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PREFACE

This course of lectures was presented during the Third International School 011 Sym-
metry in Integrable Systems and Nuclear Physics (SISNP-2013), organized by
the International Center for Advanced Studies at Yerevan State University and the Joint
Institute for Nuclear Research (Dubna, Russia). It was held in Tsakhkadzor from 3 to
13 July, 2013. The first School of this series was organized in Dubna in 1999 and the
previous one was held in Tsakhkadzor in 2011.

The program of the School including five/six 60 minutes duration lectures was sched—
uled for eight working days. More than 40 students and young researchers participated
in the School. Twenty—five Professors from ten countries presented the lectures on the
following topics: integrable and superintegrable systems, supersymrnetries in quantum
mechanics and field theories, symmetries in atomic and nuclear physics, multiparticle
dynamics, Lie group and algebra contraction and its applications in high energy physics.

The School was supported by Joint Institute for Nuclear Research, Ministry of Science
and Education of the Republic of Armenia, and Alexander von Humboldt foundation.

we thank all the Lecturers who have sent their contributions to the Book of Lectures.
“’0 would like also to thank Alexander Gusev and Ol’ga Klimenko for their help on the
work of this Book of Lectures.

Editors



Invariant Differential Operators for
Non-compact Lie Groups:

The Reduced SU(4,4) Multiplets
V.K. Dobrev

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,

Sofia, Bulgaria

Abstract

In the present paper we continue the project of systematic construction of invariant
differential operators on the example of the non-compact algebras su(n, n). Earlier were
given the main multiplets of indecomposable elementary representations for n g 4, and
the reduced ones for n = 2, 3. Here we give all reduced multiplets containing physically
relevant representations including the minimal ones for n = 4. Due to the recently
established parabolic relations the results are valid also for the algebras 31(8, IR) and
su*(8) with suitably chosen maximal parabolic subalgebras.

1 Introduction

Invariant differential operators play very important role in the description of physical
symmetries. In a recent paper [1] we started the systematic explicit construction of
invariant differential operators. We gave an explicit description of the building blocks,
namely, the parabolic subgroups and subalgebras from which the necessary representations
are induced. Thus we have set the stage for study of different non—compact groups.

In the present paper we focus on the algebra 3u(n, 71). These algebras belong to a
narrow class of algebras, which we call ’conformal Lie algebras’, which have very similar
properties to the canonical conformal algebras of Minkowski space—time. This class was
identified from our point of view in [2]. The same class was identified independently from
different considerations and under different names in [3,4].

This paper is a sequel of [5], and due to the lack of space we refer to it and to [6] for
motivations and extensive list of literature on the subject.

2 Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup
of G. Then we have an Iwasawa decomposition G = KAONO, where A0 is abelian
simply connected vector subgroup of G, No is a nilpotent simply connected subgroup of
G preserved by the action of A0. Further, let M0 be the centralizer of Ag in K. Then the
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subgroup P0 = MOAONU is a minimal parabolic subgroup of G. A parabolic subgroup
P = MAN is any subgroup of G which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representa—
tions induced from them generate all (admissible) irreducible representations of G [7—9].

Let V be a (non-unitary) character of A, 1/ E A‘, let a fix an irreducible
representation D“ of M on a vector space V”.

We call the induced representation X = Indg(,u®z/® 1) an elementary representation
of G [10]. Their spaces of functions are:

Cx = {FECWQVM lflgma'n) = €""‘H)-D“(m—1)F(9)} (2-1)
where a = exp(H) E A, H E A, m E M, n E N. The representation action is the left
regular action:

(“(9)3(9’) : Hg‘lg’), 939’ 60. (2.2)
For our purposes we need to restrict to maximal parabolic subgroups P, so that

rankA = 1- Thus, for our representations the character V is parameterized by a real
number d, called the conformal weight or energy.

An important ingredient in our considerations are the highest/lowest weight represen-
tations of g- These can be realized as (factor-modules of) Verma modules VA over QC,
where A 6 ('HC)*, ”HC is a Cartan subalgebra of QC, weight A = A00 is determined
uniquely from X [11,12].

Actually, since our ERs will be induced from finite-dimensional representations of
M (or their limits) the Verma modules are always reducible. Thus, it is more convenient
to use generalized Verma modules VA such that the role of the highest/lowest weight
vector '00 is taken by the space V“ v0. For the generalized Verma modules (GVMs) the
reducibility is controlled only by the value of the conformal weight d. Relatedly, for
the intertwining differential operators only the reducibility w.r.t. non—compact roots is
essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [12,13]. The multiplet correSponding
to fixed values of the Casimirs may be depicted as a connected graph, the vertices of
which correspond to the reducible ERs and the lines between the vertices correspond to
intertwining operators. The explicit parametrization of the multiplets and of their ERs
is important for understanding of the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the inter-
twining differential operators. Actually, the data for each intertwining differential operator
consists of the pair (6,m), where 6 is a (non-compact) positive root of QC, m 6 N,
such that the ECG [14] Verma module reducibility condition (for highest weight modules)
is fulfilled:

(A + M") = m , V a 25mm . (2.3)
When (2.3) holds then the Verma module with shifted weight VA‘mfi (or VA‘mfl for
GVM and 13 non-compact) is embedded in the Verma module VA (or 17"). This em-
bedding is realized by a singular vector as determined by a polynomial ’PE‘UJ‘) in the
universal enveloping algebra (U(9-)) org, 9‘ is the subalgebra of QC generated by the



negative root generators [15]. More explicitly, [12], "0:15); 2 732;” v0 (or 'Ufnfi = 732'? VP v0
for GVMs). Then there exists [12] an intertwining differential operator

Dis” 3 can —> eA—mfii (2-4)
given explicitly by: A

”Di" = 73%”(9‘) (2.5)
where 6: denotes the right action on the functions .7, cf. (2.1).

3 The non-compact Lie algebra su(4, 4)
Let g = su(4,4). This algebra. lists discrete sear-s 1'+:-3_:rssr-i'!i'aii-_.~:_;~' and lilié..l.'.i"5iI.Il-.._-".‘.'t".‘:7
weight representations since the TILEJLllth-l rmupar: ':':ii:-il-;jr:l.>i'a .1: '—

We choose a maximal parni'iolir Fl — {AWEJ-Ll'.’ mic-11 iii-:31 -—'-. an: 11'. n'lnir-
the factor M has the same firiire-rii:zin:-:'-.si+_unal ir-.-:-r:=331.1e l"T'[""'iI'EI'fILTELEZ-‘I'IHF is llii
finite-dimensional (unitary) representations of the semi—simple subalgebra of IC, i.e..
M = sl(41 ((3)13, cf. [1]. Thus, these induced representations are representations of fi—
nite lC-type [16]. Relatedly, the number of ERs in the corresponding multiplets is equal
to [W(QC,'HC)I / |W(}CC,’HC)I = 70, cf. [6], where ”H is a Cartan subalgebra of‘ both
C] and 1C. Note also that ICC g 'u,(1)C 63 52(4, C) EB 5M4: (C) 2 MC GB AC. Finally, note
that dim”; N = 16.

We label the signature of the ERs of Q as follows:

_ . -_ ..I -..-.-:-.-.- ,— 3.2.4.1

X _: {n11n21n33n53n63n7ic}1 njEZ‘l’i C:d_4 (36)

where the last entry of X labels the characters of A, and the first 6 entries are labels
of the finite—dimensional nonunitary irreps of M when all in > 0 or limits of the latter
when some 711- = 0.

Below we shall use the following conjugation on the finite—dimensional entries of the
signature:

(711,712,713: n5,n61n7)* i (n5,n6,n7,n1,n2,n3) . (3.7)

The ERs in the multiplet are related also by intertwining integral operators introduced
in [17]. These operators are defined for any ER, the general action being:

GKS : CX —> CX: , (33)
X : {n1,n2,n3,n5,n6,n7; c}, x' = {(n1,n2,n4,n5)*; —c}.

The above action on the signatures is also called restricted Weyl reflection, since it rep—
resents the nontrivial element of the 2-element restricted Weyl group which arises canon-
ically with every maximal parabolic subalgebra.

For the classification of the multiplets we shall need one more conjugation for the
entries of the M representations:

1

(n11n23n31n53n63n7). i (”rinsinsansanmnil (3-9)



involving full reordering of the entries (unlike the conjugation (3.7) which just exchanges
the two su(4) sets of indices).

Further, we need the root system of the complexification QC = 53(8, (C) . The positive
roots in terms of the simple roots are given standardly as:

01:5 ai+"'+05ja 1$i<j553
0113' = 053', 19:7 (3-10)

From these the compact roots are those that form (by restriction) the root system of the
semisimple part of ICC, the rest are noncompact, i.e.,

noncompact: 0% , 1g 3' g 4 , 4 gj S 7. (3.11)

Further, we give the correspondence between the signatures X and the highest weight
A. The connection is through the Dynkin labels:

m;- E (A+p,a:’) = (A+p,at—), i=1,-.-,7, (3.12)

where A : A(X), p is half the sum of the positive roots of QC. The explicit connection
is:

nizmi, C = —%(mC—,+m4) = — %(m1+m2+m3+2m4+m5+mfi+m7) (3.13)

where ii: = a1 + - - - + a7 is the highest root.
We shall use also the so—called Harish-Chandra parameters:

mjkE(A+p,ajk) = mj+v--+mk, j<k, mimj. (3.14)

Note that according to [6] all results about the classification of invariant operators
are valid also for the algebra sl(8, R) with maximal parabolic 73’ = M’A’N’, where
M’ = sl(4,1R)(B sl(4,R). This is due to the fact that ’P’C = 73C, M’C 2 /\/IC ”:V
sl(4,(C) EB 3l(4,(C). Furthermore, the results are valid also for the algebra 313(8) with
maximal parabolic ”P” = M”A”N”, where M” = su*(4)EBsu*(4) (noting that P“: = ”PC,
MW e 31(4,C) ea 52(4, (13)).

4 Multiplets of SU(4,4)

4. 1 Main multiplets

There are two types of multiplets: main and reduced. The multiplets of the main type
are in 1-to—1 correspondence with the finite-dimensional irreps of su(4, 4), Le, the).r are
labelled by the seven positive Dynkin labels m:- E W. In [5] we “have given explicitly the
main multiplets for n = 2, 3, 4, and the reduced for n = 2. In [18] we have given explicitly
the reduced for n = 3.

The main multiplet R4 contains 70 ERs/GVMs whose signatures can be given in the
following pair-wise manner:

XE)t = {(m11m23m3im53m63m7)ii :l:%(m& + 7114)}
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XCTU — 1. in”. ”I H' .-;- HF “a; 3-17": :%:II?r-I—r.71li
X32? = 1111-: a.“ 131:. 'J' .1?“ ‘TTTI: :%1-11_II2 7171'

X11 : 1:11—11; I’r'l PM} ”(I 1115—. Li'- : :II5-I1'1IIIIII-I-i

X20 = 1 HTTH m: rm ""33. .‘n; m- ' 3:211 =31
Xitl 1 11,1131 Hr 3 11115 rtJHZL 111—.3 £11,! _.II_..I—Ii

X32 : {fin-1h”: 'nfi' “11 i"- ”1.1"." “Fr—11:7 I].

Xéto ‘— 1I1Ftl.!fiq .'*i.,:, v.13. 'TifiI m—l: iii-I ‘ 3-; — .r I~
X31 '— 11771'1-3JH-11m 3 mi, 'JLr rr.I~'* '—£T~'1..o'1

XE — 1 17‘7:- F1123 my; .311 W3 {Ha-l +3113 ”4

X03 _ “WI 1:111" It. 73-3 "Il ‘tiiIhliLi— .':7I1
X31 : *rirTi'E-"l‘i “£13 ‘r1. ”1;; r~I __-.:%irrlr-,- 'I I
X2i2 : 11171]1 “'13 r'EiJ 1‘ 1 11-5 "tr-u £e n I'-
Xihg = 1.1.1 i Eli-"'1‘ - 11,, m; 1w: :11”. 1— .173}.
X32 2 1.1"" “”1" -""'L1r_: *1 .;-‘-'-: 11 ~37 ": :;171'-'- — n I i
X2i3 — 11'" '“l “1-." “1 ”i" ”‘1 Z :1; r; — 3.1.51 I-
X3i3 = 11”" .'.'.'i W“ 111 .H- "I I: Iii-“'1; -| I I
Xéfi : I111? '- Hit-.1 1'11: r'.|-_| '11-lfi-H' -J :E-IIIPII-IIIII I.

X}:E = 'II 11:73"- 1 1713.; H": .'-"_'_-_3 . TI 31,} .‘T'--I- ': 15H" ;- .1

X01 2 11W- Mw r: .n ‘1'. ;, rn' r-F ':—iI,r',r,.IEI— I

x95 = {in}: mm. a»: .1 .1 = :91- .. ,1
X3 — 1 II??? 1-_:_ $113.1. m5; {ii-:31 m5. ”111': '. _ h:%g3;.II_

X103 — 1 I': 1.1.11131-J11a- mu .t- T'L‘L'U: :1. 71.11;. _ :1 _j 1|
Sat = 1 117132 f7“.;.i‘1"_*-:I!'I'.|:r Wise. 1'??? it I 21::1-311151-

Xgit : {1.7113 4'1; .l'l"':.._I i'|'-' my. 1'11"; é-lirfllfl

’1’; Z {If} 1"“ 1" rI F71.“ Fug}; Thug. ”JET! :1111-131

1% = {1. .1 I'M-I35: $11.- “Vs-'1’. YEP-1'31: fi1rii:3_~'
X3: = {11712};— r'fl;, m5 -"“1'-'|_-'- man. “TI—'3; - 113.31%: _ ”"1

X121 = { 1m} ”13;. T}1;.._._ :11} 7311.5, mgr . :%1 111- _ ._,..I I) }

Xi: = {KI-r1213. H133. 'n':.=.- 1?“:3.11‘T‘i.;5. 17151—— : :1: .111 — 1721)}
Xi)? = i1.7711:m253m673m31m4am561i iamm — m7)}
X1425 = {111731m4um53m13m263m7)i3i%(m67 — 77112)}
X’sii : { 1771231m4am561m12am353m671i ; i%(m7 — m1)}
X312: 2 {(m21m343m573m133m451m6 i; :Fémm}
X3; = {(m13im41m57um21m351m6)ii 212%(7111 — 7717)} (4.15)

The multiplets are given explicitly in Fig. 1 (first in [5]) The pairs Ai are symmetric
writ. to the bullet in the middle of the figure - this represents the Weyl symmetry realized
by the Knapp-Stein operators (3.8): GKS : (3X; <—> CXi .

Matters are arranged so that in every multiplet only the ER with signature X3 con-
tains a finite-dimensional nonunitary subrepresentation in a finite—dimensional subspace
S. 'The latter corresponds to the finite-dimensional irrep of su(3, 3) with signature
{m1 , . . . ,m7}. The subspace 8 is annihilated by the operator G+ , and is the image of
the operator 0‘. The subspace S is annihilated also by the intertwining differential
operator acting from XE to X;- When all m1 = 1 then dim 8 = 1, and in that case
5 is also the trivial one-dimensional UIR of the whole algebra 9. Furthermore in that
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case the conformal weight is zero: 0! = 3 + c = 3 —— %(m1 + mg + 27723 + mm + m5),ml=, =2 0.
Analogously, in every multiplet only the ER with signature XBL contains holomorphic

discrete series representation. This is guaranteed by the criterion [11] that for such an
ER all Harish-Chandra parameters for non—compact roots must be negative, i.e., in our
situation, mo, < 0. [That this holds for our X+ can be easily checked using the
signatures (??).]

Note that the ER Xd contains also the conjugate anti-holomorphic discrete se—
ries. The direct sum of the holomorphic and the antiholomorphic representations are
realized in an invariant subspace ’D of the ER Xd . That subspace is annihilated by
the operator G‘, and is the image of the Operator G+. Note that the correspond—
ing lowest weight GVM is infinitesimally equivalent only to the holomorphic discrete
series, while the conjugate highest weight GVM is infinitesimally equivalent to the anti-
holomorphic discrete series. The conformal weight of the ER XSL has the restriction
d=3+c=3+%(m1+m2+2m3+m4+m5) 26.

In Fig. 1 and below we use the notation: At = A(Xi). Each intertwining differential
operator is represented by an arrow accompanied by a symbol ijk encoding the root
Oijk and the number majk which is involved in the BGG criterion. This notation is used to
save space, but it can be used due to the fact that only intertwining differential operators
which are non—composite are displayed, and that the data 6,3015 , which is involved in the
embedding VA <—> VA_m5fi turns out to involve only the m,- corresponding to simple
roots, i.e., for each @7715 there exists 2' : i(fi,m5,A) e {1, . . . ,7}, such that m5 2 mi.
Hence the data ozjk , majk is represented by 3'31, on the arrows.

4.2 Main reduced multiplets
There are seven types of main reduced multiplets, R: , a = 1, . . . , 7, which may be obtained
from the main multiplet by setting formally ma : 0. Multiplets of type Rg, R3, R3,
are conjugate to the multiplets of type R3, R4, R31, resp., as follows. First we make the
conjugation on the roots and exchange all indices: 1 <——> 7, 2 <—~> 6, 3 <——> 5. With
this operation we obtain the diagrams of the conjugated cases from one another. For
the entries of the M representation we have further to employ the conjugation (3.9).
Then we obtain the signatures of the conjugated cases from one another. Thus, we give
explicitly only first four types.

The reduced multiplets of type R: contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

_ :tX0 — (m11m23m31m53m61m7){
X10 — {(m1,m23,0,m3,5,m6,m7)i; :,__:. -
X31 — { (m13m21m3,530:m561m7)i i i577” mm}
X30 — {(771121 7713, 0, “123,5, m61m7)ii i%m1,57}
Xltl = {(m13m233m5am33m561m7)ii iémiasr}
Xoi2 = { 31ml: m2am3,56303m51m67)i ; #jmmv}
XEEO = { l-m23m3301m13,51m61m7)ii iiimm - m1) }
X2il = {;-m121m33m51m233m563m7)ia ilm1,57}
XTEQ : {'mlam23am563m33m51m67)i; igmlgg}

11



This may be called the.
the limits of the [3:11; '

The reduced . 1111111111113
given in the following

X OH
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:h
X10

5:3
5

1..
.. b—
‘

><
><

><
><

><
><

><
><

ge
ge

gs
ge

>< ng
eg

s

m1, m2, m3 573 0 1777151 m6)i; i%(m13 ‘ m7)}
m21m31m51m131m561m7)i 5 :l:%(m67 — 7111)}
W112,71"331m551W231’1’1’15177157)i .
m11m231m571m31m51m6)i§iéT'lfl'IL; — m7)
m21m31m561m131m51m67)i§1%”737 — m1)
m121m31m571m231m51m6)i§ :t%(m1— m7)
m21m31m571m131m51m6)i; $3.

={(
-{(

—{(
={( }
={( }={( }
={(
:({ (m13101m51m21m3,561m7)i; :QFFFLE IL
: { (m13101m561m21m3,51m67)i; iEFH-Ij}

= { (771121 ”13,5; 711,3, ”323,0, ’31'3’157)i 1 E?I 7}
: {(m11m23 5177161771310 m57)i; i—h—}
— { (”712310 m51m121m3561m7)i ; iflmm — 1111)}
= {(ml 77123 51773671771310 m5s)i; :‘srmg — 1111-1}
= {07713101 m51m11m23 561m7)i; ‘:'1- — 11 131}
: J[(17123,0,11356,1rnlgI171,35”73167)i :%|.".":a — H I: 1

- {( "F1310 m571m21m351m6)i; :—‘..:F- 1 -- —.I ; (4.16)
1111-1111 type. F.~ FFq-FI'IFI1IF1e multiplets since here 1n X0 are contained

-series. The multiplets are given in Fig. 2a.
Ii‘i.r53‘-.8.il’l 50 ERs/GVMs whose signatures can be

'1..-1.-F~FF-111‘1111-r_11.=.
. _ . I-1-;

1_._-._ D; 1331' L1»! 113

pair—wise manner:

= {IITHL 1.1 1"".|_1'..-.I.F.-1,I 1117:1' :I-I'IIIT.‘ -;- -1-.*T'.'III IL

: {Hm "F: ""F.--‘1—1'1 -F‘11«-"*-"T': :in" -1571”
: {[.."FI.|;-' HI :1 r ._.F.‘=-- ”51 .1 F’Ti‘ j%m 31']

= {l-."”' TIGHT-”51w“ "3F -'F'I'T : ii'F-‘LFTJ
: {lIfi'lg 1 HJ-ifi “1:1 ': ”1'311'1- 1.17]: :1. _.=.- II

= “ml-’7" F"-F1‘1--‘T?1TT’J.=.F'F.1.- 1;??? :IT 3-
I {II-T7.§’"':.i._j .'.‘ Infrijfflfi .‘fiffll' Tl: :iIITHE-n I”! I I.-

: {1:11 I": JI’II-F-TIJ If: "FF-"v.1 FFT': :*FF'F.1- — F3. '1‘.
Z {5“ 'J ”5411 i' 1 -‘.=..*"., I Lin": 7
= {IIE'FIF_-F}'?1 '“F'Fn :H.= ..I.I— 111'1IIII: :éfq; _-. _ M I

= {11111.1}. 177-1 -'F"I 1'“-*"'-'“F .- 2175-11“: ' "T1
= {UT-".2 "-'”i'1‘ 1., W: ”Uh-.1 .' 1—5111“ — 1'11“ 1'
= “Fm-3" F? ”:1." ”1‘5- 1‘11; 1': $i=11111 ‘.-
= {£151 F‘s-3. 11:: if}. 11.1 1-1 ‘3': ;%n:13_-—}

: {in-'13} 51.1.5”; r""‘"_I [”13 ..f'—| :IlIL‘H-IIIT 1'

= {{mI 1.11.3”. 1?.-I_—II._I [J. 11-14% I111fiT ._ 13131-1. .1' ‘1
2 {(11:1- .11. '11 I.11'1.I.I_.-I..-1171'= :l .11“- _ I i“
= {[171 1 F11: m- ‘1‘ _11':..Ir Hip-J", :%1y;i—Il

= {IIWI .FF1—1 : r115- F'=_ 1;: 15F. MIL-11: fan-I -.- FF.-I i'
= {(211,- - .111 :3. ""1 I1F'IF_-.- m; '31'1‘. iiImI T
= {1m 1112 =_ 11"..U'. ”FIN-"1'53“: :%.r1;-_:I i

= {imfl-mI-mm 1 :1.'?i':-;_ "-‘F.T.l+ l-‘ILF'FT — 1'1} i"
= {II-11W. .1“ 11L: FT.‘ I’?3.HL_151I3!1I-III: 17%|l — -'.I-'| I.

= {{1.711-:113I_,.-..'F.F'.1.-.;:.1.1..F11I.111:II~II1'" - 1%,???" .11 .-
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Ii
X40 {(01m43m51m11m2,463m7)i3 i%(m67 _ 77112)} (417)

The multiplets are given in Fig. 2b.
The reduced multiplets of type R; contain 50 ERs/GVMs whose signatures can be

given in the following pair—
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wise manner:

I-ml,L"J.1r'r.I3. mg. ’??.F.. m;- != :
lmz. U. “~34. J‘T'im- ”1:5- m-?"i ii '3 ,3
[ M11 L'J.My...Imurrefifi. in: ii ; $3771.. ”.13 3

l Wt. W3. i'73:. 11-335. mg. 3117]“: : i3m3 37 1-

' ”'-'1~ '3» ”Eli-EL ”7 .11 Wa— #15713: i%”-‘1 3 7}
'iill1*'l'3-.'.1~”-’-;-7711:15-'”n~”37li iii” 5: -- H91" l
[mi . #131 rid-.35.. TEL-31,3. m3“. 77.13:: ; :%‘lll.t17 3

[311:1nmy.fli.;.nz3,m,,33i. i 3[ m; 3 — nil-l3
[ICL 3123.7?1,;5, n11. 3.1. 3:133 mTl'i : :39“ — — rrr I';
I: m}. F??:.;.TIL131. r1133 . H13. i11r_,._—"'|: : ii'mi: l
it]. my. 11145. mi“. r-‘ia. ”Marl T - Iii" ‘ —Hi1'i
1:???5-fi13.m.17.m'.-1.: “‘3. FFGlZ- ifildlii _ “.373 1'ILlJ1m3~r'H.;T1”i1arms ”'-'1-l_ ‘T'ilw' Ti i
LYN}. 11:14— ”?51 “13.- -'”—1"- ””l I' ié'ilfilf” }ill3713:..1'J'E5JTHJ-JT?.;{-'.-n'?'l:'i'i_ :L—éimr- — “1 '}

_.
-\

_ IH-‘3.?TJ31.'HP§.33 H33;

{”1153 ”1-; THE- lull ”1:343. ”477:": t%1”3 t'iT }

III-“'1' ”1'“:- m3 "”3 ”’-§~1‘“r-.Tl: iri-HH Ti
i'.-'H-:-..'m;.Tm. iiil_m3,-,_ ”-57 I”: ._ 43.3” «1737 _ n:- 3 3

{fi-77’3:-”=‘anj-T"i‘1,:-:.i'?‘.~.5-?r:=;.-I'|"" : "‘ilm: m1 '1 l

—..n —J

I
'- J'li' "-':-' E:-1.IF".I".‘I';:.'I'T?3I- Hi3; Nil:

.—
-..

.—
---

.

?v‘?3,T'-"L;.T.f'.!_313.:'i']. 'FI-j.:l-I_'_-'”'ll:-?,lI—: I 3

in. .” 3,1. ”35'. i'T.‘:_ 3.1, i'l'i.13.?71.fi:i . TEHJLT}

”'H Jim“ ”137 I] '-I'-:'.-:. ”P-i— iiim — WTl } 31 13;.

The multiplets are given in Fig. 2c.
The reduced multiplets of type R31 contain 50 ERs/GVMS whose signatures can be

given in the following pair

XIiO :
Xi] =
X2330 2
X331 =
X12 2
X21 =
Xit2 =
X33 =

—wise manner:

{31]. m3,:r —ill-.1“ Hi3“ .IT'

{HL m3. ”133. m [3
{ '24.}. 'n'.'.'.-_.h;:.'.'1.'.|. iii-53. arm. :n; 'I-' : iéni33-l3 }
{ilh Hing. “13:3. Tr? | . ???r:[—l. HIM-'3: ; i—frgl‘l'ii. 3.“ 3.

I --L- -'-‘"3- “I :. 3:135. in... m7]: -_

{m- ”119.5%.-
{ '1” ”1’2: ”1.1.1. “I :- -‘-'-'3- nah-7'1: . _
{[IFHE.PIH31IH:5.:H

- a-

mi ..'.-.I3~.. :H.3r,.7.'ifll‘ : .:1.
a

..'_
--||r
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X22 = { lllT-I'FEIE.IH_-_.7T1=_T mg. LEI-3;, 1'17; '1— : :iHL-T (4.19)

The multiplets are given in Fig. 2d.

4.3 Further reduction of multiplets
There are further reductions of the multiplets denoted by Rib, a, b = 1, . . . , 7, a < b,
which may be obtained from the main multiplet by setting formally ma = mb : 0. From
these 21 reductions 9 are conjugate to others under the used above conjugation. From
the remaining three do not contain representations of physical interest, i.e., induced from
finite—dimensional irreps of the M subalgebra. Thus, we present 9 multiplets.

The reduced multiplets of type R113 contain 36 ERs/GVMS Whose signatures can be
given in the following pair—wise manner:

Xrit = {Hit iii-1“}.TTFEIFWEJI'C']: : 1-. (fr-5,; + we - :-}
xi) = iIii-1????EFT-,1,Fri-III.I?'.-.I-III7'E-:-:I ism-w 37 .| _ J
Xgio lira-III}. m4. r.--r-_._-_3. r.-'.=FI. rive-fit. :érn - :-
Xitl -—.- IL» HM mL=-1'”r.1"'3=.r-E Fir-I— 1—%r7'r-1:I;- }

Xét] — 'rl'l'ifl U 'T' C ii'i'_1_l F”: I TI“ — '1 :ril'l'j w:

X1i2 : LI TI . 7T ,, mhu'g; If .I. I: ‘ Erin-g"
X2i2 —— .".‘.'i I] *1 - .1? a- .‘T?- r'r‘m I-éTT— Ir
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.
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Xi)? = LLIum .: m: Ir'.'m..fih~l— Tinker}

Xrlzg [TH-3 77L; a? = If 'I I" .r. i'rr-*_ :éffl‘i'f‘":

XE? — in h :1 ”TEE-"1 “'j— I'l'I'I-I _ #5172" 'r

XE — I: Hg THT In, "-- ”:45. r 'u' — :%r117 I

ii - - -i “ii" l' m ;= 'i".‘r. : :éI .i.r!.-_-_ — m—h I.

I_ I _
X235 — I lil.'.i'?3_:.'F3".‘-5-.. i}. i‘-"I'--_-‘_4{--T'”Tl:: :31 ”HT - “WI-2' (4'20)



The multiplets are given in Fig. 3-13.
The reduced multiplets of type 19114 contain 36 ERs/GVMS whose signatures can be

given in the following pair-wise manner:

Xdo '2 i iI'I-J ' ”=2- ”'1'.'::- ”’5- FYI-5 -"’-'.'.': ~' :?-""33.:_.? I
lITJ = iII'II'L'I‘ 3'3. 'IJ. 1'7"! _J _r.. “3.3-3. 33.37}:- iTiHiglq'}

XtJtl = i it] ”I: r”3’ =.'JI-I-'- “'53- I"-‘TI.'I ii.”f:tir.’i

I'Ir.';'_-_- "I3. .313. Hi: 3
_T ..
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-
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:b _X03

>< fiH
— ||

....._... 1.5X 53 ||

X32i : i'I’I-I’-"~:3=. Tm. 'e- |.' map 3-33333
X325 2 J Iii—{JET 'J Hf, r.’.I .r?|.|:13_:l 1' —'|_ :éf-‘IHIIT I

XE): = J'III‘I' 1-33: “HI": ”7‘1- ”I .-‘.r,';I.'I isi’n'g — «If i
X25 : : “III LIL I.'i __:H F“ Fri—3}: TLJJJFI- 33‘. '3

Xiazi : i III-"" 3 'I' “’3'. ’3‘: -".= ”ls-'I'I _IEI :17 i.-
X22 2 i r-"-’3"2:-i- "-’~ ”13-?— ”M- ’7‘": F~ 3353:. link} (4.21)

The multiplets are given in Fig. 3-14.
The reduced multiplets of type R115 contain 36 ERs/GVMS whose signatures can be

given in the following pair—wise manner:

5
$5

p—
I ._.
H‘.

_. II
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H .:|
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- 'I-u -I _._I “H
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— {fl}. .".".'3. m 33.3.3313. ll. .".'?..-." '* . :i:
F

— { I 11' .-.. m3. m._ III-3:. 11:... :i:—i": 3'- H.133.-

to |

33
03

I

{’IJIJ:-”"3'3:T".:..'5:”"3.'.-I:5 3.1375: :fiTT’E:

If

_.

{[1393 :3? u. {31.33} II? ..I!

..- -- l
{ill-J. rum-'1.I'Inrlll'g,:lf_-:'I"‘..7.”_-'.|..|.”if“: iii: '_.'--:.-I — IIJ'J'I'I'TIIJ ‘3'

><
><

><
><

><
><

><
ag

ag
ag

ag
a

— ._ _ l-I I I—II -.-'1.-\ u in_ {lliJ In .3 3.3. _Tirl_,.-._-'.-H...I -—.—-.-.:7’!:: INT};
X23 .— {'..??_..mg.”FT?.:,.1-.."!'.’_.-.-_JIJ.TT:-.-|_ ; $31,117 .i'

X02 2 { it}. 7.33.3. FWD-7.31.23. m... '.'"."...—.I‘- : :33 m.-
X30 _ {lllTl’i‘o-i.'i"’i.| IIIJ. TIE-J “WEI-3:33. TNT]: I I'iTH-fi-r 1'.
’i ['13 -_. - l:- —.—l III I

I -_ _ i -X31 2 {III' _I.F..'fi.IIT'r-_'3I..’.'.-;3._1.-"r'-.fif'l . iintf }' (4.22)

The multiplets are given in Fig. 3-15.
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The reduced multiplets of type R316 contain 36 ERs/GVMS whose signatures can be
given in the following pair-wise manner:

Xoi '— {If}. r_:_ 1.3:. ru— II "37' -_'--—,.Lr?1——mi.l
i _ Ill-J _ .I' T? l'] .h '2'. ' il'X00 ' ii--”=".-~3'-?;+:--=!.2.=!- ua' -:?'--"ca—-‘ . .r:i: ,. , TX10 = {NJ In t rim-“rm: IJ c'"-| iii-“1'35.-
i — "a ' -'

X20 2 i'W: “H Iii-L” - if “-1— I"—
X0i2 = { “IL ,I'I'E-hn ”131-1 T'.'.-_ TN?“ .3- I‘ '_‘ $.33]; f I

X12 2 1i ll?» “Ha "'“lu- 3713.: 7'73'» ”-"f :' « ifil'l'i'r i
X03 _' i (ll. 53:: ”Lam -'--' 1.- F-'t.-. "H: . .‘I‘éif"? “3. — -H'-'~| '*.- -—. .3

X22 2 i l"??? ”i3- T-" L:- ”"111- ”“37 ":‘i :i::‘-,.."7 i
X1i3 : 1: [It]. “1331 Jilgf. -‘n'.'._..-.-l HELD]: I II;| ”h"; — H ‘ i'

X23 — ‘tI:J1-h?_! T313 u 1'" Ir-Irl " I“ — ill—:- 1:.‘37H'i' I}

X51: 2 {il' H -__-_1_ "‘.- 1'11 H? L' rh- : *E'fl'fi: 'r Ii'

'2’? : ‘i 113-39.- ? :.~ in; '-"-'-':- ”it'afi- i—i-‘Z Ill-'7??- i‘ (4'23)

The multiplets are given in Fig. 3—16.
The reduced multiplets of type R117 contain 36 ERs/GVMS Whose signatures can be

given in the following pair-Wise manner:

H. .'.';« ,_ Elf-3.;- : TEL-5., UH}. Elli: 1‘ -- 'T

X11 : ‘i all, H.133. 3:5 5:, -'-’~';1-a- ”ifilj.i_“:l_i :
xé = {_ fl]. rug. ”'93:“ 1.11;. mg. Nil-Li: '. ifirr! -.-= g. 'LF- 2.

-_r_|'.:-_:~.'r'_."31'-',.F-."._Irf.t 911.}. -""r_;11.:_.. i. , . _

r11... *2... HA. '.‘1- 'v .'::'Iii-I-"hlrn‘r'q-n' ..lfi.l,l',..]' Ll...“ _ _

{31:3, $133.: . mg. mg?” Hm. I I} 2 , 771:;r
7U. m; E." E. H: .m---.. li‘thli' '. i--:-a.an .—

|_l .

i
l

X55 : { all. my. rm. fFT'j:.'Fi'1‘.1F.3-i:ii': : :‘C:?_ r”

{ 33¢. .';.‘-:- ”Pie:- I'M-33.. Fri. :. -""-'--~.' ; I] il
".|"'r' 'l.‘_:

-_
._

_.

p; I'm-.33. 7724. nu. ma. FT'L-EF. {I}: ; :
X33: 2 { ill. .';i_.,.-_. '.-'.’!;_1. -';"J_;.;. U14 rr .,.-;.;:. I ‘ I -_-
xiii = [{q m. i" - [J 7:12,: ill: ::1 nu, r.‘ 3 .'

f 'I - II—I ' llX3:i = i '.FF‘::3- fin. .r'rigfi- ”:2. “2.33. Wis..- ' " l (4.24)

The multiplets are given in Fig. 3—17.
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The reduced multiplets of type R34 contain 36 ERs/GVMS whose signatures can be
given in the following pair-wise Inanner:

X3.- = {1‘33}. . ILL 3333. 333-” 7333.. 33‘37": : :"3-_.'_
X3]. _—_ {Il'f'r'fg- 3:.” ?T1_:I35_ E_3'. 'l-I'TTTIZIII. if??? I : :%

_Lxi, = {333.13. 3733. [:I. 333-33. #333. MHZ:
X322 = {Ilfllld].i'3'3'3I35.U."-'l,-_..7313373 '3I

Xi) = { ill. m3- [3- mar-.5.- ”53:. 3337,": ‘.

