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Abstract

Starting with an n-dimensional oriented Riemannian manifold with a Spinc-structure, we de-

scribe an elliptic system of equations which recover the Seiberg{Witten equations when n = 3, 4.

The equations are for a U(1)-connection A and spinor ϕ, as usual, and also an odd degree form

β (generally of inhomogeneous degree). From A and β we de�ne a Dirac operator DA,β using

the Cli�ord action of β and ∗β on spinors (with carefully chosen coe�cients) to modify DA.

The �rst equation in our system is DA,β(ϕ) = 0. The left-hand side of the second equation is

the principal part of the Weitzenb�ock remainder for D∗
A,βDA,β. The equation sets this equal

to q(ϕ), the trace-free part of projection against ϕ, as is familiar from the cases n = 3, 4. In

dimensions n = 4m and n = 2m + 1, this gives an elliptic system modulo gauge. To obtain a

system which is elliptic modulo gauge in dimensions n = 4m + 2, we use two spinors and two

connections, and so have two Dirac and two curvature equations, which are coupled via the form

β. We then prove a collection of a priori estimates for solutions to these equations. Unfortu-

nately they are not su�cient to prove compactness modulo gauge, instead leaving the possibility

that bubbling may occur. We also construct several examples of solutions of these equations in

dimensions 5, 6 and 8. And �nally we describe a modi�ed version of these Seiberg{Witten equa-

tions on manifolds with a Spin(7)-structure and construct a solution when the Spin(7)-structure

is torsion-free.
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In the fall of 1994 Edward Witten announced a \new gauge theory of 4-manifolds" [25], capa-

ble of giving results analogous to the earlier theory of Donaldson [7], but where the computations

involved are \at least a thousand times easier" (Taubes). The equations involved in this new

gauge theory are well known as the Seiberg{Witten equations. The equations introduced in [33],

led quickly to a revolution in 3- and 4-dimensional di�erential geometry and they remain at

the forefront of research today. Shortly after their appearance, Witten showed how one could

count solutions to the equations, de�ning an invariant of the underlying smooth 4-manifold

[33]. The equations in dimension 3 and 4 and the resulting moduli spaces have had a profound

impact on low dimensional geometry and topology, some examples being dramatic discoveries

of homeomorphic but non-di�eomorphic 4-manifolds, distinguished by their Seiberg{Witten in-

variants, Kronheimer and Mrowka's proof of the Thom conjecture [18], Taubes' proof of the

Weinstein conjecture in dimension 3 [31], Taubes' work showing that symplectic 4-manifolds

have non-vanishing SW invariant [32] and the close link between Seiberg{Witten equations and

J-holomoprhic curves [28],[30],[29] and many more.

Despite a lot of e�ort, higher-dimensional generalisations of the Seiberg{Witten equations

were unknown (at least without an additional structure being present). In this thesis we intro-

duce an elliptic system of equations over a Spinc-manifold of any dimension which generalise the

Seiberg{Witten equations in the cases n = 3, 4.

Let (M,g) be a Riemannian manifold of dimension n, which admits a Spinc-structure. We

begin by �xing notation. Write S → Mn for the spin bundle of the Spinc-structure. When

n is even, S = S+ ⊕ S− splits into subbundles of positive and negative spinors. We write

c : Λ∗ → End(S) for the Cli�ord action of di�erential forms on spinors. We follow the conventions

of [20]. In particular, (real) 1-forms act as skew-Hermitian endomorphisms. Meanwhile, in

dimension n = 2m, the volume form satis�es imc(dvol)) = ±1 on S± whilst in dimension

n = 2m− 1, imc(dvol) = 1 on all of S.

Let L denote the determinant line bundle of S when n is odd, and of S+ (or equivalently S−)

when n is even. Let A denote the set of unitary connections in L. Given A ∈ A, we write DA
for the associated Dirac operator.

When n is even, a spinor ϕ ∈ S± de�nes a trace-free Hermitian endomorphism Eϕ : S± → S±
via

Eϕ(ψ) = ⟨ψ,ϕ⟩ϕ−
1

r
|ϕ|2ψ. (1)

where r is the rank of S±. When n is odd and ϕ ∈ S we use Eϕ to denote the analogous trace-free

endomorphism of S, where now r is the rank of S.

Before giving the n-dimensional version of the Seiberg{Witten equations, we �rst recall the

three and four dimensional cases, highlighting the features we will generalise. In dimension 4,

Cli�ord multiplication gives an isomorphism

c : iΛ2+ → isu(S+) (2)

between imaginary self-dual 2-forms and trace-free Hermitian endomorphisms of S+. Given ϕ ∈
Γ(S+), we write q(ϕ) ∈ iΩ2+ for the imaginary self-dual 2-form corresponding to Eϕ under (2).

The Seiberg{Witten equations for A ∈ A and ϕ ∈ Γ(S+) are:

DAϕ = 0, (3)

F+A = q(ϕ). (4)
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The gauge group G = Map(M,S1) acts on (A,ϕ) by pull-back and this action preserves the

space of solutions to the equations.

The whole 4-dimensional story is now based on two crucial facts. Firstly, these equations

are elliptic modulo gauge. This is ultimately because the linearisation of the map A 7→ F+A
combined with Coulomb gauge, to work modulo the gauge action, gives the truncated de Rahm

complex, in the form

Ω1
d
∗+d+

−→ Ω0 ⊕Ω2+.

Secondly, the space of solutions to the equations are compact modulo gauge. This follows

ultimately from the fact that the left-hand side of the curvature equation (4) is directly related

to the Weitzenb�ock formula1:

D2A −∇∗
A∇A =

s

4
+
1

2
c(F+A), (5)

where s is the scalar curvature of (M,g).

To summarise: on a 4-manifold, using Dirac operators DA parametrised by A ∈ A
ensures that prescribing the Weitzenb�ock remainder gives an elliptic system modulo gauge.

In dimension 3, meanwhile, Cli�ord multiplication gives an isomorphism

c : iΛ2 → isu(S) (6)

Given ϕ ∈ Γ(S), we now write q(ϕ) ∈ iΩ2 for the imaginary 2-form corresponding to Eϕ
under (6). The 3-dimensional Seiberg{Witten equations for A ∈ A, ϕ ∈ Γ(S) and β ∈ Ω3 are:

(DA − c(iβ))ϕ = 0, (7)

FA − 2id∗β = q(ϕ). (8)

One often sees these equations written with β = 0. This is because when ϕ is not identically

zero andM is compact, one can check that the equations actually force β = 0. It is also perhaps

more common to see the equations with the 3-form β replaced by the function ∗β. (Note c(β)
is multiplication by − ∗ β.) We choose the above version of the equations because they �t more

cleanly with our generalisation. The equations are elliptic modulo gauge because the linearisation

of (A,β) 7→ FA − 2id∗β, in combination with Coulomb gauge, produces the de Rahm complex,

in the form

Ω1 ⊕Ω3 d+d∗

−→ Ω0 ⊕Ω2.

Just as in the 4-dimensional case, the curvature equation (8) is related to a Weitzenb�ock remain-

der. This time

D∗
A,βDA,β −∇∗

A∇A =
s

4
+
1

2
c(FA − 2id∗β) + |β|2. (9)

Here DA,β = DA − c(iβ) is the Dirac operator appearing in (7).

To summarise: on a 3-manifold, using Dirac operators DA,β parametrised by A ∈ A and

β ∈ Ω3 ensures that prescribing the principal part of the Weitzenb�ock remainder gives an

elliptic system modulo gauge.

1The formula relating the Dirac Laplacian to the rough Laplacian is due to Schr�odinger [24] in 1932, and was
subsequently rediscovered by Lichnerowicz [19] in 1962. The analogous formula relating a generalised Laplacian
to a rough Laplacian is seemingly due to Weitzenb�ock. Historically a better name for (5) would probably be
the \Schr�odinger{Lichnerowicz formula" but we follow a relatively common practice by calling this and similar
equations \Weitzenb�ock formulae".
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These features are what we generalise to give Seiberg{Witten equations in arbitrary dimen-

sions: we consider a family of Dirac operators DA,β parametrised by A ∈ A and a certain choice

of odd degree form β (of inhomogeneous degree). The odd degree forms ensure that prescribing

the principal part of the Weitzenb�ock remainder of DA,β is an elliptic system, modulo gauge.

When combined with the Dirac equation, the equations have the potential for good analytic

properties. We will give some analytic results in this direction. We stress from the outset how-

ever that when n > 4 our results are not su�cient to prove that the solution space is compact.

Instead they leave open the possibility that \bubbling" can occur.

An obvious question is what purpose might these higher-dimensional Seiberg{Witten equa-

tions serve? In higher dimensions, there is no need for a gauge theoretic approach to study

smooth structures since, for example, the h-cobordism theorem holds [26]. Instead, one might

speculate that higher dimensional Seiberg{Witten equations could prove useful when studying

manifolds with geometric structures. This fantasy is inspired by Taubes' work on symplectic

4-manifolds. Taubes proved that for a compact symplectic 4-manifold with b+2 > 1 the Seiberg{

Witten invariant for the canonical Spinc structure is always 1 [32]. This gives an obstruction

to the existence of symplectic structures. There is no known obstruction in higher dimensions,

beyond the most obvious that there must be a degree 2 cohomology class with non-zero top

power. Even deeper is Taubes' Theorem that the Seiberg{Witten invariants are equal to the

Gromov{Witten invariants [28, 30, 29]. In particular, for a symplectic manifold with b+2 > 1,

the canonical class is always represented by a J-holomorphic curve. In higher dimensions there

are no known general existence results of this kind for J-holomorphic curves. It is, of course,

very speculative to hope that these higher dimensional Seiberg{Witten equations could tell us

something about higher dimensional symplectic manifolds (especially in light of the fact that

the analysis appears much more complicated; see §V!), but at least it does not seem completely

impossible.

Dirac operators of the form D + c(β) where β ∈ Ωodd have appeared in several contexts,

going back at least as far as Bismut's pioneering work on Dirac operators associated to metric

connections with torsion [4]. This same paper also gives a Weitzenb�ock formula which is very

similar to the general Weitzenb�ock formula we deduce. Since Bismut's work, there has been a

huge amount of work on these particular Dirac operators; so much so that it is futile to give a

survey here. To the best of our knowledge, however, there is only one paper which considers

this kind of Dirac opertaor in the context of the Seiberg{Witten equations, namely the work

[27] of Tanaka. Tanaka formulates a version of the Seiberg{Witten equations on a symplectic

6-manifold, which have some similarity to the equations described here. To write down Tanaka's

equations one must �rst pick an almost complex structure compatible with the symplectic form.

This is in contrast to our equations which need nothing more than a Riemannian metric and a

Spinc-structure. There is an interesting point in common however: Tanaka perturbs the Dirac

operator by adding a (0, 3)-form to it; this is similar to the point of view taken here, where in

6-dimensions we also perturb the Dirac operator, this time by an arbitrary 3-form.

The main results of the article are structured as follows. In the next section §II, we describe
the n-dimensional Seiberg{Witten equations. In §III we show that the equations are elliptic,

modulo gauge, and compute the index. In §IV we show that the curvature equation is precisely

the principal part of the Weitzenb�ock remainder term. In §V we exploit this to prove some

preliminary a priori estimates on solutions to the equations. §VI is dedicated to the construction

of several examples of solutions to these equations and in the last section §VII we describe special
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modi�ed versions of these Seiberg{Witten equations on manifolds with a Spin(7)-structure and

construct a solution when the Spin(7)-structure is torsion-free.
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Spinc-manifolds
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0.1 The Seiberg–Witten equations in odd dimensions

In odd dimension n = 2m + 1, it is relatively straightforward to generalise the 3-dimensional

story. Only the notation becomes more complicated. To ease things a little, we de�ne a function

s : N → {1, i} by

sk =

{
1 if k ≡ 0 or 3mod 4

i if k ≡ 1 or 2mod 4

Notice that s2k+1 = s2k+2 and if βk ∈ Ωk then skc(βk) is a self-adjoint endomorphism of the

spin bundle.

In dimension 2m+ 1, Cli�ord multiplication gives an isomorphism

c : iΛ2 ⊕Λ4 ⊕ · · · s2mΛ2m → isu(S) (10)

Given ϕ ∈ S, we write q(ϕ) for the di�erential form corresponding to Eϕ under (10). We consider

equations for (A,β,ϕ) where A ∈ A, β = β3 + β5 + · · · + β2m+1 with βk ∈ Ωk, and ϕ ∈ Γ(S).
We set

DA,β = DA +

m−1∑
k=1

(
s2k+1c(β2k+1) + is2m−2kc(∗β2k+1)

)
+ ic(∗β2m+1) (11)

Write

Fβ = 2

m−1∑
k=1

s2k+2dβ2k+1, (12)

Cβ = 2

m∑
k=1

(−1)⌊
m+1

2
⌋+(m+1)(k+1)s2kd

∗β2k+1. (13)

The notation Fβ and Cβ is explained below in Remark 2. The key thing to keep in mind for now

is that, up to some factors of 2i, Fβ is essentially dβ whilst, again up to some factors of 2i and

also some cumbursome signs (an artefact of how Cli�ord multiplication works), Cβ is essentially

d∗β.

Definition 1. Let M2m+1 be an oriented 2m + 1-dimensional manifold with Spinc-structure.

The (2m+ 1)-dimensional Seiberg{Witten equations for (A,β,ϕ) are:

DA,β(ϕ) = 0, (14)

FA + Fβ + Cβ = q(ϕ), (15)

where DA,β, Fβ and Cβ are given by (11), (12) and (13) respectively.

When m = 1, Fβ = 0, Cβ = −2id∗β3 and we recover the ordinary 3-dimensional Seiberg{

Witten equations.

The point of these equations is that, as is shown in §IV, the Dirac operator DA,β has a

Weitzenb�ock formula of the form

D∗
A,βDA,β −∇∗

A,β∇A,β =
s

4
+
1

2
c(FA + Fβ + Cβ) +Q(β)

where ∇A,β is a unitary connection on S determined by A and β and Q(β) is a zeroth order

term which is purely algebraic in β. (For example, when m = 1 this is equation (9) above where

10



Q(β) = |β|2.) So (15) prescribes the principal part of the Weitzenb�ock remainder. Moreover,

the system is elliptic modulo gauge, essentially because the de Rahm complex is elliptic. This

is the reason behind the various factors for c(β2k+1) and c(∗β2k+1) in (11): they are chosen

precisely to make dβ and d∗β appear in the Weitzenb�ock remainder. (See §III for the details.)

Remark 2. If we think of β as a collection of connection k-forms, in the sense of U(1)-gerbes

(or \k-form gauge �elds" as they are called in the physics literature) then, up to the various

factors of i and 2, Fβ is the sum of the curvatures of the βk. Meanwhile Cβ = 0 is the Coulomb

gauge condition. With this in mind it is tempting to think of DA,β as a Dirac operator coupled

to various connections on appropriate U(1)-gerbes.

One reason to want to do this is to put Fβ on a similar footing to FA. In 4-dimensional

Seiberg{Witten theory it is important to be able to vary the cohomology class [FA]. In particular,

for some classes there are no solutions. In the above description, however, [Fβ] = 0 is �xed. To

get non-zero classes, one would need to interpret β2k+1 as a connection in a 2k-gerbe with non-

zero characteristic class. However we have been unable to make sense of \spinors with values in

a gerbe" or of the action of gerbe gauge-transformations in this setting (or \(k− 1)-form gauge

transformations" as they are sometimes called in the physics literature).

0.2 The Seiberg–Witten equations in dimension 4m

We next give the direct generalisation of the 4-dimensional Seiberg{Witten equations to dimen-

sion n = 4m. Here, Cli�ord multiplication gives the following isomorphism:

c : iΛ2 ⊕Λ4 ⊕ · · · ⊕ s2mΛ2m+ → isu(S+) (16)

where Λ2m+ is the +1 eigenspace of ∗ acting on Λ2m. Given ϕ ∈ S+, we write q(ϕ) for the

form which corresponds under (16) to Eϕ ∈ isu(S+). We consider equations for (A,β,ϕ) where

A ∈ A, β = β3 + β5 + · · ·+ β2m−1 with βk ∈ Ωk and ϕ ∈ Γ(S+). We set

DA,β = DA +

m−1∑
k=1

(
s2k+1c(β2k+1) + s4m−2k−1c(∗β2k+1)

)
. (17)

This is a self-adjoint operator DA,β : Γ(S+) → Γ(S−). Write

F+β = 2s2md
+β2m−1 + 2

m−2∑
k=1

s2k+2dβ2k+1; (18)

Cβ = 2

m−1∑
k=1

(−1)m+k+1s2kd
∗β2k+1. (19)

Here, d+β2m−1 is the Λ
2m
+ -component of dβ2m−1.

Definition 3. Let M4m be an oriented Riemannian 4m-manifold with Spinc-structure. The

4m-dimensional Seiberg{Witten equations on M for (A,β,ϕ) are:

DA,β(ϕ) = 0, (20)

FA + F+β + Cβ = q(ϕ), (21)

where DA,β, F
+
β and Cβ are given by (17), (18) and (19) respectively.
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Again, the point of our equations is that there is a Weitzenb�ock formula for DA,β (see §IV)
and the principal part of the remainder is exactly 1

2
(FA + F+β + Cβ). Moreover, the equations

are elliptic modulo gauge, essentially because the truncated de Rahm complex is elliptic:

Ω0 → Ω1 → · · · → Ω2m+

(See §III for the details.)

Remark 4. In the caseM4m = X4m−1×R is a Riemannian product, one can consider solutions

to the equations which are R-invariant, leading to a system of equations for �elds de�ned purely

on X.. It turns out that these so-called \reduced" equations are equivalent to the (4m − 1)-

dimensional Seiberg{Witten equations on X from De�nition 1. To see this, note �rst that a

1-form α on X can be made to act on S+ via c ′(α) = c(α) ◦ c(dt) where c is the Cli�ord action

onM and t is the coordinate on R (with dt unit length and positively oriented). In this way we

identify S+ as the spin bundle S→ X, with c ′ being the Cli�ord product on X; we also identify

R-invariant sections of S+ with Γ(X, S). Next note that an R-invariant connection A on M is of

the form A ′+ ifdt where A ′ is a connection on X and f ∈ Ω0(X). To recover the Seiberg{Witten

equations on X, one should take the top degree odd form to be ∗f. Similarly, an R-invariant
form β2k+1 ∈ Ω2k+1(M) has the shape β2k+1 = β ′

2k+1 + β
′
2k ∧ dt for forms β ′ on X. It is

the odd-degree forms β ′
2k+1, ∗β ′

2k, ∗f (with appropriate signs) the connection A and spinor ϕ,

which solve the Seiberg{Witten equations on X.

0.3 The Seiberg–Witten equations in dimension 4m− 2

This leaves dimension n = 4m−2 and here things are more complicated. Cli�ord multiplication

gives isomorphisms

c : iΛ2 ⊕Λ4 ⊕ · · · ⊕ s2m−2Λ
2m−2 → isu(S±) (22)

c : s2m+2Λ
2m+2 ⊕ · · · ⊕Λ4m−4 → isu(S±) (23)

This time there is no corresponding bundle of odd degree forms with the correct rank to set up

an elliptic system. For example, in dimension 6, isu(S+) has rank 15, so the curvature equation

will give 15 constraints whilst gauge �xing provides one more. Meanwhile, the connection A

accounts for 6 degrees of freedom and so we are left looking for 10 more degrees of freedom, but

there is no bundle of forms with this rank which we can use to parametrise Dirac operators. The

way out is to use two spinors and connections, leading to two Dirac equations and two curvature

equations, with everything coupled via the odd degree forms.

We do this as follows. Given ϕ ∈ S+ and ψ ∈ S− we write q(ϕ) and q(ψ) for the di�er-

ential forms corresponding to Eϕ and Eψ respectively under (23). We consider equations for

(A,B, β,ϕ,ψ) where A,B ∈ A, β = β3 + β5 + · · · + β4m−5 where βk ∈ Ωk, ϕ ∈ Γ(S+) and

ψ ∈ Γ(S−). We write

DA,β,+ = DA +

m−2∑
k=1

(
s2k+1c(β2k+1) + s4m−2k−3c(∗β2k+1)

)
+ s2m−1c(β2m−1), (24)

DB,β,− = DB + s2m−1c(∗β2m−1) +

2m−3∑
k=m

(
s2k+1c(β2k+1) + s4m−2k−3c(∗β2k+1)

)
. (25)
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We regard DA,β,+ as acting on sections of S+ and DB,β,− as acting on sections of S−. Notice

that β2m−1 is the only part of β which appears in both Dirac operators. The terms βk for

k < 2m− 1 appear in DA,β,+ and the terms βk for k > 2m− 1 appear in DB,β,−. We now write

Fβ,+ = 2

m−1∑
k=1

s2k+2dβ2k+1 (26)

Cβ,+ = 2

m−2∑
k=1

(−1)ms2kd
∗β2k+1 (27)

Fβ,− = 2

2m−3∑
k=m

s2k+2dβ2k+1 (28)

Cβ,− = 2

2m−3∑
k=m−1

(−1)m+1s2kd
∗β2k+1 (29)

The ± in the su�ces Fβ,±, Cβ,± are related to whether the βk involved appear in the Dirac

operator acting on positive or negative spinors.

Definition 5. LetM4m−2 be an oriented Riemannian (4m−2)-manifold with Spinc -structure.

The (4m− 2)-dimensional Seiberg{Witten equations on M for (A,B, β,ϕ,ψ) are

DA,β,+ϕ = 0, (30)

FA + Fβ,+ + Cβ,+ = q(ϕ), (31)

DB,β,−ψ = 0, (32)

FA + Fβ,− + Cβ,− = q(ψ), (33)

where DA,β,+, DB,β,−, Fβ,± and Cβ,± are de�ned in equations (24){(29)

Once again, the point is that the Dirac operators DA,β,+ and DB,β,− have Weitzenb�ock

formulae (see §IV) in which the principal parts of the remainders are precisely 1
2
(FA+Fβ,++Cβ,+)

and 1
2
(FB + Fβ,− + Cβ,−) respectively.

Since there are two spinors and two connections in play, the appropriate gauge group is now

G = Map(M,S1×S1) where the �rst factor acts by pull-back on (A,ϕ), the second by pull-back

on (B,ψ) and both factors act trivially on β. This action preserves the above equations. With

this in mind, the equations (30){(33) are elliptic modulo gauge, something which essentially

comes down to ellipticity of the de Rahm complex again. The details are found in §III but we
explain here how the numerology works out in dimension 6. The important variables here are

the connections A,B and the 3-form β. (The Dirac equations are already elliptic and so ϕ,ψ do

not concern us for this discussion.) Each curvature equation is 15 constraints, whilst �xing for

both factors in the gauge action brings another 2 constraints, making 15+ 15+ 2 = 32 in total;

meanwhile, each connection gives 6 degrees of freedom (the rank of Λ1) and the rank of Λ3 is

20, so (A,B, β3) corresponds to 6+6+20 = 32 degrees of freedom, which is equal to the number

of constraints.

Remarks 6. We make three remarks concerning the 4m− 2-dimensional equations.

1. We could equally have taken both spinors to be sections of S+. One reason to take sections

of both S+ and S− is that in dimension 4m − 2, geometric structures do not single out a

13



\preferred orientation". For example, in dimension 4, a symplectic manifold (M,ω) has

a preferred orientation, given by ω2 and typically M will not have a symplectic structure

inducing the opposite orientation. However, if dimM = 6, then ω and −ω induce opposite

orientations. Since geometric structures do not single out an orientation in dimension

4m − 2, we choose the same behaviour for the Seiberg{Witten equations. This choice

a�ects the index of the equations, as computed in §III, but not the analytic estimates in

§V.

2. Another interesting choice is to begin with two Spinc-structures S± and W±. We may

then take A ∈ A(detS+), ϕ ∈ Γ(S+) whilst B ∈ A(detW−), ψ ∈ Γ(W−). Again, this

choice will a�ect the index of the equations, but not the analytic estimates proved later.

This choice is convenient in our construction of examples of solutions of the equations over

K�ahler threefolds.

3. When M4m−2 = X × R is a Riemannian product, one can certainly consider solutions

to the equations over M which are invariant in the R direction. This gives a system of

equations on the odd-dimensional manifold X. Unlike dimensional reduction from 4m to

4m− 1 dimensions, however, this time the resulting equations on X are more complicated

than the odd-dimensional Seiberg{Witten equations as in De�nition 1.

One could also dimensionally reduce the (4m − 1)-dimensional Seiberg{Witten equations

onM4m−2×R to obtain a system onM4m−2. This also gives a system of equations which is

more complicated that the (4m−2)-dimensional Seiberg{Witten equations of De�nition 5.

14



Part III

Ellipticity and the index
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Proposition 7. The odd-dimesional Seiberg{Witten equations (14) and (15) over M2m+1

are elliptic modulo gauge, with index zero.

Proof. The equations (14), (15) de�ne a map

SW : A×Ωodd,≥3 × Γ(S) → (
iΩ2 ⊕Ω4 ⊕ · · · ⊕ s2mΩ2m

)
× Γ(S)

SW(A,β,ϕ) = (FA + Fβ + Cβ − q(ϕ), DA,βϕ)

Suppose δ(A,β,ϕ) = (2ia, b, σ) is an in�nitesimal perturbation of (A,β,ϕ), where a ∈ Ω1,

b ∈ Ωodd,≥3 and σ ∈ Γ(S). As a, b vary, a+ b �lls out the space Ωodd of all odd degree forms.

The linearisation of SW at (A,β,ϕ) is

d(A,β,ϕ) SW : Ωodd ⊕ Γ(S) → (
iΩ2 ⊕Ω4 ⊕ · · · ⊕ s2mΩ2m

)
⊕ Γ(S)

d(A,β,ϕ) SW(a+ b, σ) = (2ida+ Fb + Cb − dϕq(σ), DA,βσ+ c(ia+ b)ϕ)

(Note Fβ and Cβ are linear in β and so equal to their own derivative.) We supplement this with

the Coulomb gauge condition 2d∗ : Ω1 → Ω0 and discard the zeroth order terms dϕq(ψ) and

c(ia+ b)ϕ which do not a�ect ellipticity or the index. This leaves the map

L : Ωodd ⊕ Γ(S) → sΩeven ⊕ Γ(S)
L(a, b, σ) = (2d∗a+ 2ida+ Fb + Cb, DAσ)

where sΩeven =
⊕m
k=0 s2kΩ

2k. The point is that the �rst component, 2(d∗a+ ida) + Fb + Cb,

is essentially the operator 2(d+d∗) acting on a+b, just with some extraneous signs and factors

of i. This doesn't a�ect invertibility of the symbol, nor does it change the kernel and cokernel.

Since both d+ d∗ and DA are elliptic with index zero [1], the same is true for L.

Proposition 8. The 4m-dimensional Seiberg{Witten equations (20) and (21) are elliptic

modulo gauge, with index:

−(1− b1 + b2 − · · ·− b2m−1 + b
+
2m) + 2

∫
M

c1(L)∧ Td(M)

Proof. The equations (20) and (21) de�ne a map

SW : A×
(
Ω3 ⊕Ω5 ⊕ · · · ⊕Ω2m−1

)
× Γ(S+) → (

iΩ2 ⊕Ω4 ⊕ · · · ⊕ s2mΩ2m+
)
× Γ(S+)

SW(A,β,ϕ) =
(
FA + F+β + Cβ − q(ϕ), DA,βϕ

)
Following the same arguments as in the proof of Proposition 7, we conclude that the ellipticity

of the equations modulo gauge is equivalent to that of the operator

L : Ω1 ⊕Ω3 ⊕ · · · ⊕Ω2m−1 ⊕ Γ(S+) → Ω0 ⊕ iΩ2 ⊕ · · · ⊕ s2mΩ2m+ ⊕ Γ(S−)
L(a+ b, σ) =

(
2d∗a+ 2ida+ F+b + Cb, DAσ

)
where F+b and Cb are de�ned by (18) and (19) respectively. The point now is that the �rst

component, (2d∗a + ida) + F+b + Cb is essentially the elliptic operator corresponding to the

truncated de Rahm complex

Ω0
d→ Ω1

d→ · · · → Ω2m−1 d
+→ Ω2m+
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The fact that L has some additional signs and factors of i a�ects neither the invertibility of the

symbol nor the kernel and cokernel. It follows that the equations are elliptic and have the same

index as ind(DA) −
(∑2m−1

k=0 (−1)kbk + b
+
2m

)
. The result now follows from the Atiyah{Singer

index theorem [1].

Proposition 9. The 4m−2-dimensional Seiberg{Witten equations (30), (31), (32) and (33)

are elliptic modulo gauge, with index −χ(M), χ(M) being the Euler characteristic of M.

