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PREFACE

This course of lectures was presented during the Third International School 011 Sym-
metry in Integrable Systems and Nuclear Physics (SISNP-2013), organized by
the International Center for Advanced Studies at Yerevan State University and the Joint
Institute for Nuclear Research (Dubna, Russia). It was held in Tsakhkadzor from 3 to
13 July, 2013. The rst School of this series was organized in Dubna in 1999 and the
previous one was held in Tsakhkadzor in 2011.

The program of the School including ve/six 60 minutes duration lectures was sched—
uled for eight working days. More than 40 students and young researchers participated
in the School. Twenty—five Professors from ten countries presented the lectures on the
following topics: integrable and superintegrable systems, supersymrnetries in quantum
mechanics and eld theories, symmetries in atomic and nuclear physics, multiparticle
dynamics, Lie group and algebra contraction and its applications in high energy physics.

The School was supported by Joint Institute for Nuclear Research, Ministry of Science
and Education of the Republic of Armenia, and Alexander von Humboldt foundation.

we thank all the Lecturers who have sent their contributions to the Book of Lectures.
“’0 would like also to thank Alexander Gusev and Ol’ga Klimenko for their help on the
work of this Book of Lectures.

Editors



Invariant Differential Operators for
Non-compact Lie Groups:

The Reduced SU(4,4) Multiplets
V.K. Dobrev

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,

So a, Bulgaria

Abstract

In the present paper we continue the project of systematic construction of invariant
differential operators on the example of the non-compact algebras su(n, n). Earlier were
given the main multiplets of indecomposable elementary representations for n g 4, and
the reduced ones for n = 2, 3. Here we give all reduced multiplets containing physically
relevant representations including the minimal ones for n = 4. Due to the recently
established parabolic relations the results are valid also for the algebras 31(8, IR) and
su*(8) with suitably chosen maximal parabolic subalgebras.

1 Introduction

Invariant differential operators play very important role in the description of physical
symmetries. In a recent paper [1] we started the systematic explicit construction of
invariant differential operators. We gave an explicit description of the building blocks,
namely, the parabolic subgroups and subalgebras from which the necessary representations
are induced. Thus we have set the stage for study of different non—compact groups.

In the present paper we focus on the algebra 3u(n, 71). These algebras belong to a
narrow class of algebras, which we call ’conformal Lie algebras’, which have very similar
properties to the canonical conformal algebras of Minkowski space—time. This class was
identi ed from our point of view in [2]. The same class was identi ed independently from
different considerations and under different names in [3,4].

This paper is a sequel of [5], and due to the lack of space we refer to it and to [6] for
motivations and extensive list of literature on the subject.

2 Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup
of G. Then we have an Iwasawa decomposition G = KAONO, where A0 is abelian
simply connected vector subgroup of G, No is a nilpotent simply connected subgroup of
G preserved by the action of A0. Further, let M0 be the centralizer of Ag in K. Then the
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subgroup P0 = MOAONU is a minimal parabolic subgroup of G. A parabolic subgroup
P = MAN is any subgroup of G which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representa—
tions induced from them generate all (admissible) irreducible representations of G [7—9].

Let V be a (non-unitary) character of A, 1/ E A‘, let a x an irreducible
representation D“ of M on a vector space V”.

We call the induced representation X = Indg(,u®z/® 1) an elementary representation
of G [10]. Their spaces of functions are:

Cx = {FECWQVM l gma'n) = €""‘H)-D“(m—1)F(9)} (2-1)
where a = exp(H) E A, H E A, m E M, n E N. The representation action is the left
regular action:

(“(9)3(9’) : Hg‘lg’), 939’ 60. (2.2)
For our purposes we need to restrict to maximal parabolic subgroups P, so that

rankA = 1- Thus, for our representations the character V is parameterized by a real
number d, called the conformal weight or energy.