Xi : {m1'H”ma-"h-zu‘wfifiJTirl:
X0i3= {33333. D 333.331:- 3317,.‘3‘3'in3 .iqim13 — 331,-.l :*
Xgil = { |,'3_J. r7? 3,. 3315. 333:3. 3333.3“ 333.. 3:-

Xzig = {U123 . 333,,- 33135,.3r'33. 3113,. 37133.33 :3

X5]; = { JD. ”13- ""-'E3t‘-- 1"“ '_.:1- F-"'f--‘_-- ”133'.
[77.51 n1:-.:.nnl_=.'_" In?” :‘l-Ji...llllllt_-I:l

U. 5'13. ”3'57. W3 _ 33' '."'I'T.:, - .3331

13:13.2..L! “31353:. H. Fiat-"'91!” '—
Ili — ll. 13-' . - - '- - I12 — 3.7-: 3. 371,35, Til-33. IT33. 3F. 35,;-
!:t _'I. 3"‘3';l 3. ll. 3"."-'.,:I _ m3. -3':'.3 5.33. TIT-,—

The Inultiplets are given in Fig. 3—24.

3 ;-.-,. ILL 333.3,. C3. 3339—. 3.15:1: '. 7*.
153731,. 3

1" 3:Hflll ' 3'

(43.25)

The reduced multiplets of type R35 contain 36 ERs/GVMS whose signatures can be
given in the following pair-wise manner:

"if = ‘: “”1 ”~ .rr33,_ '1 T3-'L~- ”5732' :3" 'I..'3,3.- — 2731.: l l
.53 = 3: I. 3?? 3 . C'. 333.34., 333.3, 313.. . 33173: :fim 3:35- }.

13-3—1 -_ i. l: 373- 3 . U. '3’335335. 3m. [3' '333._-:lT 'rlm '...:3.T 5J-
‘3_3jl : : l'r3'33,373,3.313.3.33'.-,33,3.3333-,..r1‘33i:: :33‘1133—3
£333 : 31333.,,F| ""-'E-—1.ET~“'5'33li-l1m-1ET:- :ti'nr- 3 — 3313! I“
‘ f 3—- 5 IFI 3m "733 3'3i-- 3‘-'3- 3*3—"3I --' 13333 3. - 33 21
(hi-l i. -' '33'r'n-11 1:,- 'I_;- 3 |, ""'_,l-|,”'::3 32] _l'

1-1.3: = E :- mi - ”-5.". --i-F3- 3,1. U- 1133;,- .3: :%313_ -3 }
. 1. I7 _ . 1"-

‘332 = ‘3'” JTH-J’Hi33 “133; 'J ms. that?J1~ —3‘3‘3 '3}
“ti—.1 T J: in! IT .1 ”1335:. -"?._-g.,-,.'I_J. THE-,3": -.:T:.—:,[,3313, -- 3133-3 ,3 }

- _ 4- 1". .

"his —‘ i'l'l ”333- _r-‘-:.3=.73'JJ-3_-,3_-_. U. 3333;“: :q 3713 _~.]}
F: _ - I.: F-

l. m — “3 (W, ”33: 5. $3.; 3'3‘3 3,: 33:7,: Ilg'i'HLfi‘; }
3'_ 3F -3. 1 1- ‘ I. _t I "d-r

1.333 = i ll]- JTJ-flq. [-I. 13111:}. 'h-‘rdi' 3!].7-‘J . fifitnlfi — 31TH : }
Iii ' 1 _ 1 3‘33” -- { 3.3333, 33‘3_n_._, 3313,, 331:3? -"'"--‘3- Tr'J-s‘f“ 3 Ski-W3 ,, l
3"_ 3- _'_ _ _3

“33133;.— = { 3,33'_ 33,. 31:3,- il. I_3, 33-3335, J'J'Jrl' iimi ,1. }
If“: 'I _ .-33 '—

13:: -_ { 3.3'3'.'l_i"1i'1.??3: |_,|, i'n;.:_1_'.r.".'_.fi7._l_ i—‘éWl; T}
1-.- ' '3 ._ ..'.. T _

KEI- 1[JIHII-5_FT.'_1I:J.FIE.1.FEEL_E1Ifir‘-J_'L iéfFT-I‘ET __ ”I I }

kin-2:.- if,” (”Id-1' P'IFHrT'liL TH: 31731.5l2." I%{mI—.—TT_EI}
3i , _ _ 3.: *3 ,.

1‘l = 1:,'3I-rTI"-'.--1'I'..'Hjj..-’33'.3_.3*'3"3'.3,:.1‘3'3351-I_'J I ié'lr'fi‘ — n71] l'

The multiplets are given in Fig. 3-25.
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The reduced multiplets of type R36 contain 36 ERs/GVMS whose signatures can be
given in the following pair—wise manner:

Xoi = {'[IP'11ll.?T?I._.'."."r'I= l'J. r217]: ' :-3.-.'.'1?___-_ — .‘.".' . '5' I'-
x33, = { :‘3'1'33. I} fit“. I15 |'_|. we}: . -‘::
X20 2 { If mg. IT! 711;. :r:-".!;.;_;__ ii. m:- ': '. :— .,r.u.- =.-.‘ ."
Mi 2 { I'n1;.fl..-‘I?.;.-_3. .‘i"'.:. -;i.-_= . m—‘ : I‘E'.","J_ln-i T _.'»

X3373) = i I. 3 - '- —' . .
X03 : {[mi ll. 37.3517. ":14 -‘.'.'.L:,.l-,3l:; :3.-ilrr'.']_3 — ”...—.5 :-
Xiztz = E Z I '. 1'.

- . ..-:.': - -—7-.'-:'—7- j
.- -;- . 1.xi —- {[TH-1.773:5.T7l'.lfil'_'..|'.i".':._'_ll. TEF.I._JI_ ; IiI-rfl — .r-— '
' '9' —3....X3i3 : {H}- ?“i'J-fli'uasi- ”71.33.. Tu‘i'a. '31—: d—EHHE 7| {-

Xlljl: .— {Fm}. REE-,4. ”3'5. Eng—3. :_-.— 3:: :lm -__: :-
Xfli : {3.33.3.1'|-31-33;.I'l'ff.|’3.-'-'3:T" I'.:".':IT'. "LIT-3N ..

ll
.

X32? : {-'.=‘??-:.*.- ”24. :14: ~._l'i. 'F'Fifjg. [ll-L: _i, ‘3 I"-"" l (4'27)
The multiplets are given in Fig. 3-26.

The reduced multiplets of type R35 contain 36 ERs/GVMS whose signatures can be
given in the following pair-wise manner:

XE)t : 3TH] _ T'.'.1-‘-_-_l3'.'l.."'15_ .'TiF-l— '. :i':I'-’-'.f; "‘ 373 i
Xltl = {iflu 3?: ”‘35; .- __. In, FETI ;:“l_I"J'

Xlt2 : {mu 'r_: H. 1L; Fur-FF iii-3112‘}
Xi = {"TTIE-LJ €33. 73"}.1. TT?1_-__g. I.'r._u:, E'."5_-_I"'" ;:l 1.71.5.7 — ITI- *
xi — {{m 1;. l] :3: ,_,_—.__ 3,. I'II. 32.5.95: . :frmj 3
Xit3 = {firm}. Tn]. H1457. 37-. I . ll. mg. F iii n Lg — .-'?i~' i
Xi: = {iWB-‘l- "£41;- l-'-"_:.r. " 73173: film” _ T' '1"
xi '_ {aim}; L']. ::r_5',-.;~.. :‘nd- ll. TH I— :fi'g‘?“ — TI - 'r
X359, _ {mi-3.1]. ohm. u".".'1_3.;.|:l.“i!. I: —%m' T' '3‘
x85 = {im 3733. u ijI.ru-._._-;.'m.n.i:: :_.'5_i11,:.a-. }
X325 : {inn-3. ”34. D. “PL ”-11 L. '17:" ': :érnlllf l
X5 = { [m 1. m3 4. ”1:: "3' 111:... “.'Tl-"l ‘7??? -3 ~
XSS : {llmJ H1. ll .5]; Ila-_..I"?-' :é'li‘TEET—I ".'||_l
Xlil = { {mi}:r1:_,rr1...;._.rr:r.:. -'-‘3.1~f”a.'.': : 5: 5:31; - .i'
X323: : { [7'77]. 'n 4- i'rr.._-._ ."!': -._.-. '.'.'?..1. Ill.- 7': : :t WT — F“
xi}? — {IP11 mg; ..'H-.i.‘-. r.r.g.. my. —: IT '3 — 7"" l
X3240 — { 1-l. 3'73. _' r: E' ”... .. T337] ' :I “In"; — 'I'J‘ 'll (4 28)

The multiplets are given in Fig. 3-35.
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4.4 Yet further reduction of multiplets
There are further reductions of the multiplets denoted by ic, a, b, c = 11 . . . ,7, a < b <
c, which may be obtained from the main multiplet by setting formally ma 2 mb 2 me =
O. From these reductions only six are non nonconjugate and contain representations of
physical interest.

The reduced multiplets of type R1135 contain 26 ERs/GVMS whose signatures can be
given in the following pair-Wise manner:

X31 2 {{EL'nl [Ln-1,... 11171:; 1.11:; +1111. 1
_: I'll} ‘1

Xi = { Ill]. mg. 7114-711. run. “.17.”: : 32112113 .-7}
- .. . -: *1 - 1X223 : { [3.13. H. m;- 1. I.-":'.-. ma] '. :1111111 {-

X12 = { Ill 31’12- W Iii-1U. W E: : :':-;m- r l
:1: _ , 1.. .__ .- .. '.'.: . _Ii.._.X22 — {.‘.-J.!i..'._:=_1'_i..'.'lfl_'_.-.-'.iii-'27} . _EHIT}

X13 I {'-.U- '-':'~ .._..-.-.;1-. ‘-?|-‘--- HE: —--
n3 = { | 71“} FL .1115? .--.*73__. [1. m1};
XEJZE : { |Il.l- 731! '."..—1- U. Ll. =.'-_'..-=_{1. .-‘i":-; |_ '. :%T?1"J E: :-

X5 2 {ii}. $11.1. m5. Li. 3T?-rj."_l:: : ._
xii-E : { 1T1. 71":11. rrifir.t?.3.':_111r55l : :,. .. ':_.
X’sio : { ".*'.«3;_rn_1.'.:l.rn3. 27.1.5. FTP-l: : 2%TTTr-l- [-
X40 : { 1i1714_|--|1i'_-|.IT'_§1;.137:: ': £1 ITlr-iT — 77": 1', . . _ .74.. s . 'X3? = {.:?.-._:,.‘:l_1. .".".'._:. -"-.'.-J-. -‘ -‘;_.'.'.'i.;17.' $733!: I' (4.29)

The multiplets are given in Fig. 3-135.
The reduced multiplets of type R1136 contain 26 ERs/GVMS whose signatures can be

given in the following pair—wise manner:

. 77.1.1. ill. mg. '.l. r.r'.I.-,.- I" : :111'1'5'11: + fr? 1 i 1-
: _ l{1.1. .‘Tr--. i321. m1.— IJ. rm i _ .-—~ '2.._ _ _|

‘- 'i‘Ti-a Ii m m.- .- ='s rim-"'2‘ —i1-u:-_.l-
‘1..." II ;- |. |-|_1I-.- '—"'-'|:'i'. I .' I _IILEIIlI—_l _l

. _— _ _ _ .. 'I
_2 £1.33. "-'E:" .._I__ In”. II. .' . IEHVI-EITF

I _ '* _ : .. I
=_--- — I “3 U .' 111 H I i-. r J . : T-H-r .'

||-'
5.

ITL
J |

_u.

._
l_

l
I_

I_
.1

I._
I-_

_-.
.-._

-..
.-

M.
-1

_J
H-

I-I
l.--

.-~
—.

.—
—I

—1
I

_r—
n—

l
“—

‘—

.-
'\.

.
'

'
-

'
'-

—
-

-
-

-
,— "'1 -_ i -\_ I --1 1! I i I | I

hi1 'I' ' r I

'1' - -. _ ..: l." . I.

1-- : Hi. i.'.;_ H 3,__—.'J.r: 11'} :31}??? -~ m: ..i‘
_ — -. .._._ III _

"'- .1: = i'i' 7'" -i.= ' '~-'"'='1 ”Er-'— 17.17»: i
7 — 1|" ’14-’71‘7-"1' 1‘ :. LI'* Iain.— i'

_—
-'

,H
'

_i
II

F
- 1. I' _l .- I 1.1
. .I .I |

.1

'I-
.I

1.
_|

.
.‘_

.
-.-

1' I

| | —a -..
.I 1 _.1 "_l I:

.._
...

- (4.30)
The multiplets are given in Fig. 3—136.

The reduced multiplets of type R137 contain 26 ERs/GVMS whose signatures can be
given in the following pair-wise manner:

XE}t : { (03m2301m5am630)ii i%(md + 77741)}

Xito = {(Oim2am4am45im630)ii i%m2,56}
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:t I. 1. - - . _‘I _X20 -— { ._.'T..3. E}: m.;. FIE-33 __-.. m5. Li;- :l-I’F-‘nsp. }
Xi] — {Ill—l T712. .".“..~,f.. 3'?‘I:_ 'Ir'Ir3iIL-II [233: :jiI-Ir :I— ;.

X21 = i".-'T'2- U 'FT: r'«“-.- U}: :%*:-'i.. ".~
i ‘ _ -' 1“ ‘- III

X12 : {IILL :13‘3 TIl'IEIaII h: 3.1.3:} .I'Jrifilt' :éTT'I-r3l

:l: . _ I _ ~ i
X22 = l 7763.” 1:15.; *T :, 3"?7‘:- m: I— H}
’i .'I'I I

X039 _ {'l._iIf_.I'T_g__3_f.T:5 II_.Irr,u Eu “3-" :rlzi'.TE_I.I}
I .. _ __ ..

X01 _ '{ '-|'-| ""1 _ ”—71%. ’Tl'j'l Hg] ' 2 :lTlH'H._u 1.-
Ii -- - _ _- -

X30 : l. lm- lT'-'-' """ I“ ’ """.. l':'_. iémrld: , . '_ I . ' '_X03 — l U- ”i; Mr.- H. m... .“ '. :I. m; J-;i - . _I __. — -- IX40 2 { ll. m4. '.I'."2I=,_ U. .‘J'!-_.1_I3E_lJII_ ; :éi‘rsifi —- .r.=.' . I 3
1:}: 4' I: . _ . _.'_-' . -- .

X31 = 1, xii”:- ”ha. ?.'i;..;:. m.;. m'.'1:r..;l' : L' } (431)

The multiplets are given in Fig. 3-137.
The reduced multiplets of type R?“ contain 26 ERs/GVMS Whose signatures can be

given in the following pair—wise manner:

X30 : 'I'IU- filth mi- ???3 3.313.011 : '_!'.%T."u'.-331IIE_[I .
Xito : Iii—J. 37133. ll. . r13 ”EL;- (:3: :13“ I 1-: II

Xoii = [CL I'.-'.*-I.. m3 I], ”Esra e':-".= - :IE'IIHEEEII II

Xito = f. ?: m... U. Wit-:3”; H}; U: f._

a: _.
.-._ In. _-

.. -._. I .-
1— J “-1 1. _.u

.
_._ «.-

_. _-

l
I

I-J

:t _X1i1 —
Xoiz =
X21 2

I
Ir—

"-u
r

._
_'

I

"
'

'.'.1
:-

...
.-

_
_
.

L
_
_
J

.__
|

_.I _l .- --. _-.I
I _. .-

.

1.4 H -..-

l‘
I-

Jl
‘

".1 M

.'.I"II:IEI. TI':3J'I. Ffifi. WEE II . , :- T':'-_'. -

TJ'Ill-TIEIjT .l

:l:. =. i. -(m23303m53m23m35630) 'l'T'T-w. l
i

(01m23,51m63m3301m56) 3 I,
:I:, 1 .(”13.0.7715: 03m23,56.0) : if. i

m23101m563m21m3,53m6)i; 0} (4.32)

. 'H'u H733. 77:5; ENE". i".".

>< 8 H
P

H
I-

H
rfi
fl
q

r—
H

rfi
r-

H
r-

‘H
r-

H
F

H
F

H
W

P
H

q
:1

—-r
[1

. 'l
—

-I

L.-

l. I r...- I“
: a... -...

| HI 1;:

I Mr ".Ir .__1

X 8 ||

The multiplets are given in Fig. 3—147.
The reduced multiplets of type R346 contain 26 ERs/GVMS whose signatures can be

given in the following pair—wise manner:

\IFI - ““1 " ”3 1.: .:_m~| .:%Wi"~.='l
33;; = {friabfi ~ ITI 3-3 H: 3134:; :hgml 7; Il
kill-L! = {W733 l}. Iii-{jut}. H.531. TT‘:T'.Li_I TEETH] 33'}

1.3-1} = {.'ID.T}13,IJ,iigI_. - 5. "Fr - jgfnn- — — m: .II
33;} = {:"T:.:I_L|_ r1135. .u.l'.'|_.r.1-I fil— :‘élflit — m— }
if: = { {771-3. 777133- '3'???” Trip. 171,3. 3‘37i . iém L,— l-
1.3:. — {ll-l. W3. Fri-5 “7'13- ?ra._._-._.1r?1..-'Ji'_ d-I—EIIIm— _| I'
33:33 : {{m].11.:3.'.r.r'.-I.I7_.-.rr-;;. risg.£i'}:; :%:'rrr1 — .r —I

355—3 — {j fill. 773;. mi— -'.'i'1__I.-I. ms. 41}: : :gf'im T." ]-
It? 2 { (midi. H, 3.735. U. 'H'i'aIg. NF.” 9" : :L-glml 7}-
‘3?i = { II??? I . 73135, [1. file... 0 I'M-5.3).: :‘lTéflfnlIf 1'

Xi = {[71.33.(Junie-r.=a.1_r.r_r;;Ifi_n34:;ig'I'I'rh — w I ~
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X33: = {(m1,3301m5,7301m3,530)i ; i%(m1 — 7717)} (4.33)

The multiplets are given in Fig. 3-246.

4.5 Last reduction of multiplets
There are further reductions of the multiplets - quadruple, etc., but only one quadruple
reduction contains representations of physical interest. Namely, this is the multiplet
Rim, which may be obtained from the main multiplet by setting formally m1 2 m3 2
m5 = 777,—; = 0.

The reduced multiplets of type R1135? contain 19 ERs/GVMS whose signatures can be
given in the following manner:

X6” = L IE}. will}, |..|. '.'.".!F_~._ [II'E' : I'él' mg, + mil] }
Xi = 4 ID. mg. ml. r511. mg, I135; 249'”. L i

Xzil _ i “T” '-:' H .‘rT.---. T'— fli': £%riijl
X1i2 = 1' It}. nth-min . rug-.14. mg}: . ijnai l
Xi = -, .' mg, [L m.._.., I], rm, .' -' '. I) 1"

x3? = {(0,m2,4, 0, 0,m46, mi; :i:%m2L5}
X5 = { (03m2,43m6101m43m6)i ; :lzémg}

xgt = {(m2,m4,0,m2,m46,0)i; i%m5}
Xiiio : {(0, m4: 0, 0, 7712,46: (Di; iams — m2)}
X31 = {(m23m4am61m23m41m6)30} (4.34)

The multiplets are given in Fig. 3-1357. Note that the ER X31 is not in a pair and is
placed in the middle of the figure as the bullet. That ER contains the minimal irreps of
SU(4,4) characterized by three positive integers which are denoted in this context as
m2,m4,m6. Each such irrep is the kernel of the three invariant differential Operators
D1122? D2224, D326, which are of order m2, m4, m5, resp., and correspond to the
noncompact roots G15, age, 0:37, resp., cf. (2.5).
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SU(4, 4) reduced multiplots of typo. 3Fig. 2c.
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Fig. 2d. SU(4, 4) reduced multiplets of type R‘}
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4
15SU(4, 4) reduced multiplc‘ts of typeFig. 3-15.
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SU(4, 4) reduced multiplets of type H116Fig. 3-16.
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SU(4,4) reduced multiplcts of Itypc R35Fig. 3-25.
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reduced multiplets of type R313)43SU(4Fig. 3-26.
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SU (4, 4) reduced multiplets of type R135
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SU(4,4) reduced multiplets of type R1135Fig. 3.136.
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Abstract

The pseudo—spin symmetry (P88) in nuclei is the name for the quasi~degeneracy of a
pair of single-particle states with quantum numbers (n, Lj) and (n’ = n— l, l’ = (+2, 3" =
j + 1). The P88 is known to exist in many cases, in spherical as well as deformed nuclei.
In these lectures, we will discuss this property of atomic nuclei in the framework of a
covariant energy-density functional theory (CEDFT) which can describe quantitatively
well the properties of spherical as well as deformed nuclei. In particular, we Show how
perturbation theory can be used to investigate the PSS by relating the nuclear Dirac
Hamiltonian of CEDFT to relativistic harmonic oscillator (RHO) potentials.

PACS numbers: 24.80.+y, 24.10.Jv, 21.60.Jz, 21.10.Pc
Keywords: pseudo-spin symmetry; Dirac equation; perturbation theory: 1111(‘learstrnc—

ture

1 Introduction

The atomic nucleus is a rather complex many—body system which is nowadays well ex—
plored, and whose dynamical properties can be understood to a large extent in terms of
effective interactions between its constituents, the nucleons. In the long quest for mod—
elling the structure of atomic nuclei which started over a century ago, some fundamental
concepts emerged at very early stages. For the purpose of the present study, we shall
concentrate on two of these concepts: 1) the existence of an average nuclear and electric
mean field resulting from the twobody interactions among the constituent nucleons; 2)
the existence of certain symmetries which are inherent to the nature of the nuclear mean
field.

One of the earliest nuclear mean field models is the 3—dimensional harmonic oscillator
potential. Very soon it turned out that the empirical data required that an additional
spin—orbit potential - of the form VLg(r)l.s — should be added to the central harmonic
oscillator potential. In this way, it became possible to account for the observed energy
splitting between the two members j> = Z + % and j< = l -— % of a Spin-orbit doublet.
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I'particle states 1.11111 11111.1 111’ =11 — 1.. =1 5— -. = +1.) Sometimes one introduces
an extra quantum number the pseudo—orbital angular momentum 1: 1 + 121’ — 1 to
characterize a pseudo—spin doublet.
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2f%,2f§ — 3111;. 111.1'.... T111111: .11-12 1111 .1.-l.'.'-2;r.'-11;1-.1i 1111:1111'11:F-.111-'111 111 111'1'-1.11-...'11..11'-11-:1:11 .1.-113,11 near—
degeneracies. These cases are also mentioned by J .N. Ginocchio[5, 61. In his comprehen-
sive article of 2005 on relativistic symmetry in nuclei[7] he showed the systematic trend of
the measured pseudo—spin splitting of the 3s— — 2113 and 201%- lg2 neutron lev913 through-
out the Sb isotopic chain and of the 3s- — 2d? neutron levels in the T1 isotopic chain.
In the Sb chain those splittings vary monotonously from +10% to —10% of Fun while in
the T1 chain they are between 3% and 6% of ha). Thus1 it seems that the pseudo-spin
partners have a tendency to stay not too far apart although their degeneracy is far from
quantitative.

It is, however, difficult to find a general explanation to the fact that sometimes the
degeneracies seem well obeyed and sometimes somewhat violated. In the 1990’s the rela-
tivistic mean field (RMF) models became very popular, and they gave the hope to provide
a theoretical framework for understanding the occurrence or breaking of the pseudo-spin
symmetry (P88) in nuclei [8]. In the rest of this contribution we shall use the relativistic
framework to discuss the PSS and its breaking in atomic nuclei.

2 General properties of pseudo-spin symmetry in nu-
clei

The natural framework for discussing the P88 in atomic nuclei is to start from a micro—
scopic independent particle model where the nucleons - neutrons and protons — are moving
in a mean field created self—consistently by their mutual 2—body interactions. In this paper
we adopt the covariant approach in which the nucleon wave functions are solutions of a
Dirac equation rather than of a Schrodinger equation, and where the nucleon-nucleon ef-
fective interactions are mediated by the coupling of nucleon fields to meson-like fields. At
this point, it is worthwhile to recall that there is a situation where the P88 is well obeyed1
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it is when the single—particle states are eigenstates of a Dirac equation with Lorentz scalar
and vector potentials, US and Uv, such that Us + U,. = constant at all points in space.
At large distance, both Us and U1, must vanish, therefore this constant value of Us + UL.
should be zero. However, in order to have bound single-particle states Us + U,, must be
negative in the interior region of the nucleus, hence the impossibility to realize strictly
the condition Us + U, = constant. This is clearly illustrated by Fig. 8 of Refm which
shows typical U, and U,, potentials calculated in 16O and 208Pb.

The covariant and self—consistent approach to nuclear systems is widely used since the
pioneering work of W'alecka and of Serot [9]. mostly in its Dirac—Hartree version (called
the Relativistic Mean Field (RMF) approach in the literature [10]), and pairing was
added for non-closed shell nuclei. In parallel, methods for treating the exchange (Fock)
terms were developed [11] and successful Relativistic Hartree-Fock (RHF) Lagrangians
were proposed for incorporating effects coming from pion—nucleon or p(tensor)-nucleon
couplings [12] which are absent in the RMF models.

The general method is to start from a covariant Lagrangian density containing nu-
cleonic fields, mesonic fields and meson—nucleon couplings. By applying the variational
principle one can write down a nucleonic Hamiltonian containing one— and two—body
terms, and where the two—body nucleonic interactions are mediated by effective mesonic
fields. This method has been carried out to determine the interaction parameters of the
model and to calculate extensively the properties of atomic nuclei throughout the periodic
table [13]. It has been extended to treat the case of nuclei with pairing correlations. by
adding a Gogny—type pairing force and solving the full RHF—Bogoliubov (RHFB) set of
equations [14] .

In any case, the common feature of all EMF and RHF models is that they lead to
self-consistent mean field scalar and vector potentials (Us and U,.) such that U, + UL. is
about -80 to —60 MeV in the nuclear interior, and going to zero beyond the nuclear surface.
Thus, the strict PSS condition Us + U,. = 0 cannot be fulfilled everywhere. Nevertheless,
the covariant framework is quite suitable for studying the PSS and its breaking, as Wt
shall see in the remaining part of this contribution.

In the RMF as well as in the RHF model, a very systematic feature emerges if one
compares the wave functions of two pseudo—spin partner states, e.g., a. = (nlj) and a” =
(n’ = n — 1,1’ = l + 2,3" = j + 1). This is illustrated by Fig.1 where are shown the upper
components G and lower components F of the neutron states (a = 2sl/2,a’ = 1d3-/2)
(left panels). The right panels of Fig.1 show a similar comparison for the pair of neutron
states (a = 381/10.’r : 2013/ 2). The calculations are done [15] for the doubly closed—shell
nucleus 1328a using a density—dependent relativistic Hartree—Fock (DDRHF) model with
a typical interaction PKOl. It is remarkable that the lower components F of the wave
functions of the two pseudospin partners are very similar, whereas the upper components
G show marked differences, especially in the case of the 2.91/2 — 1013/2 pair of states.
The fact that the lower components are very close to each other is somehow related to
the PSS. Since the single—particle energies depend more on the upper than on the lower
components of the wave functions, the net effect 011 the single—particle energies is that
the 2.91/2 level is at some 3 MeV above the 1d3/2 level, whereas the energy difference
between the 381/2 and 2d3/2 levels is less than 200 keV.
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Figure 1: (Color online) The upper and lower components, G and F, of the radial wave
functions for the neutron pseudospin partners 251/2—1d3/2 (left panels) and 331/2—2d3/2
(right panels), in the nucleus 132Sn. The DDRHF calculations are done with the PKOl
parameter set.
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3 Perturbation theory approach to P88
Recently, the perturbation theory approach was used to investigate the symmetries of the
Dirac Hamiltonian and their breaking in atomic nuclei[16]. The PSS as well as the spin
symmetry (SS) were discussed in that work. It will be illuminating to consider here the
case of PSS to understand the mechanism of its breaking. We will follow the method
introduced in Ref.[16]. The actual numerical applications presented are done in EMF
approximation for the representative nucleus 132Sn with interaction PK1[17].

In spherical symmetry, the radial Dirac equations of the RMF model can be cast in
the form

HKI’ 2 E111 (1)

with ( ) j )
_ Z r + M’ —(;—+ +§ _ 7 _ C(i‘ 9

H — ( (1—i- +§ —A(r) _ It! ) , (111d q} —- ( F(I) > . (u)

where 2(7') 2 8(7') + V0") and Afr) = 8(7’“) — l/(r) denote the combinations of the scalar
and vector potentials, and s: is defined as E = (I -— j)(2j + 1). Taking the nucleus 132811 as
an example, the potentials 20‘) and A0") for neutrons calculated by self-consistent EMF
theory are shown in Fig. 2. The typical values of EU) and Afr) in the. nuclear interior
are about 70 MeV and 700 MeV, respectively.

In order to apply the Rayleigh-Schrodinger perturbation theory, we. split the Dirac
Hamiltonian H in Eq. (2) as

H : H0 +11”, (3)
where H0 leads to the exact spin (pseudospin) symmetry and H" is identified as the
corresponding symmetry breaking potential. In the case ol the spin and pseudospin SUB)
symmetry limits [18] the Dirac Hamiltoniaus with exact symmetries read

~ E+M —i+i E +M —‘—‘+fiSb: (£7- r [553: 0 . dr T ,

whereas their spin- and pseudo—spin symmetry breaking potentials are

(0 0 2—200
0 A” —- A ) ' ( 0 0 > 7

where A“: 20 are constant whereas A, E are position-dependent.
Fer studying the relationship between the eigenstates of H and HD by perturbation

theory1 it is equivalent to use the definitions H 2 H0 + W’ and H0 = H — ll". Since
the spectrum of H has discrete eigenstates which have no counterparts in H0, the eigen-
encrgies and wave functions (Ez-t 2,531) of H0 are expanded on the complete set. of eigenstates
1D,”) of H for all the calculations discussed here belowT i.e., the ground state eigen—energy
EU and wave function If)” of H0 are expanded as

E0 : 13“” + Em + Em + - -- , (6a)
all!“ 2 Z “mlpm With am 2 Gig) + u’iri) + (2) + ' ' ' ' (6b)”in
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Figure 2: (Color online) Single—particle potentials for neutrons in the nucleus 1328a The
self-consistent potentials calculated by RMF theory with PKl [17] are shown as solid
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Figure 3: (Color online) Single-particle energies of spin doublets 1f (upper panel) and
pseudospin doublets 10’. (lower panel) obtained by RMF theory, and by the first, second.
and third order perturbation calculations, as well as those at the exact symmetry limits.

In contrast to adopting the Schrodinger-like equations as done in the previous studies
[5, 8], it is clearly shown that the operators H , H0 and W used in the present calculations
are all Hermitian, and they do not contain any singularity. This allows us to perform the
order—by—order perturbation calculations. In addition, it should also be noticed that only
It” corresponds to the symmetry breaking potential within the present decomposition,
thus the ambiguity caused by the strong cancellations among the different terms in the
Schrodinger—like equations can also be avoided. Therefore, the present method can provide
a clear and quantitative way for investigating the perturbative nature of SS and P88. This
method can be universally applied to the cases where the nature of the symmetry is either
perturbative or non—perturbative. When the nature of the symmetry is perturbative, the
link between the single—particle states in realistic nuclei and their counterparts in the
symmetry limits can be constructed. If the symmetry is non—perturbative, the divergence
of the perturbation series can be found explicitly.

In the present calculations, as illustrated with dashed and dash-dotted lines in Fig. 2,
the constant potentials in Eqs. (4-5) are chosen as -—A0 — it! = —350 MeV and £0 + M =
900 MeV. We have checked that the convergence of the perturbation calculations are not
sensitive to these values.

Let us then use the model of Figure to examine as a specific example the pertur-
bation coriections to the single--pa1ticle energies of the spin doublets If and pseudospin
doublets Id. In Fig. 3, from left to right, the single-particle energies obtained by self—
consistent RMF theory, and their counteiparts obtained by the first, second, and third
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is still unclear.

Thus, from the perturbative point of View, a path can be established between the
Dirac Hamiltonian in realistic nuclei and the symmetry limit of S — V = Const. This is
no? The case f-i-r 9hr- liinit 8+ V = Const. This confirms in an explicit way that the nature
411' Elf-35 is iirist-pertnriml.ive, if the Dirac Hamiltonian with S + V = Const is regarded as
tin:- sfx‘inriietrl' limit.

4 Conclusion

In these notes, we have introduced the issue of PBS in nuclear systems. This question
originates from the empirical observation that pairs of pseudo—spin partners sometimes
seem to be nearly degenerate. This degeneracy may appear in empirical observations, or
in predictions of simple potential models. 011 the other hand, there are also numerous
situations where the P88 is not obeyed.

An analogous issue is offered by the question of the observed splitting of spin—orbit
partners, which is the opposite situation. In this latter case, it is known for a long time
that this splitting is caused by a spin—orbit component in the nuclear mean field.

This second issue can be handled by considering in the nuclear Hamiltonian a spin—
symmetric part (which keeps the spin-orbit partner states degenerate) an a spin—symmetry
breaking component (the spin-orbit potential) which causes the non—degeneracy of the
spin-orbit partner states. We have seen that, using a relativistic nuclear model. one
can understand by perturbation theory how to relate the non—degenerate situation (the
realistic case) to the degenerate situation (the limiting case).

Then, coming back to the first issue one can try the same perturbative method, again
with the same total Hamiltonian but separated into a pseudo—spin conserving part and a
pSCnldO—Splfl non—conserving part. Then, one finds that the limiting case has no solution.
Thus, the degeneracy of PSS partners does not happen — at least not systematically — in
the realistic case, nor in the limiting case.
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Abstract

The paper is devoted to the description of the contraction (or limit transition) method
in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As
opposed to the standard Wigner-Iiionii contractions based on insertion of one or several
zero tending parameters in group (algebra) structure the alternative approach, which is
connected with consideration of algebraic structures over Pimenov algebra with commu-
tative nilpotent generators is used. The definitions of orthogonal and unitary Cayleye
Klein groups are given. It is shown that the basic algebraic constructions, characterizing
Cayley—Klein groups can be found using simple transformations from the corresponding
constructions for classical groups. The theorem on the classifications of transitions is
proved, which shows that all Cayley—Klein groups can be obtained not only from simple
classical groups. As a starting point one can choose any pseudogroup as well. As applica—
tions of the developed approach to physics the kinematics groups and contractions of the
Electroweak Model at the level of classical gauge fields are regarded. The interpretations
of kinematics as spaces of constant curvature are given. Two possible contractions of the
Electroweak Model are discussed and are interpreted as zero and infinite energy limits of
the modified Electroweak Model with the contracted gauge group.

1 Introduction

Group-Theoretical Methods are essential part of modern theoretical and mathematical
physics. It is enough to remind that the most advanced theory of fundamental interactions,
namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(l).
All types of classical groups of infinite series: orthogonal, unitary and symplectic as well
as inhomogeneous groups, which are semidirect products of their subgroups, are used
in different areas of physics. Euclidean, Lobachevsky, Galilei, Lorentz, Poincare, (anti)
de Sitter groups are the bases for space and space—time symmetries. Supergroups and
supersymmetric models in the field theory predict the existence of new supersymmetric
partners of known elementary particles. Quantum deformations of Lie groups and Lie
algebras lead to non-commutative space—time models (or kinematics).
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Contractions of Lie groups is the method for receiving new Lie groups from the initial
ones. In the standard E. Wigner and E. Inenu approach [34] continuous parameter E is
introduced in such a way that in the limit 6 —> 0 group operation is changed but. Lie
group structure and its dimension are conserved. It is well known that studying non—
degenerate structures is easier then the degenerate ones. So one represent a general Lie
group as semidirect product of semisimple and solvable groups and reduce the problem
of Lie groups classification to the classifications of semisimple and solvable groups. But,
while the classification of semisimple groups was established long ago there is no hepc
to find the classification of solvable groups [42). In general, a contracted group is a
semidirect product of its subgroups. In particular. a contraction of semisimple groups
gives non—semisimple ones. Therefore, the contraction method is a tool for studying of
non—semisimple groups starting from the well known semisimple (or simple) Lie groups.

The method of contractions (limit transitions) was extended later to other types of
groups and algebras. Graded contractions [43. 44) additionally conserve grading of Lie
algebra. Lie bialgebra contractions [3) conserve both Lie algebra structure and cocomr‘nu—
tater. Contractions of Hopf algebras (or quantum groups) are introduced in such a way
[8, 9] that in the limit 6 —> 0 new expressions for coproduct, ceunit and antipede appear
which satisfies Hopf algebra axioms. All this gives rise to the following generalization of
the notion of group contraction on contraction of algebraic structures [25].

Definition. Contraction of algebraic structure (film) is the map (a dependent on
parameter E

WE(A’13*)—>(N‘*I)= (l)

where (N, *’) is an algebraic structure of the same. type, which is isomorphic (1W, 1:) when
C 7E 0 and non—isomorphic when t = 0.

