coordinates also anticommute with the parameters ¢, 7.

Since two supertranslations yield a shift of z™, they should be non-trivially realized on
™. In the N' =1 case:

z™ = z™ —i(e0™8 — 00™E), (6102 — 6201)F™ = 2i(€10™E — €20™E)).

(an analogous transformation takes place in the general case of A extended supersymme-
try).



4.2 Superfields

Superfields are functions on superspace, such that they have definite transformation prop-
erties under supersymmetry. The general scalar A" = 1 superfield is ®(z,4,0) with the
following transformation law

'(2,0,0) = o(x,0,0).

The most important property of superfield is that its series expansion in Grassmann co-
ordinates terminates at the finite step. The reason is that these coordinates are nilpatent,
because they anticommute. E.g., {64,05} = 0= 6,0, = 6,0, = 0. Then

®(z,6,0) = ¢(z)+ 6% Ya(z) + O X*(z) + 6> M(z) + 6% N(z)
+00™0 Am(z) + 07 6% po(z) + 6% 85 A%(z) + 62 6% D(z) ,
where 6% 1= 0%0, = ¢,50%67 , 0% = 0:6% = Cdgégéd: €12 = €j3 = L.

Here one deals with the set of 8 bosonic and 8 fermionic independent complex companent
fields. The reality condition

@) =%

implies the following reality conditions for the component ficlds

¢(T) = ¢(T) ) )_(d(z) = 1*I’a(:’:) . A[(I) = m‘ Am(z) = Am(:l") :

X(z) = p*(z), D(z)=D(x).

They leave in ® just (8 + 8) independent real components.

The transformation law @'(z,8,8) = ®(z — 0z,6 — €. 6 — €) implies
oP o9 o%

5@=—6 W—Eua—én—(sﬂ' %El(f Qa‘i"f_,,Q)@,
. a b my 8 N — i a x( _m a
er - Z% +0 (U )mxaxm ) Qa - 109_“ -0 (U )ad% 9
- . 19
{chQd} = 2va {Qn,Qﬁ} = {QQ-QH} = 0: Pm = ;(93:_’" .

The relevant component transformations are read off from the formula §& = ¢+ 828, +
...+ 6%0%5D. They are

0p=—-cp =X, o= —1(0"8)0Ond — 2caM — (6™ E)0Am . .. .
l ] —
6D = Eampa'"f - %ca”'am)\ )
These transformations uniformly close on ™ translations without use of any dynamical
equations. However, the supermultiplet of fields encompassed by ®(z,8,8) is reducible: it
contains in fact both the scalar and gauge N = 1 supermultiplets (superspins ¥ = 0 and
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Y =1/2). How to describe irreducible supermultiplets in the superfield language?

An important element of the superspace formalism are spinor covariant derivatives

5} I3} _ 0 0
Da= e 4+ #8°(0™as s Do = — o — i0%(0™) s 5
o=t eagme Da= =g — 80 Masg
{Da.Ds} = —2i(0™)aaOm, {Da,Ds} = {Da, D3} =0.
The covariant spinor derivatives anticommute with supercharges, {D,Q} = {D, Q} =0,
so D,® and D;® are again superfields, e. g,

0D6® = Dad® = Dqui (*Qq + 8Q%) @ = i (¢*Qu + €4Q%) Do® .

Now, it becomes possible to define the “irreducible” superfields. (Analogy: In Minkowski
space the vector field A, is known to carry two Poincaré spins 1 and 0. The irreducible
components are distinguished by imposing on A,, the supplementary differential condi-
tions

0"Am=0¢spin 1, 0,4, — 0yA, =04 spin 0 J)
Analogous conditions can be imposed on the superfield ® in order to single out the irre-
ducible multiplets with the superspins 0 and 1/2. These conditions are defined with the
help of the covariant spinor derivatives.
The simplest condition of this type is the chirality or anti-chirality conditions
(a) Da®1(2,6,0) =0, or (b) Da®r(z.0,8)=0.
Eq. (a), e.g., implies
®1(2,0,0) = pr(z1,0) = d(zr) + 0%Palzs) + 00F (z1),
27 =z™ +ihc™d,
i.e. we are left with the independent fields @, ¥, F'
From the general transformation laws of the component fields it follows that this set is
closed under A = 1 supersymmetry:
S = —eh, 6o =—2i(0"E)aOnd — 26 F, OF = —ie6™ 0.
These are just the transformation laws of the scalar N = 1 supermultiplet.

The geometric interpretation: the coordinate set (z7,6%) is closed under N = 1 super-
symmetry:

0z = 2100™e, 6% = ¢*. (1.6)
It is called left-chiral N' = 1 superspace.
In the basis (7, 6%,8%) the chirality condition (a) is reduced to the Grassmann Cauchy-
Riemann conditions:

_ a
qu)L(fL‘L,G, 0) =0 = aT‘aq)L =0 = @L = QDL(.’L'L,Q) . (47)
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4.3 Superfield actions

Having superfields, one can construct out of them, as well as their vector and covariant
spinor derivatives, scalar superfield Lagrangians. Any local product of superfields is again
a superfield:

L=L(D D, Ds®,0,9,...), L=i (€°Qa + €dQ_d) L.

It is easy to see that the variation of the highest component in the # expansion of any
superfield is a total derivative. Then one takes the highest component field in the € ex-
pansion of the superfield Lagrangian and integrates it over Minkowski space. It will be
just an action invariant under A’ = 1 supersymmetry!

A manifestly covariant way to write supersymmmetric actions is to use the Berezin inte-

gral. It is equivalent to differentiation in Grassmann coordinates. In the considered case
of N = 1 superspace it is defined by the rules

/ 06?2 =1, / 06?2 =1, / d*0d*6 (6)' =1, (8)* = (6)*(6)*.

Hence the Berezin integral yields an efficient and manifestly supersymmetric way of sin-
gling out the coefficients of the highest-order # monomials in the superfield Lagrangians.

The simplest invariant action of chiral superfields producing the kinetic terms of the scalar
multiplet is as follows

Skin = /ddmd*B o(xr,0)@(zr,0), g = (27) = 2™ — i6a™d .
After performing integration over Grassmann coordinates, one obtains

g / iz (amqaam¢ — oo+ FF) .

The total Wess-Zumino model action is reproduced by adding, to this kinetic term, also
potential superfield term

Spot = /d4$Ld29 (%cpa + %go’) +cec..

This action is the only renormalizable action of the scalar A = 1 multiplet. In principle,
one can construct more general actions, e.g., the action of Kahler sigma model and the
generalized potential terms,

Skin = /d4xd40K [Lp(zL,ﬁ),(b(zR,B_)] , 5',,0, = /d41:Ld20P(<p) +c.ec..
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The multiplet with the superspin ¥ = 1/2 is described by the gauge superfield V(. 6, 6)
possessing the gauge freedom
5V (x,6,0) = i[\(z™ — ifo™8,0) — A(x™ + i65™8. )],

where A(zp,0) is an arbitrary chiral superfield parameter.

