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Abstract

Starting with an n-dimensional oriented Riemannian manifold with a Spin®-structure, we de-
scribe an elliptic system of equations which recover the Seiberg-Witten equations when n = 3,4.
The equations are for a U(1)-connection A and spinor ¢, as usual, and also an odd degree form
 (generally of inhomogeneous degree). From A and 3 we define a Dirac operator DA g using
the Clifford action of B and * on spinors (with carefully chosen coefficients) to modify Da.
The first equation in our system is DA g(¢) = 0. The left-hand side of the second equation is
the principal part of the Weitzenbock remainder for D% gDa,B- The equation sets this equal
to q(¢), the trace-free part of projection against ¢, as is familiar from the cases n = 3,4. In
dimensions 1 = 4m and n = 2m + 1, this gives an elliptic system modulo gauge. To obtain a
system which is elliptic modulo gauge in dimensions n = 4m + 2, we use two spinors and two
connections, and so have two Dirac and two curvature equations, which are coupled via the form
[3. We then prove a collection of a priori estimates for solutions to these equations. Unfortu-
nately they are not sufficient to prove compactness modulo gauge, instead leaving the possibility
that bubbling may occur. We also construct several examples of solutions of these equations in
dimensions 5,6 and 8. And finally we describe a modified version of these Seiberg—Witten equa-
tions on manifolds with a Spin(7)-structure and construct a solution when the Spin(7)-structure
is torsion-free.
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Part 1

Introduction



In the fall of 1994 Edward Witten announced a “new gauge theory of 4-manifolds” [25], capa-
ble of giving results analogous to the earlier theory of Donaldson [7], but where the computations
involved are “at least a thousand times easier” (Taubes). The equations involved in this new
gauge theory are well known as the Seiberg-Witten equations. The equations introduced in [33],
led quickly to a revolution in 3- and 4-dimensional differential geometry and they remain at
the forefront of research today. Shortly after their appearance, Witten showed how one could
count solutions to the equations, defining an invariant of the underlying smooth 4-manifold
[33]. The equations in dimension 3 and 4 and the resulting moduli spaces have had a profound
impact on low dimensional geometry and topology, some examples being dramatic discoveries
of homeomorphic but non-diffeomorphic 4-manifolds, distinguished by their Seiberg—Witten in-
variants, Kronheimer and Mrowka’s proof of the Thom conjecture [18], Taubes’ proof of the
Weinstein conjecture in dimension 3 [31], Taubes’ work showing that symplectic 4-manifolds
have non-vanishing SW invariant [32] and the close link between Seiberg-Witten equations and
J-holomoprhic curves [28],[30],[29] and many more.

Despite a lot of effort, higher-dimensional generalisations of the Seiberg—Witten equations
were unknown (at least without an additional structure being present). In this thesis we intro-
duce an elliptic system of equations over a Spin®-manifold of any dimension which generalise the
Seiberg—Witten equations in the cases n = 3,4.

Let (M, g) be a Riemannian manifold of dimension n, which admits a Spin®-structure. We
begin by fixing notation. Write S — M™ for the spin bundle of the Spin®-structure. When
n is even, S = S, & S_ splits into subbundles of positive and negative spinors. We write
c: A* — End(S) for the Clifford action of differential forms on spinors. We follow the conventions
of [20]. In particular, (real) 1-forms act as skew-Hermitian endomorphisms. Meanwhile, in
dimension n = 2m, the volume form satisfies i™c(dvol)) = +1 on S4 whilst in dimension
n=2m-—1,1imc(dvol) =1 on all of S.

Let L denote the determinant line bundle of S when n is odd, and of S (or equivalently S_)
when n is even. Let A denote the set of unitary connections in L. Given A € A, we write D
for the associated Dirac operator.

When n is even, a spinor ¢ € S defines a trace-free Hermitian endomorphism Eg: S; — S4
via

Eo0) = (b, &) & — LB, (1)

where 1 is the rank of S1. When n is odd and ¢ € S we use E to denote the analogous trace-free
endomorphism of S, where now r is the rank of S.

Before giving the n-dimensional version of the Seiberg-Witten equations, we first recall the
three and four dimensional cases, highlighting the features we will generalise. In dimension 4,
Clifford multiplication gives an isomorphism

c:iA2 — isu(S,) (2)

between imaginary self-dual 2-forms and trace-free Hermitian endomorphisms of S . Given ¢ €
I'(S+), we write q(¢) € Q2 for the imaginary self-dual 2-form corresponding to Ey, under (2).
The Seiberg-Witten equations for A € A and ¢ € I'(S, ) are:

DA(b = 0) (3)
Fa=a(d). (4)



The gauge group G = Map(M,S') acts on (A, ¢) by pull-back and this action preserves the
space of solutions to the equations.

The whole 4-dimensional story is now based on two crucial facts. Firstly, these equations
are elliptic modulo gauge. This is ultimately because the linearisation of the map A — F}
combined with Coulomb gauge, to work modulo the gauge action, gives the truncated de Rahm
complex, in the form

Q'Y 00 02,
Secondly, the space of solutions to the equations are compact modulo gauge. This follows
ultimately from the fact that the left-hand side of the curvature equation (4) is directly related
to the Weitzenbock formula®:
2 * S 1 —+
DA—VAVA:Z—FEC(FA), (5)

where s is the scalar curvature of (M, g).

To summarise: on a 4-manifold, using Dirac operators Da parametrised by A € A
ensures that prescribing the Weitzenbock remainder gives an elliptic system modulo gauge.

In dimension 3, meanwhile, Clifford multiplication gives an isomorphism

c: iA? — isu(S) (6)

Given ¢ € I'(S), we now write q(¢) € iQ? for the imaginary 2-form corresponding to Eg
under (6). The 3-dimensional Seiberg-Witten equations for A € A, ¢ € I'(S) and B € Q3 are:

(DA —c(ip)) ¢ =0, (7)
Fa—2id"p = q(). (8)

One often sees these equations written with 3 = 0. This is because when ¢ is not identically
zero and M is compact, one can check that the equations actually force 3 = 0. It is also perhaps
more common to see the equations with the 3-form (3 replaced by the function *f3. (Note c(f)
is multiplication by — x (3.) We choose the above version of the equations because they fit more
cleanly with our generalisation. The equations are elliptic modulo gauge because the linearisation
of (A,B) — Fa —2id*, in combination with Coulomb gauge, produces the de Rahm complex,
in the form
Q'o0* Y 0% 02,

Just as in the 4-dimensional case, the curvature equation (8) is related to a Weitzenbdck remain-
der. This time

s 1 ik
DAgDa,g —VaVa = 7t EC(FA —2id*B) + |BI°. (9)

Here Do g = DA —c(if) is the Dirac operator appearing in (7).

To summarise: on a 3-manifold, using Dirac operators Da g parametrised by A € A and
B € Q3 ensures that prescribing the principal part of the Weitzenbéck remainder gives an
elliptic system modulo gauge.

!The formula relating the Dirac Laplacian to the rough Laplacian is due to Schrddinger [24] in 1932, and was
subsequently rediscovered by Lichnerowicz [19] in 1962. The analogous formula relating a generalised Laplacian
to a rough Laplacian is seemingly due to Weitzenbdck. Historically a better name for (5) would probably be
the “Schrodinger-Lichnerowicz formula” but we follow a relatively common practice by calling this and similar
equations “Weitzenbdck formulae”.



These features are what we generalise to give Seiberg-Witten equations in arbitrary dimen-
sions: we consider a family of Dirac operators D o g parametrised by A € A and a certain choice
of odd degree form 3 (of inhomogeneous degree). The odd degree forms ensure that prescribing
the principal part of the Weitzenbock remainder of D g is an elliptic system, modulo gauge.
When combined with the Dirac equation, the equations have the potential for good analytic
properties. We will give some analytic results in this direction. We stress from the outset how-
ever that when n > 4 our results are not sufficient to prove that the solution space is compact.
Instead they leave open the possibility that “bubbling” can occur.

An obvious question is what purpose might these higher-dimensional Seiberg-Witten equa-
tions serve? In higher dimensions, there is no need for a gauge theoretic approach to study
smooth structures since, for example, the h-cobordism theorem holds [26]. Instead, one might
speculate that higher dimensional Seiberg—Witten equations could prove useful when studying
manifolds with geometric structures. This fantasy is inspired by Taubes’ work on symplectic
4-manifolds. Taubes proved that for a compact symplectic 4-manifold with b] > 1 the Seiberg-
Witten invariant for the canonical Spin® structure is always 1 [32]. This gives an obstruction
to the existence of symplectic structures. There is no known obstruction in higher dimensions,
beyond the most obvious that there must be a degree 2 cohomology class with non-zero top
power. Even deeper is Taubes’ Theorem that the Seiberg—Witten invariants are equal to the
Gromov—Witten invariants [28, 30, 29]. In particular, for a symplectic manifold with b] > T,
the canonical class is always represented by a J-holomorphic curve. In higher dimensions there
are no known general existence results of this kind for J-holomorphic curves. It is, of course,
very speculative to hope that these higher dimensional Seiberg-Witten equations could tell us
something about higher dimensional symplectic manifolds (especially in light of the fact that
the analysis appears much more complicated; see §V!), but at least it does not seem completely
impossible.

Dirac operators of the form D + c() where B € Q°%¢ have appeared in several contexts,
going back at least as far as Bismut’s pioneering work on Dirac operators associated to metric
connections with torsion [4]. This same paper also gives a Weitzenbéck formula which is very
similar to the general Weitzenbock formula we deduce. Since Bismut’s work, there has been a
huge amount of work on these particular Dirac operators; so much so that it is futile to give a
survey here. To the best of our knowledge, however, there is only one paper which considers
this kind of Dirac opertaor in the context of the Seiberg—Witten equations, namely the work
[27] of Tanaka. Tanaka formulates a version of the Seiberg-Witten equations on a symplectic
6-manifold, which have some similarity to the equations described here. To write down Tanaka's
equations one must first pick an almost complex structure compatible with the symplectic form.
This is in contrast to our equations which need nothing more than a Riemannian metric and a
Spin©-structure. There is an interesting point in common however: Tanaka perturbs the Dirac
operator by adding a (0, 3)-form to it; this is similar to the point of view taken here, where in
6-dimensions we also perturb the Dirac operator, this time by an arbitrary 3-form.

The main results of the article are structured as follows. In the next section §II, we describe
the n-dimensional Seiberg—Witten equations. In §III we show that the equations are elliptic,
modulo gauge, and compute the index. In §IV we show that the curvature equation is precisely
the principal part of the Weitzenbock remainder term. In §V we exploit this to prove some
preliminary a priori estimates on solutions to the equations. §VIis dedicated to the construction
of several examples of solutions to these equations and in the last section §VII we describe special



modified versions of these Seiberg—Witten equations on manifolds with a Spin(7)-structure and
construct a solution when the Spin(7)-structure is torsion-free.



Part 11

Seiberg—Witten equations on all
Spin“-manifolds



0.1 The Seiberg—Witten equations in odd dimensions

In odd dimension n = 2m + 1, it is relatively straightforward to generalise the 3-dimensional
story. Only the notation becomes more complicated. To ease things a little, we define a function
s: N —{1,i} by

1 ifk=0or 3mod4
S fr—
k i ifk=1or2mod4

Notice that syc1 = soks2 and if B € QF then sic(Px) is a self-adjoint endomorphism of the
spin bundle.
In dimension 2m + 1, Clifford multiplication gives an isomorphism

AP AT P - s AP™ - isu(S) (10)

Given ¢ € S, we write q(¢) for the differential form corresponding to E¢ under (10). We consider
equations for (A, B, d) where A € A, B = B3+ Bs + -+ + Bams1 with B € QF, and ¢ € T'(S).
We set

m—1

Da,g =Da + Z (Szk+1c((32k+1) +is2m—2rkC(*B2k+1 )) +ic(*Bamy1) (11)
k=1
Write
m—1
Fﬁ =2 $2x+2dPB2k+1, (12)
k=1
m 1
Cp=2 Z(_])L%J_’_(m_ﬂ)(k+1)52kd*[52k+1- (13)
k=1

The notation Fg and Cp is explained below in Remark 2. The key thing to keep in mind for now
is that, up to some factors of 2i, Fp is essentially d whilst, again up to some factors of 2i and
also some cumbursome signs (an artefact of how Clifford multiplication works), Cp is essentially
d*p.

Definition 1. Let M?™*! be an oriented 2m + 1-dimensional manifold with Spin®-structure.
The (2m + 1)-dimensional Seiberg-Witten equations for (A, 3, ¢) are:

Da,p(d) =0, (14)
Fa+Fp +Cp = qld), (15)

where DA g, Fg and Cg are given by (11), (12) and (13) respectively.

When m =1, Fg =0, Cg = —2id*[33 and we recover the ordinary 3-dimensional Seiberg-
Witten equations.

The point of these equations is that, as is shown in §IV, the Dirac operator Da g has a
Weitzenbock formula of the form

s 1
D*A,ISDA»ﬁ — V*A,BVA,B = 7 + EC(FA +Fpg + C[g,) +Q(p)

where Va g is a unitary connection on S determined by A and 3 and Q(f3) is a zeroth order
term which is purely algebraic in 3. (For example, when m = 1 this is equation (9) above where

10



Q(B) = IBI?.) So (15) prescribes the principal part of the Weitzenbdck remainder. Moreover,
the system is elliptic modulo gauge, essentially because the de Rahm complex is elliptic. This
is the reason behind the various factors for c(B2x+1) and c(*Bok+1) in (11): they are chosen
precisely to make d and d*3 appear in the Weitzenbdck remainder. (See §III for the details.)

Remark 2. If we think of f as a collection of connection k-forms, in the sense of U(1)-gerbes
(or “k-form gauge fields” as they are called in the physics literature) then, up to the various
factors of i and 2, Fg is the sum of the curvatures of the 3x. Meanwhile Cg = 0 is the Coulomb
gauge condition. With this in mind it is tempting to think of D g as a Dirac operator coupled
to various connections on appropriate U(1)-gerbes.

One reason to want to do this is to put Fg on a similar footing to Fa. In 4-dimensional
Seiberg—Witten theory it is important to be able to vary the cohomology class [Fa]. In particular,
for some classes there are no solutions. In the above description, however, [Fg] = 0 is fixed. To
get non-zero classes, one would need to interpret 3,1 as a connection in a 2k-gerbe with non-
zero characteristic class. However we have been unable to make sense of “spinors with values in
a gerbe” or of the action of gerbe gauge-transformations in this setting (or “(k — 1)-form gauge
transformations” as they are sometimes called in the physics literature).

0.2 The Seiberg—Witten equations in dimension 4m

We next give the direct generalisation of the 4-dimensional Seiberg-Witten equations to dimen-
sion n = 4m. Here, Clifford multiplication gives the following isomorphism:

AN S AY D - @ sy A2 — isu(Sy) (16)

where /\im is the 41 eigenspace of * acting on A?™. Given ¢ € S, we write q(¢) for the
form which corresponds under (16) to Eg4 € isu(S.). We consider equations for (A, 3, ¢) where
AcA B=BR3+Ps5s+ -+ Prm_1 with B € QX and ¢ € I'(S,). We set

m—1

Da,g =Da+ Z (82k+10([52k+1) + Sam—2k—1¢(*B 2K+ ))- (17)
k=1

This is a self-adjoint operator D g: T'(S4) — T'(S—). Write

m—2
Fo =2s2md" Bom—1 +2 Z S2x42dPB2k+15 (18)
k=1
m—1
Cp =2 Z (=)™ s d* Barst- (19)
k=1

Here, d* 1 is the /\im—component of dBom_1.

Definition 3. Let M*™ be an oriented Riemannian 4m-manifold with Spin®-structure. The
4m-dimensional Seiberg—Witten equations on M for (A, 3, ¢) are:

Dap(d) =0, (20)
Fa +Fj +Cp = qld), (21)

where Da g, Fg and Cg are given by (17), (18) and (19) respectively.

11



Again, the point of our equations is that there is a Weitzenbdck formula for D g (see §IV)
and the principal part of the remainder is exactly %(FA + Fg + Cp). Moreover, the equations
are elliptic modulo gauge, essentially because the truncated de Rahm complex is elliptic:

Q—-Q' - ™
(See 8III for the details.)

Remark 4. In the case M*™ = X4™~1 x R is a Riemannian product, one can consider solutions
to the equations which are R-invariant, leading to a system of equations for fields defined purely
on X.. It turns out that these so-called “reduced” equations are equivalent to the (4m — 1)-
dimensional Seiberg—-Witten equations on X from Definition 1. To see this, note first that a
1-form o on X can be made to act on S, via ¢’(x) = c(«) o c(dt) where c is the Clifford action
on M and t is the coordinate on R (with dt unit length and positively oriented). In this way we
identify S, as the spin bundle S — X, with ¢’ being the Clifford product on X; we also identify
R-invariant sections of S, with I'(X,S). Next note that an R-invariant connection A on M is of
the form A’ 4 ifdt where A’ is a connection on X and f € Q°(X). To recover the Seiberg-Witten
equations on X, one should take the top degree odd form to be xf. Similarly, an R-invariant
form Byrr1 € Q?*F1(M) has the shape Bax 1 = Boiq + Biy Adt for forms B’ on X. It is
the odd-degree forms 35, , *P5, *f (with appropriate signs) the connection A and spinor ¢,
which solve the Seiberg-Witten equations on X.