There is another approach [23] to the description of non—semisimple Lie groups (al-
gebras) and corresponding quantum groups based on their consideration over Pimenov
algebra Pn(i.) with nilpotent commutative generators. In this approach the motion groups
of constant curvature spaces (or Cayley Klein groups) are realized as matrix groups of
special form over Pn(t) and can be obtained from the simple classical orthogonal group
by substitution of its matrix elements for Pimenov algebra elements. It turns out that
such substitution coincides with the introduction of Wigner Inonii contraction parameter
6 [34). So our approach demonstrates that the existence of the corresponding structures
ever algebra Pn(r) is the mathematical base of the contraction method.

It should be noted that both approaches supplement each other and in the final anal—
ysis give the same results. Nilpotent generators are more suitable in the mathematical
consideration of contractions whereas the contraction parameter continuously tending to
zero more corresponds to physical intuition according to which a physical system contin-
uously changes its state and smoothly goes into its limit state.

It is well known in geometry (see. for example, review [58]) that there are 3“ different
geometries of dimension n. which admit the motion group of maximal order. R.l. Pimenov
suggested [48, 51) a unified axiomatic description of all 3” geometries of constant curvature
(or CayleyeKlein geometries) and demonstrated that all these geometries can be locally
simulated in some region of n—dirnension spherical space with named coordinates, which
can be real, imaginary and nilpotent ones. According to Erlanger programm by F. Klein
the main content in geometry is its motion group whereas the properties of transforming
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”hit-”JE- fi-I‘L' set-«unlurv Elli" lllUfl'iiH £115.13”! wi- -'?"lllli"IiE-lII'IIiJLl r4}_il';:_-*E'l!".'.: si.r:_-.-'r- is. :hI:II-.I"'E".'|li.i 're the urtiirnguuul gmup .ETCMji-i a 1 hi their turn the Ei‘iJllpH I:'-l2I1.=-I_i:;-*Il Traci; a) + 1.: |_:-.-
attiiiti‘uf'timis and 'cuialt"; lL'Jil Eljilli’lliiié-‘iTlFII'L‘n are '.s<_-11'I.-.ir;iliin.- T..-:_2- Lire Ill: «1 nu: 55,1“ :uiis [:II'r-."-'l_.-='|..'
Hiram apart-s. This t'urrraupunrtrig-W~ .Llcss titt‘ Et‘IL-‘I'J'ji'll'l‘lflil :ntcrprr:Lu:irzu Iii {I
ltic'in r'tiiitrucsturi screens.- l3}: analogy this iur.u'-r;'ur-"-'- at -:.I is trunsit-rr-'-ii r»".~ r312" r._-:::.~:'.-T. i':':~.'llL.-11.-‘
ui other FllE‘C‘lTlEHlE' arrucvircs.

The method for achieving this goal is the method of transitions, which has clear
geometrical meaning, and is based on the introduction of a set of contraction parameters
j 2: (j1,...,j,,), each of them taking three values: a real unit, an imaginary unit and a
nilpotent unit.

The method of transitions between groups apart from being of interest for group theory
itself is of interest for theoretical physics too. If there is a group—theoretical description of
a physical system then the contraction of its symmetry group corresponds to some limit
case of the system under consideration. So the reformulation of the system description in
terms of the transition method and the subsequent physical interpretations of contraction
parameters j gives an opportunity to study different limit behaviours of the physical
system. An example of such approach is given for the Electroweak Model of elementary
particle interactions.

It is likely that developed formalism is an essential tool to construct ”general theory
of physical systems” according to which ”it is necessary to turn from group—invariant
study of a single physical theory in Kleir. unit-era: ..iiu:iir'.-:.; lit-1 FlZ-L'il'.5'il'_"t!:=1'3;='.'I-"t'.l by symmetry
group) to a simultaneous study of a set --*‘ limit riieezui iv: The: snug.- phrsical and geo—
metrical properties will be the invariant ;_'=rr=;':er='ia :~ "Jl all 5e? rnz' {Lit-raw and they should
be considered in the first place. Other i'iJ'-;1;-i-i".i.-_-s Will in" 1'el+-'-.'a:t uzilj.‘ in the particular
representatives and will be changed under limit transition from one theory to another”{59].

2 Dual Numbers and Pimenov Algebra
2.1 Dual numbers

Dual numbers were introduced by W.K. Clifford [10] as far back as in the XIX century.
They were used by AP. Kotel‘nikov [39] for constructing his theory of screws in three—
dimensional spaces of Euclid, Lobachevsky and Riemann, by BA. Rosenfeld [53, 54], for
description of non—Euclidean spaces, by RI. Pimenov [48, 49, 51] for axiomatic study
of Spaces with a constant curvature. Some applications of dual numbers in kinematics
can be found in the work by LM- Yaglom [57]. The applications of dual numbers in
geometry and it: [hr-erg." of grain: l't.'}'.i!'+'1.‘-it"fiiEliiifl'iltw' mirr- discussed by V.V. Kisil [36]. Fine
riist int-1mm: lJE‘il‘IEEI] tire quantum air-:1 r-lassir-al nit-i-izanics were investigated with the help
ui iiiu-il numbers lijT. iii. The ll"i.E_-'L'rl'_"-.' uni rim-IL unruly-«rs as number systems is exposed in
monographs by D.N. Zeiliger [60] and A811. Bloch [6]. Nevertheless, it is impossible to
say that dual numbers are well-known, so we start with their description.

Definition. By the associative algebra of rank n over the real numbers field R we
mean n—dimensional vector space over this field, on which the Operation of multiplication
is defined, associative a(bc) = (ab)c, distributive in respect to addition (a. + (3)0 2 ac + be
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and related with the multiplication of elements by real numbers as follows (ka)b = Mata) =
a(kb), where a, b, c are the elements of algebra; k is a real number. If there is such element
6 of algebra that for any element a of algebra the relations as 2 ea = a are valid, then
the element 6 is called a unit.

Definition. Dual numbers a. : (1060 + 0181, (lo, (11 E R are the elements of associative
algebra of rank 2 with the unit and the generators satisfying the following conditions:
(3% : 80, (3081 = 6180, (312 = 0.

This associative algebra is commutative and 60 is its unit. Therefore, further we shall
write 1 instead of 60 and denote generator 6,] by 1,1 (the Greek letter "'iOta”) and call it a
(purely) dual unit.

For a sum, a product and a quotient of dual numbers a and b we have

a + b = (a0 +(,1G»1)+(bo+ L151) = (10+ be + Ufa] + ()1):

(lb = ((10 + L1a1)(b0 + I1b1) : (tuba + {1((11b0 + Gobl),

a _ a0 +£1.31] _ an (1.1 b]
b _ b0+z.,b1 _ b0 ”1 b0 “02%

Division can not always be carried out. Purely dual numbers am do not have an inverse
element. Therefore dual numbers do not form a number field. As an algebraic structure
they perform a ring. Dual numbers are equal a = b, if their real parts are equal (10 z: [)0
and their purely dual parts are equal a, :2 b1. Thus. the equation (1131 = bu] has the
unique solution (11 2 b1 for (11, b1 7E 0. This fact can be written formally as i 1/;,] = 1 and
this is how the last relation has to be interpreted, because division 1 / L1 is not defined.

Functions of dual variable .. = :50 + $131 are defined by their Taylor expansion

alpha)
fit”) 2 fffiel + 115131 '0 (3)

.r(,

where all terms with coefficients I? z? . . . are omitted. In particular, for dual .r we have

sin .r.‘ : sinrru + (pr, cos :13”. sin(t|.r1) : um]

cosxr = cos 1:0 — LII} I sine-0, cos(i,..r1) = l. (*1)
According to (3), the difference of two functions of dual variable can be presented as

f(.’r) — h(;r;) = f(:ifn) — }£(.L‘0) + (1:131 M — M . (5)33:0 darn

therefole, if real parts f(:r{,) and (1(130) of functions coincide, then functions f(L) and h,(;r;)
also coincide. Using this fact, Dh. Zeiliger shows [60] that in the domain of dual numbers
all identities of algebra and trigonometry, all theorems of differential and integral calculus
remain valid. In particular, the derivative of a function of a dual variable over a dual
val iahle can be found as

(ifffi) _ aff-Te) , 821((3‘0)
{if}: — _——0;L‘[] + £11,] —'—0r(2) . (6)



2.2 Pimenov algebra
L111 us 13111111111141 111111' 11 1111_1r1'_-' gent-1‘11. 1111:1111 111:1. ‘1 ssh-r111 1111p::11*--~:r_1 111111: 1'11'~-'|:;'-.l-;1:11 11:11:
g1.':111'.=1r.111's.1'11'111-25111-211111'11 1111:13111‘11 11:11.1: it 11:11:. :l:'.11'r11r.:'-1 1111 11-111 1:}.1 ;;11:;_.. 1,1,1. -,.
11311-2? 1115112111“: 111' 11111-11 111111“ :1. 11.! P11111j=1111r 2111.1: 7111: 111111 1.11-11- :11?:'11.:11:1'111'1 121-. 11.1. 7'11 111111-3111
1111;111:1311 11111111111111.111-‘17- 111111.11 F:1'11'l USE-‘1': 1111:111 11:11‘ 1111:- 21111111:-::: 11211111111711; - 1:11.111"; -1'11.'-:_ ,1; 3,119,131;
11'11‘. 11 13111115111111 1‘111‘1'1-11111'1“. Then-11111.:- 11'1'- 11:11-.-:- 1.11111 11111111.:1r11 :15 911111111111: 11.21.:1111'11. .1111'1 111-111111-
'1 F15 _ “:11.

Definition. Pimenov algebra Pn(1) is an associativealgebra with a unit and n nilpo—
tent generators 11,12,...,1n with pr0perties: 1,1,1? = 1,011. 7é 0, k yé p, 1E. : 0, 39,1: 2
1, 2, . . . ,n.

Any element of Pn(1) is a linear combination of monomials 11:111., . . .11“, 191 < 132 <
. .. <: k}, which together with a unit element. make a basis in algebra as in a linear space
of dimension 2": n n

CL = (10 + Z Z 111;, krék1H-Lkr- (7)
T211613, 5151.2]

This notation becomes unique, if we put an additional requirement 1;] < 192 < . . . < k, or
condition of symmetry of coefficients at, ”1,, in respect to indices k1, . . . 113,. Two elements

1 III I‘ll- 11:LTI'JII')I".E P lr' II lIII:“||'I;‘-"rllll' hill ll- [zlf'lll I'I .-'lql-l.-'lrI'I-I"": 'I“: +11I'1 (“Ir-fl"; 'I'Ilfiiil' 1'1". 'F'r' 1'. 5-1". [I'I'HLHI ' r"-'l. ' .n. ~_a:.,l La 1|; ‘2' .' - 11-” -.u ... _ —— a -. .'.._J... -., I..-_ 1].. ':._.1.. ""II‘. 1.-....... -._ .II I 1-. - 'lr' 1.1... .. .-
. ll 1~-- :I- l- n.1-I.- 1-:- E . r---'-|..--a. . I l—I-lu-r—I.-_..I --l- 5.- --..i- -- ---pl--.—_1:111 = "11.11 '1 1 .131 = "1:1 .,1'..'.- 51:": 1.1 1.-;=_- 1.11.1111 1'1 1.11:1;1 .11111.11r'1.‘:-. 11111111111'1111111'14 11: ' 1.] --'---lT,- 1-11 ... 1'.- . _4.. .__. ._ -_ F - .__ :'.:1_. _|,_,.,...',,1.. .: ,_,._.| _._,-_1_ _-,1‘11.'lllt_'.l.LLE 1.11. {1121111711111 P3111.) '_':-1 PIfi‘HI'fih'Jfl 11- 1111‘ 5,11..-',-1h11.1_;.1|_1 1:. I .-1-,_'.,1'1-.-:1-. ;|_=1_1_ 12 2111111.. 1‘1'1_::.' I L;
I II I - — — I:I " r _ - II'I — - I 1'1' ' a‘.‘.' I . ‘H I- l- — '.'r_5111111112 11111113212. 11111.11JEL'111 1.111t 11;..- .5. —. _|, r- _ l, ;', , , , . “I 1'1 11 11,. - . 1.11 ._1_., 1-. .— ..

as 111." 111.1 5:111:11 expressions arr.- 1'11711 111311111111.
Here it is 11r--r1rnr11‘i.-;-11:' 1.11 17111111111117- P 11:11:11111': algebra a with Grassmann algebra.

F2,,(e), i.e. ass1.'11:'-i:-.1.1'11'1:: sigehrs with :1 11:15.1 . 21'1'11-1r13 a set of nilpotent generators e1, 62, . . . , 62,1,
0 exhibits the 1:11'111:11=1‘1.11'-15 :13— 5111111 1111'1:111111'.111=.'511' 1,16,, = —e,,ek 7£ 0, p 74 is, p.16 2 1, . . . ,271.
Any element f of Grassmann algebra F2n(€) can be expressed 15] as

271 2n

ffél = ffol '1' Z Z fin 11,611 - ~611- (8)
r=l k1, ,kr:l

The representation is unique, if one requires k1 < k2 < . . . < k} or puts on condition of
skew~symmetry fk, a in reSpect to indices k1, . . . , A}. If in the expansion (8) only the
terms with an even r differ from zero, then the element f is called even in respect to the
set. of canonical generators 6k, if in the expansion (8) only the terms with an odd r differ
from zero, then f is called an odd element. As a linear space, Grassmann algebra splits
into even F3” and odd 1"?“ subspaces: F2n(€) = Pg“ + T‘én, where F3” is not only subspace,
but also a subalgebra.

Let 11s consider nonzero products 6211:4621“ k = 1,2,. . . , n of the generators of Grass-
mann algebra P2,,(e). It is easy to see that these products possess the same properties as
generators 1;, = 621,462,“ k. = 1,2,. . . , n. Thus Pimenov algebra P,,(t) is a subalgebra of
the even part T3,, of Grassmann algebra P211116)- It is worth mentioning that even products
of Grassmannian anticommuting generators are also called para—Grassniannian variables.
The latter are employed for classical and quantum descriptions of massive and massless
particlies with an integer spin [11, 14, 15] and in theory of strings [61].
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3 Cayley—Klein Orthogonal Groups and Algebras

3.1 Three fundamental geometries on a line

Let us introduce elliptic geometry on a line. Let us consider a circle S} = {$52 + 3:”{2 = 1}
on the Euclid plane R2. The rotations :t" : g(<,9*);r*, i.e.

’ . 1 A 1' .$5, = :55 cos 9* ~ 1151 sin 50*,
:e = :17; sm 99* + If cos 90*

of group 30(2) bring the circle into itself. Let us identify diametrically the opposite
points of the circle and introduce an internal coordinate w" = 31/113. Then the following
transformations correspond to the rotations (9) in R2 for 50‘ E (—Tr/Q, 7r/2):

: 'UJl‘ — 0f

1 + Ufa“
4:w (1" = tan 90*, a” E R. (10)

These transformations make a group of translations (motions) G 1 of an elliptic line with
the rule of composition

,. (1" + (1" rcr = ——1;. (11)
1 — (1*(11

Let us consider the representation of the group 80(2) in the space of differentiable
functions on R2, defined by the left shifts

T(9(<e*))f(:r*) = f(9“(99‘)$")- C12)
The generator of the representation

Xiflf) 2__ lie-=0: {13)

corresponding to the transformation (9), can be easily found:

1‘ ('3$ t * tX (a: ,331)=3: ——:r —.
0 103:5 003:; (14)

For the representation of group G] by the left shifts in space of differentiable functions on
elliptic line the generator Z*, corresponding to the transformation (10), can be written as

x 4: n: aZ (w ) = (1 +w 6%. (15)

It is worth mentioning that matrix generator

*_ 0 —1
Y"(10) (16)

corresponds to rotations 9(99“) 6 80(2).
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The transformation of Euclidean plane R2, consisting of multiplication of Cartesiancoordinate ml by parameter j], namely

$2 R2 ——> R2<jl)

@«Ta -‘= $01 (1517i = j1$11 (17)
where jl = 1, 1.1,1', brings R2 into plane R201); the geometry of the latter is defined bymetrics $201) 2 :53 + jfazf. It is easy to see that R201 : 2') is Minkowski plane andRgt'jl 2 L1) is Galilean plane.

Our main idea is that the transformation of geometries (17") induces the transformationof the corresponding motion groups and their algebras. Let us show how to derive thesetransformations.
[11-1" 1i1'_-ii11i1'11'.111 11f 1:11.113“ r1.11.11.:.1_1:1.'-1 11': 1:11 'ii1'1'1'.'1.11 :'..-!:1 11 1'13 1.4 -l1'--'1-:'111_ 1 '1 I111 1'1-.1=1

' I I 1 D - I I _.' I I. . - - - -- -- ' r--- l- -. - I - . . .
_'1' 1 ”it'll-i. '1':- Illiiil Hiltllff Hill” :THHH-iUTlLi-ai EUR | I . ' r'ii'lzr :T.I|.l J'-1 . .1' _ l.'.".. 1'|__f;_i*.'."~ -l'_'-:' .l '_-.-_-_I.=1.__--'_- .I

' l ' '_ ' - . , :.:...' .' . ,. ..;....11.1'-1'--11'1hn: 1.111T111._-r11l1'111-.' '— ,1 ..' 1!:1: 1-'_.H':1'1:.a:1-: 1:111.1 .1111 H11 1:1..1111 1.111.1'1- 1-.......... 1112111.1113'l1"-1-. 1:1.‘111'1r1.'1'1'11'.~: 11nd 111.1 1.111;]. The 1.21:__~.=I-1:'1'11-."1! 111111::'j111--- .11'11 1:}1-:;.1T1'-1i 111' 13.1 .111;_.
1.1'1rzl11'1l1. whim-1:1 asterisk Khan-£1111; 111- 1.'r1.-'11'111:=.111.1.--1 111'-

- ' ' ' ' ' 5.‘ _.: _.' .. .;.'.."'._‘__'.1'-'."‘- F-lt‘l.ltll'l"il‘lj'1' Fir Tilt} ITiFl'ITt‘Ei TT'FITiEili..-J'111£'L?'1I".1'Il E' ill." fliill :21'1L..‘1-'!1_'31'_' -11'-1__ 11111;:- 1
r _ I1. r.

. .s121'-1'-_1'_11i 1"1'11'11'1L11.'.1'.1 l1": :1 ', 11:1- 1.111 1!:1 :'-11'.'11'-'111.~' 11'. the 11111111" {1.1”}: "
I . . ‘ x. r . a. '330 : 5110 (01‘3J1‘10 _ 15131511131991

.173 = 550% sinjlcp + $1 cosyp'p,

1'1."11i'.'i'1 snake _g_.11..11_1['1 31:1'1j2:_1-J. .—‘1_1“1.'1::-r1'.'J'i.:1u 111 111 11-.1:11-__ — 1. H111 — 1 ' 33.11;_ _ _ 11 . . -.
H111 lr1'11'111f1.1r1:1:-=1.1E11111? 1'_1fl-___T,r1.'1111'1 51-311121] 11'1 'i'i:':|1'l1:-1.11'. 11':111;1l’1_1r111-:.'51.1.1114 .'-.11-l 11.1' 1 .1 r1111" 1111111111 .5'1!'_.l';-’: 1"1 a113- L1'_1r1-'1;L:1'. 1'r111'1rzl'1-1'11.1-:11.11.5. if 1"1'1 i11 111:1}1';'_'1r1'!11':-1:. 1'15. 111111;- 111.1
21:; .:1 spatial .'_'111:_1r1'_lin111r1- Th1: 111.111.1121: 1.11' .l-1i'111111'1_1:1_ *i'-1'_-,1;- 1.:' Th1: ;1'._'::_;-.2 ;::-;'.-1'.'.1'.::_1..'111- __ .1
i-1,f:=1f—:.-'2.:r1f1'111111:.11'121'i1111— R

liar.- rorntir‘ris :.i.-:'1': ].':rc:11:11'1.'12 the 1".1'1'!1 511IH1- 1 L '1; —'— -'E'..1--' : l i 11'- ib: 1. :11 5-;.|;,;-_.
Rgi .11.}. rln- i1l1.'11tifi1111t11'.1:'1 1.15 ri1111r11'11'i1'1-11L1' 1.1111'11111111' _:1-.'1.-1:-'.'~' gnu-11 11.11- ;1111111' .~1"-1_1_;.-_- . 1 {.111-
J; _. '11 1.111] 1.111 1-17111111-1'1111'1 1:1:'1111j11.11'.1-:1;. 1.11'1111- 1111-h1'1'1'.‘ 1."11'1:1-.. 1'.1'1'1.~'.~.1.1;-':-'. 11.511192. 11-1 1'1-11:1‘-'5'1, : l. _1'J — HI. $1.1: 11 2 11.1 Ill-1' i:1!1.;'1::.'.i1-121.'.11'1'.ir.1-.11' 11:: 'l'11'11111'.‘l1.'- 11'1. 1!'11'-':--"1111.'
1111:1c1s11'1'111'11'1' 1.11 1.111: r1111".- 1.':11.-" —. 1111' 51.1%111111111'11311'1: !.IJ': 1111131 1-:1111-.'1'-1.91:11_ '1':: 1: : 1'11'"
111'- :1'11 1hr.- l'r11'11111l1‘1 i1:1r Lra:1.=1l:?11'.1'.1n.~. 111:; 1'1 15:11:

, w—a 1=————. a=_—tan" ER, 191+ji2ura' 31 J“; ( )

11111.11: male: 1:.1'111111- {21111;}. the group of motions of the elliptic line 51 (1) for 11 = 1,
the. 11:.-11':1|11.1hr.' 22:11? 51111.1 1 [1..-r _.11 = 1,1. and the hyperbolic line 31(2') for j] = 2'.

3:1 the 11111111311 of 1_'li'rf1'-11'1:-'111t11:1.L1Je functions 011 R301) the generator X($) of the representa—
ti111; 1.1.l' 1';1,1'1'.1L1r1 .9'131‘1'22‘11; 1 112' defined by the relation (13), where all quantities are taken with—
out .1111.1¥11111.;11 i'nricr th1_- traits-51111113L11'1I1 (17) derivative (Ll/dip" turns jf1(d/drp), therefore.
to 031111'111 1i1'ri1'.--t11.'1'.- 11'111'; 1111.: 1.113111351111311“ X“ must be multiplied by jl, i.e. the generators
X*(-.‘.1.r.1 11111;! X11: '1'] 111T- intern-1.111113} hf: the transformation

a. 8
X(~'E) : l1(¢x*) : 3123316—3;0 — I05;- (20)
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Figure 1: The circles of unit radius on the planes R2(j1)

The generator Z is transformed according to the same rule:

8
Z(w)=j1Z*(¢w*)=(1 + ji102)—-8w

The transformation rule for the matrix generator of the rotation Y is as follows:

Y: "Y*(—>)=j 0 ‘jl = 0 fig (22). .11 1 3-1—1 0 1 0 '

Expressions (18) (22) describe Gayle}r Klein space and group in the traditional way
with the help of real coordinates, generators and so 011. Such approach was used in
[23). There is another way of describing Cayley Klein spaces with the help of the named
(ie. having one of names: real: nilpotent. imaginary) coordinates of the form jlxl,
when under transformation (17) and the substitution 093* — jlnp in (9) both sides of the
second equation are not multiplied by jf 1. Then the rotations on the plane R201) with
coordinates 3C0, jlml are written in the form

IE] _ 6053-159 — 3111.719? 550 (23)' [‘1’I ‘ n- .. .n u 0 /. - " .31.1.1 smjw, cos/199 31M

These rotations form group 80(2; j. ), whose matrix generator is as follows

- - 0 —j1Y = 7 Y“ = . . 2'1
1 ( .71 0 > ( )

The symbol 3” instead of Y"(—>) in (22) means that the generator Y“ (16) is not trans—
formed. It is the the second approach that we shall use in this book. One of its advantages
is that for j] : L1 the rotation matrix (23) from group 80(2; t1)

1 —£1L;7 r
( i199 1): (20)

depend on group parameter up, whereas for j] —+ 0 it is equal to the unit matrix.
The group of motions G 1(j 1) of one-dimensional CayleyHKlein space Sl(j1) is closely

connected with rotation group S()(2;j1) in space R201). Therefore, under Cayley—Klein
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spite of its simplicity, enables us to describe all Cayleyi Klein groups being aware of only
classical orthogonal ones.

3.2 Nine Cayley—Klein groups
Map-ping

(£5555 = $0: 95119; = 313311 @513; = $332332, (26)
where j = (jl, jg.)I jl = 1, r1, 3', jg : 1, (223', turns three—dimensional Euclidean space into
spaces R3(j), on the spheres (or connected components of spheres) of which

82(2) = {2:3 + Jim? +jij§x3 = 1} (2?)
nine geometries of Cayley—Klein planes are realized. The interrelation of the geometries
and values of parameters 3' is clear from Fig. 2.

Rotation angle to” in the coordinate plane {xfl 3:3}, 7* < 31 r, 3 = 0, 112: is determined
by the ratio ass/L. and under the mapping (26) is transformed as 99:5 —> 991,30", 3), where

maxik

(at): H .7}, (k,k)=1. (28)
£=1nin(i,k)+l

Therefore for one-parametric rotations in the plane {In :55} of space R3(j) the following
relations are valid

(0, i")9:fr = 33,.(0, 7") cos (90,3(T, 3)) — 1:3(0, 3) sin (991—5-(7‘: 3)) ,

(O, 3):i:"S = :rr(0, r) sin(cprs(r, 3)) + 333(0, 3) cos(cp,.3(r, 3)) (29)
The rest of the coordinates is not changed as; = mp, p 75 r, 3.

It is easy to find the matrix generators of the rotations (29)

0 —31 0 0 0 0
Y01 =11Yrfi : jl 0 'l ~ 1/12 2351/13-- 0 0 —.72

0 0 l 0 jg U

0 0 *1172
Y02 =j1f2Kfi = 0 0 0 - (30)

3135 0 0
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Figure 2: Cayleyl- Klein planes. The fibers are shown by thick lines and the light cone
in (1 + 1) kinematics are shown by dashed lines. Internal coordinates take values r1 2
331/330: T2 = $2/l'0
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Tbs-7' make 5-1 F,.'.':filS of Lie algebra 80(3; 3') The rule of transformations for the generatorsail l'E‘pl'EfiFtfiilFiEinfill of group 50(3; j ) in the space of differentiable functions on R30) by leftsizfis Ci_l'i1'll'.'ll'lt'.‘:.~' with the rule of transformations for parameters can, and can be written as
r-tilllm's i5. 3th:

Xmm = (a smear). (31)
and the generators themselves as

. 8 ('9e-(CC) : (739)27351: ‘ 33E:- (32)

Knowing the generators, one can evaluate their commutators. But we shall derive
the commutators from the commutation relations of algebra 50(3). Let us introduce new
notations for the generators X31 : H‘, 5‘2 = P“, X32 : K“. As it is well—known, the
commutators of Lie algebra 30(3) can be written as follows:

[H*, P] = K“, [13: K“) = H*, [H*, 14*] : —P*. (33)
Generators of algebra 30(3) are transformed according to the rule H z j] H*,P =
jln", K = 332.8”, i.e. H“ = iH, P“ = jfljg—FP, K“ : j2—1K. Substituting these
expressions in (33) and multiplying each commutator by a factor, equal to the denomina—
tor on the left side of each equation, i.e. the first — by jfjg, the second —— by mg, and
the third — by j1j2, we get commutators of algebra Lie for group 30(3, 3):

[H.P]=.2'?K. [P.KJ=.2‘§H.. [H.KJ=—P. (34)
Cayley Klein spaces 82(3) (or Spaces of constant curvature) for jl = 1, a], i, jg 2 L2, 21

can serve as models of kinematics, i.e. space *time geometries. In this case internal
coordinate t = :rl/xo can be interpreted as the temporal axis, and internal coordinate
"r = reg/:50 as the spatial one. Then H is the generator of the temporal shift, P is
the generator of the spatial shift, and K is the generator of Galilean transformation for
3'2 : (,2 or Lorentz transformation for jg : i. The semispherical group SO(3;1,52) (or
Newton group) is isomorphic to the cylindrical group, which describes movement of a
point on a cylindrical surface. This group is interpreted as the E(2)—like little group for
massless particles [35].

The final relations should not involve division by a nilpotent number. This requirement
suggests the way of finding the rule of transformations for algebraic constructions Let
r:11 ;=:.igel':rair: LELZt-‘Jitii'n' Fij‘ — Q'Ll] ..... 311;; he. F‘I‘v-TI'Ji'!,":.‘:H'-_'r.l 31'] terms sf gags-”1553]” ,3: _ .1.-
t=.'i1ii a irritant;- ruin Hf Trunsfrirniaiiz-Lun I:I:‘§!'1' ::;..!'!.iniiig r.:'. for e:«:a-';I11g.ni.-.-. .‘l' = .F-_J.i .--'i. -
.,.-";_..-l,‘_, when; m-r-ffirir-L-nlb .F,. ..F,-_ n51- :-.-‘JEIJI‘ prujiciuu is of pai:';'=.'.'iir_'r«:11:a :irziml. :r $111; .11 T
..F1 331-5. . . . ”“1; = .J'Jlsli. in lllf' I'I. ifir'li'll .1',_J" get Ila furinula {2}" .F"‘_'-l_ . . .. F. E. 1..
int-.ilving, in general, half-Ir'rrninai'r- rec;-r-.'-s:-.:3...-11.~'. whit-1'; ,zs:-'-_r:-'1.mr.~!~rs ,n -f"'_':"i' -:-r;u'a. " 4
nilpotent units. For this reason the last formula should be multiplied by such minimal
coefficient J that the final formula would not involve indeterminate expressions:

Q = .]Q*(J,“A1,...,J;1Ak). (:55)
Then (35) is the rule of transformation for quantity Q under mapping 6)
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Such method1 stemmed out directly from the definition of coincidence of elements of
Pimenov algebra Pn(t) turns out to be very useful and further will be widely employed.
The rule of transformation (35) for algebraic quantity Q‘ derived from the requirement of
absence of indeterminate expressions for nilpotent values of paran'ieters j‘ is automatically
satisfied for imaginary values of these parameters.

Let us exemplify this rule by Casimir operator. The only Casimir operator for algebra
30(3) is

C;(H*, . . .) = H“2 + I“2 + A”. (36)
Substituting H* = jl, P* : jfljg‘lP, K" 2 312—1i in (36), we get.

CSUIIHa - - .) = 3.72112 + 1:21:21”)? + EX? (37)
The most singular factor for j] = t] and jg : L2 is coefficient (mg-2 of the term P2.
Multiplying both sides of the equation (37) by (j1j2)2, we get rid of the indeterminate
expressions and derive the rule of transformation and Casimir operator for algebra 50(3; j):

02(j:H—.---) =jtj§C§<jf1HWJ =j§H2 + P2 +31n- (38)
As it is known, Casimir operator for two dimensional Galilean algebra 50(3;t1. 12.) is
Cg(i.1,tg) = P2 (see, for example: [40]): for Poincare algebra 30(3;t1,i) is 001,2) =
P2 — HQ1 for algebra 30(3; i; 1) : 30(2, 1) is 02(1); 1) = H2 + P2 — K2 (see [15]). All these
Casimir operators can be obtained from (38) for the corresponding values of parameters
3.

The matrix generators (30) make the basis of fundamental representation of Lie algebra
50(3; 3) of group 50(3: 3). Using exponential mapping one can put in correspondence to
the general element

0 ‘31 m —31J2T'2
Vinyl) 2 T1Y01 + T2Ye2 + 733/12 : j1?‘1 0 *jg?’3 (39)

3112M he; 0
of algebra 30(3; j) the finite rotation g(r; j) = exp Y(r;.j):

, , . sin?" , , 1— COST9(m) = ECOSU‘HHI‘U) +1"(r,J)-—2—,r r
,-2 2 - -2 . , ,J2T3 —31]2?2F3 JIJ2F1T3

_’ ' , . . ,' .' .Y (1‘33) = —]19§7‘2?‘3 Jifi'r'g “312327'1’F2
JIJ2TiT'3 —i2?‘1?”2 jib"?

7-2 = fir? + firs-3 +2153 (40)
acting on vector (3:03 jlflljlIg)’: E R3(j) with the named components

The disadvantage of the general parametrization (39), (40) is the complexity of the
composition rule for parameters r under group multiplication. F.I. Fedorov [12] has pro
posed parametrization of rotation group S0(3) for which the group composition law is es-
pecially simple. It turns out that. it is possible to construct analogues of such parametriza-
tion for all groups SO(3;j) [21]. The matrix of the finite rotations of group SO(3;j) can
be written as follows

r. 1 +60) (2*: :1. +c*2(j)C;' 2—:1+2."'—_l
9( J) 1—012) 1+c2(2)
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-2 -2 -2.0 ‘cs 113262
0*(3') = 03 0 “3301

—C2 C1 0

(22(1) = 13c? + jfjécé + jfcfi, (41)
and parameters c” correspond to matrix ,g(c”; j) = g(c; j)g(c’; 3'). These parameters can
be expressed in terms of c and c’ as follows

If : C + C, + [C3 Crij. (£12)
1 — (c, 0’),-

Here the scalar product of vectors C and c’ is given by (41), and the vector product is
given by

[C, C’lj : (jfici Gill: [(3, C129 jglcv (313): (43)
where [c, c"],tc are components of usual vector product in R3.

EP. Wigner and E. Inonii [34] have introduced the operation of contraction (limit
transition) of groups, algebras and their representations. Under this operation the gener-
ators of the initial group (algebra) undergo transformation, depending on a parameter 6,
so that for e 7é 0 this transformation is non-singular and for e —> 0 it becomes singular. If
the limits of the transformed generators exist for c ——> 0, then they are the generators of a
new (contracted) group (algebra), non isomorphic to the initial one. It is worth mention-
ing that the transformation (31) of the generators of algebra 30(3) for the nilpotent values
of parameters 3' is W'igner—lnonii contraction. Really, X:S(qba:*) is the singularly trans—
formed generator of initial algebra 30(3). the product (7", 5) plays the role of parameter e,
tending to zero, and the resulted generators Xr,(x) are the generators of the contracted
algebra 50(3;j).

Comparing the rule of transformation for generators (31) and the expression (39) for
a general element of algebra 50(3), we find that for the imaginary values of parameters
3' some of the real group parameters rk become imaginary, i.e. they are analytically
continued from the field of real numbers to the field of complex numbers. In this case
orthogonal group 50(3) is transformed into pseudoorthogonal group S0(p, q), p + q : 3,
When parameters j take nilpotent values, real group parameters rk become elements of
Pimenov algebra P(z.) of the special form and we get the contraction of group 30(3). Thus,
from the point of View of the group transformation under mapping 0, both operations
analytical continuation of groups and contraction of groups different at first sight have
the same nature: the continuation of real group parameters to the complex numbers field
or to Pimenov algebra P(L).

3.3 Extension to higher dimensions
Cayleyeeklein geometries of the dimension n are realized on spheres

sue) = {a as) = 2:3 + in). mi = 1} (M)
k=l

in the spaces Rn+1(j ) resulting from Euclidean space Rn“ under mapping

¢3R~n+1—> Rn+1fjl
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(’9c = :60, (1556; = (0, (6)1}, k = 1.2.. .. ,n, (’15)
where j = (_j1,...,jn.)s j}: = Lani, k : 1,2,...,n. If all parameters are equal to one
j), = 1, then (i) is identical mapping, if all or some parameters are imaginary jg, = '2'. and
the other are equal to 1, then we obtain pseudoeuclidean spaces of different signature.
The space R,,+1(j) is called non-fiber, if no of the parameters 3'1,” .,j,, take nilpotent
value.

Definition. The space Rn+1(j) is called ((61, k2, . . . , lad-fiber space, if 1 g k1 < #62 <
< A3,, 3 n and jig, = Lk,,...,jkp = tkp and other ji, =1,il.
These fiberings are trivial [7] and can be characterized by a set of consequently nested

projections pm, pm, . . . ,prp, where for pm the base is the subspace, spanned over the basis
vector {$0. :51, . . . , :rk,_1}, and the fiber is the subspace, spanned over (55),, , “1+1, . . ..r,,}:_
for pm the base is the subspace {:rk,,:i:k,+1, 311.24}, and the fiber is the subspace
{atk,,;rk1+1, . . . ,rrn} and so on.

From the mathematical point of view the fibering in the space Rn+1(j) is trivial,
i.e. its global and local structures are the same. From the physical point of view the
fibering gives an opportunity to model quantities of different physical dimensions. For
example, in Galilean space, which is realized on the sphere S4(t1, L2, 1, 1), there are time
t = $1, [t] 2 sec and space R3 = {332,333,:r4}, [risk] 2 sm, 1: = 2, 3,4 variables.

Definition. Group 80(n + 1; j) consists of all the transformations of the space
R,,+1(j) with unit determinant, keeping invariant the quadratic form (44).