An important ingredient in our considerations are the highest/lowest weight represen-
tations of g- These can be realized as (factor-modules of) Verma modules VA over QC,
where A 6 ('HC)*, ”HC is a Cartan subalgebra of QC, weight A = A00 is determined
uniquely from X [11,12].

Actually, since our ERs will be induced from nite-dimensional representations of
M (or their limits) the Verma modules are always reducible. Thus, it is more convenient
to use generalized Verma modules VA such that the role of the highest/lowest weight
vector '00 is taken by the space V“ v0. For the generalized Verma modules (GVMs) the
reducibility is controlled only by the value of the conformal weight d. Relatedly, for
the intertwining differential operators only the reducibility w.r.t. non—compact roots is
essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [12,13]. The multiplet correSponding
to xed values of the Casimirs may be depicted as a connected graph, the vertices of
which correspond to the reducible ERs and the lines between the vertices correspond to
intertwining operators. The explicit parametrization of the multiplets and of their ERs
is important for understanding of the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the inter-
twining differential operators. Actually, the data for each intertwining differential operator
consists of the pair (6,m), where 6 is a (non-compact) positive root of QC, m 6 N,
such that the ECG [14] Verma module reducibility condition (for highest weight modules)
is ful lled:

(A + M") = m , V a 25mm . (2.3)
When (2.3) holds then the Verma module with shifted weight VA‘m (or VA‘m for
GVM and 13 non-compact) is embedded in the Verma module VA (or 17"). This em-
bedding is realized by a singular vector as determined by a polynomial ’PE‘UJ‘) in the
universal enveloping algebra (U(9-)) org, 9‘ is the subalgebra of QC generated by the



negative root generators [15]. More explicitly, [12], "0:15); 2 732;” v0 (or 'Ufn = 732'? VP v0
for GVMs). Then there exists [12] an intertwining differential operator

Dis” 3 can —> eA—m i (2-4)
given explicitly by: A

”Di" = 73%”(9‘) (2.5)
where 6: denotes the right action on the functions .7, cf. (2.1).

3 The non-compact Lie algebra su(4, 4)
Let g = su(4,4). This algebra. lists discrete sear-s 1'+:-3_:rssr-i'!i'aii-_.~:_;~' and lilié..l.'.i"5iI.Il-.._-".‘.'t".‘:7
weight representations since the TILEJLllth-l rmupar: ':':ii:-il-;jr:l.>i'a .1: '—

We choose a maximal parni'iolir Fl — {AWEJ-Ll'.’ mic-11 iii-:31 -—'-. an: 11'. n'lnir-
the factor M has the same firiire-rii:zin:-:'-.si+_unal ir-.-:-r:=331.1e l"T'[""'iI'EI'fILTELEZ-‘I'IHF is llii
nite-dimensional (unitary) representations of the semi—simple subalgebra of IC, i.e..

M = sl(41 ((3)13, cf. [1]. Thus, these induced representations are representations of —
nite lC-type [16]. Relatedly, the number of ERs in the corresponding multiplets is equal
to [W(QC,'HC)I / |W(}CC,’HC)I = 70, cf. [6], where ”H is a Cartan subalgebra of‘ both
C] and 1C. Note also that ICC g 'u,(1)C 63 52(4, C) EB 5M4: (C) 2 MC GB AC. Finally, note
that dim”; N = 16.

We label the signature of the ERs of Q as follows:

_ . -_ ..I -..-.-:-.-.- ,— 3.2.4.1

X _: {n11n21n33n53n63n7ic}1 njEZ‘l’i C:d_4 (36)

where the last entry of X labels the characters of A, and the rst 6 entries are labels
of the nite—dimensional nonunitary irreps of M when all in > 0 or limits of the latter
when some 711- = 0.

Below we shall use the following conjugation on the nite—dimensional entries of the
signature:

(711,712,713: n5,n61n7)* i (n5,n6,n7,n1,n2,n3) . (3.7)

The ERs in the multiplet are related also by intertwining integral operators introduced
in [17]. These operators are de ned for any ER, the general action being:

GKS : CX —> CX: , (33)
X : {n1,n2,n3,n5,n6,n7; c}, x' = {(n1,n2,n4,n5)*; —c}.