0.3 The Seiberg—Witten equations in dimension 4m — 2

This leaves dimension n = 4m — 2 and here things are more complicated. Clifford multiplication
gives isomorphisms

CAN BAY D - B sam AT 5 isu(Sy) (22)

C: Sama2 A2 @ B ATV {su(Sy) (23)

This time there is no corresponding bundle of odd degree forms with the correct rank to set up
an elliptic system. For example, in dimension 6, isu(S, ) has rank 15, so the curvature equation
will give 15 constraints whilst gauge fixing provides one more. Meanwhile, the connection A
accounts for 6 degrees of freedom and so we are left looking for 10 more degrees of freedom, but
there is no bundle of forms with this rank which we can use to parametrise Dirac operators. The
way out is to use two spinors and connections, leading to two Dirac equations and two curvature
equations, with everything coupled via the odd degree forms.

We do this as follows. Given ¢ € Sy and VP € S_ we write q(¢d) and q({) for the differ-
ential forms corresponding to Eg, and Ey, respectively under (23). We consider equations for
(A,B, B, d, ) where A,B € A, B = B3+ Bs5+ -+ Pam_5 where By € QF, ¢ € I'(S;) and
P e T(S_). We write

m—2

Dapg,+=Da+ Z (82k+1c(f52k+1) + Sam—2k—3¢(*B2k+1 )) +s2m-1¢(B2m-1), (24)
k=1
2m-—3
Dg,g,— = Dg + som—1¢(*Bam—1) + Z (52k+1c([32k+1) + Sam—2k—3¢(*P2k+1 ))- (25)
k=m

12



We regard Da g + as acting on sections of S, and Dg g, as acting on sections of S_. Notice
that B,m—1 is the only part of 3 which appears in both Dirac operators. The terms {3y for
k <2m—1 appear in DA g 1 and the terms By for k > 2m —1 appear in Dg g,_. We now write

m—1

Fg =2 Z $2k+2dB2k+1 (26)
k=1
m—2

Cp+ =2 Z (—=1)"s2d" Bkt 1 (27)
k=1
2m-—3

Fg,— =2 Z S2k+2dP2k+1 (28)
k=m
2m-—3

Cp,— =2 (=)™ s d* Barr 1 (29)
k=m-—1

The =+ in the suffices Fg, +, Cp + are related to whether the By involved appear in the Dirac
operator acting on positive or negative spinors.

Definition 5. Let M*™~2 be an oriented Riemannian (4m — 2)-manifold with Spin® -structure.
The (4m — 2)-dimensional Seiberg—Witten equations on M for (A, B, 3, ¢, ) are

Da,g,+¢ =0, (30)
Fa+Fp+ +Cpr =qld), (31)
Dg.p, =0, (32)
Fa+Fp—+Cp— =qV), (33)

where Da g,+, Dg,g,—, Fp,+ and Cg + are defined in equations (24)—(29)

Once again, the point is that the Dirac operators Da g, and Dg g, have Weitzenbock
formulae (see §IV) in which the principal parts of the remainders are precisely %(FA +Fg,++Cpg,+)
and %(FB + Fp,— + Cp,—) respectively.

Since there are two spinors and two connections in play, the appropriate gauge group is now
G = Map(M, S' x S') where the first factor acts by pull-back on (A, ¢), the second by pull-back
on (B,V) and both factors act trivially on 3. This action preserves the above equations. With
this in mind, the equations (30)—(33) are elliptic modulo gauge, something which essentially
comes down to ellipticity of the de Rahm complex again. The details are found in §III but we
explain here how the numerology works out in dimension 6. The important variables here are
the connections A, B and the 3-form (3. (The Dirac equations are already elliptic and so ¢, do
not concern us for this discussion.) Each curvature equation is 15 constraints, whilst fixing for
both factors in the gauge action brings another 2 constraints, making 15+ 15+ 2 = 32 in total;
meanwhile, each connection gives 6 degrees of freedom (the rank of A') and the rank of A3 is
20, so (A, B, B3) corresponds to 6+ 6+ 20 = 32 degrees of freedom, which is equal to the number
of constraints.

Remarks 6. We make three remarks concerning the 4m — 2-dimensional equations.

1. We could equally have taken both spinors to be sections of S, . One reason to take sections
of both S, and S_ is that in dimension 4m — 2, geometric structures do not single out a

13



“preferred orientation”. For example, in dimension 4, a symplectic manifold (M, w) has
a preferred orientation, given by w? and typically M will not have a symplectic structure
inducing the opposite orientation. However, if dim M = 6, then w and —w induce opposite
orientations. Since geometric structures do not single out an orientation in dimension
4m — 2, we choose the same behaviour for the Seiberg—-Witten equations. This choice
affects the index of the equations, as computed in §III, but not the analytic estimates in
§V.

. Another interesting choice is to begin with two Spin®-structures S. and W,. We may
then take A € A(detS,), ¢ € I'(S,) whilst B € A(detW_), € I'(W_). Again, this
choice will affect the index of the equations, but not the analytic estimates proved later.
This choice is convenient in our construction of examples of solutions of the equations over
Kahler threefolds.

. When M*m~2 = X x R is a Riemannian product, one can certainly consider solutions
to the equations over M which are invariant in the R direction. This gives a system of
equations on the odd-dimensional manifold X. Unlike dimensional reduction from 4m to
4m — 1 dimensions, however, this time the resulting equations on X are more complicated
than the odd-dimensional Seiberg—Witten equations as in Definition 1.

One could also dimensionally reduce the (4m — 1)-dimensional Seiberg—Witten equations
on M4™=2 xR to obtain a system on M*™~2. This also gives a system of equations which is
more complicated that the (4m —2)-dimensional Seiberg—Witten equations of Definition 5.
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Part 111

Ellipticity and the index
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Proposition 7. The odd-dimesional Seiberg—Witten equations (14) and (15) over M?m+!
are elliptic modulo gauge, with index zero.

Proof. The equations (14), (15) define a map

SW: A x Q23 xT(S) —» (12 Q'@ -+ & 55mQ*™) x I'(S)
SW(A,B,¢) =(FA+Fg +Cpg —q(d),Dapd)
Suppose 8(A, B, d) = (2ia,b, o) is an infinitesimal perturbation of (A, B, d), where a € Q'

b e 0°9423 and ¢ € I'(S). As a,b vary, a+ b fills out the space Q0°%? of all odd degree forms.
The linearisation of SW at (A, 3, ¢) is

diap,e)SW: QU aT(S) - (I Q- ®s3mQ*™) & T(S)
dia,p,e)SW(a+b,0) = (2ida+Fy, + Cp —dyq(0),Da,go+clia+b)d)
(Note Fg and Cp are linear in 3 and so equal to their own derivative.) We supplement this with
the Coulomb gauge condition 2d*: Q' — QO° and discard the zeroth order terms deq(P) and
c(ia + b)d which do not affect ellipticity or the index. This leaves the map
L: Q° @ T(S) = sQ"** & T'(S)
L(a,b,0) = (2d*a+ 2ida + F, + Cp,Da0)
where sQ"" = P, 521k Q%%. The point is that the first component, 2(d*a + ida) + Fy, + Cp,
is essentially the operator 2(d +d*) acting on a+ b, just with some extraneous signs and factors

of i. This doesn’t affect invertibility of the symbol, nor does it change the kernel and cokernel.
Since both d + d* and D are elliptic with index zero [1], the same is true for L. O

Proposition 8. The 4m-dimensional Setberg—Witten equations (20) and (21) are elliptic
modulo gauge, with index:

(1= by by =~ bam o 4 b5,) 2| (L ATAM)
M

Proof. The equations (20) and (21) define a map
SW:Ax (P aQ°@- Q™) xT(S4) » (1020 Q* - @ s5m Q™) x T'(S4)
SW(A, B, ¢) = (Fa +Ff +Cp — a(9),Dap)

Following the same arguments as in the proof of Proposition 7, we conclude that the ellipticity
of the equations modulo gauge is equivalent to that of the operator
Qo™ ' al(S,) - Q°0iQ? @ @5,m Q2™ @ T(S)
L(a+b,0) = (2d*a + 2ida + F{ + Cv,Da0)
where F! and Cy, are defined by (18) and (19) respectively. The point now is that the first

component, (2d*a + ida) + F; + Cp is essentially the elliptic operator corresponding to the
truncated de Rahm complex

d d —7at
Q* 5ol S 5 0fm TS o
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The fact that L has some additional signs and factors of i affects neither the invertibility of the
symbol nor the kernel and cokernel. It follows that the equations are elliptic and have the same
index as ind(DA) — ( iz)_] (=1)*by + b2+m). The result now follows from the Atiyah—Singer
index theorem [1]. O

Proposition 9. The 4m—2-dimensional Seiberg—Witten equations (30), (31), (32) and (33)
are elliptic modulo gauge, with index —x(M), X(M) being the Euler characteristic of M.

Proof. The equations (30), (31), (32), (33) define a map

2m—3 2m—2
SW: Ax Ax P Q™ xT(S,) xT(S-) = €D s2Q* xT(S_) x T(S4)
k=1

SW(A,B, B, b, )
= ((FA+Fp++Cpr—q(d) + (Fs +Fs— +Cp - —q()),Dap,+ d, D g, )
A is an affine space modelled on iQ', or equivalently on iQ*™~3 (using the isomorphism * :
Q' — Q*m=3). Suppose §(A, B, B, d, ) = (2ia,2id,b,0,&) is an infinitesimal perturbation of
(A,B, B, d, ), where a € Q' a € Q™3 b € @™ 3Q?** ! 0 €T(Sy) and £ € T(S_). As a,d
and b vary, a + b + d fills out the space Q°% of all odd degree forms. The linearisation of SW
at (A, B, B, b, ) is

d(a,B.p.p,p) SW: Q° ¥ @T(S)@T(S-) = (I?e Q'@ e Q"™ ) &T(S_) @ T(Sy)
dia,B,8,6,0) SW(a+b+a,o0,&)

- (Zida +Fp o+ Cp s —deq(o) + Fp_ + Cp_ +2id*d — dyq(£),

m—2
Da,g,+0+c(ia)d + Z $21+1¢(b2141) + Sam—21—3¢(¥b2kc 1)) b + s2m—1¢(b2m—1)b,
k=1
m
Dg,g,— &+ clia)h + sam—1¢c(*bam—1) Z S2k+1¢(b2ks1) + Sam—2k—3¢(¥b2g 11 ))11))

We supplement this with the Coulomb gauge condition 2d*: Q' — QO or equivalently, —2d :
Q*m=3 5 Q%m—2 (using Hodge-star) and discard the zeroth order terms which do not affect
ellipticity or the index. This leaves the map

L: Q4 @T(S)@T(S.) = sQ 2 ¢ T(S_) dT(S,)
L(a,b,d,0,&) = (2d*a+2ida+Fp,4 + Cp,4 + Fb,— + Cp, +2d*d —2idd, Dac, Dpé)

where sQ°Ve" = i:()_] $2kQ%%. The point is that the first component, 2(d*a + ida) + Fy 4 +
Co,+ +Fp,—+Cp,— +2(d*a—ida), is essentially the operator 2(d+d*) acting on a+b + @, just
with some extra signs and factors of i. This doesn’t affect invertibility of the symbol, nor does
it change the kernel and cokernel. Since all three operators d +d*, Da and Dg are elliptic, the
same is true for L. The index of 2(d + d*) is —( iilo_z(—nkbk) = —x(M). The index of the
two Dirac operators cancel each other since, index of Do = — index of D)} = — index of Dg. So
index of D+ index of Dg = 0. Hence the total index is —x(M). O
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Part 1V

The Weitzenbock formulae
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Let (M, g) be a Riemannian manifold of dimension n and (E, h) be a hermitian vector bundle
on M. We also pick a unitary connection A on E. In the following Lemma and throughout this
section we have picked a coframe e; which is stationary at a point p € M with respect to the
Levi-Civita connection. We write V; for the corresponding directional derivative in the direction
dual to e; with respect to V.

Lemma 10. Let B € Q! (u(E)), be locally given by B= > e; ® Bj for B; € Q°(u(E)). Then
j
(VA+B)"(Va+B) = VAVA—ZZB o V;— Z ;) +B3).

Proof. For ¢ € T'(E),
(VA +B)"(Va +B)(@) = VAVA® + VA (BO) + B*(Vad) + B'B
=VaAVad—> Vi(Bijd)— ) B;j(Vid)—> B
j j j
=VaVad—) Vi(Bj)d—2) Bj(V;p)— > Bid O
j j j
This lemma will be used in the calculation of all of the Weitzenbock formulae below. We
follow the notation used in §I. For a Spin®-manifold M™ with S — M being the spin bundle of
a Spin€-structure, a unitary connection A on the determinant bundle L determines a connection

on S. We change the associated Dirac operator DA by a form € Q*(M;C) (possibly with
inhomogeneous degree) and define:

DA,B :=Da +¢(B)

Proposition 11. Let B = —% Z]. ej ® (c(ej) o c(B) + c(PB)* o clej)), then the connection
Vap:=Va-+ B and the Dirac operator Da g satisfies the Weitzenbock formula:
| "
DABDAB_VA{SVAﬁ+4+2 2Z e) OCVB) (V)B) Oc(ej))
1 X *
+ZZ(C(€5)OC((5)+C([3) oc(e))? +c(B)*oc(B) (34)
j

where s is the scalar curvature of M.
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Proof.

D sDa,p
= (Da +¢c(B)*)(Da +c(B))
=DA +Daoc(B)+c(B)* oDa+c(B) oc(p)
=V}VA+§+%C(FA)+ZC(61-)oc(Vj[S)—i—Zc(ej)oc o V;j +Zc *oc(ej) oV;
j j
+c(B)*oc(P)
= (VAVA +)_(clej) oc(B) +c(B)* ocle;)) o Vj + ]2 D _(clej) o c(V;B) +c(V;B)* o cle;))
j j
1

~ g Llele)oclB) +elp)ocley))) + ® + Je(Fa) +c(B) oc(B)

ZZ (ej) oc(ViB) —c(ViB) oc e] 4Z (ej) oc( c([&)*oc(ej))2
1
—VABVAB+4+2CFA zZ (ej) o c(V;iB) —c(V;B)* oclej))
+%Z(C(ej)OC(B)+C([3)*°C(ej))z+c(6)*OC(E’)
j

O

Notice that the last two terms in the Weitzenbiick formula (34) are quadratic in  and do
not involve derivatives of 3. The term 5¢(FA) + 3 Z c(ej) oc(V;B) —c(VjB)* oclej)) is the
principal part of the Weitzenbock remalnder In the remaining part of this section, we will
explicitly calculate the principal parts for different choices of 3 in different dimensions. Before
we proceed, we would like to fix some conventions regarding Clifford multiplications [10],[21]:
Forne Q') y e Q,

cm)ocly) + (=1  e(y) o c(n) = —2cny)
cmAy) =cm)ocly) +chmyy)
_ is the contraction operator defined in the following way. At a point p € M,

k
et A Ae) =) (=D epmer A A AG A Aer

i=1

Hence, for y € 09,
c(dy)=c Z e; A Vjy) = i (Viv) —c(Vjy) o cley)) (35)

Ze]JV]y Z (V5v) +c(Vjy) ocle)) (36)

j



and for y € Q¢

c(dy) =c Z e AVjy) = Z iY) +c(Vyy) ocley)) (37)

Z ej_Vjy) = Z i¥) — c(Vjy) o c(ej)). (38)

j

0.3.1 Dimension 3

B=1%B3,B3€ Q% Vap=Va—13,e@(clej)oc(xp3) —c(+P3)oc(ej)) = Va. We calculate
the principal part of the Weitzenbock formula

]EC(FA) + % ; (c(ej) o c(Vj * B3) +c(Vj * B3) o clej))

= Je(Fa) + clid « Bs)
= %C(FA —2id*B3)
The Weitzenbock formula reads:
D sDap = VAVa + Z + %c(FA —2id*B3) + c(B3)? (39)
=VaVa+ 2 + %C(FA —2id*B3) + B3l (40)

0.3.2 Dimension 4

B =0,Va,g =Va. The Weitzenbock formula (on a positive spinor) reads:

S 1
D3 =ViVa + 2t Ec(F,{) (41)

0.3.3 Dimension 5

B =PB3— B3 +1ix*Ps,P1 € Q. Notice c(pz —*B3+i*ps) =c((1—1)B3+1i*ps).
Say in our chosen coordinate neighbourhood, B3 =Y Bi,i,is€i; /\ei, /\ei,, we get
1<iz<is

6
Zc(e]-) o C( Z Bi]izi_a ei, A\ €i, A\ 613) [e] c(e)-)

j=1 1 <iz<ij

= ) Buui Zcej oclei,) ocler,) ocle,) ocley))

i1 <iz<is

We notice that for j € {i1,1i2,13},c(ej) oclei,) oc(ey,) oclei,) oce;) = —c(ei, ) ocley,) oclei,)
and for j ¢ {i1,12,13},c(ej) o c(ei,) o clei,) o clei,) o clej) = cley,) o clei,) o cleiy). So,

> (clej) oc(Bs) ocle;)) = —c(B3)

j
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c(B3)? will potentially give us Clifford actions of real 0,2 and 4-forms. Notice that c(p3)? is a
Hermitian endomorphism of the positive spinors, hence we only get to see the Clifford actions
of a O-form and a 4-form, since Clifford actions of real 2-forms are skew-Hermitian. For the
0-forms, we have (c(ei1 Joc(ei,)o (:(613))2 = 1. Hence, we get c(B3)? = |B3]? + c(04), where 0,4
is a four-form. We notice

for j # 1y #1y # i3 # 4,
c(ej) oc(ei,) oc(ei,) oclei,) oclei,) oclej) = —clei,) oclei,) oclei,) ocley,),

and for i; 75 iy 75 i3 75 i4,j € {i],iz,i3,i4},
c(ej) oc(ei,) oc(ei,) ocleiy) ocley,) oclej) =cleq,) oclei,) oclei,y) oclei,)

5 5
Hence, Z c(ej) o c(04) o c(ej) = 3c(04) and Z e)( X Bii,i,) ocle) = —5p3>. We

get, i <iz<is
D clej) oc(Bs)? ocles) = —5IBsl* +3c(04) = 3c(B3)* — 8IBsI?
j
c(B)oc(B)* =c((1—1)Bs+1ixPs)oc((1+1)Bs—i*Ps)=2c(B3)* —2(xPs)c(B3)+IBs|*
c(B) oc(B)=c((1+1)B3 —ixPs)oc((1—1)B3+1i*Bs) =2c(B3)* —2(xP5)c(B3) + IBs|*

Assembling all the pieces we have,

> (cles) oc(B) +c(B)* ocle;))”
= (cle)oc(B)oc(B) ocle) —c(B)* oc(B))
j

Zc ej) oc(B)ocle)) oc(B) Zc(e]-)oc([s)*oc(ej))
j

—2(30(63) —8IB3I%) +2(+B5)c(B3) — 5IBsI* —5(2c(B3)? — 2(+Bs)c(B3) + IBsl*)
+ (2ic(B3)? + 5IBsI* — 611 — 1) (xBs)c(B3)) + (—2ic(B3)® + 5IBsl* + 6i(1 + 1) (xBs)c(B3))
= —4c(B3)* —16lBs1?