Proof. The equations (30), (31), (32), (33) de�ne a map

SW : A×A×
2m−3⊕
k=1

Ω2k+1 × Γ(S+)× Γ(S−) → 2m−2⊕
k=1

s2kΩ
2k × Γ(S−)× Γ(S+)

SW(A,B, β,ϕ,ψ)

=
(
(FA + Fβ,+ + Cβ,+ − q(ϕ)) + (FB + Fβ,− + Cβ,− − q(ψ)), DA,β,+ϕ,DB,β,−ψ

)
A is an a�ne space modelled on iΩ1, or equivalently on iΩ4m−3 (using the isomorphism ∗ :

Ω1 → Ω4m−3). Suppose δ(A,B, β,ϕ,ψ) = (2ia, 2iã, b, σ, ξ) is an in�nitesimal perturbation of

(A,B, β,ϕ,ψ), where a ∈ Ω1, ã ∈ Ω4m−3, b ∈ ⊕2m−3
k=1 Ω2k+1, σ ∈ Γ(S+) and ξ ∈ Γ(S−). As a, ã

and b vary, a+ b+ ã �lls out the space Ωodd of all odd degree forms. The linearisation of SW

at (A,B, β,ϕ,ψ) is

d(A,B,β,ϕ,ψ) SW : Ωodd ⊕ Γ(S+)⊕ Γ(S−) → (
iΩ2 ⊕Ω4 ⊕ · · · ⊕Ω4m−4

)
⊕ Γ(S−)⊕ Γ(S+)

d(A,B,β,ϕ,ψ) SW(a+ b+ ã, σ, ξ)

=
(
2ida+ Fb,+ + Cb,+ − dϕq(σ) + Fb,− + Cb,− + 2id∗ã− dψq(ξ),

DA,β,+σ+ c(ia)ϕ+

m−2∑
k=1

(
s2k+1c(b2k+1) + s4m−2k−3c(∗b2k+1)

)
ϕ+ s2m−1c(b2m−1)ϕ,

DB,β,−ξ+ c(iã)ψ+ s2m−1c(∗b2m−1)ψ+

2m−3∑
k=m

(
s2k+1c(b2k+1) + s4m−2k−3c(∗b2k+1)

)
ψ
)

We supplement this with the Coulomb gauge condition 2d∗ : Ω1 → Ω0 or equivalently, −2d :

Ω4n−3 → Ω4m−2 (using Hodge-star) and discard the zeroth order terms which do not a�ect

ellipticity or the index. This leaves the map

L : Ωodd ⊕ Γ(S+)⊕ Γ(S−) → sΩeven ⊕ Γ(S−)⊕ Γ(S+)
L(a, b, ã, σ, ξ) = (2d∗a+ 2ida+ Fb,+ + Cb,+ + Fb,− + Cb,− + 2d∗ã− 2idã,DAσ,DBξ)

where sΩeven =
⊕2m−1
k=0 s2kΩ

2k. The point is that the �rst component, 2(d∗a + ida) + Fb,+ +

Cb,++ Fb,−+Cb,−+ 2(d∗ã− idã), is essentially the operator 2(d+d∗) acting on a+b+ ã, just

with some extra signs and factors of i. This doesn't a�ect invertibility of the symbol, nor does

it change the kernel and cokernel. Since all three operators d+ d∗, DA and DB are elliptic, the

same is true for L. The index of 2(d + d∗) is −
(∑4m−2

k=0 (−1)kbk
)
= −χ(M). The index of the

two Dirac operators cancel each other since, index of DA = − index of D∗
A = − index of DB. So

index of DA+ index of DB = 0. Hence the total index is −χ(M).
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Part IV

The Weitzenböck formulae
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Let (M,g) be a Riemannian manifold of dimension n and (E, h) be a hermitian vector bundle

on M. We also pick a unitary connection A on E. In the following Lemma and throughout this

section we have picked a coframe ej which is stationary at a point p ∈ M with respect to the

Levi-Civita connection. We write ∇j for the corresponding directional derivative in the direction

dual to ej with respect to ∇A.

Lemma 10. Let B̃ ∈ Ω1(u(E)), be locally given by B̃ =
∑
j

ej ⊗ Bj for Bj ∈ Ω0(u(E)). Then

(∇A + B̃)∗(∇A + B̃) = ∇∗
A∇A − 2

∑
j

Bj ◦ ∇j −
∑
j

(∇j(Bj) + B2j ).

Proof. For ϕ ∈ Γ(E),

(∇A + B̃)∗(∇A + B̃)(ϕ) = ∇∗
A∇Aϕ+∇∗

A(B̃ϕ) + B̃
∗(∇Aϕ) + B̃∗B̃ϕ

= ∇∗
A∇Aϕ−

∑
j

∇j(Bjϕ) −
∑
j

Bj(∇jϕ) −
∑
j

B2jϕ

= ∇∗
A∇Aϕ−

∑
j

∇j(Bj)ϕ− 2
∑
j

Bj(∇jϕ) −
∑
j

B2jϕ

This lemma will be used in the calculation of all of the Weitzenb�ock formulae below. We

follow the notation used in §I. For a Spinc-manifold Mn with S→M being the spin bundle of

a Spinc-structure, a unitary connection A on the determinant bundle L determines a connection

on S. We change the associated Dirac operator DA by a form β ∈ Ω∗(M;C) (possibly with

inhomogeneous degree) and de�ne:

DA,β := DA + c(β)

Proposition 11. Let B̃ = −1
2

∑
j ej ⊗ (c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)), then the connection

∇A,β := ∇A + B̃ and the Dirac operator DA,β satis�es the Weitzenb�ock formula:

D∗
A,βDA,β = ∇∗

A,β∇A,β +
s

4
+
1

2
c(FA) +

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

+
1

4

∑
j

(c(ej) ◦ c(β) + c(β)∗ ◦ c(ej))2 + c(β)∗ ◦ c(β) (34)

where s is the scalar curvature of M.

19



Proof.

D∗
A,βDA,β

= (DA + c(β)∗)(DA + c(β))

= D2A +DA ◦ c(β) + c(β)∗ ◦DA + c(β)∗ ◦ c(β)

= ∇∗
A∇A +

s

4
+
1

2
c(FA) +

∑
j

c(ej) ◦ c(∇jβ) +
∑
j

c(ej) ◦ c(β) ◦ ∇j +
∑
j

c(β)∗ ◦ c(ej) ◦ ∇j

+ c(β)∗ ◦ c(β)

=
(
∇∗
A∇A +

∑
j

(c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)) ◦ ∇j +
1

2

∑
j

(c(ej) ◦ c(∇jβ) + c(∇jβ)∗ ◦ c(ej))

−
1

4

∑
j

(c(ej) ◦ c(β) + c(β)∗ ◦ c(ej))2
)
+
s

4
+
1

2
c(FA) + c(β)

∗ ◦ c(β)

+
1

2

∑
j

(
c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej)

)
+
1

4

∑
j

(c(ej) ◦ c(β) + c(β)∗ ◦ c(ej))2

= ∇∗
A,β∇A,β +

s

4
+
1

2
c(FA) +

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

+
1

4

∑
j

(c(ej) ◦ c(β) + c(β)∗ ◦ c(ej))2 + c(β)∗ ◦ c(β)

Notice that the last two terms in the Weitzenb�ock formula (34) are quadratic in β and do

not involve derivatives of β. The term 1
2
c(FA) +

1
2

∑
j(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej)) is the

principal part of the Weitzenb�ock remainder. In the remaining part of this section, we will

explicitly calculate the principal parts for di�erent choices of β in di�erent dimensions. Before

we proceed, we would like to �x some conventions regarding Cli�ord multiplications [10],[21]:

For η ∈ Ω1, γ ∈ Ωk,

c(η) ◦ c(γ) + (−1)k+1c(γ) ◦ c(η) = −2c(η⌟γ)

c(η∧ γ) = c(η) ◦ c(γ) + c(η⌟γ)

⌟ is the contraction operator de�ned in the following way. At a point p ∈M,

η⌟(e1 ∧ · · ·∧ ek) :=
k∑
i=1

(−1)i−1⟨ei, η⟩e1 ∧ · · ·∧ · · ·∧ êi ∧ · · ·∧ ek

Hence, for γ ∈ Ωodd,

c(dγ) = c
(∑
j

ej ∧∇jγ
)
=
1

2

∑
j

(
c(ej) ◦ c(∇jγ) − c(∇jγ) ◦ c(ej)

)
(35)

c(d∗γ) = c
(
−
∑
j

ej⌟∇jγ
)
=
1

2

∑
j

(
c(ej) ◦ c(∇jγ) + c(∇jγ) ◦ c(ej)

)
(36)
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and for γ ∈ Ωeven,

c(dγ) = c
(∑
j

ej ∧∇jγ
)
=
1

2

∑
j

(
c(ej) ◦ c(∇jγ) + c(∇jγ) ◦ c(ej)

)
(37)

c(d∗γ) = c
(
−
∑
j

ej⌟∇jγ
)
=
1

2

∑
j

(
c(ej) ◦ c(∇jγ) − c(∇jγ) ◦ c(ej)

)
. (38)

0.3.1 Dimension 3

β = i∗β3, β3 ∈ Ω3, ∇A,β = ∇A− i
2

∑
j ej⊗ (c(ej)◦c(∗β3)−c(∗β3)◦c(ej)) = ∇A.We calculate

the principal part of the Weitzenb�ock formula:

1

2
c(FA) +

i

2

∑
j

(
c(ej) ◦ c(∇j ∗ β3) + c(∇j ∗ β3) ◦ c(ej)

)
=
1

2
c(FA) + c(id ∗ β3)

=
1

2
c(FA − 2id∗β3)

The Weitzenb�ock formula reads:

D∗
A,βDA,β = ∇∗

A∇A +
s

4
+
1

2
c(FA − 2id∗β3) + c(β3)

2 (39)

= ∇∗
A∇A +

s

4
+
1

2
c(FA − 2id∗β3) + |β3|

2 (40)

0.3.2 Dimension 4

β = 0,∇A,β = ∇A. The Weitzenb�ock formula (on a positive spinor) reads:

D2A = ∇∗
A∇A +

s

4
+
1

2
c(F+A) (41)

0.3.3 Dimension 5

β = β3 − ∗β3 + i ∗ β5, βl ∈ Ωl. Notice c
(
β3 − ∗β3 + i ∗ β5

)
= c

(
(1− i)β3 + i ∗ β5

)
.

Say in our chosen coordinate neighbourhood, β3 =
∑

i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3 , we get

6∑
j=1

c(ej) ◦ c
( ∑
i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3
)
◦ c(ej)

=
∑

i1<i2<i3

βi1i2i3
( 6∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej)
)

We notice that for j ∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3)
and for j /∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3). So,∑

j

(c(ej) ◦ c(β3) ◦ c(ej)) = −c(β3)
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c(β3)
2 will potentially give us Cli�ord actions of real 0, 2 and 4-forms. Notice that c(β3)

2 is a

Hermitian endomorphism of the positive spinors, hence we only get to see the Cli�ord actions

of a 0-form and a 4-form, since Cli�ord actions of real 2-forms are skew-Hermitian. For the

0-forms, we have
(
c(ei1) ◦ c(ei2) ◦ c(ei3)

)2
= 1. Hence, we get c(β3)

2 = |β3|
2 + c(θ4), where θ4

is a four-form. We notice

for j ̸= i1 ̸= i2 ̸= i3 ̸= i4,
c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4),
and for i1 ̸= i2 ̸= i3 ̸= i4, j ∈ {i1, i2, i3, i4},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4)

Hence,
5∑
j=1

c(ej) ◦ c(θ4) ◦ c(ej) = 3c(θ4) and
5∑
j=1

c(ej)
( ∑
i1<i2<i3

β2i1i2i3
)
◦ c(ej) = −5|β3|

2. We

get, ∑
j

c(ej) ◦ c(β3)2 ◦ c(ej) = −5|β3|
2 + 3c(θ4) = 3c(β3)

2 − 8|β3|
2

c(β) ◦ c(β)∗ = c
(
(1− i)β3 + i ∗ β5

)
◦ c

(
(1+ i)β3 − i ∗ β5

)
= 2c(β3)

2 − 2(∗β5)c(β3) + |β5|
2

c(β)∗ ◦ c(β) = c
(
(1+ i)β3 − i ∗ β5

)
◦ c

(
(1− i)β3 + i ∗ β5

)
= 2c(β3)

2 − 2(∗β5)c(β3) + |β5|
2

Assembling all the pieces we have,∑
j

(
c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)

)2
=

∑
j

(
c(ej) ◦ c(β) ◦ c(β)∗ ◦ c(ej) − c(β)∗ ◦ c(β)

)
+
(∑
j

c(ej) ◦ c(β) ◦ c(ej)
)
◦ c(β) + c(β)∗ ◦

(∑
j

c(ej) ◦ c(β)∗ ◦ c(ej)
)

= 2(3c(β3)
2 − 8|β3|

2) + 2(∗β5)c(β3) − 5|β5|2 − 5(2c(β3)2 − 2(∗β5)c(β3) + |β5|
2)

+ (2ic(β3)
2 + 5|β5|

2 − 6i(1− i)(∗β5)c(β3)) + (−2ic(β3)
2 + 5|β5|

2 + 6i(1+ i)(∗β5)c(β3))
= −4c(β3)

2 − 16|β3|
2

The principal part of the curvature equations is:

1

2
c(FA) +

1

2

∑
j

(
c(ej) ◦ (1− i)∇jβ3 − (1+ i)∇jβ3 ◦ c(ej)

)
+
i

2

∑
j

(
c(ej) ◦ c(∇j(∗β5)) + c(∇j(∗β5)) ◦ c(ej)

)
=
1

2
c(FA + 2dβ3 − 2id

∗β3 + 2id(∗β5))

=
1

2
c(FA + 2dβ3 − 2id

∗β3 + 2d
∗β5)
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Finally, we get the Weitzenb�ock formula

D∗
A,βDA,β =∇∗

A,β∇A,β +
s

4
+
1

2
c(FA + 2dβ3 − 2id

∗β3 + 2d
∗β5)

+ c(β3)
2 − 4|β3|

2 − 2(∗β5)c(β3) + |β5|
2

=∇∗
A,β∇A,β +

s

4
+
1

2
c(FA + 2dβ3 − 2id

∗β3 + 2d
∗β5)

+ c(β3 − ∗β5)2 − 4|β3|2

0.3.4 Dimension 6

β = β3 ∈ Ω3. Notice c(β) = c(β)∗. First, we calculate the quadratic term:∑
j

(
c(ej) ◦ c(β) + c(β) ◦ c(ej)

)2
=

∑
j

(
c(ej) ◦ c(β)2 ◦ c(ej) + c(β) ◦ c(ej)2 ◦ c(β) + c(ej) ◦ c(β) ◦ c(ej) ◦ c(β)

+ c(β) ◦ c(ej) ◦ c(β) ◦ c(ej)
)

Say in our chosen coordinate neighbourhood, β =
∑

i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3 , we get

6∑
j=1

c(ej) ◦ c
( ∑
i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3
)
◦ c(ej)

=
∑

i1<i2<i3

βi1i2i3
( 6∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej)
)

We notice that for j ∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3)
and for j /∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3).

So,
6∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = 0.

c(β)2 will potentially give us Cli�ord actions of 0, 2, 4 and 6-forms. Notice that c(β3)
2 is a

Hermitian endomorphism of the positive spinors, hence we only get to see the Cli�ord actions

of a 0-form and a 4-form, since Cli�ord actions of real 2-forms and 6-forms are skew-Hermitian.

For the 0-forms, we have
(
c(ei1)◦c(ei2)◦c(ei3)

)2
= 1. Hence, we get c(β)2 = |β|2+c(θ4), where

θ4 is a four-form. We notice

for j ̸= i1 ̸= i2 ̸= i3 ̸= i4,
c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4),
and for i1 ̸= i2 ̸= i3 ̸= i4, j ∈ {i1, i2, i3, i4},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4)

Hence,
6∑
j=1

c(ej) ◦ c(θ4) ◦ c(ej) = 2c(θ4) and
6∑
j=1

c(ej)
( ∑
i1<i2<i3

β2i1i2i3
)
◦ c(ej) = −6|β|2. We get,

∑
j

c(ej) ◦ c(β)2 ◦ c(ej) = −6|β|2 + 2c(θ4) = 2c(β)
2 − 8|β|2
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and∑
j

(
c(ej) ◦ c(β) + c(β) ◦ c(ej)

)2
= −6c(β)2 +

∑
j

c(ej) ◦ c(β)2 ◦ c(ej) = −4c(β)2 − 8|β|2

The principal part of the remainder is:

1

2
c(FA) +

1

2

∑
j

(
c(ej) ◦ c(∇jβ3) − c(∇jβ3) ◦ c(ej)

)
=
1

2
c
(
FA + 2dβ3

)
Finally, assembling all the pieces we get the Weitzenb�ock formula on positive spinors:

D2A,β = ∇∗
A,β∇A,β +

s

4
+
1

2
c(FA + 2dβ3) − 2|β3|

2 (42)

For β = ∗β3, the principal part of the remainder is:

1

2
c(FB) +

1

2

∑
j

(
c(ej) ◦ c(∇jβ3) − c(∇jβ3) ◦ c(ej)

)
=
1

2
c
(
FB + 2d(∗β3)

)
=
1

2
c
(
FB − 2id∗β3)

)
[ on Γ(S−)]

The Weitzenb�ock formula on negative spinors reads:

D2B,β = ∇∗
B,β∇B,β +

s

4
+
1

2
c(FB − 2id∗β3) − 2|β3|

2 (43)

0.3.5 Dimension 7

β = (β3 + i ∗ β3) + (iβ5 − ∗β5) + i ∗ β7, βl ∈ Ωl.
Notice c

(
(β3 + i ∗ β3) + (iβ5 − ∗β5) + i ∗ β7

)
= c

(
(1+ i)β3 + (1+ i)β5 + i ∗ β7

)
∑
j

(
c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)

)2
=

∑
j

(
(1+ i)c(ej) ◦ c(β3 + β5) + i(∗β7)c(ej) + (1− i)c(β3 − β5) ◦ c(ej) − i(∗β7)c(ej)

)2
=

∑
j

(
(1+ i)c(ej) ◦ c(β3 + β5) + (1− i)c(β3 − β5) ◦ c(ej)

)2
= 2i

(∑
j

c(ej) ◦ c(β3 + β5) ◦ c(ej)
)
◦ c(β3 + β5)

− 2ic(β3 − β5) ◦
(∑

j

c(ej) ◦ c(β3 − β5) ◦ c(ej)
)

+ 2
∑
j

c(ej) ◦ c(β3 + β5) ◦ c(β3 − β5) ◦ c(ej) − 14c(β3 − β5) ◦ c(β3 + β5)
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Say in our chosen coordinate neighbourhood, β3 =
∑

i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3 , we get

7∑
j=1

c(ej) ◦ c
( ∑
i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3
)
◦ c(ej)

=
∑

i1<i2<i3

βi1i2i3
( 7∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej)
)

Notice that for j ∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) and
for j /∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3).

Hence
7∑
j=1

c(ej) ◦ c(β3) ◦ c(ej) = c(β3).

And if β5 =
∑

i1<i2<i3<i4<i5

γi1i2i3i4i5ei1 ∧ ei2 ∧ ei3 ∧ ei4 ∧ ei5 ,

7∑
j=1

c(ej) ◦ c(β5) ◦ c(ej)

=
∑

i1<i2<i3<i4<i5

γi1i2i3i4i5
( 7∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5) ◦ c(ej)
)

Notice that for j ∈ {i1, i2, i3, i4, i5},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5)
and for j /∈ {i1, i2, i3, i4, i5},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5)

Hence,
7∑
j=1

c(ej) ◦ c(β5) ◦ c(ej) = −3c(β5)

c(β3)
2 will potentially give us Cli�ord actions of 0, 2, 4 and 6-forms. Notice that c(β3)

2 is a

Hermitian endomorphism of the positive spinors, hence we only get to see the Cli�ord actions

of a 0-form and a 4-form, since Cli�ord actions of real 2-forms and 6-forms are skew-Hermitian.

For the 0-forms, we have
(
c(ei1) ◦ c(ei2) ◦ c(ei3)

)2
= 1. Hence, we get c(β3)

2 = |β3|
2 + c(θ4),

where θ4 is a four-form. We notice

for j ̸= i1 ̸= i2 ̸= i3 ̸= i4,
c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4),
and for i1 ̸= i2 ̸= i3 ̸= i4, j ∈ {i1, i2, i3, i4},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4)

Hence,
7∑
j=1

c(ej) ◦ c(θ4) ◦ c(ej) = c(θ4) and
7∑
j=1

c(ej)
( ∑
i1<i2<i3

β2i1i2i3
)
c(ej) = −7|β3|

2.

We get
7∑
i=1

c(ej) ◦ c(β3)2 ◦ c(ej) = −7|β3|
2 + c(θ4) = c(β3)

2 − 8|β3|
2
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Similarly, c(β5)
2 will potentially give us Cli�ord actions of real 0, 2, 4 and 6-forms. Notice

that c(β5)
2 is a Hermitian endomorphism of the positive spinors, hence we only get to see the

Cli�ord actions of a 0-form and a 4-form, since Cli�ord actions of real 2-forms and 6-forms are

skew-Hermitian.

For the 0-form, we observe that for i1 ̸= i2 ̸= i3 ̸= i4 ̸= i5,(
c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5)

)
◦
(
c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ei5)

)
= − Id

Hence, c(β5)
2 = −|β5|

2 + c(γ4), γ4 ∈ Ω4.∑
j

c(ej) ◦ c(β5)2 ◦ c(ej) = 7|β5|2 + c(γ4) = c(β5)2 + 8|β5|2

(
c(β3)◦c(β5)−c(β5)◦c(β3)

)
will potentially give us Cli�ord actions of 2, 4 and 6-forms. Notice

that
(
c(β3) ◦ c(β5) − c(β5) ◦ c(β3)

)
is a Hermitian endomorphism of spinors. Since Cli�ord

actions of real 2 and 6-forms are skew-Hermitian endomorphisms, we only get to see Cli�ord

action of a 4-form. So, we have∑
j

c(ej) ◦
(
c(β3) ◦ c(β5) − c(β5) ◦ c(β3)

)
◦ c(ej) =

(
c(β3) ◦ c(β5) − c(β5) ◦ c(β3)

)
Hence ∑

j

(
c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)

)2
= −12

(
c(β3)

2 − c(β5)
2
)
− 16(|β3|

2 + |β5|
2) − 16

(
c(β3) ◦ c(β5) − c(β5) ◦ c(β3)

)
− 4i

(
c(β3) ◦ c(β5) + c(β5) ◦ c(β3)

)
c(β)∗c(β)

=
(
(1− i)c(β3 − β5) − i(∗β7)

)
◦
(
(1+ i)c(β3 + β5) + i(∗β7)

)
= 2

(
c(β3)

2 − c(β5)
2 + c(β3) ◦ c(β5) − c(β5) ◦ c(β3)

)
+ |β7|

2

+ 2 ∗ (β7)c(β3 − iβ5)

The principal part of the remainder is

1

2
c
(
FA + (1+ i)c(ej) ◦ c(∇jβ3) − (1− i)c(∇jβ3) ◦ c(ej)

)
+
1

2
c
(
(1+ i)c(ej) ◦ c(∇jβ5) + (1− i)c(∇jβ5) ◦ c(ej)

)
+
i

2

(
c(ej) ◦ c(∇j(∗β7)) + c(∇j(∗β7)) ◦ c(ej)

)
=
1

2
c
(
FA + 2dβ3 + 2id

∗β3 + 2idβ5 + 2d
∗β5 + 2id(∗β7)

)
=
1

2
c(FA + 2dβ3 + 2id

∗β3 + 2idβ5 + 2d
∗β5 + 2id

∗β7)
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Finally we get the Weitzenb�ock formula

D∗
A,βDA,β

= ∇∗
A,β∇A,β +

s

4
+
1

2
c(FA + 2dβ3 + 2id

∗β3 + 2idβ5 + 2d
∗β5 + 2id

∗β7)

−
(
c(β3)

2 − c(β5)
2
)
− 4(|β3|

2 + |β5|
2) − 2

(
c(β3) ◦ c(β5) − c(β)5 ◦ c(β3)

)
− i

(
c(β3) ◦ c(β5) + c(β)5 ◦ c(β3)

)
+ 2(∗β7)

(
c(β3) − ic(β5)

)
+ |β7|

2

Notice
(
c(β3) ◦ c(β5) − c(β)5 ◦ c(β3)

)
and i

(
c(β3) ◦ c(β5) + c(β)5 ◦ c(β3)

)
give us trace-free

Hermitian endomorphisms of the spinors.
(
c(β3) ◦ c(β5) − c(β)5 ◦ c(β3)

)
comes from Cli�ord

action of a real 4-form and i
(
c(β3) ◦ c(β5) + c(β)5 ◦ c(β3)

)
comes from Cli�ord action of an

imaginary 2-form and an imaginary 6-form.

0.3.6 Dimension 8

β = β3 + i ∗ β3, βl ∈ Ωl. Notice c(β3 + i ∗ β3) = (1+ i)c(β3).∑
j

(
c(ej) ◦ c(β) + c(β)∗ ◦ c(ej)

)2
∑
j

(
(1+ i)c(ej) ◦ c(β3) + (1− i)c(β3) ◦ c(ej)

)2
= 2i

(∑
j

c(ej) ◦ c(β3) ◦ c(ej)
)
◦ c(β3) − 2ic(β3) ◦

(∑
j

c(ej) ◦ c(β3) ◦ c(ej)
)

+ 2
∑
j

c(ej) ◦ c(β3)2 ◦ c(ej) + 2
∑
j

c(β3) ◦ c(ej)2 ◦ c(β3)

Say in our chosen coordinate neighbourhood, β3 =
∑

i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3 , we get

8∑
j=1

c(ej) ◦ c
( ∑
i1<i2<i3

βi1i2i3ei1 ∧ ei2 ∧ ei3
)
◦ c(ej)

=
∑

i1<i2<i3

βi1i2i3
( 8∑
j=1

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej)
)

Notice that for j ∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) and
for j /∈ {i1, i2, i3}, c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3).

8∑
j=1

c(ej) ◦ c(β3) ◦ c(ej) = 2c(β3) (44)

c(β3)
2 will potentially give us Cli�ord actions of 0, 2, 4 and 6-forms. Notice that c(β3)

2 is a

Hermitian endomorphism of the positive spinors, hence we only get to see the Cli�ord actions

of a 0-form and a 4-form, since Cli�ord actions of real 2-forms and 6-forms are skew-Hermitian.
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For the 0-forms, we have
(
c(ei1) ◦ c(ei2) ◦ c(ei3)

)2
= 1. Hence, we get c(β3)

2 = |β3|
2 + c(θ4),

where θ4 is a four-form. We notice

for j ̸= i1 ̸= i2 ̸= i3 ̸= i4,
c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = −c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4),
and for i1 ̸= i2 ̸= i3 ̸= i4, j ∈ {i1, i2, i3, i4},

c(ej) ◦ c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4) ◦ c(ej) = c(ei1) ◦ c(ei2) ◦ c(ei3) ◦ c(ei4)

Hence,
8∑
j=1

c(ej) ◦ c(θ4) ◦ c(ej) = 0 and
8∑
j=1

c(ej)
( ∑
i1<i2<i3

β2i1i2i3
)
◦ c(ej) = −8|β3|

2. So, we get

8∑
i=1

c(ej) ◦ c(β3)2 ◦ c(ej) = −8|β3|
2 (45)

The principal part of the remainder is

1

2
c(FA) +

1

2

∑
j

(
(1+ i)c(ej) ◦ c(∇jβ3) − (1− i)c(∇jβ3) ◦ c(ej)

)
=
1

2
c(FA + 2dβ3 + 2d

∗β3)

=
1

2
c(FA + 2dβ+

3 + 2id∗β3) [on positive spinors]

Assembling all the pieces we get,

(DA + c(β))2

= ∇∗
A,β∇A,β +

s

4
+
1

2
c(FA + dβ+

3 + 2id∗β3) − 2c(β3)
2 − 4|β3|

2 [on Γ(S+)]

0.3.7 Dimension 2m+ 1

Following §0.1, β =
∑m−1
k=1

(
s2k+1β2k+1 + is2m−2k ∗ β2k+1

)
+ i ∗ β2m+1, βl ∈ Ωl.

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

=
1

2

m−1∑
k=1

s2k+1
∑
j

(
c(ej) ◦ c(∇jβ2k+1) − c(∇jβ2k+1) ◦ c(ej)

)
+
i

2

m∑
k=1

s2m−2k

∑
j

(
c(ej) ◦ c(∇j(∗β2k+1)) + c(∇j(∗β2k+1)) ◦ c(ej)

)
=

m−1∑
k=1

s2k+2c(dβ2k+1) + i

m∑
k=1

s2m−2kc(d
∗β2k+1)

=

m−1∑
k=1

s2k+2c(dβ2k+1) +

m∑
k=1

(−1)⌊
m+1

2
⌋+(m+1)(k+1)s2kc(d

∗β2k+1)
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The Weitzenb�ock formula reads

D∗
A,βDA,β

= ∇∗
A,β∇A,β +

s

4
+
1

2
c
(
FA + 2

m−1∑
k=1

s2k+2dβ2k+1 + 2

m∑
k=1

(−1)⌊
m+1

2
⌋+(m+1)(k+1)s2kd

∗β2k+1
)

+ quadratic terms in β (46)

0.3.8 Dimension 4m

Following §0.2, β =
∑m−1
k=1 (s2k+1β2k+1 + s4m−2k−1 ∗ β2k+1), βl ∈ Ωl.

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

=
1

2

m−1∑
k=1

s2k+1
∑
j

(
c(ej) ◦ c(∇jβ2k+1) − c(∇jβ2k+1) ◦ c(ej)

)
+
1

2

m−1∑
k=1

s4m−2k−1

∑
j

(
c(ej) ◦ c(∇j(∗β2k+1)) − c(∇j(∗β2k+1)) ◦ c(ej)

)
=

m−1∑
k=1

(
s2k+2c(dβ2k+1) + s4m−2k−1c(d(∗β2k+1))

)
=

m−1∑
k=1

(
s2k+2c(dβ2k+1) + (−1)m+k+1s2kc(d

∗β2k+1)
)

[ on Γ(S+)]

We get the Weitzenb�ock formula (acting on positive spinors):

D2A,β

= ∇∗
A,β∇A,β +

s

4
+
1

2
c
(
FA + 2

m−2∑
k=1

s2k+2dβ2k+1 + 2s2md
+β2m−1 + 2

m−1∑
k=1

(−1)m+k+1s2kd
∗β2k+1

)
+ quadratic terms in β (47)
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0.3.9 Dimension 4m− 2

Following §0.3, β =
∑m−2
k=1 (s2k+1β2k+1 + s4m−2k−3 ∗ β2k+1) + s2m−1β2m−1, βl ∈ Ωl.

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

=
1

2

m−1∑
k=1

s2k+1
(∑
j

(c(ej) ◦ c(∇jβ2k+1) − c(∇jβ2k+1) ◦ c(ej))
)

+
1

2

m−2∑
k=1

s4m−2k−3

(∑
j

(c(ej) ◦ c(∇j(∗β2k+1)) − c(∇j(∗β2k+1)) ◦ c(ej))
)

=

m−1∑
k=1

s2k+2c(dβ2k+1) +

m−2∑
k=1

s4m−2k−3c(d(∗β2k+1))

=

m−1∑
k=1

s2k+2c(dβ2k+1) +

m−2∑
k=1

(−1)ms2kc(d
∗β2k+1) [ on Γ(S+)]

The Weitzenb�ock formula for the positive spinors reads:

D2A,β = ∇∗
A,β∇A,β +

s

4
+
1

2
c
(
FA + 2

m−1∑
k=1

s2k+2dβ2k+1 + 2

m−2∑
k=1

(−1)ms2kd
∗β2k+1

)
+ quadratic terms in β (48)

If we take β = s2m−1 ∗ β2m−1 +
∑2m−3
k=m (s2k+1β2k+1 + s4m−2k−3 ∗ β2k+1), βl ∈ Ωl.