Using this freedom, one can fix the so called Wess-Zumino gauge
Vivz(z,0,0) = 200™8 An(z) + 2i6°0° vo(x) — 2i6°05 0" (2) + 6°6% D(2) .
Thus in the WZ gauge we are left with the irreducible set of ficlds forming the gauge

(or vector) off-shell supermultiplct: The gauge field A,,(7), AL (z) = A, + 0, A(z), the
fermionic field of gaugino ¥, (z), ¥s(x) and the auxiliary field D(z).

The invariant action is written as an integral over the chiral superspace
_ 1 . j =
Spouse = g / dCy (WoW,) +cc., Wo=—5D?DeV, DaWa =0.
Everything is casily generalized to the non-abelian case. The corresponding component
off-shell action reads

1 - .
S— / d'z Tr [—ZF"'“F,,,,, — W™D + %D" _

What about superfield approach to higher A" supersyminetries? The difficulties arise be-
cause the relevant superspaces contain too many 6 coordinates and it is a very complicated
problem to define the superfields which would correctly describe the relevant irreps.

For N' = 2, the off-shell gauge multiplet contains the vector gauge ﬁqld An (), the com-
plex scalar physical field ¢(z). the SU(2) doublet of Weyl fermions ¢, (x), vai(r) and the
auxiliary real SU(2) triplet DU (x).

There is no simple way to define N = 2 analog of the N/ = 1 gauge prepotential V
(unless we apply to N' = 2 harmonic superspace). However, one can define the appro-
priate covariant superfield strength W. In the abelian case. it is defined by the off-shell
constraints

(@) DLW =0, (b)D*D5W = DiD¥*W ,
which, in particular, imply the Bianchi identity for the gauge field strength. The invariant
action is an integral over chiral A = 2 supcrspace

S ~ / dhe,d'0W? + e

What about maximally extended A = 4 super Yang-Mills? It has no superfield formu-
lation with all A7 = 4 supersynnnetries being manifest and off-shell. There is A = 1
superfield forimilation with one gauge superfield and three chiral superfields; N =2 for-
mulation in terins of N — 2 gauge superficld and one massless matter hypermaulliplet. The
latter possesses an off-shell formulation only in the N = 2 harmonic superspace. At last,
exists a formulation with three manifest off-shell supersymmetrics - in A = 3 harmonic
superspace. It involves gauge superfields only.
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5 Lecture V: Supersymmetric quantum mechanics

5.1 Supersymmetry in one dimension

Quantum mechanics can be treated as one-dimensional field theory. Correspondingly, the
relevant supersymmetry can be understood as the d = 1 reduction of higher-dimensional
Poincaré supersymmetry. More generally, the A-extended d = 1 “Poincaré” supersym-
metry can be defined by the (anti)commutation relations

{Q™,Q"}=20""H, [HQ"=0,Q"=Q™, m=1,...N.

The associated systems are models of supersymmetric quantum mechanics (SQN) with
H as the relevant Hamiltonian. The SQM models have a lot of applications in various
physical and mathematical domains.

We will deal with the simplest non-trivial N' = 2,d = 1 supersymmetry

1 i0? ‘=i 1 _,0?
ﬁ(Q+Q), Q ﬁ(Q Q7).

{Q,Q}:ZH, Q2=Q2:0 [H'Q]:[HQ]=O

It is also instructive to add the commutators with the generator J of the gronp O(2) ~
U(1) which is the automorphism group of the A = 2 supcralgebra:

[J'»Q]=Q7 ['LQ]=_Q¢ [H.]]=0

Q=

N = 2,d = 1 superspace is defined as:

MU = (1.0.6), 60=¢, 60=¢, 6t=i(ch+b).
Onc can also define the A'=2 covariant spinor derivatives:

D = 8, — 60, D = —09; + 160, , {D,D} = 2i5, .
The simplest superficld is the real one, ®(t, 6, 8),

¥, 60,6) = 0,0,0) = 60 = —0t0, — eBp® — 295D .
On the component fields appearing in the 8 expansion of ®,
®(t,6,0) = z(t) + 0y (t) — Bp(t) + 68y(t),
N'=2 supersymnetry is realized as
br=&)— e, 6y =&(iz —y), 6% = —e(it +y), 6y = i(ed + &)

The superfield ®(t,6,8) comprises the irreducible A = 2,d = 1 multiplet (1.2,1). Other
N = 2,d = 1 multiplets exist as well, e.g., (2,2, 0) which is described by a chiral
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N = 2,d =1 superfield.
The simplest invariant superfield action containing interaction reads
SWV=2) — / dtd?9 [D@ D& + W(cp)] .

Here W(®) is the superpotential. After integrating over Grassmann coordinates, we
obtain

SW=2 - / dt [z'z —i (sz - 1,51;3) + 2+ Y0 W (z) + (w)agw(z)] .
The: next step is to eliminate the auxiliary field y by its algebraic equation of motion
1
=—=0,W.
y=-30
The on-shell action is then

= _ . 1 _
s — [ar |2 =i (30 - 90) - @) + GDEW )

The action is invariant under the transformations
br=8p — e, i = e(u+—3 W), 69 = —e(it — —8 W).

5.2 Hamiltonian formalism and quantization

The quantum Hamiltonian obtained in a standard way from the canonical one reads

1., (aw\?| 142w (w ;”B)
=3P+ &) |27 \"W %)

where we have Weyl-ordered the fermionic term. The supercharges calculated by the
Noether procedure and then brought into the quantum form through passing to the op-

erators are
il 5 . dW Q—’; ,_ZdW
Q=vy|\pti_= |, =y{p-i_— ).
The algebra of the basic quantum operators is
g8l =i, (b9} =3

Using it, we can calculate the anticommutators of the quantum supercharges and check
that they form N = 2,d = 1 superalgebra

{Q.Q}=2H, {Q,Q}={Q.Q}=0. (5.8)
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By the graded Jacobi identities, one also derives

Q. H]=[Q.H]=0.
We use the standard realization for p, p = %%, and the Pauli-matrix realization for the

fermionic operators
P L (01 + i09) z/j L (o1 —i02) 7(?) 11:)(1:‘ 1

= 01 T 102), = — 10: Y — Y = 2 03.

: 2 \/5 1 2 9 \/§ 1 2}y Y ¢ 293

Then the Hamiltonian and supercharges are represented by 2 x 2 matrices

H =2 [-07+ (W.)] ((1) ?)"}IW“ ((1’ ‘01)

@=-5 (0 o )@-wy a=-5 (9 ) @sm.

Thus the wave functions form a doublet and, taking into account the conditions (@, H] =
(@, H] = 0, the relevant matrix spectral problem is

n(8)-2(0)
Y Y
It is equivalent to the two ordinary problems
1
Hyithe = Aips, H: = —Z(O;ZFW’:)(Z?::I:W,).
Using the intertwining property

H_(8; + We) = (8, + Wa)Hy , Hy(0; — W,) = (8, — Wa)H_,

now it easy to show that the states

Qg )= (e ) (3 )=(Cia twm )

are the eigenfunctions of H, and H_ with the same eigenvalue ) as ¥4 and ¥_. Thus
we observe the double degeneracy of the spectrum. This double degeneracy is the most
characteristic feature of the A = 2 supersymmetry in d = 1 (and of any higher A super-
symmetry in d = 1).