The totality of all possible values of parameters j gives 3" different Cayley Klein spaces
R7,“ (3') and geometries 871(3). It is customary to identify the spaces (and their group of
motions), if their metrics have the same signature, i.e., for example, space R3(1, 27) with
metric 3:3 +33% —:r.‘22 and space R3(i, 3') with metric 1r3~zr112+27§ But we have fixed Cartesian
coordinate axes in R,+1(j) ascribing to them fixed numbers, and for this reason in our case
spaces R3(1, i) and R3(z’,‘i) (and, correspondingly groups 30(3; 1, 7.) and 30(3,i,i)] are
different. Groups 80(3, 1, ’2) E 30(2, 1) and 30(3; 2', 1) E 80(1, 2) are also considered to
be different. This was made for convenience of applications of method being developed.

Really, the application of some mathematical formalism in a concrete science means
first of all substantial interpretation of base mathematical constructions. For example,
if we interpret in space R.1(i,1,1) with metric $3 — x? — mg — 35% the first Cartesian
coordinate 2:0 as the time axis and the other 351,332,233 as the space axes, then we get
relativistic kinematic (space-time model). In this example the substantial interpretation
of coordinates is the numbers of Cartesian coordinate axes: axis number one, axis number
two etc.

The rotations in the two—dimensional plane {ashes}, the rule of transformation for
representation generators and the generators themselves are given, correspondingly; by
(29), (31), (32), where r, s = 0, 1, . . . ,n, 'r < s. For the non—zero elements of the matrix
generators of rotations the following relations are valid: (1%)” : — (Yrs),.s = (r, 3). The
commutation relations for Lie algebra 30(7), + 1; j) can be most simply derived from the
commutators of algebra 30(n + 1). as it has been done in section 3.2. The nondzero
commutators are

'2
(T1181) X3132: T1: T21 31‘< 82:

' 2r252. - (T2332) az, T1 < 7‘2, $1 = 32, (46)
—X1-,52, T] <T2=Sl <82.
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Algebra so(n + 1) has [(71 + 1)/2] independent Casimir ope1ators, where [3:] is the
integer part of a number at. As it is known4[4] for even 71 ——2k Casimil operators are
given by

'n.

C;p(X:S) = Z X3102Xg2a3 ' ' X;2pa11 (47)
01,..,ap:0

where p = 1,2,... ,kt. For odd n = 2k + l the Operator
Ti

0::(X:S) = Z Elflla?» fl-n X31a2X53a4 ' ' ' aan+11 (’18)
a] , 10-11.:0

where 6a,, an is a completely antisymmetric unit tensor, must be added to the operators
(4?).

Casimir operators 0;, can be defined in another way [13] as a sum of principal mi—
nors of order 2p for antisymmetric matrix A, composed of generators s, i.e. (A)TS
Xi}, (14)” = —X;S. To obtain Casimir operators of algebra 30(71. + 1; 3) we use the method
of section 3.2. 'We find X; = (r,3)‘1XT3 from (31) and substitute in (47). The most
singular coefficient (0,n)‘2p is that of the term Xeao . . .Xno in (47). To eliminate it
in the minimal manner we multiply ”5",, by (0, r021”. Thus, the rule of transformation for
Casimir operators (72,, is

Cape; X”) = (0, nrpéaur, aria—.3), (49)
and Casimir operators themselves turn out to be

71 2p

02P(.j) : Z (01 n’)2p 11(73): 81))—1*Xra|(12 ' ' ' Xagpa] 1 (50)
(11.. ,a2p:0 1;:1

where 7“,, = min(a,,,av+1), 31, = max(a,,,av+1), v = 1,2,..-,2p — 1, r2}, : Il‘liIlWiaa-zp),
52,, = max(a1, (12p). /

For Operators 02],, and Ci, the expression without singular terms can be obtained, mul—
tiplying them by factor q, equal to the least common denominator of coefficients of terms,
arising after the substitution of generators X for X*. This least common denominator
can be found by induction [19]. We restrict ourselves with the final expressions for the
rule of transformations for these Casimir operators:

Tl—P‘l’l

02p(j; Xr3)—_ (111 jTQrInjfia+l H j21))2p(*)(f‘5(7'15)_1)3
"i=1 i:p

p=l,2,...,k,

(- +1)/2 (Tl—W 1
0:1(j1XT-9) : j(;1+])/2 H 3.33.: m+l Cn*(XT5(T7 8)— ) (51)

771:]

Operator 0210(3) (or C’(j)) commutes with all generators X” of algebra 50(11. + 1; j)
Really, evaluating zero commutator [0530, Xfis], we get the same terms with the opposite
signs. Under the transformations (31), (49) both terms are multiplied by the same corn-
bination of parameters, which is a product of even powers of parameters. Therefore, both
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terms either change their Sign, or vanish. or do not change their sign, but in all cases
their sum is equal to zero. Moreoven operators 021,0) for p = 1: 2, . . .,k are linearly
independent because they consist of the different powers of generators X”.

The next question to be cleared up is as follows: do [(n + 1) /2] Casimir operators (51)
exhaust all the invariant operators of algebra 50(7). + 1; j)? The answer is given by the
following theorem.

Theorem. For any set of values of parameters 3' the number of invariant operators of
algebra 30(n + 1;j) is [(n +1)/2].

The proof is given in [23]. Thus. all invariant operators of algebra 500.7? + 1;j) are
polynomial and are given by (51).

4 Cayley—Klein Unitary Groups and Algebras

4.1 Definitions, generators, commutators
Special unitary groups SU(n —I— 1:_ j) are connected with complex Cayley Klein spaces
Cn+1(]) which come out from (11+ 1)-dimensional complex space CM] under the mapping

(DI Cn—g—l “'7" Cn+1(j)

(15:5: 36: c525,: = (0. kk, k =1,2,...,n, (52)

where 25, 2,: E Cu“, 20, zi. E Cn+1(j) are complex Cartesian coordinates; j : (jl, . . . .31”),
each of parameters jk takes three values: jk = 1:14“?- Quadratic form (2*, :s‘) : 221:0 lzglg
of the space Cn+1 turns into quadratic form

2 + Z“): l"12%|? (53)..be

1/2of the Space Cn+1(j) under the mapping (52). Here :k| = (33% + yg) is absolute value
(modulus) of complex number 2;. 2 33k + jyt. and z is complex vector: z 2 (20, .21, . . . , 2,”)

Definition of complex fiber space is similar to the real fiber space in section 3.3.
Definition. Group 8U (a + 1; 3') consists of all transformations of Space Cn+1Ul with

unit determinant, keeping invariant the quadratic form (53).
In the (A11, k2. . . . , I‘m-fiber space Cu“ (j) we have p+1 quadratic forms, which remains

invariant under transformations of group SU (n + 1;.3'). Under transformations of group
SU(n + 1;.9'). which do not affect coordinates :50, :51, . . . , Ski—1: the form

k,+1—1
(ZtZ)-9+1 : Z “CMQVIZGIQ, (5’1)

a:ks

where s = 0, 1, . . . , p, k0 = 0, remains invariant. For 5 = p the summation over 0. goes up
to n.

The mapping (52) induces the transition of classical group SU(n + 1) into group
SU(n—l— 1; j), correspondingly, of algebra su(n+1) into algebra su(n+1; j). All (n+1)2—1
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[Altmi q) : 6171131421; .— 6kq’m? (55)

where 6m? is Kronecker symbol. Independent Hermitian generators of algebra 511(1'1 + 1)
are given by the equations

1
Qrs : :(A'; + 14:“) Lats : 504;. _' 14:3)!

4-: 2’ at :1:
Pk = §(Ak—l,k—1 — 1:1): (56)

wherer=0,1,...,n—1,s=r+1,r+2,...,n,k=1,2,...,n
Matrix generators A“ are transformed under the mapping (52) as follows:

A130) = (T: 8)A:S. A1119) = A11- (57)
The commutators of generators A(j) can be easily found [31]:

[Akmi A1711) = (k, m)(p, ‘1) (57111914119106, (3—1 _ 6kpApmr(mnp)—1) - (58)

Hermitian generators (56) are transformed in the same way under transition from alge—
bra su(n + 1) to algebra 311(71. + 1; 3'). This enables to find matrix generators of algebra
511(71 + 1; j) for the case, when group SU(n + 1,3) acts in the space Cn+1(j) with named
coordinates

C2150)"; (T 8W”: L130) = (T:8)L:sa P10) = P125 (59)
We do not cite the commutation relations for these generators because they are cumber—
some. They can be found, using (58).

Let us cite one more realization of generators for unitary group. If group GLnH acts
via left translations in the space of analytic functions on Cu“, then the generators of its
algebra are n—— 2H3 where 3; 282—6m. He1mitian genelators of algeb1a su(n + 1)(can
be expressed 111 terms of X55 using (56) in which A“ must be changed for X*. UII(1( r the
mapping 1,11 they are transformed according to the rule

Zab = (a. 3)) MIL/2"). (60)
where Zab = Q”, Lm Pk: Pick. Generators X“ab a1e transfonned in a similai way, and
this gives us

X111: = 21151:, Xsr = zrasa e = (7” 8)2Zs 87-, (61)
where k:1,2,...,n,r,s=0,1,...,n,r< s.

The matrix generators (59) make a basis of Lie algebra 511(71 + 1; j). To the general
element of the algebra

n.('n+l)/2 n

2(11: V1 Wij) = 2 (11162113 )+ “1L )1”) ‘1‘ 2113111311: (62)

66



where index t is connected with the indices r, s, r < s, by relation

L4), .
_|

t: s + 7‘(n -— 1) — (63)

and the group parameters 111,1)“q are real, corresponds a finite group transformation of
group SU(n +1;j)

W(u.v.w;j) = exp{2(u.v.W;J-)}- 6.64)
According to Cayley—Hamilton theorem, matrix LV can be algebraically expressed in terms
of matrices 2"”, m = 0,1,2,.. .,71, but one can to derive it explicitly only for groups
SU(2;j1) and SU(3;j1,j2), which will be discussed in the next sections.

4.2 Unitary group SUQUU
The group S U (2; jl) is the simplest one from unitary Cayley—Klein groups. Definition.
The set of all transformations of the space C2(j1), leaving invariant the quadratic form
|20l2 + jflzl 2, make up the special unitary Cayleye—Klein group SU(2; jl).

The group SU(2,j1) acts on the space C2(j)

fl, . _ z’ _ a 3'5 2 _ . a ‘.
e (.71) — ( 3-1:: ) — ( #3,); :3, )(j121)— ”(30.4.21):

detu(j1)=|c‘zl.2 +jlgljj'l2 =1, u(j1)fl-T(j1)=1: (65)
Here the bar notes complex conjugation. Constructing generators of algebra su(2;j1)
according to (59), we get

._i10 _£0j1 _10—ji .

and find commutation relations

[1013l = L015 [L011 P1] = Q01: [@011 L01] = j12P1- (67)

The generators (66) for jl = 1 up to factors coincide with Pauli matrices. It is also worth
mentioning that if under contraction 3‘1 2 (,1 the dimension (number of linearly indepen-
dent generators) of general linear group GL(2; j1) (or its algebra) diminishes, because the
generator A01(r1) vanishes, then for special unitary groups (algebras) in complex Cayley
Klein spaces the dimension of the groups (algebras) for any (including nilpotent) values
of parameters remains unchanged.

One—dimensional subgroup, corresponding to the generators (66), are as follows:
1 . . . 1 .

.. . cos —31r 3 sm -j1?"
91(7331) : 9X9 TQmUi) = - - 21 - 12- , -tsm 5311‘ cos 5317

1 - . l .
- COS— 3 ‘Sln — 5

92(S:]1) : (3X1) 3L01(]1) = ( 2-?1 231 ) _
sin éjls cos éjls
(aim/2 0

93(w) = exp EUR 2 0 €_,w/2 , (68)

67



and to general element Z = r6201 + sLm + wP1 of algebra 311(2; jl) we, using exponentialmapping, put in correspondence the matrix of finite transformation of group SU (2; 3'1),which can be easily found

lSln§ cosi — 3:511]?

“201) =w2+112l€lgi C=S+ér. (69)
In Euler parametrization [56] transformations from group SU (2; 3'1) can be written as

9(90: 9:0133'1) = 93(30?j1)91(93j1l93(w§11) 2
iii}: - 0 4:2 . . . g_ 8 2 COS]]§ 8 2 38111315

—(i3’L‘€-- .9 new. .9 )3 (70)e 2 ZSIH]1§ £3 2 COS]]§

where group parameters (Euler angles) are in the bounds

(017T)? J1 : 1
Ogco<27rg ——27r§w§27r, 969(j)= (0100), 312:, (71)

(—0010)! 31:?"

Let us note: that for jl = 1 matrices 9&0, f9:w;j1) coincide with matrices (1 1.341), ch. IIIin [56]: for jl = 1' they coincide with the matrices (1.3.4—5), ch. VI in [56], and for jl = Li
they describe Euclidean group SU(2; (1) in Euler parametrization.

5 Classification of Transitions between Cayley—Klein
Spaces and Groups

In the previous sections we have found i'ill!‘ ".--_’t'_iLri.l :-.r.ii min-1:7.- .1-ii'=_'i11ps in CayleyeKlein
spaces and shown that their generators, {'enrinm gig-snaps? -;ll.tl in li-'I‘ algebraic construc—
tions can be obtained by transformation .il rfzw -‘.~"'11'!'t"1'-?:H.ri_-1-111; iI.'-.|[l;'~l1‘llCtHS for classical
groups. A zipprr_i;ii.'ii natural and is justified by the fact that classical groups and
their r'lnririirierisiii: .-'il;rr-lirsical constructions are well studied. But is such approach the

-: 5117-. oii-ri'." Is it. 5:--'is.~;iliir- m rake one of the groups in Cayley—cin Space as the initial one?
The positive answer to this question is given by the following theorem on the structure
of transitions between groups.

Let us define Iifoi'iiiziiiyi the 'i]'.'-'lIlr'~Elll',If! from the space Cn+1(j) and the generators
Zabi's. y : of iirtimr'; grriugi Ef'i'ri l: .r' | r.u.;- iiie space Cn+1(j’) and the generators Zai,(z’;j’)
via -'l"-'_-Ll.i-‘:'l-L}Ii:l-:il'.LJl'iEi. wizii'ia ear. l-r- I'il'll'i'.‘.lli|_'l'_l from the transformations (52) and (60), sub—. . . . - ;-. - -—1.stltn! :iig ill lllt‘ latter the l-|i-Li'i'l.Illr"li."E".".-u .5; in? cjk .

$5, 1 Cn+iUl ‘—> (Smelt?!)

k
I I I r 43—] __ .¢z0=zfl,¢zk=zkfljmjm, k—1,2,...irt,

171:]
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max(a,b)

Zara’s? = ( H firearms). (72)
l:l+min(a,b)

The inverse transitions can be obtained from (72) by the change of the dashed parameters
3" for the undashed parameters j and vice versa. Applying (72) to the quadratic Form
(53) and the generators (61): we obtain

7:. k

(352’) = lZEil“) + Z Iii-l2 H 9‘23
kzl 7n: 1

X“. = 2:50;: X3? = :40; ans = ( j’f)z;0:, (7:3)
i=1+r

i.e. quadratic form in space C'n+1(j’) and generators of group SU(77 + 1;.j’).
However, the constructed transitions do not make sense for all groups and spaces,

because for the nilpotent values of parameters j the expressions Lg], rm - Lg] for k 7E m are
not defined. we have defined in section 2 only the expressions tk - 5;] = 1, k = 1. 2, . . . , it.
So if for some I: we put jk = tic, then the transformations (72) will be defined and give us
(73) only in the case when the dashed parameter with the same number is equal to the
same nilpotcnt number, i.e. j; : rt.

The transitions from space RM 1(j) to space Rn_+1(j”), and from groups 80(71 + 11]),
Sp(n;j) to groups SO(n + 1;j’), Sp(n;_j’) as well, can be. correspondingly; obtained from
the transition (45), (31) by the same substitution of parameters jk for .jjrjk’l. Similally
can be justified the permissibility of these relations. Let us introduce the notations:
GU) : SO(TL+1;_)), SU(7?‘+1§j): SPUMJ'): RU) : Rn+l(j)f Ctr—MU): RHU) x RHU)
and denote the transformation of group generators by the symbol (DC-9(3) : C(j’). Easy
analysis of the transformations (72) and their inverse transformations from the point of
View of admissibility of the transitions [21] implies the following theorem.

Transitions classification theorem. 1. Let G(j) be a group in non—fiber space R0)
and C(j’) be a group in arbitrary space RU”)= then C(j’) = LIJGU). If R(j’) is a non-fiber
space, then L1! is one—to—one mapping: and C(j) = 11146 ( j’).

11. Let GU) be a group in (in, kg, . . . , kp)—fibei' space R(j) and C(j’) be. a group in
(mh mgT . . . ,mq)-fiber space R(j’)‘ then C(j’) 2 920(3), if the set of integers (kt ..... M)
is involved in the set of numbers (m1, . . . 1mq). The inverse transition 0(3) 2 (IV'G'U’) is
valid if and only if p = q, in = “'11,. flaky, 2 mp.

It follows from the theorem that the group C(j) for any set of values of the parameters
7' can be obtained not only from a classical group, but from a group in an arbitrary non-
fiber Cayley Klein space, i.e. from pseudoorthogonal, pseudounitary or pseudosymplectic
groups. It is naturally that the transitions between other algebraic. constructions, in
particular between Casimir operators, are described by this theorem as well.

6 Kinematics as Spaces 0f Constant Curvature
Possible kinematic groups, i.e. groups of motion for four—(‘liniensional models of space—
tnne (kinematics), satisfying natural physical postulates: 1) space is isotropic; ‘2) spatial
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> =1x1+ gm. 112:1 = 1} (74)
Let us introduce internal (Beltramian) coordinates €11——- zinc/:10, k—— 1. 2 3. 4 on 840 ).
The generators (32) of group 30(4; j) can be expressed 1n terms of the internal coordinates
5 via formulas

X045) = —31 — (015)261 2611511 8!: = 5/861“1:1
e(’U.) = {331103112156}... I- < s: 133 =1,2,3,i (115)

and satisfy the commutation relations (46). The generator X0411) has a meaning of
generator for translation along the s-th Beltrami axis: and X1411.) is generator of rotation
in twodimensional plane {n £5}.

Physical postulates 1) 3) can be expressed in terms of parameters 3'. Postulate 1) means
that under the transformations (45) three Beltrami coordinates should be multiplied by
the same quantity and interpreted as a temporal axis of kinematics. It is possible in two
cases:

A) for jg = 3'1 : 1, when coordinates £2,§3. {4 are multiplied by the product jljg and
called spatial and E1 is multiplied by jl and called temporal;

B) for jg = jg = 1, when the spatial coordinates £1; 2 1'1. 1: = 1, 2, 3 are multiplied by
3'1, and temporal coordinate £4 = t is multiplied by the product j1j4.

Postulate 3) imposes restrictions on the character of rotations in two—dimensional
planes: spanned over temporal and spatial axes of kinematics. requiring these rotations to
be Lorentzian and Galilean. In terms of parameters 3' this gives jg = 12.? in the case A)
and fl = 1,4,1' in the case B). The requirements of postulate 2) can be taken into account
by the definition of space with the constant curvature as a connected component of the
sphere (74).

In the case A) the kinematic generators H P : (131,172,133) (spatial-temporal trans-
lations), J = (J1, J2, J3) (rotations), K: (K1,K2,K3) (boosts) are expressed in terms
of generators (75) in accordance with above mentioned interpretation by the relations
H = *X01I Pk = —X0,k+11 K1; = *X1,k+1IJ1= X341 J2 = —X241 J3 2 X231 k = 1:13,
and satisfy the commutation relations

[H,J]=0, [H,K]=P, [H,P]= _i
[PIPl_— .71n [K Kl =322w] [PkIKzl = —j225s (76)
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Here (X, Y] = Z means [Xgm YE] = eknm, where skim is the antisymmetric unit tensor.
The spaces of constant curvature S4(j1,jg,1,1) ‘_—‘ S4(jl,j2),j1 = 1,r.1,z', jg = 3,2,1 are
shown at Fig. 2 (see section 3.2), where the spatial axis 7‘ should be imagined as a three-
dimensional space. Semispherical group 80(5; 1, L2) and semihyperbolic group 80(5; 7', L2)
correspond to Newton groups Ni (sometimes the latter are called Hooke groups). The
interpretation of other groups is well-known.

In the case of B) the temporal and spatial axes of kinematics are expressed in another
way in terms of Beltramian coordinates of space with the constant curvature; correspond-
ingly, the geometrical generators X (g) obtain another kinematic interpretation: H = X04,
Pk = -—XU;,, Ki, 2 XM, J1 = X23, J2 = —X13, J3 = X12 and satisfy the commutation
relations

[J,J] = J, [J,P] = P, [J,K] = K,

lHq :01 ]H,K] I _j§Pa lHrPl ZjiZK:

lPi Pl : 312‘]: lKrKl :jEJ1 [Pkg Kl] = (SkiH- (77)

The value of parameter 3'4 2 i, as it can be readily understood, does not lead to new
kinematics, because SO(5;j1, 1, 1,1) for jl = 1, £1.43 is, correspondingly, de Sitter group,
Poincaré group and anti—de Sitter group.

Kinematic Carroll group [19] of motions of the flat Carroll space, first described
in physical terms by J .—M. Levy—Leblond [40] corresponds to the values of parameters
jl = L], 3'4 : L4. Comparing the commutators (77) with the commutators in the paper
[1] by H. Bacry and J.—M. Levy-Leblond, we find that group SO(5;1,1,1,r1) coincides
with kinematic group [50(4), and group 30(5; "i, 1, 1, (,4) is ”para—Poincare” group P’. As
parameter jl determines the sign of the space curvature (curvature is positive for jl : 1,
zero for jl = 1,1 and negative for j] = 2') we conclude that group SO(5;1, 1, 1.1.4) (or
180(4)) is the group of motions of Carroll kinematics with a positive curvature, group
SO(5;1,1, 1,114) (or P’) is the group of motions of Carroll kinematics with a negative
curvature. Such interpretation of kinematic groups 180(4) and P’, as far as it can be
seen, was not recognized by the authors of [1], and this fact, by the way, is reflected in
the names and notations of these groups. Further Carroll kinematics will be denoted as
C401), and their kinematic groups as G(j1)= 80(5;j1,1,1,t4).

H. Bacry and J .—M. Levy-Leblond [1] have described 11 kinematical groups. Nine of
them have obtained geometrical interpretation as spaces of constant curvature. The rest
two kinematics — ”para-Galilean” and static — can not be identified with any of the
spaces of constant curvature. For example, kinematic ”para—Galilean” group is obtained
from Galilean group 80(5, L1, (,2) by substitution P ——> K, K —> P, i.e. under the new
interpretation of generators , in which the generators of spatial translations of Galilean
kinematics are claimed to be the generators of boosts of ”para—Galilean” kinematics,
and the generators of Galilean boosts — to be the generators of spatial "para-Galilean”
translations.

7 Standard Electroweak Model

The standard Electroweak Model (Weinberg—Glashow—Salam theory) is a gauge theory
based on the group SU (2) X U (1) and gives a good description of electroweak processes
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[46, 47, 55]. Mathematically this theory is very complicated with nonlinear dynamics of
the involved fields.

The Electroweak Model involve particles with integer spins: photon, responsible for
electromagnetic interactions, neutral Z0 and charged Wi bosons, which are week inter-
action carriers. For each subgroup SU (2) and U (1) of the gauge group its own coupling
constants g and g’ are introduced. Complex space C2 of the fundamental representation

9151
G52

fields A#(.’L‘) for the group SU(2) take their values in Lie algebra 521(2)

of the group SU(2) is interpreted as the space of matter fields ct = < ) E Cg. Gauge

3

AM) = —‘i9 2 Twin), (78)
5:21

where matrices Th, connected with Pauli matrices T“ by the following relations

11101 _12__10—z'
T1‘ET‘§(10)’T2_2T_2(2° 0)’

13_1 10
T3_§T_2(0—1)’ (79)

submit commutation relations [Tt] = ickm‘fl. and represent the algebra 371(2) with
structure constants 0k 2 sky. The gauge fields (78) are as follows in the matrix form:

.9 A“ A1 — 6A3 )A (3:) = —?.— ( It. u r . (80)’” 2 A; + mi —Afl

For the group U(1) with generator Y = -;-1 the gauge field takes the form

__.9_’ B,“ oB#($)— 7.2( 0 B1“)

and has stress tensor BM 2 5)v — 31,8“. For the field Ap(33) its stress tensor is given by

FIJI/(53) = ”FM/(I) 'l‘ [Aulmla AU(I)l (82)

and has the components

3
Ft, = 121., + MAE/13 — AiAE) = 32:, + 9 Z clkmAfiAr.

3
F; = F31, + 9(A2Ai — ALAS) = f3” + 9 Z EgtfiAL”,

F3 = $3,, + “AL/112, — AEAL) = fill, + 9 Z 63kmAfiAT: (83)pt;
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where .7::1, = 6,1245 — (2,141: is the stress tensor for Abel group. Boson sector of Electroweak
Model is characterized by Lagrangian

LB :LA+L¢, (8/1)

which comprises two parts: the gauge fields Lagrangian

2 2
LA = 55 NEW) 1(BPW)

1 . 1
: —Zl(Ffiu)2 + (Fit/)2 + (PSI/)2] _ Z(B,uv)21 (85)

and the matter fields Lagrangian

1
La = §(Dp¢)l¢5 — V(¢)- (86)

The potential is taken in the special form

A . 2_ _ T _ . ,2V015) — 4 (a (b L ) i (87)
where A. v are constants. Covariant derivative

3
Dim? : 6q - fig (2 1124:) Q5 — ig’YBflcfi (88)

k=1

for the matter fields Q51, qfig is given by

D —a —3(A3+'B) 39141—21231¢] — ql 2 g All 9 ,U. $1 I 2( p Z p)¢21

z' , z .M2 = area-.2 + 5m: — .9 am — 3%; + min] (89)
Space-time variables are numbered by Greek indexes [1, V, . . . = O, l, 2, 3.

To obtain vector boson masses the special mechanism of spontaneous symmetryr break-
ing (or Higgs mechanism) is used. One of Lagrangian L3 ground states

’UOLC 0

(lb =(U), A:=BH:0 (90)

is taken as vacuum of the model, and then small field excitations

Q5] (Lt), ¢2(z) = ”U + x(:r), 143(33): B“(a:) (91)

with respect to this vacuum are regarded. Matrix Q = Y + T3 = (i) 8 ) , which
annihilates the ground state qWC 2 0. is the generator of electromagnetic subgroup
U(1)5111. New gauge fields are introduced

Wf = i (A; apt/12), Z,u = 1«2 » nAi‘g'BH)’
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_ 1 r 3 .Au — W (9 AII + 93p) (92)
where W'i are complex fields W_ _I/1/+, and Z“ A are real fields

Boson Lagrangian (84) can be rewritten in the form

_ (2) ' I:LB — LB + LE. (93)

As usual, the second order terms

LB — Em“) — ‘TII-XX — —Z,,,,Z,,V+ —mZZ,,Z —2 14 2
1]: +12 - r+ ~—

III'I'IIH'I— 3”. = 6.1.3,, — EI,.IIIIJ',_._ 1.7-1,“ : I:.IIJ_._I. — _.I, .1”. 11'4" = I-II.-.III;-: — -’I.II,..III‘I'. .-I.-.I-I-II§}I.--
III-.I _d.g_'.I-'.d.I.II'T.:III I.'III I_I1_I.|I':II'_111 [III-.1". II.“II;'rd.' and |IIHI“I£I'-I.II'III'II' ‘I'II'II'II'I-d L’I'If IIIIIII'III'r-Ir-L -'I.d LII-1!
E:'.II:II':II"I.II.II'1r'I. SI'I. LII'IgI'aI'IgIIIII III I: I'II;I:d=_':'I|'IF.:'d I-I;I;II'I.2I;=I:I III—III”'Ir.I"'I.II'.rI 'I"IIIII I. 'II:-' _‘.I-'.1 II.-I: III ld .'III =
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masses mw = 80 GeV, mg: 91 GeV. Higgs boson with the mass of125 GeV VIas detected
at LHC in 2012.

Besides gauge bosons, there are fermions in the Electroweak Model. The fermion
sector is represented by leptons and quarks. Leptons are fermions, which do not interact
strongly. There are three types of charged leptons in Nature: electron e‘, muon If, ’r—
muon r‘ and three types of neutrinos 1/6,, 24,, 1/,, as well as the corresponding antiparticles.
Neutrino masses, if they exist, are extremely small, therefore in the Electroweak Model
neutrinos are considered as massless particles. Neutrinos are fermions of left chirality, i.e.
their spin projection is Opposite to the direction of movement. The name ”left fermion”
, is used in this case. Pairs (or generations) of leptons (V€,€_), (I/mii“), (VT,T_) have
identical properties with respect to all interactions. Therefore it is sufficient to discuss
only one generation, for example, (1/6, e").

The lepton Lagrangian is taken in the form

LL—— LiirpLI + e: 17' D e, — h [e:(oILI) + (LIgb)e,.], (95)

where L; = ( VI ) is SU(2)-doublet (vector in the space C2), e, is SU(2)—singlet (scalar
61

with respect of SU(2)), he is a constant. All fields er, 6;, u; are in their turn two—component
Lorentz spinors. Here ”r,1 are Pauli matrixes, To 2 f0 = 1, fl, = —7‘k. The above mentioned
division of the fields on doublets and singlets is based on the experimental fact that only
the left components of an electron and a neutrino interact with l/Vi—boson fields, but the
right components do not interacted with lid-boson.

The covariant derivatives of the lepton fields DpLI in (95) are given by the formula
(88) for Y = —% with L; instead of a5, and Due, = (8,, + ig’Bfle,” For the new fields (92)
these derivatives are as fo1lows

. I . ,0 .Dpe, 2 age, + 29 Ape, cos 6,“ - 'Ig Z,,e,. s1n19w,
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D... = a. — 5% (VI/gin + WET.) —
. g . . .—Zeos 6w Zflu (T3 — Qsm2 6w) — 18}p,

where Ti 2 T1 :l: 123}, and e is electron charge

0 0

6' I:."I fl"I a—-
g: ,—1 C0861“ 1': ‘—- r1. Elihu“ T: (9()

SlIl (9,,” er" 2— e r..;-'- + r."-
Then lepton Lagrangian (95) can be rewritten in the form

.9 T-
V! T‘LZJLl/g—i'

2 cos 19wLL : eiéfitaeei + Vifieau-Vi + Biz-Waiter +

9 cos 26", T ~9 T- 7- T~+—erW Vg—GBTA€g+——€.TZ‘€;+in p. In in 200819“, 1;: .U\/§
+iz/IfiJ/Vjeg — 9’ cos Qwelrp/lfler + 9’ sin Qwelrper—
fl

—hll+ll+>ll+lr Ir98e[er(bgeg €£¢2Cr (.rgbll/g 2/1 oler]. K )

The first three terms are kinetic terms of the left electron, the left neutrino and the right
electron. The last four terms with the multiplier he are mass terms of the electron. The
rest of the terms describe the electron and neutrino interactions with the gauge bosons
AWZ,“ ME.

The next two lepton generations are introduced in the same way. They are left SU (2)—
doublets

VIP” 1/1" I 1

1 : 1 : _”_ 99
( “ )r ( T )1. 2 ( )

in, r... 12—1. (100)
and right SU (2)—singlets

The complete lepton Lagrangian is given by the sum

LL 2 LL? + LL41 + LLJ: (101)

where each summand has the structure (98) with its own constants he, h“, hf.
Quarks are strong interacting fermions. Six types of quarks are known. From the

viewpoint of electroweak interactions all known quarks are divided into three generations:
(u,d), ((1,5) and (t,b). Electroweak interactions of all quark generations are identical,
therefore we discuss quarks of the first generation in the beginning. The quark Lagrangian
is given by

[.0 = QliqflQg + uiirpdr—
swam) + (Qleldrl — finial-(5962:) + (Qléhrl, (102)
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The left fields of the next quark generations

(:1 111 11111
are described by SU(2)—doublets, and the right fields are SU (2)—singlets

Cr, t,, Y : —° 5..., 1),, Y = ——. (104)

The covariant derivatives are given by the formulae

D1Q1= (511 —iQZ:i114: _19%B)Q11

2
D1104" : (an — EQIEBp) an Duff—‘— (811+ 3.9—%BHM“ (105)

where a. = 11,6,1 and f = (1,3,1), but Q1 now denote the left3fields of all three quark
generations. The complete quark Lagrangian is the sum

LQ = Low) + Lem-«1,11 + 1162.11.11)- (106)
where each term has the structure (102) with its own constants hm hd, he, 11,, 11,, 111,.

Lagrangian of the Standard Electroweak Model is the sum

L 2 LB + L1, + LQ, (10?)

0f boson LB (84), (93), lepton L1. (98), (101) and quark LQ (102), (106) Lagrangians.

8 The Electroweak Model with Contracted Gauge
Group

As far as all three lepton and quark generations behave in the same way, we shall further
consider only the first generations. Contracted gauge group SU(2; j) x U (1) acts in
the boson, lepton and quark sectors. The contracted group SU (2; j ) is obtained by the
consistent rescaling of the fundamental representation of the group SU(2) and the space
C2 [28,29]: - . -

2/11): ( 3:221 ) = ( 35 if ) (3:21 )=1u(1)ze').
detU-(j)=10112 +1215? =11 11101150) = 11 (108)
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where contraction parameter 3' —> 0 or is equal to the nilpotent unit 3' = 1,. The hermitian
form zlz(j) = j2|21l2 + |z2lZ. remains invariant under this rescaling. The actions of the
unitary group U (1) and the electromagnetic subgroup U(1)em in the fiber space (32(1)
With the base {22} and the fiber {31} are given by the same matrices as in the space C2

The space C20 ) of the fundamental representation of SU (2 j) group can be obtained
from C2 substituting zl byj3:1. The substitution :1 —> 321 induces the substitution of the
Lie algebra generators

Tl -—> jTl, T2 —‘5 jTg, 213—) T3. (109)

As far as the gauge fields take their values in Lie algebra, we can substitute the gauge
fields instead of transforming the generators (109), namely:

A; —> i, xii—+2114?“ Ai —> Aft: B“ —+ B”. (110)

Indeed, due to commutativity and associativity of multiplication by j we have

anew 3 {Atom + Ait21+ Aifa}
: {0143113 +(‘ZA)T2+A3T3}. (111)

For the gauge fields (92) the substitutions (110) are as follows:

111'; —> jIf, Z,“ —> Z“: 142 s14“. (112)

1/ u .The left lepton L1 = ( e! ) and quark Q; = ( dz ) fields are SU(2)—doublets, so their1 1
components are transformed in the similar way as the components of the vector :5. namely:

1/; —-}> jI/g, 61 —> 63, ”U: —> jug- (f; ——> (if. (113)

The right lepton and quark fields are SU (2)—singlets and therefore are not changed.
After the transformations (112); (113) and spontaneous symn'ietry breaking (.90) the

boson Lagrangian (84)—(86) can be represented in the form [27, 29]:

LB<1— Li'it 1+L11’1 1=
1 2 1 2X1 1 1= 5 (61x1 — 2W IZw/Ziw t 2mFZ Z — 35”“

+32 {—Ewl-JZWJr—v + THH’’H/+IV—}+ if? (j): (114)

where as usual the second order terms describe the boson particles content of the model.
Higher order terms

2
in - .QZD’Z g 2 I /\L‘X=——Z —)1 __ 2__,-1r; (J) 20089v i #)2 X ’3i + 8cosZ 922 (Z11) X 4A 'l‘

+jQ{-219 (W: 11/]: — WJWJ) (It, sin 6w + 2,“, cos 9w) + 9W1? W17X‘
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gs [Ag (WWW; — Wm?) —- Au (WEI/W; - Wis/Will -
gymsgw [z (w;w-— MUM/J) — Zg(WJsW1? - Wgsll’fill +

+9?2 [(WJ‘W; — 1&3;i + WJWJXQ] — 8; {[(i + (W3)? (Ag)?-
—2 (WJWJ + Wit—WC) Ali/=11, + [(WJY + (I if)? (1402}—

—9; cos 0W “(w/3f + (WI)? (2,,)2 — 2 (Wj + u;w;) zn+
+ [(w:)2 + (wgfl m2} — swalJWig—Auzu + WJWJAsZs—

—% (WjW; + WNW/3;) (/21n + An)}} (115)
are regarded as their interactions. The lepton Lagrangian (98) in terms of electron and
neutrino fields takes the form [30]

W = szwa + was — mggs + W
cos 26w ,. h

————-———g2€6 eITpZ eg— eelrpAge; — 9’ cos QwelrflApeflLcos

+g’ sin Qweirpzper + jfli/Jéfpauz/g + ufrpi/fi9
2 cos 6w

+% [Vgrf'plrl/Jez + effing-w] } = L“) +j2LL‘f. (116)

The quark Lagrangian (102) in terms of u— and d-quarks fields can be written as

LQ (j) = ngflapd + dirgflafldr — mfldld + mgr) — gasp/sug—
g 1 2 _ _ 1

_cos 9w (E * 3 81112 61“) lpd — 59’ Cos 9dTpApdr+

1 .+§gfsin dlfilzfld, + ]2{u1337118 u + ’11.Impala,—

2(g — — Sin219w) ulmZ’uu+—mu(u1u + alugl+ 303610

2% A W+d J W;+—3U1.Tp U +—cigarU711 + Ty Lil-i—

2 ’ l A 2 t9 TpZ —+59 cos 9911.e “a? — fig sin wulr u, __

= Log + J'QLQJ, (117)
where me = hey/fl and mu = hu’U/fi, md = haw/fl represent electron and quark
masses.
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The complete Lagrangian of the modified model is the sum

LU) =LaUl+LQUl+LtUl = Lb+j2Lf (118)
The boson Lagrangian LB(3') was discussed in [27, 29], where it was shown that masses
of all particles involved in the Electroweak Model remain the same under the contraction
j2 —+ 0 in both formulations: the standard one [27] and without Higgs boson [29]. In
this limit the contribution nf of neutrino, 1V—boson and u—quark fields as well as their
interactions with the other fields to the Lagrangian (118) become vanishingly small in
comparison with the contribution Lb of electron, d—quark and the remaining boson fields
So Lagrangian (118) describes a very rare interaction of neutrino fields with the matter.
which consists of quarks and leptons in the Standard Electroweak Model. On the other
hand, the contribution of the neutrino part j‘ZLf to the complete Lagrangian is risen
when the parameter 3'2 is increased, which corresponds to the experimental facts. It
follows from this that the contraction parameter is connected with neutrino energ I and
this dependence can be obtained from the experimental data.