The principal part of the curvature equations is:

zZ )V;B3 — (1+1)V;B3 0 cle;))
+;Z V;(+Bs)) + c(V;(xBs)) o cle;))

j
c(Fa +2dps — 2id* B3 + 2id(*f5))

(FA + Zdﬁg — Zld*[?)3 +2d* B5)

N\—‘N\—‘
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Finally, we get the Weitzenbock formula

1
% + 5e(Fa + 243 — 2id"B3 +2d"Bs)
+c(B3)? —4IB31* — 2(xBs)c(B3) + IBs)?
1
=V sVap + 2 + 3¢(Fa +2dp3 — 2id" B3 + 24 Bs)

+c(Bs — *Ps5)* —4IB3)*

Da gDa,p =Va,sVap +

0.3.4 Dimension 6

B =p3 € Q3. Notice c(p) = c(p)*. First, we calculate the quadratic term:

Z (c(ej) oc(B)+c(B)o C(ej))z
j
= (clej)oc(B)*ocle;) +c(B)ocle)* oc(B) +clej) oc(B) oclej) o c(B)
j

+c(B)oclej) oc(B)oclej))

Say in our chosen coordinate neighbourhood, B = )} Bi,i,i5€i, /\ei, /\ei,, we get
1 <iz<is

6
Zc(ej) o C( Z [5111213 e, /\ei2 /N 613) o c(ej)

]:1 ‘.L|<i2<‘i.3

= Z Biiris ZC e] ocC eu)oc(elz)oc(et3)oc(61))

1 <iz<is

We notice that for j € {i1,12,13},c(ej) oc(ei,) oc(ei,) oc(ei,) oclej) = —c(ei, ) oclei,) ocleis)
and for j ¢ {i1,12,13},c(ej) o c(ei,) o clei,) o c(ei,) ocle) = c(ei,) o c(ei,) o clei, ).
6

So, ) cl(ej)oc(ei,)oc(es,)oc(ey;)oc(ey) =0.

j=1

c(B)? will potentially give us Clifford actions of 0,2,4 and 6-forms. Notice that c(p3)? is a
Hermitian endomorphism of the positive spinors, hence we only get to see the Clifford actions
of a 0-form and a 4-form, since Clifford actions of real 2-forms and 6-forms are skew-Hermitian.
For the 0-forms, we have (c(ei1 )oc(eiz)oc(ei3))2 = 1. Hence, we get c(B)? = |B|>+c(04), where
04 is a four-form. We notice

forj #11 £ # 13 # la,

c(ej) oclei,) oc(ei,) oc(ei,) oclei,) oc(e;) =—clei,) oclei,) oclei,) oclei,),
and for i1 # i, # i3 # l4,j € {l1,12,13, 14},

C(ej) o C(ei1 o C(eiz) © C(ei3) S C(eu) © C(ej) = C(eil )o C(eiz) © C(ei3) S C(eu)

6 6
Hence, Z c(ej)oc(04)oc(ej) = 2c(64) and Z ) X {1, ) oclej) = —6|B[%. We get,

< ) 111213
i1 <iy<is

D clej)oc(B)?ocle;) =—6IBI* +2c(84) = 2c(B)* — 8IBI
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and

Y (cle) oc(p) +c(p) ocle;)” = —6e(p +Zce; oc(B)? ocle) = —4c(B)* — 8B

j

The principal part of the remainder is:
1
+5 Z c(ej) o c(VjB3) —c(VjB3) oclej)) = EC(FA +2dB3)
Finally, assembling all the pieces we get the Weitzenbock formula on positive spinors:

S 4 Le(Fa +2dps) — 2085 (42)

2 _ *
Dap=VapsVapstytsy

For B = %33, the principal part of the remainder is:
FelFe)+ 3 3 (cles) o c(V;B3) — clVBs) o cley)
j
= %C(FB +2d(*B3))
= %C(FB —2'1d*[53)) [on T'(S_)]
The Weitzenbock formula on negative spinors reads:

S L e(rs —2ia7g5) — 285 (43)

2 _ *
Dgg =Vs Ve, + 4" 2

0.3.5 Dimension 7

B=(B3+1ixP3)+ (ifs—*Ps)+ixp7, P e Q.
Notice c((B3 + i B3) + (iBs — *Bs) +ix p7) =c((1+1)B3+ (1 +1)Bs + 1% p7)

3 (cles) oc(B) +c(B)* o cley))?
j
=Y ((T+1)c(e) oc(Bs + Bs) +1i(xB7)c(e;) + (1 —1)e(Bs — Bs) o cle;) —i(xp7)cley)’
j
- Z ((1+1)c(ej) oc(Bs + Bs) + (1 —i)e(Bs — Bs) o C(ej))z
j
:2i(Zc(ej) o c(Bs + Bs) ocle;)) o c(Bs + Bs)
—2ic(B3z —Bs) o (Zc ej)oc [53—(35)06(6]))

+2) clej)oc(Bs+ Bs)oc(Bs — Bs) ocle) — 14c(Bs — Bs) o c(B3 + Bs)
j
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Say in our chosen coordinate neighbourhood, B3 = > Bi,i,is€i; /\ei, A\ ei,, we get
i] <‘i.2 <i3

7
ZC(GJ’) o C( Z Bi]izi3 ei, /\ei2 /N 613) o c(ej)

j:1 1<iz<is
7
= ) Buuis () _cle)ocle)ocler,)ocles,)ocle;))
i1<iz<i3 ):1
Notice that for j € {i1,12,13},c(ej) oc(ei,) oc(ei,) oc(ei,) oc(ej) = —c(ei, ) oc(ei,) oc(ei,) and

forj ¢ {ihiz,is% (ej) oclei,) oclei,) oclei,) oclej) =cley,) oclei,) oclei,).
Hence Z clej) oc(Bz)ocley) =c(Bs).
And if [55 = Z Vi1izi3i4is ei, /\e,,2 VAN 613 /\eu VAN 615,

1 <iz<iz<ig<is

7
Zc ej) oc(Bs) ocle;)
j=1

7

= > Yirisistais () clej) ocler,) ocle,) ocler,) o cle,) o cles,) ocley))

1 <ia<iz<ig<is j:1

Notice that for j € {i1,12, 13,14, 15},
c(ej) oc(ei,) oc(ei,) oclei,) ocley,) oclei;) oclej) = —clei,) ocleq,) ocleiy) oclei,) ocleis)
and for j ¢ {iy,12,13,14, 15},

C(ej) © C(ei, o C(eiz) © 0(613) o C(€i4) © 0(615) © C(ej) = 0(611 )o C(eiz) o C(eig,) © 0(614) © C(eis)

Hence, Z c(ej) oc(Bs) oclej) = —3c(Bs)

([53) will potentially give us Clifford actions of 0,2,4 and 6-forms. Notice that c(B3)? is a
Hermitian endomorphism of the positive spinors, hence we only get to see the Clifford actions
of a 0-form and a 4-form, since Clifford actions of real 2-forms and 6-forms are skew-Hermitian.
For the 0O-forms, we have (c(ei,) o c(ej,) o c(eis))2 = 1. Hence, we get c(B3)% = |B3|*> + c(04),
where 04 is a four-form. We notice

for j #£ iy # 1y # i3 # 14,

c(ej) oc(ei,) oclei,) oc(ei,) oclei,) oc(e;) =—clei,) oclei,) oclei,) oclei,),
and for i # 12 # i3 # 14,j € {i1,12,13, 14},

c(ej) oclei,) oc(ei,) oc(eiy) oclei,) oclej) =clei,) oclei,) ocleiy) oclei,)

Hence, Z c(ej) oc(64) oclej) =c(04) and i G L1, )cley) = =7IB3 2.

1] <iz <i3
We get
7

D clej) oc(Bs)? ocley) = —7IBsI* +c(04) = c(B3)* — 8IBs3l*

i=1
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Similarly, c(Bs5)? will potentially give us Clifford actions of real 0,2,4 and 6-forms. Notice
that c(f5)? is a Hermitian endomorphism of the positive spinors, hence we only get to see the
Clifford actions of a 0-form and a 4-form, since Clifford actions of real 2-forms and 6-forms are
skew-Hermitian.

For the 0-form, we observe that for 1} # i, # i3 # 14 # is,
(c(e,) ocler,) oclei,) ocley,) ocleiy)) o (clei,) oclei,) ocler;) ocley,) oc(e;)) =—1d
Hence, ¢(B5)* = —|B5/* + c(va), v4 € Q™.

Zc(ej) oc(Bs)?ocle) =7IBsI* + clva) = c(Bs)* + 8IBs|?
j

(c({53) oc(Bs)—c(Ps)o C(Bg)) will potentially give us Clifford actions of 2,4 and 6-forms. Notice
that (C(Bg) oc(Bs) —c(PBs) o C(Bg)) is a Hermitian endomorphism of spinors. Since Clifford
actions of real 2 and 6-forms are skew-Hermitian endomorphisms, we only get to see Clifford
action of a 4-form. So, we have

D clej) o (c(Bs) oc(Bs) —c(Bs) oc(Bs)) ocle;) = (c(B3) o c(Bs) —c(Bs) o c(B3))
j

Hence
Y (cles)oclB) +c(B)" ocley))’
j
=—12(c(B3)* —c(Bs)*) — 16(IB3I* +IB5I*) — 16(c(B3) o c(Bs) — c(Bs) o c(B3))
—4i(c(B3) oc(Bs) +c(Bs) oc(B3))

c(B) c(B)

= ((1=1c(Bz — Bs) —i(xB7)) o (1 +1)c(Bs + Bs) + i(*B7))

=2(c(B3)* —c(Bs)* +c(B3) o c(Bs) —c(Bs) o c(B3)) + IB7I?
+ 2% (B7)c(Pz —iBs)

The principal part of the remainder is

Fa+ (1+1)c(ey) o c(V5B3) — (1 —1)c(V;B3) o cley))

N =
o
—~

_|_

c((T+1)c(ey) o c(ViBs) + (1 —1)c(V;Bs) o cle;))

+
N = N = N e N =

(clej) o c(Vj(xB7)) + c(Vj(xB7)) ocle))

c(Fa +2dB3 + 2id*B3 + 2idB5 + 2d*Bs + 2id(xB7))

c(Fa + 2dBs3 + 2id* B3 + 2idBs + 2d*Bs + 2id*B7)
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Finally we get the Weitzenbock formula

D sDa,p

1
3 + 5¢(Fa +2dps + 2id" B3 + 2idps + 2d"Bs + 2id"p7)

— (c(B3)* —c(Bs)*) —4(IBsI* +BsI*) — 2(c(B3) o c(Bs5) — c(B)s o c(B3))
—1i(c(B3) o c(Bs) +c(B)s o c(B3)) +2(xB7)(c(B3) —ic(Bs)) + IB7I*

Notice (c((.’)g) oc(Bs)—c(B)so C(Bg)) and i(c(ﬁg) oc(PBs) +c(B)so C(Bg)) give us trace-free
Hermitian endomorphisms of the spinors. (c((33) oc(Bs)—c(B)s o C(Bg)) comes from Clifford
action of a real 4-form and i(c(Bg) oc(Bs)+c(P)so C(Bg)) comes from Clifford action of an
imaginary 2-form and an imaginary 6-form.

= V*A,BVAyB +

0.3.6 Dimension 8

B=B3+1ix*P3, B € QL Notice c(Bz+1ixp3)=(1+1)c(B3).
3 (cleg)oc(B) +c(B)* ocle;))
j
> (1 Dees) oclBs) + (1~ 1)e(Bs) ocley))”
—JZi(ZC(e)’)OC(BS)OC(eJ‘)) oc(B3) —2ic(B3) o () _clej) oc(Bs)ocle))
j j

+2) cle)oc(Bs)?ocle)) +2) c(Bs)oc(e)® oc(Bs)
j j

Say in our chosen coordinate neighbourhood, B3 =Y Pi,i,is€i, /\ei, ANei,, we get
h1<iz<is

8
ZC(GJ’) o C( Z Bi]izi3 ei, /\ei2 /N 613) o c(ej)

j:1 i1 <iz<is

= > Buuis Zc ej) oclei,) ocler,) o clei) o cley))

1.1 <lz <l3

Notice that for j € {i1,12,13},c(ej) oc(ei,) oc(ei,) oc(ei;) oc(e;) = —clei,) ocles,) oc(ei,) and
for j & {i1,12,13},c(ej) oc(ei,) oclei,) oclei,) oclej) =clei,) oclei,) ocles,).

8
Zc ej)oc(B3)oc(ej) =2c(B3) (44)
j=1

c(B3)? will potentially give us Clifford actions of 0,2,4 and 6-forms. Notice that c(B3)? is a
Hermitian endomorphism of the positive spinors, hence we only get to see the Clifford actions
of a 0-form and a 4-form, since Clifford actions of real 2-forms and 6-forms are skew-Hermitian.
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For the O-forms, we have (c(e;L1 Joc(ei,)o c(eis))2 = 1. Hence, we get c(B3)% = B3> + c(04),
where 04 is a four-form. We notice

for j #11 #12 # 13 # 14,
c(ej) oclei,) oc(ei,) oclei,) oclei,) oclej) = —clei, ) ocle,) oclei;) ocley,),
and for iy # iy # 13 # i4,j € {i1,12,13, 14}

c(ej) oc(ei,) oc(ei,) oclei,) ocley,) oclej) =cley,) oclei,) oclei,) oclei,)

8 8
Hence, Z c(ej) oc(84) oclej) =0 and Z e)( X Bii,i,)ocle) =—8IB3l. So, we get

1] <iz <i3

8

D clej)oc(Bs)?ocley) = —8IBsI (45)

i=1

The principal part of the remainder is

1 1

F¢(FA) + 5 ; (1 +1)cles) o c(V5B3) — (1 —1)e(V;B3) o cley))
= %C(FA +2dB3 + 2d*B3)

= %C(FA +2dB3 +2id*B3) [on positive spinors]

Assembling all the pieces we get,

(Da +c(B))?

* S 1 L
=VapVa,s +Z+EC(FA+dB§L+th B3) —2c(B3)? —4|B3* [on I'(S,)]

0.3.7 Dimension 2m + 1

Following §0.1, B = ka;] (52k+1 B2k+1 +1S2m—2k * B2k+1> +1i% Bams1, B € QL

%Z(c(ej) o c(V3B) —c(V;B)* ocley))

1 m—1
=3 2 82k 1 Z (ViBak+1) — c(VjBak+1) o clej))
_.L m
+§];52m ZkZ 5 (¥B2axr1)) + (Vi (#Bais1)) o cley))
m—1
= Z sak+2¢(dBary1) +iZ S2m—2kc(d*Baxs1)
k=1 k=1
m—1 m :
m+1 *
= S2k+2¢(dPBory1) + Z YL ma DN g ) e (d*Bory)
k=1 k=1
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The Weitzenbock formula reads

1 = ;
mot (m+1) (k+1) *
=VaVap +2 T zc (Fa+2 Z S2x42dPB2k+1 +2‘; JHmAn (g, d B2r+1)
+ quadratic terms in f3 (46)
0.3.8 Dimension 4m
Following §0.2, = > 1, (52k1B2kr1 + Sam—2k—1 * B2ir1), B € QL.
1 N
3 > (clej) o c(ViB) —c(V;B)" o cley))
j
1 m—1
=3 S2k+1 Z c(ej) o c(ViBaks1) — c(VjBaks1) o cle;))
k=1
1 m—1
+§ S4m—2k—1 Z Vi (#Bak+1)) — c(V;j(#B2r+1)) o clej))
k=1
m—1
= Z (s2xr2¢(dBaks1) + Sam—2k—1¢(d(*B2r+1)))
k=1
m—1
= (s2r+2¢(dB2is1) + (=)™  Tspc(d*Baxr1)) [on T(Sy)]
k=1
We get the Weitzenbock formula (acting on positive spinors):
D
s 1 m—2 m—1
=VasVasp+ 2t EC(FA +2 ]; $ak12dB 2k 1 +252md " Bam 1 +2 ; (=)™ sy d* Borer)
+ quadratic terms in (47)
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0.3.9 Dimension 4m — 2

Following §0.3, f = ZEZZ(SZkH B2k+1 + Sam—2k—3 * B2k+1) + S2m—1B2m—1, B1 € QL.