In general, the Hilbert space of quantum states of N = 2 SQM is divided into the following
three sectors

(a) Ground state : QU =Q¥, = HU, =0,
(0) HUy = BV, QU #0, Q¥, =0,
(C) H\I/2=E‘I/2, Q‘I’g#O, Q\I/2=0

Based on this consideration, one can conclude that many QM models with the double
degeneracy of the energy spectrum can be identified with some N = 2 SQM model.
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6 Summary

e Supersymmetry between fermions and bosons is a new unusual concept in the math-
ematical physics. It allowed to construct a lot of new theories with remarkable and
surprising features: supergravities, superstrings, superbranes, N’ = 4 super Yang-
Mills theory (the first example of the ultraviolet-finite quantum feld theory). etc.
It also allowed to establish unexpected relations between these theories, e.g., the
AdS/CFT (or “gravity/gauge”) correspondence, AGT correspondence, cte.

e It predicts new particles (superpartners) which still await their experimental dis-
covery.
e The natural approach to supersymmetric theorics is the superficld methods.

For those who wish to get deeper insights into the subjects sketched in these lectures, I
may recommend the text-books and the review papers in the list of references below.
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Abstract

The motivations of the 1/N expansion method in quantum field theory are explained
in an introductory part. The method is first illustrated with the O(N) model of scalar
fields. A second example is considered with the two-dimensional Gross-Neveu model of
fermion fields with global U(N) and discrete chiral symmetries. The case of QCD is
briefly sketched.

PACS numbers: 11.10.Gh, 11.10.Hi, 11.15.Pg, 11.30.Hv, 11.30.Qc, 12.38.Aw.
Keywords: Large number of components, Global symmetries, Spontaneous symmetry
breaking, Asymptotic freedom, Dynamical mass generation, Mass transmutation.

1 Introduction and motivations

Methods of resolution of quantum field theory equations are very rare. Usually one uses
perturbation theory with respect to the coupling constant g, starting from free field theory.
The size of (the dimensionless) g gives an estimate of the strength of the interaction. The
presence in the theory of other parameters than the coupling constant may allow the use of
perturbation theory with respect to those parameters. This may enlarge the possibilities
of approximate resolutions of the theory.

A new parameter may emerge if the system under consideration satisfies symmetry
properties with respect to a group of internal transformations. For example, constituents
of the system (particles, nucleons, nuclei, energy excitations, etc.) belonging to different
species, may have the same masses and possess the same dynamical properties with respect
to the interaction. In such a case interchanges between these constituents would not
modify the physical properties of the system. The latter interchanges might alse be
considered in infinitesimal or continuous forms as in the case of the rotations in ordinary
space. The system then satisfies an invariance property under continuous symmetry
transformations. In many cases, the invariance might also be only approximate.

Among the continnous symmetry groups, two play an important role in physical prob-
lems. The first is O(N), the orthogonal group, generated by the N x N orthogonal
matrices. It has N(N —1)/2 parameters and generators. The second is SU (N), the uni-
tary group, generated by the N x N unitary complex matrices, with determinant equal
to 1. It has (N? — 1) parameters and generators.
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In particle and nuclear physics, one has the approximate isospin symmetry group
SU(2) and the approximate flavor symmetry group SU(3). Using these approximations,
one can establish relations between masses and physical parameters of various particles,
prior to solving the dynamics of the system under consideration.

In the cases of the groups O(N) and SU(N) mentioned above, N has a well defined
fixed value in each physical problem. N = 2,3. .. .. ete. It is however tempting to consider
the case where N is a free parameter which can be varied at will. In particular, large
values of NV, with the limit N — oo, seem to be of interest. At first sight. it might seem
that taking large values of N would lead to more complicated situations, since the number
of parameters increases and the group representations become intricate. However, it has
been noticed that when the limit is taken in an appropriate way, in conjunction with the
coupling constant of the theory, it may lead to simpler results than the cases of finite V.
If this happens, then an interesting perspective of resolution is opened.

One may solve the problem in the simplified situation of the limit N — ac and then,
to improve the predictions, consider the contributions of the terms of order 1/N as a
perturbation. If the true V of the physical problem is sufficiently large. then the zeroth-
order calculation done in the limit N — oo would already provide the main dominant
aspects of the solution of the physical problem under consideration. This is the spirit of
the 1/N expansion method in quantum field theory. We emphasize that generally the
solution thus obtained contains nonperturbative effects when expressed in terms of the
coupling constant g of the theory and therefore it provides nontrivial insight into the
dynamics of the theory, which otherwise would be unattainable with the use of ordinary
perturbation theory with respect to g.

The interest of the large-N limit was first noticed by Stanley [1] in statistical physics,
who used it in the framework of the Heisenberg model (spin-spin interactions). He showed
that in that limit the model reduces to the spherical approximation of the Ising model,
which was soluble.

The method was introduced in quantum field theory by Wilson [2], who applicd it to
the Q(N) model of scalar and fermion fields.

In 1974, ’t Hooft [3, 4] applied it to Quantum Chromodynamics (QCD), the newly
born theory of the strong interaction, which is a gauge theory with the non-Abelian
gauge group SU(3), in the internal space of color quantum numbers. (Not to be mixed
up with the global flavor symmetry group SU(3) met previously.) This theory cannot
be solved with the only large-N limit, but many simplifications occur. In two space-tiine
dimensions, it is almost soluble.

We shall illustrate the method by two explicit examples: 1) The O(N) model of scalar
fields; 2) The two-dimensional model of Gross-Neveu with global U(N) symmetry of
fermion fields and discrete chiral symmetry.

Reviews and lectures on the 1/N expansion method can be found in Refs. [5. 6. 7, §]
(the list is not exhaustive).
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2 The scalar O(N) model

The O(N) model is a theory of N real scalar fields ¢* (a = 1,2,...,N), with a quartic

interaction, invariant under the O(/N) group of transformations. This group is similar in

structure to the rotation group, but acts in the internal space of N species of the fields.
The Lagrangian density is

1 1 A
_ = aoua _ —  24a4a M0 25e)2. I8l
L =5 0,0°0"8" — 5 130" — 22(¢°6") )
(Summation on repeated indices is understood. d, = %, etc.) ud and A are real param-

eters, representing the bare mass squared and the bare coupling constant; the physical
mass and coupling constant could be defined only after quantum radiative corrections are
taken into account. In four space-time dimensions the coupling constant is dimensionless.
The factor 1/N has been explicitly introduced in the interaction term for future conve-
nience. When the limit N — oo is taken, the coupling constant Ay will be assumed to
be independent of N. Had we defined a coupling constant Ag as being equal to Ag/N, we
would be obliged later, to maintain a physical content for the theory, to assume that the
product NXO remains finite in the above limit, which leads back to our initial choice.
A detailed study of this model can be found in Ref. [9].