9 Description of Physical Systems and Group Con—
tractions

The standard way of describing a physical system in the field theory is its decomposition
on independent more or less simple subsystems, which can be exactly described, and then
introducing interactions between them. In Lagrangian formalism this implies that some
terms describe independent subsystems (free fields) and the rest of the terms correspond
to interactions between the fields. ‘When the subsystems do not interact with each other
the composed system is a formal unification of the subsystems and symmetry group of
the whole system is the direct product G : G1 >< G2, where G1 and G2 are symmetry
groups of the subsystems. The Electroweak Model gives a nice example of such approach
Indeed, there are free boson, lepton and quark fields in Lagrangian and the terms which
describe interactions between these fields.

The operation of group contraction transforms a simple or semisirnple group G to
a non—semisimple one with the structure of a semidirect product G = AEGl, where
A is Abel and G1 C G is an untouched subgroup. At the same time the fundamental
representation space of the group G is fibered under the contraction in such a way that the
subgroup G1 acts in the fiber. The gauge theory with a contracted gauge group describes
a physical system, which is divided on two subsystems Sb and Sf. One subsystem Sb
includes all fields from the base and the other subsystem Sf is built from fiber fields. 8;,
forms a closed system since according to semi—Riemannian geometry [50, 26] the properties
of the base do not depend on the points of the fiber, which physically means that the
fields from the fiber do not interact with the fields from the base. 011 the contrary the
properties of the fiber depend on the points of the base, therefore the subsystem Sb exerts
influence upon Sf. More precisely, the fields from the base are outer (or background)
fields for the subsystem Sf and specify outer conditions in every fiber.

In particular, the simple group SU(2) is contracted to the non—semisimple group
SU(2; 1.), which is isomorphic to the Euclid group E(2) = A2®SO(1), where Abel sub-
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group A; is generated by the translations [27, 28, 29). The fields Space of the Standard
Electroweak Model is fibered after the contraction in such a way that neutrino. VII—boson
and iii-quark fields are in the fiber, whereas all the other fields are in the base.

The simple and the best known example of fiber space is the non? relativistic space
time with one—dimensional base. which is interpreted as time, and three-dimensional fiber,
which is interpreted as proper space. It is well known, that in non—relativistic physics the
time is absolute and does not depend on the space coordinates, while the space properties
can be changed in time. The simplest demonstration of this fact is Galilei transformation
t’ : t, :r’ = :5 + at. The spaceetime of the special relativity is transformed to the non-
relativistic space? time when a dimensional parameter the velocity of light c , tends
to the infinity and a dimensionless parameter tends to zero U —> 0.

C

10 Rarely Neutrino-Matter Interactions
To- discover the connection of gauge group contraction with the limiting case of the Elec—
troweak Model and to establish the physical meaning of the contraction parameter we
consider neutrino elastic scattering on electrons and quarks. The corresponding diagrams
for the neutral and charged currents interactions are represented in Fig. 3 and Fig. (’1.

1/ 1/ 8

Figure 3: Neutrino elastic scattering on electron

Under substitutions (112)1 (113) both yertices of diagram in Fig. 3, a) are multiplied
by j2, as it follows from lepton Lagrangian (116). The propagator of virtual fields W
according to boson Lagrangian (114) is multiplied by j‘g. Indeed, a propagator is an
inverse operator toan operator of a free field, but the later for W—fields is multiplied by
-2

3 So on the whole the probability amplitude for charged weak current interactions is
transformed as M W —> j2Mw. For the diagram in Fig. 3, b) only one vertex is multiplied
by j2, whereas the second vertex and the propagator of Z virtual field do not change. so the
corresponding amplitude for neutral weak current interactions is transformed in a similar
way Mz —> jQMg- Cross—section is proportionate to squared amplitude} so neutrino—
electron scattering cross-section is proportionate to 3'". For low energies 3 << ma,- this
cross-section makes a principal contribution to the electron-neutrino interaction and is as
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follows [46]
4 _a“, = Giana) = fiflé), (119)
ID

where CF = 10—57% = 1,17 . 10‘5 GeV‘2 is Fermi constant, 3 is squared energy in
center—of—mass system, g = sin 6,”, f (E) = f (g) /32 is the function of Weinberg angle. The
cross—section in the laboratory system for neutrino energy me << EV << new is given by[52]

are = GimeEumé). (120)
On the other hand, taking into account that the contraction parameter j is dimensionless,
we can write down

age = 3'400 = (GFSXGFflED (121)

9_\/§
mw

and obtain

39(3) = Gps % (1122)
So the contraction parameter is expressed in terms of Fermi constant and the fundamental
parameters of the Electroweak Model.

d

Figure 4: Neutrino elastic scattering on quarks

Neutrino elastic scattering on quarks by means of neutral and charged currents is
pictured in Fig- 4. Cross—sections for neutrindquarks scattering are obtained in a way
similar to the lepton case and are as follows [46]

at?” = Gisfle), of = 02—8 he). (123)
Nucleons are some composite constructions of quarks, therefore some form-factors appear
in the expressions for neutrino—nucleons scattering cross-sections. The final expression

am, = Gisflg) (124)
coincides 1111:"). is. rims ('J'HHF—su-L'l :11. 5-: [i'flllfifhl'filed as (121) With the contraction
parameter -' '1 2'3 .u A: low =:-1'1u:-=r-::irg:s auntie-ring IEiTF'HII'."-_1«.'-['.r-' make the leading contribution to_ i, T713, u'._r','--.'."" -. "'—~2.‘-""" _- : - "-i'.‘ 1-_.. - a“. .the total 11..l. -.LL _____ MIL-1' 1.11,}tahil.._.f_~.1[r].. than _.JI. .. H. has the same propertles (121), (122)
W1tl1 resp-z'rl r.r.:. r-r111:.:.:u'!':rln 41:2 rtn- snug-7* grimy.
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'We have shown that contraction of the gauge group of the Standard Electroweak Model
corresponds to its low—energy limit. The zero tending contraction parameter depends on
neutrino energy and determines the energy dependence of the neutrino—matter interaction
cross—section.

The limit transition c ——> oo in special relativity resulted in the notion of group con—
traction [34]. In the Electroweak Model the notion of group contraction is used on the
contrary to explain the experimentally verified fundamental limit process of nature: a
decrease of the neutrinos—matter cross-section when neutrino energy tends to zero.

11 Electroweak Model at Infinite Energy
In the previous section we have shown that contraction of the gauge group of the Standard
Electroweak Model corresponds to its low-energy limit. In this limit the first components
of the lepton and quark doublets become infinitely small in comparison with their second
components. On the contrary, when energy increases the first components of the doublets
become greater then their second ones. In the infinite energy limit the second compo—
nents of the lepton and quark doublets will be infinitely small as compared with their
second components. To describe this limit we introduce instead of (108) new contraction
parameter c and new consistent rescaling of the group SU (2) and the space G; as follows

5(6) 2 ( :23; > = ( :27; if ) ( :2 > = a(6)z(e),

detu(c) : |o:|2 + (fl/3F =1, a(€)uI(c) :1: (125)

where e —> 0. Both contracted groups SU(2; j) (108) and SU(2; E) (125) are the same and
are isomorphic to Euclid group E(2), but the space Cg(t) is splited in the limit 6. —> 0 on
the one—dimension base {21} and the one-dimension fiber {2:2}. From the mathematical
point of View it is not important if the first or the second Cartesian axis forms the
base of fibering and in this sence constructions (108) and (125) are equivalent. But the
doublet components are interpreted as certain physical fields, therefore the fundamental
representations (108) and (125) of the same contracted unitary group lead to different
limit cases of the Electroweak Model, namely: its zero energy and infinite energy limits

In the second contraction scheme (125) all gauge bosons are transformed according to
the rules (112) with the natural substitution ofj by r. Instead of (113) the lepton and
quark fields are transformed now as follows

e; —> eel, d; —> Edi, 1/; —> mi in —> to. (126)

The next reason for inequality of the first and second doublet components is the special
mechanism of spontaneous symmetry breaking, which is used to generate mass of vector
bosons and other elementary particles of the model. In this mechanism one of Lagrangian

ground states (gym : ( 3 ) is taken as vacuum of the model and then small field

excitations v + x(33) with respect to this vacuum are regarded. So Higgs boson field X and
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the constant 1: are multiplied by 6. As far as masses of all particlies are proportionate to
v we obtain the following transformation rule for contraction (125)

X —> ex, 1) —> 6’0, mp —> emp, (127)

where p = x, W', Z, 8, u, d.
After transformations (112), (126)+(127) the boson Lagrangian of the Electroweak

Model can be represented in the form

1 1 ‘
LB(€) = —ZZ’EU — affix, + 62].;n + E3gWZj—l/VH—X '1' 641-234,

1 A 2
LB,4 = -n2%;W’:W: — fimiXZ — Avx‘r‘ — if + gZWJH/nwL

+97; (WSW; — W;Wj)2,
1 1 .

LBJ = 3 (611302 + 3mg: (az —

_1W+W— meg 2 _93_(Z )2 2_
2 “V “V 2cos6’w # 800826w “ X

—2?Lg (WjW; — W;Wj) (Jaw sin 9W + 2W cos 9W) —

—%e [AH (WLW; — WELT/VJ) + 36A“ (WLW; — W;,1Vj)] —

_29 COS 6w [Zn (WJVLVVF ‘ WJVWJ) _ Z" (will: _ W‘IJVJH —
62 r+ 2 r_ 2 2 —. —_Z { [(m) + (m ) ] (A,,) — 2 (Wilt? + Wp W1, J

[(WJY + (Wu—)2] W2} — gzzcosaw {[(WJY + (WU?) C
_2 (WEI/VJ + Wit—W17) zpzu + “i + (WE)? (Z#)2} _

APE/4V)—

2”)?—

—eg cos 9W [WjWgAUZV + w: WgApzfl—

1 W+W_ /+ _-5 ( p V + My W); ) (Apzu + AVZ#)]. (12-8)
111 terms of electron and neutrino fields the lepton Lagrangian takes the form

LL(€) = Lno + EQLLQ = pfizaaflm + eliruafler + g’sin QweITpZfler—

_ f T g T~ 2 ,_
9 cos QweeAper + 20-0—8 9w Vi TpI/( ‘1‘ 6 {eIzTfil-aflef — me(e:e£ + eger)+

gcos2t9w 1* t~ g t~ + T~ *

2003 9.”, 8‘7“Z“ei _ ee‘T“A“€‘ + E (”I 7'q 8! + 917q V1) . (129)
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In terms of u— and d—quarks fields the quark Lagrangian can be written as

LQ(E) = LQag — emfiuluz + afar) + €2LQ‘2:

. W . lLon : dIZTpapd, + :lz'rpaflug + UIZTpa#UT — Eg’ cos GdTpApdr+

1 1 2
+39 sinélw dTpTMZ d +2fulfil/lung + g (2 — *sing 9w) ulTpa—t

3 cosfiw 3
+2 2+39 cost9w 71:7"TA a, — gr; sinfiwulT#Zflur,

LQ2=dhflQflremJflmawfl¢l—gflfiAmh—
a 9 l_3 )i~ 9(303610 (2 3sin29 dsZpdi+ fl

The complete Lagrangian of the modified model is given by the sum L(e) 2 [13(6) +
LLI(€) + LQ(6) and for the infinite energy (for E = 0) is equal to

[mmfifi¢+@fiflz a] (mm

1 2 1 2 .5 ... . . .LOO—— ‘71—e — git—W + phalanx/g + ulmcipm + elsdflemL

+dlz'TflapdT + iLITTflapuT + LEEWAM. Z“)1

int 9 1-- g 1 2
L30 (All. Zp): 2c0s 6w——-—i/IT#Zni/; + m (_ _ g sin 92”,.) ulTflyZ 114+

26 _ _ 1+E—ulTflApug + g’sln QwelTper — 9' cos QwelTpApe, — 73—9" cos dlTpApdr-l-

1 2 2
+gg’ sin di’i"WZ dT + 39 cost?vim T Alia, — Eg’siauITpur. (131)

The limit model includes only massless particles: neutral massless Z—bosons Zf1 and pho—
tons A“, massless right electrons 61F and neutrinos i4, and massless left and right quarks
in, Mr, (L. The electroweak interactions become long—range because they are mediated by
the massless neutral Z-bosons and photons. There are no interactions between particlies
of different kind, for example neutrinos interact only with each other by neutral currents
Similar higher energies can exist in the early Universe after inflation and reheating on the
first stages of the Hot Big Bang [171 41]. The electrowcak phase transition and neutrino
decoupling which take place during the first second after the Big Bang [16] are apparently
in correspondence with the infinity energy limit of the Electroweak Model (131). The
mass term of u—quark in the complete Lagrangian is proportional to r whereas the mass
terms of electron and d—quark are multiplied by 62, so u-quark first restores its mass in
the evolution of the Universe.

84



References

[1]

[21

[3 —
l

[12]
[13

!
_
J

114}

[15 a

[16]

Bacry, H., Levy—Leblond, J.-M.: Possible kinematics. J. Math. Phys. 9, 1605 1614
(1968)

Bacry, H., Nuyts J .: Classification of ten-dimensional kinematical groups with space
isotropy. J. Math. Phys. 27, 2455 2-157 (1986)

Ballesteros, A., Gromov, N.A., Herranz, F.J., del Olmo, M-A., Santander M; Lie
bialgebra contractions and quantum deformations of quasi? orthogonal algebras. J
Math. Phys. 36, 5916*5936 (1995)

Barut, A.O., Raczka, R.: Theory of Group Representations and Applications.
PWN Polish Scientific Publishers, \Varszawa (1977)

Beresin, F.A.: Introduction to Superanalysis. Springer, Berlin, Heidelberg, New
York (1987)

Blokh, A.Sh.: Numerical systems. Vyssheishaya shkola, Minsk (1982)

Bourbaki, N: Varietes differentielles et analytiques: Fascicule de resultats. Springer.
Berlin, Heidelberg, New York (2007)

Celeghini, E., Giachetti, R., Sorace, 13., Tarlini M.: The three-dimensional Euclidean
quantum group 15(3),, and its R-matrix. J. Math. Phys. 32, 1159—1165 (1991)

Celeghini, E, Giachetti, R, Sorace, E., Tarlini M; The quantum Heisenberg qroup
H(1)q. J. Math. Phys. 32, 1155—1158 (1991)

Clifford, W.K.: Preliminary sketch of biquaternions. Proc. London Math. Soc. 4,
381—395 (1873)

Duplii, S.A.: Nilpotent mechanics and supersyrnmetry. Probl. Nucl. Phys. Cosmic
Rays 30, 41—48 (1988) (in Russian)

Fedorov, F.I : Lorentz Group. Nauka, Moscow (1979) (in Russian).

Gel’fand, I.M.: Centre ofinfinitesinial group ring. Math. collection 26(28), 103 112
(1950) (in Russian)

Gershun, V.D.._ Tkach, VI: Para—Grassmann variables and description of massive
particlies with unit Spin. Ukrainian Phys. J. 29, 1620e1627 (1984) (in Russian)

Gershun, V.D., Tkach, V.I.: Grassmann and para-Grassmann variables and dy-
namics of massless particlies with unit Spin. Probl. Nucl. Phys. Cosmic Rays 23,
42-60 (1985) (in Russian)

Gorbunov D.S.: Inflationary Models with Flat Potential. In: New Trends in High-
Energy Physics, pp. 296—304. Kiev (2013)

85



[17]

[18]

[19]

Gorbunov D.S., Rubakov V.A.: Introduction to the Theory of the Early Universe:
Hot Big Bang Theory. World Scientific, Singapure (2011)

Gromov, N.A.: Limit transitions in Spaces of constant curvature. Komi Science
Centre RAS, Syktyvkar (1978) (in Russian)

Gromov, N.A.: Casimir operators of groups of motions of space of constant curva-
ture. Teor- Mat. Fiz. 49, 210-218 (1981) (in Russian)

[20] Gromov, N.A.: Passages to the limit in sets of groups and Lie algebras of spaces of

[21]

[22]

[27]

[28]

[29]

[30 h—
n—

l

OJ .5

[32]

constant curvature. Math. Notes 32, 355-363 (1982) (in Russian)

Gromov, N.A.: Analogs of F.I. Fedorov‘s parametrization of groups 8030’), 80.1 (3')
in fiber spaces. Vesci AS BSSR. Ser. fiz.—math. 2, 108 114 (1984) (in Russian)

Gromov, N.A.: Classical groups in Cayley-~Klein spaces. In: Markov MA. (ed)
Group-Theoretical Methods in Physics, 2, pp. 183—190. Nauka, Moscow (1986) (in
Russian)

Gromov, N.A.: Contractions and Analytical Continuations of Classical Groups.
Unified Approach. Komi Science Centre RAS, Syktyvkar (1990) (in Russian)

Gromov, N.A.: Transitions: contractions and analytical continuations of the
Cayley—Klein groups. Int. J. Theor. Phys. 29, 607 620 (1990)

Gromov, N.A.: Contraction of algebraical structures and different couplings of
CayleyeKlein and Hopf structures. Turkish J. Phys. 3, 3777383 (1997)

Gromov, N.A.: The RI. Pimenov unified gravitation and electromagnetism field
theory as semi—Riemannian geometry. Phys. Atom. Nucl. 72, 794—800 (2009)

Gromov, N.A.: Analog of Electroweak Model for contracted gauge group. Phys.
Atom. Nucl. 73, 326—330 (2010)

Gromov, N.A.: Possible contractions of SU(2) group. Proc. Komi Science Centre
UrB RAS 1, 5—10 (2010) (in Russian)

Gromov, N.A.: Limiting case of modified Electrowoak Model for contracted gauge
group. Phys. Atom. Nucl. 74, 908—913 (2011)

Gromov, N.A.: Contraction of Electroweak Model can explain the interactions neu—
trino with matter. Phys. Part. Nucl. 43, 723—725 (2012)

Gromov, N.A.: Contractions of Classical and Quantum Groups. Fizmatlit, Moscow
(2012) (in Russian)

Gromov, N.A.: Interpretation of neutrino-matter interactions at low energies as
contraction of gauge group of Electroweak Model. Phys. Atom. Nucl. 76, 1144—
1148 (2013)

86



[33 H

[34]

[36]

[37

|
—

l

[38]

[39]

[401
[4-11

[43

|
—

l

[44]

[4.5

|
—

l

[46]
[47

|_
_
J

I48]

[49]

Gromov, N.A., Yakushevich, L.V.: Kinematics as constant curvature spaces. In:
Markov MA. (ed.) Group-Theoretical Methods in Physics, 2, pp. 191-198. Nauka,
Moscow (1986) (in Russian)

Inonii, B, Wigner, E.P.: On the contraction of groups and their representations.
Proc. Nat. Acad. Sci. USA 39, 510-524 (1953)

Kim, Y.S., Wigner, E.P.: Cylindrical group and rnassless particles. J. Math. Phys.
28, 1175- 1179 (1987)

Kisil V.V.: Geometry of Mobius Transformations: Elliptic, Parabolic and Hyper—
bolic Actions of SL2(R). Imperial College Press, London (2012)

Kisil V.V.: Is commutativity of observables the main feature, which separate clas-
sical mechanics from quantum. Proc. Komi Science Centre RAS 3(11), 4 9 (2012)
(in Russian)

Kisil V.V.: Classical/Quantum = Commutative/Noncomrnutative. arXiv-
1204.1858v2.

Kotel’nikov, A.P.: Screw Calculus and Some Its Applications in Geometry and
Mechanics. Kazan (1895) (in Russian)

Levy-Leblond, J .-M.: Une nouvelle limite non-relativiste du groupe de Poincare.
Ann. Inst. H. Poincare A3, 1- 12 (1965)

Linde, L.D.: Particle Physics and Inflationary Cosmology. Nauka, Moscow (1990)
(in Russian)

.. Mathematical Encyclopedia. Soviet Encyclopedia, Moscow (1982) (in Russian)
Montigny, M. de, Patera, J .: Discrete and continuous graded contractions of Lie
algebras and superalgebras. J. Phys. A: Math. Gen. 24, 525-547 (1991)

Moody, R.V., Patera, J .: Discrete and continuous graded contractions of represen-
tations of Lie algebras. J. Phys. A: Math. Gen. 24, 2227—2258 (1991)
Mukunda, N: Unitary representations of the group 0(2, 1) in an 0(1, 1) basis. J.Math. Phys. 8, 2210—2220 (1967)
Okun‘, L.B.: Leptons and Quarks. Elsevier (1985)
Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison
Wesley (1995)

Pimenov, R.l.: Axiomatic investigation space—time structures. In: Proc. III All—
USSR Math. Congress 1956, 4, pp. 78—79. Moscow (1959) (in Russian)
Pimenov, R.l.: Application of semi-Riemannian geometry to unified field theory.
Soviet Math. Dokl. 157, 795—797 (1964) (in Russian)

87



Pimenov, R.1.: To the definition of semi—Riemann spaces. Vest. Leningrad Univ. 1,
137e140 (1965) (in Russian)

Pimenov, R1: The unified axiomatics of spaces With maximal motion group.
Litovski Mat. Sb. 5. I157 486 (1965) (in Russian)

Review of Particle Physics (2010), eq. (10.19). http://pdglblgov

Rosenfeld, B.A.: Non—Euclidean Geometries. GITTL. Moscow (1955) (in Russian)

Rosenfeld, B.A., Karpova, LLVL: Flag groups and contractions of Lie groups. Proc.
Sem. Vect. Tens. Anal- MSU 13, 168—202 (1966) (in Russian)

Rubakov, V.A.: Classical Theory of Gauge Fields. University Press, Princeton, USA
(2002)

Vilenkin, N.Ya.: Special Functions and the Theory of Group Representations. Prov—
idence, Rhode Island (1968) (Translations of l-iatliematical Monographs, Amer.
Math. Soc. 22)

Yaglom LM- Yaglom, 1.3/1.2 A Simple Non-Euclidean Geometry and Its Physical
Basis: An Elementary Account. of Galilean Geometry and the Galilean Principle of
Relativity. Springer—Verlag, New York (1979)

Yaglom, I.M.._ Rosenfeld, B.A., Yasinskaya, E.U.: Proective metrics. Advances in
Mathematics 19, 5, 51—113 (196/1) (in Russian)

Zaitsev, G.A.: Algebraic Problems of Mathematical and Theoretical Physics. Nauka,
Moscow (1974) (in Russian)

Zeiliger, D.N.: Complex Line Geometry. GTTI, Moscow, Leningrad (1934) (in Rus—
sian)

Zheltuhin, A.A.: Para-Grassmann generalisation of superconformal symmetry of
charged ferniionic string model. Preprint CPTI, 85—38. Moscow (1985) (in Russian)

88



A Short Introduction to Geometric Intrinsic
Symmetries in Nuclear Physics

A. GéZdé and A. Pedrak

Institute of Physics, Department of Mathematical Physics,
University of Maria Curie—Sklodowska,

Lublin, Poland
E—mail: nguyen©ipno.in2p3.fr

PACS{24.10.Cn, 21.60.Fw, 21.60.—n, 21.60.Ev, 02.20.—a }

1 Introduction

A possibility of existence of high-rank nuclear symmetries related to the geometric prop-
erties, usually understood as some deformations of nuclei, has been shown several yearsago [1]. One of the most reach symmetry is the tetrahedral/octahedral symmetry whichcan produce large shell gaps in the single particle spectra because of the characteristicfor these point groups four—fold degeneracy. Large degeneracy of the energy spectrumincreases the average level spacing [2, 3]. This leads to the specific tetrahedral—magicshell—closures for nucleon numbers 32, 40, 56, 64, 70, 90—94, 112, and 136—138.

There were several experiments related to the problem of ‘tetrahedral’ nuclei per—formed. For example see Ref.[4, 5]. In the Rare Earth nuclei such as 152'156Gd, l541*156Dy,164Er, 164Yb, but also in the Actinides in 230‘234U, there were found some interesting prop—erties suggesting existence of searched symmetries, however, the results are not unique[6, 7].
The word avuné’rpta (symmetry) comes from Greek language: ova (’together’) andMEpV (’measure’)- Before the contemporary physics the symmetry was rather related tosuch notions as beauty, perfectness, harmony or ‘proper proportions’. The contemporarymeaning of the symmetry concept was invented more or less in Renaissance.

2 Space—time versus intrinsic symmetries
The Iii-"3.4: striking gremlinrr)‘ Illt" .4g'1ar:4---r.u:.1_ .4 21:3 F}'il‘.£11='.-'T.l”'.‘. The: space-rune sfruii'urr-tz'j,‘
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Figure 1: Platonic solids: tetrahedron, cube, octahedron, icosahedron, dodecahedron.

o the first type describes these intrinsic properties of the physical body which are
independent of the space and time structure, e. g. the symmetries related the iSOSpin,
conservation of the electric charge, conservation of the particle number and so on
The corresponding symetry group we denote here as GC,

9 the second type is determined by the geometric properties of the physical body
One of the most important geometric feature is shape of the body. These kinds
of symmetries leads to the so called intrinsic groups consisted of the geometric
transformations constructed in the intrinsic frame of the body. In this paper the
intrinsic groups are labelled by the bar symbol over the group name, e.g. G.

In this lecture we are interested only in the second kind of the intrinsic symmetries.
In case of a nucleus (non—relativistic description), let us assume, that this nucleus is

considered in the the coordinate frame in which center of mass is fixed in the position
space. The remaining non—relativistic space—time symmetry is the orthogonal group 0(3).
Every nuclear collective Hamiltonian has to be invariant in respect to this orthogonal
group 0(3). However, the nucleus can have additional geometric intrinsic symmetry
group which is a subgroup of the corresponding intrinsic orthogonal group G C 0(3). It
implies that, in the case of non-relativistic description of a nucleus the general intrinsic
symmetries collected in the group Gin, can be considered as the direct product:

Gin: : a X Gc- (1)

Historically, the most known symmetries are related to the geometric symmetries of some
solids invented by Platon (428 - 347 BC). In three dimensional space there is known 5
Platonic solids which are the regular, convex polyhedrons. They are constructed from
the faces which are congruent, regular polygons: triangles, squares or pentagons. These 5
Platonic solids are called: tetrahedron, cube, octahedron, dodecahedron and icosahedron,
see Fig. 1

The proof of existence of only five Platonic solids is based on the Euler’s formula:

V+F=E+a (@

where V, F, E denote the total number of V 2 vertices, F : faces and E = edges. There
is an open question: do exist the nuclear Platonic solids in the Universe? We will have
this problem in our mind in the following text.

Many scientists was and still is fascinated by the notion of symmetry. One of the
first was Johannes Kepler who believed in symmetry and proposed the palnetary model

90



Figure 2: The Kepler’s planetary model, http:// en.wikipedia.org/wiki/ FilezKepler-solar—
system—2.png.

'5"
)

Figure 3: Point groups chains.

built from the Paltonic solids Similarly, in the contemporary physics we are searching for
elementary particles, nuclear magic numbers, universal properties of matter etc., using the
symmetry building block called the irreducible representations of the symmetry groups.

Above we have mentioned that there is an open problem about existence of nuclei
having symmetries of Platonic solids. These symmetries are related to the so called
point groups consisted of transformations which leave one or more points of the three
dimensional space unchanged. The most important is a set of 32 point groups shown
on the Fig- 3. The dashed line denote not-invariant subgroup. Adding translations to
point groups one gets 230 crystalographic Space groups, 14 Bravais’ lattices and 7 crystal
lattices.

Because of relatively large degeneration of the energy spectra of the Hamiltonians
invariant in respect to the tetrahedral and octahedral symmetries, both the tetrahedral
and octahedral groups are the first candidates for analysis of nuclear point symmetries.
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Figure 4: The tetrahedral surfaces for three different values of the deformation parameters
0:32 = 0.1, 0.2 and 0.3, respectively.

In the simplest case, the tetrahedrally invariant shapes are generated by the defor-
mation tensor (132, where the deformation parameters are identified with the expansion
coefficients of the nuclear surface:

Monti <35) = Re (1+ 2 ORV/mm: 635))
M1

The examples of the simplest tetrahedrally invariant surfaces are determined, eg. by the
following equation

R(a; 9, $5) = Ro(1+ (1320/32f5la (£5) + Y3,—2(91¢)) ' (4)

The equation (3) allows to write down equation for different shapes of a nucleus clas—
sified in respect to the multipolarity A.

Usually it is assumed that the dipole parameters 031,, describe a shift of the surface.
It is only an approximation which has to be always verified in a given application. In
Fig. (5) there is presented an effect of the dipole deformation on the quadrupole shape.
In the right figure it is seen that the dipole deformation not only shifts the surface but it
also change its shape. In the figures below only the nonzero parameters are explicitely
written in their captions. One of the problems related to the above parametrization of
the nuclear surface is that for larger deformations one can get quite unphysical surfaces,
an example of such pure quadrupole surface are presented in Fig. (6) On the other hand,
the regular quadrupole shapes are of the expected form, see Fig. (7).

3 Collective variables

The deformation parameters of the nuclear surface can be used as the collective variables,
like in the Bohr type collective models. However, one can obtained the more general
description assuming q1,q2 and q3 are curvelinear coordinates in R3. Then the most
general equation of the nuclear surface can be written as

Qk = Qk(uiv) Where k = 1: 213a (5)
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Figure 5: The shape for 0:20 = —1.50 (left) and the shape for am = 1.50, ago 2 ——1.50
(right).

Figure 6: The monster quadrupole shapes, 0.220 = —5.50 (left), 0510 = 9.0, (1’20 = —5.50
(right)

Figure 7: The regular quadrupole shapes, 0:20 2 0.30 (left), 0:20 = —0.3 0:22 = 0.3 (right).
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where (a, v) E S C R2 are two real continuous parameters.
Assume the functions q), 6 [12(8) are square integrable functions where the compact

subset S C R2 of variables parametrizes the surface 1n the space of a single-nucleon.
Let the set of the three vectors {en(u, v)} gives the orthonormal basis in the spaceL§(.S)

(enlem) = /du3dv;p(u,v)en(u,v)*em(u,v) = 6mm, (6)
S

where p(u, v) 2 0 is the appr0priate weight function.
Using of this basis allows for expansion of the surface (5) in the following form

1)) = 2 an), em, 11). (7)

The basis should be chosen to have a physical meaning determined by a set of commuting
physical observables A), where l -— 1, 2, ,7" i. e.

Agen(u,v) = agn€n(fl,’U), for all Z = 1,2,. . . ,r. (8)

In this case, the expansion coefficients

om: [Edudwwme.(u.v)*qr(u.v) (9)
can be used as new variables describing the nuclear surface in terms of the observables
{A1}-

The very well known example of this procedure is the description of the nuclear surface
with the expansion (3). In this case one needs to identified the variables in the three
dimensional space with the spherical variables {q1—— r, (12—— 6, q3 = q5} and asume u ::
6,1; = d). The equation of the surface '1" — R(6, Q5) 6 L2(SO(2)) can be expanded into
eigenfunctions of the angular momentum observables A1: J2 and Ag-— J2, where J2
is square of the total angular momentum and J, denotes its third component. In this
case the basis cum, '0) = n(6, <35) consists of the spherical harmonic functions. As the
result one obtains the equation (3). In practice, in the nuclear physics, the equation of
the nuclear surface written in the laboratory frame (in this case we label the deformation
parameters with the superscript (lab),a :b))( usually has the additional coeflicient c0190”)
in front of the equation (3), which allows to satisfy the volume conservation condition for
the nuclear matter. The reality of the radius AR(6, q‘J), its invariance in respect to the
space rotations R(Q) and the space inversion C,- leads to the standard relations for the

abexpansion coefficients o:( u):

(again) )* : @0017)
p.0 Reality of the surface: ,,_ ,1.

This condition can be obtained by making use of the reality of the radius r : R(6, <16)
and properties of the spherical harmonic functions

R(O.’ (£ab).6 ¢)__ R*(a(£cib).6 qb)

:a(jf)*y,,,(9 a): :a;‘°b(— 1)#1/,_,,(9 a). (10)
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o Rotational prOperties of the surface: RmMES”: 211’ D3, (9)agffii’), where Dfi,H(Q)
denotes the Wigner functions of the rotation group and the Operator R(Q) represents
the rotation operator parametrized with the Euler angles 9 = (91, {22, Q3).

This condition follows from the transformation prOperties of the spherical harmonic
functions and invariance of the radius r 2 R09, 63) of the surface in respect to the
space inversmn:

Hammad); 6, 6) = RM“)- 6 6)
6(6)}116‘0666) = R (616)6001610){6 6})
2 R0 (1+ 2 (HQ)will?) R(Q)YA,#(6, 65))

230(1+Z(R(n)a§fif”) :Dm{Di/MU? 6)) (11)

Comparing the equation of the surface before and after rotation results in the trans
formation properties of the deformation parameters in respect to the space rotation.

0 Space inversion transformation: C CIUGM—— (—1)’\agf:b).
This property follows directly from the properties of the spherical harmonics and
invariance of the radius :

(jam(Iab)_6 .35)—_ R(a(£ab),6 Q5)

06111 “a” 6 6): R011+\;63‘:.b*(— 1)"m(6 6)) (12)

As above. comparing both expressions before and after the transformation of the
surface gives the transformation properties of the deformation parameters.

These properties show that the deformation parameters (collective variables) a are
the covariant components of the Spherical tensor of the rank )1 (tensor in respect to the
rotation group 80(3)). The important property of these tensors is existence of the scalar
product of two tensors. Let 5) and 7h be the tensor of the same multipolarity, then the
scalar product is defined as

(lab)
A11

6A ' WA : Z: gnpnAm (13)
“1/

where the metric tensor is generated by the Clebsch—Gordan coeflicients of the rotation
group (Aim/\wd/W)

9W 2 V2A + 1(/\;1)\1/|00) = (*1)“5;V- (M)
The scalars (rotational invariants) obtained in this way play an important role in de—
scription of nuclear collective motion. For example, the total multipole deformation of a
nucleus 18 proportional to the multiplication operator 6;

61661“) = swat”). (15)
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Figure 8: The spin orientation probability for a rotating system. The chosen wave functions
are proportional to some combinations of the Wigner functions: IL N DRIQHZ) — Dir,~2(Q) (left)
and w ~ DiI3(Q)— Dim—3(9) (right)

where
a; b) (Jab) (lab) (IFMIQ

ABA—q— a 05A : Z: (ii/Mr i(—1 :0” a (16)
,uu

This kind of invariants is important in construction of the collective Hamiltonians. For
example, the classical harmonic oscillator Hamiltonian

1 lab lab) 1 HHim = 2 [TBA {'1} ) O} ‘i‘ gBAwwABA] (If)

is constructed from such invariants and finally it is invariant in respect to the rotation
group as it is required in physics.

4 Intrinsic frame

The classical rotation is well understood phenomenon in which the orientation of a bodv
is changing with time. Contrary, the quantum rotation allows to determine only the
probability of a given orientation and there is no time variable in the wave function. The
quantum rotation can be presented in the graphical form as the surface drawn by the end
of the vector pointing out in the same direction as the spin of a rotating body and its
lentgh equal to the probability of finding a given orientation of the spin see Fig (8) .