The above action on the signatures is also called restricted Weyl reflection, since it rep—
resents the nontrivial element of the 2-element restricted Weyl group which arises canon-
ically with every maximal parabolic subalgebra.

For the classi cation of the multiplets we shall need one more conjugation for the
entries of the M representations:

1

(n11n23n31n53n63n7). i (”rinsinsansanmnil (3-9)



involving full reordering of the entries (unlike the conjugation (3.7) which just exchanges
the two su(4) sets of indices).

Further, we need the root system of the complexi cation QC = 53(8, (C) . The positive
roots in terms of the simple roots are given standardly as:

01:5 ai+"'+05ja 1$i<j553
0113' = 053', 19:7 (3-10)

From these the compact roots are those that form (by restriction) the root system of the
semisimple part of ICC, the rest are noncompact, i.e.,

noncompact: 0% , 1g 3' g 4 , 4 gj S 7. (3.11)

Further, we give the correspondence between the signatures X and the highest weight
A. The connection is through the Dynkin labels:

m;- E (A+p,a:’) = (A+p,at—), i=1,-.-,7, (3.12)

where A : A(X), p is half the sum of the positive roots of QC. The explicit connection
is:

nizmi, C = —%(mC—,+m4) = — %(m1+m2+m3+2m4+m5+m +m7) (3.13)

where ii: = a1 + - - - + a7 is the highest root.
We shall use also the so—called Harish-Chandra parameters:

mjkE(A+p,ajk) = mj+v--+mk, j<k, mimj. (3.14)

Note that according to [6] all results about the classi cation of invariant operators
are valid also for the algebra sl(8, R) with maximal parabolic 73’ = M’A’N’, where
M’ = sl(4,1R)(B sl(4,R). This is due to the fact that ’P’C = 73C, M’C 2 /\/IC ”:V
sl(4,(C) EB 3l(4,(C). Furthermore, the results are valid also for the algebra 313(8) with
maximal parabolic ”P” = M”A”N”, where M” = su*(4)EBsu*(4) (noting that P“: = ”PC,
MW e 31(4,C) ea 52(4, (13)).

4 Multiplets of SU(4,4)

4. 1 Main multiplets

There are two types of multiplets: main and reduced. The multiplets of the main type
are in 1-to—1 correspondence with the nite-dimensional irreps of su(4, 4), Le, the).r are
labelled by the seven positive Dynkin labels m:- E W. In [5] we “have given explicitly the
main multiplets for n = 2, 3, 4, and the reduced for n = 2. In [18] we have given explicitly
the reduced for n = 3.

The main multiplet R4 contains 70 ERs/GVMs whose signatures can be given in the
following pair-wise manner:

XE)t = {(m11m23m3im53m63m7)ii :l:%(m& + 7114)}
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XCTU — 1. in”. ”I H' .-;- HF “a; 3-17": :%:II?r-I—r.71li
X32? = 1111-: a.“ 131:. 'J' .1?“ ‘TTTI: :%1-11_II2 7171'

X11 : 1:11—11; I’r'l PM} ”(I 1115—. Li'- : :II5-I1'1IIIIII-I-i

X20 = 1 HTTH m: rm ""33. .‘n; m- ' 3:211 =31
Xitl 1 11,1131 Hr 3 11115 rtJHZL 111—.3 £11,! _.II_..I—Ii

X32 : {fin-1h”: 'n ' “11 i"- ”1.1"." “Fr—11:7 I].