1

2

∑
j

(c(ej) ◦ c(∇jβ) − c(∇jβ)∗ ◦ c(ej))

= s2m−1
1

2

∑
j

(
c(ej) ◦ c(∇j ∗ (β2m−1)) − c(∇j(∗β2m−1)) ◦ c(ej)

)
+

2m−3∑
k=m

s2k+1
(
c(ej) ◦ c(∇jβ2k+1) − c(∇jβ2k+1) ◦ c(ej)

)
+

2m−3∑
k=m

s4m−2k−3

(
c(ej) ◦ c(∇j(∗β2k+1)) − c(∇j(∗β2k+1)) ◦ c(ej)

)
= s2m−1c(d(∗β2m−1)) +

2m−3∑
k=m

s2k+2c(dβ2k+1) +

2m−3∑
k=m

s4m−2k−3c(d(∗β2k+1))

=

2m−3∑
k=m

s2k+2c(dβ2k+1) +

2m−3∑
k=m−1

(−1)m+1s2kc(d
∗β2k+1) [ on Γ(S−)]

The Weitzenb�ock formula for the negative spinors reads:

D2B,β = ∇∗
B,β∇B,β +

s

4
+
1

2
c
(
FB + 2

2m−3∑
k=m

s2k+2dβ2k+1 + 2

2m−3∑
k=m−1

(−1)m+1s2kd
∗β2k+1

)
+ quadratic terms in β (49)
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Part V

A priori estimates
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We prove some a priori estimates for the 8d Seiberg{Witten equations. Similar techniques can

be applied to get bounds in other dimensions as well. The Laplacian used here is ∆ = dd∗+d∗d.

Before we get to the 8d equations, we sketch a proof of compactness of the moduli space of the

4d SW equations. The a priori estimates we prove for the 8d equations are in parallel to the

analysis in the 4d case. For more details of the compactness result of 4d SW equations one can

consult [20]. The 4d SW equations for A ∈ A and ϕ ∈ Γ(S+) on an orientable Riemannian four

manifold (M,g) are:

DAϕ = 0 (50)

F+A = q(ϕ) (51)

• The �rst step is to get a uniform C0 bound of ϕ. We use the Weitzenb�ock formula:

D2A = ∇∗
A∇A +

s

4
+
1

2
c(F+A) [s is the scalar curvature]

Evaluating it on (A,ϕ), a solution of the equations (50), (51) and taking pointwise inner

product with ϕ yields

⟨∇∗
A∇Aϕ,ϕ⟩+

s

4
|ϕ|2 +

1

4
|ϕ|4 = 0 (52)

We get

1

2
∆|ϕ|2 = ⟨∇∗

A∇Aϕ,ϕ⟩− |∇Aϕ|2

= −
s

4
|ϕ|2 −

1

4
|ϕ|4 − |∇Aϕ|2

Thus at a point x0 where |ϕ|2 achieves its maximum, we have

1

4
|ϕ(x0)|

4 ≤ −
s(x0)

4
|ϕ(x0)|

2

Hence ∃C > 0 such that ||ϕ||2
C0 ≤ C.

• Using the C0 bound of ϕ, we get some more estimates:

||F+A||C0 = ||q(ϕ)||C0 ≤ 1

2
||ϕ||2C0 ≤ C

2

and ||F+A||
2
L2 ≤ C2

4
vol(M)

Now if we assume that the virtual dimension of the moduli space is compact i.e.,

c1(L)
2 − 2

(
χ(M) + 3 sign(M)

)
≥ 0

[L is the determinant bundle of the positive Spinc bundle]

and also use the identity

c1(L)
2 =

1

4π2

(
||F+A||

2
L2 − ||F−A||

2
L2

)
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we get

||F−A||
2
L2 ≤ C2

4
vol(M) − 8π2χ(M) − 12π2 sign(M)

Eq. (52) gives us:

||∇Aϕ||L2 ≤ C

4
vol(M)

• Notice since

F+A = ϕ⊗ ϕ∗ −
|ϕ|2

2
Id

we have

∇L.C.F
+
A = ∇Aϕ⊗ ϕ∗ + ϕ⊗∇Aϕ∗ − Re⟨∇Aϕ,ϕ⟩ Id

Using the a priori bound on ||∇Aϕ||2L2 and the L∞ bound on ϕ, we get an a priori bound

on ||∇L.C.F
+
A||
2
L2 . Once we get an a priori L21 bound on F+A, using Uhlenbeck compactness

(or elementary Hodge theory in our case since the gauge group is abelian) we get an L22
bound on the connection upto gauge:

Let A0 be a �xed C
∞ connection on L. There's a constant C1 depending only onM and A0

such that for any solution (A,ϕ) to the SW equations we have a connection A
′
= A0 + α

gauge equivalent to A with

d∗α = 0 and ||α||2L2 ≤ C1

• Now we parley the L22 bound on A and the L∞ bound on ϕ into C∞ bounds on both A

and ϕ using standard bootstrap technique for elliptic equations. After some careful use of

bootstrap and Sobolev embedding we end up with the following compactness result:

Let (An, ϕn) be any sequence to the SW equations. Then after passing to a subsequence,

and applying L23 changes of gauge we can arrange that the (An, ϕn) are C
∞ objects and

they converge in the C∞ topology to a limit (A,ϕ) which is also a solution to the SW

equations. In particular, the moduli space of solutions to the SW equations is compact.

Now we get back to the SW equations in dimension 8. The equations in dimension 8 are the

following for ϕ ∈ Γ(S+), A ∈ A, β ∈ Ω3:

(DA + (1+ i)c(β))ϕ = 0 (53)

FA + 2id∗β+ 2d+β = q(ϕ) (54)

Lemma 12. There is a constant C > 0, such that if ϕ,A,β solve (53) and (54), then

||ϕ||2C0 ≤ C(||β||2C0 + 1).

In particular, if Aj, ϕj, βj is a sequence of solutions in which ϕj is unbounded, then βj is

also unbounded.
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Proof. If ϕ,A,β solve (53) and (54), then using the Weitzenb�ock formula proved in §0.3.6 for

any x ∈M, we get

∇∗
A,β∇A,β(ϕ(x)) +

s(x)

4
ϕ(x) +

7

16
|ϕ(x)|2ϕ(x) − 2(c(β)2ϕ)(x) − 4|β(x)|2ϕ(x) = 0

Taking point-wise inner product with ϕ yields

⟨∇∗
A,β∇A,β(ϕ(x)), ϕ(x)⟩+

s(x)

4
|ϕ(x)|2 +

7

16
|ϕ(x)|4 − 2|c(β(x))ϕ(x)|2 − 4|β(x)|2|ϕ(x)|2 = 0

We have

1

2
∆|ϕ|2 = ⟨∇∗

A,β∇A,βϕ,ϕ⟩− |∇A,βϕ|2 ≤ 4|β|2|ϕ|2 + 2|c(β)ϕ|2 −
s

4
|ϕ|2 −

7

16
|ϕ|4

≤
(
6|β|2 −

s

4

)
|ϕ|2 −

7

16
|ϕ|4 (55)

It follows that at a point x0 ∈M, where |ϕ|2 achieves its maximum and hence ∆(|ϕ(x0)|
2) ≥ 0,

we have (
6|β(x0)|

2 −
s(x0)

4

)
|ϕ(x0)|

2 −
7

16
|ϕ(x0|

4 ≤ 0

As ϕ is not identically zero, |ϕ(x0)|
2 > 0, and hence we get

7

16
|ϕ(x0)|

2 ≤
(
6|β(x0)|

2 −
s(x0)

4

)
≤ C1

(
|β(x0)|

2 + 1
)

[C1 = 6×max
(
1,

|s(x0)|

24

)
]

This implies

||ϕ||2C0 ≤ C(||β||2C0 + 1) [C =
16

7
C1]

Lemma 13. Given any solution to the equations (53) and (54), β is determined in the

following way:

β = −
i

2
dGq(ϕ)2 − ∗dGq(ϕ)4 + βh

Here G denotes the Green's operator for Laplacians on Ω2 and Ω4 respectively (with abuse

of notation we call it G in both cases) and βh denotes the harmonic part of β.

Proof. We write q(ϕ)2 for the part of q(ϕ) which lies in iΩ2 and q(ϕ)4 for the part of q(ϕ)

which lies in Ω4+. Applying d to the curvature equation we get,

dd∗β = −
i

2
dq(ϕ)2 and d∗dβ = − ∗ (dq(ϕ)4)

Together these two equations give

∆β = (dd∗ + d∗d)β = −
i

2
dq(ϕ)2 − ∗(dq(ϕ)4)

The result now follows from applying Green's operator and using that G commutes with both d

and ∗.
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Lemma 14. There is a constant C, such that for any solution to the equations (53) and

(54),

||β||Lp
1
≤ C

(∫
M

|ϕ|2p
)1/p

+ C||βh||

(where, at the expense of changing C, we can use any norm on harmonic 3-forms since

they are all equivalent). It follows (by Sobolev embedding) that

||β||C0 ≤ C
(∫
M

|ϕ|18
)1/9

+ C||βh||

Proof. We estimate

||dGq(ϕ)2||Lp
1
≤ C||Gq(ϕ)||Lp

2
≤ C||q(ϕ)||Lp ≤ C

(
|ϕ|2p

)1/p
|| ∗ dGq(ϕ)4||Lp

1
≤ C||Gq(ϕ)||Lp

2
≤ C||q(ϕ)||Lp ≤ C

(
|ϕ|2p

)1/p
The lemma now follows from these two inequalities.

Lemma 15. There is a constant C > 0, such that for any solution to the equations (53)

and (54),

∆(|β|2 + |ϕ|2) ≤ C(|β|4 + 1)

Proof. We use a Bochner{Weitzenb�ock formula for the three-form β [22]:

1

2
∆|β|2 = ⟨∆β,β⟩− |∇β|2 + F(β)

Here F is a quadratic term in β, related to the curvature tensor. Using the lemmas above we get,

∆|β|2 + ∆|ϕ|2 = 2
(
⟨∆β,β⟩− |∇β|2 + F(β) +

(
6|β|2 −

s

4

)
|ϕ|2 −

7

16
|ϕ|4 − |∇A,βϕ|2

)
≤ C|∇q(ϕ)||β|+ C|β|2 + C(|β|2 + 1)|ϕ|2 − 7

8
|ϕ|4 − 2|∇A,βϕ|2

≤ C|∇Aϕ||ϕ||β|+ C|β|2 + C(|β|2 + 1)|ϕ|2 −
7

8
|ϕ|4 − 2|∇A,βϕ|2

≤ C(|β|2|ϕ|2 + |β|2 + |ϕ|2) −
7

8
|ϕ|4

≤ C(|β|4 + 1)

Remark 16. Notice that from the proof of the last lemma, we also get an ϵ{regularity type

inequality

∆(|β|2 + |ϕ|2) ≤ C(|β|2|ϕ|2 + |β|2|+ ϕ|2)

≤ C
(
(|β|2|+ ϕ|2)2 + 1

)
for a constant C > 0.
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Lemma 12 says that given a uniform C0 bound of the three-form β, we get a uniform C0

bound of the spinor ϕ. We do a Nash{Moser type iteration to improve this result:

Lemma 17. There exists q > 0 such that if β is uniformly bounded in Lq, then ϕ is

uniformly bounded in L∞.
Proof. Equation (55) gives us

1

2
∆|ϕ|2 ≤

(
6|β|2 −

s

4

)
|ϕ|2 −

7

16
|ϕ|4

Now let's call |ϕ|2 = f and
(
12|β|2 − s

2

)
= g. So we get

∆f ≤ gf− 7

8
f2

⇒ ∫
fp+1∆f ≤

∫
(gfp+2 −

7

8
fp+3)

⇒ 4(p+ 1)

(p+ 2)2

∫
|∇(f

p+2
2 )|2 ≤

∫
|g|fp+2 −

7

8

∫
fp+3

⇒ 4(p+ 1)

(p+ 2)2

∫
|∇(f

p+2
2 )|2 ≤

∫
(c|g|)p+3

p+ 3
+

∫
fp+3

c
p+3
p+2 p+3

p+2

−
7

8

∫
fp+3 [c any positive constant]

For any p, choose c = 8
7
. We get

c
p+3
p+2 ≥ 8

7
, and for that c we get,

c
p+3
p+2 >

8

7
× p+ 2

p+ 3
⇒ (

1

c
p+3
p+2 p+3

p+2

−
7

8

)
< 0

Hence we can write, ∫
fp+3 ≤ C(p)

∫
|g|p+3

where the constant C(p) depends on p but not on f or g. Hence, we get an Lp+3 bound of f

from an Lp+3 bound of g.

We can actually do better! Start with the inequality:

4(p+ 1)

(p+ 2)2

∫
|∇(f

p+2
2 )|2 ≤

∫
|g|fp+2 −

7

8

∫
fp+3

⇒ 4(p+ 1)

(p+ 2)2
( ∫

|∇(f
p+2

2 )|2 +

∫
(f

p+2
2 )2

)
≤ 4(p+ 1)

(p+ 2)2

∫
|∇(f

p+2
2 )|2 + 4

∫
fp+2

≤
∫
(|g|+ 4)fp+2 −

7

8

∫
fp+3 (56)

We play the same trick on the right hand side as before but we do it with (|g|+ 4) and f instead

of |g| and f (the trick is nothing but Young's inequality) and we end up with∫
|∇(f

p+2
2 )|2 +

∫ (
f

p+2
2

)2 ≤ C̃(p) ∫(|g|+ 4)p+3
36



Where the constant C̃(p) depends on p but not on f or g. Now use Sobolev embedding L21 ↪→ L
8
3

in dimension 8 and this gives us:( ∫
f

4(p+2)
3

) 3
8 ≤ CS

( ∫
|∇(f

p+2
2 )|2 +

∫
(f

p+2
2 )2

) 1
2

So, we can control the L
4(p+2)

3 norm of f using the Lp+3 norm of g (notice 4(p+2)
3

> p + 3 for

p > 1). Next we start with the inequality (56).

4(p+ 1)

(p+ 2)2
( ∫

|∇(f
p+2
2 )|2 +

∫
(f

p+2
2 )2

)
≤ 4(p+ 1)

(p+ 2)2

∫
|∇(f

p+2
2 )|2 + 4

∫
fp+2 ≤

∫
(|g|+ 4)fp+2 −

7

8

∫
fp+3

⇒ ( ∫
|∇(f

p+2
2 )|2 +

∫
(f

p+2
2 )2

)
≤ C(p+ 2)

∫
(|g|+ 4)fp+2

We use Sobolev embedding L21 ↪→ L
8
3 for the function f

p+2
2 and get

( ∫
f

4
3
(p+2)

) 3
8 ≤ CS

( ∫
|∇(f

p+2
2 )|2 +

∫
(f

p+2
2 )2

) 1
2

⇒ ( ∫
f

4
3
(p+2)

) 3
4 ≤ C2S

( ∫
|∇(f

p+2
2 )|2 +

∫
(f

p+2
2 )2

)
⇒ ( ∫

f
4
3
(p+2)

) 3
4 ≤ C · C2S(p+ 2)

∫
(|g|+ 4)fp+2

⇒ ||f||
L

4
3

(p+2) ≤
(
C · C2S(p+ 2)

) 1
p+2

( ∫
(|g|+ 4)fp+2

) 1
p+2

Using H�older inequality with m > 4, and n such that 1
m

+ 1
n
= 1, we get∫

(|g|+ 4)fp+2 ≤ ||(|g|+ 4)||Lm ||fp+2||Ln = ||(|g|+ 4)||Lm ||f||p+2
Ln(p+2)

⇒ ||f||
L

4
3

(p+2) ≤
(
C · C2S(p+ 2)

) 1
p+2 ||(|g|+ 4)||

1
p+2

Lm ||f||Ln(p+2)

Since m > 4, we get n < 4
3
. Hence, if ∃N > 0, such that (|g| + 4)||Lm ≤ N, then we can start

the iteration to get an L∞ norm of f in terms of some Lp norm of f and some Lq norm of g.

Thereafter if we control high enough Lq norm of g (q > 4), we control the L∞ norm of f.
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Part VI

Construction of solutions
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In this section we give several examples of solutions of the SW equations in dimension 5, 6

and 8.We explain the procedure we follow in constructing solutions of SW equations on Σ×R3,
on Σ × C2, on closed K�ahler 3- and 4-folds. We choose the three-form β to be of the form

(�∂f + ∂�f) ∧ω for a complex-valued smooth function f, ω being the either the K�ahler form on

Σ or on the manifold depending on the case. Next we choose the spinor (or two spinors) as

a function of f which solve the Dirac equation (or equations) for the Chern connection on the

determinant line bundle and �nally using identities in K�ahler geometry, we change the curvature

equation (or equations) into Kadzan{Warner type pdes [16] in f and solve for f. The constructions

have striking similarities with Bradlow's work on vortices in holomorphic line bundles over closed

K�ahler manifolds [5].

0.4 Solution of 5-dimensional SW equations

The SW equations in dimension 5 are the following (for a spinor ϕ, a unitary connection A,βj ∈
Ωj) :

(DA + (1− i)c(β3) + i ∗ β5)ϕ = 0 (57)

FA − 2id∗β3 + 2dβ3 + 2d
∗β5 = q(ϕ) (58)

0.4.1 Solution on a circle bundle over a del Pezzo surface

We produce a solution of the SW equations on an S1-bundle over a K�ahler surface (X,ω),ω

denoting the K�ahler form on X. We assume a condition: FAK
= ic2ω, c is a constant. This

implies (X,ω) is Fano and K�ahler-Einstein. In particular X is di�eomorphic to CP1 × CP1 or

CP2 blown up in at most 8 points [12]. These are called del Pezzo surfaces. AK is the connection

on the canonical bundle K induced by the K�ahler metric on X.

There is a tautological Spinc-bundle on X : Λ0⊕Λ0,1⊕Λ0,2 [20]. We take a new Spinc-bundle

by twisting the tautological Spinc-bundle by the canonical line bundle K :

S(X) = K⊕ (Λ0,1 ⊗ K)⊕Λ0

We take the 5-manifold M by taking the S1-bundle inside K :

M := {(x, vx) : x ∈ X, vx ∈ Kx, ||vx|| = 1}

The || || on K is induced by the K�ahler metric again. The induced metric and the connection on

K from the K�ahler metric also de�nes a metric and a connection on M and we have

T(x,vx)M = π∗TxX⊕ {wx ∈ Kx : ⟨wx, vx⟩ = 0}

S1 → M
π−→ X is an S1-bundle over X. One can de�ne a Spinc-bundle over M by pulling back

the Spinc-bundle on X :

S(M) = π∗K⊕ π∗(Λ0,1 ⊗ K)⊕ π∗Λ0

Det
(
S(M)

)
= π∗(K2)
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The Cli�ord action of the volume form on a �ber (let's call it volf) is the following:

c(volf) = −i Id on
(
π∗K⊕ π∗Λ0

)
c(volf) = i Id on

(
π∗(Λ0,1 ⊗ K)

)
There exists a \tautological" spinor (say φ) on M de�ned by

φ(x, vx) = π
∗(vx)

Since φ ∈ Ω0(M;π∗K), q(φ) can be written in diagonal matrix form for its action on spinors in

π∗(K)⊕ π∗(Λ0,1 ⊗ K)⊕ π∗Λ0.

c(q(φ)) =

34 Id 0 0

0 −1
4
Id 0

0 0 −1
4
Id


Cli�ord actions of i(π∗ω) and π∗(ω2) on the spinors are described as follows.

π∗K π∗(Λ0,1 ⊗ K) π∗Λ0

i(π∗ω) 2Id 0 −2Id

π∗(ω2) −2Id 2Id −2Id

Hence, we deduce

q(φ) =
1

8

(
2iπ∗ω− π∗(ω2)

)
Notice for an orthonormal basis e0, . . . , e5 of forms at a point (x, vx) such that e0 is a form on

the �bre,∇0φ = e0 and for j ∈ {1, . . . , 4},∇jφ = 0. We get Dπ∗(2AK)φ = −φ.

Choose ϕ = 2
√
2cφ,A = 2π∗AK, β3 = −1

2
volf ∧ π

∗ω and ∗β5 = 1, then ϕ,A,β3 and β5
solve the Dirac equation (57). The curvature equation (58) reads:

2π∗FAK
+ iπ∗FAK

∧ π∗ω = c2
(
2iπ∗ω− π∗(ω2)

)
The above equation has a solution i� FAK

= ic2ω. Since this was in the assumption in our choice

of X, both equations (57) and (58) are solved.

Remark 18. For an explicit ansatz, one can take X = CP2, since KCP2
∼= O(−3). Then the circle

bundle of O(−3) can be identi�ed with S5/Z3 (a Lens space), where S5 = {z ∈ C3 : ∥z∥ = 1},

which can be identi�ed with the circle bundle of O(−1) → CP2 and the action of Z3 is given by

z ∼ ζkz, where ζk is a 3-rd root of unity for k = 1, 2, 3. One way to see this is the following.

CP2 is the space of lines in C3. The total space of circle bundle of O(−3) → CP2 is {ℓ ∈
CP2, v ∈ (C3)⊗k : v ∈ ℓ⊗k, ∥v∥ = 1}. Now there is a isomorphism

S3/Z3 = {ℓ ∈ CP2, z ∈ ℓ : ∥z∥ = 1}/(z ∼ ζkz) ≃ {ℓ ∈ CP2, v ∈ ℓ⊗k : ∥v∥ = 1}

(ℓ, z) 7→ (ℓ, z⊗ · · · ⊗ z).
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0.4.2 Solution of perturbed 5d SW equations on Σ× R3

We take the base manifold to be M5 = Σ × R3, where Σ is a closed compact Riemann surface.

We call the K�ahler form on Σ by ω, we also choose a Riemannian metric on Σ compatible

with the almost complex structure such that ω becomes the volume form. Let x1, x2, x3 denote

coordinates in the R3 direction. R3 has the standard Euclidean metric. The spinor bundle on R3
can be chosen as a trivial C2 bundle, we follow the following convention for the Cli�ord action

of one forms:

c(dx1) =

[
0 −i

−i 0

]
, c(dx2) =

[
0 −1

−1 0

]
, c(dx3) =

[
−i 0

0 i

]
The spinor bundles on Σ× R3 can be taken as follows [17]:

S(Σ× R3) =
(
Λ0(Σ, L)⊗ C2

)
⊕

(
Λ0,1(Σ, L)⊗ C2

)
The explicit description should involve pullback of the spinor-bundles on Σ and R3. We avoid

writing pull backs with abuse of notations. C2 denotes the trivial bundle on R3 (with abuse of

notation again) and L is a holomorphic line bundle on Σ. So, S(Σ × R3) is a direct sum of four

line bundles.

det(S) = L4 ⊗ K−2
Σ

To solve the SW equations, take β3 = (�∂f+ ∂�f)∧ dx1 ∧ dx2, f ∈ C∞(Σ,C), β5 = 0.
We choose a hermitian metric h on L and take the corresponding Chern connection Ah on

L, the K�ahler metric induces a connection AKΣ
on KΣ, and we take the usual 
at connection on

C2. So we get a connection on L4 ⊗ K−2
Σ . With abuse of notation we call it A := 4Ah − 2AKΣ

.

For the spinor, we start with φ, a non-zero holomorphic section of L, i.e., �∂Ah
φ = 0. Say

e1, e2 denote the standard basis elements of C2, here we will think of them as spinors on R3.With

the standard metric and the 
at connection on C2, e1 and e2 form standard basis of C2 giving
unit length nowhere vanishing parallel spinors on R3. De�ne a spinor onM, ϕ := ei(1−i)fφ⊗e1.
The following table describes Cli�ord actions of some forms on the spinors.

Λ0 ⊗ C{e1} Λ0 ⊗ C{e2} Λ0,1 ⊗ C{e1} Λ0,1 ⊗ C{e2}
iω Id Id -Id -Id

idx1 ∧ dx2 Id -Id Id -Id

ω∧ dx1 ∧ dx2 -Id Id Id -Id

c(�∂f+ ∂�f)φ = c(�∂f)φ =
√
2�∂f∧φ

c
(
(�∂f+ ∂�f)∧ dx1 ∧ dx2

)
(φ⊗ e1) = −

√
2i(�∂f∧φ)⊗ e1

DA(e
i(1−i)fφ⊗ e1) =

√
2�∂Ah

(ei(1−i)fφ)⊗ e1 =
√
2i(1− i)ei(1−i)f(�∂f∧φ)⊗ e1

Observe that ϕ,A,β solves the Dirac equation (57).

d
(
(�∂f+ ∂�f)∧ dx1 ∧ dx2

)
= 2i∂�∂(Imf)∧ dx1 ∧ dx2

= −∆Im(f)ω∧ dx1 ∧ dx2

41



d∗
(
(�∂f+ ∂�f)∧ dx1 ∧ dx2

)
= − ∗ d

(
i(�∂f− ∂�f)∧ dx3

)
= −2i ∗

(
∂�∂(Ref)∧ dx3

)
= ∆Re(f)dx1 ∧ dx2

q(ϕ) =
|ϕ|2

4
(iω+ idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

=
1

4
e2(Ref−Imf)|φ|2(iω+ idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

The curvature equation (58) reads:

FA − 2∆(Imf)ω∧ dx1 ∧ dx2 − 2i∆(Re(f))dx1 ∧ dx2

=
1

4
e2(Ref−Imf)|φ|2(iω+ idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

If we add this extra term: c(idx1 ∧ dx2 −ω∧ dx1 ∧ dx2) on the left hand side of the curvature

equation we get:

FA − 2∆(Imf)ω∧ dx1 ∧ dx2 − 2i∆(Re(f))dx1 ∧ dx2

+ c(idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

=
1

4
e2(Ref−Imf)|φ|2(iω+ idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

This breaks into three equations:

FA =
i

4
e2(Ref−Imf)|φ|2ω,

− 2∆(Imf) +
1

4
e2(Ref−Imf)|φ|2 = c

and 2∆(Ref) +
1

4
e2(Ref−Imf)|φ|2 = c

The last two equations give us:

∆(Ref+ Imf) = 0⇒ Ref+ Imf = a1, for a constant a1

So, the last two equations become one single equation:

2∆(Ref) +
1

4
e4Refe−2a1 |φ|2 = c

For a �xed a1, there exists a unique Ref which solves the pde for a constant c > 0 [16]. Once

we know f, we solve the remaining equation

4FAh
− FKΣ

=
i

4
e4Refe−2a1 |φ|2ω
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We perturb the initial metric h on L by eλ, λ ∈ C∞(Σ,R). The new metric being h ′ := eλh.

Notice this conformal change in the metric doesn't change the holomorphic structure of L. We

write the equation now with respect to the Chern connection Ah ′ and the metric h ′.

4FAh ′ − 2FKΣ
=
i

4
e4Refe−2a1 |φ|2h ′ω

⇔ 4FAh
− 4∂�∂λ− 2FKΣ

=
i

4
e4Refe−2a1e2λ|φ|2ω

⇔ ⟨(4FAh
− 2FKΣ

),ω⟩ω− 2i∆λω =
i

4
e4Refe−2a1e2λ|φ|2ω

⇔ 2∆λ+
1

4
e4Refe−2a1e2λ|φ|2 = 2i⟨FKΣ

,ω⟩− 4i⟨FAh
,ω⟩

As we already know f and φ is not everywhere zero, there exists a unique solution for λ [16] if∫
Σ

(
2i⟨FKΣ

,ω⟩− 4i⟨FAh
,ω⟩

)
ω > 0⇔ ∫

Σ

c1(KΣ) > 2

∫
Σ

c1(L)

Notice
∫
Σ
c1(L) ≥ 0 since, 0 ̸= φ ∈ H0(Σ, L). So, we found a solution of the following perturbed

version of 5-dimensional Seiberg{Witten equations:(
DA + c((1− i)β3 + i ∗ β5)

)
ϕ = 0 (59)

FA − 2id∗β3 + 2dβ3 + 2d
∗β5 + η = q(ϕ) (60)

η = c(idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

Remark 19. Notice that the perturbation η is harmonic and we can think of it as playing the

role of the cohomology class of 2dβ,β = β3+β5. If we actually can make sense of \spinors with

values in a gerbe", the perturbation should be absorbed in the di�erential terms in the left hand

side of the curvature equation.

Now if we take the spinor to be ϕ := ei(1−i)f1φ⊗e2, and β3 = −(�∂f1+∂ �f1)∧dx1∧dx2, β5 = 0;

notice that ϕ,β,A = 4Ah − 2AKΣ
solves the Dirac equation (59).

q(ϕ) =
1

4
|ϕ|2(iω− idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

The perturbed curvature equation (60) reads:

FA + 2∆(Imf1)ω∧ dx1 ∧ dx2 + 2i∆(Ref1)dx1 ∧ dx2 + c(idx1 ∧ dx2 −ω∧ dx1 ∧ dx2)

=
1

4
e2(Ref1−Imf1)|φ|2(iω− idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

This breaks into the following three equations:

FA =
i

4
e2(Ref1−Imf1)|φ|2ω

−2∆(Imf1) +
1

4
e2(Ref1−Imf1)|φ|2 = −c

2∆(Ref1) +
1

4
e2(Ref1−Imf1)|φ|2 = −c
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The last two equations give:

∆(Ref1 + Imf1) = 0⇒ Ref1 + Imf1 = a2, for a constant a2.

So the last two equations become one single equation:

2∆(Ref1) +
1

4
e4Ref1e−2a2 |φ|2 = −c

For a �xed c1, there exists a unique Ref1 which solves the pde for a constant c < 0 [16]. Once

we know f1, we solve the remaining equation (written below) in the same way we did before.