The notion of the quantum rotational motion allows to define the rotating intrinsic
frame e. g. the body fixed frame for the collective variables {aW(Hub }. The corresponding
colective variables 1n the intrinsic frame we denote by {am};)They can be obtained by the
quantum rotation of the laboratory collective variables {GAE(2)} with the rotation operator
fire) A

oz), 2 Emmy”) (18)
assuming, in addition, that the rotation group 80(3) 9 RM) parameters, repesented by
the Euler angles Q = (91,92,823), are considered as a part of intrinsic variables. The
intrinsic variables 05A are invariant in respect to the laboratory rotations 12(9). It is
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important to notice that inclusion of the Euler angles into the set of intrinsic variables
makes this set of variables redundant, 3 variable more than needed. It implies that, the
definition of the intrinsic frame requires three additional conditions which recover the
same number of variables in both frames

FAQ, 9) = 0, where k = 1, 2, 3 (19)

In this way one can obtain a new description of a physical system, e.g. a nucleus, in which
the rotational motion can be directly described by the Euler angles.

5 Intrinsic groups
There is an intersting question: how to investigate symmetries of a nucleus in the intrinsic
frame. A part of symmetries, eg. trnaslational symmetry are not seen in the intrinsic
frame. Due to the general principles, the nuclear Hamiltonian has to be invariant in
respe“-r*i r»..— !.11r:= riri la- r;,:-ii.;ii gin—nip Cit-3'} defined :11 Lire iaiitoratnrfu' frame. [in the other hand.
it is r rim l-l'.‘ uni-lens should have seine gerirrzezrica] SfEIIlIIIE-EI'H'JS rria-ireri tr» its

Rigid; The i.1111:3122uriii.:ir_-'.--.".ens .|"=.:r:11' .i::g “-“-. inrrizm'ic symmetry group have to he {is 'r.-r.-u.'_i in:-
iu.“ li'lll'lIiL-EiL' :1';-'LT-."il'.'. ii: group inc-Jr}: Liiei'r? 1::- |-::iL‘-1rn r1“; notion 43f mfi My; righi 52:11? ,3.“ii

El 1 I-I I ' r --'-|- ---- 1-- I‘d-‘1: - I — -- . 1 I -.- - - |' I Iilll: Err-iii“! .‘114.::£I1':10b:.1. ill]: irTlE’cL 1m: Lm-z-Tni'i l'-_'r Litiilip 111E flu Willi-“1‘: Hiliilifili" :Erf_ifl]__35 ‘fi-‘tilf‘EL. m
{an a". in ilar: :ii::'zir.~:r- irarne.

A convenient definition was formulated in [15] in the following form:
for each element 9 of the group G, one can define a corresponding operator fi in the group
linear space £0 as:

§|S> = n), for all l5) E Co, (20)
where all elements inside the ket vectors 5' = dc egg, here (39 are the complex numbers,
form a group algebra of the group G.

In this definition the notion of the group linear space LG is used. This space is defined
as the linear space spanned by all possible formal linear combinations of the elements of
the group G

EC = {[S) : IS) = 2099, where cg E C}. (21)
96G

TI. iur iii-i LEE-1r: 1.11": grr=ii:- algrri";2'ri mentioned above, but, it is important that the elements of5,; 3:1 are in hr- ..3'4'szisirir-reii only as vectors, not as the elements of the group algebra.
The grniip fi'il'Il'Lf'ii by This collection of the operators g? is called the intrinsic group Gi'cia.r-.':'i To the? groin: CE.
One of the most important prOperty of the intrinsic group G is that this group com-mutes with its partner group G

[G, G] = 0. (22)
The groups G and G are antyisomorphic. The required anti—isomorphism between thepartner groups G and G is given by

9150 3 G —-> G, Where 6150(5) = 9 and (sci???) = ¢5G(§')¢5G(£7)- (‘23)
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This prOperty suggests that the partner groups G and G have a lot of common properties
as e.g. similar structure of representations, decompositions of the Kronecker products, the
Clebsch—Gordan coefficients and many others.

As an example let us consider a relation among representations of both groups. Be—
cause the partner groups commute one can find common basis Ik) for representations
of the group G and the group G. The representations are defined as:

glk> = 2AM)'IPmk> (24)

arms = ZAELZo)lk’> (25)
kl

To compare both representation one can use as the basis the generalized projection oper—
ators (elements of the group linear space £9)

|Pmk> = d%([2— Z Afliorg, (26)
where dim[P] denotes the dimension of the representation F and card(G) is the number
of elements in the group G. This allows to calculate (25)

glFmk) dim[_(F_r[]MZA

g’eG
d F]

c—airI:ll([(:)Cilwgflqg99, _l)

I oil—21%) é; Amk'm AHA z: Akkrlg)7ak) (27)

where Agngnlg) are matrix elements of the representation P of the group G, Comparing
both expression one can see that the matrices of both representations are related. The
representations of the intrinsic group are transposed representations of the partner group

553(5) = Aims?) (28)

A bit different are definitions of irreducible tensors in respect to the laboratory group G
and the intrinsic group G. By definition the irreducible tensors in respect to the laboratory
group G transform as

gT(l-‘)g“—1 =2 A(TI;)(g)1"£(r). (29)

The tensors in respect to the intrinsic group G, due to the anti-isomorphism between both
groups, have to be defined in the following way

9‘1 =ZA§P(g-1)Tfm. (30)
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As an example} let us consider the action of the intrinsic group in the collective space
consisted of the square integrable functions of the deformation parameters and the Euler
angles. The intrinsic rotation operators 1%(§1, fig) 6 80(3): X 80(3)Q (the indices a and Q
Show the variables which are affected by the corresponding group) are defined as follows

R(glag2)f(ai 9) = f({§la}a Q¢G(g2)—1)7 (31)

where gl 6 SO(3)Oz and g2 E SO(3)Q. The action of the group SO(3)a onto the deformation
variables is a bit non—standard and is given by the following equation

910M: 2 133',“w91) _1)a)~p" (32)

The intrinsic group 80(3) corresponding to the ‘laboratory’ rotation group 80(3) de—
fined in the laboratory frame consists of all rotations Rfij, g) for which the deformation
parameters and the Euler angles are rotated with the same angles.

The required anti-isomorphism between the partner groups 80(3) and 80(3) is given
by (23).

It is important to notice that, in general, not all transformations (g1, {32) 6 80(3) ><
80(3ln

(£71392): (05:9) —> (a’,Q’) (33)
are allowed in the intrinsic frame. They are allowed if they do not break the conditions
which define the intrinsic frame (19)

(fii:§2)Fk(CI,Q) = Fk(§1a,99§1)= 0, where k = 1,2,3. (.34)

For example, in the case of the quadrupole colective variables 0:2 with the standard Bohr
condition which define the intrinsic frame: 032:1 : 0 and 0:22 2 032-2, the allowed intrinsic
rotations R(§1,§2) e SO(3)Q >< 80(3)Q have to fulfil the following conditions

R(§1, 60)012i1 I 0 and R(§1,€G)0522 = 1%(911 8G)052—21 (35)

where the second argument represents the unit element of the group SO(3)Q. The Bohr
conditions allow for the arbitrary rotations 92 E SO(3)Q.

Using the conditions (35) the allowed rotations of the deformation parameters a have
to satisfy the following equations

DEW?) ——

(
Dandfifll + 03m

Dos (
D32,_2(§I1> + D%,_2(

I) 0
r1)=0
I)=0
I)=D—22(911)+ D§2(g1—1)' (36)

In this case, the octahedral point group 50, C SO(3)Q acting only on the variables a
provide the solution of the set of equations (36).
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6 Uniqueness of quantum states
In practice, the transformation to the intrinsic frame is not a one-to—one function. For
the further purpose it is useful to define a group of intrinsic transformations Ii 6 GS:

(0619) 5 (0539’): (37)
where a = {05“,} and which leave invariant the corresponding laboratory coordinates:

aaablm', Q’) = a(f”b)(a, Q),
Fk(a',9') = FAQ/,9) = 0, fOI‘ k =1,2,3, (38)

where affablm, Q) = R(Q'1)a, see (18).
The group as we call the symmetrization group.
The symmetrization group decomposes the collective manifold into orbits of physically

equivalent points. Let the function @(fab) denotes a state vector of a nucleus in the
laboratory frame. The corresponding state vector in the intrinsic frame has to fulfil the
obvious equation

Ma, Q) = @(‘ab)(a<‘ab)) (39)
which represents the fact that the wave function of the physical system written in the
laboratory frame has to be a well and uniquelly defined function.

However, after the transformation of the intrinsic variable with the elements of the
symmetrization group we do not change the laboratory state vector

ins: e“) = @(‘“b)(a“”b)). (40)

This implies the uniqueness condition for the states in the intrinsic frame

111(0’, 9’) = @(afll). (41)

This is a very well known but not fully solved problem in the collective models of the
Bohr type.

In principle, there are two possibilities to achieve uniqueness of transformation from
the laboratory to the intrinsic frame:

a first, one can define the appropriate region of the intrinsic collective variables in
which the transformation from the laboratory to intrinsic frame is a one-to—one
function,

0 second, one can allow for the whole range of collective variables but then one needs
to fulfil the symmetrization condition for physical states. The symmetrization con—
dition can be expressed as invariance of the intrinsic state vectors in respect to all
transformations h 6 CS,

hlll(a, Q) = @(a,9), (42)

where the group é, is the symmetrization group.
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As an example, let us came back to the very well know example of the quadrupole variables
(0120,0122, Q) with the Bohr conditions which define the intrinsic frame (35).

Using the conditions (35) one can see that the allowed rotations of the deformation
parameters 01 have to satisfy Eqs._(_36) which are fulfilled by the rotations belonging to
the octahedral point group 00 C SO(3)a. The required invariance of the transformation
formula from laboratory to the intrinsic frame (38) implies that both rotations (91, g2)E
OD, x on have to be rotations about the same angles 19—— (91,62,193) , i..e g1—— 91(9)
and g2-— 92(9). This considerations suggest that the symmetrization group is equal to
the octahedral group G, =0 C 00, x 09 transforming simultaneously the deformation
parameters and the Euler angles by the same rotation. Because the quadrupole variables
are invariant in respect to the space inversion this transformation should be formally
added to the symmetrization group, in this way one obtains GS ——Oh

Obviously, instead of the standard Bohr conditions the following alternative definition
of the intrinsic frame can be used:

0 the collective variables are now chosen as (0:20, (121,9),

0 the conditions which define the intrinsic frame (variables) are now assumed as

F1’2(CY, Q) = 052:1:2 = 0 and F3(Q’, Q) = Q21 + 032_1 2 0. (43)

These definitions lead to the equations for allowed rotations and the symmetrization
group:

Dizo(9) 0

D:2,91( )— Biz-1(9) = 0

Dfol9) + D:1,0(9) = 0
Dil19)1,1—1(9) = D31_1(9)— [3311(9) (44)

The allowed rotations are now given by D20, >< S——O(3 )Q. The symmetrization group, in
turn, is given by much smaller group D2 C D20, X D29 than in the previous case.

We see that using of different condition defining the intrinsic frame lead to formally
different structure of the colective spaces.

This considerations born an interesting question. Do both sets of collective variables

set 1-1 0201 0522 = 02-2, 052m = 0: (45)

describe the same set of shapes? D0 are they physically equivalent?
To answer these questions one needs to check if there exists the one-to—one relation

between both frames. The required transformation is given by

1 r0’20 L *50201 (47)

. 1 3 I . I
0322 = eXp(_2361) (E \ga20 + 30321) . (4:8)
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where the rotation angle 91 can be calculated from the following formula

1 30/21 cos(261) = §\/;05’20 51119603

In fact, the angles (91,62,193 parametrize the rotation which transform the second set of
variables into the first one.

7 An example of a symmetry structure of the collective
configuration space

Let us denote by Xauab), Xa and X09 the configuration Spaces consisted of: a) the labo—
ratory variables aaab), b) the intrinsic deformation parameters a and c) the full intrinsic
configuration space: respectively.

Let us consider again the case of the collective space consisted of Bohr variables
((1203 (122) which are equivalent to the popular polar parametrization of nuclear shapes
(6, 7), where

0:20 = Beosy and (122 = ~6— sin y. (50)\/§
The symmetrization group 6 (inversion omitted) is generated by the following rotations
R1 = 02y,1_22 = (742,129, = R(7r/2,7r/2,1r), where q denote the rotation by the angle
27r/n around the q axis.

To find the region of uniquenes of transformation from the laboratory to the intrinsic
frame one needs to construct the orbits obtained from the action of the symmetrization
group Gs = 6 onto the full intrinsic configuration space X09. In our case the orbits are
represented by the following sets

orb(6918017039'0) : {(63719) : (6:759) =§<6017019C01 g E (—j} ' (51)

Every orbit consists of 24 elements of the configuration space X09 which correspond to
the same laboratory deformation. Here, we have used the polar parametrization of the
quadrupole variable due to the simpler action of the octahedral group on these variable
than on the 0120,0522 themselves

A A 2% a
976 = 6, 9'7 6 {iii fl? - 163)}, ’6 =1,2,3, 99 = 99- (52)

Formally, to have one-to—one transformation from the laboratory to the intrinsic frame
one needs to construct the following quotient of the collective configuration space Xag:

X59 = XaQ/orb(6), (53)

where two points of the collective magnifold (6’, 7’, Q’) and (6”, 7”, Q”) belong to the same
equivalent class of intrinsic points if both points belong to the same orbit, i.e.

(flan/39,) = (18”371’39”) m0d(0rb(6))

iff there exists the point (60,70,810) E XQQ
such that (6",7’, 9’), (6", 7”, Q") E orb(6; Bo, 70: 90). (54)
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Figure 9: 6 equivalent regions, each region consists of 4 orbits of the symmetrization group
O

The above construction leads to a problem with the notion of the angular momentum
operators because in the configuration space X39 for the fixed shape the Euler angles
are restricted to a subset of the full range of the angles, e.g. the points (6,7,9) and
(,8, 7, {202(1), where q = 3:, y, 2 represent a nucleus of the same shape and the same space
orientation in respect to the laboratory framea though the Euler angles are different.

To recover the angular momentum as the physical observable one needs to join some
orbits in such a way to obtain the full range of angles. This can be achieved by the
appropriate restriction of the symmetrization group. The restricted symmetrization group
00 x 19, where the symbol 19 denotes the trivial group consisted of the unit element
only} allows to construct the new 6 elements orbits

orb(6a X iQi1801’70190) =
471'{(6011190) :1 = 11111110 — 9311,1110 — ‘3‘» (-55)

and subsequently the collective configuration Space in which the Euler angles have the
required physical range

Bohr — _ -X11 ——XQQ/Orb(OQ X 19). ('06)
1117111111111: '11; 1111.4 11:11 1111' 11g11111 41111111 11111 11111111i1311 1.1:9111111'11r111a111-j111 from 1.11111 111111111111 :'.1r1'
1.11 1311? 11111111111: 511111211. 1.111 1i111 111311-11 1111111. £11 1.31111 111151.- .11111-' 11.1: 111111 24' 1111111111 111 7.1111

I

EZEUF‘FF {ii-'13” "“13‘5'71-‘31‘1‘111111 11:: 11111 Join; [1.3111 1111 111= _|:-:1L11'_11 11-:_1r1 frf1I11E. 11111:: i 111.1111.
T1135 ”1"5-“1131-‘5 LIE-i? 11113-111 '111-1 I1ni12111e11e.~1.~2 111 11:11.11 1"_l1'il'..1_1.-1.‘1-. 1111111131211 The 11111111111111?11111.1 1.111:- '::11r'::1;111' 5'1‘::.-1'.-1-;-s 1111111111115 11111 1111111 1111111111111: [1111111115 1114'. 11111111113 1.11 obtain 1:11

1111' 1.11115? 1'11111 11111.
The same considerations one can performe for the example of the alternative Choice

of the collective variable (0120,0121). In this case the symmetrization group 52 (inversion
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ommited) consists of the following rotations {60, C723, 02y, C722}. The orbits (4 elements
each) can be written as

0Tb(52;d2015121,§j) = {(é201é21afi)1(d201é211Q02yC—722):
(5520: _&211 9021]): ((1201 _'&217 9027.)} (57)

In this case we have a very simple action of the group Operations onto the collective
magnifold

0231020 : Q20: 0’ : $1 ya 2i CZGQQI = —a211 G, : y: Zi

Despite of this again one needs to join orbits in such a way to recover full range of
a_ngles to have well defined angular momentum quantum numbers. The restricted group
D2 D x 19 leads to a set of two elements orbits

orbmgga >< imamaglm = {(amamfi) : (121 = M21}. (59)
And the corresponding collective configuration space is given by

XAuer = Xflg/orb(52.Gt x i) 2

U U U {( 0:20 0:21, o) (0120: —a21,§2)}. (60)
C1206R c121 ElR+ 9680(3

Finally we get NOT INVERTIBLE (1 to 2)-transformation from the laboratory to the
intrinsic frame. This is a typical situation in practical applications.

An alternative way to describe the space of quantum states is to use the space of square
integrable functions «p: Xag —+ C with symmetrization condition for quantum states 1L1.
However, it is important to notice that, in this case, the arguments of the quantum states
(collective functions) run over the full configuration space X619.

8 Symmetrization
An idea expressed in the last sentences of the previous section requires a bit more detailed
analysis of a structure of the space of states. The physical state space consists of all the
functions d): X09 —> (C which fulfil the symmetrization condition

IC = Wail) :fia = a, for 3.119 e G}. (61)
The collective Hamiltonians 7% are generally defined in the wider space Kw“ consisted of
all square integrable functions, not only symmetrized. In fact, to have physical solutions
one needs to restrict, in some way, the Hamiltonian ’H to the physical subspace 1C
There are two possible procedures:

col! -

ll. Projection. First the Hamiltonian ’H is projected onto the physical space IC:
H1: PKHPK. Second one needs to solve it in the space of symmetrized fumtions
KI. An important notice: in this case the Hamiltonian 71(1-— PK’HPK has the
symmetry provided by the symmetrization group G_.,..
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2. Selection. First, one can solve the Hamiltonian ”H in the full (in general not
symmetrized) space of states K360” and afterward one needs to choose the solutions
belonging to the space of symmetrized states 1C.

An open question is which procedure is physical?
To show differences and similarities between both approaches one needs to define the

projection operator onto the scalar representation of the symmetrization group G3) in the
space 1C: 1

15 Z -—T 2. 62K card(Gs) 2: g ( )
96G:

The first procedure ‘Projection’ creates a new Hamiltonian from the original one

7121 E Pgilfix (63)
7i1ILIJ1;U> = Elwlqllw)’ (64)

In this case the action of the projection Operator Pglklllw) = I‘l’lw) 6 2C is closed within
the physical state space.

The Hamiltonian H1 can be expressed in terms of its eigenvectors and eigenvalues by
making use of the spectral theorem

in = ZEi;ul‘1’1;u><‘1’1;vl- (65)
'I'TAs it was mentioned earlier. iilr. nriiiiiltoiiiiin i-r’; has the intrinsic symmetry which is not

smaller than the symmetrization gruug‘: Er. Fit-iireiiiiies it can have even a larger symmetry
group. It happens indepeiideniir mi tii-ii Hj'iiiirir-rrf: of the original Hamiltonian 7%.

The second procedure ‘Selection’ requires first to solve the original Hamiltonian Gift in
the full (in general not physical) space of states Kim“

Mill-n) = Ema). (66)
The next step is to choose the solutions which fulfil the symmetrization condition (42).
Let us dentoe these eigenstates of (66) by llllgm) and the corresponding eigenenergies E,1
by E2311

PKIIIJETI) = ilp2rn> E [@2;R>IC- (67)
This ESE-1': of iii-i: flyinruetrired stares. air-i {he l.f=I'['r.rEI.T*-:I]'llfiilii:2_ eigEiie-iut-rgies allow to construct
1' i"|."-' it“? SPEC-TEL} T.i1"3£'u1‘-'31:'3 1 tin:- ei'i'er-L:=.'r= i-iamiitmiiaii which .Fuiiiiee Fi‘rf- required conditions:
its {lift-it"i—J is chased wiiinrz the piiysicai suitérpavr: if and it is invariant in respect to the
F}'i'|':[ifil‘iE-‘difffli group. This. Effeuirtit'ig- Hafl‘llitfllljflfl H; can be. atrium-3n down as

H2 = E :E2mi‘1’2;n)m(‘1’2;ni- (58)
7'1

Both Hamiltonians 7-21 and 3% can be related. Let us assume that the kets lkllgm) E [C
are the symmetrized eigenvectors of the full Hamiltonian ’H, then

fil‘l’anbc = E2;n|q}2;n)}C :> 3L2liql2‘.'ri.>i’C = E2;n|‘ll2;n>}C (69)
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and the solutions obtained from the second procedure are also the solutions which we
obtain from the first procedure.

However, the OPPOSITE property is not TRUE.
To show this conjecture let us consider the eigenstates of the effective Hamiltonian H1

72111111...) = E1-ul‘1’1-ul (70)
Then in general putting the projection operator Pg (it projects onto the physical sub-
space) and QK—— 1 — PK, into Eq. (70) one obtains

Hl‘l'iw) = {721+(151c7ilQ1c + QKHPIC) + QKHQK}I\P1;V) =

Elwlmlw) + Qflfilwlwl 7’é culls/>1 (71)
where c is the proportionality coefficient.

We see that the projected hamiltonian H1 can provide more solutions than the‘ gener—
ating Hamiltonian H used with the second procedure. It means that both symmetrization
procedures are not equivalent and can lead to different physical quantum models.

One needs to notice that the ‘Selection’ procedure is used in the standard Bohr—like
colective nuclear models.

As a pattern/example let us consider the Bohr Hamiltonian in the case of quadrupole
variables 6,7, Q

3Qfiohr : 3L21.1111(431 ’7) + fir-011(9) + fivrbaa ’71 Q): (72)

where the vibrational part of the Hamiltonian is

. _fi21 8 48 1 8 6 2}- = — 3 -— + + V , 7311.1. E{—64 36 .95 V32 511137) a sum 7) a? 13 B ( 1
the “rigid” rotation part is given by

flrot = H: —' (74)
2:1; 1 2 ,‘73

and the coupling part which describes discrepances beetween the terms with the con—
stant moment of inertia and the hydrodinamical moment of inertia which depends on the
vibrational variables 6, ”y is of the following form

. 1 _,r_:-' -
3"(Ur : ‘F— E . ‘1'. ... .I.- .--:+-- I- _ Hrot- (75)4 .

86 k:1,2,3"]“'

This is not the difficult exercise to check that the vibrational sub-Hamiltonian has an
octahedral symmetry:

Sym(HMb): Oha- (76)
It is sufficient to check invariance of the vibrational sub—Hamiltonian with respect to the
generators of the group 61m, represented by the following rotations

R15 R(0,7r,0)= (18,1) —> (5/7),
R2:— R(010 71/2): (5,7) -> (61 -’1),
R3 5 RW? 31/2 Tr): (fiav)—>(fiar-W/3)- (77)
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The easiest way to proceed is to notice that the sub-Hamiltonian Tim-5w , 7) = slime/6,3, 3/6
is a function of invariants of the group am.

In a similar way one can find the symmetry of the rotational sub—Hamiltonian. It has
simple, dihedral symmetry acting on the Euler angles of the system

Syn-1(Hrot) : fiZhfl- (78)

This group has two generators which transform the collective variables and the angular
momenta operators in the following way

023;: (537)—>(fi37)3 JEAJEJ

C722: (6.7) —> (6,7), J? —> JE- (79)
Similarly as in the previous case the rotational sub-Hamiltonian 772,049) = HWUI, Jy, J2)
is a function of the invariants of the dihedral group 52mg. The coupling term 7-21,, has a
bit more complicated symmetry group represented by the direct product of two groups
which, in fact does not contain the symmetrization groups as a subgroup:

5M X 52,59 25 6h. (80)

The last property, that the symmetrization group is not a symmetry of the Bohr Hamilto—
nian shows that the Bohr Hamiltonian can be treated only as the generating Hamiltonian
which after either the ‘Projection’ or ‘Selection’ symmetrization procedure can be con—
verted into the physical quantum Hamiltonian in the intrinsic frame. Traditionally, the
‘Selection’ symmetrization procedure is used.

8.1 Summary
In this short lecture we wanted to show the main ingredients which allow to prepare
description of a physical system in the intrinsic frame. In this introduction to the problem
of physics in the intrinsic frames, to make the lecture as simple as possible, we have used
only the rotation intrinsic frame. However, a generalization to other kinds of the intrinsic
frames is traightforward.
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Abstract

These five lectures collect elementary facts about 4D supersymmetric theories with
emphasis 011 N = l supersymmetry. as well as the basic notions of supersymmetric quan-
tum mechanics. Contents: I. From symmetries to supersymmetry; II. Basic features of
supersymmetry; III. Representations of supersyn'nnetry; IV. Superspace and superfilelds;
V. Supersymmetric quantum mechanics.

1 Lecture I: From symmetries to supersymmetry

1.1 Groups and symmetries
Symmetries play the central role in physics: They underlie all the theories of interest
known to date. Their basis is the Group Theory.

0 Gravity: Based 011 the local diffeomorphism group of the space-time,
Diff R4, 3:“ :> :L‘m’(:r).

o Maxwell theory and its non—abelian generalization, Yaiig-hrlills theory: Based on the
gauge groups U(l) and S U (n), with group parameters being arbitrary functions of
the space—time point.

:- Standard model. the unification of the electro—week theory and quantum chromo—
dynamics: [Gauge U(2)eu, ® SU(3)C] (8) [Global Flavor SU(N)f (broken)].

0 String theory: Diffeomorphisms of the worldshect (z a E)

o 5‘33.}:3fg1'3-‘fl'ilji'. Supr-i'srringr.. Eiipurbrenirs: Supersymmetry (local. global,
.. .‘I' -runlnziirel. .
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Group: Some manifold G = {9”}, n = 1, 2,. . ; such that the following axioms are
valid:

1. Closedness under the apprOpriate product:

91 ' 92 = 93 *5 G;

2. The existence of the unit element I E G :

9-1 = I - 9 = 9;

3; The existence of the inverse element for any 9,; E G:

4. Associativity of the product:

(91'92l'93 =91'(92'93)-

Simplest examples: 1) (1; —1) with respect to the standard multiplication; 2)integer num—
bers; with respect to the summation, with 0 as the unit element; etc.

Types of groups: 1) finite groups; 2) infinite countable groups; 3) continuous or topolog—
ical groups (Lie groups). We will be interested in the third type.

o Lie groups:

G = {9(a)} a: 2: (331,332; . . . ,zr’); drank) : Dim G,
9(1?) °9(y) = 9(Z($ay)) E G: 9(0) = I: 40:31) = y: Z($»0) = 93

For Lie groups; one can always parametrize their elements; in a vicinity of the unit element;
as

9(3)) = exp{IiT.1-}, [Ti Tkl = cikTi! Cik I —Clmfiv

where T;- are generators and Cir: are stmcta're constants.

The generators T;- span the algebra called Lie algebra. The Lie algebra is specified by its
structure constants which, in virtue of the Jacobi identity

[II-la [Tk: [112]] + [’11: [II—l: Tk“ + [Tim [11.3 E“ : 0;

satislfy the fundamental relation

czicp1 [m + efficfm + age” = 0.km,
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Example: The group SU(2):

'9 = exp{i)\aTa}3 (Ta)T = T03 [T03 Tb] = 2:EOJMY-‘C: a: b: C = 1: 2.. 3:

Eabcgdce + Eeacebcd + Edecaacb : 0 .

There are two vast classes of symmetries in the Nature:

0 I. Internal symmetries: Isotopic SU(2) , flavor SU(n), etc. Their main feature:
They are realized as transformations of fields without affecting the space—time co—
ordinates. The generators are matrices acting on some external indices of fields, no
any x—derivatives are present.
Example: Realization of SU (2) on the doublet of fields 7491133) (“neutron — proton”)

1 1 1 161453033) 2 M115(Ocdic‘r’i'k(33)1 [50m 50b] = ifs-MEG“
0a = 50.171 + ’iEabctTc,

0a are Pauli matrices:

__ 01 _ 0 *2 _ 1 0
0.1—"— l O 3 02— 1'0 103— 0 _1 '

0 II. Space-time symmetries: Lorentz, Poincaré and conformal groups. Generators
in the realization on fields involve L’s—derivatives.
Example: Transformation of the scalar field rpm“) in the Poincare group:

. 1
630(3) ": —icu — iw[mn]agz)($) : ficmamfrflm) _ w[mn]§($man " Tnam)wctf)a

1 1Pm 2 E87“, Lmn = ;(:rmc9n — 32,119,”), m, n = 0, 1, 2, 3.
'34—}

1.2 Invariant Lagrangians
The primary fundamental symmetry principle is the invariance of the action:

. - 6
S I /d43:£(q§,4,3q>.4, 11901 H), as = $6¢A I 0 (—3’ 6L: :— 8771/31“.

A

Example: The free Lagrangian of the scalar field

141;; gramme)
transforms under the Poincare group as

15:55:19 2 —§an(wmnxmasaas¢), M0) = —%cmam(an¢an¢),free
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whence the invariance of the relevant action follows.

In the systems with few scalar fields one can realize internal symmetries. The free La—
grangian of one complex field

(2) m I _ ,
Z"’f'rcr: : a ¢(T)d7n¢(£)

is invariant under U (1) symmetry

as = no, (56) = —i/\(3:

three real scalar fields can be joined into a triplet of the group S U (2):
. 1 r _

- y .13(3) = “dTnOn(QE)0n1@a($ : OOQ : EabcAbC-bc :-> (SE/(fl = 0 .free 2
free

One. more possibility to construct .S'U(2) invariant Lagrangian is to join two complex
scalar fields into SU( 2) doublet.

41L 7 (radiant/Ede):
l r _ l,{8(e : aArilo-fllllcsfii 6960 : _§Ar1(0-fl) : 6 —

Extending the sets of fields (and adding interaction terms), we can further enlarge internal
symmetries.

The characteristic feature of all these symmetries is that the group parai’neters are ordinary
commuting numbers? and so the group transformations do not mix bosrmic fields (Bose—
E-msterin statistics, integer spins 0,1,.. ) with femulonéc fields (Fermi-Dirac statistics,
hall-integer spins 1/2,3/21. ..). The bosonie and fermionic parts of the Lagrangian are
invariant. separately.

1.3 Supersymmetry as symmetry between bosons and fermions
Let 11s now consider a sum of the free Lagrangians of the massless complex scalar field
99(3?) and the W'eyl fermionic field Lb”(:r)

r

2’, — . _ .e a “ :(1 m [a£¢+w : OTHCPOTHQQ — _ [ll-I’rwamlor'tamfi; — 0m I?) (U )cwilvl ] f

where Mm)“ : (6(1r}1(0”‘)(l(1) are the so called sigma matrices, the basic object of the
Spirnor twocomponent formalism of the Lorentz group (they are invariant under simul-
taneous Lorentz transformation of the vector m = 0, 1, 2, 3, and spinor (r, (r - I , 2 indices)

The evident symmetries of this Lagrangian are Poincaré and phase U ( I) symmel 1 ies which
separately act on 30(17) and watt).
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However, there is a new much less obvious symmetry. Namely, this Lagrangian transforms
by a total derivative under the following transformations mixing bosonic and fermionic
fields

(590 = *Ea’lfia, ($95 2 “1/3051 , 61,690 : 2i(om)adEd8mgo .

One sees that the transformation parameters C“, Ed have the dimension cml/Q, so these
transformations do not define an internal symmetry (the relevant group parameters would
be dimensionless). Moreover, for the action to be invariant, these parameters should anti—
commnte among themselves and with the fermionic fields, {6, c} = {6, E} = {6(6), 21:} 2 0.
and commute with the scalar field, [6(6), 90] = 0, and with the parameters of the ordinary
symmetries, e.g., [6(6), cm] 2 0.

To see which kind of algebraic structure is behind this invariance one needs to consider
the Lie bracket of two successive transformations on the scalar 99(r):

- , a , _ m_ 1(6162 — 6261)<,9 = —(<—:§’oln‘ra) — (61521510,) = 2(E10'm63 — £20 €1)(:6mk,3).

Thus the result is an infinitesimal 4-translation with the parameter {(clomEg —— Egon‘El).

Rewriting the c variation in the form

699 Z 3 (EaQa + €(1Qd)991

and taking into account that the spinor parameters anttcommnte with Q“, (2“, we find that
the above Lie bracket structure is equivalent to the following anticommutatz‘on relations
for the supergenerators

{omen = 2 (confirm Pm = ,—
[Prrta Q0] 2 [Prim Qt‘r] : 0 -

This is what is called N = 1 Poincare saperalgebm.

2 Lecture II: Basic features of supersymmetry
The full set of the (anti)commutation relations of the N = 1 Poincaré superalgebra reads

{Qua Qfi} = 2 (UTH)Q;§Pm:

{Qs} = {QC-n Q5} = 0,
[Putz Q0] = [131711l : 01 (2’1)

1 1 _ '
lJmm Q0] 2 __2' (Umn)fQfl= lJmml : I; (Umn)dflQB’

[J-m‘n.) R9] = 7' (nns — nrnspn)a

[Jmna q] : 2(77713‘17111} _ nmaq + Uasm _ nqsn):

[Ra Qal = Q0 3 [R1 Q61] 2 —Qd [R, Pm] = [R1 Jmn] = 0.
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Here Jmn = Lmn + SW1 are the full Lorentz group generators (SM is the spin part acting
on the external vector and SpiIlOI‘ indices) and R is a generator of an extra internal U (1)
symmetry (the so-called R symmetry). Also,

777ml : d1ag(1, —1, _1, —1)a (Umn)g : : (grub-.1}, _ 0n57:1){3
a 1

z .

((3771.01). _ finant)§ 3 émda : (5&0: _O_ada) .-—nm 5 _
(0 la ‘

Some important common features and consequences of supersynnnetry can be figured out
just from these (anti)commutation relations.

0 The Poincare superalgebra is an example of Zg-graded algebra. The latter is defined
in the following way: one ascribes parities i1 to all its elements, calling them, re-
spectively, even (parity +1) and odd (parity —1) elements, and requires the structure
relations to respect these parities:

[odd, odd] w even, (even, odd] w odd, (even, even] N even.

From the above (anti)commutation relations we observe that the spinor generators
Q0, Q; can be assigned the parity -1 and so they are odd; all bosonic generators can
be assigned the parity +1 and so they are even.

a Lie superalgebras satisfy the same axioms as the Lie algebras, the difference is that.
the relevant generators satisfy the graded Jacobi identities because the fermionic
generators are subject to the enticemmutetion relations. Eg.

{lBiaF2la F3} — “Fri: Bil: F2} t liFm F3}: Bil = 0:
lfplal’a Fsl + [{F3,F1},F2] + [{FaFB}: F1] = 0,

where B 1 is a bosonic generator and 171,133, Fa are fermionic ones.

c Since the generators Q0, QC, are fermionic, irreducible multiplets of supersymmetry
(supermultéplets) should unify bosons with fermions. Action of the spinor generators
on the bosonic state yields a fermionic state and vice versa.

o Since the translation operator Pm is non-vanishing on any field given on the Minkowski
space, the same should be true for the spinor generators as well. So any field should
belong to a non—trivial supermultiplet.

o It follows from the relations (13",.i = (Pm, C25,] : 0 that [132,620,] : (P2, Qal * 0
The operator P2 is a Casimir of the Poincare group, P2 2 m2. So it is also a Casimir
of the Poincare supergroup. Hence all components of the irreducible supermultiplct
should have the same mass. No mass degeneracy between bosons and fermions is
observed in Nature, so supersymmetry should be broken in one or another way

0 In any representation of supersymmetry, such that the operator Pm is invertible,
there should be equal numbers of bosons and fermions.
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o In any supersymmetric theory the energy Pg should be non-negative. Indeed, from
the basic anticommutator it follows

2 (lQal2 + llg) = 4100 3 0.
a=1,2

0 Rigid supersymmetry, with constant parameters, implies the translation invariance.
Gauge supersymmetry, with the parameters being arbitrary functions of the space
time point, implies the invariance under arbitrary difleomomhisms of the Minkowski
space. Hence the theory of gauged supersymmetry necessarily contains gravity. The
theory of gauged supersymmetry is sapergravity. Its basic gauge fields are gf‘aviton
(spin 2) and gravit‘ino (spin 3/2).