2.1 Classical approximation

We search for the ground state of the theory at the classical level. The lagrangian density
is composed of the kinetic energy density minus the potential energy density. The kinetic
energy term gives generally a positive contribution to the total energy of the system. Its
minimum value is zero, corresponding to constant fields. We stick to that situation. The
potential energy density is then

1 a a /\0 aa N
U=3 o e® + sy (80 )2, (2)

This is a quartic function of the ¢s. It is evident that the energy is not bounded from
below if Ay < 0. In this case there is no a stable ground state. We assume henceforth
that A\g > 0.

Two cases have to be distinguished: 1) u2 > 0; 2) p2 < 0.

1) u?>o0.

The shape of the function U is presented in Fig. 1.

The minimum of the energy corresponds to the values ¢3 =0, (a =1,...,N ). The
¢s in this case can be considered as excitations from the ground state.

Considering the lagrangian density (1), we can interpret it as describing the dynamics
of N particles with degenerate masses, equal to p, interacting by means of the quartic
interaction. We have complete O(N) symmetry between the particles.

This mode of symmetry realization is called the Wigner mode or the normal mode.

2) y2 <.

The shape of the function U is presented in Fig. 2.
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Figure 1: The potertial energy density for 3 > 0.

—\/—Z;L%N/)to 0 +y/-2N/%
¢a

Figure 2: The potential energy density for uZ < 0.
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The minimum of the energy is no longer ¢ = 0, but a shifted value at ¢ =

i,/—%;)oﬁ =< ¢ > for one of the as. There is a degeneracy between the different

¢%s. For definiteness, we choose the ground state at the minimum obtained with ¢*.
We redefine the fields around the new ground state:

x=0"— <>, ™=¢% a=1,....N-1. (3)

The potential energy density becomes

A
APPSO = (mem + x)2 (4)

U= —wox’ + 35 8N

The fields #® have no longer mass terms, while the field x has a mass term. We have now
the masses:
m,zr,,:O, ea=1,....N -1, mf{:—2u§. (5)

The O(N) symmetry that we had initially has partially disappeared. There is now
O(N — 1) symmetry in the space of the fields 7. It is said that the O(N) synunetry has
been spontaneously broken. This happened because the ground state of the theory is not
symmetric, while the lagrangian density is.

This phenomenon is accompanied with the appearance of (N — 1) massless fields.
These are called Goldstone bosons. This way of realization of the symmetry is called the
Goldstone mode.

In particle and nuclear physics, the isospin SU(2) symmetry and the quark Havor
SU(3) symmetry are realized with the Wigner mode. The chiral SU(3)x x SU(3),, sym-
metry is realized with the Goldstone mode.

2.2 Quantum effects

We want now to take into account the quantum effects of the model that we are con-
sidering. For this, it is necessary to compute the quantum corrections that contribute
to the potential energy. In quantum field theory, these are represented by the radiative
corrections.

The definition of the potential energy density U is cnlarged. The new potential energy
is called the effective potential, which is composed of the classical part, U,j., that we
met before [Eq. (2)], and of a part, Uy, coming from the radiative corrections:

Ueﬂ' = Uclass + Urad . (6)

Urag is best defined in the path integral formalism. We refer the reader to Ref. [10] and to
the many textbooks that exist on the subject. The key object is the generating functional
of one-particle irreducible diagrams or proper vertices. The effective potential is obtained
from the latter by considering only external constant fields in z-space or external lines
with zero momenta in momentum space. Diagramatically, U,.q is given by the sum of
all loop diagrams with such external lines. These are also accompanied with appropriate
combinatorial factors due to the existing symmetry properties under exchanges among the
external lines [11]. Another method of calculation hinges on a direct evaluation of the path

133



integral contribution, avoiding explicit swinmation of diagrams, [12]. However, whatever
the method of evaluation is, the exact calculation of the effective potential is almost
impossible, since it involves an infinity of many complicated contributions. N evertheless,
the use of the 1/N expansion method considerably simplifies the situation. The leading
terms of this expansion are calculable.

Prior to the cvaluation of the effective potential, we shall introduce the propagators,
vertires and loops, that are needed for our calculations.

2.3 Propagators, vertices and loops

The radiative corrections can be calculated starting from the situation where ud > 0.
Radiative corrections will modify the value of 2, bringing it into a new value u? It is
then sufficient to consider at the end the analytic continuation of p? into negative values
to complete the study. We therefore consider the initial Lagrangian density (1):

Ao
8N

The inverse of the free propagator of the field ¢° is essentially represented by the
coefficients of the quadratic parts of £. In momentum space, the free propagator is

(6°¢°)". ()

1 1
L =3 0,6°0"¢" — - pigog° -

D (p) = 6uDolp) = [ d'zePT < 0[T(6%(2)6* ()]0 >, (®)
where the last term represents the vacuum expectation value of the chronological product
of the field operators, and Dy has the expression

. — : (9)

Do(p) = ———
olp) P? — 14 + i€
We have associated with the propagator a graphical representation in the form of a full
straight line.
The bare vertex is equal to the coefficient of the four-field interaction term (contact
interaction), with a multiplicative i factor (Fig. 3). Its order in N, for large values of N,
is J’\,—l.

8N — O(N7Y)

a b

Figure 3: The bare vertex. We have explicitly indicated its order in N.
Radiative corrections are represented by loops, made of closed lines (propagators).
Figs. 4 and 5 represent examples of one-loop and two-loop diagrams, respectively. The
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order in N of a loop diagram is calculated by taking into account that of the vertex at
the contact point of the loop with the external lines and that of the possibly existing
summation of indices of the loop. Thus, if the index b of the propagators of a loop is
independent of the index a of external lines, then it is summed over the N values the
index b can take; b in this case is a dummy index; therefore it produces a multiplicative
factor of N. External lines are not counted.

o(NTY) O(N~2)

Figure 4: Examples of one-loop diagrams with their order in N.

2.4 The auxiliary field method

We observe on Fig. 4 that the last two diagrams, which have the same topological
structure, have different behaviors for large N, depending on the values of indices the
loop propagators have. This is an annoying situation, because at higher orders (many
loops) it becomes more and more difficult to continue the analysis, since the number
of possibilities the indices can have rapidly increases with a corresponding increase of
different categories of behavior in N. The ideal situation is the one in which all diagrans
with the same topological structure have the same behavior in N; in such a case, we do
not need to consider the detailed values of indices of each line.

To remedy the present difficulty, we shall resort to a method, called the auxiliary field
method, often used in quantum field theory, which consists of replacing composite fields
by a new, nonpropagating field, without changing the physical content of the theory. The
validity of the latter property is rather easily shown in the path integral formalism; when
an operator formalism is used, a simple hint is provided with the use of the equations of
motion.

