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negative root generators [15]. More explicitly, [12], Vg = Pgvo (or v5 5 =PrV,v
for GVMs). Then there exists [12] an intertwining differential operator

D Cxay — Cyia-mp) (2.4)

given explicitly by: .
Dg = Pz(G) (2.5)

where G- denotes the right action on the functions F, cf. (2.1).

3 The non-compact Lie algebra su(4,4)

Let G = su(4,4). This algebra has discrete series representations and highest/lowest
weight representations since the maximal compact subalgebra is K = u(1)@su(4)@su(4).

We choose a mazimal parabolic P = MAN such that A = s0(1,1), while
the factor M has the same finite-dimensional (nonunitary) representations as the
finite-dimensional (unitary) representations of the semi-simple subalgebra of K, i.e.,
M = sl(4,C)R, cf. [1]. Thus, these induced representations are representations of fi-
nite K-type [16]. Relatedly, the number of ERs in the corresponding multiplets is equal
to [W(GE, HE)|/[W(KE,HE)| = 70, cf. [6], where # is a Cartan subalgebra of both
G and K. Note also that K€ 2 u(1)C @ sl(4,C) @ sl(4,C) = ME @ AC. Finally, note
that dimp N = 16.

We label the signature of the ERs of G as follows:

x = {ni,n2,n3,n5,m6,n7;¢c}, n;€Zy, c=d—4 (3.6)

where the last entry of x labels the characters of A, and the first 6 entries are labels
of the finite-dimensional nonunitary irreps of M when all n; > 0 or limits of the latter
when some n; = 0.
Below we shall use the following conjugation on the finite-dimensional entries of the
signature:
(n1,n2,M3, 15,16, 17)" = (15, N6, N7, M1, M2, M3) (3.7)

The ERs in the multiplet are related also by intertwining integral operators introduced
in [17]. These operators are defined for any ER, the general action being:

G;(s : CX — CX/ s (38)
x = {ni,na,na,ns,me,m75 ¢}, X' = {(n1,n,m4,m5)"; —c}.
The above action on the signatures is also called restricted Weyl reflection, since it rep-
resents the nontrivial element of the 2-element restricted Weyl group which arises canon-
ically with every maximal parabolic subalgebra.
For the classification of the multiplets we shall need one more conjugation for the
entries of the M representations:

(n1, 2,73, 15,16, n7)* = (n7,7m6,75,n3,n2,7,) (3.9)
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Xzis = { (mu2, m3, myz, may, ms, ms)—‘ 2( 1 —mg)}

Xsg = { (ma,ma, mar, myg, ms, me)" 5 F3(m 1)}

X?i) = (ml Moy, M5, M3, Myg. m',') iimlﬁ.ﬁ’?}

X10 = (mlﬁ T34, s, T2g, TMas, m”) :':‘l'm“s?}
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Xlzg = { (ma, maq, ms, My, g, mz)7; 13 (mm my) }

X}i = (m12)m34'm55vm23,m4;,,mﬁ7)i, i2m1v }

ngi = { (m1, may, ms7, mg3, masyma) ; £1(mis —ms) }

Xag = (Mg, My, ms, Mg, Mg, ma) T s £imyer }

Xor = {(mi3,my,mse. Mo, mas, mez)™ :’:*mlv}

ngi = (mu,mamms mzs,m4.m:7) ﬁ: mn}

X% = {(my, mes, me, ma, m,mm) G ml?‘r}

Xao = {(mas.myms.mi2, mys,mz)*; +3 2 (mer—my) }

X5 = {(ma,mas, mgs, mis, M5, mer)™ ; -n-i(mT —-my)}

Xz = {(mu2, maq, msr, ma3, ms, mg)™ ---a(mx my) }

Xf)jé = {(ml,mgs,m67,m3,m4,m56)i; +1 (mw —mz)}

Xio = {(ms, My, ms, My, Mas, M) 5 2(m57 —miz) }

Xa = {(mzs-m4,mss,77112,"135,17167)i ; :bz(m7 —m1)}

Xz = {(ma, Ma34, Ms7, M3, Mas, Me) ™ ; :F2m1 7}

Xy = {(mlg,m4,m57,m2,m35,m6)*; £5(m —m7) } (4.15)

The multiplets are given explicitly in Fig. 1 (first in [5]). The pairs A* are symmetric
w.I.t. to the bullet in the middle of the figure - this represents the Weyl symmetry realized
by the Knapp-Stein operators (3.8): Gks : Cyz ¢— Cy=.