4FAh
− 2FKΣ

=
i

4
e4Ref1e−2a2 |φ|2ω

The required condition for the existence of solution is same as before:∫
Σ

c1(KΣ) > 2

∫
Σ

c1(L)

Proposition 20. There exists a solution of the system of equations (59) and (60) on Σ×R3
under the following conditions:

for c ̸= 0 : dim H0(Σ, L) > 0 and deg(KΣ − 2L) > 0

for c = 0 : deg(KΣ − 2L) = 0

Moreover for all c, there exists a solution which is translation invariant in any direction

in R3.

Proof. Both c > 0 and c < 0 cases are discussed above. The remaining case is c = 0 which

gives us back the 5d Seiberg{Witten equations (57), (58) without any perturbation term. We

take ϕ = 0, β3 = 0, β5 = 0. This solves the Dirac equation (57) for any unitary connection on

L. So, the curvature equation (58) reads: FA = 0. This has a solution i� deg(L4 ⊗ K−2
Σ ) = 0,

i.e., deg(KΣ− 2L) = 0. The solutions constructed are all translation invariant in any direction in

R3.

Remark 21. For an explicit ansatz, one can simply take any compact Riemann surface Σ with

genus g > 1. If L is the trivial line bundle, it satis�es both the conditions when c ̸= 0 since, dim
H0(Σ, L) = 1 and deg(KΣ − 2L) = deg(KΣ) = 2g− 2 > 0.

One can add a di�erent perturbation term in the curvature equation and get the following

system of equations: (
DA + c((1− i)β3 + i ∗ β5)

)
ϕ = 0 (61)

FA − 2id∗β3 + 2dβ3 + 2d
∗β5 + η = q(ϕ) (62)

η = c(idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

To construct a solution of (61) and (62), we take the three-form to be β3 = −(�∂g1 + ∂�g1) ∧

dx1 ∧ dx2, g1 ∈ C∞(Σ,C) and β5 = 0. We start with the same set up with the hermitian metric
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h and the corresponding Chern connection Ah on L. Finally for the spinor, �rst we take a non-

zero section ψ ∈ Γ(K−1
Σ ⊗ L) such that �∂∗Ah

ψ = 0. In another words ψ is an anti-holomorphic

section of K−1
Σ ⊗ L = L − KΣ, hence �ψ is a holomorphic section of KΣ − L. We de�ne a spinor

ϕ := e−(1+i)�g1ψ⊗ e1.
For a smooth section ξ ∈ Ω0(Σ, L),

⟨�∂∗Ah
(e−(1+i)�g1ψ), ξ⟩L2

= ⟨ψ, e−(1−i)g1�∂Ah
ξ⟩L2

= ⟨ψ, �∂Ah
(e−(1−i)g1ξ)⟩L2 − ⟨ψ,−(1− i)e−(1−i)g1ξ�∂g⟩L2

=

∫
Σ

(1+ i)e−(1+i)�g1ψ∧ ∗
(
ξ�∂g

)
= −

∫
Σ

i(1+ i)e−(1+i)�g1�ξ(ψ∧ ∂�g1)

=

∫
Σ

i(1− i)e−(1−i)g1ξ( �ψ∧ �∂g1)

= ⟨ξ,−i(1+ i)e−(1+i)�g1 ∗ (ψ∧ ∂�g1)⟩L2

= ⟨−i(1+ i)e−(1+i)�g1 ∗ (ψ∧ ∂�g1), ξ⟩L2

Hence

�∂∗Ah
(e−(1+i)�g1ψ) = i(1+ i)e−(1+i)�g1 ∗ (∂�g1 ∧ψ)

= −(1− i)e−(1+i)�g1 ∗ (∂�g1 ∧ψ)

c(�∂g1 + ∂�g1)ψ = −
√
2(�∂g1⌟ψ) = −

√
2i ∗ (∂�g1 ∧ψ)

c
(
− (�∂g1 + ∂�g1)∧ dx1 ∧ dx2

)
(ψ⊗ e1) =

√
2 ∗ (∂�g1 ∧ψ)⊗ e1

DA
(
e−(1+i)�gψ⊗ e1

)
=

√
2�∂∗Ah

(e−(1+i)�g1ψ)⊗ e1

So, ϕ,Ah, β solves the Dirac equation (61).

q(ϕ) =
|ϕ|2

4
(−iω+ idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

=
1

4
e−2(Reg1+Img1)|ψ|2(−iω+ idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

The curvature equation (62) reads:

FA + 2∆(Img1)ω∧ dx1 ∧ dx2 + 2i∆(Reg1)dx1 ∧ dx2 + c(idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

=
1

4
e−2(Reg1+Img1)|ψ|2(−iω+ idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

This breaks into three equations:

FA = −
i

4
e−2(Reg1+Img1)|ψ|2ω

−2∆(Img1) +
1

4
e−2(Reg1+Img1)|ψ|2 = c

−2∆(Reg1) +
1

4
e−2(Reg1+Img1)|ψ|2 = c

45



We get

∆
(
Reg1 − Img1

)
= 0⇒ Reg1 = Img1 + a3, for a constant a3

So, the last two equations become one single equation:

−2∆(Reg1) +
1

4
e−4(Reg1)e−2a3 |ψ|2 = c

There exists a unique Reg1 which solves the pde for a constant c > 0 [16]. Once we know g1,

we solve the remaining equation:

FA = −
i

4
e−4Reg1e−2a3 |ψ|2ω

We perturb the initial metric h on L by eλ̃, λ̃ ∈ C∞(Σ,R). The new metric being h̃ := eλ̃h. Notice

this conformal change in the metric doesn't change the holomorphic structure of L.We write the

equation now with respect to the Chern connection A
h̃
and the metric h̃ on L. This conformal

change in metric of L, induces a conformal change by e−λ̃ on the corresponding hermitian metric

on L−1. So, �ψ remains a holomorphic section of KΣ − L, and now when we go back to the

corresponding anti-holomorphic section on L − KΣ, the norm changes by e−λ̃. The curvature

equation becomes

4FA
h̃
− 2FKΣ

= −
i

4
e−4Reg1e−2c3e−2λ̃|ψ|2ω

⇔ 4FA − 4∂�∂λ̃− 2FKΣ
= −

i

4
e−4Reg1e−2c3e−2λ̃|ψ|2ω

⇔ ⟨(4FAh
− 2FKΣ

),ω⟩ω− 2i∆λ̃ω = −
i

4
e−4Reg1e−2c3e−2λ̃|ψ|2ω

⇔ −2∆λ̃+
1

4
e−4Reg1e−2c3e−2λ̃|ψ|2 = i⟨(4FAh

− 2FKΣ
),ω⟩

Since g1 is already known and ψ is not everywhere zero, there exists a unique solution for λ̃

from the pde [16] i� ∫
Σ

i(4FAh
− 2FKΣ

) > 0⇔ ∫
Σ

c1(2L− KΣ) > 0

We also give a solution for c < 0. Take ϕ := e−(1+i)�g2ψ ⊗ e2, and β3 = (�∂g2 + ∂ �g2) ∧ dx1 ∧

dx2, β5 = 0. Notice that ϕ,β,A = 4Ah − 2AKΣ
solves the Dirac equation (61).

q(ψ) = −
1

4
|ϕ|2(iω+ idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

The curvature equation (62) reads:

FA − 2∆(Img2)ω∧ dx1 ∧ dx2 − 2i∆(Reg2)dx1 ∧ dx2 + c(idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)

= −
1

4
e−2(Reg2+Img2)|ψ|2(iω+ idx1 ∧ dx2 +ω∧ dx1 ∧ dx2)
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This breaks into three parts:

FA = −
i

4
e−2(Reg2+Img2)|ψ|2ω

−2∆(Img2) +
1

4
e−2(Reg2+Img2)|ψ|2 = −c

−2∆(Reg2) +
1

4
e−2(Reg2+Img2)|ψ|2 = −c

This gives:

∆(Reg2 − Img2) = 0⇒ Reg2 = Img2 + a4, for a constant a4

There exists a unique solution for Reg2 from the following pde for c < 0 [16]:

−2∆(Reg2) +
1

4
e−4Reg2e−2a4 |ψ|2 = −c

Once we know g2, we solve the remaining equation in the same way we did for the c > 0 case.

FA = −
i

4
e−4Reg2e−2a4 |ψ|2ω

The required condition to solve it being∫
Σ

i(4FAh
− 2FKΣ

) > 0⇔ ∫
Σ

c1(2L− KΣ) > 0

Proposition 22. There exists a solution of the system of equations (61) and (62) on Σ×R3
under the following conditions:

for c ̸= 0 : dim H0(Σ,KΣ − L) > 0 and deg(KΣ − 2L) < 0

for c = 0 : deg(KΣ − 2L) = 0

Moreover for all c, there exists a solution which is translation invariant in any direction

in R3.

Proof. Both c > 0 and c < 0 cases are discussed above. The remaining case c = 0 is explained

in proposition 20.

Remark 23. For an explicit ansatz, we take a compact Riemann surface Σ with genus g > 1.

If L = KΣ, it satis�es both the conditions when c ̸= 0 since, dim H0(Σ,KΣ − L) = 1 and

deg(KΣ − 2L) = − deg(KΣ) = 2− 2g < 0.

0.5 Solution of 6-dimensional SW equations

Let (M,g) be a 6-dimensional manifold Spinc manifold. Moreover say S = S+ ⊕ S− and S̃ =

S̃+⊕S̃− be two (potentially di�erent) Spinc-bundles onM. Let A and B denote the set of unitary
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connections on det(S+) and det(S̃−) respectively. Then the SW equations for ϕ ∈ Γ(S+), ψ ∈
Γ(S̃−), β ∈ Ω3, A ∈ A and B ∈ B are:

(DA + c(β))ϕ = 0 (63)

FA − 2i ∗ dβ = q(ϕ) (64)

(DB + c(∗β))ψ = 0 (65)

FB + 2i ∗ d ∗ β = q(ψ) (66)

Remarks 24. We make a few remarks about the moduli space of the SW equations.

1. Notice that analogous to the 8d case, we can prove similar a priori estimates for the 6d

SW equations using the same techniques used in §V. I.e., given a C0 bound of β, we get a

C0 bound of the spinors ϕ and ψ and for a large enough p, Lp bounds of |ϕ|, |ψ| and some

bound of the harmonic part of β (with respect to any norm), we get a C0 bound of β.

2. We explain a possible way the moduli space can be non-compact and produce explicit

examples in §§0.5.2 on K�ahler 3-folds where this phenomenon occurs. The idea is the

following. Say (ϕ,ψ,β,A, B) is a solution of the equations (63),(64), (65),(66). Now say

α is a non-trivial harmonic three-form such that c(α)ϕ = 0 and c(∗α)ψ = 0, then for any

r ∈ R, (ϕ,ψ,β+ rα,A, B) is also a solution of the SW equations.

This brings a question what if we �x the harmonic part of the three-form, can we prove

that the moduli space is compact in that scenario? The answer is still unknown to the

author.

0.5.1 Spin geometry in dimension 6

Some representation theory of Spin(6) and Spinc(6) :

Spin(6) ∼= SU(4): We start with a description of the fundamental group of SO(6), i.e., Spin(6).

This is one of the exceptional isomorphisms of Lie groups. Enough to show that SU(4) is a

double cover of SO(6) since π1
(
SO(6)

)
= Z/2Z. The double cover is constructed as follows:

SU(4) has a natural action on C4, it induces an action of SU(4) on Λ2C4. Λ2C4 is six

dimensional (in C) and has a hermitian inner-product induced by the one on C4. This can be

de�ned by saying if {e1, . . . , e4} is an orthonormal basis for C4 then {ei ∧ ej} is an orthonormal

basis for Λ2C4 or, more invariantly,

⟨v1 ∧ v2, w1 ∧w2⟩ = det⟨vi, wj⟩

Where ⟨v,w⟩ is the Hermitian inner product on C4. The action of SU(4) on Λ2C4 preserves this
inner product. Moreover we have a hodge star operator ∗ on Λ2C4 induced by the inner product

such that ∗2 = 1, Hence it splits the space into self-dual and anti self-dual forms:

Λ2C4 = Λ2+C4 ⊕Λ2−C4

Notice that the action of SU(4) is preserved under this splitting and the real dimension of Λ2+C4
is 6. Since, SU(4) preserves the inner product and has determinant one, we get a map from

SU(4) → SO(6), one checks that the kernel is ±Id, and therefore, by dimensionality reasons,

must be a surjection.
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Remark 25. The discussion above says that if our 6-dimensional manifold (sayM) is spin, and

S = S+ ⊕ S− is a spin bundle on M, then Λ2+(S+)
∼= TM.

Positive and negative spinors are dual to each other: For both the groups Spin(6) ∼=

SU(4) and Spinc(6), they have two irreducible representations of dimension 4 and they are dual

to each other [11]. Since the representations corresponding to positive and negative spinors have

di�erent highest weights: (1/2, 1/2, 1/2) and (1/2, 1/2,−1/2) [11], the positive and negative

spinors must come from the two di�erent irreducible representations and hence they are dual to

each other.

If we start from SU(4), which has a standard 4-dimensional irreducible representation (say

V). The wedge product Λ3V is also 4-dimensional and irreducible. These two representations

are not isomorphic to each other because their highest weights are di�erent, thus V and Λ3V

correspond to two spinor representations of Spin(6). However, SU(4) admits an outer automor-

phism that exchanges the highest weights of V and Λ3V. So the positive spinor can be either

V or Λ3V, depending on the isomorphism between SU(4) and Spin(6) we choose. Despite this

outer automorphism, we can still observe that two spinors are dual to each other since the wedge

product gives us a non-degenerate pairing: V ×Λ3V → C.

Clifford multiplication:

Now we would work with Spinc-manifolds. LetM be a Spinc-manifold of dimension 6.We choose

a Spinc-structure onM and write S = S+⊕S− →M, to be the corresponding spin bundle, which

splits into the bundle of positive and negative spinors. Endomorphisms of spinors of the same

chirality are given by the Cli�ord action of even-degree forms and morphisms between spinors

of opposite chirality are given by the Cli�ord action of odd-degree forms:

c : ⊕kΛ2k(M)⊗ C → EndC(S+, S+) ∼= EndC(S−, S−)

c : ⊕kΛ2k+1(M)⊗ C → EndC(S+, S−) ∼= EndC(S−, S+)

Below we give a more detailed description of these maps.

The Cli�ord action of the volume form is i times identity on positive spinors and −i times

identity on negative spinors. This says that for any form α ∈ Λ∗(M), c(α) = ±ic(∗α), depending
on the degree of α and the chirality of the spinor. Cli�ord action of complexi�ed 0 and 2-forms

give the isomorphisms:

EndC(S+, S+) ∼=
(
Λ0(M)⊕Λ2(M)

)
⊗ C ∼= EndC(S−, S−)

For a hermitian endomorphism of spinors of same chirality, we can split it into a trace-free part

and the trace-part. Λ0 is the trace part and the imaginary 2-forms (or equivalently the real 4-

forms) (real dimension 15) act as trace-free hermitian endomorphisms via Cli�ord multiplication:

c : iΛ2(M) ∼= isu(S+) ∼= isu(S−)

c : Λ4(M) ∼= isu(S+) ∼= isu(S−)

Coming back to EndC(S+, S−), it is a complex-vector bundle of rank 16 overM. As explained

before, Cli�ord action of a form is same as the Cli�ord action of its Hodge-star upto a constant.

So, we get

c :
(
Λ1(M)⊕Λ3(M)

)
⊗ C → EndC(S+, S−) ∼= EndC(S−, S+)
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Wemake an important observation on the space of three forms of the manifold. onΛ3(M;C), ∗2 =
(−1)3×(6−3) = −1. Hence Λ3(M;C) splits as Λ3+(X,C)⊕Λ3−(M;C). The subscript + and − re-

spectively denote the eigen-spaces of +i and −i. Here ∗ is a complex linear extension of the

Hodge-star operator on Λ3(M;R).

Lemma 26. For a Spinc bundle S = S+ ⊕ S− on M, the Cli�ord action of Λ3+(X,C) on the

negative spinors is trivial and the Cli�ord action of Λ3−(X,C) on the positive spinors is

trivial.

Proof. The proof is given for a speci�c three-form. The other cases can be checked similarly.

Around a point p ∈M, we choose a normal coordinate system (x1, . . . , x6) and the corresponding

co-vectors at p be e1, . . . , e6. From now on in this proof, all the equations are supposed to be

thought of at the point p with respect to the chosen normal neighborhood. Let's ϕ+ be a positive

spinor, i.e.,

c(−ie1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6)ϕ+ = ϕ+

Let's take the 3-form β = (e1 ∧ e2 ∧ e3) + i(e4 ∧ e5 ∧ e6).

∗β = ∗(e1 ∧ e2 ∧ e3) + i ∗ (e4 ∧ e5 ∧ e6)
= (e4 ∧ e5 ∧ e6) − i(e1 ∧ e2 ∧ e3)

= −i
(
(e1 ∧ e2 ∧ e3) + i(e4 ∧ e5 ∧ e6)

)
So, β is a −i eigen-vector of the Hodge-star operator on three-forms.

c(β)ϕ+ = c(β)c(−ie1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6)ϕ+

= −ic
(
(e1 ∧ e2 ∧ e3) + i(e4 ∧ e5 ∧ e6)

)
c(e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6)ϕ+

= −i
(
(c(e1)c(e2)c(e3))

2c(e4)c(e5)c(e6)

+ ic(e4)c(e5)c(e6)c(e1)c(e2)c(e3)c(e4)c(e5)c(e6)
)
ϕ+

= −i
(
c(e4)c(e5)c(e6) − ic(e1)c(e2)c(e3)

)
ϕ+

= −c
(
(e1 ∧ e2 ∧ e3) + i(e4 ∧ e5 ∧ e6)

)
ϕ+

= −c(β)ϕ+⇒ c(β)ϕ+ = 0

Identical calculation proves that for β, a +i eigen-vector of the Hodge-star operator on three-

forms, and a negative spinor ϕ−

c(β)ϕ− = 0

Therefore, we have the following isomorphisms:

c :
(
Λ1(M)⊕Λ3+(M)

)
⊗ C ∼= EndC(S+, S−)

c :
(
Λ1(M)⊕Λ3−(M)

)
⊗ C ∼= EndC(S−, S+)

An immediate question arises: how does one di�erentiate a one-form from a three form as

an element of EndC(S+, S−) or EndC(S−, S+)? In other words, what is the induced splitting
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on the right hand side from the splitting on the left hand side? Let's see the case for

EndC(S−, S+), the other one is identical. Notice, EndC(S−, S+) ∼= S∗− ⊗ S+ ∼= S+ ⊗ S+. This

splits into symmetric and anti-symmetric tensors:

S+ ⊗ S+ ∼= Sym(S+)⊕Λ2(S+)

Λ1 ⊗ C identi�es with Λ2(S+) (both has rank 6), and Λ3− ⊗ C identi�es with Sym(S+) (both

has rank 10). Similarly, for EndC(S+, S−) ∼= S∗+ ⊗ S− ∼= S− ⊗ S− ∼= Sym(S−)⊕Λ2(S−); Λ1 ⊗C
identi�es with Λ2(S−) (both has rank 6), and Λ3+ ⊗ C identi�es with Sym(S−) (both has rank

10).

0.5.2 Solution on a closed Kähler 3-fold

The equations on a Kähler 3-fold

We study the SW equations when the oriented Riemannian 6-manifold is a 3 dimensional com-

plex K�ahler manifold say (X,ω);ω being the K�ahler form. The K�ahler form together with a

Riemannian metric determines a unique compatible J.

First let's see which (p, q)-forms are in Ω3+ and which are in Ω3−. We start with the (1, 2) and

(2, 1) forms. We take local holomorphic coordinates {zk = xk + iyk}k=1,2,3 centered at a point

x ∈ X so that the K�ahler metric is standard to second order at the point. In local coordinates

we see that at x, {dzk ∧ d�zj ∧ d�zl}{j̸=l} span the (1, 2) forms. Observe

∗ (d�z2 ∧ dx1 ∧ dy1) = i(d�z2 ∧ dx3 ∧ dy3) and

∗ (d�z2 ∧ dx3 ∧ dy3) = i(d�z2 ∧ dx1 ∧ dy1)

Hence we get

∗
(
d�z2 ∧ (dx1 ∧ dy1 + dx3 ∧ dy3)

)
= i

(
d�z2 ∧ (dx3 ∧ dy3 + dx1 ∧ dy1)

)
⇒ ∗(d�z2 ∧ω) = i(d�z2 ∧ω) and

∗
(
d�z2 ∧ (dx1 ∧ dy1 − dx3 ∧ dy3)

)
= i

(
d�z2 ∧ (dx3 ∧ dy3 − dx1 ∧ dy1)

)
⇒ ∗

(
d�z2 ∧ (dx1 ∧ dy1 − dx3 ∧ dy3)

)
= −i

(
d�z2 ∧ (dx1 ∧ dy1 − dx3 ∧ dy3)

)
Also for j ̸= k ̸= l,

∗(dzj ∧ d�zk ∧ d�zl) = −i(dzj ∧ d�zk ∧ d�zl)

Notice that for j ̸= k ̸= l, (dzj ∧ d�zk ∧ d�zl)∧ω = 0 and similarly we also get

∗
(
d�zj ∧ (d�zk − d�zl)

)
= −i(d�zj ∧ (d�zk − d�zl) and(

d�zj ∧ (d�zk − d�zl)
)
∧ω = 0.

One can do similar calculations for a (2, 1)-form and we end up with the following proposition.

Proposition 27. On a K�ahler 3-fold (X,ω), any real valued 3-form β can be written as

β = β3,0− + (η∧ω)+ + γ− + β3,0+ + (�η∧ω)− + �γ+

Where η ∈ Ω0,1(X,C), γ ∈ Ker
(
∧ω : Ω1,2(X,C) → Ω2,3(X,C)

)
. The subscript ′+ ′ or ′− ′

respectively denote the form as an eigen-vector of the Hodge-star operator with eigenvalue

+i or −i. The decomposition is same as the Lefschetz decomposition [13].
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Proof. We notice that in local holomorphic coordinates {zk = xk + iyk}k=1,2,3 we have

∗ (d�z1 ∧ d�z2 ∧ d�z3) = i(d�z1 ∧ d�z2 ∧ d�z3) and

∗ (dz1 ∧ dz2 ∧ dz3) = −i(dz1 ∧ dz2 ∧ dz3)

The rest follows from the discussion above for (1, 2)-forms and identical calculations for (2, 1)-

forms.

We have an induced Spinc-structure P̃J → X on X from its almost complex structure J : TX→
TX. The Spinc-bundles are given by

S+(P̃J) = Λ
0(X,C)⊕Λ0,2(X,C)

S−(P̃J) = Λ
0,1(X,C)⊕Λ0,3(X,C)

Det
(
S+(P̃J)

)
∼= Det

(
S−(P̃J)

)
= K−2

X . Furthermore, if the almost complex structure is in fact a

complex structure for which the Riemannian metric is a K�ahler metric, then the Dirac operator

on positive spinors associated to this Spinc-structure and the natural holomorphic, hermitian

connection on K−2
X is

√
2(�∂+ �∂∗) : Ω0(X,C)⊕Ω0,2(X,C) → Ω0,1(X,C)⊕Ω0,3(X,C)

Any other Spinc-structure P̃ di�ers from P̃J by tensoring with some U(1) bundle Q→ X. let L0
be the complex line bundle associated to Q. Then the spin bundles for P̃ are given by

S+(P̃) = Λ
0(X,L0)⊕Λ0,2(X,L0)

S−(P̃) = Λ
0,1(X,L0)⊕Λ0,3(X,L0)

The Cli�ord multiplication of the forms on the spinors are discussed in detail in appendix A.1.

We will use the formulae from the appendix throughout this section. The determinant of P̃

is identi�ed with K−2
X ⊗ L40, or to put it another way, L40 = K2X ⊗ L, where L = det(P̃). A

U(1)-connection A on L is equivalent to a unitary connection A0 on L0, the equivalence being
A40 = A

2
KX

⊗A (with some possible abuse of notation) where AKX
is the holomorphic connection

on KX. The Dirac operator associated to the connection A on L is [20]

√
2(�∂A0

+ �∂∗A0
) : Ω0(X,L0)⊕Ω0,2(X,L0) → Ω0,1(X,L0)⊕Ω0,3(X,L0),

the operator obtained by coupling
√
2(�∂+ �∂∗) with the covariant derivative ∇A0

on L0.
We clarify some notations which will be used in the next part of the article. For a form in

Ωp,q(X,L0) we de�ne ∗ :
∧p,q

X⊗ L0 → ∧n−q,n−p
X⊗ L0

∗(ϕ⊗ s) = ∗(ϕ)⊗ s (ϕ ∈ Ωp,q(X,C) locally, ∗ is complex-linear on Ωp,q(X,C))

Notice that this is di�erent from the usual �∗h operator, which can be de�ned if we put a hermitian

metric h on L0. h can be also interpreted as a C-antilinear isomorphism h : L0 ∼= L∗
0. We get

�∗h :
∧p,q

X⊗ L0 → ∧n−p,n−q
X⊗ L∗

0

�∗h(ϕ⊗ s) = �∗(ϕ)⊗ h(s) = ∗(ϕ)⊗ h(s) = ∗(�ϕ)⊗ h(s)
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First pair of equations

Let's have a look at the �rst Dirac equation.

(DA + c(β))ϕ = 0, ϕ = ϕ1 + ϕ2 ∈ Ω0(X,L0)⊕Ω0,2(X,L0)

β = (β3,0 + β3,0) + (β1,2 + β1,2) ∈ Ω3,0(X,C)⊕Ω0,3(X,C)⊕Ω1,2(X,C)⊕Ω2,1(X,C)

In this K�ahler set up, the �rst Dirac equation reads:
√
2(�∂A0

ϕ1 + �∂∗A0
ϕ2) + c(β

1,2)ϕ1 + c(β1,2)ϕ2 = 0 (67)
√
2�∂A0

ϕ2 + c(β3,0)ϕ1 + c(β
1,2)ϕ2 = 0 (68)

We turn to the �rst curvature equation: FA − 2i ∗ dβ = q(ϕ). In matrix form the curvature

equation reads:[
−i⟨(FA − 2i ∗ dβ)1,1,ω⟩ −2(FA − 2i ∗ dβ)2,0
2(FA − 2i ∗ dβ)0,2 −2i ∗

(
(FA − 2i ∗ dβ)1,1 ∧ ( )

)
+ i⟨FA − 2i ∗ dβ,ω⟩

]
=

[
3
4
|ϕ1|

2 − 1
4
|ϕ2|

2 �ϕ2ϕ1
�ϕ1ϕ2 �ϕ2ϕ2 −

1
4
|ϕ1|

2 − 1
4
|ϕ2|

2

]
(69)

Second pair of equations

For the second pair of equations we work with a potentially di�erent Spinc-structure on X.

Similar to the last case, any other Spinc structure Q̃ di�ers from P̃J by tensoring with some U(1)

bundle Q1 → X. Let L1 be the complex line bundle associated to Q1. Then the spin bundles

for Q̃ are given by

S+(Q̃) = Λ0(X,L1)⊕Λ0,2(X,L1)

S−(Q̃) = Λ0,1(X,L1)⊕Λ0,3(X,L1)

The determinant of Q̃ is identi�ed with K−2
X ⊗L41. or to put it another way, L41 = K2X⊗L̃, where

L̃ = det(Q̃). A U(1)-connection B on L̃ is equivalent to a unitary connection B0 on L1, the
equivalence being B40 = A2KX

⊗ B where AKX
is the holomorphic connection on KX. The Dirac

operator associated to the connection B on L̃ is [20]
√
2(�∂B0

+ �∂∗B0
) : Ω0(X,L1)⊕Ω0,2(X,L1) → Ω0,1(X,L1)⊕Ω0,3(X,L1),

the operator obtained by coupling
√
2(�∂ + �∂∗) with the covariant derivative ∇B0

on L1. The
second Dirac equation says

(DB + c(∗β))ψ = 0, ψ = ψ1 +ψ2 ∈ Ω0,3(X,L1)⊕Ω0,1(X,L1)

β = (β3,0 + β3,0) + (β1,2 + β1,2) ∈ Ω3,0(X,C)⊕Ω0,3(X,C)⊕Ω1,2(X,C)⊕Ω2,1(X,C)⇒ ∗β = (∗β3,0 + ∗β3,0) + (∗β1,2 + ∗β1,2) ∈ Ω3,0(X,C)⊕Ω0,3(X,C)⊕Ω1,2(X,C)⊕Ω2,1(X,C)

In the K�ahler set up, the equation reads:
√
2 �∂∗B0

ψ2 + c(∗β3,0)ψ1 + c(∗β1,2)ψ2 = 0 (70)
√
2(�∂∗B0

ψ1 + �∂B0
ψ2) + c(∗β1,2)ψ2 + c(∗β1,2)ψ1 = 0 (71)
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We write down the second curvature equation in its matrix form. FB + 2i ∗ d ∗ β = q(ψ) reads:[
i⟨(FB + 2i ∗ d ∗ β),ω⟩ 2(FB + 2i ∗ d ∗ β)0,2 ∧ ( )

2i ∗
(
(FB + 2i ∗ d ∗ β)2,0 ∧ ( )

)
2 ∗

(
∗ (FB + 2i ∗ d ∗ β)1,1 ∧ ( )

)
− i⟨FB + 2i ∗ d ∗ β,ω⟩

]
=

[
3
4
|ψ1|

2 − 1
4
|ψ2|

2 �ψ2ψ1
�ψ1ψ2 �ψ2ψ2 −

1
4
|ψ1|

2 − 1
4
|ψ2|

2

]
(72)

Construction of a solution

We start with a smooth function f : X→ C and choose the three-form β to be

β = (�∂f+ ∂�f)∧ω

Now we choose the two spinors ϕ and ψ carefully (they will depend on f) so that they solve the

two Dirac equations for any holomorphic connections on the line bundles L0 and L1. Since β is

already �rst-order in f, the curvature equations turn into two second-order pdes in f. Using two

lemmas (proved below) from K�ahler geometry, we turn the curvature equations into Kazdan-

Warner type pdes [16] and solve for f. The �rst curvature equation gives us the imaginary part

of f and the second one gives us the real part of f.