Xéto ‘— 1I1Ftl.! q .'*i.,:, v.13. 'Ti I m—l: iii-I ‘ 3-; — .r I~
X31 '— 11771'1-3JH-11m 3 mi, 'JLr rr.I~'* '—£T~'1..o'1

XE — 1 17‘7:- F1123 my; .311 W3 {Ha-l +3113 ”4

X03 _ “WI 1:111" It. 73-3 "Il ‘tiiIhliLi— .':7I1
X31 : *rirTi'E-"l‘i “£13 ‘r1. ”1;; r~I __-.:%irrlr-,- 'I I
X2i2 : 11171]1 “'13 r'EiJ 1‘ 1 11-5 "tr-u £e n I'-
Xihg = 1.1.1 i Eli-"'1‘ - 11,, m; 1w: :11”. 1— .173}.

X32 2 1.1"" “”1" -""'L1r_: *1 .;-‘-'-: 11 ~37 ": :;171'-'- — n I i
X2i3 — 11'" '“l “1-." “1 ”i" ”‘1 Z :1; r; — 3.1.51 I-

X3i3 = 11”" .'.'.'i W“ 111 .H- "I I: Iii-“'1; -| I I

Xé : I111? '- Hit-.1 1'11: r'.|-_| '11-l -H' -J :E-IIIPII-IIIII I.

X}:E = 'II 11:73"- 1 1713.; H": .'-"_'_-_3 . TI 31,} .‘T'--I- ': 15H" ;- .1

X01 2 11W- Mw r: .n ‘1'. ;, rn' r-F ':—iI,r',r,.IEI— I

x95 = {in}: mm. a»: .1 .1 = :91- .. ,1
X3 — 1 II??? 1-_:_ $113.1. m5; {ii-:31 m5. ”111': '. _ h:%g3;.II_

X103 — 1 I': 1.1.11131-J11a- mu .t- T'L‘L'U: :1. 71.11;. _ :1 _j 1|

Sat = 1 117132 f7“.;.i‘1"_*-:I!'I'.|:r Wise. 1'??? it I 21::1-311151-

Xgit : {1.7113 4'1; .l'l"':.._I i'|'-' my. 1'11"; é-lir lfl

’1’; Z {If} 1"“ 1" rI F71.“ Fug}; Thug. ”JET! :1111-131

1% = {1. .1 I'M-I35: $11.- “Vs-'1’. YEP-1'31: 1rii:3_~'

X3: = {11712};— r' ;, m5 -"“1'-'|_-'- man. “TI—'3; - 113.31%: _ ”"1

X121 = { 1m} ”13;. T}1;.._._ :11} 7311.5, mgr . :%1 111- _ ._,..I I) }

Xi: = {KI-r1213. H133. 'n':.=.- 1?“:3.11‘T‘i.;5. 17151—— : :1: .111 — 1721)}

Xi)? = i1.7711:m253m673m31m4am561i iamm — m7)}
X1425 = {111731m4um53m13m263m7)i3i%(m67 — 77112)}

X’sii : { 1771231m4am561m12am353m671i ; i%(m7 — m1)}
X312: 2 {(m21m343m573m133m451m6 i; :Fémm}
X3; = {(m13im41m57um21m351m6)ii 212%(7111 — 7717)} (4.15)

The multiplets are given explicitly in Fig. 1 ( rst in [5]) The pairs Ai are symmetric
writ. to the bullet in the middle of the gure - this represents the Weyl symmetry realized
by the Knapp-Stein operators (3.8): GKS : (3X; <—> CXi .

Matters are arranged so that in every multiplet only the ER with signature X3 con-
tains a nite-dimensional nonunitary subrepresentation in a nite—dimensional subspace
S. 'The latter corresponds to the nite-dimensional irrep of su(3, 3) with signature
{m1 , . . . ,m7}. The subspace 8 is annihilated by the operator G+ , and is the image of
the operator 0‘. The subspace S is annihilated also by the intertwining differential
operator acting from XE to X;- When all m1 = 1 then dim 8 = 1, and in that case
5 is also the trivial one-dimensional UIR of the whole algebra 9. Furthermore in that
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case the conformal weight is zero: 0! = 3 + c = 3 —— %(m1 + mg + 27723 + mm + m5),ml=, =2 0.
Analogously, in every multiplet only the ER with signature XBL contains holomorphic

discrete series representation. This is guaranteed by the criterion [11] that for such an
ER all Harish-Chandra parameters for non—compact roots must be negative, i.e., in our
situation, mo, < 0. [That this holds for our X+ can be easily checked using the
signatures (??).]