We wish to replace the composite field ¢°¢ appearing in the interaction term by a
single field, which we shall designate by o. (Since in ¢°¢®, a is summed from one to N, this
field does not have any index; it is a singlet under the O(N) group of transformations.) To
this end, we add to the Lagrangian density (7) a new term, thus defining a new Lagrangian
density: v N

2
L=Lo o (0 - g5 6°6° — i) (10)
The o field does not have kinetic energy. The terms in the added expression are chosen
such that the quartic term in ¢ as well as the mass term of ¢ disappear from the new
Lagrangien density. The equation of motion (Euler-Lagrange equation) of o yields its
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QO

o XK

Figure 5: Examples of two-loop diagrams.
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definition: |
0 2
= 20 4%¢° + ul. 11
4 N "% + g (11)
The latter also shows that the added term in the lagrangian is zero if the equation of

motion of ¢ is used. One may conclude that the new lagrangian is equivalent to the
former one:

L' =~L. (12)
L' takes the form:
1 N 1 N2
L= 3 0,8°0°9" + 530"~ So6°g" - ﬁa. (13)

We have now two types of field, the ¢s and o, with an interaction term between them
which is no longer quartic.

We reanalyze the properties of the propagators, the vertex and the loops with the new
Lagrangian.

The bare propagators are

= O(NY), 14
Doy(p) P tie (N) (14)
ido -1 -
Doolp) =77 ¢ ===mmomen- - =07 (15)
The bare vertex o¢¢, with coefficient —i/2, is represented in Fig. 6.
a
—_————— = — O(No)
a

Figure 6: The vertex o¢¢ and its order in N.

Loops and higher-order diagrams are represented in Figs. 7 and 8.

In the analysis of the above diagrams external lines are not counted. We observe now
many new propertics with respect to the former situation of Sec. 2.3. First, because of the
behavior of the o progator as O(N~!), every internal ¢ line introduces an additional factor
of N~! in the behavior of the corresponding diagram. Therefore, diagrams containing an
increasing number of internal o lines become nondominant. The leading diagrams in their
behavior in N will be those that contain the least possible number of internal o lines,
Second, loops of ¢s can occur only if they are joined to o lines or propagators or within
the latter. Multiloop diagrams of és are of the type of the first diagram of Fig. 8 and
of its generalizations. However, such diagrams, as well as the second diagram of Fig. 7,
arc not of the one-particle irreducible type, since by cutting one internal o propagator,
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O(N%) O(N®)

;
'

O(N) O(N7) Oo(N~%)

Figure 7: Higher-order diagrams and their order in N.

O(N°) O(N-1)

Figure 8: Higher-order diagrams and their order in N.
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the diagrams become separated into two disconnected diagrams. Therefore, they cannot
enter into the definition of the effective potential. The only loop diagrams of ¢s to be
considered are represented by the third diagram of Fig. 7 and the last two diagrams and
their generalizations of Fig. 8. The latter, containing internal o lines, are nondominant
with respect to the first one.

In conclusion, in the limit of large N, the leading contributions to the effective potential
will come from the third type of diagram of Fig. 7 and of its generalizations, where one
can have any number of external o lines (cf. Fig. 9).

2.5 Renormalization

The effective potential can now be calculated. As expressed in Eq. (6), it is comnposed
of two parts, Udass and Usq, corresponding to the classical part and to the part receiving
contributions of radiative corrections, respectively:

Uegt = Udlass + Uraq - (16)
The classical part is fixed by the content of the Lagrangian density (13):

o0+t ’VMU

Uetuss = 2/\ Mo

(17)
The radiative corrections are given by the sum of ¢ loop diagrams with an increasing
number of external o lines (Fig. 9). Here, according to the definition of the effective po-

tential, the external o fields should be considered as constants in z-space, or, equivalently,
carrying zero momenta in momentum space.

O + + + + o

- -
-
~

Figure 9: Diagrams contributing to the radiative corrections in the effective potential at
leading order in N.

The summation of the above diagrams, with appropriate combinatorial factors, can be
done with conventional methods [9, 11]. The loop calculation involves a four-dimensional
integration in Minkowski space of ¢ propagators (14). Because of the presence of the
ic factor in the denominator of the propagator, the latter has a well-defined analyticity
property, which allows one to rotate the ko-integration from the real axis to the imaginary
axis and thus calculating the integrals in Euclidean space. This amounts to replacing in
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the integrals ko with iky, with k, real. In the followmg, we shall write the integrals directly
in Euclidean space, with the definition k¥* = 3~%_ k2 > 0.

After summation of the diagrams, the effective potential takes the form

N Ny N r d%
Ue = a ia 0 2
off 2)\0 + 0¢¢ +—/\ +2 @r )4ln(k + o). (18)

We are interested by the stationary point of U.g (ground state). We therefore calculate

its partial derivatives with respect to ¢ and ¢°:

aUeﬁ N N ﬂo 1
+ 3 | Gy 19)

o A FETo)

aUeﬁ
0¢°
The integral that appears in Eq. (19) is divergent for values of k — oo. This is a
general problem of quantum field theory, which reflects the singular behavior of the theory
at high energies or at short distances between the fields in z-space. To cure this difficulty,
one generally absorbs the divergent parts into the bare coupling constant and the mass,
as well as into redefinitions of the fields, defining finite quantities. If this happens, the
theory is classified as being of the renormalizable type. However, not all theories satisfy
this requirement. There might arise divergences, with specific structure, which could
not be absorbed by existing quantities. As we shall see, the present theory is of the
renormalizable type.
To study the possible renormalizability of the theory, we isolate in the integrand of
the above integral the dominant parts of the asymptotic behavior:

1 1
K2+ Orogeo K2 (1:2)2

0

= ¢%0, a=1,...,N. (20)

+0(1/(k*)?). (21)

The first two terms lead to ultraviolet divergences by integration. We cannot, however,
manipulate them as they stand, since the second term would lead to a new artificial
infrared divergence (when k — 0). We have to incorporate in the second term a mass
factor in the denominator to render it softer in the infrared region.

We add and subtract in 3—’[3’;1 the following quantities:

k1 ﬂ dik 1 (22)
@y~ 2°) otk + M2
where M is an arbitrary mass term.
The result is
Wey; 1 17 d% 1 1.,
9 & —N"( % +3 (27r)4k2(k2 T ) 3
dk 1 N o
——oln(-—).

+/ (2n)" w )+ 37 0za) (23)

The infinite integrals, together with the bare coupling constant and the bare mass term,
may define finite renormalized quantities. This would be possible if we admit that the bare
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quantities Ay and u? are themselves infinite quantities. We thus define a finite coupling
constant A and a finite mass term u? with the equations

1 _ 1.1 dk 1 (24)
MM) ™~ X 2J (2m)T k(K2 + M2
2( A 2 4
u(]t[)zﬂ / d'k l (25)
AMM) X (2m)1 k2

The finite quantities depend on the arbitrary mass parameter M. For each fixed value
of M, they take a corresponding value.