Before proceeding further, we prove the two lemmas, which we will use to simplify the

curvature equations.

Lemma 28. On a compact K�ahler three-fold (X,ω), for any smooth complex valued function

h, we have

∗(∂�∂h∧ω) = −∂�∂h+
i

2
∆(h)ω

Proof. We take local holomorphic coordinates {zk = xk + iyk}k=1,2,3 centered at a point x ∈ X
so that the K�ahler metric is standard to second order at the point. All the calculations below is

done at the point x.

∗(∂�∂h∧ω) = ∗
( 3∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω

)
= ∗

(∑
j ̸=k

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω+

3∑
k=1

∂2h

∂zk∂�zk
dzk ∧ d�zk ∧ω

)
Now we notice what happens to the case j ̸= k, let's take a speci�c case.

∗(dz1 ∧ d�z2 ∧ω) = ∗(dz1 ∧ d�z2 ∧ dx3 ∧ dx3)

= ∗{(dx1 + idy1)∧ (dx2 − idy2)∧ dx3 ∧ dy3}

= ∗{(dx1 ∧ dx2 + dy1 ∧ dy2)∧ dx3 ∧ dy3 + i(dy1 ∧ dx2 − dx1 ∧ dy2)∧ dx3 ∧ dy3}

= −{(dx1 ∧ dx2 + dy1 ∧ dy2) + i(dy1 ∧ dx2 − dx1 ∧ dy2)}

= −(dz1 ∧ d�z2)

Similar calculations for all other cases, show that for j ̸= k,

∗(dzj ∧ d�zk ∧ω) = −(dzj ∧ d�zk)
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Now for j = k, we get

∗
(
dzk ∧ d�zk ∧ω

)
= ∗

(
− 2idxk ∧ dyk ∧ (

3∑
m=1

dxm ∧ dym)
)

= −2i
( ∑
m̸=k

dxm ∧ dym
)

= −2i(ω− dxk ∧ dyk)

= −dzk ∧ d�zk − 2iω

So, we get

∗
(∑
j ̸=k

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω+

3∑
k=1

∂2h

∂zk∂�zk
dzk ∧ d�zk ∧ω

)
= −

∑
j̸=k

∂2h

∂zj∂�zk
dzj ∧ d�zk −

3∑
k=1

∂2h

∂zk∂�zk
dzk ∧ d�zk − 2i(

3∑
k=1

∂2h

∂zk∂�zk
)ω

= −
( 3∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk

)
− 2i

( 3∑
k=1

1

2
(
∂

∂xk
− i

∂

∂yk
)
1

2
(
∂

∂xk
+ i

∂

∂yk
)h

)
ω

= −∂�∂h−
2i

4

( 3∑
k=1

(
∂2h

∂x2k
+
∂2h

∂y2k
)
)
ω

= −∂�∂h+
i

2
∆(h)ω

Lemma 29. On a compact K�ahler three-fold (X,ω), for any smooth complex valued function

h, we have

⟨∂�∂h,ω⟩ = i

2
∆(h)

Proof. We take local holomorphic coordinates {zk = xk + iyk}k=1,2,3 centered at a point x ∈ X
so that the K�ahler metric is standard to second order at the point. All the calculations below is

done at the point x.

⟨∂�∂h,ω⟩ = ∗
(
∂�∂h∧ (∗ω)

)
= ∗

( 3∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ (∗ω)

)
Notice that

∗ω
= ∗(dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3)

= (dx1 ∧ dy1 ∧ dx2 ∧ dy2 + dx2 ∧ dy2 ∧ dx3 ∧ dy3 + dx3 ∧ dy3 ∧ dx1 ∧ dy1)
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So, for j ̸= k,dzj ∧ d�zk ∧ (∗ω) = 0. Hence we get

∗
( 3∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ (∗ω)

)
= ∗

( 3∑
k=1

∂2h

∂zk∂�zk
dzk ∧ d�zk ∧ (∗ω)

)
= −2i ∗

( 3∑
k=1

∂2h

∂zk∂�zk
dxk ∧ dyk ∧ (∗ω)

)
= −2i ∗

( 3∑
k=1

1

2
(
∂

∂xk
− i

∂

∂yk
)
1

2
(
∂

∂xk
+ i

∂

∂yk
)h dV

)
(dV is the volume form)

=
−2i

4

( 3∑
k=1

(
∂2h

∂x2k
+
∂2h

∂y2k
)
)

=
i

2
∆(h)

For any K�ahler manifold (Xn,ω) and a holomorphic line bundle L on it, let's de�ne the

degree of L to be
∫
X
c1(L)∧w

n−1. c1(L) being the �rst Chern class of L.

Let's see what happens to the �rst set of Dirac equations (67),(68), if we assume ϕ2 = 0 ∈
Ω0,2(X,L0). There's nothing to solve for in (68), as β3,0 = 0. Equation 2.1 gives

√
2�∂A0

ϕ1 + c(β
1,2)ϕ1 = 0⇒ √

2�∂A0
ϕ1 + c(�∂f∧ω)ϕ1 = 0⇒ √

2�∂A0
ϕ1 − 2

√
2i�∂f∧ ϕ1 = 0⇒ �∂A0

ϕ1 = 2i�∂f∧ ϕ1

To solve this we take ϕ1 = e
2ifα1 where α1 ∈ Ω0(X,L0) and �∂A0

α1 = 0. Then

�∂A0
ϕ1 = �∂A0

(e2ifα1)

= 2ie2if�∂f∧ α1

= 2i�∂f∧ ϕ1

For ϕ2 = 0, η = �∂f, β3,0 = 0, γ = 0, the curvature equation reads

− i⟨(FA − 2i ∗ dβ,ω⟩ = 3

4
|ϕ1|

2

F0,2A = 0 and

2i ∗
(
(FA − 2i ∗ dβ)1,1 ∧ ( )

)
+ i⟨FA − 2i ∗ dβ,ω⟩ = −

1

4
|ϕ1|

2

The second condition says that F0,2A = 4F0,2A0
= 0. Hence L0 must have a holomorphic structure.

We put a Hermitian metric h on L0 and choose A0 to be the Chern connection with respect to
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h. Also, the �rst and third condition combines to give

2i ∗
(
(FA − 2i ∗ dβ)1,1 ∧ ( )

)
=
1

2
|ϕ1|

2

Following the description of Cli�ord multiplication of (1, 1)-forms, µ ∈ Ω1,1(X,C) acts on λ ∈
Ω0,2(X,L0) to give back a form in (0, 2) form in Ω0,2(X,L0) by the action c(µ)λ = ∗(µ∧λ) and
for µ = ω, we get ∗(ω∧ λ) = λ. Hence point-wise (FA− 2i ∗ dβ)1,1 must be a multiple of ω and

we observe that

(FA − 2i ∗ dβ)1,1 = i

4
|ϕ1|

2ω

solves it for us. Hence, the �rst curvature equation reads:

(FA − 2i ∗ dβ)1,1 = i

4
|ϕ1|

2ω

⇒ FA − 2i ∗
(
(∂�∂f+ �∂∂�f)∧ω

)
=
i

4
∗ (ϕ1 ∧ ∗ϕ1)ω

⇒ FA − 2i ∗
(
∂�∂(f− �f)∧ω

)
=
i

4
∗ (e2ifα1 ∧ e−2i

�f ∗ α1)ω

⇒ FA − 2i ∗
(
∂�∂(2iIm(f))∧ω

)
=
i

4
e2i(f−

�f) ∗ (α1 ∧ ∗α1)ω

⇒ FA + 4 ∗
(
∂�∂(Im(f))∧ω

)
=
i

4
e−4Imf|α1|

2ω

⇒ FA − 4∂�∂(Im(f)) + 4× i

2
∆(Im(f))ω =

i

4
e−4Imf|α1|

2ω

Say, the initial Hermitian metric on L0 is h, we make a conformal change by eλ for a smooth

function λ : X→ R. So with the new metric h ′ = eλh, and the corresponding connection A ′ on

the determinant bundle L = K−1
X ⊗ L40, the equation becomes

FA ′ − 4∂�∂(Im(f)) + 4× i

2
∆(Im(f))ω =

i

4
e−4Imf|α1|

2
h ′ω

⇒ FA − 4∂�∂λ− 4∂�∂(Im(f)) + 4× i

2
∆(Im(f))ω =

i

4
e−4Imf+λ|α1|

2ω

⇒ FA = ∂�∂(4λ+ 4Im(f)) + i
(
∆(−2Im(f)) +

eλ|α1|
2

4
e−4Im(f)

)
ω

Now FA is a d-closed 2 form. So, FA = dθ+FHA for a suitable 1 form θ and a Harmonic form FHA.

Now dθ is a closed form and it's d-exact. Hence, it's ∂�∂ exact by ∂�∂-lemma [13]. So, we have

g : X → R (notice that g must be real valued for ∂�∂(g) to be an imaginary-valued form) and a

Harmonic form FHA such that FA = 4∂�∂(g)+FHA. Moreover if we assume that the �rst Chern class

of the determinant line bundle is a constant multiple of the K�ahler form ω (this is a topological

assumption on the line bundle), we can write

FA = 4∂�∂(g) + icω (for some constant c)

Hence we need to solve for

g = λ+ Im(f) and ∆(−2Im(f)) +
eλ|α1|

2

4
e−4Im(f) = c
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Putting λ = g− Im(f) in the second equation we get

∆(−2Im(f)) +
eg|α1|

2

4
e−5Im(f) = c

This pde is of Kazdan-Warner type and has a unique solution for any g if c > 0 and α1 is not

identically 0 [16] (we would we need degree of the determinant line bundle L to be negative for

c to be positive). Once we get Im(f), we get λ from the �rst equation.

Next, we turn our attention to the second pair of equations. We start with a holomorphic

structure on L1 and choose a compatible Hermitian metric h̃ on L1 and let's say h̃∗ be the

induced metric on L∗
1. We put the Chern connection B0 on L1 so that FB0

and hence FB has

only nontrivial (1, 1) part. Again we choose ψ2 = 0 ∈ Ω0,1(X,L1). Then equations (70) and

(71) read:

√
2�∂∗B0

ψ1 + c
(
∗ (∂�f∧ω)

)
ψ1 = 0⇒ √

2�∂∗B0
ψ1 − ic(∂�f∧ω)ψ1 = 0⇒ √

2�∂∗B0
ψ1 − 2i

√
2 ∗ (∂�f∧ψ1) = 0

To solve this we take ψ1 = e
−2�fξ1, where �∂

∗
B0
ξ1 = 0. For smooth section α ∈ Ω0,2(X,L1),

⟨�∂∗B0
(e−2

�fξ1), α⟩L2

= ⟨ξ1, e−2f�∂B0
α⟩L2

= 2⟨ξ1, e−2f�∂f∧ α⟩L2

= 2⟨ψ1, �∂f∧ α⟩L2

= 2⟨�∂f∧ α,ψ1⟩L2

= 2

∫
X

(�∂f∧ α∧ ∗ �ψ1)

= 2

∫
X

−i(�∂f∧ α∧ �ψ1)

= 2

∫
X

α∧ ∗
(
∗ (i∂�f∧ψ1)

)
= ⟨α, 2 ∗ (i∂�f∧ψ1)⟩L2

= ⟨2i ∗ (∂�f∧ψ1), α⟩L2

So, �∂∗B0
ψ1 = 2i ∗ (∂�f ∧ ψ1). What remains is the curvature equation, similar to the case of the

curvature equation for positive spinors one is able to deduce that in our case, the curvature

equation breaks into two equations:

(FB + 2i ∗ d ∗ β)1,1 = −
i

4
|ψ1|

2ω (This solves the diagonal parts) and

F0,2B = 0 (This solves the anti-diagonal part)

d ∗ β = i(∂�∂f− �∂∂�f)∧ω = 2i(∂�∂Ref)∧ω
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So we get,

FB + 2i ∗
(
2i(∂�∂Ref)∧ω

)
= −

i

4
|ψ1|

2ω

⇒ FB − 4 ∗
(
(∂�∂Ref)∧ω

)
= −

i

4
|ψ1|

2ω

⇒ FB − 4
(
− ∂�∂Ref+

i

2
∆(Ref)ω

)
= −

i

4
|ψ1|

2ω

⇒ FB + 4∂�∂Ref = −i
(
− 2∆(Ref) +

|ψ1|
2

4

)
ω

⇒ FB + 4∂�∂Ref = −i
(
− 2∆(Ref) +

e−4Ref|ξ1|
2

4

)
ω

Say the initial Hermitian metric on L1 was h1, we make a conformal change on the metric by eg1

for a smooth function g1 : X→ R. We notice that choosing ξ1 an anti-holomorphic section of L1
is same as choosing the corresponding holomorphic section �ξ1 of �L1 = L∗

1. Now with the natural

induced metric from h1 say, h∗1 on L∗
1 we also have |�ξ1|h∗

1
= |ξ1|h1

. For a conformal change

by eg1 on h1, we get a scaling by e−g1 on h∗1. As this is a conformal change in the metric,
�ξ1 is still a holomorphic section of �L1 = L∗

1, and now when we go back to the corresponding

anti-holomorphic section of L1, the norm of this section changes by e−g1 . With the new metric

h ′
1 = e

g1 , on L1 and the corresponding connection B ′ on the determinant bundle K−2
X ⊗L41, the

equation becomes

FB ′ + 4∂�∂Ref = −i
(
− 2∆(Ref) +

e−4Ref| �ξ1|
2

4

)
ω

⇒ FB − 4∂�∂g1 + 4∂�∂Ref = −i
(
− 2∆(Ref) +

e−4Refe−g1 |ξ1|
2

4

)
ω

⇒ FB = ∂�∂(4g1 − 4Ref) − i
(
− ∆(2Ref) +

e−4Ref−g1 |ξ1|
2

4

)
ω

If FB = 4∂�∂g ′ − ic ′ω for some smooth function g ′ : X → R and a constant c ′, then we need to

solve for g1 and Re(f) such that

g1 − Ref = g ′ and ∆(−2Ref) +
e−4Ref−g1 |ξ1|

2

4
= c ′

Putting −g1 = −g ′ − Ref, we get

∆(−2Ref) +
e−g

′
|ξ1|

2

4
e−5Ref = c ′

Since, ξ1 is not identically zero, this equation has a unique solution for c ′ > 0 [16], i.e., the

determinant line bundle L̃ needs to have positive degree.

Hence, we see that for each α1 ∈ H0(X,L0) and �ξ1 ∈ H0(X,KX⊗L−1
1 ), there is a unique way

to solve for f : X→ C and the two unitary connections A0 and B0 on L0 and L1 such that(
ϕ = e2ifα1, ψ = e−2

�fξ1, A = (−2AKX
+ 4A0), B = (−2AKX

+ 4B0), β = (�∂f+ ∂�f)∧ω
)

solves the 6d SW equations.
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Let's see how the solution changes if we scale α1, ξ1 by two non-zero constants a, b ∈ C∗.

De�ne

fa,b := f+
1

2
ln|b|+

i

2
ln|a|

If we would have started with aα1 and bξ1 instead of α1 and ξ1, the above construction would

give us a new solution of the equations:(
e2ifa,baα1, e

−2�fa,bbξ1, (−2AKX
+ 4A0), (−2AKX

+ 4B0), (�∂fa,b + ∂�fa,b)∧ω
)

=
( a
|a|
eiln|b|e2ifα1,

b

|b|
eiln|a|e−2

�fξ1, (−2AKX
+ 4A0), (−2AKX

+ 4B0), (�∂f+ ∂�f)∧ω
)

Which is gauge-equivalent to the original solution(
e2ifα1, e

−2�fξ1, (−2AKX
+ 4A0), (−2AKX

+ 4B0), β = (�∂f+ ∂�f)∧ω
)

And given two di�erent sets of holomorphic sections of of L0 and KX ⊗ L−1
1 which are not in

the same conformal classes lead to two di�erent sets of solutions. Hence modulo gauge the

space of solutions we constructed is the product of two projective spaces: CP
(
H0(X,L0)

)
×

CP
(
H0(X,KX ⊗ L−1

1 )
)
.

Remarks 30. We make three remarks regarding the solutions we constructed above.

• We make one important observation about how the moduli space can be non-compact,

using the above construction. Take a three form α = (γ + �γ), where γ ∈ Ω1,2(X,C) and
γ ∧ ω = 0. Notice that for any ϕ ∈ Ω0(X,L0), ψ ∈ Ω0(X,KX ⊗ L−1

1 ), c(α)ϕ = 0 and

c(∗α)ψ = 0. If γ is harmonic, we can add any constant multiple of α to our three-form and

get another solution. If γ is harmonic and γ∧ω = 0, it is a harmonic primitive (1, 2)-form;

i.e., γ ∈ H1,2(X)p [13]. So, modulo gauge the space of solutions we constructed actually is

CP
(
H0(X,L0)

)
× CP

(
H0(X,KX ⊗ L−1

1 )
)
×H1,2(X)p.

• Notice that if b3(X) = 0 (this would imply H1,2(X)p = {0}), then for the choice of L0 to be
the trivial line bundle and L1 = KX, modulo gauge the space of solutions we constructed

is a singleton set. This is reminiscent to the moduli space of 4d SW equations on K�ahler

surfaces: when we twist the canonical Spinc-bundle by the trivial or the canonical line

bundle, the moduli space is again a singleton set in that case.

• Notice that in our solution, the zero set of the spinors i.e., ϕ−1(0) and ψ−1(0) are two

divisors. Hence they intersect (at least generically) along a complex curve inside X.

A class of examples

Now we give a class of explicit examples where we have the necessary conditions to have non-

trivial solutions of our equations. From the construction explained above, we see that for the

construction to work, we need two holomorphic line bundles L0 and L1 on X with the following

conditions:

1. dimH0(X,L0) > 0
2. c1(K

−2
X ⊗ L40) = a0[ω] with a0 < 0 [This implies deg(K−2

X ⊗ L40) < 0]
3. dimH0(X,KX ⊗ L−1

1 ) > 0

4. c1(K
−2
X ⊗ L41) = a1[ω] with a1 > 0 [This implies deg(K−2

X ⊗ L41) > 0]
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Example 1. Let's take 3 compact Riemann surfaces (Xi,ωi)i=1,2,3 of the same genus g > 1.

ωi denotes the normalized K�ahler form on Xi such that
∫
Xi
ωi = 1. De�ne X := X1 × X2 × X3.

The K�ahler form on X is ω :=
∑3
i=1 π

∗
iωi where πi is the projection of X onto Xi.

Lemma 31. Let (A,ωA) and (B,ωB) be two compact Riemann surfaces with ωA,ωB de-

noting the respective normalized K�ahler forms on them such that the integration of the

K�ahler form on the manifold gives 1. Now say L is a holomorphic line bundle on A, then

deg L=deg π∗A(L). where πA is the projection of A× B onto A.

Proof. ∫
A×B

c1(π
∗
AL)∧ (π∗AωA + π∗BωB)

=

∫
A×B

π∗Ac1(L)∧ π
∗
BωB +

∫
A×B

π∗Ac1(L)∧ π
∗
AωA

=

∫
A×B

π∗Ac1(L)∧ π
∗
BωB +

∫
A×B

π∗A(c1(L)∧ωA)

=

∫
A×B

π∗Ac1(L)∧ π
∗
BωB + 0

=

∫
A

c1(L)×
∫
B

ωB

=

∫
A

c1(L)

KX = ⊗3i=1π∗i (KXi
). We take L0 to be the trivial complex line bundle on X and L1 to be the

canonical line bundle KX. We have

H0(X,L0) ∼= C and c1(K
−2
X ⊗ L40) = −2(2g− 2)ω

and for L1 = KX, we have

H0(X,KX ⊗ K−1
X ) ∼= C and c1(K

−2
X ⊗ K4X) = 2(2g− 2)ω

Example 2. The idea is to take X a hypersurface in CP4 of very high degree, let's take a

holomorphic section of O(d) → CP4, i.e., a homogeneous polynomial of degree d in 5 variables

(d to be determined later). If we choose this generically, the zero locus is a smooth algebraic

variety X.

The Kahler form ω on X is given by restricting the Fubini-Study form ωFS on X and it lies

in the cohomology class obtained by restricting c1(O(1)) on X. Meanwhile, by the adjunction

formula, KX = O(d− 5)|X.

Now we take L0 = O(k0)|X and L1 = O(k1)|X (k0 and k1 to be determined later). For

m > 0, dim H0(CP4;O(m)) > 0. Restricting these holomorphic sections to X we can �nd line
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bundles on X with non-trivial holomorphic sections. We need k0 and k1 to satisfy the following

conditions:

1. k0 > 0 so that there are holomorphic sections of L0.
2. 2(5− d) + 4k0 < 0. This ensures that c1(K

−2
X ⊗ L4) is a negative multiple of ω.

3. d− 5− k1 > 0 so that there are holomorphic sections of KX ⊗ L−1
1 .

4. 2(5− d) + 4k1 > 0. This ensures that c1(K
−2
X ⊗ L41) is a positive multiple of ω.

Putting this conditions together we get

0 < k0 <
d− 5

2
< k1 < d− 5

So, in this way we get many examples by �rst choosing d > 7 and then picking k0 and k1 as we

like in the above ranges.

0.5.3 Solution of perturbed SW equations on Σ× C2

In this section we construct solutions of a perturbed version of the equations on X = Σ × C2,
where Σ is a compact Riemann surface. We �nd solutions which are invariant in the C2 direction.
The discussion is very similar to the theory of vortex equations on a Riemann surface (e.g. see

[5]).

We take a holomorphic line bundle L → Σ over Σ. We de�ne spinor bundles on Σ to be

S+(Σ) = L
S−(Σ) = K

−1
Σ ⊗ L

and on C2 to be

S+(C2) = Λ0(C2)⊕Λ0,2(C2)
S−(C2) = Λ0,1(C2)

One can construct a Spinc-bundle on Σ× C2 in the following way [17]:

S+(Σ× C2) =
(
S+(Σ)⊗ S+(C2)

)
⊕

(
S−(Σ)⊗ S−(C2)

)
S−(Σ× C2) =

(
S+(Σ)⊗ S−(C2)

)
⊕

(
S−(Σ)⊗ S+(C2)

)
So, the determinant bundle is:

Det
(
S+(Σ× C2)

)
= L4 ⊗ K−2

Σ

The K�ahler metric on Σ induces a natural metric and a holomorphic connection on KΣ and hence

on K−2
Σ . We start with a hermitian metric h on L and the usual 
at metric on C2. So, giving a

unitary connection Ã on L is enough to determine a unitary connection A on the determinant

bundle. With abuse of notation we say A = −2AKΣ+4Ã.We denote the natural K�ahler form on

C2 by ω, ωΣ is the K�ahler form on Σ and we take (ω+ωΣ) to be the K�ahler form on Σ× C2.
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Now we write the perturbed equations. The perturbation terms are added in the curvature

equations.

DA(ϕ) + c(β)(ϕ) = 0 (73)

FA − 2i ∗ dβ+ η1 = q(ϕ), η1 = 2FKΣ
+ irω+ iτωΣ (r, τ > 0) (74)

DB(ψ) + c(∗β)(ψ) = 0 (75)

FB + 2i ∗ d ∗ β+ η2 = q(ψ), η2 = 2FKΣ
− ir1ω− iτ1ωΣ (r1, τ1 > 0) (76)

To be very precise, we should be writing π∗Σ(FΣ), π
∗
C2(ω) etc in our discussion, hopefully it won't

cause any confusion to the reader.

Take a smooth function f : Σ → C. We take β = (�∂f + ∂�f) ∧ ω. To solve the �rst Dirac

equation take the Chern connection Ã w.r.t. h and a holomoprhic section α ∈ H0(Σ,L) and
de�ne ϕ := e2ifα⊗ 1. Then,

DA(ϕ) =
√
2�∂
Ã
(e2ifα)⊗ 1

= 2
√
2ie2if�∂f∧ α⊗ 1

= −(
√
2e2ifα)⊗ (−2i)

= −c(�∂f∧ω)(e2ifα⊗ 1)

The �rst curvature equation reads:

FA − 2i ∗ dβ+ 2FKΣ
+ irω+ iτωΣ =

i

4
|ϕ|2(ω+ωΣ)

4F
Ã
+ 4 ∗

(
∂�∂(Imf)∧ω

)
+ irω+ iτωΣ =

i

4
|ϕ|2(ω+ωΣ)

Say z1 = x1 + iy1 is the coordinate on Σ around a �xed point and z2 = x2 + iy2, z3 = x3 + iy3
be the coordinates on C2. We notice that

∗
(
∂�∂(Imf)∧ω

)
= ∗

( ∂2

∂z1∂�z1
(Imf)dz1 ∧ d�z1 ∧ω

)
= ∗

(1
4
(
∂2

∂x21
+
∂2

∂y21
)(Imf)(−2idx1 ∧ dy1)∧ (dx2 ∧ dy2 + dx3 ∧ dy3)

)
=
i

2

(
∆Σ(Imf)ω

)
So, the �rst curvature equation becomes

4F
Ã
+ 2i∆Σ(Imf)ω+ irω+ iτωΣ =

i

4
e−4Imf|α|2(ω+ωΣ)

and it splits into two equations on the Riemann surface:

4F
Ã
+ iτωΣ =

i

4
e−4Imf|α|2ωΣ and − 2∆Σ(Imf) +

1

4
e−4Imf|α|2 = r

First we solve for Im(f) from the second equation for a �xed α (we can do this since r > 0 [16]).

Now we turn to the �rst equation. Notice F
Ã
is a holomorphic connection on the holomorphic

line bundle L and hence only the (1, 1) part of the curvature is nontrivial. We make a conformal
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change in the metric h: h ′ = eλh for some smooth function λ : Σ → R which induces a new

Chern connection on L, say A ′. The equation becomes

FA ′ − ∂�∂λ+ i
τ

4
ωΣ =

i

16
e−4Imfeλ|α|2ωΣ

⇔ ⟨FA ′ ,ωΣ⟩−⟨∂�∂λ,ωΣ⟩+ i
τ

4
=
i

16
e−4Imfeλ|α|2

⇔ ⟨FA ′ ,ωΣ⟩+ i
τ

4
=
i

2
∆Σλ+

i

16
e−4Imfeλ|α|2

The real valued function Imf is already known. So we can solve for λ if∫
Σ

(
− i4⟨FA ′ ,ωΣ⟩+ τ

)
> 0

⇔ τ
Vol(Σ)

2π
≥ 4

∫
Σ

⟨ iFA
′

2π
,ωΣ⟩

⇔ τ >
8π

Vol(Σ)
deg(L)

For the second set of equations, we start with a holomorphic line bundle L1 (potentially di�erent
from L). One can construct a Spinc-bundle on Σ× C2 as [17]:

S̃+(Σ× C2) =
(
L1 ⊗ S+(C2)

)
⊕
(
(K−1
Σ ⊗ L1)⊗ S−(C2)

)
S̃−(Σ× C2) =

(
L1 ⊗ S−(C2)

)
⊕
(
(K−1
Σ ⊗ L1)⊗ S+(C2)

)
Det(S̃−) ∼= K−2

Σ ⊗ L41. If we put a hermitian metric (say h1 on L1 and the usual 
at metric on

C2, then giving a unitary connection (say B̃ on L is enough to determine a unitary connection

B on the determinant bundle K−2
Σ ⊗L41.With abuse of notation we write B = −2AKΣ

+ 4B̃. AKΣ

is the holomorphic connection on KΣ determined by the K�ahler metric on Σ.

Take a negative spinor ψ := ψ1 ⊗ 1 ∈ Γ
(
(K−1
Σ ⊗ L1)⊗Λ0(C2)

)
. The second Dirac equation:

(DB + c(∗β))ψ = 0 reads

√
2(�∂∗

B̃
ψ1)⊗ 1+ c

(
∗ (∂�f∧ω)

)
ψ1 ⊗ 1 = 0⇒ √

2(�∂∗
B̃
ψ1)⊗ 1− ic(∂�f∧ω)ψ1 ⊗ 1 = 0⇒ √

2(�∂∗
B̃
ψ1)⊗ 1− 2i

√
2
(
∗Σ (∂�f∧ψ1)

)
⊗ 1 = 0
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To solve this we take ψ1 = e
−2�fξ1, where �∂

∗
B̃
ξ1 = 0. For smooth section α ∈ Ω0(Σ,L1),

⟨�∂∗
B̃
(e−2

�fξ1), α⟩L2

= ⟨ξ1, e−2f�∂B̃α⟩L2

= 2⟨ξ1, e−2f�∂f∧ α⟩L2

= 2⟨ψ1, �∂f∧ α⟩L2

= 2⟨�∂f∧ α,ψ1⟩L2

= 2

∫
X

(�∂f∧ α∧ ∗Σ �ψ1)

= 2

∫
X

−i(�∂f∧ α∧ �ψ1)

= 2

∫
X

α∧ ∗Σ
(
∗Σ (i∂�f∧ψ1)

)
= ⟨α, 2 ∗Σ (i∂�f∧ψ1)⟩L2

= ⟨2i ∗Σ (∂�f∧ψ1), α⟩L2

So, �∂∗
B̃
ψ1 = 2i ∗Σ (∂�f∧ψ1). What remains to solve is the second curvature equation:

4F
B̃
+ 2i ∗ d ∗ β− ir1ω− iτ1ωΣ = −

i

4
|ψ1|

2(ω+ωΣ)

4F
B̃
− 2i(∆ΣRef)ω− ir1ω− iτ1ωΣ = −

i

4
e−Ref|ξ1|

2(ω+ωΣ)

This splits into two equations:

4F
B̃
+
i

4
e−Ref|ξ1|

2ωΣ = iτ1ωΣ and 2∆Σ(−Ref) +
1

4
e−Ref|ξ1|

2 = r1

Since ξ is not identically zero and r1 > 0, there exists a unique solution for Ref [16] in the second

equation. Now that we know Ref, we go back to solve the �rst equation. The initial Hermitian

metric on L1 was h1, we make a conformal change on the metric by eλ1 for a smooth function

λ1 : X → R. We notice that choosing ξ1 an anti-holomorphic section of L1 is same as choosing

the corresponding holomorphic section �ξ1 of �L1 = L∗
1. Now with the natural induced metric

from h1 say, h
∗
1 on L∗

1 we also have |
�ξ1|h∗

1
= |ξ1|h1

. For a conformal change by eλ1 on h1, we get

a scaling by e−λ1 on h∗1. As this is a conformal change in the metric, �ξ1 is still a holomorphic

section of �L1 = L∗
1, and now when we go back to the corresponding anti-holomorphic section of

L1, the norm of this section changes by e−λ1 . With the new metric h ′
1 = eλ1 , on L1 and the

corresponding connection B̃ ′ on L1, the equation becomes:

4F
B̃ ′ +

i

4
e−Ref|ξ1|

2
h ′

1
ωΣ = iτ1ωΣ

⇔ 4F
B̃
− 4∂�∂λ1 +

i

4
e−Refe−λ1 |ξ1|

2ωΣ = iτ1ωΣ

⇔ 4⟨F
B̃
,ωΣ⟩− 2i∆Σλ1 +

i

4
e−Refe−λ1 |ξ1|

2 = iτ1

⇔ 2∆Σ(−λ1) +
1

4
e−Refe−λ1 |ξ1|

2 = τ1 + 4⟨iFB̃,ωΣ⟩
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Ref is a known function, hence we can uniquely solve for λ1 [16] if∫
Σ

(τ1 + 4⟨iFB̃,ωΣ⟩) > 0

⇔ τ1 > −
8π

Vol(Σ)
deg(L1)

So we proved the existence of non-trivial solutions of the equations (73),(74),(75),(76) under the

following conditions on the two holomorphic line bundles L and L1 on Σ :

1. dimH0(Σ,L) > 0

2. τ >
8π

Vol(Σ)
deg(L)

3. dimH0(Σ,KΣ ⊗ L−1
1 ) > 0

4. τ > −
8π

Vol(Σ)
deg(L1)

Remark 32. For an explicit example, take any closed Riemann surface Σ of genus g, take L to

be the trivial line bundle, then for any τ > 0, we satisfy the �rst two conditions. And if we take

L1 = KΣ, τ1 > 16π(g−1)
Vol(Σ) ; we also satisfy the second two conditions.