Matters are arranged so that in every multiplet only the ER with signature x, con-
tains a finite-dimensional nonunitary subrepresentation in a finite-dimensional subspace
E. 'The latter corresponds to the finite-dimensional irrep of su(3,3) with signature
{m1,...,mz}. The subspace € is annihilated by the operator G, and is the image of
the operator G~ . The subspace £ is annihilated also by the intertwining differential
operator acting from x; to x; . When all m; =1 then dim £ =1, and in that case
£ is also the trivial one-dimensional UIR of the whole algebra §. Furthermore in that
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case the conformal weight is zero: d=3+c=3— %(ml +my+2mg+my +ms)),, ., = 0.

Analogously, in every multiplet only the ER with signature xg contains holomorphic
discrete series representation. This is guaranteed by the criterion [11] that for such an
ER all Harish-Chandra parameters for non-compact roots must be negative, i.e., in our
situation, m, < 0. [That this holds for our x* can be easily checked using the
signatures (77).]

Note that the ER x§ contains also the conjugate anti-holomorphic discrete se-
ries. The direct sum of the holomorphic and the antiholomorphic representations are
realized in an invariant subspace D of the ER x7. That subspace is annihilated by
the operator G~ , and is the image of the operator G*. Note that the correspond-
ing lowest weight GVM is infinitesimally equivalent only to the holomorphic discrete
series, while the conjugate highest weight GVM is infinitesimally equivalent to the anti-
holomorphic discrete series. The conformal weight of the ER x{& has the restriction
d=3+c=3+3(mi +mg+2mz +my+ms) > 6.

In Fig. 1 and below we use the notation: A* = A(x*). Each intertwining differential
operator Is represented by an arrow accompanied by a symbol 7; encoding the root
;i and the number my,, which is involved in the BGG criterion. This notation is used to
save space, but it can be used due to the fact that only intertwining differential operators
which are non-composite are displayed, and that the data 3, mg, which is involved in the
embedding V* <— VA~™88 turns out to involve only the m; corresponding to simple
roots, i.e., for each §,mg there exists i = i(8,mg, A) € {1,...,7}, such that mz = m,.
Hence the data oy, Ma;, 1s represented by ;. on the arrows.

4.2 Main reduced multiplets

There are seven types of main reduced multiplets, R, a = 1,..., 7, which may be obtained
from the main multiplet by setting formally m, = 0. Multiplets of type R:, R%, R3,
are conjugate to the multiplets of type R, R}, R?, resp., as follows. First we make the
conjugation on the roots and exchange all indices: 1 +— 7, 2 +— 6, 3 «— 5. With
this operation we obtain the diagrams of the conjugated cases from one another. For
the entries of the M representation we have further to employ the conjugation (3.9).
Then we obtain the signatures of the conjugated cases from one another. Thus, we give
explicitly only first four types.

The reduced multiplets of type Rj contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

Xg = {(ml,mz,mg,m5,m6,m7)i; :I:ém&}

Xio = {(m1,ma3,0,mz5,me,ms)*; £imiass }

Xo1 = {(m1,ma,ms5,0,mse, mz)*; E3Muze7 }

Xz = {(mi2,m3,0,mo35,mg, m7)*; +imy s}

Xi1 = {(m1, Moz, ms, M3, ms, m7)* ; +3miaer }
Xz = {(m1,mg, mgse,0,ms, mer)*; +3imyz7 }

X(;EO = { (mg, msa, 0,m13|5,m6,m7)i 3 i%(ms'] - ml) }
X5 = { (12, m3, ms, ma3, msg, m7)* 5 £1m, 67}

X = { (m1, maz, mse, m3, ms, mer) ™ ; +3mia7 }

11






















































































































































































































































































































































































































