T3 (eleg) o c(VsB) — (V)" o cle)
j

m—1
1
=3 2 S2k41 ; (e) o ¢(VjBar+1) — c(ViBak+1) o cle)))
m—2
1
+ 3 Sam—2k—3 Z(C(e]‘) o ¢(Vj(#B2r+1)) — c(Vj(xBak+1)) o cle;)))
k=1 j
m—1 m—2
= Z $2k2¢(dB2ky1) + Z Sam-—2k—3¢(d(*B2i+1))
k=1 k=1
m—1 m—2
=Y sag2c(dBair) + D (1) ™sarc(d*Basr) [on T(S,)]
k=1 k=1

The Weitzenbock formula for the positive spinors reads:

m—1 m—2

DA B=VapsVap+ 7 + EC(FA +2 ]; Sok+2dPB2k41 +2 1; (=)™ s2d*Baxr1)
+ quadratic terms in (48)

If we take B = sym—1 * Bom—1 + Ziz;ls(SZkH Bak+1 + Sam—2k—3 * B2k+1), B € QL.

%Z(c(ej) o0 clV;B) —c(ViB)* ocle;))

= S2m— 122 (e5) 0 c(Vy * (Bam—1)) — c(V;j(*B2m—1)) o c(e;))

2m—3
+ Z s2k+1(c(e)) 0 c(VjBas1) — c(ViBars1) o cley))

2m—3

+ Z Sam—2k—3(c(ej) 0 c(Vj(*Baxs1)) — c(Vj(*B2r+1)) o c(e))
k=m

2m—3 2m—3
= somo1c(d(+Bam 1))+ Y sak2c(dBarit) + ) sam-ar3c(d(*Baxs1))
k=m k=m
2m—3 2m—3
Z sakaac(dBoisr) + Y (=)™ spe(d*Bawsr) [on T(S_)]
k=m-—1

The Weitzenbock formula for the negative spinors reads:

2m—3 2m—3

Dip=VipVep+ i EC(FB +2 Z $2k+2dP2k+1 + 2 Z (=)™ 21 d"Barsr)
k=m k=m-—1
+ quadratic terms in (49)
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Part V

A priori estimates
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We prove some a priori estimates for the 8d Seiberg—Witten equations. Similar techniques can
be applied to get bounds in other dimensions as well. The Laplacian used here is A = dd* +d*d.
Before we get to the 8d equations, we sketch a proof of compactness of the moduli space of the
4d SW equations. The a priori estimates we prove for the 8d equations are in parallel to the
analysis in the 4d case. For more details of the compactness result of 4d SW equations one can
consult [20]. The 4d SW equations for A € A and ¢ € I'(S) on an orientable Riemannian four
manifold (M, g) are:

Dadp =0 (50)
Fi =q(d) (51)

e The first step is to get a uniform C°® bound of ¢. We use the Weitzenbdck formula:

1
D%\ =ViaVa+ ;‘ + EC(FX) [s is the scalar curvature]

Evaluating it on (A, d), a solution of the equations (50), (51) and taking pointwise inner
product with ¢ yields

1
(VAVA®, &) + F 162 + 141" =0 (52)

We get

1
SAIDI2 = (VAVA®, §) = VA
_ S Vg 2
= 21612 = 2101 — VAo
Thus at a point xo where |p|? achieves its maximum, we have

slxa),
4

o) < 02

Hence 9C > 0 such that ||d)||%jo <C.
e Using the C° bound of ¢, we get some more estimates:
1 C
IFXllce = lla(@llcs < 1010 < 5

CZ
and HFXII%Z < TVOI(M)

Now if we assume that the virtual dimension of the moduli space is compact i.e.,

c1(L)* —2(x(M) + 3 sign(M)) >0
[L is the determinant bundle of the positive Spin® bundle]

and also use the identity

1
c1(1)? = o (IFRIIE: = IFXIE2)
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we get
CZ
IFAlIZ: < Tvo1(M) — 8m?x(M) — 127t% sign(M)
Eq. (52) gives us:

C
IVAdlls < 5 vol(M)

e Notice since

2
Fi=ooe

we have

VicFA=Vad @ ¢ +d@Vad*— Re(Vad,d) Id

Using the a priori bound on ||VA(|)H%2 and the L*° bound on ¢, we get an a priori bound
on ||VL_C_F/J{||%Z. Once we get an a priori L bound on F}, using Uhlenbeck compactness
(or elementary Hodge theory in our case since the gauge group is abelian) we get an L%
bound on the connection upto gauge:

Let Ay be a fixed C*° connection on L. There’s a constant C; depending only on M and A,
such that for any solution (A, ¢) to the SW equations we have a connection A=A+«
gauge equivalent to A with

d*o =0 and [|al?. < C;

e Now we parley the L% bound on A and the L* bound on ¢ into C* bounds on both A
and ¢ using standard bootstrap technique for elliptic equations. After some careful use of
bootstrap and Sobolev embedding we end up with the following compactness result:

Let (An, ¢n) be any sequence to the SW equations. Then after passing to a subsequence,
and applying L% changes of gauge we can arrange that the (A,, d, ) are C* objects and
they converge in the C* topology to a limit (A, ¢) which is also a solution to the SW
equations. In particular, the moduli space of solutions to the SW equations is compact.

Now we get back to the SW equations in dimension 8. The equations in dimension 8 are the
following for ¢ € (S, ),A € A, B € Q3:

(Da+ (1 +1)c(B))p=0 (53)
Fa +2id*B +2d*B = q(d) (54)

Lemma 12. There is a constant C > 0, such that if &, A, solve (53) and (54), then

dll&o < ClIBIZs +1).

In particular, if Aj, dj, B; is a sequence of solutions in which ¢; is unbounded, then 3; 1s
also unbounded.
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Proof. If ¢, A, P solve (53) and (54), then using the Weitzenbdck formula proved in §0.3.6 for
any x € M, we get

Vi Vas (00) + 00000 + L1000 2000 — 2c(8)9)00 — 4B (x) =0

Taking point-wise inner product with ¢ yields

(V3,5 Va5(000),609) + 000 + 00l — 2ie(BUx))6 0 ~4IBIPIOGI =0

We have
7
7A|d>|2 (Va,s VA, d) —Va,pbl? < 4B +2lc(B)dI* — Z\dﬂz — Jglol’
7
< (6812 — 3)lof — S=lof' (55)

It follows that at a point xo € M, where |¢p|*> achieves its maximum and hence A(|p(x0)[?) > 0,
we have

(6B (xo)I* —

00 xo)? — (o <0

As ¢ is not identically zero, |¢p(xo)> > 0, and hence we get

7
Zio0x0)? < (6B(xo)? — £22))

< Ci(IBxo) +1) [C1 =6 xmax(1, 'S(;f)')}
This implies
16
Iplizo < CUIBIZo +1) [C =2 €] .

Lemma 13. Given any solution to the equations (53) and (54), P is determined in the
following way:

B = —3AGq(¢)2 — +dGq($)s + B

Here G denotes the Green’s operator for Laplacians on Q? and Q% respectively (with abuse
of notation we call it G in both cases) and By denotes the harmonic part of 3.

Proof. We write q(¢), for the part of q(¢) which lies in 1Q? and q(¢)4 for the part of q(¢)
which lies in Qi. Applying d to the curvature equation we get,

dd*p =~ 2dq($); and d°dp = — » (dq().)

Together these two equations give

A = (dd" + d"d)p = —5dq(d); — +(dq(¢))

The result now follows from applying Green’s operator and using that G commutes with both d
and . O
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Lemma 14. There is a constant C, such that for any solution to the equations (53) and
(54),

1/p
I1Blly < C (JM <b2p> + Clipl

(where, at the ezpense of changing C, we can use any norm on harmonic 3-forms since
they are all equivalent). It follows (by Sobolev embedding) that

1/9
IBllce < C (J |¢|‘8) - Clpl
M
Proof. We estimate

1dGa()2llcy < CIGq(®)ly < Clla()lir < C(1412)"""
1% dGq(d)ally < ClGq(d)lly < Clig(d)llr < C(|¢|2p)1/p

The lemma now follows from these two inequalities. O

Lemma 15. There s a constant C > 0, such that for any solution to the equations (53)
and (54),

A(IBI +101*) < CIBI* +1)

Proof. We use a Bochner-Weitzenbdck formula for the three-form {3 [22]:

TAIB = (4B,B) — [VBP + F(B)

Here F is a quadratic term in 3, related to the curvature tensor. Using the lemmas above we get,

AIB + AlpI? = 2((AB, B) — [VBI2 +F(B) + (6IB — 7)ol — %w —IVapdl)
< CIVa(®)IBI+ CIBR + CUBE + D6 — £l — 2V 5P
< CIVAGIQIIBI + CIBE + C(IB + 1IB — F10* — 21V 50

< CUBPIBR +IBR + I6) — S’
< ClBI* +1)
O

Remark 16. Notice that from the proof of the last lemma, we also get an e-regularity type
inequality

CUBIldI* + 1BI* + dI?)
C((IBII+ $I*)* +1)

A(IBP +161)

<
<
for a constant C > 0.
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Lemma 12 says that given a uniform C® bound of the three-form f, we get a uniform C°
bound of the spinor ¢. We do a Nash—Moser type iteration to improve this result:

Lemma 17. There exists q > 0 such that if B is uniformly bounded in L9, then ¢ is
uniformly bounded in L°°.

Proof. Equation (55) gives us
1 S 7
TAIBP < 2 S\i2 L4
SAIBE < (6B — )16 — I
Now let’s call |$|? = f and (12|B\2 — %) = g. So we get
Af < gf — gfz

7
= pr_HAf < J(gfp+2 o gfp+3)

4 1 + 7
= MJ'W(HTZNZ < J|g|fp+2 _ gl[fPJr-?’

(p+2)?
4(p+1) piz 5 [ (clgh)Pt? fP3 7 3 -
> e | < [ | gy | e sy postiv consany
P

For any p, choose ¢ = %. We get

chiz > ;, and for that c we get,

p+3 8 p+2 1 7

cr+2 >7xp+3:><c}£}%—8><0
P+

Hence we can write,

|75 < cw [l

where the constant C(p) depends on p but not on f or g. Hence, we get an LP*3 bound of f
from an [P*3 bound of g.
We can actually do better! Start with the inequality:

Mj\v(f"zj)\z < J|g\fv+2 _ ngpH

(p+2)2
dlp £ 1) 42 ey AP+ 1) LECINY) 2
#m(JW(f )l +J(f ))S(p+2)2J‘V(f )l +4pr+
< J(Igl +4)fPT2 — gjfp“ (56)

We play the same trick on the right hand side as before but we do it with (|g|+4) and f instead
of |g| and f (the trick is nothing but Young’s inequality) and we end up with

p+2

[tz [ (42 < € [gl+ 4+
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Where the constant é(p) depends on p but not on f or g. Now use Sobolev embedding L% — LS
in dimension 8 and this gives us:

(Jf4(p3+z1)§ (JW( )|2 J(f%)Z)%

> norm of f using the [P*3 norm of g (notice (p+2 >p+ 3 for
p > 1). Next we start with the inequality (56).

4(p+1 p+z 4(p+1 N 7 .
e i) < TR [ R a2 < [l a2 - L s

= (V)R + [(75)2) < e+ 21 (g1 + 47772
We use Sobolev embedding L% < L} for the function f*2 and get
([t <es(fIve R+ |+t
= (Jf%(vm)% (JIV( 2 4 J(f#)z)
= (Jf%(vﬂ )i<c Cz(p+2)J(|g|+4)fP+z
= Il 400 < (C- CRlp+2) 77 ([l + 47727

Using Holder inequality with m > 4, and n such that % +1 =1 weget

n

Ln(p+2)

J(lgl + AP < [(Igl + Dl 1752 = (gl + Dl [P
= Il 402 < (C- C2(1>+2))"“||(|9|+4)H"‘2 Il n o2y
Since m > 4, we get n < %. Hence, if N > 0, such that (|g| + 4)|lLm < N, then we can start

the iteration to get an L* norm of f in terms of some LP norm of f and some L9 norm of g.
Thereafter if we control high enough L9 norm of g (q > 4), we control the L> norm of f. O
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Part VI

Construction of solutions
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In this section we give several examples of solutions of the SW equations in dimension 5,6
and 8. We explain the procedure we follow in constructing solutions of SW equations on £ x R3,
on £ x C?, on closed Kahler 3- and 4-folds. We choose the three-form B to be of the form
(0f + of) A w for a complex-valued smooth function f, w being the either the Kahler form on
Y or on the manifold depending on the case. Next we choose the spinor (or two spinors) as
a function of f which solve the Dirac equation (or equations) for the Chern connection on the
determinant line bundle and finally using identities in Kahler geometry, we change the curvature
equation (or equations) into Kadzan—Warner type pdes [16] in f and solve for f. The constructions
have striking similarities with Bradlow’s work on vortices in holomorphic line bundles over closed
Kahler manifolds [5].

0.4 Solution of 5-dimensional SW equations

The SW equations in dimension 5 are the following (for a spinor ¢, a unitary connection A, 3; €
Qi)

(Da+ (1 —=1)c(B3)+i*xPBs5)p =0 (57)
Fa —2id*B3 + 2dB3 + 2d*Bs5 = q(d) (58)

0.4.1 Solution on a circle bundle over a del Pezzo surface

We produce a solution of the SW equations on an S'-bundle over a Kahler surface (X, w), w
denoting the Kahler form on X. We assume a condition: Fa, = ic?w,c is a constant. This
implies (X, w) is Fano and Kahler-Einstein. In particular X is diffeomorphic to CP' x CP' or
CP? blown up in at most 8 points [12]. These are called del Pezzo surfaces. Ay is the connection
on the canonical bundle K induced by the Kahler metric on X.

There is a tautological Spin®-bundle on X : A° A% § A2 [20]. We take a new Spin®-bundle
by twisting the tautological Spin®-bundle by the canonical line bundle K :

SX)=Ka (A>T @K)a A°
We take the 5-manifold M by taking the S'-bundle inside K :
M = {(X)VX) X € Xavx € KX) ||VXH = 1}

The || || on K is induced by the Kahler metric again. The induced metric and the connection on
K from the Kahler metric also defines a metric and a connection on M and we have

Tixv )M =T TX® {wy € Ky 1 (Wy,vy) =0}

ST 5 M 5 X is an S'-bundle over X. One can define a Spin®-bundle over M by pulling back
the Spin®-bundle on X :

S(M) = K & *(A*! @ K) @ *A°
Det(S(M)) = 7*(K?)
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The Clifford action of the volume form on a fiber (let’s call it vols) is the following:

c(volg) = —ild on (K & *A°)
c(voly) =1ild on (*(A®! ® K))

There exists a “tautological” spinor (say @) on M defined by
P (%, Vi) = 7" (V)

Since @ € Q°(M;7*K), q(¢@) can be written in diagonal matrix form for its action on spinors in
(K) @ m(A%T @ K) @ *A°.

3
2 d 0 0

clgle) =] 0 —zld 0
0 0 —3Id

Clifford actions of i(7*w) and 7t*(w?) on the spinors are described as follows.

| ™K 7 (A @K) mrA°

(™ w) 21d 0 —21d
T (w?) —21d 21d —21d
Hence, we deduce
] . x * 2
ale) = 5 (2in"w — (@)
Notice for an orthonormal basis eg,...,es5 of forms at a point (x,v,) such that ey is a form on

the fibre,Vo@ = eo and for j € {1,...,4}, Vjo = 0. We get D24, @ = —@.
Choose ¢ = 2v2ce,A = 2m*Ak, B3 = —voly A m*w and *Bs = 1, then ¢, A, B3 and Bs
solve the Dirac equation (57). The curvature equation (58) reads:

The above equation has a solution iff FA, = ic?w. Since this was in the assumption in our choice
of X, both equations (57) and (58) are solved.

Remark 18. For an explicit ansatz, one can take X = CPP?, since Kepz = O(—3). Then the circle
bundle of O(—3) can be identified with S°/Z3 (a Lens space), where S° = {z € C3 : ||z|| = 1},
which can be identified with the circle bundle of @(—1) — CP? and the action of Z3 is given by
z ~ (xz, where (i is a 3-rd root of unity for k = 1,2,3. One way to see this is the following.

CP? is the space of lines in C3. The total space of circle bundle of O(—3) — CP? is {€ €
CP?,v € (C3)®% : v € (®%,||v|]| = 1}. Now there is a isomorphism

$3/Z3 =L e CP* zel:|z]| =1}/(z~ Cxz) ~ {{ € CP*v e (&% : |v]| =1}
lz)— ,z® - ®z).
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0.4.2 Solution of perturbed 5d SW equations on ~ x R?

We take the base manifold to be M®> = £ x R3, where ¥ is a closed compact Riemann surface.
We call the Kahler form on X by w, we also choose a Riemannian metric on £ compatible
with the almost complex structure such that w becomes the volume form. Let x,x2,x3 denote
coordinates in the R3 direction. R3 has the standard Euclidean metric. The spinor bundle on R3
can be chosen as a trivial C? bundle, we follow the following convention for the Clifford action

of one forms:
0 —i 0 -1 —i 0
claxi) = | ety = | ] et =[]

The spinor bundles on £ x R can be taken as follows [17]:
S(ZxRY) = (A%L,L)®C?) & (AYT(L,L) ® C?)