0.5.4 Solution of perturbed SW equations on R6

In this section we �nd solution of a perturbed version of the SW equations on R6, by reducing the
equations to certain odes as a function of r =

√∑6
i=1 x

2
i

(
(x1, . . . , x6) denote the coordinates

in R6
)
. R6 ∼= C3 has a natural K�ahler form ω = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6. The

perturbation involves adding a positive multiple of ω on the left hand side of the �rst curvature

equation.

The spinor bundles on R6 = C3 are trivial. We can in fact think of them as follows:

S+(C3) = Λ0,0 ⊕Λ0,2 ∼= C⊕ C3

S−(C3) = Λ0,1 ⊕Λ0,3 ∼= C3 ⊕ C

With abuse of notation we write the trivial complex line bundle on C3 as C. Take the three-form
β = ir(∂ − �∂)r ∧ ω. Choose a connection A on the determinant bundle of S+ and a spinor ϕ

in Ω0,0(C3), such that DAϕ = 0 (we explain in a bit how to �nd such A and ϕ). Say g(r) is a

smooth function in r. We solve for g to solve the �rst Dirac equation (63).(
DA + c(ir(∂− �∂)r∧ω)

)
g(r)ϕ = 0⇒ g ′(r)c(dr)ϕ+ g(r)DAϕ+ g(r)c

(
ir(∂− �∂)r∧ω)ϕ = 0⇒ √

2g ′(r)�∂r∧ ϕ = irg(r)(−2
√
2i�∂r∧ ϕ)⇒ g ′(r)(�∂r∧ ϕ) = 2rg(r)(�∂r∧ ϕ)

g(r) = cer
2

solves it for any constant c. Now we explain how to solve DAϕ = 0. We denote

the connection on the determinant line bundle by A = d+ ia. Then DA = D+ 1
2
c(ia). Choose
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ia = −2(∂− �∂)r2.

(∂− �∂)r2

= (∂− �∂)(z1�z1 + z2�z2 + z3�z3) ,where z1 = x1 + ix2, z2 = x3 + ix4, z3 = x5 + ix6

= (�z1dz1 − z1d�z1) + (�z2dz2 − z2d�z2) + (�z3dz3 − z3d�z3)

= 2i(−x2dx1 + x1dx2 − x4dx3 + x3dx4 − x6dx5 + x5dx6)

We choose a point-wise basis {e1, e2, e3, e4} of S+ ∼= C4 such that e1 denotes the constant

function 1 ∈ Λ0,0p (C3) at a point p ∈ C3 and the point-wise basis of S− ∼= C4 is chosen as

{c(dx1)e1, c(dx1)e2, c(dx1)e3, c(dx1)e4}. Then the matrix representations of Cli�ord multiplica-

tion are

c(dx1) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , c(dx2) =

i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i

 , c(dx3) =

0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

 ,

c(dx4) =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , c(dx5) =

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 , c(dx6) =

0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


For ϕ ∈ Ω0,0(C3) and ia = −2(∂ − �∂)r2, DAϕ = 0 breaks down into the following three

equations:

∂ϕ

∂x1
+ i

∂ϕ

∂x2
− 2i(−x2ϕ+ ix1ϕ) = 0

i
∂ϕ

∂x3
−
∂ϕ

∂x4
− 2i(−ix4ϕ− x3ϕ) = 0

−
∂ϕ

∂x5
− i

∂ϕ

∂x6
− 2i(x6ϕ− ix5ϕ) = 0

For any constant c1, ϕ = c1e
−

∑6
i=1 x

2
i solves all three equations simultaneously.

The curvature equation (64) reads:

ida− 2i ∗ d
(
ir(∂− �∂)r∧ω

)
=
i

4
|g(r)|2|ϕ|2ω

⇒ ida+ 2 ∗
(
(∂+ �∂)r∧ (∂− �∂)r∧ω+ r(∂+ �∂)(∂− �∂)r∧ω

)
=
i

4
|g(r)|2|ϕ|2ω

⇒ ida+ 2 ∗
(
− 2∂r∧ �∂r∧ω− 2r∂�∂r∧ω) =

i

4
|g(r)|2|ϕ|2ω

⇒ ida+ 2 ∗ (−∂�∂(r2)) = i

4
|g(r)|2|ϕ|2ω

⇒ ida+ 2∂�∂(r2) − i∆(r2)ω =
i

4
|g(r)|2|ϕ|2ω

∆(r2) = −
∑6
i=1

∂2

∂x2
i

r2 = −12 and ida = −2(∂+ �∂)(∂− �∂)r2 = 4∂�∂r2. We also have

⇒ ida = −i(−dx2 ∧ dx1 + dx1 ∧ dx2 − dx4 ∧ dx3 + dx3 ∧ dx4 − dx6 ∧ dx5 + dx5 ∧ dx6)

= −8iω
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So the left hand side of the curvature equation is 6∂�∂(r2) + 12iω = −12iω + 12iω = 0. So, we

can solve the following set of equations:

(DA + c(β))(gϕ) = 0

FA − 2i ∗ dβ+ r1ω = q(gϕ), r1 > 0

forA = d−4i(−x2dx1+x1dx2−x4dx3+x3dx4−x6dx5+x5dx6), gϕ = 2
√
r1 and β = ir(∂−�∂)r∧ω.

Let's solve the second pair of equations (65), (66) as well. We choose a connection B on the

determinant bundle of S− and a negative-spinor ψ ∈ Ω0,3(C3), such that DBψ = 0 (again we

explain how to get this in a bit). Now take a smooth function h(r) in r and solve for h, with the

same β as above. The Dirac equation (65) reads:(
DB + c(∗(ir(∂− �∂)r∧ω))

)
(h(r)ψ) = 0⇒ h ′(r)c(dr)ψ+ h(r)DBψ+ rh(r)c(∂r∧ω)ψ = 0⇒ h ′(r)c(dr)ψ = −rh(r)c(∂r∧ω)ψ⇒ −

√
2h ′(r) ∗ (∂r∧ µ) = −rh(r)2

√
2 ∗ (∂r∧ψ)

Hence h(r) = c2e
r2 solves it for any constant c2.

We denote the connection on the determinant line bundle by B = d + ib. Then DB =

D+ 1
2
c(ib).We now explain how to choose ψ and b such that DBψ = 0. We would do this again

using explicit calculation. We start by giving matrix representation of Cli�ord multiplication

of dxi, i ∈ {1, 2, 3, 4, 5, 6}. We choose a point-wise basis {f1, f2, f3, f4} of S− ∼= C4 such that f1
denotes the basis element d�z1∧d�z2∧d�z3p ∈ Λ0,3p (C3) at a point p ∈ C3 and the point-wise basis

of S− ∼= C4 is chosen as {c(dx1)f1, c(dx1)f2, c(dx1)f3, c(dx1)f4}. The matrix representations of

Cli�ord multiplication of these forms are:

c(dx1) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , c(dx2) =

i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i

 , c(dx3) =

0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

 ,

c(dx4) =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , c(dx5) =

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 , c(dx6) =

0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


We choose ib = ia = −2(∂− �∂)r2. The same calculations as in the �rst Dirac equation says that

for φ = c3e
−

∑6
i=1 x

2
i (c3 being a constant), ψ := φd�z1 ∧ d�z2 ∧ d�z3 ∈ Ω0,3(C3) solves DBψ = 0.

Coming back to the curvature equation (66), we have:

FB + 2i ∗ d ∗ β = q(ψ)

⇒ idb+ 2i ∗ d(rdr∧ω) = −
i

4
|h(r)|2|ψ|2ω

⇒ idb = −
i

4
|h(r)|2|ψ|2ω

⇒ −8iω = −
i

4
|h(r)|2|ψ|2ω

So, ψ = 4
√
2d�z1∧d�z2∧d�z3, B = d− 4i(−x2dx1+ x1dx2− x4dx3+ x3dx4− x6dx5+ x5dx6), β =

ir(∂− �∂)r∧ω solve the second set of equations (65), (66). We get the following proposition:
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Proposition 33. There exists a non-trivial solution of the following perturbed version of

the SW equations on R6 :

(DA + c(β))ϕ = 0 (77)

FA − 2i ∗ dβ+ r1ω = q(ϕ) (78)

(DB + c(∗β))ψ = 0 (79)

FB + 2i ∗ d ∗ β = q(ψ) (80)

r1 > 0 is a constant.

0.6 Solution of 8-dimensional SW equations

0.6.1 Spin geometry in dimension 8:

Let M be a Spinc-manifold of dimension 8 and S = S+ ⊕ S− → M, be a spinor bundle on M.

S+ and S− are both complex vector bundles of dimension 8. The complexi�ed forms act on the

spinors via Cli�ord multiplication:

c :
(
Λ0(M)⊕Λ2(M)⊕Λ4(M)

)
⊗ C → EndC(S+, S+) ∼= EndC(S−, S−)

c :
(
Λ1(M)⊕Λ3(M)

)
⊗ C → EndC(S+, S−) ∼= EndC(S−, S+)

Notice that the Hodge-star operator ∗ squares to identity on four-forms: ∗2 = Id on Λ4(M).

Hence, Λ4(M) splits as self-dual and anti self-dual four forms:

Λ4(M) = Λ4+(M)⊕Λ4−(M)

The self dual part Λ4+(M) acts trivially on the negative spinors and the anti self-dual part

Λ4−(M) acts trivially on the positive spinors. The proof is identical to the proof of lemma 26.

The following maps are isomorphisms:

c :
(
Λ0(M)⊕Λ2(M)⊕Λ4+(M)

)
⊗ C → EndC(S+, S+)

c :
(
Λ0(M)⊕Λ2(M)⊕Λ4−(M)

)
⊗ C → EndC(S−, S−)

For a hermitian endomorphism of positive spinors, we can split it into a trace-free part and the

trace-part. Λ0 (real dim 1) is the trace part and the imaginary 2-forms and the self-dual real

4-forms (real dimension 28 + 35 = 63 in total) act as trace-free hermitian endomorphisms via

Cli�ord multiplication:

c : iΛ2(M)⊕Λ4+(M) → isu(S+)

And similarly for negative spinors we have:

c : iΛ2(M)⊕Λ4+(M) → isu(S−)

These isomorphisms induce a splitting of isu(S+) and isu(S−), which can be explained as follows.

Both S+ and S− has a real-structure which is Spin(8)-equivariant [10]. The self-dual (or the

anti self-dual) 4-forms give endomorphisms which commute with the real structure, whereas

the imaginary 2-forms anti-commute with the real structure.
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0.6.2 Solution of perturbed SW equations on a closed Kähler 4-fold

In this section we describe a solution of a perturbed version of 8d SW equations on a closed

K�ahler 4-manifold X with a K�ahler form ω. The equations for A ∈ A, ϕ ∈ Γ(S+), β ∈ Ω3 are:(
DA + (1+ i)c(β)

)
ϕ = 0 (81)

FA + 2(dβ)+ + 2id∗β+ cω2 = q(ϕ), c < 0 (82)

We take a positive Spinc bundle on X, by twisting the canonical positive Spinc bundle by a

holomorphic line bundle L (with a hermitian metric say h) :

S+(X) = Λ
0(X,L)⊕Λ0,2(X,L)⊕Λ0,4(X,L)

The determinant bundle of S+(X) is K−1
X ⊗ Det(Λ0,2(X)) ⊗ L8 ∼= K−4

X ⊗ L8. Hence choosing

a unitary connection (say Ã) on L gives us a unitary connection (say A) on the determinant

bundle. For the construction of solution we will have two cases depending on whether the �rst

Chern class of the determinant bundle is a positive or negative multiple of the K�ahler form. This

is a necessary assumption we make on the topology of the line-bundle L for this construction.

The reason behind adding the extra term cω2 is the following. As we will see in our construc-

tion, we will choose our spinor ϕ to be a non-trivial section of either L or K−1
X ⊗L (depending on

whether c1(K
−4
X ⊗L8) is a negative or positive multiple of ω) and for both these cases the Hodge

decomposition of q(ϕ) will have a non-zero harmonic four-form, i.e., some constant multiple of

ω2. But the left hand side of the original curvature equation: FA + (dβ+ ∗dβ) + 2id∗β = q(ϕ)

doesn't have any harmonic-four form. Hence, we need this extra term to solve the curvature

equation for the choice of our spinor. Notice the perturbation is harmonic.

c1(K
−4
X ⊗ L8) is a negative multiple of ω:

The construction solution is very similar to the 6d case. We take the three-form β = (�∂f+∂�f)∧ω

for some smooth complex valued function f on X and choose a spinor ϕ (which depends on f)

in Ω0(X,L) such that the Dirac equation is solved for any holomorphic connection on L.
Start with the Chern connection A0 on L compatible with the holomoprhic structure on L

and we choose a holomorphic section ϕ0, i.e., �∂A0
ϕ0 = 0. The Cli�ord action of β = (�∂f+∂�f)∧ω

on ϕ0 is given by:

c(β)ϕ0 = c(�∂f∧ω)ϕ0 = −3
√
2i �∂f∧ ϕ0

De�ne a positive spinor ϕ := e3i(1+i)fϕ0 ∈ Ω0(X,L). We have(
DA + (1+ i)c(β)

)
ϕ =

√
2�∂A0

ϕ+ (1+ i)c(�∂f∧ω)ϕ

= 3
√
2i(1+ i)e3i(1+i)f�∂f∧ ϕ0 − 3

√
2i(1+ i)e3i(1+i)f�∂f∧ ϕ0

= 0

Now let's focus on the curvature equation.

dβ = (∂�∂f+ �∂∂�f)∧ω

=
(
∂�∂(f− �f)

)
∧ω

= 2i
(
∂�∂(Imf)

)
∧ω

70



To calculate dβ+ = 1
2

(
dβ + ∗(dβ)

)
, we will use local coordinates. We take local holomorphic

coordinates {zk = xk + iyk}k=1,2,3,4 centered at a point x ∈ X so that the K�ahler metric is

standard to second order at the point. For a real valued smooth function h, we have

(∂�∂h)∧ω

=

4∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω

=
∑
j̸=k

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω+

4∑
j=1

∂2h

∂zj∂�zj
dzj ∧ d�zj ∧ω

In these coordinates, ω =
∑4
k=1 dxk ∧ dyk. Let's take j = 1, k = 2.

∗ (dz1 ∧ d�z2 ∧ω)

= ∗
(
(dx1 + idy1)∧ (dx2 − idy2)∧ (dx3 ∧ dy3 + dx4 ∧ dy4)

)
= ∗

(
(dx1 ∧ dx2 + dy1 ∧ dy2 − idx1 ∧ dy2 − idx2 ∧ dy1)∧ (dx3 ∧ dy3 + dx4 ∧ dy4)

)
= −

(
(dx1 ∧ dx2 + dy1 ∧ dy2 − idx1 ∧ dy2 − idx2 ∧ dy1)∧ (dx3 ∧ dy3 + dx4 ∧ dy4)

)
= −(dz1 ∧ d�z2 ∧ω)

Let's take j = 1

∗ (dz1 ∧ d�z1 ∧ω)

= ∗
(
(dx1 + idy1)∧ (dx1 − idy1)∧ (dx2 ∧ dy2 + dx3 ∧ dy3 + dx4 ∧ dy4)

)
= ∗

(
− 2idx1 ∧ dy1 ∧ (dx2 ∧ dy2 + dx3 ∧ dy3 + dx4 ∧ dy4)

)
= −2i

(ω2
2

− dx1 ∧ dy1 ∧ (dx2 ∧ dy2 + dx3 ∧ dy3 + dx4 ∧ dy4)
)

= −dz1 ∧ d�z1 ∧ω− iω2

Hence,

dβ+ =
1

2

(
dβ+ ∗(dβ)

)
=
1

2

(
2i× (−i)

4∑
j=1

∂2(Imf)

∂zj∂�zj
ω2

)
=

( 4∑
j=1

1

2
(
∂

∂xj
− i

∂

∂yj
)
1

2
(
∂

∂xj
+ i

∂

∂yj
)(Imf)

)
ω2

=
1

4

( 4∑
j=1

(
∂2

∂x2j
+
∂2

∂y2j
)(Imf)

)
ω2

= −
1

4
∆(Imf)ω2

For calculating d∗β, we will need a small lemma.
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Lemma 34. On a K�ahler 4-fold (X,ω), for a smooth real-valued function h, we have:

∗
(
∂�∂h∧ω2

)
= −2∂�∂h+ i(∆h)ω

Proof. We take local holomorphic coordinates {zk = xk+ iyk}k=1,2,3,4 centered at a point x ∈ X
so that the K�ahler metric is standard to second order at the point. Then at x,

(∂�∂h)∧ω2

=

4∑
j,k=1

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω

2

=
∑
j̸=k

∂2h

∂zj∂�zk
dzj ∧ d�zk ∧ω

2 +

4∑
j=1

∂2h

∂zj∂�zj
dzj ∧ d�zj ∧ω

2

Let's take j = 1, k = 2.

∗ (dz1 ∧ d�z2 ∧ω
2)

= ∗
(
(dx1 + idy1)∧ (dx2 − idy2)∧ 2(dx3 ∧ dy3 ∧ dx4 ∧ dy4)

)
= ∗

(
(dx1 ∧ dx2 + dy1 ∧ dy2 − idx1 ∧ dy2 − idx2 ∧ dy1)∧ 2(dx3 ∧ dy3 ∧ dx4 ∧ dy4)

)
= −2(dx1 ∧ dx2 + dy1 ∧ dy2 − idx1 ∧ dy2 − idx2 ∧ dy1)

= −2dz1 ∧ d�z2

Let's take j = 1

∗ (dz1 ∧ d�z1 ∧ω
2)

= ∗
(
(dx1 + idy1)∧ω

2
)

= ∗
(
− 2idx1 ∧ dy1 ∧

(
dx2 ∧ dy2 ∧ (dx3 ∧ dy3 + dx4 ∧ dy4) + dx3 ∧ dy3 ∧ (dx2 ∧ dy2 + dx4 ∧ dy4)

+ dx4 ∧ dy4 ∧ (dx2 ∧ dy2 + dx3 ∧ dy3)
))

= −2i× 2(ω− dx1 ∧ dy1)

= −2dz1 ∧ d�z1 − 4iω

Hence,

∗
(
(∂�∂h)∧ω2

)
= −2∂�∂h+ i(∆h)ω

d∗β = − ∗ d ∗ β

In local coordinates at x,

∗β = ∗
(
(�∂f+ ∂�f)∧ω

)
= ∗

( 4∑
j=1

(
∂f

∂�zj
d�zj +

∂f

∂zj
dzj)∧ω

)
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Take j = 1. By explicit calculation one can check that

∗(d�z1 ∧ω) =
i

2
d�z1 ∧ω

2 and ∗ (dz1 ∧ω) = −
i

2
dz1 ∧ω

2

Hence,

∗ β =
i

2
(�∂f− ∂�f)∧ω2

⇒ d ∗ β =
i

2
(∂�∂f− �∂∂�f)∧ω2 = i∂�∂(Ref)∧ω2

⇒ ∗d ∗ β = i
(
− 2∂�∂(Ref) + i(∆Ref)ω

)
⇒ − ∗ d ∗ β = 2i∂�∂(Ref) + (∆Ref)ω

For ϕ ∈ Ω0(X,L), c(q(ϕ)) can be written in diagonal matrix form for its Cli�ord action on

positive spinors in Ω0(X,L)⊕Ω0,2(X,L)⊕Ω0,4(X,L).

c(q(ϕ)) =

78 |ϕ|2Id 0 0

0 −1
8
|ϕ|2Id 0

0 0 −1
8
|ϕ|2Id


We also describe the Cli�ord multiplication of the forms iω and ω2 on the positive spinors.

Ω0 Ω0,2 Ω0,4

iω 4Id 0 -4Id

ω2 -12Id 4Id -12Id

Hence,

q(ϕ) =
|ϕ|2

32
(4iω−ω2)

|ϕ|2 = e3(i−1)f × e−3(i+1)�f|ϕ0|2 = e−6(Ref+Imf)|ϕ0|2

The curvature equation (82) reads

FA − 4∂�∂(Ref) + 2i∆(Ref)ω =
i

8
e−6(Ref+Imf)|ϕ0|

2ω

and −
1

2
∆(Imf) + c = −

1

32
e−6(Ref+Imf)|ϕ0|

2

So, to �nd a solution we have to solve these two equations simultaneously. Say, the initial

hermitian metric on L was h, we make a conformal change in the metric by a smooth function

λ : X → C, the new metric being h ′ := eλh. Let's call the corresponding connection on the

curvature equation A ′. With respect to this new connection the curvature equation reads:

FA ′ − 4∂�∂(Ref) + 2i∆(Ref)ω =
i

8
e−6(Ref+Imf)|ϕ0|

2
h ′ω

⇔ FA − 8∂�∂λ− 4∂�∂(Ref) + 2i∆(Ref)ω =
i

8
e−6(Ref+Imf)+λ|ϕ0|

2ω

and

−
1

2
∆(Imf) + c = −

1

32
e−6(Ref+Imf)|ϕ0|

2
h ′

⇔ −
1

2
∆(Imf) + c = −

1

32
e−6(Ref+Imf)+λ|ϕ0|

2

73



Now assume FA = ∂�∂g + ic ′ω (this assumption depends on the �rst Chern class of L). So, we
solve for:

g = 8λ+ 4Ref, 2∆(−Ref) +
1

8
e−6(Ref+Imf)+λ|ϕ0|

2 = c ′

and −
1

2
∆(Imf) + c = −

1

32
e−6(Ref+Imf)+λ|ϕ0|

2

We replace λ by g and Ref in the last two equations and solve them for Ref and Imf and then

we get back λ from the �rst equation. So we solve for Ref and Imf simultaneously from these

two equations.

∆(−Ref) +
1

16
e

g
8 e(−

13
2
Ref−6Imf)|ϕ0|

2 = c ′

∆(−Imf) +
1

16
e

g
8 e(−

13
2
Ref−6Imf)|ϕ0|

2 = −c

Firstly, these two equations give us c ′ = −c. Hence we also get

∆(Ref− Imf) = 0

Which implies

Ref = Imf+ a, for a real constant a

So, the two second order pdes above become a single one:

∆(−Ref) +
1

16
e(

g
8
−6a)|ϕ0|

2e−
25
2
Ref = −c

Since |ϕ0|
2 is not everywhere zero, this equation has a unique solution for Ref since c < 0 [16].

Notice that c ′ = −c > 0 is the same condition as −4c1(KX) + 8c1(L) being a negative multiple

of ω.

Hence, we see that for each ϕ0 ∈ H0(X,L0), there is a unique way to solve for f : X→ C and

a unitary connection A0 on L0 such that(
ϕ = e3i(1+i)fϕ0, A = (−4AKX

+ 8A0), β = (�∂f+ ∂�f)∧ω
)

solves the SW equations.

Let's see how the solution changes if we scale α0 by a non-zero constant θ. De�ne

fθ := f+
(1+ i)

6
ln(θ)

If we start with θϕ0 instead of ϕ0, the above construction would give us a new solution of the

equations: (
e3i(1+i)(fθ)θϕ0, (−4AKX

+ 8A0), (�∂fθ + ∂�fθ)∧ω
)

=
(
ϕ = e3i(1+i)fϕ0, A = (−4AKX

+ 8A0), β = (�∂f+ ∂�f)∧ω
)

And given two di�erent holomorphic sections of L which are not in the same conformal class

lead to two di�erent sets of solutions. So, modulo gauge the space of solutions we found is

CP(H0(X,L)).
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c1(K
−4
X ⊗ L8) is a positive multiple of ω:

The strategy for this case is very much similar to the one before, one major di�erence is that

here the choice of our spinor will be a section of Λ0,4(X,L) instead of being a section of Λ0(X,L).
We start with a three-form β = (�∂f1 + ∂�f1)∧ω, f1 being a complex-valued smooth function

on X. We also take the Chern connection A0 on L. For ϕ ∈ Ω0,4(X,L), A = −4AKX
+ 8A0, β =

(�∂f+ ∂�f)∧ω, the Dirac equation (81) reads:

√
2�∂∗A0

ϕ+ (1+ i)c(β)ϕ = 0⇔ √
2�∂∗A0

ϕ− 3
√
2i(1+ i) ∗ (∂�f1 ∧ ϕ) = 0

Choose a section ξ ∈ Γ
(
Λ0,4(X,L)

)
such that �∂∗A0

ξ = 0 and de�ne ϕ = e−3i(1+i)
�f1ξ. For For

smooth section α ∈ Ω0,3(X,L),

⟨�∂∗A0
(e−3i(1+i)

�f1ξ), α⟩L2

= ⟨ξ, e3i(1−i)f1�∂A0
α⟩L2

= ⟨ξ, − 3i(1− i)e3i(1−i)f1�∂f1 ∧ α⟩L2

= 3i(1+ i)⟨ϕ, �∂f1 ∧ α⟩L2

= 3i(1+ i)⟨�∂f1 ∧ α,ϕ⟩L2

= 3i(1+ i)

∫
X

(�∂f1 ∧ α∧ ∗�ϕ)

= 3i(1+ i)

∫
X

(�∂f1 ∧ α∧ �ϕ)

= 3i(1+ i)

∫
X

α∧ ∗
(
∗ (∂�f1 ∧ ϕ)

)
= 3i(1+ i)⟨α, ∗(∂�f1 ∧ ϕ)⟩L2

= ⟨3i(1+ i) ∗ (∂�f1 ∧ ϕ), α⟩L2

Hence, ϕ,A,β solves the Dirac equation (81). Notice since ϕ ∈ Ω0,4(X,L), we have

q(ϕ) = −
|ϕ|2

32
(4iω+ω2)

= −
e6(Ref1−Imf1)|ξ|2

32
(4iω+ω2)

Going back to the curvature equation (82) we get

FA − 4∂�∂(Ref1) + 2i∆(Ref1)ω = −
i

8
e6(Ref1−Imf1)|ξ|2ω

and −
1

2
∆(Imf1) + c = −

1

32
e6(Ref1−Imf1)|ξ|2

We want to solve these two equations simultaneously. The initial hermitian metric on L was h,

we make a conformal change in the metric by a smooth function λ1 : X → C, the new metric

being h ′ := eλ1h. We notice that choosing ξ an anti-holomorphic section of Λ0,4⊗L = K−1
X ⊗L

is same as choosing the corresponding holomorphic section �ξ of K−1
X ⊗ L = (K−1

X ⊗ L)∗. Now
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with the natural induced metric from h say, h∗ on (K−1
X ⊗ L)∗ we also have |�ξ|h∗ = |ξ1|h. For a

conformal change by eλ1 on h, we get a scaling by e−λ1 on h∗. As this is a conformal change

in the metric, �ξ is still a holomorphic section of K−1
X ⊗ L = (K−1

X ⊗ L)∗ and now when we go

back to the corresponding anti-holomorphic section of K−1
X ⊗L, the norm of this section changes

by e−λ1 . Let's call the corresponding connection on the curvature equation A ′. With respect to

this new connection the curvature equation reads:

FA ′ − 4∂�∂(Ref1) + 2i∆(Ref1)ω = −
i

8
e6(Ref1−Imf1)|ξ|2h ′ω

⇔ FA − 8∂�∂λ1 − 4∂�∂(Ref1) + 2i∆(Ref1)ω = −
i

8
e6(Ref1−Imf1)−λ1 |ξ|2ω

and

−
1

2
∆(Imf1) + c = −

1

32
e6(Ref1−Imf1)|ξ|2h ′

⇔ −
1

2
∆(Imf1) + c = −

1

32
e6(Ref1−Imf1)−λ1 |ξ|2

Assume FA = ∂�∂g1 + ic̃ω (this assumption depends on the �rst Chern class of L). So, we solve
for:

g1 = 8λ1 + 4Ref1, −2∆(Ref1) −
1

8
e6(Ref1−Imf1)−λ1 |ξ|2 = c̃

and −
1

2
∆(Imf1) + c = −

1

32
e6(Ref1−Imf)−λ1 |ξ|2

We replace λ1 by g1 and Ref1 in the last two equations and solve them for Ref1 and Imf1 and

then we get back λ1 from the �rst equation. So we solve for Ref1 and Imf1 simultaneously from

these two equations.