2.1 Extended supersymmetry
Supersymmetry allows one to evade the famous Coleman-Mandala theorem about implos-
sibility of non—trivial unification of the space-time symmetries with the internal ones It
states that any symmetry of such type (in dimensions 2 3), under the standard assump-
tions about the spin—statistics relation, is inevitably reduced to the direct product of the
Poincare group and the internal symmetry group.
The arguments of this theorem do not apply to superalgebras, when one deals with
both commutation and anticomrnutation relations. Haag, Lopushanski, and Sohnius
showed that the most general superextension of the Poincare group algebra is given by
the following relations

{C22, 62a} = 26:: <6”),n ,
{Q31 Q33} = Quiz”: {Qt-3a (233,} = EdfiZij:

m; i] = _.,; (are; — flat) , mam : i (am — fi gar) ,
{if}, m = 2' (631“: — 5m) ..

Where T; ((12:21))r = ——_T,-J , T: = 0) are generators of the group SU(N). The generators
Z” = —Z’”‘, Z,,- = —Z,~,~_ are central charges, they commute with all generators except the
SUUV) ones

[2,2] = [2:2] = lZ~Pl = lZ=Jl = [3a = [3:9] =0-
The relevant supergroup is called N-ertended Poincare sapergroap.

Due to the property that the spinor generators Q;,Q5k carry the internal symmetry
indices, the supermultiplets of extended supersymmetries join fields having not only dif—
ferent statistics and spins, but also belonging to different representations of the internal
symmetry group U (N). In other words, in the framework of extended supersymmetry the
actual unification of the space-time and internal symmetries comes about. The relevant
supergravities involve, as a subsector, gauge theories of internal symmetries, i.e. they
yield non-trivial unifications of Einstein gravity with Yang-Mills theories.
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2.2 Auxiliary fields
An important ingredient of supersymmetric theories is the auxiliary fields. They ensure
the elosedness of the supersymmetry transformations 0}?" mass shell.
Let us come back to the realization of N = l supersymmetry on the fields 99(27), 190(2?)
and calculate Lie bracket of the odd transformations on watt):

((5162 _ 620—llwu = _2l‘((10mE2 _ rQOJHEI) amwa + 2?: [Elrxf2d((}m)dflamwfi '— (1 H 2)] '

The first term in the r.h.s. is the translation one. as f01 9(1) However, there is one extra
term. It is clear that the Lie bracket should have the same form on all members of the
supermultiplet, i.e. reduce to translations. The condition of vanishing of the second term
is

(waezawne=e

But this is just the free equation of motion for drake). Thus N = 1 supersymmetry is
closed only on-sliell, i.e. modulo equations of motion.

How to secure the off-shell closure? The way out is to introduce a new field F(:r) of
non—canonical dimension ore—2 and to extend the free action of (p. a. as

_ 3 . m r 763.: r '(1 n. Tr]; _
£¢+Tl'+F = amipam‘?’ _— Elwnhj laddmw ‘— dmw (0 Until.“ :| + FF-

It is invariant, up to a total derivative. under the modified transformations having the
correct closure for all fields:

35¢) : —c“’rj)0, 61% = —2'i(0m)mr700mcb -— QEOF, 5F : —'i€”(am)ad3mwa. (2.2)

The auxiliary fields satisfy the algebraic equations of motion

Fzu

After substitution of this solution back in the Lagrangian and supersymmet ry transformer--
tions. we reproduce the previous on-shell realization. The auxiliary fields do not propagate
also in the quantum case. possessing deltarfunction propagators.

The only (but very important!) role of the auxiliary fields is just to ensure the correct
off—shell realization of supersymmetry; such that it does not depend on the precise choice
of the invariant Lagrangian, like in the cases of ordinary symmetries.

The simplest non—trivial choice is

— 'l, - ' 7' ‘ '(r m. _('1 _
£WZ : arngbamqb —_ a l¢)0(am)uc}8mwa '— dmul (0' )arill) ] ‘l‘ FF

1. 9 1w
+ [m ((bF — adieu) + g (tb‘F — EQWW) —|— 0.6.] .

This model was the first example of renormalizeble supersymmetric quantum field theory
and it is called the Wess-Zumino model, after names of its disuwerers. The Lagrangian
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fiwz is invariant under the same transformations as the free Lagrangian we have consid-
ered before.

The Wess-Zuinino model Lagrangian was originally found by the “trying and error“
method. The systematic way of constructing invariant off-shell Lagrangians is the sa—
perfield method which we will discuss in the Lectures IV and V.
Using this systematic method, one can equally construct more general Lagrangians of
the fields (¢,¢:Q,F), invariant under the same linear ofl-shell N = 1 supersymmetry
transformations (2.2). After eliminating the auxiliary fields from these Lagrangians by
their equations of motion, we will obtain the Lagrangians in terms of the physical fields
((1), 1,190) only. These physical Lagrangians are invariant under the nonlinear on-shellN = 1
supersymmetry transformations the precise form of which depends on the form of the on-
shell Lagrangian, though it is uniquely specified by the off-shell Lagrangian.

To summarize the fields (may, F ) form the set closed under the off—shell N = 1 super—
symmetry transformations, and it is impossible to select any lesser closed set of fields in it.
Thus these fields constitute the simplest irreducible multiplet of N = 1 supersymmetry.
It is called scalar N = 1 sapermaltiplet.

3 Lecture III: Representations of supersymmetry
The fields on Minkowski space are distributed over the irreducible multiplets of the
Poincaré group according to the eigenvalues of two Casimirs of this group: the square
of Pm (which is 772.2) and the square of the Pauli—Lubanski vector (which oc 3(5 + I), where
s is the spin of the field). For the case of zero mass the diverse Poincare group multi-
plets are characterized by the helicity, the projection of spin on the direction of motion.
What about irreps of supersymrnetry? Once again‘ the contents of the supermultiplets
are different for massive and inasslcss cases.

3.1 Massive case

Choose the rest frame

Pm = (-n2.10:0,0)

In this frame

a) {Q03 Qa} = {Qda Q3} = 0; (b) {Qm Q8} = 2772603.

i.e N = 1 superalgebia becomes the Clifford algebra of two mutually conjugated
fermionic creation and destruction operators Qd and QQ. Define the “CliffOId vacuum”
ls > as the n rep of the Poincaré group with mass m and spin 5:

Qals )2 0.
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An irrep of the full supersymmetry can be then produced by the successive action of Qd
on the vacuum

State Spin # of components
|s) s 28 + 1

ls) 5:}:1/2 4.9+2
(Q)2ls) 3 2s + 1

Here (Q)2 E QdQ—f’. Further acting by Q1, yields zero. Thus the full number of states is
22(23 + 1), one half being fermions and the second one bosons. The dimensionality of the
Clifford vacuum (the number of independent states in it) is just dis) 2 28 + 1.
Since off shell P2 75 0: this Spin contents characterizes any off-shell supermultiplet. Egg
the scalar multiplet corresponds to s = O: In this case .9 + 1 / 2 = 1 / 2 and we are left just
with two complex scalars and one Weyl fermion.
Thus massive N = 1 supermultiplets are entirely specified by the spin 3 of their Clifford
vacua. This Spin is called superspain Y of the given N = 1 supermultiplet. Each multiplet
with P2 7g 0 and superspin Y involves the following set of spins '

, 1 , 1
1,Y+§, l —-2-, Y.

The scalar supermultiplet (Y = 0) contains spins 1/2, (0)2 and describes N = 1 matter.
The supermultiplet with Y = 1 /2 involves states with spins 1. (1 /2)2, 0 and stands for the
gauge supermultiplet. The supermultiplet with Y = 3/2 has the spin content (3/2)? 1.
It is the so—called N = 1 Weyl supermultiplet. It corresponds to conformal N = 1
supergravity.

1‘3

3.2 Massless case
We can choose the frame

Pm = (p, 0, 0,;0), 13u = 0.

The only non—zero anticommutator in this frame is

{00:05}: QPU + Oalaa
The full set of the antcommutation relations is

{QlaQ-i} Z 4P: {(213622}: {622,622} = {Q2131}: 0:
{Q01Q6}2{QQ:Q3}: 0-

Then one can define the Clifford vac1,1um M > with the helicityr A by the conditions

QIIA >2 lA >= l)‘ >= 0.

The only creation operator is Q1. Due to its nilpotency, (Q02 = 0, the procedure of
constructing the irreducible set of states terminates at the lst step:

State Helicity # of components
|/\) A 1

QilA) A — 1/2 1
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Thus in N = 1 supersymmetry the massless supermultiplets are formed by pairs of states
with the adjacent helicities, IA), lA— 1/2). In particular, massless particle with zero helicity
should be accompanied by a particle with the helicity — 1 /2, a particle with A = 1 / 2 should
be paired with a particle having A = O, helicities i1 can be embedded either into the
multiplets (1,1/2), (—1/2, —1), or (—1,—3/2), (3/2, 1), the minimal embeddings for the
helicities i2 are into the multiplets (2, 3/2) and (—3/2, —2), etc. The multiplets with the
opposite helicities are related through OPT conjugation.

3.3 Massless multiplets of N extended supersymmetry
In this case (without central charges) the only non-vanishing anticommutator is

The Clifford vacuum [A > is defined by

Q1|A>= QEW = Q21|A> = 01 (3-4)
and the irreducible tower of states is constructed by acting on the vacuum by N indepen-
dent creation operators Q1113

State Helicity # of components
[A) A 1

tA) A — 1/2 N
Q11Qijl/\> A -1 NOV —1)/2

(or/11> 1. — M2 i
For .N = 2 supersymmetry, irreps are formed by the states lA), |A — 1/2)2, IA — 1), etc.

Recall that the multiplets with opposite 1111 i1-;_ 1.1-11: 1.11111 be obtained via CPT conjugation.
Of special interest are the so—called "111.11.1'- 1'1.'1 11:1 1.12.11” multiplets which from the very
beginning, involve the full Spectrum 1.11“ 111111111'1t1111 11'1.111 1 A to —A. Equating

A—N/22—A =>A=N/4, (:15)
we find that up to N—— 8, there exist the following self-conjugated massless supermulti—
plets

_ - . 2N — 2 matter multiplet. 1/2, (0) ,—1/2;
N = 4 gauge multiplet: 1, (1/2)4, (0)6, (—1/2)4,—
N = 8 supergravity multiplet: 2, (3/2)8, (1)28),2(1/2)‘56 (0)70,

56 8

_11._1r.1_1 7111.21 :firir' .'\.-" 1::- h 7.1111911231111113 1111111111111111-1111-111‘.‘1'111-1LL1'1 111-:.l'L11'l-.' 1113131-"11§1'-1:r: .11- 3. 1111;-
13113-11.11".1.--1' 1111'.- 1':--..ll1':-1.'. iii-ritt-r—apin Tl11-111'i1z15' 1.1.1111. 1111':11=11'—1-1..'111111.-'1t1_1111.'11 11.1. 1111.:- 11.11}

a111.1--1'111.1."1.'i1'.11'1 111-11111. 1111:]: 11311111111 1111.31.21.11: 1.1111 1.1"::r-1l1':'- infinitc set 1111 111111.11 111112111 11114111111111")
51111311 1.‘1111111111.:1111111' 1111.1: 111111.11 1111.1 111111171 1111111511111 14111111; 1111. present. 111.111 their 1111151110111111-111 1.1
11111111111 1.111? 1.1111111.“ 1'11" :1'1_'-.' 1151111111111.

119



4 Lecture IV: Superspace and superfields

4.1 Superspace
When considering one or another symmetry and constructing physical models invariant
with respect to it, it is very important to find out the proper space and/or the funda—
mental multiplet on which this symmetry is realized in the most natural and simplest way.

The Poincare group has a natural realization in the Minkowski space mm, m = 0, 1: 21 3 ,
as the group of linear rotations and shifts of mm preserving the flat invariant inter—
val ds2 = nmndsrmdzzr'”. Analogouslyi sapersymmetry has a natural realization in the
Minkowski saperspace.

The translation generators Pm can be realized as shifts of 17m, 33"“ : mm + Cm. In the case
of JV = l supersymmetry we have additional spinor generators QC“ Qd and anticommuting

flfi’parameters C”, r. . Then it is natural to introduce new spinor coordinates 9“, (9“ having
the same dimension oral/2 as the spinor parameters and to realize the spinorial generators
as shifts of these new coordinates

6a1=6a+€a adi=éd+gd

The extended manifold

Mela = (arm, 90 an) ,
is called N = 1 Minkowski superspace.

Its natural generalization is

MMIW : (mm1 6?, 6C”),

and it is called N extended Minkowski superSpace.

The spinor coordinates are called odd or Grassmann coordinates and have the Grassmann
parity —1, While 33"" are even coordinates having the Grassmann parity +1

[seam] = Wham] = 0 {9?195} = {$1953 : 0-
The spinor coordinates also anticominute with the parameters (0', F“.

Since two supertranslations yield a shift of 37’”, they should be non-trivially realized on
.17”. In the N = 1 case:

mm' = 33m — i(€0mé — 60mg), ((5152 — 6261):?“ = 22'(e]0mE2 — egamel)

(an analogous transformation takes place in the general case of N extended supersynune—
try).



4.2 Superfields
Superfields are functions 011 superspace, such that they have definite transformation prop—
erties under supersymmetry. The general scalar N = 1 superfield is (Mar. 6, 6) with the
following transformation law

@’(:r', 6’, 6') = @(x, 6, 6).

The most important property of superfield is that its series expansion in Grassmann c0-
ordinates terminates at the finite step. The reason is that these coordinates are nilpotent,
because they anticommute. E.g., {60” 6,3} = 0 :> 6161 = 6262 = 0. Then

146,66) = 6(6) + 6" 160(6) + 61 26111:) + 62 M(z:) + 62 N(:c)
+ 60m6 Am(a;)+ 66a pa($)+ 62 6.1 161(6) + 62 62 19(6)

where 62 I: 6860r = 6056‘16’91 6-2 2 65,68 2 6&56368, (.12 : (i2 = 1.

Here one deals with the set of 8 bosonic and 8 fermionic independent complex component
fields. The reality condition

@=<1>

implies the following reality conditions for the component fields

mowers), 156(33):?6 (x), Mobm. Amok/161:),
?\°(:v)=p (22 ) Des) =D(rc)

They leave in <1> just (8 + 8) independent real components.

The transformation law (D’(:11,6,6) : <I>(:r — 63:, 6 -— e, 6 — E) implies

3(1) 3(1) 3(1)
©2—0—_-.___.____ ’ E. ‘1 -.-('16 6 661 E""661 53m 63’" M QaflaQ )(I)

3 3 — 3 3
— 961 ad 1 dr— —_ '_ 0: ad: aQ”—=2690 + ("n ) 66m Q ’661 6 (an ) (9mm

— — — 1 6
{Q03Qd} : 2Pm1 {QaaQB}:{Qd1Qfl}: 0: P171——' 2.03:7” .

The relevant component transformations ale read off from the formula 6(1): 6¢+6061pa+
.+ 696261). The} are

(593 : —CT/} - EX . (51,190 : _ 7-0'( lrlm)ar:1¢—QCQAJ — (OTHE)O'ATTL 1 ' ' ' 1
1T 2 —6D 2 — m 0"? 5 —c0m3m)\-2 p 2

These tran51"1-11'111--11 11.11 .5: uniform“. 111511 1.11 33’” translations Without use of any dynamical
equations. 11:11:1'11111. 1111'511111111111111111121 :11” fields encompassed by @(z 6 6) is reduczble: it
contains 1I1 11-11. 1 111211111116111111r 11111.1 611115111 N—— 1 supermultiplets (superspins Y = 0 and
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Y = 1/2). How to describe irreducible supermultiplets in the superfield language?

An important element of the superspace formalism are spinor covariant derivatives
3 — 8 6m)aa——, Dd = — WW "lad-—6:57” —86‘1 ('9mm3

8D C!a :67?“ +119 (0 _

{D01 Dn—— eat-Imam, {DmDa—— {D .. DH} = o.
The covaliant spinor derivatives anticommute with supercharges, {D Q}—— {D Q}—— 0
so D951) and D- (I) are again superfields, e. g. ,

was = Dacieb = Dot (6 Q0 + aloe) <1> = i. (Geog. + QQ“) Dao.
Now1 it becomes possible to define the “irreducible” superfields. (Analogy: In Minkowski
space the vector field Am is known to carry two Poincare spins 1 and 0. The irreducible
components are distinguished by imposing on Am the supplementary differential condi-
tions

amAm = 0 4—) spin 1, arm/51,, — ELL/film = 0 <—-> spin 0 .)
Analogous conditions can be imposed on the superfield (I) in order to single out the irre-
ducible multiplets with the superspins 0 and 1/2. These conditions are defined with the
help of the covariant spinor derivatives.

The simplest condition of this type is the chiraltty or anti—chiraltty conditions

(a) Dd<I>L(3:, 9,67) = 0, or (b) DQ®R($16,6—) = 0.
Eq. ((1), e.g., implies

®L($1636) = CPLWL: 9) = (EXCEL) + 90115345515) + 9913(511):
2:? 2 35'” + tflamtl,

i.e. we are left with the independent fields gt, 1,1905, F

From the general transformation laws of the component fields it follows that this set is
closed under N = 1 supersymmetry:

6gb : —€1,[), 5100 = —2i(0m€)a amqfi— ZCQF (5F 2 —t€5m mtb.

These are just the transformation laws of the scalar N = 1 supermultiplet.

The geometric interpretation: the coordinate set (mffia) is closed under N = 1 super—
symmetry:

axg‘ = magma, 59a 2 ea. (1.6)
It is called left~ehtmt N = 1 superspace.

In the basis (3373', 90, dd) the chirality condition (a) is reduced to the Grassmami. Cauchy—
Rz’emann conditions:

_ _ 6
q’L(CCL,9,6) = 0 => —-®L = 0 => (PL = 90L(:IIL,6). (4.7)865*
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4.3 Superfield actions
Having superfields, one can construct out of them, as well as their vector and covarian't
spinor derivatives, scalar superfield Lagrangians. Any local product of superfields is again
a superfield:

r: = £(¢1,Da©,Dd©,6m<Ii,. . .) , 5n = 7; (my, + acid) 5.

It is easy to see that the variation of the highest component in the 6 expansion of any
superfield is a total derivative. Then one takes the highest component field in the 6 ex-
pansion of the superfield Lagrangian and integrates it over Minkowski space. It will be
just an action invariant under N = 1 supersymmetry!

A manifestly covariant way to write supersymmmetric actions is to use the Berezin inte-
gral. It is equivalent to differentiation in Grassmann coordinates. In the considered case
of N = 1 superspace it is defined by the rules

[crew 21’ / (125(5)? :1= / (1296526— (W1 =1, (9)4 2 (WW
Hence the Berezin integral yields an efficient and manifestly supersymmetric way of sin-
gling out the coefficients of the highest—order 6 monomials in the superfield Lagrangians.

The simplest invariant action of chiral superfields producing the kinetic terms of the scalar
multiplet is as follows

_ ’1 *1 , . .— _ m _ _ m - 1n—Skm — /d 5rd 9,0(1.L,9)ap(r3,6), IR — (riff) — a: — 290 9.

After performing integration over Grassmann coordinates, one obtains

S m /d4$ (amaama— gwam'mé+ FF).

The total W'ess—Zumino model action is reproduced by adding, to this kinetic term, also
potential superfield term

SWt : [d433Ld26 ($03 + $902) + c.c..

This action is the only renormalizable action of the scalar N = 1 multiplet. In principle,
one can construct more general actions, e.g., the action of Kahler sigma model and the
generalized potential terms,

512,-”:fd4$d46K[go(xL,6),g5(:cH,6—)] , SW = fanfamewca



The rnultiplet with the superspin Y = 1/2 is described by the gauge superfield l*’(:r, 6, 9)
possessing the gauge freedom

5V(:r., a, a) = i[5\(x"' — mama, 6‘) — Aer“ + mama 9)],
where MIL, (9) is an arbitrary chiral superfield parameter.

Using this freedom, one can fix the so called W'ess—Zurnino gauge

stc, (9,61) = 2 QaméAm(x) + 2111226“ flight) — 2it929d thaw?) + 6252 D(:r) .

Thus in the W2 gauge we are left with the irreducible set of fields forming the gauge
(or vector) off-shell supermultiplet: The gauge field Amer), 1421(3) 2 Am + c"),n/\(3:), the
fermionic field of gaugino watt) time?) and the auxiliary field D(:r).

The invariant action is written as an integral over the chiral superspace

1 1
J’VZI —' h .4 {a r ‘- \ 1 .« ’7 __

Sgauge _ E dQL (H Halo) '1‘ UL: 110 __ —3

Everything is easily generalized to the non-abelian case. The corresponding component
off—shell action reads

1 ‘ _ _ 7 1 r
S : [(11% TI [*Eaa — ZLUUmDme) + 3D2

D2DOV, Edi/I’D = 0.

What about superfield approach to higher N supersymmetries? The difficulties arise be-
canse the relevant superspaces contain too many (9 coordinates and it is a very complicated
problem to define the superfields which would correctly describe the relevant. irreps.

For N : 2, the off—shell gauge multiplct contains the vector gauge field fight), the com—
plex scalar physical field 9*(13). the SU ( 2) doublet of \Veyl fermions ”#9:,(1');”(f/'a-rlffl and the
auxiliary real SU (2) triplet Dl‘iklm‘).

There is no simple way to define N : 2 analog of the JV 2 1 gauge prepotential 1/
(unless we apply to N = 2 heflnonic superspace). However, one can define the appro-
priate covariant superfield strength W. In the abelian case, it is defined by the off-shell
constraints

(a)D:_-1VV=0, (b) Dsijw = mostly,
whicln in particular, imply the Bianehi identity for the gauge field strength. The invariant
action is an integral over chiral N = 2 superspacc

5' ~ / (14:5;Jd191’lf'2 + c c..

W'hat about maximally extended N : ’1 super Yang-Mills? It has no superfield formu—
lation with all N = fl supersynnnetries being manifest and off—shell. There is N’ : 1
superfield formulation wil l1 one gauge superlield and three chiral superficlds; JV 7 2 for—
mulation in terms of N — 2 gauge superfield and one massless matter hypcnn’ulltplef The
latter possesses an elf-shell formulation only in the N : 2 harmonic seprsrspece. At last:
exists a formulation with three manifest off—shell supersymmetries - in N = i5 harmonic
superspace. It involves gauge superfields only.
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5 Lecture V: Supersymmetric quantum mechanics

5.1 Supersymmetry in one dimension
Quantum mechanics can be treated as one-dimensional field theory. Correspondingly, the
relevant supersymmetry can be understood as the d = 1 reduction of higher-dimensional
Poincaré supersymmetry. More generally, the N—extended d = 1 “Poincare" supersym—
metry can be defined by the (anti)commutation relations

{Qm’Qn}:26mnH, [Hnlzogm-ZQT”;m:1,.-.N.

The associated systems are models of supersymmetric quantum mechanics (SQM) with
H as the relevant Hamiltonian. The SQM models have a lot of applications in various
physical and mathematical domains.

we will deal with the simplest non-trivial N = 2, d = 1 supersymmetry

1 1
x/i x/5

{can} = 2H. c2? =Q2 = 0: [He] = [He] =0.
It is also instructive to add the commutators with the generator J of the group 0(2) N
U(1) which is the automorphism group of the N = 2 superalgebra:

[J._Q] =0, me] = —c‘2, [H.J1=0.

Q: (Q1HQ2), Q= (Ql-n),

N = 2, d = 1 superspace is defined as:

MW) = (23,6261): 66 = e, 59 = g, 615 = 2166+ 6'9).
One can also define the N: 2 covariant spinor derivatives:

D = 89 —z‘€a, D = —ag+z'6a, {DD} 2 221a.

The simplest superfield is the real one, ©(t, 9, (5),

(Wm 913’) = (be, 9, 67) => 6(1) 2 —6t6£<1> — 669(1) — gag-q)-

On the component fields appearing in the 9 expansion of (I),

@(t, 9, (9) = 1:(t)+ 91;:(15) — 31W) + 95y(t),
N: 2 supersymmetryr is realized as

6:: = €t; — at“), 511'; = €025}: — y), 61,; = -—€(z'.-'r + y)1 6y = 22(q + Eli—:1).

The superfield (1)039, 9) comprises the irreducible N = 2, d = 1 multiplet (1, 2, 1) . Other
N = 2,d. = 1 multiplets exist as well, e.g., (2,2,0) which is described by a chiral
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N = 2,d = 1 superfield.

The simplest invariant superfield action containing interaction reads

sWflMe/afiflfnne+umml

Here W' ((1)) is the superpotential. After integrating over Grassmann coordinates, we
obtain

aNflh=/at“9—1@M~4MQ+yt+¢mraq+mmfiflvmfl.
The: next step is to eliminate the auxiliary field y by its algebraic equation of motion

1
' = —-OIW .y 2

The on—shell action is then

_ . -_- fl — ' 1 r .I T fSUV-2) = f a [I — z (w — w) — liar/i)? + (WWW (cc)

The action is invariant under the transformations

— 1 , 7 _ _ 1
6x = Ed: — 61,9, 611’) = did: + 533W), 6w 2 —e('z.:r — grill”).

5.2 Hamiltonian formalism and quantization

The quantum Hamiltonian obtained in a standard way from the canonical one reads

1 Q we 2 _idnv(éf_5é)
H=Zp'l m 2am ““-"

where we have Weyl—ordered the fermionic term. The superchargcs calculated by the
Noether procedure and then brought into the quantum form through passing to the op—
erators are

The algebra of the basic quantum operators is

w] :7; {M} = %-
Using it, we can calculate the anticommutators of the quantum supercharges and check
that they form N = 2, d = 1 superalgebra

{62,0} = 2H: {62,0} = {0,0} = 0. (5.8)
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By the graded Jacobi identities, one also derives

lQaHl —lQ1Hl = 0

We use the standard realization for f), 35 = i361? , and the Pauli-matrix realization for the
fermionic operators

A1 _ I 1 . (F: a l
=2—\/§(01+202)1 w=2—\/§(01_302)3 web—1019:503-

)
-._

_1;)

Then the Hamiltonian and supercharges are represented by 2 x 2 matrices

_1 2 2 10 1 1 0
H_Z[_8I +(el(01)EWH(0 —1)
Q=—%(8 ”(a—WI), Q=—%(? Shawn).

Thus the wave functions form a doublet and, taking into account the conditions [62, Hl =
[62, Hl = 0, the relevant matrix spectral problem is

H(‘l"+l=/\("f+l-1/1- U—

It is equivalent to the two ordinary problems

1Hit”): = A all, Hi = 7(6); 4: imam i Wu
Using the intertwining property

H_((935 + WI) = (335 + l/VI)H+, H+(c'3I — WI) 2 (BI —- VVI)H_,

now it easy to show that the states

Q(::i ) = ( —z'(c‘3$—0Wzl¢— ), (32(3: ) Z ( —i(637£]WI)i,D+)

are the eigenfunctions of H+ and H_ with the same eigenvalue A as 1:4 and 1L. Thus
we observe the double degeneracy of the spectrum. This double degeneracy is the most
characteristic feature of the N = 2 supersymmetry in d = l (and of any higher N super-
symmetry in d = 1).

In general, the Hilbert space of quantum states of N = 2 SQM is divided into the following
three sectors

(0,) Ground state : Q1110 = Qllio = H‘IJO = 0,
(b)H\D1:E‘D11Q‘Dl7§OaQw1:01
(C)H\D2=E\D2,QQ2%O,Q\D2=O.

Based 011 this consideration, one can conclude that many QM models with the double
degeneracy of the energy spectrum can be identified with some N = 2 SQM model.
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6 Summary
0 Supersynimetry between fermions and bosons is a new unusual concept in the math-

ematical physics. It allowed to construct a lot of new theories with remarkable and
surprising features: supergravities, superstrings, superbranes. N = 4 super Yang-
Mills theory (the first example of the ultraviolet-finite quantum field tl‘1eory). etc.
It also allowed to establish unexpected relations between these theories, e.g., the
AdS/CFT (or “gravity/gauge”) correspondence, AGT correspondence, etc.

o It predicts new particles (superpartners) which still await their experimental dis—
covery.

o The natural approach to supersynnnetric theories is the superfield methods.

For those who wish to get deeper insights into the subjects sketched in these lectures, I
may recommend the. text—books and the review papers in the list of references below.
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Abstract

The motivations of the 1 /N expansion method in quantum field theory are explained
in an introductory part. The method is first illustrated with the 0(N) model of scalar
fields. A second example is considered with the twodimensional Gross—Neveu model of
fermion fields with global U (N) and discrete chiral symmetries. The case of QCD is
briefly sketched.

PACS numbers: 11.10.Gh, 11.10.Hi, 11.15.Pg, 11.30.Hv, 11.30.Qc, 12.38.Aw.
Keywords: Large number of components, Global symmetries, Spontaneous symmetry

breaking, Asymptotic freedom, Dynamical mass generation, Mass transmutation.

1 Introduction and motivations

Methods of resolution of quantum field theory equations are very rare. Usually one uses
perturbation theory with respect to the coupling constant 9, starting from free field theory.
The size of (the dimensionless) 9 gives an estimate of the strength of the interaction. The
presence in the theory of other parameters than the coupling constant may allow the use of
perturbation theory with respect to those parameters. This may enlarge the possibilities
of approximate resolutions of the theory.

A new parameter may emerge if the system under consideration satisfies symmetry
properties with respect to a group of internal transformations. For example, constituents
of the system (particles, nucleons, nuclei, energy excitations, etc.) belonging to different
species, may have the same masses and possess the same dynamical properties with respect
to the interaction. In such a case interchanges between these constituents would not
modify the physical properties of the system. The latter interchanges might also be
considered in infinitesimal or continuous forms as in the case of the rotations in ordinary
space. The system then satisfies an invariance property under continuous symmetry
transformations. In many cases, the invariance might also be only approximate.

--‘-.irieri;;_-' Lize L-'L.'.=:";r.=.:'.-Iiv:;-rie evniziietri' groups. tar-.- play an iiiipnrrant l'riie in Lilly's-tree! grrelp
'ierrlre. Thr— firsr .ie {.lifl'i. rile nirrhnenitrrl group. generated by the .-'\.-" “a" N Dril'irigonai
{merrier-5. ll. has .Tffl’ — 1'33 prararnerrrs 3a grillerarrirs. The sewed i5: FULFV], .1111; Emi—
-'.:.-.:"~.' err-1.11“... genererr'rl l-i_'-.' the .‘J .:-:. I unitary pimple}: :uatriees. with fiEs’E'l'l'fllI‘ii-‘Llli equal
rr- 1. II has I, TV" — j‘IRI'dliitiFT't-a and geiier.-iru:rr.z
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. ..-'. .1. ...I_,. rang. . .. -. .. - - -In pcullliilt‘ and Iluiil'c'lf 511.7. {bi-tn. -.}I'lll_' use the rippi'u'rztiinnte ism-[.111 symmetrv group
I "3. I' 'J ' ‘ "I" .-:' ' :1; H ' '1 r--: 1- n ' 1 fiTT". --~ - I t —' u‘ -SU(2) ._n.l the d.ppin.a..ii..1ii— ll.._‘i~_ll' h}.-.111-.:=.T3} group :4. -. .1“: .I. L :nig these approximations,one can tL—llJlifill relaimiis lJHi'TH'TIi masses LEI-ti [Jill'h'tili'i'tl painnir-it:rs of various particles.prior to solving the :iyngunius -r_ l t-lit- hysterii dialer f't::L‘.~.~'l=?lI'."!‘$_17lUEL.

l‘; the crisis of the grin-Lips {'J'fi' and .‘~ ['[J‘Jl iii-tinii'nau'n'l .-:l.u~..n.'-'-. fr" l;.'-l'_."'i a arr-ll r_i:'_'ii:;--.'-:.l
l'l!l.'4."|l value in -:‘.Fi:"t': pln'sirnl i'n'ljlz-lmu. I = 3.3. . . _ en". ll. i-' lamrrrm r.a'-':'_:1i'iH-a 1:3. u-"r'~.":'~nrir;-’
:1”? 7"‘55' l'iil‘fi‘r‘fi' 3“" E-‘T‘ 3 in"? PFJTE-Hnmcr which rein in 'L'Fll'ltI'I'l .'=.1 will l2; 5':nrii-:-'.;l.='n'. '...,r
halizes oi I. with the limir N —:~ “21;. arr-:1:- rr~ he of Frinn'esr. $.11 firs! italn. :11‘.._E,l:! stein
that taking large values :e -‘k' n‘enlil lFJ-Hl Tr.'- muru- =_'r_1::'_!]iliiiniliri si:‘1.11—'i[.:»iiiir'-'_ Sll'itlt- tlzr- lll'lllJf'i'
of parann-rters li'_F_iIEflf-¢+‘-S ail-ti the group replies-en:arisen: l.'-':=r.".il|lli inning-1715?. i-lnwr-'-.'r.:-a'_ i: has:
lief-:3 noticed that when the limit is taken in an alips'nprn—Lte any. in i»:cn_";':_i:n.:r_i=_n'; with Thri-
4.'|'.li'.i1.lllll-_: {amateur of The E-l'J.E_-'r'_'-i"~'. it may lend to simpler results that; the rest-5 J figihx I
If LL35 lltllilJEIis. then an illit‘l'E'EillLE p'rsrspi-L'tr-xe of 1'es:'_'slutir.;-n 1'5 spew-fl

(line may solve the prehlem in the sjuigilirie'iri situation of the liz'nii _'\" —I- I: and l.ll'."Ii.
W JILILH'UW tl‘n' Int-tin: iiins. consult-1' tiw I.'r..-ii:.ril:uiitir.an.- iii" The terms of ori'lnr L ."‘~' :35 .
pct-2TIii‘liniirni. if the. l'l'llt'- 5‘»— nl' l.llr.'" plifssiiuii pr-iiileni as snfiiniiriitly li'fll'llt'. Then tilt? Z-iti't'fiiitl;-
order c‘fllr'nlation done in the linzzl. .-"~' —'- 1:. would .'-ili'i".='.-'iji' litin'irxlr- Tlli'i main rlrrrrnnnztr
aspects of the solution of the": pi;_~:sn:al pi'nlilr-i'u tnirlr-r consideration. This is the spirit of
the l/N expansion method in qunizrznn lieicl theory We emphasize that generally the
solution thus obtained remains Henna-r1min-Hive utter-ts when expressed in terms of the
coupling constant 9 of the theory and therefore it provides nontrivial insight into the
dynamics of the theory= which otherwise would be unattainable with the use of ordinary
perturbation theory with respect to g.

The interest of the large-N limit was first noticed by Stanley [ll in statistical physics,
who used it in the framework of the Heisenberg model (spin—Spin interactions). He showed
that in that limit the model reduces to the spherical approximation of the Ising model,
which was soluble.

The method was introduced in quantum field theory by Wilson [2], who applied it to
the 0(N) model of scalar and fermion fields.

In 1974, ’t Hooft [3= 4] applied it to Quantum Chromodynamics (QCD), the newly
born theory of the strong interaction= which is a gauge theory with the non-Abelian
gauge group SU (3)C in the internal space of color quantum numbers. (Not to be mixed
up with the global flavor symmetry group SU (3) met previously.) This theory cannot
be solved with the only large-N limit, but many simplifications occur. In two space—time
dimensions, it is almost soluble.

we shall illustrate the method by two explicit examples: 1) The 0(N) model of scalar
fields; 2) The two-dimensional model of Gross—Neveu with global U (N) symmetry of
fermion fields and discrete chiral symmetry.

Reviews and lectures on the l/N expansion method can be found in Refs. [5. 6. T, 8]
(the list is not exhaustive).
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2 The scalar 0(N) model
The 0(N) model is a theory of N real scalar fields e5” ((2 = 1,2,. . . ,N), with a quartic
interaction, invariant under the O(N) group of transformations. This group is similar in
structure to the rotation group, but acts in the internal space of N species of the fields.

The Lagrangian density is

1 a, l /\0 11: = 5 eggs (3%“ — E ugaaaa — finale )2. (1)

(Summation on repeated indices is understood. (9,, = %, etc.) ng and A0 are real param-
eters, representing the bare mass squared and the bare coupling constant; the physical
mass and coupling constant could be defined only after quantum radiative corrections are
taken into account. In four space-time dimensions the coupling constant is dimensionless.
The factor l/N has been explicitly introduced in the interaction term for future conve-
nience. When the limit N —> 00 is taken, the coupling constant A0 will be assumed to
be independent of N. Had we defined a coupling constant /_\0 as being equal to AO/N, we
would be obliged later, to maintain a physical content for the theory, to assume that the
product N/IO remains finite in the above limit, which leads back to our initial choice.

A detailed study of this model can be found in Ref. [9)

2.1 Classical approximation
we search for the ground state of the theory at the classical level. The lagrangian density
is composed of the kinetic energy density minus the potential energy density. The kinetic
energy term gives generally a positive contribution to the total energy of the system. Its
minimum value is zero1 corresponding to constant fields. We stick to that situation. The
potential energy density is then

1 a la A0 a. 'a‘ ~U = g #3915 9‘9 + S—N—(é 0 l2- (2)

This is a quartic function of the as. It is evident that the energy is not bounded from
below if A0 < 0. In this case there is no a stable ground state. We assume henceforth
that A0 > 0.