The explicit description should involve pullback of the spinor-bundles on X and R3. We avoid
writing pull backs with abuse of notations. C? denotes the trivial bundle on R3 (with abuse of
notation again) and L is a holomorphic line bundle on Z. So, S(Z x R3) is a direct sum of four
line bundles.

det(S) = L* @ K2

To solve the SW equations, take p3 = (9f + of) Adxy Adxy, f € C®(Z,C), 5 = 0.

We choose a hermitian metric h on L and take the corresponding Chern connection A on
L, the Kahler metric induces a connection Ak, on Ks, and we take the usual flat connection on
C2. So we get a connection on L* ® ng. With abuse of notation we call it A :=4Ay —2Ak,.

For the spinor, we start with ¢, a non-zero holomorphic section of L, i.e., da, @ = 0. Say
e1, e; denote the standard basis elements of C2, here we will think of them as spinors on R3. With
the standard metric and the flat connection on C2, e; and e, form standard basis of (Cz giving
unit length nowhere vanishing parallel spinors on R3. Define a spinor on M, ¢ := el "Dfp @ e;.
The following table describes Clifford actions of some forms on the spinors.

AO ® Cle1} A° ® C{ey} A0 ® Clet} A0 ® C{ey}

iw Id Id -Id -Id
idxy Adx, Id -I1d Id -Id
w Adxy Adxy -Id Id Id -Id

c(df + ) = c(3f)p = V23f A o
((5f+aF)Adx1 Ndxz)(@ ®er) = \ﬂ MA@ ®e
DA(ei“*i)fq)@ﬁ \[6/\ Qe = \[11—1 - (afAcp)tXJe]
Observe that ¢, A, 3 solves the Dirac equation (57).
d((éf + aﬂ A dxq /\dXz)

= 2i90(Imf) A dxq A dxa
= —Alm(f)w Adx; Adx;
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d*((of + of) Adxy Adxz)
= —xd(i(df — of) A\ dx3)
=—2ix (aa(Ref) A\ dX3)
= ARe(f)dx; A dx;

2
q(d) = %(iw +idxy Adxy — w Adxy Adxs)
1
= Zez(Ref*Im”I(plz(iw +idx; Adxs — w Adxy Adxa)

The curvature equation (58) reads:

Fa — 2A(Imf)w A dxq Adxy — 2iA(Re(f))dx; Adx,
1
= Zez(Re‘c_Imf)l(p\z(iw +1idx7 Adxy — w Adxqy Adxz)

If we add this extra term: c(idx; Adx; — w Adx; /Adxz) on the left hand side of the curvature
equation we get:

Fa — 2A(Imf)w A dx; Adxy — 2iA(Re(f))dx; Adx;
+ c(idxy Adxs — w Adxy Adx;)

1
= ZeZ(Ref*Ime(p\z(iw +idxy Adxy — w Adxg Adxs)
This breaks into three equations:

i _
FA _ ZeZ(Ref Imf

1
—ZA(Imf) + ZeZ(Ref—Imf]|(p‘2 —c

Nolw,

1
and 2A(Ref) + Zez(Re‘(*Imf)I(p\z =c
The last two equations give us:

A(Ref + Imf) = 0

= Ref + Imf = a;, for a constant a;

So, the last two equations become one single equation:
1
2A(Ref) + Ze‘m”e*za’ lpl> =c

For a fixed ay, there exists a unique Ref which solves the pde for a constant ¢ > 0 [16]. Once
we know f, we solve the remaining equation

i _
4Fa, —Fxs = Zemefe 212w
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We perturb the initial metric h on L by e*, A € C®°(Z,R). The new metric being h’ := e h.
Notice this conformal change in the metric doesn’t change the holomorphic structure of L. We
write the equation now with respect to the Chern connection Ay and the metric h'.

i
4Ref 2 2
4Fa,, —2Fk; = 7€ Te Mok, w

& AF A, — 400N — 2F, = %e“Refe*Zﬂl e ol2w

& ((4Fa, —2Fc;), w)w — 2w = e'Refe2e1 P g 2
1
& 2AN + Zem”e_za‘ el = 2i(Fi,, w) —4i(Fa,, w)

As we already know f and ¢ is not everywhere zero, there exists a unique solution for A [16] if

CNKz)>2J & (L)

L (2i(Fky, w) —4i(Fa,, w))w >0 & J .

pX

Notice fz c1(L) > 0 since, 0 # @ € H°(Z, ). So, we found a solution of the following perturbed
version of 5-dimensional Seiberg—Witten equations:

(Da +c((1T—1)B3+ixPs))dp =0 (59)
Fa —2id"B3 +2df; +2d"Bs5 + 1 = q(P) (60)
1 =c(idx; Adxy — w Adxy Adxy)

Remark 19. Notice that the perturbation n is harmonic and we can think of it as playing the
role of the cohomology class of 2df3, 3 = B3 + 5. If we actually can make sense of “spinors with
values in a gerbe”, the perturbation should be absorbed in the differential terms in the left hand
side of the curvature equation.

Now if we take the spinor to be ¢ :=e!""Uf1 p®e,, and 3 = —(df; +0f7) Adx; Adxa, fs =0;
notice that ¢, 3, A = 4A}, — 2Ax, solves the Dirac equation (59).

q($) = %ld)lz(iw —idxy Adxz + w Adxy Adxa)

The perturbed curvature equation (60) reads:

Fa + 2A(Imfy)w Adxy; Adx; + 2iA(Refy)dxy Adxs + c(idx; Adxy — w Adxy Adxy)

= %eZ(Reﬁ “Imf) | o)? (iw — idxq Adxs + w Adx; Adxa)

This breaks into the following three equations:

i _
FA _ 762(Ref1 Imf,

4
1
—2A(Imf) + Zlez“*ef"“’“f"kplZ =—c

NolPw

1
2A(Refy) + ye?Fenmimijpf = —c
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The last two equations give:

A(Refy +Imf;) =0

= Ref + Imf; = a,, for a constant a,.

So the last two equations become one single equation:
1
2A(Refy) + Z‘e‘“*ef’ e 222l = —¢

For a fixed ¢y, there exists a unique Ref; which solves the pde for a constant ¢ < 0 [16]. Once
we know fq, we solve the remaining equation (written below) in the same way we did before.

i
4FAh - ZFKZ = Ze4Ref1 eizaz |(P|2(U

The required condition for the existence of solution is same as before:

LCl(Kz) >2j &(L)

)X

Proposition 20. There ezists a solution of the system of equations (59) and (60) on L x R3
under the following conditions:

forc#0: dim H°(Z,L) > 0 and deg(Ksz —2L) > 0
forc=0: deg(Kgy —2L) =0

Moreover for all c, there exists a solution which s translation tnvariant in any direction
L R3
n R°.

Proof. Both ¢ > 0 and ¢ < O cases are discussed above. The remaining case is ¢ = 0 which
gives us back the 5d Seiberg-Witten equations (57), (58) without any perturbation term. We
take ¢ = 0,33 = 0,5 = 0. This solves the Dirac equation (57) for any unitary connection on
L. So, the curvature equation (58) reads: Fao = 0. This has a solution iff deg(L* ® ng) =0,
i.e., deg(Ks —2L) = 0. The solutions constructed are all translation invariant in any direction in
R3. O

Remark 21. For an explicit ansatz, one can simply take any compact Riemann surface X with
genus g > 1. If L is the trivial line bundle, it satisfies both the conditions when ¢ # 0 since, dim
HO(Z,L) =1 and deg(Ks — 2L) = deg(Kz) =29 —2 > 0.

One can add a different perturbation term in the curvature equation and get the following
system of equations:

(Da+c((1—1)B3+1ixBs))p =0 (61)
Fa —2id"B3 +2dp3 +2d"Bs +n = q(¢) (62)
1 = c(idx; Adxz + w Adx; Adxy)

To construct a solution of (61) and (62), we take the three-form to be B3 = —(dg7 + 9g1) A
dx; Adxz, g1 € C®(%,C) and Bs5 = 0. We start with the same set up with the hermitian metric
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h and the corresponding Chern connection Ay, on L. Finally for the spinor, first we take a non-
zero section 11) € l“(Kg1 ® L) such that 5;}111) = 0. In another words 1 is an anti-holomorphic
section of Ki ® L =L —Ks, hence 1\ is a holomorphic section of Ky — L. We define a spinor

G =e I ®ey.
For a smooth section & € Q°(Z, L),
(O, (e (TT8p), )2
= (e 17V919, £
= (,0a, (e V9 E)) 12 — (U, —(1 —i)e” 179" £3g)

- J (1+1)e"+931ph A x(£dg)
z

,J (1 +De HI E(p A 0gy)

>

J i(1—1)e " 1-V91E(h A dgy)
& ST A 88
(—

= (—i( ~HV8 s (p A DG1), E) 2
Hence
O, (e THVIMp) = i(1 +i)e” U9« (3g1 A1)
=—(1—1)e "9« (3G A D)
c(dgq +3g1)p = —V2(dg1 ) = —V2ix (3G1 AD)
c(—(dg1 +3g1) Adxi Adxa) (b @ er) = ﬁ « (01 A ) ® e
Da(e M9 @er) = V203, (eI @ e
So, ¢, An, 3 solves the Dirac equation (61).
q(d) = |d;|2( —iw +1idx; Adxy; + w Adx; Adxy)
= %e‘zmeg‘ﬂmg‘ T2 (—iw + idx; Adxa + w Adxy Adxy)

The curvature equation (62) reads:

Fa + 2A(Imgr)w Adxy Adxz + 2iA(Regy)dx; Adxy + c(idxy Adxy + w Adxy Adx,)
1

= Ze*Z(ReWImg] TP (—iw +idxy Adxa + w Adxy Adxs)
This breaks into three equations:
Fa = _iefZ(Reg1 +Img 1) 2
—2A(Img) + ;‘ —2(Reg1+Tmg1)|y2 — ¢
“2A(Regy) + ye MR RO 2 ¢
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We get

A(Regy —Img;) =0

= Reg; = Img; + a3, for a constant az

So, the last two equations become one single equation:
1
—2A(Reg) + Ze*““*em Je 293 |p)? =¢

There exists a unique Reg; which solves the pde for a constant ¢ > 0 [16]. Once we know g1,
we solve the remaining equation:

i
Fa = 71674Reg1 672a3|11)|2(,0

We perturb the initial metric h on L by 67‘, AeC™® (X,R). The new metric being h := e h. Notice
this conformal change in the metric doesn’t change the holomorphic structure of L. We write the

equation now with respect to the Chern connection A;; and the metric h on L. This conformal

A

change in metric of L, induces a conformal change by e~ " on the corresponding hermitian metric

on L~'. So, { remains a holomorphic section of Ky — L, and now when we go back to the
corresponding anti-holomorphic section on L — Ky, the norm changes by e *. The curvature
equation becomes

4Fp_ — 2Fg, = _%ef4Reg1 e—2¢3 eflelplzw
& 4Fp — 400N — 2F, = %efmeg] e 2% AR
& ((4F, — 2Fk, ), w)w — 2HAAw = 7%e74Reg1 e 203 e A2

~ 1 5
& AN+ Ze*‘m"'% e e Mp|* = i((4Fa, — 2Fk, ), w)

Since g is already known and 1 is not everywhere zero, there exists a unique solution for A
from the pde [16] iff

J i(4FAh_2FK;) >O'/F>J C](ZL—K):) >0
b b

We also give a solution for ¢ < 0. Take ¢ := e~ 1*1921)p ® e,, and B3 = (g2 + 0g2) Adx; A
dxz, B5 = 0. Notice that ¢, 3, A =4A,, — 2Ak; solves the Dirac equation (61).

1
q(p) = —Zlq)|2(iw +idxy Adxz + w Adxy Adxy)
The curvature equation (62) reads:

Fa —2A(Imgy)w Adxy Adxy — 2iA(Regz)dxy Adx, + c(idxg Adxy + w Adxy Adx;)

f%e*megzﬂmgznwz(iw +1idx; Adxs + w Adx; Adxy)
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This breaks into three parts:

i

Fao = _2672(Regz+1mgz)|¢‘2w
1

—ZA(Imgz) Z Z(RengrImgz)N)lZ — ¢
1

—ZA(Regz) Z Z(Regz+1mgz)‘1|)|2 —_¢

This gives:

A(Reg; —Img,) =0

= Reg, =Img;, + a4, for a constant a4

There exists a unique solution for Reg, from the following pde for ¢ < 0 [16]:
1
—2A(Regy) + Ze*“Regze*Z‘14 > = —c
Once we know g, we solve the remaining equation in the same way we did for the ¢ > 0 case.

i
FA — _Zef4R.egz efzcu |1b|2w

The required condition to solve it being

J {(4F A, — 2Fy,) >o<:>J G2l Ks) >0
> >

Proposition 22. There ezists a solution of the system of equations (61) and (62) on & x R3
under the following conditions:

forc#0: dim H°(L, Ky —L) > 0 and deg(Ky —2L) <0
forc=0: deg(Kgy —2L) =0

Moreover for all c, there exists a solution which s translation invariant in any direction
T3
in R2.

Proof. Both ¢ > 0 and ¢ < 0 cases are discussed above. The remaining case ¢ = 0 is explained
in proposition 20. O

Remark 23. For an explicit ansatz, we take a compact Riemann surface X with genus g > 1.
If L = Kg, it satisfies both the conditions when ¢ # 0 since, dim H°(L,Ky — L) = 1 and
deg(Kz —2L) = — deg(Ky) =2 —-2g < 0.

0.5 Solution of 6-dimensional SW equations

Let (M g) be a 6-dimensional manifold Spin® manifold. Moreover say S = S; ® S_ and S =
S+ ®S_ be two (potentially different) Spin®-bundles on M. Let A and B denote the set of unitary
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connections on det(S,) and det(S_) respectively. Then the SW equations for ¢ € I'(S, ), €
I'(S_),pe Q3 AcAandB € B are:

(DA +c(B))p =0

Fa —2ixdp =q()
(D +c(xp))P =0
Fg+2ixd+p = q(u)

Remarks 24. We make a few remarks about the moduli space of the SW equations.

1. Notice that analogous to the 8d case, we can prove similar a priori estimates for the 6d
SW equations using the same techniques used in §V. l.e., given a C° bound of 3, we get a
C° bound of the spinors ¢ and 1 and for a large enough p, LP bounds of |¢|, \p| and some
bound of the harmonic part of 3 (with respect to any norm), we get a C° bound of B.

2. We explain a possible way the moduli space can be non-compact and produce explicit
examples in §§0.5.2 on Kahler 3-folds where this phenomenon occurs. The idea is the
following. Say (¢, W, B, A, B) is a solution of the equations (63),(64), (65),(66). Now say
o is a non-trivial harmonic three-form such that c(x)p = 0 and c(x)p = 0, then for any
reR, (¢, ¥, + 1, A,B) is also a solution of the SW equations.

This brings a question what if we fix the harmonic part of the three-form, can we prove
that the moduli space is compact in that scenario? The answer is still unknown to the
author.

0.5.1 Spin geometry in dimension 6
Some representation theory of Spin(6) and Spin®(6) :

Spin(6) = SU(4): We start with a description of the fundamental group of SO(6), i.e., Spin(6).
This is one of the exceptional isomorphisms of Lie groups. Enough to show that SU(4) is a
double cover of SO(6) since 714 (SO(G)) = 7,/27. The double cover is constructed as follows:

SU(4) has a natural action on C*, it induces an action of SU(4) on A?C*. A2C* is six
dimensional (in C) and has a hermitian inner-product induced by the one on C*. This can be
defined by saying if {e1,...,e4} is an orthonormal basis for C* then {e; A\ ej} is an orthonormal
basis for A2C* or, more invariantly,

(vi Ava,wip Awg) = det(vi,wj>

Where (v, w) is the Hermitian inner product on C*. The action of SU(4) on A?C* preserves this
inner product. Moreover we have a hodge star operator * on A>C* induced by the inner product
such that *? = 1, Hence it splits the space into self-dual and anti self-dual forms:

AXC* = A2Ct o AZC?

Notice that the action of SU(4) is preserved under this splitting and the real dimension of /\i(C4
is 6. Since, SU(4) preserves the inner product and has determinant one, we get a map from
SU(4) — SO(6), one checks that the kernel is +1d, and therefore, by dimensionality reasons,
must be a surjection.
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Remark 25. The discussion above says that if our 6-dimensional manifold (say M) is spin, and
S=S, ®S_ is a spin bundle on M, then A% (S;) = TM.

Positive and negative spinors are dual to each other: For both the groups Spin(6) =
SU(4) and Spin®(6), they have two irreducible representations of dimension 4 and they are dual
to each other [11]. Since the representations corresponding to positive and negative spinors have
different highest weights: (1/2,1/2,1/2) and (1/2,1/2,—1/2) [11], the positive and negative
spinors must come from the two different irreducible representations and hence they are dual to
each other.

If we start from SU(4), which has a standard 4-dimensional irreducible representation (say
V). The wedge product A3V is also 4-dimensional and irreducible. These two representations
are not isomorphic to each other because their highest weights are different, thus V and A3V
correspond to two spinor representations of Spin(6). However, SU(4) admits an outer automor-
phism that exchanges the highest weights of V and A3V. So the positive spinor can be either
V or A3V, depending on the isomorphism between SU(4) and Spin(6) we choose. Despite this
outer automorphism, we can still observe that two spinors are dual to each other since the wedge
product gives us a non-degenerate pairing: V x A3V — C.