One can better study this dependence by comparing for instance the value of the
coupling constant A(M) to a reference value A; = A(Af) corresponding to a reference mass
parameter M;. One obtains from the comparison of the corresponding two equations:

1 1 1 " M?
M

M) N 32r2

). (26)

This equation is called the renormalization group equation and plays an important role
for the analysis and understanding of the properties of the theory.
We can also express A(M) in terms of A; and the other parameters:

AL

AM) = — 21
1- ﬁ’;;ln(%f_r)

. (27)

A and generally A(M) are assumed positive for physical reasons (below boundedness of
the energy; see the discussion of the classical potential energy density after Ea. (2)).
Therefore, we consider domains of solution where this condition is satisficd.

From the last equation we deduce that when M increases starting from Afy, A(M)
increases. When M reaches the value M, = M exp(1672/A;), A(M) diverges and for
larger values of M, A becomes negative. This is a sign of the instability of the theory for
large values of A.

The RGE can also be formulated in the form of a differential equation. Defining

ON(M)
oM
one finds from the finite form of A(M) [Eq. (27)]

M = B(A(M)), (28)

)\2
1672

which shows that A(M) is an increasing function of M.

What is the interest of the RGE? In perturbation theory, when calculating radiative
corrections, one usually finds powers of the quantity A?In(p?/M?), where p is a repre-
sentative of the momenta of the external particles. Even if A is chosen small, at high
energies, i.e., at large values of p, the logarithm may become large enough to invalidate
perturbative calculations. However, since the logarithm depends on M for dimensional
reasons, one can choose the latter of the order of p to maintain the logarithm small. This

BN = —— >0, (29)
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could be useful, if on the other hand A remains bounded or small at these values of M.
The RGE precisely gives us the answer to that question, indicating the way A behaves at
large values of M.

Coming back to our theory, we see from our previous results that this is not the case
here: A, on the contrary, increases with M and diverges at M.,. The theory is ill-defined
at high energies. In z-space, high energies correspond to short distances. The interaction
becomes stronger when the distance between two sources or two particles decreases. A
similar behavior is also found in Quantum Electrodynamics (QED). These theories are
better defined at low energies or large distances.

Theories for which the coupling constant decreases at high energies or at short dis-
tances are called asymptotically free.

Summarizing the results of this section, we recall that we could get rid of the divergent
parts of the integrals by absorbing them in the bare coupling constant and the bare mass
term, redefining at the end a finite coupling constant and a finite mass term. The theory
we are considering is therefore renormalizable. The price that is paid is the introduction of
an arbitrary mass parameter that essentially fixes the mass scale of the physical quantities
of the theory.

2.6 The ground state

Using Eqs. (24) and (25), one can express the effective potential and its derivatives [Eqs.
(18), (19) and (20)] in terms of the finite coupling constant and mass term. To simplify
the notation, we denote A(M) = X and p?(M) = 2.

The effective potential is

1., No&? A Nplo  No® o -~
U = 50°0% = 55 U+ 5o) + =5 + 5o M3 (30)
The equations defining the minimum of the effective potential are
OUeg Nog 1 Nu? N e
= —— — %2 _ In(—) = . 1
B0 x Ta%% T T g elnlyg) =0 (1)
U, " o
a¢£f =¢p00=0, a=1,....N. (32)
From Eqgs. (32), one deduces two possibilities: 1) ¢§ = 0; 2) g¢ = 0.
1)¢¢=0 (a=1,...,N), 09 # 0. From Eq. (31) one obtains
A ay 2
(70(]. - :—3—2? lIl(m ) =u. (33)

The presence of the logarithm imposes og > 0. For small values of ), one has pu? > 0.
By continuity to larger values, one should search for positive solutions of ¢y. Let o be
the solution of the equation for a certain domain of A and x2. One should redefine the

field o from the value of oy:
o(z) = o'(z) + o0, (34)
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The corresponding shift of o in the Lagrangian gives back a common mass to the fields
¢*. We are in a situation where the O(N) symmetry is realized in the Wigner mode.
2) 0o = 0. From Eq. (31) one obtains

Ny?
lopge M g o < (35)
2 A
- 2N 2 .
a5 = (36)
There is a degeneracy of solutions for the ¢§s. One can choose for example:
2N p?
¢5=0, a=1....,N-1, q&”:\/— /\” =<¢>. @n
One then develops ¢V around < ¢ >:
¢"(z) = x(2)+ <9 >. (38)

The symmetry is realized in the Goldstone mode, with the presence of (N —1) massless
fields ¢* and one massive field x.

We summarize the results obtained so far. The O(N) model defines a renormalizable
theory. The radiative corrections introduce limitations into the validity domain of the
model. The coupling constant increases at high energies and diverges at some critical
mass scale. The ground state equations also introduce new constraints on the parameters
of the model. The two modes of realization of the symmetry, found at the classical
level, remain valid within the restricted domain of the parameters. The above results
are obtained at the leading-order of the 1/N expansion, which allows us to simplify in a
consistent way the equations of the theory, to solve them and to have an insight on the
dynamics, going beyond ordinary perturbation theory. Unfortunately, the O(N) model
is not a stable theory as a whole, and persuing the investigations at nonleading orders of
the expansion in 1/N reveals new restrictions and instabilities.

3 The Gross-Neveu model

3.1 General properties

We consider now an analog of the O(N) model with the boson fields replaced by fermion
fields of N different species with the same mass. Since Dirac fermion fields are not gener-
ally hermitian, the symmetry group of transformations that leaves the Lagrangian density
invariant is U(N). Theories with four-fermion interactions are not renormalizable in four
space-time dimensions. This is related to the fact the fermion fields have mass dimension
3/2. instead of 1 for the boson fields. The interaction term has thus dimension 6, greater
than 4, the dimension of the Lagrangian density (dimensions of multiplicative coefficients
are not considered here). Such terms do not lead to renormalization. Historically, a
model of this kind was considered by Nambu and Jona-Lasinio [13] to implement dynam-
ical chiral symmetry breaking. This model, because of its simplicity and of its ability to
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describe nontrivial dynamical phenomena. is used until now as a guiding tool by many
authors; on the other hand, because of its nonrenormalizability, it cannot represent a
consistent theory, unless it is embedded in a wider theory from which it would emerge as
an approximation.

The renormalization difficulty can, however, be circumvented by considering the model
in two space-time dimensions. Here, the fermion ficlds have dimension 1 /2 and the in-
teraction term has dimension 2, equal to the dimension of the Lagrangian density. This
ensures the renormalizability of the theory. On the other hand, many of the nontrivial
dynamical properties of the Nambu Jona-Lasinio model remain valid in two dimensions
and thus allow its study in a consistent way in a simpler framework. This model was
considered by Gross and Neveu [11] and is called after them.

In addition to the global U(N) symmetry, the system satisfies also a discrete chiral
symmetry, which prevents the fermions from having a mass. In more general versions of
the model, a continuous chiral symmetry is imposed rather than a discrete one, but the
latter is alrcady sufficient to reproduce the nontrivial effects of the dynamics. We stick
here to the discrete chiral symmetry.