Two cases have to be distinguished: 1) 113 >- 0; 2) n3 < 0.
1) #3 > 0.
The shape of the function U is presented in Fig. 1.
The minimum of the energy corresponds to the values (:53 = 0, (a = 1,. . . , N). The

$8 in this case can be considered as excitations from the ground state.
Considering the lagrangian density (1), we can interpret it as describing the dynamics

of N particles with degenerate masses= equal to no, interacting by means of the quartic
interaction. We have complete 0(N) symmetry between the particles.

This mode of symmetry realization is called the Wigner mode or the normal mode.
2) pg < 0.
The shape of the function U is presented in Fig. 2.
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Figure 1: The potential energy density for p3 > 0.

—1!—2pgN/Ao 0 +\/r_2HgN/Ao
(150.

Figure 2: The potential energy density for p3 < 0.
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The minimum of the energy is no longer as = 0, but a shifted value at ($3 =

i —2—‘::'£ E< ab > for one of the as. There is a degeneracy between the different.
ads. For definiteness, we choose the ground state at the minimum obtained with g5”.

We redefine the fields around the new ground state:

nbN—<¢J>, ”Nazca“, a:1,...,N—l. (3)

The potential energy density becomes

/\ .Uz—n2+§[%<¢b>X3+ 32Wear“ + W. (4)
The fields 7r“ have no longer mass terms} while the field X has a mass term. We have now
the masses:

ifi 2a a=aN~1, n@=—a% (m7rd.

The O(N) symmetry that we had initially has partially disappeared. There is now
0(N — 1) symmetry in the space of the fields 7r“. It is said that the 0(N) symmetry has
been spontaneously broken. This happened because the ground state of the theory is not
symmetric, while the lagrangian density is

This phenomenon is accompanied with the appearance of (N — 1) Inassless fields
These are called Goldstone bosons. This way of realization of the symmetry is called the
Goldstone mode.

In particle and nuclear physics, the isospin S U (2) symmetry and the quark flavor
SU(3) symmetry are realized with the Wigner mode. The chiral SU(3)H >< SU(3)L sym—
metry is realized with the Goldstone mode.

2.2 Quantum effects
we want now to take into account the quantum effects of the model that we are con—
sidering. For this, it is necessary to compute the quantum corrections that contribute
to the potential energy. In quantum field theory, these are represented by the radiative
corrections.

The definition of the potential energy density U is enlarged. The new potential energy
is called the effective potential] which is composed of the classical part, UCIMS, that we
met before [Eq (2)], and of a part, Umd, coming from the radiative corrections:

Ueff = Uclass + Urad - (6)

Umd is best defined in the path integral formalism. We refer the reader to Ref. [10] and to
the many textbooks that exist on the subject. The key object is the generating functional
of one—particle irreducible diagrams or proper vertices. The effective potential is obtained
from the latter by considering only external constant fields in m—space or external lines
with zero momenta in momentum space. Diagramaticallyr Umd is given by the sum of
all loop diagrams with such external lines. These are also accompanied with appropriate
combinatorial factors due to the existing symmetry properties under exchanges among the.
external lines [11]. Another method of calculation hinges on a direct evaluation of the path
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integral contribution, avoiding explicit summation of diagrams, [12]. However, whatever
the method of evaluation is, the exact calculation of the effective potential is almost
impossible, since it involves an infinity of many complicated contributions. Nevertheless.
the use of the 1/N expansion method considerably simplifies the situation. The leading
terms of this expansion are calculable.

Prior to the evaluation of the effective potential, we shall introduce the propagators,
vertices and loops, that are needed for our calculations.

2.3 Propagators, vertices and loops
The radiative corrections can be calculated starting from the situation where at?) > 0.
Radiative corrections will modify the value of n.3, bringing it into a new value #2. It is
then sufficient to consider at the end the analytic continuation of a? into negative values
to complete the study. We therefore consider the initial Lagrangian density (1):

A0
8N

The inverse of the free propagator of the field g6“ is essentially represented by the
coefficients of the quadratic parts of L. In momentum space, the free propagator is

1 1£ = 5 ap¢aap¢a _ E figfibagba _ (¢Q@G)2- (7)

Dire) = cramp) = / iW < owwwbmmo >. (8)
where the last term represents the vacuum expectation value of the chronological product
of the field operators, and D0 has the expression

170(1)) <=> . (9)— p2 — Nd + is?
we have associated with the prepagator a graphical representation in the form of a full
straight line.

The bare vertex is equal to the coefficient of the four-field interaction term (contact
interaction), with a multiplicative :5. factor (Fig. 3). Its order in N, for large values of N,
is xiv—.1.

Figure 3: The bare vertex. We have explicitly indicated its order in N.

Radiative corrections are represented by loops, made of closed lines (propagators).
Figs. 4 and 5 represent examples of one—loop and two-loop diagrams, respectively. The
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order in N of a loop diagram is calculated by taking into account that of the vertex at
the contact point of the loop with the external lines and that of the possibly existing
summation of indices of the loop. Thus, if the index b of the propagators of a loop is
independent of the index a of external lines, then it is summed over the N values the
index b can take; b in this case is a dummy index; therefore it produces a multiplicative
factor of N. External lines are not counted.

O(N°)

0(N—1)

Figure 4: Examples of one—loop diagrams with their order in N.

2.4 The auxiliary field method
We observe on Fig. 4 that the last two diagrams, which have the same topological
structure, have different behaviors for large N, depending on the values of indices the
loop propagators have. This is an annoying situation, because at higher orders (many
loops) it becomes more and more difficult to continue the analysis, since the number
of possibilities the indices can have rapidly increases with a corresponding increase of
different categories of behavior in N. The ideal situation is the one in which all diagrams
with the same topological structure have the same behavior in N; in such a case, we do
not need to consider the detailed values of indices of each line.

To remedy the present difficulty, we shall resort to a method, called the auxiliary field
method, often used in quantum field theory, which consists of replacing composite fields
by a new, nonpropagating field, without changing the physical content of the theory. The
validity of the latter property is rather easily shown in the path integral formalism; when
an Operator formalism is used, a simple hint is provided with the use of the equations of
motion.

We wish to replace the composite field (15“t appearing in the interaction term by a
single field, which we shall designate by 0. (Since in react“, a is summed from one to N, this
field does not have any index; it is a singlet under the 0(N) group of transformations.) To
this end, we add to the Lagrangian density (7) a new term, thus defining a new Lagrangian
density: N A

2
£I=£+2—A0(0—§%¢a¢a—#g)- (10)

The a field does not have kinetic energy. The terms in the added expression are chosen
such that the quartic term in (p as well as the mass term of <35 disappear from the new
Lagrangian density. The equation of motion (Euler-Lagrange equation) of or yields its
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>oo< >8<
Figure 5: Examples of two—100p diagrams
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definition:
_ _i a a. 2

The latter also shows that the added term in the lagrangian is zero if the equation of
motion of a is used. One may conclude that the new lagrangian is equivalent to the
former one:

1:’ z 1:. (12)
1:’ takes the form:

= _ 11 11 _ a a _£ :8 (13 3 qt“ +—-—2A00 —20q5 (15 A110 (13)

We have now two types of field, the $5 and a, with an interaction term between them
which is no longer quartic.

we reanalyze the properties of the propagators, the vertex and the 100ps with the new
Lagrangian.

The bare propagators are

D0110?) = 7—. <E> I 0(N0), (111)

000(10):“ :’ "-111---—-- =0(N") (15)
The bare vertex 099$ with coefficient —1l/2 , is represented in Fig. 6.

a

---1-1-- =0(N°)

01

Figure 6: The vertex acid and its order in N

Loops and higher—order diagrams are represented in Figs. 7 and 8.
In the analysis of the above diagrams external lines are not counted- We observe 110w

many new properties with respect to the former situation of Sec. 2.3. First, because of the
behavior of the 0 progator as 0(N‘1) every internal 0 line introduces an additional factor
111' 1'1' ' 111 1.11-: '1'"1.r-111:1-1-.11 1.1: 1.1111 1'-'"-11r1-1.1.111-.1111'111.1_1 1.11:1g1'r1111 Therein-1e. 111111g1'11-11'11111'11111111111111: 1111
'11.-11111111111"111111- '11-11' 1111-: 1'11: 11.11 1111-3;”1.111111'2-111-1 1.11.111111111111511111 Ti111111.‘1111ii11_1-:_ 11111111111111.1-11111111111'
|1--E:.:=.1-'11.11. in."-' '111'1ii '11-'.' 111.1-11.111 tin-11' 11:11:: 1.1-11111 1.111;: 11.111111 11-11-1-111111 '.':Lill1iiiFf‘1' 1f1111111111111117.111.'11' 11111111 111.11.1- -:.:-111 1.11:1:111 1. -111_1.' 1? 1111111 1.1111 11.11111111.1 H1 -..- 11111111 1:'-1 1111'1111111‘1111-11111 1.1: 1111'1111:1_1
11:-' 111111-1. 1.1-1111.1 11.--111.- 111111_1-1':1111-.-.-11.'1.~11111-11-1 1111-1 11111111: 1.11 1111-1'1r111 diag1'11111111 F1g. 1111-11-11}

11.111.1-111.1r11-11-11.--.-1-1'.1'.-11111111111“ 1-11111 11.11g1.-111111:. .1:-.5 11111111 111- 11111 1'.-11111111111 d111g1'1111'111i 1111. T111'1- 1111.1 1.11 1.1111 1111-:.1—1111r1'11"11'..- 11'1111'1111'111-11- 11111111- .11111'11 1'1-1111111111111, 1.1111- 11111131111111 1.1 11r1'11115111'1111-11'.41
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Figure 7: Higher—order diagrams and their order in N.

0(N)) 0(N-1)

Figure 8: Higher-order diagrams and their order in N
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the diagrams become separated into two disconnected diagrams. Therefore, they cannot
enter into the definition of the effective potential. The only loop diagrams of gbs to be
considered are represented by the third diagram of Fig. 7 and the last two diagrams and
their generalizations of Fig. 8. The latter, containing internal 0 lines, are nondominant
with respect to the first one.

In conclusion, in the limit of large N, the leading contributions to the effective potential
will come from the third type of diagram of Fig. 7 and of its generalizations, where one
can have any number of external 0 lines (cf. Fig. 9).

2.5 Renormalization

The effective potential can now be calculated. As expressed in Eq. (6), it is composed
of two parts, Udass and Urad, corresponding to the classical part and to the part receiving
contributions of radiative corrections, respectively:

Ueff : Uclass + Urad - (16)

The classical part is fixed by the content of the Lagrangian density (13):

. 1 N 2
02 -|— —0gbacf)a + $0. (17)‘2 A0

I
.1

2A0Uclass I _

The radiative corrections are given by the sum of d) loop diagrams with an increasing
number of external 0 lines (Fig. 9). Here, according to the definition of the effective po-
tential, the external or fields should be considered as constants in as-space, or, equivalently,
carrying zero momenta in momentum space.

' r
l I "u

' I
F I

Figure 9: Diagrams contributing to the radiative corrections in the effective potential at
leading order in N.

The summation of the above diagrams, with appropriate combinatorial factors, can be
done with conventional methods [9, 11]. The loop calculation involves a four—dimensional
integration in Minkowski space of qb propagators (14). Because of the presence of the
is factor in the denominator of the propagator, the latter has a well—defined analyticity
property, which allows one to rotate the leg—integration from the real axis to the imaginary
axis and thus calculating the integrals in Euclidean space. This amounts to replacing in
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the integrals kg with 2134, with 194 real. In the following, we shall write the integrals directlyin Euclidean space, with the definition 18223;, It? > 0.
After summation of the diagrams the effective potential takes the form

Nno N a!“1 kNe ._ as k203———2——)‘0220+ _0¢¢+—_A0 +2 (—2—w4)ln( +0) (18)

We are interested by the stationary point of Ueg (ground state). We therefore calculate
its partial derivatives with respect to 0 and d)“:

81135 N 1 Np}; N f (1% 1—: __ h a. a _ ___— 1

80 A00 + 95 ¢ + AU 2 2w)4 (k2 + a) 7 ( 9)
EU,
8¢f=¢am a=1,...,N. (20)

The integral that appears in Eq. (19) is divergent for values of k —> 00. This is a
general problem of quantum field theory, which reflects the singular behavior of the theory
at high energies or at short distances between the fields in :c-space. To cure this difficulty,
one generally absorbs the divergent parts into the bare coupling constant and the mass,
as well as into redefinitions of the fields, defining finite quantities. If this happens the
theory is classified as being of the renormalizable type However, not all theories satisfy
this requirement. There might arise divergences, with specific structure, which could
not be absorbed by existing quantities. As we shall see, the present theory is of the
renormalizable type.

To study the possible renormalizability of the theory, we isolate in the integrand of
the above integral the dominant parts of the asymptotic behavior:

1 1_—k2 + “2300 g — (—kgy + 00/0623 ) (21)
The first two terms lead to ultraviolet divergences by integration. We cannot, however,
manipulate them as they stand, since the second term would lead to a new artificial
infrared divergence (when k —> 0). we have to incorporate in the second term a mass
factor in the denominator to render it softer in the infrared region.

We add and subtract inNa—ggfi the following quantities:

d4}: 1 d4}: 1 (22)
2 27041? _ 2" (—22)4I?2(k2+M2)

Where M is an arbitrary mass term.
The result is

aUeff __ q 1 a a
80 _ (A0 +21)(27r4k)2(k2+M2))+2¢¢

(LL04- al‘1 I: 1 N 1 L
(2w)4 1??) +32%" 11(M2) (23)

The infinite integrals, together with the bare coupling constant and the bare mass term,
may define finite renormalized quantities. This would be possible if we admit that the bare
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quantities Ag and n3 are themselves infinite quantities. We thus define a finite coupling
constant A and a finite mass term #2 with the equations

1 d4k
— (24)A(M +2 (2w)4k2(k%+nfl)

A(Ar)'_ A0 (2w)4t2' O
The finite quantities depend on the arbitrary mass parameter iM. For each fixed value

of AI, they take a corresponding value.
One can better study this dependence by comparing for instance the value of the

coupling constant AMI) to a reference value A] E AM 1’1) corresponding to a reference mass
parameter M1. One obtains from the comparison of the corresponding two equations:

1 1 1 1 (M?
11 — l.

A—(M) A_1 32w2 M,2
(26)

This equation is called the renormalization group equation and plays an important role
for the analysis and understanding of the properties of the theory.

\Ve can also express A(M’) in terms of A1 and the other parameters:

A1
1——3g:in(j”)A(fl1)—(27)

A1 and generally AUM) are assumed positive for physical reasons (below boundedness of
the energy; see the discussion of the classical potential energy density after Eq. (2))
Therefore, we consider domains of solution where this condition is satisfied.

From the last equation we deduce that when EM increases starting from MI, AMI)
increases. When It! reaches the value M’cr = M, exp(167r2/A1), A(M) diverges and for
larger values of A1, A becomes negative. This is a sign of the instability of the theory for
large values of A.

The RGE can also be formulated in the form of a differential equation. Defining

1W)
311'

one finds from the finite form of AMI) [Eq (27)]

M = some). (28)

X2

3A =
M) 167r2>01 (29)

which shows that A( Mj is an increasing function of 3%.
What is the interest of the KGB? In perturbation theory, when calculating radiative

corrections, one usually finds powers of the quantity A2 111(p2/A»12), where p is a repre—
sentative of the momenta of the external particles. Even if A is chosen small, at high
energies, i.e., at large values of p, the logarithm may become large enough to invalidate
pcrturbative calculations. However, since the logarithm depends on Al for dimensional
reasons, one can choose the latter of the order of p to maintain the logarithm small. This
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could be useful, if on the other hand A remains bounded or small at these values of M.
The RGE precisely gives us the answer to that question, indicating the way A behaves atlarge values of M.

Coming back to our theory, we see from our previous results that this is not the case
here: A, on the contrary, increases with It! and diverges at Afar. The theory is ill-defined
at high energies. In m—space, high energies correspond to short distances. The interaction
becomes stronger when the distance between two sources or two particles decreases. A
similar behavior is also found in Quantum Electrodynamics (QED). These theories are
better defined at low energies or large distances-

Theories for which the coupling constant decreases at high energies or at short dis—
tances are called asymptotically free.

Summarizing the results of this section, we recall that. we could get rid of the divergent
parts of the integrals by absorbing them in the bare coupling constant and the bare mass
term, redefining at the end a finite coupling constant and a finite mass term. The theory
we are considern is therefore renormalizable. The price that is paid is the introduction of
an arbitrary mass parameter that essentially fixes the mass scale of the physical quantities
of the theory.

2.6 The ground state
Using Eqs. (24) and (25), one can express the effective potential and its derivatives [Eqs.
(18), (19) and (20)] in terms of the finite coupling constant and mass term. To simplify
the notation, we denote AMI) = A and pQUW) : p22.

The effective potential is

1 N02 A Niiga N02 0: _ (1 a _ __1 _ . 30)U05 12¢ ‘21) 0 2A (1 + 64w?) + A + 64%? MAP) ( ’
The equations defining the minimum of the effective potential are

BUH N00 1 AU}? 2’ (70e = — — a a — 1 — = 0. 3130 A + 2¢0¢0 + A + 327T200 11(t ) ’ ( )
8Uc a i ,

From Eqs. (32), one deduces two possibilities: 1) (b3 : 0; 2) 00 = 0.
1) (I33 = 0 (a = 1, . . . , N), 00 79 0. From Eq. (31) one Obtains

A 0'“ _ 2

00(1 _ 327r21n(TtI—2)) _ ’L ' (33)
The presence of the logarithm imposes 00 > 0. For small values of A, one has #2 > 0.

By continuity to larger values, one should search for positive solutions of 00. Let 00 be
the solution of the equation for a certain domain of A and #2. One should redefine the
field 0 from the value of 00:

0(33) 2 0’(3:) + 00. (34)
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The corresponding shift of 0 in the Lagrangian gives back a common mass to the fields
qb“. we are in a situation where the 0(N) symmetry is realized in the Wigner mode.

2) 00 = 0. From Eq. (31) one obtains

1 N 2_¢3¢3 + __‘” = 0, => #2 < 0. (35)2 A

.a .a 2Np.2 ,
Qofibo : _ /\ - (.36)

There is a degeneracy of solutions for the 9633. One can choose for example:

I 'I2N2(253:0, a:1....,N~—1, a3=.,-- A” E<¢>. (3.7)

One then develops @N around < (35 >2

eNtE) = x(z)+ < <25 > . (as)
The symmetry is realized in the Goldstone mode, with the presence of (N —— l) Inassless

fields (25“ and one massive field x.
We summarize the results obtained so far. The 0(N) model defines a renormalizable

theory. The radiative corrections introduce limitations into the validity domain of the
model. The coupling constant increases at high energies and diverges at some critical
mass scale. The ground state equations also introduce new constraints on the parameters
of the model. The two modes of realization of the symmetry, found at the classical
level, remain valid within the restricted domain of the parameters. The above results
are obtained at the leading-order of the 1/N expansion, which allows us to simplify in a
consistent way the equations of the theory, to solve them and to have an insight on the
dynamics, going beyond ordinary perturbation theory. Unfortunately, the 0(N) model
is not a stable theory as a whole, and persuing the investigations at nonleading orders of
the expansion in l /N reveals new restrictions and instabilities.

3 The Gross-Neveu model

3. 1 General properties
We consider now an analog of the 0(N) model with the boson fields replaced by fermion
fields of N different species with the same mass. Since Dirac fermion fields are not gener—
ally hermitian, the symmetry group of transformations that leaves the Lagrangian density
invariant is U ( N) Theories with four—fermion interactions are not renormalizable in four
space-time dimensions. This is related to the fact the fermion fields have mass dimension
3/2, instead of 1 for the boson fields. The interaction term has thus dimension 6, greater
than 4, the dimension of the Lagrangian density (dimensions of multiplicative coefficients
mg 3,1.1 .ji.1'=_,~_~'ja:1'i_-1-e_-:i ;;e;-rr_-'|. Such terms do not lead to r-‘Plir2-I'I!:il.li;=:a.ti4;1:i. i'li5:.1_ii'ica,l]y, a
:zi-icel rd Tliih ism-i an: :‘r'rnsidered by Nambu and Jona~La:-.iiizr:- ,iiig EU inipicnir-ni dynam—
:< a! - hire] s;rn-rr.=ei.rj. i'.-ru'_'ai:~:ing. This model, because of its fiililgidiffift' and of irs ability to
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describe nontrivial dynamical phenomena. is used until now as a guiding tool by many
authors; on the other hand, because of its nonrenormalizability. it cannot represent a.
consistent theory, unless it is embedded in a wider theory from which it would emerge as
an approximation.

The renormalization difficulty can, however, be circumvented by considering the model
in two Space—time dimensions. Here, the fermion fields have dimension 1/2 and the in—
teraction term has dimension 2, equal to the dimension of the Lagrangian density. This
ensures the renormalizability of the theory. 011 the other hand, many of the nontrivial
dynamical properties of the Nambu Jena-Lasinio model remain valid in two dimensions
and thus allow its study in a consistent way in a simpler framework. This model was
considered by Gross and Neveu [1/1] and is called after them.

In addition to the global U (N ) symn‘ietry, the system satisfies also a discrete chiral
syiinmetry= which prevents the fermions from having a mass. In more general versions of
the model, a continuous chiral symmetry is imposed rather than a discrete one. but the
latter is already sufficient to reproduce the nontrivial effects of the dynamics. W'e stick
here to the discrete chiral symmetry.

The Lagrangian density of the system is

I: : Edi-7’10” if)” + 29;? (Eflvba)2z 90 > 0 (39)

l in two
space—time dimensions, the Dirac fields have two components and the Dirac matrices '3:
reduce to the Pauli 2 x 2 matrices (r:

1 . . . . , —:(I. A.Summation on repeated indices is understood; a runs from 1 to 1V. in : 14¢a

a 1 - __ mo ,1 _ -,’7 :02, ”r =wy. ”is — r ”i —0:- ('10)
The fermion fields are twacomponent spinors= with indices (2 or {3 (0:3 = 1, 2). Spinor
indices will often be omitted from our notations; in some cases, for instance in the La~
grangian density or in mass terms. there is an implicit summation on them together with
those of the 7 matrices.

Discrete chiral transformations are defined in the following way:

Li’a —+ 751530: E” = @070 #9 —F‘m—.. (41)

A mass term is not invariant under these transformations:

mi? 2.5:“ —> —mt701;’;“. (12)

Hence, the fermions should be massless ( no bare mass term in the Lagrangian density) if
discrete chiral invariance is imposed on the theor y-

The fermion field has mass dimension 1/2. As a consequence, the. bare coupling
constant go is dimensionless.

3.2 Asymptotic freedom
The anlalysis of the theory is done in much the same way as for the ()(N) model. “"0 first
introduce the auxiliary field a and then retain the leading terms in the 1 /N expansion.
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The auxiliary field is introduced with the addition of a new term to the Lagrangian
density:

N 90 —a . 2
I — _ _ J A“[3—1: 290(0+Nwe). (43)

The field 0 is defined through its equation of motion:

0 + :qfio 51,; : 0. (44)

C takes the form N

13’ = Ea???“ p119“ - 4—02 — a We“ (45)
290

The bare fermion propagator is defined as

83;,(p) : aabsoflmp) = / map-1: < 0|T(t:~3(1~)ififi;(0)))0 >, (46)

where oz and )3 are the fermion field spinor indices and So is given by the expression

37-? o= =ON . 47sap) pug {=> ,( J < >
The bare a propagator is

000(1)) = if? <=> —————————— = 0(N-1) (48)
The bare vertex ail—raw”, with coefficient —i' /2, has a graphical representation similar

to that of Fig. 6.
The orders in N, when N is large, of the propagators. the vertex and the loops are the

same as those found in the O(N) model, the tbs replacing new the qfis. The leading part
of the effective potential will come from single fermion loops associated with constant
external sigma fields.

In the calculation of the effective potential one considers constant classical external
fields. Such fields may be interpreted as the vacuum expectation value of the quantized
field operator: 0,5,,l :< Olqb(:r)|0 >~. Because of the translation invariance of the vacuum
state, the vacuum expectation value of the field operator is 3: independent and hence '[bclmss
is constant. This property can be applied to scalar fields. When the field is a fermion,
it transforms under Lorentz transformations as a spinor, while the vaccum state remains
invariant. This immediately implies that the vacuum expectation value of a fermion field
is zero. Therefore, for the calculation of the effective potential, one has to consider onlyr
external scalar fields (in our case, the 0 field). Fermions contribute only into internal lines
or loops.

Another property of fermion fields appears also in loop calculations. Loops of fermion
fields involve at the end the trace operation on the spinor indices. For massless fermions,
the propagator is proportional to the 7p matrix. The loop value of a “single fermion
(without any external line) is proportional to the trace of the 7 matrix, which is zero. This
property generalizes easily to loops associated with an odd number of external constant
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scalar fields. Therefore, the quantum part of the effective potential will involve only
fermion loops with an even number of external lines.

The effective potential is given as usual by the sum of two contributions [Eq. (16)]:

Uei'f = Uclass + Urad a (49)

where Uclass 2 £602. Uefi‘ is calculated by the infinite sum of the diagrams of Fig. 10.

Figure 10: Diagrams, at leading order in the 1 /N expansion, composing Ueff. The first
diagram represents Uclass-

One obtains
02 d2}: 02

= r —— — — u ' 0
Ueff M290 few 111(1 + F2 )) (5 )

aUef-‘f l (12%: 1
80 or \ (290 / (2a)2 (k2 + 02)) ( )

(The integration momenta are euclidean; see comment before Eq. ( 18).) Concentrating
on Eq. (51), we have to isolate, as for the scalar case, the divergent part of the integral.
We introduce a mass parameter a in the subtracted term to avoid infrared divergence:

BUG _ l (122‘? 1 017V (7fl = 01V [— — 2/ 2 2 q l 111(—00 . (2a) (is + M)
We deduce from the latter expression the renormalization of the coupling constant. into a
finite value:

2

)- (52)271' #2

.2 A 1_1=l_2/dk2 2 ,2, g>0- (.53)g(#) go (2%) (k + e )
9 depends on the mass parameter it. Its relation to another choice, [14, with 901,1) E gl,

is:
1 1 1 1.2A = — + flaw—2), (54)9(a) 91 2W #1

or,
9(a) = 9—1..

l + 3% in“?! :

9(a) decreases when it increases. We also have:

39 92— = —— = < 0. 55Hay, 7r 5(9) ( )



The theory is therefore asymptotically free. This means that at high energies or at short
distances, the interaction becomes weaker and weaker. In these regions perturbation
theory can be used with respect to the coupling constant 9(a). On the opposite side, at
lOW energies or at large distances, the interaction becomes strong. There is even a critical
value of a, amt 2 #1 exp (—7r/g‘1)= for which 9(a) diverges, indicating the occurrence of
instabilities in the theory.

3.3 The ground state
The occurrence of instabilities may be rather a sign that the ground state that we are
considering and around which calculations are done with free field propagators, is not the
correct one. We have to determine from the effective potential the true ground state of
the theory-

With respect to the renormalized coupling constant 9(a)1 the effective potential takes
the form

N02 2W 02 .
Ueg = — —1+ln —) . (57'4w l you) (#2 l J

The minimum of the effective potential is obtained from the equation

(9c N0 27F a?
= ———— l — fl 0 1'50- 2a l 9(a) n(u2)l ’ (08)

which possesses two types of solution: 1) o = 0; 2) 0 2. ine‘”/9(”).
The absolute minimum of U85 can be searched for with a study of the shape of the

function Ueg. The latter is represented graphically in Fig. 11.
One notes that the solution a = 0 is a local maximum, while the solutions a :

finite—”MW represent degenerate absolute minima. Because of the symmetry of U85 under
the change of sign of 0, any of these can be equivalently chosen. We shall choose for
definiteness the solution with a plus sign and shall designate it by 00:

(-70 : Mtg—””7900. £59)

In order to study the physical properties of the system around the new ground state. we
must shift the field a in the effective potential and in the Lagrangian density by 00:

a = 0' + 00. 0:60)

In terms of the new field 0’, the effective potential becomes

NUS OJ 2 0')
2— 1 —— _ ___2 "’4W ( +00) [ 1+ln(1+00) ] L61)Ueff

We find that 9(a) and n have completely disappeared from the new expression of Uefif in
favor of the single parameter 00, which has, by the definition of 0 [Eq. (44)], a dimension
of mass and thus fixes the mass scale of the theory. No free adjustable parameter has
remained.
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Figure 11: The shape of the function Uefi‘ with respect to a. We have defined 00 =
lie—flaw).

'The lagrangian density becomes:

13’ = 1;; Mafia“ — EM + 00)2 — 00¢ 11;“ — 0’11; 1;)“. (62)
0

We note the appearance of a mass term of fermions, with value

Mp = 00 = “8—W/g(#)_ (63)

The Lagrangian density still contains the bare coupling constant go. This is necessary,
since one still has to calculate and renormalize the 0’ propagator. The latter receives
contributions from the fermion loops which are divergent and whose divergence should be
combined with go to reproduce a finite quantity.

'The theory was invariant at the beginning under the discrete chiral transformations,
imposing masslessness of the fermions, but now, after renormalization and the shift to
the ground state of the energy, the fermions have acquired a mass. This phenomenon is
called dynamical mass generation and is due to the spontaneous breaking of the discrete
chiral symmetry.

'On the other hand, Mp is a physical quantity and should not depend on the particular
choices of the arbitrary mass parameter p. From Eq. (63) one notes that Mp has two
types of dependence on ii: an explicit one and an implicit one through the coupling
constant 9(a) [Eq. (56)]. One verifies that Mp is actually independent of p:

(11%;: _ 8MP
dp. _ 6y.

1 6MP _
+ Eagle—9' — 0- (64)
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Mp is said to be renormalization group invariant.
Once Mp is fixed, the two other parameters, 9 and [.L should disappear from the finite

quantities of the theory. Any choice of p is compensated by a correSponding choice of g,
to produce Mp. This property was explicitly verified on the expression of Ueg [Eq (61)].

At the beginning, the theory had a dimensionless parameter 9 and massless fermions.
Now it has instead a dimensionful parameter, 1%F, the mass of the fermions, which is
fixed by the physical conditions and sets the mass scale of the theory. There is no longer
a free parameter in the theory. This phenomenon is called mass transmutation.

In summary, the Gross-Neveu model displays many interesting features of quantum
field theory and illustrates, in two dimensions, several phenomena fl asymptotic free—
dom, dynamical mass generation, mass transmutation ~ expected also to occur in four—
dimensional theories.

4 QCD
Quantum Chromodynamics (QCD), the theory of the strong interaction, is a gauge theory
with the non—Abelian local symmetry group of color SU (N )C with N = 3. 'We consider
henceforth the general case where the paramater N is arbitrary. As “matter” fields,
the theory contains quark and antiquark fields, belonging to the defining fundamental
representation of the group and to its conjugate, respectively; their number is N. Since
this is a gauge the01y, there are also gauge fields. the gluons, belonging to the adjnint
representation of the group; their number 18 (N2 — 1).

There are six'"gene1ations” of QCD, distinguished from each other by specific proper-
ties of the quarks (charge and mass), called also “flavors”. Schematically, there are three
“light” quarks, u, d, s and three “heavy” quarks, c, b, t. The free. masses of the quarks u
and d are of the order of a few MeV, while the mass of the quark s is of the order of 100
MeV. The masses of the heavy quarks c, b, t are approximately 1.3 GeV, "1.2 GeV and
173 GeV, respectively [15]. The gluon, which is the gauge particle, is massless.

The proton, the stable matter particle, is a bound state. made mainly of the three
quarks u, a, (1. Its mass is of the order of 1 GeV . This shows that the mass of the proton
is not made of the masses of its quark components, which are nearly massless. Rather,
one should expect that it is produced by a dynamical mass generation mechanism, similar
to what happened in the Gross—Neveu model. A similar conclusion also holds for the other
low-lying hadrons (neutron, p meson, etc). On the other hand, the coupling constant of
the QCD Lagrangian is dimensionless. This means that the mass generation phenomenon
would be realized by the mechanism of mass transmutation, which also was observed in
the Gross—Neveu model.

Since the light quark masses do not seem to play a fundamental role, one can consider
the QCD Lagrangian in the ideal situation where the the three light quarks are massless.
In this case, the QCD theory also satisfies a global flavor space invariance under the
group of continuous chiral transformations SU (3) R X SU(3) L (R for right, L for left). It
is expected that this symmetry is realized with the Goldstone mode (110 nearly degenerate
parity doublets are observed in nature); the corresponding Goldstone bosons are the lowest
lying 7r, K and n mesons. In the limit of vanishing quark masses, the masses of the latter
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particles would also vanish. For small values of the quark masses, the Goldstone bosons
also acquire a small mass. This explains why these mesons have masses squared much
smaller than the other hadron masses squared.

QC'D i..1t-‘.til'}' has been widely hirostigtitt'ti in ordinary tins-rtiit'l'rat ion ilit"i"I'}' Pliltl has
linen shown to be imjrmptotioalljr {Too ilti. l7]: r. relatitn'i sit'ttihir to Err. [333 has lit-er;
ohtaiaorl. This implies that at. high energies or at short distances. the 1'...)t iat.r_'rat'ti=.':it
heroines ire-alt anti orrlinarr perturbation tittorr est] ht: applied there. This ororierrj-s has
been experimentally verified by; roan;- iiigh—oizergfr experiments. The other inipiieation ot'
asymptotic freedom is that at low energiea or at large tlistant'es the interaction heroines
strong enough to iorhirl pertiirhative treatments. From ssfrriirstizitit- ireerimrt one also
tletlnees the ':-;istem:'e of a renoriiisliraiion grotto inrartttnt miss. ralleci ilr.._rt'.'l."—- shit-l.
reaiites mass transmutation in the theta}: Etta. test. Jot-ii. I'll-Lilli. (Touristic to the
Gross-Nesta; iiiotlel. lion-ester. the resolution of the nonpartnthatit'e tioinaiit of LQCll—l has
not been aeliierorl tip to nor-r With miitlyi'it‘ <.-t-tlt:tilntions. (Joe. of the rosin reasons of this.

—l 1hill HT is proliahlr related to tilt fat-t that quarks anti gin-tins are t'oniiiirni. rite-st- partities
hart. not inc-er.- ohserred as tree t-srniprotir: states izke the. other known particles. Their
presence or existence have been detected mainly in an inrliroet stir. Quarks stirl gluons
are bound by the QCD force to form bound states called iiath'oiis Iproton. neritroz. '- azi-l
p mesons, etc.) It is at this level that QCD differs from the ['tl'E‘Tlt'iilF. motleis TlL't'. ire-1r-
considered or mentioned (Gross-Neveu, Nambu—Jona—Lasinio). Numerical resolution of
the strong coupling regime of QCD is successfully realized with Lattice calculations.

The application of the lift" expansion method to ELECT} Leads to some siittpiiiiuati-tits
EL'ELl well reriiietl qtialitatire oretiit‘tit‘tns. hut fails to solre the theori' as a wit-ole. The
reason of this last aagatire result is this to the large mnnhor oi gluon fieitis im I'll as
t"tt:‘t'.=1'_iFLi't-‘Ll to that. of the quarks iflfi. "ul’liihi quark loop contrihtitions become neglhgihh-
and do not enter in leading expressions in the large—fr" limit, gluon loot-i vii-Ligrgimg 4131.1
more precisely the class of “planar diagrarns”1 become dominant at large N and an infinite
number of them (one-particle irreducible) survive [3, 5, 6, 7, 8]. Their summation in
compact form is not an easy task. Examples of planar and non—planar diagrams are
presented in Figs. 12 and 13, reSpectively.

Figure 12: Examples of planar diagrams. Curly lines represent gluons and oriented full
lines quarks or antiquarks. When a planar diagram is drawn on a plane, a gluon line does
not intersect any other gluon line, except at vertices. The latter are represented on the
figures by dots.
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Figure 13: Examples of non-planer or crossed diagrams. The intersection points of the
gluon lines are not vertices.

One therefore is satisfied at the present time with the qualitative predictions and
relative simplifications the 1 /N expansion method provides. The method, when applied
to two-dimensional QCD, has been, however, successful enough to solve the main aspects
of the theory in an explicit way [4, 18].

5 Conclusion

The 1/N expansion method allows us to solve, at leading order of the expansion, theo—
ries and models nonperturbatively, probing directly dynamical phenomena, which would
not be reached in ordinary perturbation theory based on expansions with respect to the
coupling constant.

The method is also applicable to QCD, but because of the presence of the gluon fields,
which belong to the adjoint representation of the gauge symmetry group, its effects are
less spectacular. Nevertheless, many simplifications occur and several qualitative features
can be drawn about the properties of the theory.
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