Note that the ER Xd contains also the conjugate anti-holomorphic discrete se—
ries. The direct sum of the holomorphic and the antiholomorphic representations are
realized in an invariant subspace ’D of the ER Xd . That subspace is annihilated by
the operator G‘, and is the image of the Operator G+. Note that the correspond—
ing lowest weight GVM is in nitesimally equivalent only to the holomorphic discrete
series, while the conjugate highest weight GVM is in nitesimally equivalent to the anti-
holomorphic discrete series. The conformal weight of the ER XSL has the restriction
d=3+c=3+%(m1+m2+2m3+m4+m5) 26.

In Fig. 1 and below we use the notation: At = A(Xi). Each intertwining differential
operator is represented by an arrow accompanied by a symbol ijk encoding the root
Oijk and the number majk which is involved in the BGG criterion. This notation is used to
save space, but it can be used due to the fact that only intertwining differential operators
which are non—composite are displayed, and that the data 6,3015 , which is involved in the
embedding VA <—> VA_m5 turns out to involve only the m,- corresponding to simple
roots, i.e., for each @7715 there exists 2' : i( ,m5,A) e {1, . . . ,7}, such that m5 2 mi.
Hence the data ozjk , majk is represented by 3'31, on the arrows.

4.2 Main reduced multiplets
There are seven types of main reduced multiplets, R: , a = 1, . . . , 7, which may be obtained
from the main multiplet by setting formally ma : 0. Multiplets of type Rg, R3, R3,
are conjugate to the multiplets of type R3, R4, R31, resp., as follows. First we make the
conjugation on the roots and exchange all indices: 1 <——> 7, 2 <—~> 6, 3 <——> 5. With
this operation we obtain the diagrams of the conjugated cases from one another. For
the entries of the M representation we have further to employ the conjugation (3.9).
Then we obtain the signatures of the conjugated cases from one another. Thus, we give
explicitly only rst four types.

The reduced multiplets of type R: contain 50 ERs/GVMs whose signatures can be
given in the following pair-wise manner:

_ :t
X0 — (m11m23m31m53m61m7){
X10 — {(m1,m23,0,m3,5,m6,m7)i; :,__:. -
X31 — { (m13m21m3,530:m561m7)i i i577” mm}
X30 — {(771121 7713, 0, “123,5, m61m7)ii i%m1,57}
Xltl = {(m13m233m5am33m561m7)ii iémiasr}
Xoi2 = { 31ml: m2am3,56303m51m67)i ; #jmmv}
XEEO = { l-m23m3301m13,51m61m7)ii iiimm - m1) }
X2il = {;-m121m33m51m233m563m7)ia ilm1,57}
XTEQ : {'mlam23am563m33m51m67)i; igmlgg}

11



This may be called the.
the limits of the [3:11; '

The reduced . 1111111111113
given in the following

X OH
-

:h
X10

5:3
5

1..
..

b—
‘

><
><

><
><

><
><

><
><

ge
ge

gs
ge

>< ng
eg

s

m1, m2, m3 573 0 1777151 m6)i; i%(m13 ‘ m7)}
m21m31m51m131m561m7)i 5 :l:%(m67 — 7111)}
W112,71"331m551W231’1’1’15177157)i .
m11m231m571m31m51m6)i§iéT'l 'IL; — m7)
m21m31m561m131m51m67)i§1%”737 — m1)
m121m31m571m231m51m6)i§ :t%(m1— m7)
m21m31m571m131m51m6)i; $3.