Clifford multiplication:

Now we would work with Spin®-manifolds. Let M be a Spin®-manifold of dimension 6. We choose
a Spin°-structure on M and write S = S, ®S_ — M, to be the corresponding spin bundle, which
splits into the bundle of positive and negative spinors. Endomorphisms of spinors of the same
chirality are given by the Clifford action of even-degree forms and morphisms between spinors
of opposite chirality are given by the Clifford action of odd-degree forms:

c: &A% (M) ® C — Ende(S4,S4) = Ende(S_,S_)
c: AT (M) ® C — Ende(S4,S_) = Ende(S_,S4)
Below we give a more detailed description of these maps.
The Clifford action of the volume form is i times identity on positive spinors and —i times
identity on negative spinors. This says that for any form o« € A*(M), c(«) = +ic(*x), depending

on the degree of & and the chirality of the spinor. Clifford action of complexified 0 and 2-forms
give the isomorphisms:

Endc(S4,S4) = (A°(M) @ A*(M)) ® C = Endc(S—,S_)

For a hermitian endomorphism of spinors of same chirality, we can split it into a trace-free part
and the trace-part. A is the trace part and the imaginary 2-forms (or equivalently the real 4-
forms) (real dimension 15) act as trace-free hermitian endomorphisms via Clifford multiplication:

Coming back to End¢(S,,S_), it is a complex-vector bundle of rank 16 over M. As explained
before, Clifford action of a form is same as the Clifford action of its Hodge-star upto a constant.
So, we get

c: (A'M) @ A*(M)) ® C — Endc(S4,S-) = Ende (S, S4)
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We make an important observation on the space of three forms of the manifold. on A3(M;C), *? =
(—1)3%(6=3) = _1, Hence A3(M;C) splits as A3 (X,C) ® A3 (M;C). The subscript + and — re-
spectively denote the eigen-spaces of +i and —i. Here * is a complex linear extension of the
Hodge-star operator on A3(M;R).

Lemma 26. For a Spin® bundle S=S,. ®S_ on M, the Clifford action of /\i(X,(C) on the
negative spinors is trivial and the Clifford action of A3 (X,C) on the positive spinors is
trivial.

Proof. The proof is given for a specific three-form. The other cases can be checked similarly.
Around a point p € M, we choose a normal coordinate system (x1,...,x¢s) and the corresponding
co-vectors at p be ey,...,es. From now on in this proof, all the equations are supposed to be
thought of at the point p with respect to the chosen normal neighborhood. Let’s ¢ be a positive
spinor, i.e.,

c(—ie1r NexANes/NesNes Neg)by = b
Let’s take the 3-form B = (e; ANex Ae3)+i(es Nes/\eg).
xB ==x(eg Nex/Nes)+1ix(eqs Nes/\eg)
= (64/\65/\66) —i(e] /\62/\63)
=—i((e1 NexNe3) +iles ANes Aeg))
So, B is a —i eigen-vector of the Hodge-star operator on three-forms.
c(B)d+ =c(B)c(—ies AexNes NesNes Neg)dy
=—ic((e1 ANex2Ae3) +iles Nes/Aeg))cler Nexs/Nes/Nes/\Nes /Neg)dy
= —i((c(er)c(e2)c(e3))?c(es)c(es)cles)
+ic(es)c(es)c(es)c(er)c(ea)c(es)c(ea)c(es)cles)) b

)
:—1(0(64)6(65)0(66)—w(e1) (e2)cles))d
=—c((e1 NexNe3)+iles NesNeg))dy

—c(B)d+
c(B)p4+ =0

Identical calculation proves that for (3, a +i eigen-vector of the Hodge-star operator on three-
forms, and a negative spinor ¢_

c(B)p- =0

Therefore, we have the following isomorphisms:

c: (A'(M) @ AL (M) ® C = Ende(S4,S-)
c: (A'(M) @ A3 (M) ® C = Ende(S_,S+)

An immediate question arises: how does one differentiate a one-form from a three form as
an element of Endc(S.,S_) or Endc(S_,S.)? In other words, what is the induced splitting
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on the right hand side from the splitting on the left hand side? Let’s see the case for
End¢(S—,Sy), the other one is identical. Notice, End¢(S_,S;) = S* ® S; =S, ® S,. This
splits into symmetric and anti-symmetric tensors:

S+ & S+ = Sym(3+) 5> /\Z(SJr)

A'! ® C identifies with A%(S,) (both has rank 6), and A3 ® C identifies with Sym(S.) (both
has rank 10). Similarly, for Endc(S4,S-) =S ®S_=S_®S_ = Sym(S_)@A?(S_); A'aC
identifies with A2(S_) (both has rank 6), and A3 ® C identifies with Sym(S_) (both has rank
10).

0.5.2 Solution on a closed Kéahler 3-fold
The equations on a Kéahler 3-fold

We study the SW equations when the oriented Riemannian 6-manifold is a 3 dimensional com-
plex Kahler manifold say (X,w);w being the Kahler form. The K&hler form together with a
Riemannian metric determines a unique compatible J.

First let’s see which (p, q)-forms are in Q3 and which are in Q3. We start with the (1,2) and
(2,1) forms. We take local holomorphic coordinates {zix = Xk + iyx}k=1,2,3 centered at a point
x € X so that the Kahler metric is standard to second order at the point. In local coordinates
we see that at x, {dzyx /\dz; A\ dZi}(..1) span the (1,2) forms. Observe

* (diz A dxq /\dy1) :i(dZZ/\dX_?, /\dyg,) and
% (dzp Adxz Adyz) = i(dz; Adxy Adyy)

Hence we get

* (dzy A (dx; Adyy +dxz Adys)) =i(dza A (dxz Adysz +dx; Adyp))

= x(dz; Aw) =1i(dz; Aw) and

* (dzy A (dx; Adyy —dxz Adys)) =i(dza A (dxz Adyz —dx; Adyp))

= *(diz/\ (dx1 A dy;q —dX3/\dy3)) = fi(diz/\ (dx1 A dy;q de3/\dy3))

Also for j #k #1,
*(dz; Adzy AN dzy) = —i(dz; Adze AdZy)
Notice that for j # k # 1, (dz; A dzx /A dZ) /A w = 0 and similarly we also get
* (dz; A\ (dzx —dz)) = —i(dz; A (dzx —dZzi) and

(dzj A (dzx —dz1)) A w =0.
One can do similar calculations for a (2, 1)-form and we end up with the following proposition.
Proposition 27. On a Kdhler 3-fold (X, w), any real valued 3-form f can be written as

B=p>"+MA W) +v- +B30, +FHAW)_ +74

Where 1 € Q%'(X,C),y € Ker(Aw: QV3(X,C) = Q*3(X,C)). The subscript '+’ or '—'
respectively denote the form as an eigen-vector of the Hodge-star operator with eigenvalue
+1i or —i. The decomposition s same as the Lefschetz decomposition [13].
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Proof. We notice that in local holomorphic coordinates {zx = xx + iyx}k—1,2,3 we have

* (di] /\diz /\dig) = i(di] /\diz /\dZ3) and
* (dZ] VAN de A\ ng) = —i(dZ1 AN de A ng)

The rest follows from the discussion above for (1,2)-forms and identical calculations for (2, 1)-
forms. O

We have an induced Spin®-structure 51 — X on X from its almost complex structure | : TX —
TX. The Spin®-bundles are given by

S, (Py) = A°(X,C) @ A%2(X,C)
S_(Py) = AST(X,C) @ A%3(X,C)

Det (S+(ﬁ])) = Det (S,(ﬁ])) = K;(z. Furthermore, if the almost complex structure is in fact a
complex structure for which the Riemannian metric is a Kahler metric, then the Dirac operator
on positive spinors associated to this Spin®-structure and the natural holomorphic, hermitian
connection on K;z is

V2(3 +9%): Q°(X,C) & Q%2(X,C) — Q%' (X,C) & Q%3 (X, C)

Any other Spin®-structure P differs from ﬁ] by tensoring with some U(1)~bund1e Q—X. let Lo
be the complex line bundle associated to Q. Then the spin bundles for P are given by

S+ (P) = A°(X, Lo) & A%2(X, Lo)
S_(P) = A%T(X, Lo) ® A%3(X, Lo)

The Clifford multiplication of the forms on the spinors are discussed in detail in appendix A.1.
We will use the formulae from the appendix throughout this section. The determinant of P
is identified with K;(Z ® L3, or to put it another way, £ = Ki ® L, where £ = det(ﬁ). A
U(1)-connection A on L is equivalent to a unitary connection Ay on Ly, the equivalence being
AY = AZKX ® A (with some possible abuse of notation) where Ay, is the holomorphic connection
on Kx. The Dirac operator associated to the connection A on £ is [20]

V20, +35,): Q%X Lo) ® Q™2(X, Lo) — QO (X, Lo) & Q%3 (X, Lo),

the operator obtained by coupling v/2(d + 0*) with the covariant derivative V A, on Lo.
We clarify some notations which will be used in the next part of the article. For a form in
QP9(X, Lo) we define x: APIX®@ Ly = A" PP X® Lo

x(bRs)=x(d)®s (p € QP> 9(X,C) locally, x is complex-linear on QP> 9(X,C))

Notice that this is different from the usual *;, operator, which can be defined if we put a hermitian
metric h on Lo. h can be also interpreted as a C-antilinear isomorphism h : Lo = L§. We get
o APIX@ Lo = ATV IX® L

(P @s) = #(¢) @ h(s) = #(d) @ h(s) = #($) @ h(s)



First pair of equations
Let’s have a look at the first Dirac equation.
(Da +c(B)d =0, & =1 +d2 Q%X Lo) &AM (X, Lo)
B=(B>°+B3%) + (B +p"2) € Q*°(X,C) ® Q3 (X,C) ® Q"2 (X,C) ® Q*'(X,C)
In this Kahler set up, the first Dirac equation reads:

V2(3a,d1 + 35, b2) +c(BHH) b1 + ()2 =0 (67)
V205,424 c(B30) b1 +c(B?)dy =0 (68)

We turn to the first curvature equation: Fao — 2i xdf = q(¢). In matrix form the curvature
equation reads:

—i((FA —2i%dB)"! w) —2(FA —2ixdp)>°
2(FA —2i % dp)°? —2i % ((FA —2ixdp)"T A( )) +i(Fa — 2ix dﬁ,wj
_ %ld)]'f_ %M)Z‘z _ (T)Zd:)] :| (69)
d1d2 22 — 111> — T2l

Second pair of equations

For the second pair of equations we work with a potentially (iifferent Spin©-structure on X.
Similar to the last case, any other Spin® structure Q differs from P by tensoring with some U(1)
bungle Q1 — X. Let £; be the complex line bundle associated to Q. Then the spin bundles
for Q are given by
$+(Q) = A%(X, £1) & A% (X, L1)
S(Q) = A%T(X, £1) & A% (X, L1)

The determinant of (NQ is identified with K;z ® E?. or to put it another way, L‘f = Ki ® /j, where

L= det(Q). A U(1)-connection B on L is equivalent to a unitary connection By on L;, the
equivalence being B} = AzKX ® B where Ak, is the holomorphic connection on Kx. The Dirac

operator associated to the connection B on L is [20]
V238, +05,) : Q°(X, £1) © Q%2 (X, £1) = Q1 (X, £1) & QO (X, L1),

the operator obtained by coupling v2(d 4+ 3*) with the covariant derivative Vg, on L;. The
second Dirac equation says

(D +cH=PNIV =0, Y =11+, e Q®3(X, L) D Q" (X, L)
B= (B> +pB39)+ (B2 +p"12) € Q*°(X,C) & Q%3(X,C) & Q"%(X,C) & Q*'(X,C)
= #p = (xp>0 +%B30) + (xB12 +xp12) € Q3O(X,C) @ Q%3(X,C) @ Q"% (X,C) @ Q> (X,C)

In the Kahler set up, the equation reads:

V235, a2+ c(+p> )by + c(+BH2)ha =0 (70)
V235,01 + 38,02) + c(+B bz + c(+BT 2Ny = (71)
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We write down the second curvature equation in its matrix form. Fg +2i*d x 3 = q(\) reads:

Y(Fg +2ixd*B), w) 2(Fg +2ixd* B)22 A ()
Zi*((FB +2ixdxB)2OA( )) 2*(*(FB +2ixdxB)TA( ))7i<FB +2ixdx B,w}}
~ [Bll? = 3o IZACY }
B TIPS Doy — T2 — Fhb2f?
(72)

Construction of a solution

We start with a smooth function f: X — C and choose the three-form 3 to be
B =(of +of) Nw

Now we choose the two spinors ¢ and \ carefully (they will depend on f) so that they solve the
two Dirac equations for any holomorphic connections on the line bundles £y and £;. Since 3 is
already first-order in f, the curvature equations turn into two second-order pdes in f. Using two
lemmas (proved below) from Ké&hler geometry, we turn the curvature equations into Kazdan-
Warner type pdes [16] and solve for f. The first curvature equation gives us the imaginary part
of f and the second one gives us the real part of f.

Before proceeding further, we prove the two lemmas, which we will use to simplify the
curvature equations.

Lemma 28. On a compact Kdhler three-fold (X, w), for any smooth complez valued function
h, we have

«(00h A w) = —ddh + %A(h)w

Proof. We take local holomorphic coordinates {zix = xx + iUk }x—1,2,3 centered at a point x € X
so that the Kahler metric is standard to second order at the point. All the calculations below is
done at the point x.

9%h

3
«(Q0h Aw) =x( ) mdq/\dh/\w)
k=1 """

=x()_ N gy Az /\w+i N4z naz Aw)
n ” aZjaZk ) K = 021.0Zx K K

Now we notice what happens to the case j # k, let’s take a specific case.

x(dzy ANdZy A w) = *(dzy Adzy Adxz Adxz)
= x{(dx; +idy;) A (dxp — idyz) A dx3z A dys}
= #{(dx; Adxy +dy; Adyz) Adxs Adys +i(dys Adxa, —dxy; Adyz) Adxs Adys}
= —{(dxy Adx; +dy; Adyz) +i(dy; Adx, —dx; Adyz)}
= —(dzy Adz,)

Similar calculations for all other cases, show that for j # k,
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Now for j = k, we get

3
#(dzie A dZi A w) = #( — 2idxi Adyx A ( Z dxam A dym))

m=1

=-2i( ) dxm Adym)
m#k

= —2i(w — dxy Adyy)
= 7de AN de —2iw

So, we get

Z O 4 Adz Aw—i—Z Oh 4 Az Aw)
-0z0zc ¢ 0z 0z, K

9%h > 92h 9%h
:_Za dz; Adzy — Za dzk/\dzk—ZII;

w

Zj aZk b kaZk aZkaZk
9%h > 19 d 1.9 d
= dz Adzy) -2 S — i) i
Z 62]62k z A\ Zk) 1( Z(axk ayk)z(axk“ayk)h)w

i,k

3 32 2

:—aah—f (>« 0h Q
k=1 a k ayk

O

Lemma 29. On a compact Kdhler three-fold (X, w), for any smooth complez valued function
h, we have

i
=A(h
SAh
Proof. We take local holomorphic coordinates {zx = xx + iyx}x=1,2,3 centered at a point x € X
so that the Kahler metric is standard to second order at the point. All the calculations below is
done at the point x.

(00h, w) =

(00h, w) = *(ai_)h/\ (*w))
Z aZJadez] Adzy A (xw))
j k=1
Notice that
* W

= x(dxy Ady; +dxy Ady, +dx; Adys)
= (dX] /\dy1 /\dXz/\dyz +dX2/\dy2/\dX3 /\dyg, +dX3 /\dy3 /\dX] /\dy])
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So, for j # k,dz; Adzx A (xw) = 0. Hence we get

92h
———dz; Adzyx N\
Z azla 5 Zj Zk (*w))

3
0%h

—dz AdZx A (*w))

— aZkaZk

3
0%h
=21 dxyx A /\
1*(3:1 32,05, Xk A dyx A (xw))

= —2ix ( %(a;ik _ azk);(aik “a%k)h dV) (dV is the volume form)
—21 i 0%h aih
k=1 a ayk

i
O

For any Kahler manifold (X™ w) and a holomorphic line bundle L on it, let’s define the
degree of L to be fx c1(L) Aw™ 1. ¢;(L) being the first Chern class of L.