∆(Ref1) +
1

16
e−

g1
8 e(

13
2
Ref1−6Imf1)|ξ|2 = −c̃

∆(−Imf1) +
1

16
e−

g1
8 e(

13
2
Ref1−6Imf1)|ξ|2 = −c

Firstly, these two equations give us c = c̃. Hence we also get

∆(Ref1 + Imf1) = 0

Which implies

Ref1 + Imf1 = a1, for a real constant a1

and the two second order pdes above become a single one:

∆(Ref1) +
1

16
e(

g1
8

−6a1)|ξ|2e
25
2
Ref1 = −c

Since |ξ|2 is not everywhere zero, this equation has a unique solution for Ref1 as c < 0 [16].

Notice that c̃ = c < 0 is the same condition as −4c1(KX) + 8c1(L) being a positive multiple of

ω.

Using similar arguments as in the other case, it's straight-forward to see that modulo gauge

the space of solutions we constructed is CP(H0(KX ⊗ L−1)).
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Remark 35. Notice if L is the trivial bundle, CP(H0(X,L)) is a singleton point and for L = KX,

CP(H0(KX ⊗ L−1)) is again a singleton set, which is reminiscent of the moduli space of 4d SW

equations on K�ahler 2-folds.

A class of solutions

We give a class of explicit examples where we have the necessary conditions to have non-trivial

solutions of our equations. From the construction explained above, we see that for the construc-

tion to work, we need a holomorphic line bundle L on X with the following conditions:

1. dimH0(X,L) > 0
2. c1(K

−4
X ⊗ L8) = c0[ω] with c0 < 0 [This implies deg(K−4

X ⊗ L8) < 0]
or

1. dimH0(X,KX ⊗ L−1) > 0

2. c1(K
−4
X ⊗ L8) = c̃0[ω] with c̃0 > 0 [This implies deg(K−4

X ⊗ L81) > 0]

Example 1. Take 4 compact Riemann surfaces (Xi,ωi)i=1,2,3,4 of the same genus g > 1. ωi
denotes the normalized K�ahler form on Xi such that

∫
Xi
ωi = 1. De�ne X := X1×X2×X3×X4.

The K�ahler form on X is ω :=
∑4
i=1 π

∗
iωi where πi is the projection of X onto Xi.

KX = ⊗4i=1π∗i (KXi
) and c1(KX) = (2g − 2)ω. If we choose L to be the trivial line bundle

it satis�es the �rst two conditions and if we choose L = KX, it satis�es the alternative two

conditions.

Example 2. We take X to be a hypersurface in CP4 of very high degree, let's take a holomorphic

section of O(d) → CP5, i.e., a homogeneous polynomial of degree d in 6 variables (d to be

determined later). If we choose this generically, the zero locus is a smooth algebraic variety X.

The Kahler form ω on X is given by restricting the Fubini-Study form ωFS on X and it lies

in the cohomology class obtained by restricting c1(O(1)) on X. Meanwhile, by the adjunction

formula, KX = O(d− 6)|X.

Take L = O(k)|X. For m > 0, dim H0(CP5;O(m)) > 0. Restricting these holomorphic

sections to X we can �nd line bundles on X with non-trivial holomorphic sections. We need k to

satisfy the following two conditions for O(k)|X to satisfy the �rst two conditions:

1. k > 0 so that there are non-trivial holomorphic sections ofL
2. 4(6− d) + 8k < 0. This ensures that c1(K

−4
X ⊗ L8) is a negative multiple of ω.

and for the alternative two conditions we would need

1. d− 6− k > 0 so that there are non-trivial holomorphic sections of KX ⊗ L−1

2. 4(6− d) + 8k > 0. This ensures that c1(K
−4
X ⊗ L8) is a positive multiple of ω.

Putting these all together we would need k to be in the following ranges for existence of non-

trivial solution:

0 < k <
d− 6

2

or

d− 6

2
< k < d− 6
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So we get many examples by choosing d > 8 and choosing k as we like in the above ranges.
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Part VII

Seiberg–Witten equations on
Spin(7)-manifolds
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0.7 Spin(7)-manifolds

0.7.1 Spin(7)-structure on a manifold

In the list of the possible holonomy groups for a non-symmetric, irreducible Riemannian mani-

fold, there are two exceptional cases: G2 and Spin(7) [2]. There are several ways of de�ning the

group Spin(7), often involving octonians. We will use a more general and certainly one of the

more useful de�nitions, is the one given below.

Choose x0, x1, . . . , x7 to be the standard Euclidean coordinates of R8.We also equip R8 with
the standard orientation coming from the volume form dx0∧ · · ·∧dx7 and the Euclidean metric

g =
∑7
j=0 dxj ⊗ dxj. De�ne a four form Φ0 on R8 by

Φ0 :=dx0123 − dx0167 − dx0527 − dx0563 + dx0415 + dx0426 + dx0437

+ dx4567 − dx4523 − dx4163 − dx4127 + dx2637 + dx1537 + dx1526

where dxklmn = dxk ∧ dxl ∧ dxm ∧ dxn. Notice that Φ0 is self-dual, i.e., ∗Φ0 = Φ0.
The subgroup of GL(8,R) preserving Φ0 is isomorphic to Spin(7), the double cover of SO(7),

which is a compact semi-simple, 21-dimensional Lie group. It is a subgroup of SO(8), so the

metric g can be reconstructed from Φ0.

Let M be an 8-manifold. Consider AM, de�ned as a sub-bundle of Λ4T∗M by

AMm = {λ ∈ (Λ4T∗M)m : ∃ an isomorphism ϕ : TmM→ R8, taking λ to Φ0}

A smooth section of AM gives rise to a Spin(7)-structure. LetΦ be a smooth section of AM, then

Φ is a smooth four form on M and de�nes a Spin(7)-structure on M. By an abuse of notation

we shall often identify a Spin(7)- structure with its associated 4-form Φ. A Spin(7)-structure Φ

on M induces a natural metric g on M by the inclusion Spin(7) ⊂ SO(8).
The �ber of AM is GL(8,R)/Spin(7), so AM is not a vector sub-bundle of Λ4T∗M. Now a

smooth section of AM gives rise to a Spin(7)-structure on M.

The action of Spin(7) on R8 gives an action of Spin(7) on Λk(R8)∗, which splits Λk(R8)∗
into an orthogonal direct sum of irreducible representations of Spin(7). Suppose that M is an

oriented 8-manifold with a Spin(7)-structure, so that M has a 4-form Φ and a metric g. Then

in the same way, ΛkT∗M splits into an orthogonal direct sum of sub-bundles with irreducible

representations of Spin(7) as �bres [15]:

Λ2 = Λ27 ⊕Λ221 Λ6 = Λ67 ⊕Λ621
Λ3 = Λ38 ⊕Λ348 Λ5 = Λ57 ⊕Λ548

Λ4 = Λ41 ⊕Λ47 ⊕Λ427 ⊕Λ435

The notation Λkl refers to an l-dimensional irreducible Spin(7)-representation which is a subspace

of Λk. The decomposition respects the Hodge star ∗ operator since Spin(7) ⊂ SO(8).We de�ne

the projection operator on forms πkl : Ωk → Ωkl , de�ned as the projection of k-forms onto the

l-dimensional subspace.

It turns out that Spin(7)-manifolds are spin, i.e., w2(M) = 0. We give an equivalent descrip-

tion of Spin(7)-manifolds from a spinorial point of view.

We start with an orientable Riemannian 8-manifold which is spin. Moreover we �x a spin-

structure and take the associated real spin-bundle onM, say S = S+ ⊕ S−. This basically comes
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from the real spinorial representation ρ : Spin(8) → SO(16), constructed by restricting the

isomorphism Cl8 ∼= GL(16) and equipping R16 with a metric ⟨·, ·⟩ which makes the Cli�ord

product a skew-symmetric endomorphism.

At each m ∈ M, the action Spin(8) → SO(S+(M)m) is a double covering, so that the

existence of a unitary spinor ξ ∈ Γ(S+) determines an identi�cation between Spin(7) and the

stabilizer of of ξm : stab(ξm). We get back the four-form Φ associated to the Spin(7)-structure

in the following way [23].

Φ(v1, v2, v3, v4) =⟨v1, v2⟩⟨v3, v4⟩− ⟨v1, v3⟩⟨v4, v2⟩+ ⟨v1, v4⟩⟨v2, v3⟩
− ⟨c(v∗2)c(v∗1)ξ, c(v∗3)c(v∗4)ξ⟩

v∗ is de�ned using the canonical identi�cation between the tangent and the cotangent bundle:

v∗ := g(v, ·).

0.7.2 Clifford multiplication

Let's start with a complex spin-bundle S = S+ ⊕ S− → M on M, S+ and S− are bundles over

M of complex dimension 8. There exists a real Spin(8)-equivariant structure on S which anti-

commutes with Cli�ord multiplication of one-forms [10]. So, one can get back the real spinors

from the complex spinors.

The Cli�ord action of the Cayley form Φ on Γ(S+) has two eigenvalues: 14 and −2. This

gives us a splitting of S+ :

S+ = ⟨η⟩ ⊕ ⟨η⟩⊥

η is a unit length positive spinor such that c(Φ)η = 14η and for any φ orthogonal to η, c(Φ)φ =

−2φ. Recall that the trace-free hermitian endomorphisms of the positive spinors in dimension 8

are given by the Cli�ord actions of imaginary two forms and the self-dual four forms:

c : iΛ2 ⊕Λ4+ → isu(S+)

Moreover since, M has a Spin(7)-structure, both iΛ2 and Λ4+ splits:

iΛ2 = iΛ27 ⊕ iΛ221
Λ4+ = Λ41 ⊕Λ47 ⊕Λ427

Λ41 = ⟨Φ⟩ and as we saw earlier the Cli�ord action of Φ preserves the splitting of S+. Together

the two 7-dimensional parts correspond to Hermitian maps which send ⟨η⟩ to ⟨η⟩⊥ and ⟨η⟩⊥ to

⟨η⟩ :

c : iΛ27 ⊕Λ47 → ⟨η⟩⊥ ⊗ ⟨η⟩∗

Since S+ has a real structure, it induces a real structure on ⟨η⟩⊥ ⊗ ⟨η⟩∗. Hence it can be seen as

the direct sum of two real vector spaces and the direct sum decomposition is indeed

⟨η⟩⊥ ⊗ ⟨η⟩∗ = c(iΛ27)⊕ c(Λ47)

Notice that both sides have real dimension 7× 2 = 14.
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And �nally the forms iΛ221 and Λ
4
27 preserve ⟨η⟩ and ⟨η⟩⊥. In fact their action on η is trivial

and the Cli�ord actions of these forms give us trace-free Hermitian endomorphisms of ⟨η⟩⊥, i.e.,
the following map is an isomorphism.

c : iΛ221 ⊕Λ427 → isu(⟨η⟩⊥)

Together with the trace-part, we also get the isomorphism:

c : iΛ221 ⊕Λ41 ⊕Λ427 → ⟨η⟩⊥ ⊗ (⟨η⟩⊥)∗

Notice for a Hermitian 7×7 matrix, the real part is a symmetric 7×7 matrix, so 28 real numbers.

Meanwhile the imaginary part is 21 imaginary numbers (because it's skew, not symmetric). iΛ221
contributes to the imaginary part and Λ41 ⊕Λ427 contributes to the real part.

0.8 Seiberg–Witten equations on a Spin(7)-manifold

Taking inspiration from the original Seiberg{Witten equations in dimension 4, there have been

attempts to devise monopole equations on manifolds with a Spin(7)-structure, e.g., see [3]. We

introduce a new set of elliptic equations on a 8-dimensional manifoldM with a Spin(7)-structure

determined by a Cayley form say Φ. The equations for ϕ ∈ Γ(S+), α ∈ iΩ1, β ∈ Ω38 are:

Dϕ+ c(α+ β)ϕ = 0, (83)

π27(dα) + π
4
1⊕7(dβ) +Φ = (π27 ⊕ π41⊕7)

(
q(ϕ)

)
(84)

q(ϕ) ∈ iΩ2 ⊕Ω4+, π27 ⊕ π41⊕7 is the projection of iΩ2 ⊕Ω4+ onto the subspace iΩ27 ⊕Ω41 ⊕Ω47.
The gauge group G = Map(M,S1) acts on (ϕ,α, β) in the following way:

g ∈ G, g · (ϕ,α, β) = (gϕ,α− g−1dg, β)

This action preserves the space of solutions to the equations and moreover the equations are

elliptic modulo gauge. One gets Seiberg{Witten equations on manifolds with a G2 and SU(3)-

structure by dimensional reductions of the equations above.

The equations came out of the following fantasy.

• Given a Spin(7)-structure Φ on a closed 8-manifoldM, we hope to \count" solutions to the

SW equations (83), (84) and get an invariant of the isotopy class of the Spin(7)-structure

(allowing an isotopy through the Cayley form Φ).

• If the Spin(7)-structure is torsion-free, i.e., dΦ = 0, we hope to prove the invariant equals

1.

• With the assumptions of the statements above, let's say we �nd a Φ for which the invariant

is not 1, that would imply that Φ is not isotopic to a torsion-free Spin(7)-structure.

However the fantasy is still far out of reach, especially since the analysis seems to be much

more complicated (see §§0.10) compared to the 4d SW theory. This is a work in progress.

Proposition 36. The Seiberg{Witten equations (83), (84) on a Spin(7)-manifold M are

elliptic modulo gauge, with index zero.
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Proof. The equations (83), (84) de�ne a map

SW : iΩ1 ×Ω38 × Γ(S+) → (
iΩ27 ⊕Ω41 ⊕Ω47

)
× Γ(S−)

SW(α,β,ϕ) =
(
π27(dα) + π

4
1⊕7(dβ) +Φ− (π27 ⊕ π41⊕7)q(ϕ), (D+ c(α+ β))ϕ

)
If δ(A,β,ϕ) = (a, b, σ) is an in�nitesimal pertubation of (α,β,ϕ), where a ∈ iΩ1, b ∈ Ω38 and
σ ∈ Γ(S+). The linearisation of SW at (α,β,ϕ) is

d(α,β,ϕ)SW : Ω1 ⊕Ω38 ⊕ Γ(S+) → (
iΩ27 ⊕Ω41 ⊕Ω47

)
× Γ(S−)

d(A,β,ϕ)SW(a, b, σ) =
(
π27da+ π41⊕7dβ− (π27 + π

4
1⊕7)dϕq(σ), (D+ c(α+ β))σ+ c(a+ b)ϕ

)
We supplement this with the Coulomb gauge condition 2d∗ : Ω1 → Ω0 and discard the zeroth

order terms which do not a�ect ellipticity or the index. This leaves the map

L : iΩ1 ⊕Ω38 × Γ(S+) → (
iΩ0 ⊕ iΩ27

)
×
(
Ω41 ⊕Ω47

)
× Γ(S−)

L(a, b, σ) =
(
(d∗a+ π27(da), π

4
1(db) + π

4
7(db), Dσ

)
All three maps

d∗ + π27 ◦ d : Ω1 → Ω0 ⊕Ω27, (85)

π41⊕7 ◦ d : Ω38 → Ω41 ⊕Ω47, (86)

D : Γ(S+) → Γ(S−)

are elliptic [34] and hence so is L.

Joyce [15] showed that S+ ∼= (Ω0⊕Ω27)⊗C ∼= (Ω41⊕Ω47)⊗C and S− ∼= Ω1⊗C ∼= Ω38⊗C ∼=

Ω58 ⊗ C and the operators described in (85),(86) are essentially D− : Γ(S−) → Γ(S+) modulo

some rearrangements of constants (D− is the canonical Dirac operator on negative spinors, the

corresponding connection being the lift of the Levi-Civita connection). The canonical Dirac

operator on positive spinors can be described as:

D+ : (Ω41 ⊕Ω47)⊗ C → Ω58 ⊗ C
D+(ξ1 ⊕ ξ7) = 8π58(dξ1) + 7π58(dξ7)

Since D− is the dual of D+, the total index adds up to be zero.

0.9 Construction of a solution

We call the Spin(7)-structure (say determined by the Cayley form Φ) torsion free if ∇Φ = 0.

Fern�andez [9] showed that this is equivalent to dΦ = 0 and moreover such a manifold has

holonomy as a subgroup of Spin(7). In fact, it's an if and only if condition [6].

Proposition 37. If (M,Φ) is a Spin(7)-manifold with zero torsion (i.e., Φ being a harmonic

form), then the Seiberg{Witten equations (83), (84) have a non-trivial solution.

Proof. An important observation is the spinor η (the unit length spinor corresponding to the

form Φ) is parallel [14]: ∇η = 0 (the connection being the canonical lift of the Levi-Civita

connection). Hence Dη = 0. Notice

c
(
q(η)

)
=

{
7
8
Id on ⟨η⟩

−1
8
Id on ⟨η⟩⊥
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Hence

q(η) =
1

16
Φ

and ϕ = 4η, α = 0, β = 0 solves the Seiberg{Witten equations (83), (84).

0.10 A priori estimates

Proposition 38. In dimension 8, for α ∈ iΩ1 and β ∈ Ω3, the self-adjoint Dirac operator

Dα,β := D+ c(α+ β) enjoys the following Weitzenb�ock formula:

D2α,β = ∇∗
α,β∇α,β +

s

4
+ c(dα+ dβ) − 2|β|2 (87)

s denotes the scalar curvature, ∇α,β is a unitary connection depending on both α and β,

an explicit description is given in proposition 11.

Proof. We pick a coframe ej which is stationary at a point p ∈M with respect to the Levi-Civita

connection. Proposition 11 gives us

D2α,β = ∇∗
α,β∇α,β +

s

4
+ c(dα+ dβ) +

1

4

∑
j

(
c(ej) ◦ c(α+ β) + c(α+ β) ◦ c(ej)

)2
+ c(α+ β)2

∑
j

(
c(ej) ◦ c(α+ β) + c(α+ β) ◦ c(ej)

)2
=

∑
j

c(ej) ◦
(
c(α) ◦ c(β) + c(β) ◦ c(α) + c(α)2 + c(β)2

)
◦ c(ej)

+
(∑
j

c(ej) ◦ c(α+ β) ◦ c(ej)
)
◦ c(α+ β)

+ c(α+ β) ◦
(∑
j

c(ej) ◦ c(α+ β) ◦ c(ej)
)
− 8c(α+ β)2

Notice that for α ∈ iΩ1, c(α)2 = |α|2. Since c(α+β)2, c(α)2, c(β)2 are all self-adjoint endomor-

phisms of positive spinors, so must be
(
c(α)◦c(β)+c(β)◦c(α)

)
. Hence, c(α)◦c(β)+c(β)◦c(α) =

c(θ), for some θ ∈ iΩ2. Notice that for k ̸= l,

j ∈ {k, l}, c(ej) ◦ c(ek) ◦ c(el) ◦ c(ej) = c(ek) ◦ c(el)
j /∈ {k, l}, c(ej) ◦ c(ek) ◦ c(el) ◦ c(ej) = −c(ek) ◦ c(el)

This says
∑
j c(ej) ◦ c(θ) ◦ c(ej) = −4c(θ). By similar observation, we also get

∑
j

(
c(ej) ◦ c(α) ◦

c(ej)
)
= 6c(α). We borrow two formulas from chapter IV, namely equation 44:∑

j

c(ej) ◦ c(β) ◦ c(ej) = 2c(β)

and equation 45 ∑
j

c(ej) ◦ c(β)2 ◦ c(ej) = −8|β|2

84



Assembling all the pieces we get∑
j

(
c(ej) ◦ c(α+ β) + c(α+ β) ◦ c(ej)

)2
= −4(c(α) ◦ c(β) + c(β) ◦ c(α)) + 8|α|2 − 8|β|2 + (6c(α) + 2c(β)) ◦ (c(α) + c(β))
+ (c(α) + c(β)) ◦ (6c(α) + 2c(β)) − 8(c(α) ◦ c(β) + c(β) ◦ c(α) + |α|2 + c(β)2)

= −4|α|2 − 4(c(α) ◦ c(β) + c(β) ◦ c(α)) − 4c(β)2 − 8|β|2

So,

1

4

∑
j

(
c(ej) ◦ c(α+ β) + c(α+ β) ◦ c(ej)

)2
+ c(α+ β)2

= −2|β|2

Finally the Weitzenb�ock formula reads:

D2α,β = ∇∗
α,β∇α,β +

s

4
+ c(dα+ dβ) − 2|β|2

Before proceeding further, let's understand the term (π27 ⊕ π41⊕7)
(
q(ϕ)

)
explicitly. Say ϕ =

fη+ξ, f ∈ C∞(M,C), ξ ∈ Γ(⟨η⟩⊥). In terms of its Cli�ord action on S+ = ⟨η⟩⊕⟨η⟩⊥, the matrix

representation of c(q(ϕ)) is:[
7|f|2−|ξ|2

8
f�ξ

�fξ (⟨ , ξ⟩− |ξ|2

7
) − 7|f|2−|ξ|2

56

]

Notice the term
(
⟨ , ξ⟩− |ξ|2

7

)
∈ Γ

(
isu(⟨η⟩⊥)

)
∼= iΩ221⊕Ω427, hence the matrix representation of

c(π27 ⊕ π41⊕7)
(
q(ϕ)

)
is [

7|f|2−|ξ|2

8
f�ξ

�fξ −7|f|
2−|ξ|2

56

]

The diagonal entries are given by (7|f|2−|ξ|2)
8×14 Φ ∈ Ω41 and the o�-diagonal parts are given by an

element of iΩ27 ⊕Ω47.

c(π27 ⊕ π41⊕7)
(
q(ϕ)

)
(ϕ) =

7

8
(|f|2 + |ξ|2)fη+

(49|f|2 + ξ|2)

56
ξ

⇒ ⟨c(π27 ⊕ π41⊕7)
(
q(ϕ)

)
ϕ,ϕ⟩ = 7

8

(
|f|4 + 2|f|2|ξ|2 +

1

72
|ξ|4

)
Lemma 39. Let M be a Spin(7)-manifold with a Spin(7) structure de�ned by the Cayley

four form Φ such that dΦ = 0. Then if ϕ = fη+ ξ, α, β solves the SW equations (83), (84),

then f and ξ satisfy: ∫
(7|f|2 − |ξ|2) = 8× 14
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Proof. Since Φ is closed we get,∫
(dβ∧Φ) = 0

⇒ ∫ ( (7|f|2 − |ξ|2)

8× 14
− 1

)
Φ∧Φ = 0

Lemma 40. Let M be a Spin(7)-manifold with a Spin(7) structure de�ned by the Cayley

four form Φ such that dΦ = 0. Then for α ∈ iΩ27

3

∫
|π27(dα)|

2 =

∫
|π221(dα)|

2

Proof. Since Φ is closed we have∫
dα∧ dα∧Φ = 0

⇒ ∫
⟨dα, ∗(dα∧Φ)⟩ = 0

⇒ ∫
⟨
(
π27(dα) + π

2
21(dα)

)
, ∗
(
π27(dα) + π

2
21(dα)∧Φ

)
⟩ = 0

⇒ ∫
⟨π27(dα) + π221(dα), 3π27(dα) − π221(dα)⟩ = 0

⇒ 3

∫
|π27(dα)|

2 =

∫
|π221(dα)|

2

Lemma 41. Let M be a Spin(7)-manifold with a torsion-free Spin(7)-structure de�ned by

the Cayley four form Φ. Then if ϕ = fη + ξ, α, β solves the SW equations (83), (84), then

for any ϵ > 0, f, ξ and β satisfy∫
7

8

(
|f|4 + 2|f|2|ξ|2 +

1

72
|ξ|4

)
≤ 2

∫
|β|2(|f|2 + |ξ|2) +

3

2ϵ

∫
|f|2|ξ|2 +

ϵ

2

∫
|ξ|4 + 16× 14

Proof. Using the Weitzenb�ock formula (87) we get

0 = ∇∗
α,β∇α,βϕ+ c(dα+ dβ)ϕ− 2|β|2ϕ

Taking point-wise inner product with ϕ yields

0 = ⟨∇∗
α,β∇α,βϕ,ϕ⟩+ ⟨c(dα+ dβ)ϕ,ϕ⟩− 2|β|2|ϕ|2

Since we are working with a torsion-free Spin(7)-structure and β ∈ Ω38,dβ+ has no component

in Ω427 [8]. Hence we get

0 = ⟨∇∗
α,β∇α,βϕ,ϕ⟩+ ⟨c(π27(dα) + dβ)ϕ,ϕ⟩− 2|β|2|ϕ|2 + ⟨c(π221(dβ))ϕ,ϕ⟩

⇒ 0 = ⟨∇∗
α,β∇α,βϕ,ϕ⟩+

7

8

(
|f|4 + 2|f|2|ξ|2 +

1

72
|ξ|4

)
− 14|f|2 + 2|ξ|2 − 2|β|2|ϕ|2 + ⟨c(π221(dβ))ξ, ξ⟩
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We have

1

2
∆|ϕ|2 = ⟨∇∗

α,β∇α,βϕ,ϕ⟩− |∇α,βϕ|2

= −
7

8

(
|f|4 + 2|f|2|ξ|2 +

1

72
|ξ|4

)
+ 2(7|f|2 − |ξ|2) + 2|β|2|ϕ|2 − ⟨c(π221(dβ))ξ, ξ⟩− |∇α,βϕ|2

Integrating both sides we get∫
7

8

(
|f|4 + 2|f|2|ξ|2 +

1

72
|ξ|4

)
≤ 2

∫
|β|2(|f|2 + |ξ|2) +

∫
|π221(dβ))||ξ|

2 + 2

∫
(7|f|2 − |ξ|2)

≤ 2
∫
|β|2(|f|2 + |ξ|2) +

1

2ϵ

∫
|π221(dβ))|

2 +
ϵ

2

∫
|ξ|4 + 16× 14

= 2

∫
|β|2(|f|2 + |ξ|2) +

3

2ϵ

∫
|π27(dβ))|

2 +
ϵ

2

∫
|ξ|4 + 16× 14

≤ 2
∫
|β|2(|f|2 + |ξ|2) +

3

2ϵ

∫
|f|2|ξ|2 +

ϵ

2

∫
|ξ|4 + 16× 14

We are using the Peter-Paul inequality and the two lemmas proved above and also the fact that

the following isomorphism is also an isometry with respect to the usual norms on both sides.

c : iΛ27 ⊕Λ47 → ⟨η⟩⊥ ⊗ ⟨η⟩∗ ⊂ S+ ⊗ S∗+
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Appendix A

Clifford multiplication of
(p, q)-forms

A.1 Clifford multiplication on Kähler 3-folds

The appendix involves calculating explicit formulae of Cli�ord multiplication of (p, q)-forms on

spinors. From now on, for a form α and a spinor ν we will write α ·ν instead of c(α)ν to denote

Cli�ord action of α on ν (this is purely to make my typing job easier and hopefully it won't

confuse the reader). Cli�ord multiplication by a real one-form α ∈ Ω1(X,R) on a spinor ν is

given by the formula [20]:

α · ν =
√
2
(
π0,1(α)∧ ν− π0,1(α)⌟ν

)
Now we need to calculate its complex-linear extension to the complexi�ed forms. For a, b ∈
Ω1(X,R),

(a+ ib) · ν = a · ν+ ib · ν

=
√
2
(
π0,1(a)∧ ν− π0,1(a)⌟ν

)
+ i

√
2
(
π0,1(b)∧ ν− π0,1(b)⌟ν

)
As contraction is complex anti-linear in the �rst variable, i(π0,1(b)⌟ν) = (−iπ0,1(b))⌟ν. Hence,

√
2
(
π0,1(a)∧ ν− π0,1(a)⌟ν

)
+ i

√
2
(
π0,1(b)∧ ν− π0,1(b)⌟ν

)
=

√
2
(
(π0,1(a) + iπ0,1(b))∧ ν− (π0,1(a) − iπ0,1(b))⌟ν

)
=

√
2
(
π0,1(a+ ib)∧ ν− π1,0(a+ ib)⌟ν

)
A.1.1 Clifford action on positive spinors

We take local holomorphic coordinates {zk = xk + iyk}k=1,2,3 centered at a point x ∈ X so that

the K�ahler metric is standard to second order at the point.

Ω3,0(X,C) acting on Ω0(X,L0)⊕Ω0,2(X,L0) : Trivial action as we are contracting three

times.

Ω0,3(X,C) acting on Ω0(X,L0) : For µ ∈ Ω0,3(X,C), λ ∈ Ω0(X,L0), µ · λ = 2
√
2µ ∧ λ ∈

Ω3(X,L0).
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Ω0,3(X,C) acting on Ω0,2(X,L0) : Trivial action.
Ω1,2(X,C) acting on Ω0(X,L0) : Say λ ∈ Ω0(X,L0). There are basically two cases we need

to consider here.

Case 1: j ̸= l ̸= k, then (dzj ∧ d�zl ∧ d�zk) · λ = d�zl · d�zk · dzj · λ = 0.

Case 2: j ̸= k, then (dzj ∧ d�zj) ∧ d�zk = −2i(dxj ∧ dyj) ∧ d�zk = −2id�zk ∧ (dxj ∧ dyj).

d�zk ∧ (dxj ∧ dyj) · λ = d�zk · dxj · dyj · λ and π0,1(dyj) =
i
2
d�zj, π

0,1(dxj) =
1
2
d�zj. So,

dyj · λ =
√
2
i

2
(d�zj ∧ λ)

dxj · dyj · λ = −
i

2
d�zj⌟(d�zj ∧ λ)

d�zk · dxj · dyj · λ = −
i√
2
d�zk ∧

(
d�zj⌟(d�zj ∧ λ)

)
= −

i√
2
d�zk ∧

(
|d�zj|

2λ
)

= −
√
2i d�zk ∧ λ ∈ Ω0,1(X,L0)

We also notice that for j ̸= l ̸= k, (dzj ∧ d�zl ∧ d�zk)∧ω = 0, where ω =
3∑

m=1

dxm ∧ dym is the

K�ahler form. To understand the second case let's look at the element d�z2 ∧ dx1 ∧ dy2.