={(
-{(

—{(
={( }
={( }
={( }
={(
:({ (m13101m51m21m3,561m7)i; :QFFFLE IL
: { (m13101m561m21m3,51m67)i; iEFH-Ij}

= { (771121 ”13,5; 711,3, ”323,0, ’31'3’157)i 1 E?I 7}

: {(m11m23 5177161771310 m57)i; i—h—}
— { (”712310 m51m121m3561m7)i ; i mm — 1111)}
= {(ml 77123 51773671771310 m5s)i; :‘srmg — 1111-1}

= {07713101 m51m11m23 561m7)i; ‘:'1- — 11 131}
: J[(17123,0,11356,1rnlgI171,35”73167)i :%|.".":a — H I: 1

- {( "F1310 m571m21m351m6)i; :—‘..:F- 1 -- —.I ; (4.16)
1111-1111 type. F.~ FFq-FI'IFI1IF1e multiplets since here 1n X0 are contained

-series. The multiplets are given in Fig. 2a.
Ii‘i.r53‘-.8.il’l 50 ERs/GVMs whose signatures can be

'1..-1.-F~FF-111‘1111-r_11.=.
. _ . I-1-;

1_._-._ D; 1331' L1»! 113

pair—wise manner:

= {IITHL 1.1 1"".|_1'..-.I.F.-1,I 1117:1' :I-I'IIIT.‘ -;- -1-.*T'.'III IL

: {Hm "F: ""F.--‘1—1'1 -F‘11«-"*-"T': :in" -1571”
: {[.."FI.|;-' HI :1 r ._.F.‘=-- ”51 .1 F’Ti‘ j%m 31']

= {l-."”' TIGHT-”51w“ "3F -'F'I'T : ii'F-‘LFTJ
: {lI 'lg 1 HJ-i “1:1 ': ”1'311'1- 1.17]: :1. _.=.- II

= “ml-’7" F"-F1‘1--‘T?1TT’J.=.F'F.1.- 1;??? :IT 3-
I {II-T7.§’"':.i._j .'.‘ Infrijf .‘ f l' Tl: :iIITHE-n I”! I I.-

: {1:11 I": JI’II-F-TIJ If: "FF-"v.1 FFT': :*FF'F.1- — F3. '1‘.
Z {5“ 'J ”5411 i' 1 -‘.=..*"., I Lin": 7

= {IIE'FIF_-F}'?1 '“F'Fn :H.= ..I.I— 111'1IIII: :éfq; _-. _ M I

= {11111.1}. 177-1 -'F"I 1'“-*"'-'“F .- 2175-11“: ' "T1
= {UT-".2 "-'”i'1‘ 1., W: ”Uh-.1 .' 1—5111“ — 1'11“ 1'
= “Fm-3" F? ”:1." ”1‘5- 1‘11; 1': $i=11111 ‘.-
= {£151 F‘s-3. 11:: if}. 11.1 1-1 ‘3': ;%n:13_-—}

: {in-'13} 51.1.5”; r""‘"_I [”13 ..f'—| :IlIL‘H-IIIT 1'

= {{mI 1.11.3”. 1?.-I_—II._I [J. 11-14% I111 T ._ 13131-1. .1' ‘1
2 {(11:1- .11. '11 I.11'1.I.I_.-I..-1171'= :l .11“- _ I i“
= {[171 1 F11: m- ‘1‘ _11':..Ir Hip-J", :%1y;i—Il

= {IIWI .FF1—1 : r115- F'=_ 1;: 15F. MIL-11: fan-I -.- FF.-I i'

= {(211,- - .111 :3. ""1 I1F'IF_-.- m; '31'1‘. iiImI T
= {1m 1112 =_ 11"..U'. ”FIN-"1'53“: :%.r1;-_:I i

= {im -mI-mm 1 :1.'?i':-;_ "-‘F.T.l+ l-‘ILF'FT — 1'1} i"
= {II-11W. .1“ 11L: FT.‘ I’?3.HL_151I3!1I-III: 17%|l — -'.I-'| I.

= {{1.711-:113I_,.-..'F.F'.1.-.;:.1.1..F11I.111:II~II1'" - 1%,???" .11 .-
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