Let’s see what happens to the first set of Dirac equations (67),(68), if we assume ¢, =0 €
0%2(X, Ly). There's nothing to solve for in (68), as $3-0 = 0. Equation 2.1 gives

V20u,01 +c(BH2)dr =0

= V20a,01 +c(Af Aw)dpy =0
= V20a,1 —2V2I0f Ay =0
= 0a, b1 = 210f A Py

To solve this we take ¢p1 = e?fo; where oy € Q°(X, L) and da, 07 = 0. Then

Ia,d1 =0a,(e* o)
= 2ie?f A o
= 2{0f N\ ¢4

For ¢, = 0, = 0f, 3>° = 0,y = 0, the curvature equation reads
. . 3.2
—i{(Fa — 21 dB, w) = Z1o|
F&? =0 and

2ik ((FA —2ixdB)"T A()) +1(Fa —2i%dB, w) = f%|¢1|2

The second condition says that FS’\’Z = 4F°A*§ = (0. Hence £y must have a holomorphic structure.
We put a Hermitian metric h on £y and choose Ay to be the Chern connection with respect to
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h. Also, the first and third condition combines to give
1
2 ((Fa—20%dB)" A () = 510
Following the description of Clifford multiplication of (1,1)-forms, p € Q"'(X,C) acts on A €
Q%2(X, L) to give back a form in (0,2) form in Q%?(X, £o) by the action c(u)A = *(itAA) and

for © = w, we get *(w AA) = A. Hence point-wise (FA —2i*dp)"! must be a multiple of w and
we observe that

(Fa— 20+ dp)™" = Sl
solves it for us. Hence, the first curvature equation reads:
(Fa—2i+ap)"! = LonPw
= Fa —2i# ((00f + 00f) Aw) = % % (b1 Axdpr)w

= Fa —2i% (00(f — ) Nw) = L. (e?o; Ae 2w aq)w

N

= Fa — 20 (83(2im(f) A w) = +e2( 1)« (o7 Axcrr)

4
= Fa +4 5 (93(Im(f) A w) = ze~ ™ ou 2w
= Fa —403(Im(f)) + 4 x %A(Im(f))w — ie*‘”mﬂm 2w

Say, the initial Hermitian metric on Lo is h, we make a conformal change by e* for a smooth
function A : X — R. So with the new metric h’ = e*h, and the corresponding connection A’ on
the determinant bundle £ = K? ® Eg, the equation becomes

Far —403(Im(f)) + 4 x %A(Im(f))w - %e_‘“mfloqlﬁ,w

= Fa — 400A — 403(Im(f)) + 4 x %A(Im(f))w - %e"”mf”‘loq 2w
3 . Mo |2 —4Im(f)

= Fa = 00(4A +4Im(f)) + i(A(—-2Im(f)) + ———e Jw

4

Now FA is a d-closed 2 form. So, FA = d6 +F7/'\‘ for a suitable 1 form 0 and a Harmonic form FZ'\‘.
Now dO is a closed form and it’s d-exact. Hence, it’s 90 exact by 90-lemma [13]. So, we have
g: X — R (notice that g must be real valued for 39(g) to be an imaginary-valued form) and a
Harmonic form FZ{\‘ such that Fo = 409(qg) +F7}'\‘. Moreover if we assume that the first Chern class
of the determinant line bundle is a constant multiple of the K&hler form w (this is a topological
assumption on the line bundle), we can write

Fa =400(g) +icw (for some constant c)

Hence we need to solve for

Mo 2 —4Im(f)
g=A+Im(f) and A(—2Im(f))+ —7 ¢ =c
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Putting A = g — Im(f) in the second equation we get

g 2
A(~2Im(f)) + |Z‘“ e 5mm(n —

This pde is of Kazdan-Warner type and has a unique solution for any g if ¢ > 0 and o is not
identically O [16] (we would we need degree of the determinant line bundle £ to be negative for
¢ to be positive). Once we get Im(f), we get A from the first equation.

Next, we turn our attention to the second pair of equatlons We start with a holomorphlc
structure on £; and choose a compatible Hermitian metric h on L1 and let’s say h* be the
induced metric on £;. We put the Chern connection By on £ so that Fg, and hence Fg has
only nontrivial (1,1) part. Again we choose > = 0 € Q%'(X,£7). Then equations (70) and
(71) read:

V203 b1 +c(* (0F Aw))py =0
= V205,01 —ic(df A w)py =0
= V203, h1 —2iV2x (aFf Apy) =

To solve this we take 1 = 6_2?61, where 5%051 = 0. For smooth section o € Q%2(X, L),

(35, (e 5,1) o) 2

= (&1, 2Mdp, )2
(E1,e72TOf A )2
(P1,0f A a2

2
2
2

zj (3f A oA #7)
X

ZJ 1Of A Ar)

X

ZJ o Ak 181‘/\1])1))
X

= (o, 2% (10f A1))p2
= (2i* (0 A1), )2

So, 5%011)1 = 2i % (0f A). What remains is the curvature equation, similar to the case of the
curvature equation for positive spinors one is able to deduce that in our case, the curvature
equation breaks into two equations:

(Fg +2ixdxp)"! = lelhb] |?w (This solves the diagonal parts) and

F%2 =0 (This solves the anti-diagonal part)

d*p =1i(00f — 00f) A w = 2i(00Ref) A w
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So we get,
Fp + 2i  (2i(00Ref) A w) = —%hp] 2w
= Fp — 4+ ((03Ref) A w) = —%N)] 2w

S Fg —4(— 00Ref + 7 A(Ref)w) = — b P

2
o o by [?
= Fp +400Ref = —i( — 2A(Ref) + ) Jw
B . 674R8f|£]|2
= Fp + 400Ref = —i( — 2A(Ref) + —

Say the initial Hermitian metric on £ was h;, we make a conformal change on the metric by e9’
for a smooth function g; : X — R. We notice that choosing &; an anti-holomorphic section of £;
is same as choosing the corresponding holomorphic section &; of £1 = £3}. Now with the natural
induced metric from h; say, hj on £} we also have |é1|h? = |&1|n,. For a conformal change
by e9' on hj, we get a scaling by e79' on hj. As this is a conformal change in the metric,
%, is still a holomorphic section of £; = L7, and now when we go back to the corresponding
anti-holomorphic section of £, the norm of this section changes by e™9'. With the new metric
hi =e9', on £; and the corresponding connection B’ on the determinant bundle K;(Z ® L7, the
equation becomes

ef4Ref|(z:] |2

Fg/ + 400Ref = —i( — 2A(Ref) + 2

674R6f€791 ‘a] ‘2

4
e—4Ref—91 |E,1 |2

4

= Fg — 40091 + 400Ref = —i( — 2A(Ref) +

= Fg = 00(4g1 —4Ref) —i( — A(2Ref) +
If Fg = 4009’ —ic’w for some smooth function g’ : X — R and a constant c’, then we need to
solve for g; and Re(f) such that

, e*4Reffg1 |£1|2 ,
g1 —Ref =g’ and A(—2Ref) + — = c

Putting —g7 = —g’ — Ref, we get

—g’ 2
A(~2Ref) + —— 7 f‘]' e Rl = ¢

Since, &; is not identically zero, this equation has a unique solution for ¢’ > 0 [16], i.e., the
determinant line bundle £ needs to have positive degree.

Hence, we see that for each a; € HO(X, L) and &; € HO(X, Kx ®£T] ), there is a unique way
to solve for f: X — C and the two unitary connections Ay and By on £y and £; such that

(b = e o, p = e 2761, A = (—2Ax, +4A0), B = (—2Ak, +4Bo), p = (3f + 0F) A w)

solves the 6d SW equations.
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Let’s see how the solution changes if we scale «1,&; by two non-zero constants a,b € C*.
Define

1 i
fap:=f+ 2111|b| + zlnlal

If we would have started with ao; and bé; instead of oy and &7, the above construction would
give us a new solution of the equations:

(QZifQ’b acx, e_ZFu’bbEJ) (_ZAKX + 4A0)) (_2AKX + 430)) (5fa,b + a-Fa,b) A UJ)
. . b . z _ -
_ (%e‘ln‘b‘eZLfa1 , melln\aleflfah (*ZAKX + 4A0), (*ZAKX + 480), (af + af) /\ (U)

Which is gauge-equivalent to the original solution
(e ar, e 211, (~2Ak, +4A0), (—2Ax, +4Bo), B = (3f +07) A w)

And given two different sets of holomorphic sections of of £y and Kx ® Cﬂ which are not in
the same conformal classes lead to two different sets of solutions. Hence modulo gauge the
space of solutions we constructed is the product of two projective spaces: (C]P’(HO(X, Eo)) X
CP(HO(X,Kx ® £7)).

Remarks 30. We make three remarks regarding the solutions we constructed above.

e We make one important observation about how the moduli space can be non-compact,
using the above construction. Take a three form « = (y + V), where y € Q"?(X,C) and
v A w = 0. Notice that for any ¢ € Q°(X,Lo), b € Q°(X,Kx ® E]*]),c(oc)(b = 0 and
c(xa)p = 0. If v is harmonic, we can add any constant multiple of « to our three-form and
get another solution. If y is harmonic and yAw = 0, it is a harmonic primitive (1, 2)-form;
ie,y € H1>2(X)]D [13]. So, modulo gauge the space of solutions we constructed actually is
CP(HO(X, Lo)) x CP(HO(X,Kx ® £7)) x HD2(X)y.

e Notice that if b3(X) = 0 (this would imply H1’2(X)p ={0}), then for the choice of Ly to be
the trivial line bundle and £; = Kx, modulo gauge the space of solutions we constructed
is a singleton set. This is reminiscent to the moduli space of 4d SW equations on Kahler
surfaces: when we twist the canonical Spin®-bundle by the trivial or the canonical line
bundle, the moduli space is again a singleton set in that case.

e Notice that in our solution, the zero set of the spinors i.e., ¢~ '(0) and P~ '(0) are two
divisors. Hence they intersect (at least generically) along a complex curve inside X.

A class of examples

Now we give a class of explicit examples where we have the necessary conditions to have non-
trivial solutions of our equations. From the construction explained above, we see that for the
construction to work, we need two holomorphic line bundles £y and £ on X with the following
conditions:

1. dimH°(X, £o) > 0

2. ¢1(Kx? ® £3) = aglw] with ap < 0 [This implies deg(Ky? ® £3) < 0]
3. dimHo(X,Kx ® £7') > 0

4. ¢1(Kx? ® £7) = ar[w] with a; > 0 [This implies deg(Ky? ® £7) > 0]
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Example 1. Let’s take 3 compact Riemann surfaces (Xi, wi)i=1,2,3 of the same genus g > 1.
w; denotes the normalized Kahler form on X; such that J"X, wji = 1. Define X := X5 x X3 x X3.

The Kahler form on X is w := Zf:1 7; wi where 71; is the projection of X onto Xj.

Lemma 31. Let (A,wa) and (B, wg) be two compact Riemann surfaces with wa,ws de-
noting the respective normalized Kahler forms on them such that the integration of the
Kahler form on the manifold gives 1. Now say L is a holomorphic line bundle on A, then
deg L=deg 1 (L). where ma s the projection of A x B onto A.

Proof.
J ¢t (ML) A\ (Mywa + TEws)
AxB

= mact (L) Amgws +J' maci (L) AT wa
JAXB AXB

= macr (L) Amgws +J A (e (L) Awa)
JAXB AXB

~

= mher (L) Amgwg +0
JAXB

= AC1(L)XJB(UB

=| ci(L)
Ja

O

Kx = ®i3:]7-[*>{(KXt)' We take Ly to be the trivial complex line bundle on X and £; to be the
canonical line bundle Kx. We have

HO(X, Lo) = C and ¢1(Kx? @ £3) = —2(2g — 2)w

and for £; = Kx, we have

HO (X, Kx ® Kx') = C and ¢1(Kx? ® K¥) = 2(2g — 2)w

Example 2. The idea is to take X a hypersurface in CP* of very high degree, let’s take a
holomorphic section of @(d) — CP*, i.e., a homogeneous polynomial of degree d in 5 variables
(d to be determined later). If we choose this generically, the zero locus is a smooth algebraic
variety X.

The Kahler form w on X is given by restricting the Fubini-Study form wrs on X and it lies
in the cohomology class obtained by restricting c¢1(O(1)) on X. Meanwhile, by the adjunction
formula, Kx = O(d — 5)|x.

Now we take Lo = O(ko)lx and L3 = O(k1)|x (ko and k; to be determined later). For
m > 0, dim H°(CP% O(m)) > 0. Restricting these holomorphic sections to X we can find line
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bundles on X with non-trivial holomorphic sections. We need ko and k; to satisfy the following
conditions:

1. ko > 0 so that there are holomorphic sections of L.

2. 2(5—d) +4ko < 0. This ensures that ¢, (K;Z ® L) is a negative multiple of w.
3. d—5—%kg > 0 so that there are holomorphic sections of Kx ® Eﬂ .

4, 2(5—d) +4k; > 0. This ensures that c; (K;(2 ® L) is a positive multiple of w.

Putting this conditions together we get

0<ko<d775<k1<d75

So, in this way we get many examples by first choosing d > 7 and then picking ko and k; as we
like in the above ranges.

0.5.3 Solution of perturbed SW equations on £ x C?

In this section we construct solutions of a perturbed version of the equations on X = £ x C?,
where ¥ is a compact Riemann surface. We find solutions which are invariant in the C? direction.
The discussion is very similar to the theory of vortex equations on a Riemann surface (e.g. see

[8])-

We take a holomorphic line bundle £ — X over X. We define spinor bundles on X to be

S (I) =L
S_(Z)=K'®”L

and on C? to be
$+(C*) = A°(C?) @ A™2(C?)
S,(CZ) — AOJ((CZ)
One can construct a Spin®-bundle on £ x C? in the following way [17]:

SLEXCH = (SL(D)®S+(CH)) @ (S_(£) ®S_(C?)
S (ExCH = (S4(D)®S_(CH) @ (S_(£) ® S4(C?))

So, the determinant bundle is:
Det(S4(Z x C?)) =L* @ K2

The Kahler metric on X induces a natural metric and a holomorphic connection on Ky and hence
on ng. We start with a hermitian metric h on £ and the usual flat metric on C?. So, giving a
unitary connection A on L is enough to determine a unitary connection A on the determinant
bundle. With abuse of notation we say A = —2Aks +4A. We denote the natural Kahler form on
C? by w, ws is the Kahler form on £ and we take (w 4+ ws) to be the Kéhler form on £ x C2.
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Now we write the perturbed equations. The perturbation terms are added in the curvature
equations.

Da(¢) +c(B)(d) =0 (73)
Fa —2ixdB +m1 =q(d), m1 =2F, +irw+itws (r,t>0) (74)
Dg (W) +c(xp)() =0 (75)
Fg+2ixd* B +n2=q(P), m2=2F; —inw—-itiws (17,71 >0) (76)

To be very precise, we should be writing 7ty (Fx), 7., (w) etc in our discussion, hopefully it won’t
cause any confusion to the reader.

Take a smooth function f : £ — (~C We take p = (0f + 0f) /A w. To solve the first Dirac
equation take the Chern connection A w.r.t. h and a holomoprhic section « € H°(Z,£) and
define ¢ := e?’*fox ® 1. Then,

DA(C])) = ﬁéx(GZifOC) (9 1
=2V2ie* " f Na@ 1
= —(V2e?a) @ (—21)
= —c(fAw)(e*fa®)

The first curvature equation reads:
Fa —2i#dB + 2Fk, + irw + itws = %|¢|2(w +ws)
4F; + 4+ (93(Imf) A w) + irw + itws = %\(b\z(w + ws)

Say z1 = x1 + iy; is the coordinate on I around a fixed point and z; = x, + iy2,23 = x3 + iy3
be the coordinates on C2. We notice that

2
*(aa(lmf) /\ w) = *(621 a5 (Imf)dz; Adz; A w)
1,02 0? .
= *(7(72 + j)(lmf)(—lldm Adyi) A (dxz Adys + dxs /\dyg))
4°9x3  oy3
i
= E(Az(hnf)w)

So, the first curvature equation becomes
. . . L almfy 2
4F 5 + 2iAs (Imf)w +irw + itwy = 7€ [o“(w + wy)
and it splits into two equations on the Riemann surface:
i 1
4F 3 +itws = %e*“mfloclzwz and — 2Ay (Imf) + Ze"”mflocl2 =r
First we solve for Im(f) from the second equation for a fixed « (we can do this since r > 0 [16]).

Now we turn to the first equation. Notice F5 is a holomorphic connection on the holomorphic
line bundle £ and hence only the (1, 1) part of the curvature is nontrivial. We make a conformal
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change in the metric h: h’ = e*h for some smooth function A : £ — R which induces a new

Chern connection on L, say A’. The equation becomes

= T i
Far— 00N +i-wy = —e ™A n2wy

4 16
3 T amr a2
=4 <FA/,wz>,<667\, (,Uz> +1Z = ﬁe e |CX|
T i
=4 <FA/,Q)2> +1Z = EAZ)\'F Ee 4Imfe?\|‘x|2

The real valued function Imf is already known. So we can solve for A if

J (—i4<FA/,(,U}:> +T) >0
z

Vol(£) iFar
>

“n _4L< 2’

T> 7871

Vol(%)

(Uz>

& deg(L)

For the second set of equations, we start with a holomorphic line bundle £ (potentially different
from £). One can construct a Spin®-bundle on £ x C? as [17]:

SHEXCH) = (L1@S4(C)) & ((Ky' @ L) @S (C?))