The Lagrangian density of the system is

"9, " + %(ana)z__ 9o > 0. (39)

. . . . . —a ;
Summation on repeated indices is understood; @ runs from 1 to N. @ = ¢1%4% In two
space-time dimensions, the Dirac fields have two components and the Dirac matrices ~
reduce to the Pauli 2 x 2 matrices o

V=0 A =ie, =7 =0 (10)
The fermion fields are two-component spinors, with indices @ or 8 (a,8 = 1,2). Spinor
indices will often be omitted from our notations; in some cases, for instance inn the La-
grangian density or in mass terms, there is an implicit suinmation on them together with
those of the v matrices.
Discrete chiral transformations are defined in the following way:

. —a 4 —a
U=yt v =0l (41)

A mass term is not invariant under these transformations:

my’ = —mi (12)

Hence, the fermions should be massless (no bare mass termn in the Lagrangian deusity) if
discrete chiral invariance is imposed on the theory.

The fermion field has mass dimension 1/2. As a consequence, the bare coupling
constant gy is dimensionless.

3.2 Asymptotic freedom

The anlalysis of the theory is done in much the same way as for the O(N) model. We first
introduce the auxiliary ficld o and then retain the leading terms in the 1/N expansion.
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The auxiliary field is introduced with the addition of a new term to the Lagrangian
density:

N 9o —a . 4\2
I — —_— 2 2i,@
£=cC 2go(a+‘,\,¢n,;). (43)
The field o is defined through its equation of motion:
o+ %" Tyt =0 (44)
L' takes the form N
L= iy o — ——o® — o Y P°. (45)
290
The bare fermion propagator is defined as
in o —b
S2.5(P) = busSoas(p) = [ d'zePT < OT(w3(x)TH(0))I0 >, (46)

where a and 3 are the fermion field spinor indices and Sy is given by the expression

“w-p 0
= = O(N"). 47
Solp) = it = (N°) (47)

The bare ¢ propagator is

R e —— = O(NY), (48)

The bare vertex o9 1, with cocfficient —i/2, has a graphical representation similar
to that of Fig. 6.

The orders in N, when N is large, of the propagators, the vertex and the loops are the
same as those found in the O(N) model, the v)s replacing now the ¢s. The leading part
of the effective potential will come from single fermion loops associated with constant
external sigma fields.

In the calculation of the effective potential one considers constant classical external
ficlds. Such fields may be interpreted as the vacuum expectation value of the quantized
ficld operator: @erass =< 0|é(z)|0 >. Because of the translation invariance of the vacuum
state, the vacuum expectation value of the field operator is z independent and hence e
is constant. This property can be applied to scalar fields. When the field is a fermion,
it transforms under Lorentz transformations as a spinor, while the vaccum state remains
invariant. This immediately implies that the vacuum expectation value of a fermion field
is zero. Therefore, for the calculation of the effective potential, one has to consider only
external scalar fields (in our case, the o field). Fermions contribute only into internal lines
or loops.

Another property of fermion fields appears also in loop calculations. Loops of fermion
fields involve at the end the trace operation on the spinor indices. For massless fermions,
the propagator is proportional to the v.p matrix. The loop value of a single fermion
(without any external line) is proportional to the trace of the 4 matrix, which is zero. This
property generalizes easily to loops associated with an odd number of external constant
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scalar fields. Therefore, the quantum part of the effective potential will involve only
fermion loops with an even number of external lines.
The effective potential is given as usual by the swn of two contributions [Eq. (186)):

Ueff = Uclass + Urad ) (49)

where Ugag = %02. Uer is calculated by the infinite sum of the diagrams of Fig. 10.

.
1
1
'

S S S

Figure 10: Diagrams, at leading order in the 1/N expansion, composing U.g. The first
diagram represents Uljags.

One obtains:

o? d%k a?
Ueﬁ = N(% - /W 111(1 + F))- (50)
s 1 2k 1
B0 =Ny~ | @ ) o

(The integration momenta are euclidean; see comment hefore Eq. (18).) Concentrating
on Eq. (51), we have to isolate, as for the scalar case, the divergent part of the integral.
We introduce a mass parameter 4 in the subtracted term to avoid infrared divergence:
oU., 1 d%k 1 oN o2 .
f = O'N [— -2 o2 ﬁ] + '—111(—2) (02)
oo g0 Jo(2m)? (k% + p?) 2

We deduce from the latter expression the renormalization of the coupling constant into a
finite value:

1 1 d2k 1 .
@ "% Y e @ 9" (53)

g depends on the mass parameter . Its relation to another choice, p), with g(u,) = g,

is:
1 1 1 12
— = — + 5= In(=). (54)
o a2 )
or
' 91
g(p) = ————=~. (55)
1+£ ln(’a)
g(u) decreases when p increases. We also have:
99 _ g
— =——= < 0. 56
“ou B(g) (56)



The theory is therefore asymptotically free. This means that at high energies or at short
distances, the interaction becomes weaker and weaker. In these regions perturbation
theory can be used with respect to the coupling constant g(u). On the opposite side, at
low energies or at large distances, the interaction becomes strong. There is even a critical
value of i, feie = pexp (—m/g1), for which g(u) diverges, indicating the occurrence of
instabilities in the theory.

3.3 The ground state

The occurrence of instabilities may be rather a sign that the ground state that we are
considering and around which calculations are done with free field propagators, is not the
correct one. We have to determine from the effective potential the true ground state of
the theory.

With respect to the renormalized coupling constant g(p), the effective potential takes
the form

No? 1 2rm o? N
Ug=-2 [ =L —1+m(%)]. (57
T oar Lg(w) (uz ] )
The minimum of the effective potential is obtained from the equation
oUg No [ 27 a? .
Teft _ 21 2 Y] = .
50 = 2 L0 TiCE) | =0 (58)

which possesses two types of solution: 1) o = 0; 2) 0 = Fue™ ™9,

The absolute minimum of Ueg can be searched for with a study of the shape of the
function U.g. The latter is represented graphically in Fig. 11.

One notes that the solution ¢ = 0 is a local maximum, while the solutions ¢ =
+p1e~™/9) represent degenerate absolute minima. Because of the symmetry of Uy under
the change of sign of o, any of these can be equivalently chosen. We shall choose for
definiteness the solution with a plus sign and shall designate it by oy:

oy = ;Le_w/g(”). (59)

In order to study the physical properties of the system around the new ground state, we
must shift the field o in the effective potential and in the Lagrangian density by oy:

=0+ o0, (60)
In terms of the new field ¢’, the effective potential becomes

2
Nog

U =
© 47

0" 2 0'/
1+ =) | —1+ln(1+—)%]. [
1+ n(t+ )] (61)
We find that g(u) and p have completely disappeared from the new expression of Uz in
favor of the single parameter oy, which has, by the definition of ¢ [Eq. (44)], a dimension
of mass and thus fixes the mass scale of the theory. No free adjustable parameter has
remained.
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Figure 11: The shape of the function Ueg with respect to 0. We have defined 0g =
pe~m/9(m),

‘The lagrangian density becomes:
N —a
L= PO = 5 (0 +00)" — 0¥y — Py, (62)
0
We note the appearance of a mass term of fermions, with value

Mp =09 = ue-ﬂ/g([-t). (63)

The Lagrangian density still contains the bare coupling constant g;. This is necessary,
since one still has to calculate and renormalize the o’ propagator. The latter receives
contributions from the fermion loops which are divergent and whose divergence should be
combined with gp to reproduce a finite quantity.