(d�z2 ∧ dx1 ∧ dy1)∧ω = dx1 ∧ dy1 ∧ d�z2 ∧ dx3 ∧ dy3

and

∗(d�z2 ∧ dx1 ∧ dy2 ∧ω) = ∗(dx1 ∧ dy1 ∧ d�z2 ∧ dx3 ∧ dy3)

= dy2 + idx2

= id�z2

Here and on-wards ∗ on complexi�ed forms will mean the complex-linear extension of the Hodge-∗
operator on real forms. Similarly checking all other cases, we observe that for k ̸= j,

∗(d�zk ∧ dxj ∧ dyj ∧ω) = id�zk

Hence we see that for any µ ∈ Ω1,2(X,C), λ ∈ Ω0(X,L0),

µ · λ = −
√
2
(
∗ (µ∧ω)∧ λ

)
Now for µ = η∧ω, we get

(η∧ω) · λ = −
√
2
(
∗ (η∧ω2)∧ λ

)
= −2

√
2i η∧ λ

Ω1,2(X,C) acting on Ω0,2(X,L0) : Say λ ∈ Ω0,2(X,L0), µ ∈ Ω1,2(X,C).
Locally let's say we write λ = λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1. Now similar to the

last case, for j ̸= k ̸= l,

(dzj ∧ d�zk ∧ d�zl) · λ = dzj · d�zk · d�zl · λ = 0
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and for j ̸= k,

(d�zk ∧ dxj ∧ dyj) · λ = d�zk · dxj · dyj · λ

Let's look at the case j = 1, k = 2.

(dx1 ∧ dy1) · λ = dx1 · (dy1 · λ)

= dx1 ·
(√
2× i

2
(d�z1 ∧ λ+ d�z1⌟λ)

)
= (

√
2)2 × i

2
× 1

2

(
d�z1 ∧ (d�z1⌟λ) − d�z1⌟(d�z1 ∧ λ)

)
=
i

2

(
d�z1 ∧ (d�z1⌟λ) − d�z1⌟(d�z1 ∧ λ)

)
=
i

2

(
d�z1 ∧ (λ1|d�z1|

2d�z2 − λ3|d�z1|
2d�z3) − λ2d�z1⌟(d�z1 ∧ d�z2 ∧ d�z3)

)
=
i

2

(
2λ1d�z1 ∧ d�z2 − 2λ2d�z2 ∧ d�z3 + 2λ3d�z3 ∧ d�z1

)
= i(λ1d�z1 ∧ d�z2 − λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1)

So we get

d�z2 · dx1 · dy1 · λ = id�z2 ·
(
λ1d�z1 ∧ d�z2 − λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1

)
=

√
2iλ3d�z2 ∧ d�z3 ∧ d�z1

Similar to the last case we notice that for j ̸= l ̸= k, (dzj ∧ d�zl ∧ d�zk) ∧ ω = 0, where ω =
3∑

m=1

dxm ∧ dym is the K�ahler form and ∗(d�z2 ∧ dx1 ∧ dy1 ∧ω) = id�z2. Hence

(d�z2 ∧ dx1 ∧ dy1) · λ =
√
2
(
∗ (d�z2 ∧ dx1 ∧ dy1 ∧ω)∧ λ

)
Similarly the same can be proved for any j ̸= k. Hence we get

µ · λ =
√
2
(
∗ (µ∧ω)∧ λ

)
For µ = η∧ω, we get

(η∧ω) · λ =
√
2
(
∗ (η∧ω2)∧ λ

)
= 2

√
2i η∧ λ

Ω2,1(X,C) acting on Ω0(X,L0) : Trivial action.
Ω2,1(X,C) acting on Ω0,2(X,L0) : Say λ ∈ Ω0,2(X,L0), µ ∈ Ω2,1(X,C).
Locally let's say we write λ = λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1. We observe that

Ω2,1(X,C) consists of two types of forms, namely dzk∧dzl∧d�zj for k ̸= l ̸= j and dzk∧dzl∧d�zl
for k ̸= l. We'll prove a formula for the Cli�ord action of µ for an element of each type, the rest

can be checked doing similar calculation.

(dz1 ∧ dz2 ∧ d�z3) · λ = dz1 · dz2 · d�z3 · λ

= dz1 · dz2 · (
√
2λ1d�z3 ∧ d�z1 ∧ d�z2)

= dz1 · (−2λ1|d�z2|2d�z3 ∧ d�z1)

= −2
√
2λ1|d�z1|

2|d�z2|
2d�z3

= −8
√
2λ1d�z3
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We also notice that

∗
(
(dz1 ∧ dz2 ∧ d�z3)∧ λ

)
= ∗

(
(dz1 ∧ dz2 ∧ d�z3)∧ (λ1d�z1 ∧ d�z2)

)
= λ1 ∗

(
dz1 ∧ d�z1 ∧ dz2 ∧ d�z3 ∧ d�z2

)
= −λ1 ∗

(
dz1 ∧ d�z1 ∧ dz2 ∧ d�z2 ∧ d�z3

)
= −λ1 × (−2i)2 ∗

(
dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ (dx3 − idy3)

)
= 4λ1 × (id�z3)

= 4iλ1d�z3

So,

(dz1 ∧ dz2 ∧ d�z3) · λ = 2
√
2i ∗

(
(dz1 ∧ dz2 ∧ d�z3)∧ λ

)
Now let's look at another type of form.

(dx1 ∧ dy1 ∧ dz2) · λ = dz2 · dx1 · dy1 · λ
= idz2 · (λ1d�z1 ∧ d�z2 − λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1)

= −
√
2i(−λ1|d�z2|

2d�z1 − λ2|d�z2|
2d�z3)

= 2
√
2i(λ1d�z1 + λ2d�z3)

We also have

∗
(
(dx1 ∧ dy1 ∧ dz2)∧ λ

)
= ∗

(
dx1 ∧ dy1 ∧ dz2 ∧ (λ2d�z2 ∧ d�z3)

)
= −2iλ2 ∗

(
dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ d�z3

)
= −2iλ2 × id�z3
= 2λ2d�z3

and

∗(dx1 ∧ dy1 ∧ dz2 ∧ω)⌟λ = ∗(dx1 ∧ dy1 ∧ dz2 ∧ dx3 ∧ dy3)⌟λ

= (−idz2)⌟λ

= (id�z2)⌟λ

= −i(d�z2⌟λ)

= −i(−2λ1d�z1 + 2λ2d�z3)

= 2i(λ1d�z1 − λ2d�z3)

Hence

(dx1 ∧ dy1 ∧ dz2) · λ = 2
√
2i ∗

(
(dx1 ∧ dy1 ∧ dz2)∧ λ

)
+
√
2
(
∗(dx1 ∧ dy1 ∧ dz2 ∧ω)⌟λ

)
One can check that all other type of (2, 1) forms satisfy the same formula. So, we get for any

µ ∈ Ω2,1(X,C) and λ ∈ Ω0,2(X,L0), locally we have

µ · λ = 2
√
2i ∗

(
µ∧ λ

)
+
√
2
(
∗(µ∧ω)⌟λ

)
Hence for µ = �γ with γ∧ω = 0, we get

�γ · λ = 2
√
2i ∗ (�γ∧ λ)
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Ω2,0(X,C) acting on Ω0(X,L0) : Trivial action.
Ω2,0(X,C) acting on Ω0,2(X,L0) : Say λ ∈ Ω0,2(X,L0), µ ∈ Ω2,0(X,C), j ̸= k,

(dzj ∧ dzk) · λ = 2
(
d�zj⌟(d�zk⌟λ)

)
. Let's say in local coordinates

λ = λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1, µ = α1dz1 ∧ dz2 + α2dz2 ∧ dz3 + α3dz3 ∧ dz1.

(dz1 ∧ dz2) · λ = dz1 · dz2 · λ

= dz1 · (−
√
2)
(
d�z2⌟(λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3)

)
= 2d�z1 · (−λ1|d�z2|2d�z1)
= −2λ1|d�z1|

2|d�z2|
2

= −8λ1

= −2λ1|d�z1 ∧ d�z2|
2

= −2⟨λ,dz1 ∧ dz2⟩

So, locally we get µ · λ = −2⟨λ, �µ⟩ ∈ Ω0(X,L0). Also observe

∗λ = λ1dx3 ∧ dy3 ∧ d�z1 ∧ d�z2 + λ2dx1 ∧ dy1 ∧ d�z2 ∧ d�z3 + λ3dx2 ∧ dy2 ∧ d�z3 ∧ d�z1

= ω∧ λ

and

∗
(
(dz1 ∧ dz2)∧ ∗λ

)
= λ1 ∗ (dz1 ∧ dz2 ∧ dx3 ∧ dy3 ∧ d�z1 ∧ d�z2)

= λ1 ∗
(
− (dz1 ∧ d�z1)∧ (dz2 ∧ d�z2)∧ dx3 ∧ dy3

)
= −λ1 × (−2i)2

= 4λ1

Hence we get

µ · λ = −2 ∗ (µ∧ ∗λ)

Ω0,2(X,C) acting on Ω0(X,L0) : Say λ ∈ Ω0(X,L0), µ ∈ Ω0,2(X,C).

µ · λ = 2µ∧ λ ∈ Ω0,2(X,L0).

Ω0,2(X,C) acting on Ω0,2(X,L0) : Trivial action.
Ω1,1(X,C) acting on Ω0(X,L0) : Say λ ∈ Ω0(X,L0), µ ∈ Ω1,1(X,C).
Now for j ̸= k,dzj ∧ d�zk · λ =

√
2dzj · (d�zk ∧ λ) = 0.

dxj · dyj · λ = −
i

2
d�zj⌟(d�zj ∧ λ)

= −
i

2
|d�zj|

2λ

= −iλ

So, we get µ · λ = −i⟨µ,ω⟩λ ∈ Ω0(X,L0), where ω is the K�ahler form.

ω =
3∑
j=1

dxj ∧ dyj in local coordinates.
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Ω1,1(X,C) acting on Ω0,2(X,L0) : Say λ ∈ Ω0,2(X,L0), µ ∈ Ω1,1(X,C). In local coordinates,

ω = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3. Say,

λ = λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1

(dx1 ∧ dy1) · λ = dx1 · (dy1 · λ)

= dx1 ·
(√
2× i

2
(d�z1 ∧ λ+ d�z1⌟λ)

)
= (

√
2)2 × i

2
× 1

2

(
d�z1 ∧ (d�z1⌟λ) − d�z1⌟(d�z1 ∧ λ)

)
=
i

2

(
d�z1 ∧ (d�z1⌟λ) − d�z1⌟(d�z1 ∧ λ)

)
=
i

2

(
d�z1 ∧ (λ1|d�z1|

2d�z2 − λ3|d�z1|
2d�z3) − λ2d�z1⌟(d�z1 ∧ d�z2 ∧ d�z3)

)
=
i

2

(
2λ1d�z1 ∧ d�z2 − 2λ2d�z2 ∧ d�z3 + 2λ3d�z3 ∧ d�z1

)
= i(λ1d�z1 ∧ d�z2 − λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1)

Similarly we get,

(dx2 ∧ dy2) · λ = i(λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 − λ3d�z3 ∧ d�z1)

(dx3 ∧ dy3) · λ = i(−λ1d�z1 ∧ d�z2 + λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1)

So,

ω · λ = (dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3) · λ = iλ

Next, we'll try to �nd out a formula for elements in Ω1,1(X,C) perpendicular to ω. Let's look
at the Cli�ord action of an element of the form:

µ = α12dz1∧ d�z2+α23dz2∧ d�z3+α31dz3∧ d�z1+α21dz2∧ d�z1+α32dz3∧ d�z2+α13dz1∧ d�z3

We get

µ · λ = −4
[
(α31λ2 + α32λ3)d�z1 ∧ d�z2 + (α12λ3 + α13λ1)d�z2 ∧ d�z3 + (α23λ1 + α21λ2)d�z3 ∧ d�z1

]
and

µ∧ λ = α12λ3dz1 ∧ d�z2 ∧ d�z3 ∧ d�z1 + α23λ1dz2 ∧ d�z3 ∧ d�z1 ∧ d�z2 + α31λ2dz3 ∧ d�z1 ∧ d�z2 ∧ d�z3

+ α21λ2dz2 ∧ d�z1 ∧ d�z2 ∧ d�z3 + α32λ3dz3 ∧ d�z2 ∧ d�z3 ∧ d�z1 + α13λ1dz1 ∧ d�z3 ∧ d�z1 ∧ d�z2

= (α12λ3 + α13λ1)dz1 ∧ (d�z3 ∧ d�z1 ∧ d�z2) + (α23λ1 + α21λ2)dz2 ∧ (d�z3 ∧ d�z1 ∧ d�z2)

+ (α31λ2 + α32λ3)dz3 ∧ (d�z3 ∧ d�z1 ∧ d�z2)

Notice

∗
(
dz1 ∧ (d�z3 ∧ d�z1 ∧ d�z2)

)
= ∗

(
(dz1 ∧ d�z1)∧ (d�z2 ∧ d�z3)

)
= ∗(−2idx1 ∧ dy1)∧ (d�z2 ∧ d�z3)

= −2id�z2 ∧ d�z3
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and

∗
(
dz2 ∧ (d�z3 ∧ d�z1 ∧ d�z2)

)
= −2id�z3 ∧ d�z1

∗
(
dz3 ∧ (d�z3 ∧ d�z1 ∧ d�z2)

)
= −2id�z1 ∧ d�z2

Hence we get

µ · λ = −2i ∗ (µ∧ λ)

We claim that for any µ ⊥ ω,µ · λ = −2i ∗ (µ∧ λ). Enough to check that with this new formula,

(dxk ∧ dyk) · λ gives back the same element we calculated before explicitly for k = 1, 2, 3.

dx1 ∧ dy1 =
(
dx1 ∧ dy1 − ⟨dx1 ∧ dy1,ω⟩ω

3

)
+
ω

3
∈ ⟨ω⟩⊥ ⊕ ⟨ω⟩∥

=
1

3

(
(2dx1 ∧ dy1 − dx2 ∧ dy2 − dx3 ∧ dy3) +ω

)

−2i ∗
(
(2dx1 ∧ dy1 − dx2 ∧ dy2 − dx3 ∧ dy3)∧ λ

)
= −2i

(
2λ2d�z2 ∧ d�z3 − λ3d�z3 ∧ d�z1 − λ1d�z1 ∧ d�z2

)
−2i

(
2λ2d�z2 ∧ d�z3 − λ3d�z3 ∧ d�z1 − λ1d�z1 ∧ d�z2

)
+ iλ = i(λ1d�z1 ∧ d�z2 − λ2d�z2 ∧ d�z3 + λ3d�z3 ∧ d�z1)

Similarly one can check that the formula works for k = 2, 3. So, we get that for any µ ∈
Ω1,1(X,C), λ ∈ Ω0,2(X,L0),

µ · λ = −2i ∗ (µ⊥ ∧ λ) +
i

3
⟨µ,ω⟩λ ∈ Ω0,2(X,L0), where µ⊥ = µ− ⟨µ,ω⟩ω

3

Hence,

µ · λ = −2i ∗
(
(µ− ⟨µ,ω⟩ω

3
)∧ λ

)
+
i

3
⟨µ,ω⟩λ

= −2i ∗ (µ∧ λ) +
2i

3
⟨µ,ω⟩ ∗ (ω∧ λ) +

i

3
⟨µ,ω⟩λ

= −2i ∗ (µ∧ λ) +
2i

3
⟨µ,ω⟩λ+ i

3
⟨µ,ω⟩λ

= −2i ∗ (µ∧ λ) + i⟨µ,ω⟩λ

A.1.2 Clifford action on negative spinors

Ω3,0(X,C) acting on Ω0,1(X,L1) : Trivial action.
Ω3,0(X,C) acting on Ω0,3(X,L1) : Let's have µ ∈ Ω3,0(X,C), λ ∈ Ω0,3(X,L1).

(dz1 ∧ dz2 ∧ dz3) · (d�z1 ∧ d�z2 ∧ d�z3) = dz1 · dz2 · dz3 · (d�z1 ∧ d�z2 ∧ d�z3)

= dz1 · dz2 · (−
√
2|d�z3|

2d�z1 ∧ d�z2)

= dz1 · (−2|d�z2|2|d�z3|2d�z1)

= 2
√
2|d�z1|

2|d�z2|
2|d�z3|

2

= 2
√
2× 8
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We also see

dz1 ∧ dz2 ∧ dz3 ∧ d�z1 ∧ d�z2 ∧ d�z3 = dz1 ∧ d�z1 ∧ dz2 ∧ dz3 ∧ d�z2 ∧ d�z3

= −dz1 ∧ d�z1 ∧ dz2 ∧ d�z2 ∧ dz3 ∧ d�z3

= −(−2i)3dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3

= −8i dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3

Hence

∗
(
(dz1 ∧ dz2 ∧ dz3)∧ (d�z1 ∧ d�z2 ∧ d�z3)

)
= −8i

So, we get

µ · λ = 2
√
2i ∗ (µ∧ λ) ∈ Ω0(X,L1)

Ω0,3(X,C) acting on Ω0,1(X,L1)⊕Ω0,3(X,L1) : Trivial action.
Ω1,2(X,C) acting on Ω0,1(X,L1) : Let's take µ ∈ Ω1,2(X,C) and λ ∈ Ω0,1(X,L1). Say, lo-

cally λ = λ1d�z1 + λ2d�z2 + λ3d�z3

(dz1 ∧ d�z2 ∧ d�z3) · (λ1d�z1 + λ2d�z2 + λ3d�z3) = dz1 · d�z2 · (
√
2λ1d�z3 ∧ d�z1 −

√
2d�z2 ∧ d�z3)

=
√
2dz1 · (

√
2λ1d�z2 ∧ d�z3 ∧ d�z1)

= −2
√
2λ1|d�z1|

2d�z2 ∧ d�z3

= −4
√
2λ1d�z2 ∧ d�z3

We also observe that

∗
(
(dz1 ∧ d�z2 ∧ d�z3)∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

)
= ∗

(
λ1dz1 ∧ d�z1 ∧ d�z2 ∧ d�z3

)
= ∗

(
− 2iλ1dx1 ∧ dy1 ∧ d�z2 ∧ d�z3

)
= −2iλ1d�z2 ∧ d�z3

Hence

(dz1 ∧ d�z2 ∧ d�z3) · (λ1d�z1 + λ2d�z2 + λ3d�z3)

= −2
√
2i ∗

(
(dz1 ∧ d�z2 ∧ d�z3)∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

)
and

(d�z2 ∧ dx1 ∧ dy1) · (λ1d�z1 + λ2d�z2 + λ3d�z3)

= d�z2 · dx1
(√
2× i

2
(λ2d�z1 ∧ d�z2 + λ3d�z1 ∧ d�z3) +

√
2× i

2
λ1|d�z1|

2
)

= d�z2 ·
(
2× i

2
× 1

2
(2λ1d�z1 − 2λ2d�z2 − 2λ3d�z3)

)
= −i

√
2(λ1d�z1 ∧ d�z2 + λ3d�z2 ∧ d�z3)

Also notice that

∗
(
(d�z2 ∧ dx1 ∧ dy1)∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

)
= ∗

(
λ3dx1 ∧ dy1 ∧ d�z2 ∧ d�z3

)
= λ3d�z2 ∧ d�z3
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and

∗
(
(d�z2 ∧ dx1 ∧ dy1)∧ω

)
∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

= ∗
(
dx1 ∧ dy1 ∧ d�z2 ∧ dx3 ∧ dy3

)
∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

= id�z2 ∧ (λ1d�z1 + λ2d�z2 + λ3d�z3)

= i(−λ1d�z1 ∧ d�z2 + λ3d�z2 ∧ d�z3)

So we get

−2
√
2i ∗

(
(d�z2 ∧ dx1 ∧ dy1)∧ λ

)
+
√
2 ∗ (d�z2 ∧ dx1 ∧ dy1 ∧ω)∧ λ

= −2
√
2iλ3d�z2 ∧ d�z3 +

√
2i(−λ1d�z1 ∧ d�z2 + λ3d�z2 ∧ d�z3)

= −
√
2i(λ1d�z1 ∧ d�z2 + λ3d�z2 ∧ d�z3)

One can check that the other forms satisfy the same formula, hence we get

µ · λ = −2
√
2i ∗ (µ∧ λ) +

√
2 ∗ (µ∧ω)∧ λ ∈ Ω0,2(X,L1)

So, if µ = γ with γ∧ω = 0, then we get

γ · λ = −2
√
2i ∗ (γ∧ λ)

Ω1,2(X,C) acting on Ω0,3(X,L1) : Trivial action.
Ω2,1(X,C) acting on Ω0,1(X,L1) : Let's say µ ∈ Ω2,1(X,C) and λ ∈ Ω0,1(X,L1). Say, locally

λ = λ1d�z1 + λ2d�z2 + λ3d�z3

We notice that for j ̸= k ̸= l,

(dzj ∧ dzk ∧ d�zl) · λ = d�zl · dzj · dzk · λ = 0

and

(dz2 ∧ dx1 ∧ dy1) · λ = dz2 · (dx1 ∧ dy1) · λ
= dz2 ·

(
i(λ1d�z1 − λ2d�z2 − λ3d�z3)

)
= 2

√
2iλ2

We also see that

(dz2 ∧ dx1 ∧ dy1 ∧ω)∧ λ = (dx1 ∧ dy1 ∧ dz2 ∧ dx3 ∧ dy3)∧ λ

= dx1 ∧ dy1 ∧ dz2 ∧ dx3 ∧ dy3 ∧ λ2d�z2

= −2iλ2(dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3)

and

∗
(
(dz2 ∧ dx1 ∧ dy1)∧ω∧ λ

)
= −2iλ2

One can check that all other forms enjoy the same formula. Hence we get

µ · λ = −
√
2 ∗ (µ∧ω∧ λ)
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We also notice that for any k ∈ {1, 2, 3}

∗dzk = ∗(dxk + idyk)

= dyk ∧
ω2

2
− idxk ∧

ω2

2

= −idzk ∧
ω2

2

Hence for η ∈ Ω0,1(X,C) and µ = �η∧ω,

(�η∧ω) · λ = −
√
2 ∗ (�η∧ω2 ∧ λ)

= −2
√
2i ∗ (�η∧ ∗λ)

Ω2,1(X,C) acting on Ω0,3(X,L1) : Let's say µ ∈ Ω2,1(X,C) and λ ∈ Ω0,3(X,L1). We notice

that for j ̸= k ̸= l,

(dzj ∧ dzk ∧ d�zl) · λ = 0

and

(dz2 ∧ dx1 ∧ dy1) · (d�z1 ∧ d�z2 ∧ d�z3) = dx1 · dy1 · (2
√
2d�z1 ∧ d�z3)

= dx1(4×
i

2
× 2d�z3)

= 4i×
√
2× 1

2
d�z1 ∧ d�z3

= 2
√
2i d�z1 ∧ d�z3

We also see that

∗
(
(dz2 ∧ dx1 ∧ dy1)∧ω

)
= ∗

(
(dx1 ∧ dy1 ∧ dz2 ∧ dx3 ∧ dy3)

)
= −idz2

and

∗
(
∗ (dz2 ∧ dx1 ∧ dy1 ∧ω)∧ λ

)
= ∗

(
− idz2 ∧ λ

)
= −i ∗ (dz2 ∧ d�z1 ∧ d�z2 ∧ d�z3)

= i ∗ (dz2 ∧ d�z2 ∧ d�z1 ∧ d�z3)

= i× (−2i) ∗ (dx2 ∧ dy2 ∧ d�z1 ∧ d�z3)

= 2 ∗ (dx2 ∧ dy2 ∧ d�z1 ∧ d�z3)

= 2d�z1 ∧ d�z3

Hence we get

µ · λ =
√
2i ∗

(
∗ (µ∧ω)∧ λ

)
∈ Ω0,2(X,L1)

Hence for η ∈ Ω0,1(X,C) and µ = �η∧ω,

(�η∧ω) · λ = −
√
2i ∗

(
∗ (�η∧ω2)∧ λ

)
= 2

√
2 ∗ (�η∧ λ)
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Ω0,2(X,C) acting on Ω0,1(X,L1) : Let's say µ ∈ Ω0,2(X,C) and λ ∈ Ω0,1(X,L1).

µ · λ = 2µ∧ λ ∈ Ω0,3(X,L1)

Ω0,2(X,C) acting on Ω0,3(X,L1) : Trivial action.
Ω1,1(X,C) acting on Ω0,1(X,L1) : Let's say µ ∈ Ω1,1(X,C) and λ ∈ Ω0,1(X,L1). Say locally

λ = λ1d�z1 + λ2d�z2 + λ3d�z3

(dz1 ∧ d�z2) · λ =
√
2dz1 · (λ1d�z2 ∧ d�z1 + λ3d�z2 ∧ d�z3)

= 2λ1
(
|d�z1|

2d�z2
)

= 4λ1d�z2

(dx1 ∧ dy1) · λ = i(λ1d�z1 − λ2d�z2 − λ3d�z3)

(dx2 ∧ dy2) · λ = i(−λ1d�z1 + λ2d�z2 − λ3d�z3)

(dx3 ∧ dy3) · λ = i(−λ1d�z1 − λ2d�z2 + λ3d�z3)

So we observe

ω · λ = (dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3) · λ
= −iλ

We notice that

∗
(
∗ (dz1 ∧ d�z2)∧ λ

)
= ∗

(
− (dz1 ∧ d�z2)∧ (dx3 ∧ dy3)∧ λ

)
= ∗

(
− (dz1 ∧ d�z2)∧ (dx3 ∧ dy3)∧ (λ1d�z1)

)
= ∗

(
λ1(dz1 ∧ d�z1)∧ d�z2 ∧ (dx3 ∧ dy3)

)
= −2iλ1 ∗

(
(dx1 ∧ dy1)∧ d�z2 ∧ (dx3 ∧ dy3)

)
= −2iλ1 × (id�z2)

= 2λ1d�z2

and

∗
(
∗ (2dx1 ∧ dy1 − dx2 ∧ dy2 − dx3 ∧ dy3)∧ λ

)
= ∗

(
(2dx2 ∧ dy2 ∧ dx3 ∧ dy3 − dx1 ∧ dy1 ∧ dx3 ∧ dy3 − dx1 ∧ dy1 ∧ dx2 ∧ dy2)∧ λ

)
= ∗

(
2λ1d�z1∧dx2∧dy2∧dx3∧dy3−λ2dx1∧dy1∧d�z2∧dx3∧dy3−λ3dx1∧dy1∧dx2∧dy2∧d�z3

)
= i(2λ1d�z1 − λ2d�z2 − λ3d�z3)

Similar calculations for other forms would ultimately prove that for µ ⊥ ω,

µ · λ = 2 ∗ (∗µ∧ λ)
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Hence for any µ, we get

µ · λ = (µ− ⟨µ,ω⟩ω
3
) · λ+ ⟨µ,ω⟩ω

3
· λ

= 2 ∗
(
∗ (µ− ⟨µ,ω⟩ω

3
)∧ λ

)
−
i

3
⟨µ,ω⟩λ

= 2 ∗ (∗µ∧ λ) −
2

3
⟨µ,ω⟩ ∗ (∗ω∧ λ) −

i

3
⟨µ,ω⟩λ

= 2 ∗ (∗µ∧ λ) −
2

3
⟨µ,ω⟩ × (iλ) −

i

3
⟨µ,ω⟩λ

= 2 ∗ (∗µ∧ λ) − i⟨µ,ω⟩λ ∈ Ω0,1(X,L1)

Ω1,1(X,C) acting on Ω0,3(X,L1) : Let's say µ ∈ Ω1,1(X,C) and λ ∈ Ω0,3(X,L1). For k ̸= l,

(dzk ∧ d�zl) · (d�z1 ∧ d�z2 ∧ d�z3) = 0

and for any k ∈ {1, 2, 3}

(dxk ∧ dyk) · (d�z1 ∧ d�z2 ∧ d�z3) = id�z1 ∧ d�z2 ∧ d�z3

Hence we get

µ · λ = i⟨µ,ω⟩λ ∈ Ω0,3(X,L1)

Ω2,0(X,C) acting on Ω0,1(X,L1) : Trivial action.
Ω2,0(X,C) acting on Ω0,3(X,L1) : Let's say µ ∈ Ω1,1(X,C) and λ ∈ Ω0,3(X,L1).

(dz1 ∧ dz2) · (d�z1 ∧ d�z2 ∧ d�z3) = dz1 · (2
√
2d�z1 ∧ d�z3)

= −8d�z3

We also notice that

∗
(
(dz1 ∧ dz2)∧ (d�z1 ∧ d�z2 ∧ d�z3)

)
= −(−2i)2 ∗ (dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ d�z3)

= 4id�z3

Using similar calculations for other forms, we see that

µ · λ = 2i ∗ (µ∧ λ) ∈ Ω0,1(X,L1)

A.2 Clifford multiplication on Kähler 4-folds

We take local holomorphic coordinates {zk = xk + iyk}k=1,2,4 centered at a point x ∈ X so that

the K�ahler metric is standard to second order at the point.

(η0,1 ∧ω) acting on Ω0(X,L): Enough to calculate when η = d�z1. In local coordinates

ω =

4∑
j=1

dxj ∧ dyj
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Hence, η∧ω = d�z1 ∧
∑4
j=2 dxj ∧ dyj and for ϕ ∈ Ω0(X,L),

(η∧ω) · ϕ = d�z1 · (
4∑
j=2

dxj ∧ dyj) · ϕ

= d�z1 · (−3iϕ)

= −3
√
2id�z1 ∧ ϕ

In general

(η0,1 ∧ω) · ϕ = −3
√
2iη0,1 ∧ ϕ

(η1,0 ∧ω) acting on Ω0,4(X,L): Enough to consider the case when η1,0 = dz1. Notice η∧ω =

dz1 ∧ (
∑4
j=2 dxj ∧ dyj). For ϕ ∈ Ω0,4(X,L),

(η∧ω) · ϕ = dz1 · (
4∑
j=2

dxj ∧ dyj) · ϕ

= dz1 · (3iϕ)

= −3
√
2i(d�z1⌟ϕ)

= −3
√
2i ∗ (dz1 ∧ ϕ)

In general we get the following formula:

(η1,0 ∧ω) · ϕ = −3
√
2i ∗ (η1,0 ∧ ϕ)
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