The theory was invariant at the beginning under the discrete chiral transformations,
imposing masslessness of the fermions, but now, after renormalization and the shift to
the ground state of the energy, the fermions have acquired a mass. This phenomenon is
called dynamical mass generation and is due to the spontaneous breaking of the discrete
chiral symmetry.

On the other hand, M is a physical quantity and should not depend on the particular
choices of the arbitrary mass parameter p. From Eq. (63) one notes that My has two
types of dependence on u: an explicit one and an implicit one through the coupling
constant g(x) [Eq. (56)]. One verifies that Mp is actually independent of y:

dMp _ OMp
dp ~ Op

1 OMp
+ l—‘ﬁ(g)ﬁ =0. (64)
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M is said to be renormalization group invariant.

Once MFp is fixed, the two other parameters, g and x should disappear from the finite
quantities of the theory. Any choice of u is compensated by a corresponding choice of g,
to produce Mp. This property was explicitly verified on the expression of U.g [Eq. (61)].

At the beginning, the theory had a dimensionless parameter g and massless fermions.
Now it has instead a dimensionful parameter, Mg, the mass of the fermions, which is
fixed by the physical conditions and sets the mass scale of the theory. There is no longer
a free parameter in the theory. This phenomenon is called mass transmutation.

In summary, the Gross-Neveu model displays many interesting features of quantum
field theory and illustrates, in two dimensions, several phenomena - asymptotic free-
dom, dynamical mass generation, mass transmutation -- expected also to occur in four-
dimensional theories.

4 QCD

Quantum Chromodynamics (QCD), the theory of the strong interaction. is a gauge theory
with the non-Abelian local symmetry group of color SU(N)., with N = 3. We consider
henceforth the general case where the paramater N is arbitrary. As “inatter” fields,
the theory contains quark and antiquark fields, belonging to the defining fundamental
representation of the group and to its conjugate, respectively; their number is N. Since
this is a gauge theory, there are also gauge fields. the gluons, belonging to the ad]nmr
representation of the group; their number is (N2 — 1).

There are six “generations” of QCD, distinguished from each other by specific proper-
ties of the quarks (charge and mass), called also “favors™. Schematically, there are three
“light” quarks, u, d, s and three “heavy” quarks, ¢, b, t. The free masses of the quarks u
and d are of the order of a few MeV, while the mass of the quark s is of the order of 100
MeV. The masses of the heavy quarks c, b, t are approximately 1.3 GeV, 1.2 GeV and
173 GeV, respectively [15]. The gluon, which is the gauge particle, is massless.

The proton, the stable matter particle, is a bound state made mainly of the three
quarks u, u, d. Its mass is of the order of 1 GeV. This shows that the mass of the proton
is not made of the masscs of its quark components, which are nearly massless. Rather,
onc should expect that it is produced by a dynamical mass generation mechanism, similar
to what happened in the Gross-Neveu model. A similar conclusion also holds for the other
low-lying hadrons (neutron, p meson, etc.). On the other hand, the coupling constant of
the QCD Lagrangian is dimensionless. This means that the mass generation phenomenon
would be realized by the mechanism of mass transmutation, which also was observed in
the Gross-Neveu model.

Since the light quark masses do not seem to play a fundamental role, one can consider
the QCD Lagrangian in the ideal situation where the the three light quarks are massless.
In this case, the QCD theory also satisfies a global flavor space invariance under the
group of continuous chiral transformations SU(3)r x SU(3) (R for right, L for left). It
is expected that this symmetry is realized with the Goldstone mode (no nearly degenerate
parity doublets arc observed in nature); the corresponding Goldstone bosons are the lowest
lying 7, K and n mesons. In the limit of vanishing quark masses, the masses of the latter

149



particles would also vanish. For small values of the quark masses, the Goldstone bosons
also acquire a small mass. This explains why these mesons have masses squared much
smaller than the other hadron masses squared.

QCD theory has been widely investigated in ordinary perturbation theory and has
been shown to be asymptotically free [16, 17); a relation similar to Eq. (55) has been
obtained. This implies that at high energies or at short distances, the QCD interaction
becomes weak and ordinary perturbation theory can be applied there. This property has
been experimentally verified by many high-energy experiments. The other implication of
asymptotic freedom is that at low energies or at large distances the interaction becomes
strong enough to forbid perturbative treatments. From asymptotic freedom one also
deduces the existence of a renormalization group invariant mass, called Agcp, which
realizes mass transmutation in the theory (cf. Egs. (59), (63), (64)). Contrary to the
Gross-Neveu model, however, the resolution of the nonperturbative domain of QCD has
not been achieved up to now with analytic calculations. One of the main reasons of this
failure is probably related to the fact that quarks and gluons are confined. These particles
have not been observed as free asymptotic states like the other known particles. Their
presence or existence have been detected mainly in an indirect way. Quarks and gluons
are bound by the QCD force to form bound states called hadrons (proton, neutron, = and
p mesons, etc.) It is at this level that QCD differs from the previous models that were
considered or mentioned (Gross-Neveu, Nambu-Jona-Lasinio). Numerical resolution of
the strong coupling regime of QCD is successfully realized with Lattice calculations.

The application of the 1/N expansion method to QCD leads to some simplifications
and well verified qualifative predictions, but fails to solve the theory as a whole. The
reason of this last negative result is due to the large number of gluon fields (~ N?) as
compared to that of the quarks (N). While quark loop contributions become negiligible
and do not enter in leading expressions in the large-N limit, gluon loop diagrams, and
more precisely the class of “planar diagrams”, become dominant at large N and an infinite
number of them (one-particle irreducible) survive [3. 5, 6, 7, 8]. Their summation in
compact form is not an easy task. Examples of planar and non-planar diagrams arc
presented in Figs. 12 and 13, respectively.

00 0a 000

Figure 12: Examples of planar diagrams. Curly lines represent gluons and oriented full
lines quarks or antiquarks. When a planar diagram is drawn on a plane, a gluon line does
not intersect any other gluon line, except at vertices. The latter are represented on the
figures by dots.
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Figure 13: Examples of non-planer or crossed diagrams. The intersection points of the
gluon lines are not vertices.

One therefore is satisfied at the present time with the qualitative predictions and
relative simplifications the 1/N expansion method provides. The method, when applied
to two-dimensional QCD, has been, however, successful enough to solve the main aspects
of the theory in an explicit way [4, 18].

5 Conclusion

The 1/N expansion method allows us to solve, at leading order of the expansion, theo-
ries and models nonperturbatively, probing directly dynamical phenomena, which would
not be reached in ordinary perturbation theory based on expansions with respect to the
coupling constant.

The method is also applicable to QCD, but because of the presence of the gluon fields,
which belong to the adjoint representation of the gauge symmetry group, its effects are
less spectacular. Nevertheless, many simplifications occur and several qualitative features
can be drawn about the properties of the theory.
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