S (ExCH)=(L1@S (C)) & ((Ky' @ L) @S (CY))
Det(g,) = KEZ ® E‘f. If we put a hermitiag metric (say hy on £; and the usual flat metric on
C?, then giving a unitary connection (say B on £ is enough to determine a unitary conEection
B on the determinant bundle K;% ® £3. With abuse of notation we write B = —2Ay, +4B. Ak,

is the holomorphic connection on Ky determined by the Kahler metric on .
Take a negative spinor P =91 ® 1 € F((Kgl ®L)® /\O(Cz)). The second Dirac equation:

(Dg + c(*B)) = 0 reads

V2@501) @ T+c(x(FAw)hr ®1=0
= \/i(é’étln) T —ic(df Awhp; ®1=0
= V2(@501) @ 1-2ivV2(#x (0F Ay)) @ 1=0
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To solve this we take ; = e_Z?EJ, where 6%&1 = 0. For smooth section o« € Q°(Z, L),

(3% (e2 &1), 02

= (&1,e 205012
2(&1,e 2T A )2
2(Pq, 0f A o)y 2
2(0f N oy D)y 2

=2 (6f/\0(/\*211)1)
JX

=2| —i(0f AaAPy)
X

=2| aAsxs(*s (0FA))
X

= (0,2 *5 (0F A )2
= (2i*sz (0f A1), )2

So, 5%1])1 = 2i x5y (0f A7). What remains to solve is the second curvature equation:

. . . i
4Fg +2ixd* B —inw —itws = lelllnlz(w + wy)
4F> — 2i(AsRef)w — irjw — it S “Reflg 12 (w + wy)
B b Tw 1wr =—e 1 (w+ ws
This splits into two equations:

4F5 + %e—Reﬂa Pws =itjws and 2As (—Ref) + %e—Ref\a =1

Since & is not identically zero and r; > 0, there exists a unique solution for Ref [16] in the second
equation. Now that we know Ref, we go back to solve the first equation. The initial Hermitian
metric on £; was hy, we make a conformal change on the metric by e*' for a smooth function
A1 : X = R. We notice that choosing &; an anti-holomorphic section of £ is same as choosing
the corresponding holomorphic section &; of £; = L;. Now with the natural induced metric
from hy say, hj on L] we also have 1&, |h§ = |&1|n, . For a conformal change by e*' on h;, we get
a scaling by e~?' on hj. As this is a conformal change in the metric, %, is still a holomorphic
section of £ = L7, and now when we go back to the corresponding anti-holomorphic section of
L1, the norm of this section changes by e *'. With the new metric hj = e*', on £; and the
corresponding connection B’ on L1, the equation becomes:

i
4

& 4F§ —465?\1 + %e’REfe”“ 1€, ‘zw}: =iTiws

_ 2 .
4Fg, + e R6f|£1|h;wz =iTws

i
& HFg, wx) — 21Ax A\ + ZefRefef)” &1 =ity

1 .
& 2A5 (M) + ZefRefef)” E117 = 11 +4(iFg, ws)
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Ref is a known function, hence we can uniquely solve for A; [16] if
J (9 +4<iF§,w;>) >0
b

&1 > — deg(L1)

8m
Vol(X)
So we proved the existence of non-trivial solutions of the equations (73),(74),(75),(76) under the
following conditions on the two holomorphic line bundles £ and £4 on X :

1. dimH°(Z, £) > 0

8n
2. V l(z)deg(ﬁ)

3. dimH®(Z,Ks ® £7') > 0

8n
4, > — Vo l(z)deg(ﬁﬂ

Remark 32. For an explicit example, take any closed Riemann surface I of genus g, take £ to

be the trivial line bundle, then for any T > 0, we satisfy the first two conditions. And if we take

L1 =Kz, 11 > 16\/#?)1) we also satisfy the second two conditions.

0.5.4 Solution of perturbed SW equations on R°®

In this section we find solution of a perturbed version of the SW equations on R®, by reducing the

equations to certain odes as a function of r = 216:1 xiz ((x1 ,...yXg) denote the coordinates

in R®). R® = C? has a natural Kahler form w = dx; Adx; + dx3 /A dx4 + dxs /\ dxe. The
perturbation involves adding a positive multiple of w on the left hand side of the first curvature
equation.

The spinor bundles on R® = C3 are trivial. We can in fact think of them as follows:

S+((C3) — /\0,0 D /\0,2 =Co C3

S (C)=A""A»=C’sC
With abuse of notation we write the trivial complex line bundle on C3 as C. Take the three-form
B = ir(d — d)r A w. Choose a connection A on the determinant bundle of S, and a spinor ¢

in Q%0(C3), such that Dad = 0 (we explain in a bit how to find such A and ¢). Say g(r) is a
smooth function in r. We solve for g to solve the first Dirac equation (63).

(Da +c(ir(@—0)r Aw))g(r)p =0
= g'(r)c (df)¢+9(T)DA¢+9( Je(ir(@—d)r Aw)dp =0
:>\[g( T A = irg(r)(—2v2idr A ¢)

g'(r)(0r A ¢) ZZTQ(T)(OT/\dD)

g(r) = ce™ solves it for any constant c. Now we explain how to solve Dad = 0. We denote
the connection on the determinant line bundle by A =d + ia. Then Do =D + %c(ia). Choose
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= (0 —0)(z12Z1 + 222> + 23%Z3) , where z; = x7 + ix2,22 = X3 + iX4,23 = X5 + iXg
= (Z1dzqy — z1dZ1) + (Z2dzy — 22dZ) + (Z3dz3 — z3dZ3)

= 2i(—x2dx1 + x1dx3 — x4dx3 + x3dx4 — Xgdx5 + x5dxg)

We choose a point-wise basis {e,e,,e3,es} of S, = C* such that e; denotes the constant
function 1 € /\8*0(@3) at a point p € C3 and the point-wise basis of S_ = C* is chosen as
{c(dx1)er,c(dxq)ez,c(dx;)es,c(dx1)es}. Then the matrix representations of Clifford multiplica-
tion are

1 0 0 0 i 0 0 0 0 i 00
01 00 0 -1 0 0 i 0 00
clda) =15 o 1 o2 =1g o i oI =]5 o o i|’
0 0 0 1 0 0 0 —i 0 0 i 0
o 1.0 0 0o 0 0 1 0 0 0
-1 0 0 © 0 0 -1 0 0 0 i 0
cldal =14 o o g =1y 3 o of cldxe= 0 i 0 0
L0 0 1 0 -1 0 0 O 0 0 0
For ¢ € Q%°(C3) and ia = —2(0 — 3)r?, Dad = O breaks down into the following three
equations:
0 0
Cb—!—i—q)—Zl( —x20 +ix10) =0
aX1 aXZ
ia—d) — a—(b —2i(—ixq4d —x3¢) =0
aX3 aX4
oy a—d)—Zl(de)—IXE.d))—O
aX5 ox X6

For any constant ¢1,d = ¢ e~ Z{-1 %0 solves all three equations simultaneously.
The curvature equation (64) reads:

ida—2ixd(ir@—9d)rAw) = | () %|dl2w
=ida+2x (0 +NTA@—-INrAw+T(d + a)(a —rAw) = }1|g(r)|2\q>\2w
=ida+2x (—20rAdr Aw—2r3dr A w) = | MP1lPw
S ida+ 2 (-03(r%)) = Hlg(PloPw
= ida +200(r?) —iA(r?)w = %lg(r)\zld)lzw
Ar?) = —Zf:1 aa—;izrz = —12 and ida = —2(3 + 9)(d — 9)r2 = 400r2. We also have
= ida = —i(—dx; Adxq +dx; Adxy —dxg Adxs + dxz Adxq —dxeg Adxs +dxs Adxg)

= —8iw
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So the left hand side of the curvature equation is 699(r?) 4+ 12iw = —12iw + 12iw = 0. So, we
can solve the following set of equations:

(Da +c(B))(gd) =0
Fa —2ixdB +mw=4q(gd),Tr1 >0

for A = d—4i(—x2dx1 +x1dx,—xadx3+x3dxs —Xxgdx5+x5dx6), gP = 2,/T7 and B = ir(0—0)rAw.

Let’s solve the second pair of equations (65), (66) as well. We choose a connection B on the
determinant bundle of S_ and a negative-spinor P € Q%3(C3), such that Dg{ = 0 (again we
explain how to get this in a bit). Now take a smooth function h(r) in r and solve for h, with the
same 3 as above. The Dirac equation (65) reads:

(Dg + c(x(ir(d — 3)r A w))) (h(r)p) =0

= h (r)c(dr)P + h(r)DgY + rh(r)c(dr A w)p =0
= h/(r)c(dr)Pp = —rh(r)c(dr A W)

= —V2R/ (1) % (dr A ) = —th(1)2V2 (3 AY)

Hence h(r) = czerz solves it for any constant c;.

We denote the connection on the determinant line bundle by B = d 4+ ib. Then Dg =
D+ %c(ib). We now explain how to choose P and b such that Dg{ = 0. We would do this again
using explicit calculation. We start by giving matrix representation of Clifford multiplication
of dxi,i € {1,2,3,4,5,6}. We choose a point-wise basis {f7, f2,f3,f4} of S_ = C* such that f;
denotes the basis element dz; Adz, /\ng‘p € /\3’3(((33) at a point p € C3 and the point-wise basis
of S_ = C* is chosen as {c(dx)f1, c(dx;)f2,c(dx;)fs, c(dx;)fs}. The matrix representations of
Clifford multiplication of these forms are:

M 0 0 0 i 0 0 0 0100
01 00 0 -1 0 O i 000
C(dX]) - 0 01 0 )C(dXZ) - 0 0 i 0 ,C(ng,) - 0 0 0 il>
0 0 0 1 0 0 0 —i 0 0 i 0
[0 1.0 O 0 0 0 1 0 0 0 —i
-1 0 0 0 0 -1 0 0 01 0
cldxa) =145 o o —p|c@s)=]10 1 o oI =1y ¢ o o
L0 0 1 © -1 0 0 O -1 0 0 O
We choose ib = ia = —2(0 — 0)r2. The same calculations as in the first Dirac equation says that

for ¢ = 036*25:1 Xt (c3 being a constant), \ := @dz; Adz, Adzz € Q%3(C3) solves D = 0.
Coming back to the curvature equation (66), we have:

Fg+2ixdxf =q)

= 1idb + 2ixd(rdr A w) = —%|h(1‘)|2|tl)|2w

S idb = ()PP

S 8w = — h(rPNPw
So, VP = 4+/2dz; ANdz, Adzz, B = d —4i(—xa2dxy +x1dx2 — x4dx3 4+ x3dx4 — Xedxs + x5dx6), p =
ir(0 — 0)r /A w solve the second set of equations (65), (66). We get the following proposition:
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Proposition 33. There ezxists a non-trivial solution of the following perturbed version of
the SW equations on R® :

(DA +c¢(B))p =0

Fa —2ixdB + 11w = q(d)
(Dg +c(+p))p =0
Fg+2ixd« B =q)

1 > 0 25 a constant.

0.6 Solution of 8-dimensional SW equations

0.6.1 Spin geometry in dimension 8:

Let M be a Spin®-manifold of dimension 8 and S =S, ®S_ — M, be a spinor bundle on M.
S, and S_ are both complex vector bundles of dimension 8. The complexified forms act on the
spinors via Clifford multiplication:

c: (A°(M) & A2 (M) & A*(M)) ® C — Endc(S4,S4) = Ende(S_,S-)
c: (A'(M) @ A*(M)) ® C — Ende(S4,S-) = Ende(S_,S4)
2

Notice that the Hodge-star operator * squares to identity on four-forms: ** = Id on A*(M).
Hence, A*(M) splits as self-dual and anti self-dual four forms:

A (M) = A% (M) & A% (M)

The self dual part Ai(M) acts trivially on the negative spinors and the antt self-dual part
A% (M) acts trivially on the positive spinors. The proof is identical to the proof of lemma 26.
The following maps are isomorphisms:

c: (A°(M) @ A2(M) @ AL (M) ® C — Endc(S4, S5
c: (A°M) @ A*(M) & A? (M) ® C — Endc(S—,S-)

For a hermitian endomorphism of positive spinors, we can split it into a trace-free part and the
trace-part. AC (real dim 1) is the trace part and the imaginary 2-forms and the self-dual real
4-forms (real dimension 28 + 35 = 63 in total) act as trace-free hermitian endomorphisms via
Clifford multiplication:

c: N (M) @ /\i(M) — 1su(S,)
And similarly for negative spinors we have:
¢ iAZ(M) @ AL (M) — isu(S_)

These isomorphisms induce a splitting of isu(S. ) and isu(S_), which can be explained as follows.
Both S, and S_ has a real-structure which is Spin(8)-equivariant [10]. The self-dual (or the
antt self-dual) 4-forms give endomorphisms which commute with the real structure, whereas
the tmaginary 2-forms anti-commute with the real structure.
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0.6.2 Solution of perturbed SW equations on a closed Kahler 4-fold

In this section we describe a solution of a perturbed version of 8d SW equations on a closed
Kahler 4-manifold X with a Kéhler form w. The equations for A € A, ¢ € I'(S,), p € Q3 are:

(Da 4+ (14+1)c(B))d =0 (81)
Fa +2(dB)" +2id*B + cw? = q(¢), ¢ <0 (82)

We take a positive Spin® bundle on X, by twisting the canonical positive Spin® bundle by a
holomorphic line bundle £ (with a hermitian metric say h) :

S+ (X)=A%X, L) e A2 (X, L) @ A (X, L)

The determinant bundle of S, (X) is K;1® Det(A%2(X)) @ £8 = K>_<4 ® L£8. Hence choosing
a unitary connection (say R) on L gives us a unitary connection (say A) on the determinant
bundle. For the construction of solution we will have two cases depending on whether the first
Chern class of the determinant bundle is a positive or negative multiple of the Kahler form. This
is a necessary assumption we make on the topology of the line-bundle £ for this construction.

The reason behind adding the extra term cw? is the following. As we will see in our construc-
tion, we will choose our spinor ¢ to be a non-trivial section of either £ or K;l ® L (depending on
whether ¢ (K;4 ® L£3) is a negative or positive multiple of w) and for both these cases the Hodge
decomposition of q(¢) will have a non-zero harmonic four-form, i.e., some constant multiple of
w?. But the left hand side of the original curvature equation: Fa + (dp + *df) + 2id*B = q(¢)
doesn’t have any harmonic-four form. Hence, we need this extra term to solve the curvature
equation for the choice of our spinor. Notice the perturbation is harmonic.

C (K;(4 ® £8) is a negative multiple of w:

The construction solution is very similar to the 6d case. We take the three-form § = (9f+0f) Aw
for some smooth complex valued function f on X and choose a spinor ¢ (which depends on f)
in Q°(X, £) such that the Dirac equation is solved for any holomorphic connection on L.

Start with the Chern connection Ay on £ compatible with the holomoprhic structure on £
and we choose a holomorphic section ¢y, i.e., da,$o = 0. The Clifford action of § = (3f+03f) Aw
on ¢y is given by:

c(B)do = c(df A w)do = —3V2idf A o
Define a positive spinor ¢ = 311+, € QO(X, £). We have

(Da + (1 +1)c(B))d = V20, + (1 +1)c(3f A w)d
=3vV2i(1 + )3T A o — 3vV2i(1 +1)eTTHIIE A g
=0

Now let’s focus on the curvature equation.
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To calculate dB+ = %(dﬁ + *(d[?))), we will use local coordinates. We take local holomorphic
coordinates {zx = xx + iYx}k=1,2,3,4 centered at a point x € X so that the Kahler metric is
standard to second order at the point. For a real valued smooth function h, we have

(00h) A\ w
4
0%h
=y ——dz; Adzx Aw
k=1 aZjaZk
3%h o 9%h
=) ——dmAdhAw+ ) ———dzAd5Aw
= aljazk - aZjaZj

In these coordinates, w = Zi:1 dxi A dyy. Let’s take j = 1,k = 2.

x (dzg Adzy A w)
= #((dxy +1idys) A (dxa —idyz) A (dx3 Adys + dxs A dys))
= *( dx; Adx, +dy; Adyz —idxy Ady; —idx, Adyq) A (dxs Adys —|—dX4/\dy4))
= —((dx; Adxz +dy; Adyz — idxy Adyz —idxa Ady;) A (dxs Adys + dxs Adys))
= —(dz; ANdz; A w)

Let’s take j = 1

* (dZ] /\dZ] /\w)
= *((d)q —‘ridgﬂ A (dxq —:Ldyﬂ A (dx> /\dyz + dx3 /\dyg + dxg4 /\dy4))

= *( —2i.dX] /\dy] AN (dXZ /\dyz +dX3 /\dyg, +dX4 /\dy4))
2
- —zi(“’7 —dxy Adyr A (dxz Ady; + dxs Adys + dxa Adya))

=—dz; Adz; A w —iw?

Hence,

2
1, o (Imf)
=5 (G250
j=1
L T 2 1.2 )
_ R G N U S — (1 2
(j;z oy 20ay iy, 1m0
] 4 aZ 2 5

For calculating d*3, we will need a small lemma.
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Lemma 34. On a Kahler 4-fold (X, w), for a smooth real-valued function h, we have:
#(00h A w?) = —200h + i(Ah)w

Proof. We take local holomorphic coordinates {zi = Xi +1yx}k=1,2,3,4 centered at a point x € X
so that the Kahler metric is standard to second order at the point. Then at x,

(0dh) A w?
4
0°h
= Z — de/\dik/\wz
R aZjaZk
j k=1
9%h 2 2%h
=) ———dgAdn AW+ ) ———dz Adz Aw?
7k az]- aZk 01 aZjaZj

Let’s take j =1,k = 2.

s (dzy Adzy A w?)
= #((dx1 +1idy1) A (dxz —idyz) A 2(dx3 Adys Adxs Adys))
= *((d)q Adx; +dy; Ady, —idxg Adyz —idxy; Adyg) A2(dxs Adys Adxg A dy4))
= —2(dxy Adxy +dy; Ady, —idxy Adys —idxy Adyg)
= —2dz; Ndz;
Let’s take j = 1
s (dzy Adz; A w?)
= *((dx1 +1idys) A w?)
= *( —2idx; Adyi; A (dxz Adyz A (dxz Adys +dxq Adysg) +dxz Adysz A (dxz, Adyz +dxg Adys)
+ dxq Adyg A (dxa Adyz +dxs /\dyg)))
=—-2ix2(w—dx; Adyy)
= —2dz; Ndz; — 4w
Hence,
« ((0h) A w?)
= —200h +i(Ah)w

In local coordinates at x,
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Take j = 1. By explicit calculation one can check that

#(dz) Aw) = %dil Aw? and * (dz; A w) = —%dzl A w?

Hence,
«p = %(6f—af)/\w2
= dx B = 5(33f —307) A w? = 103 (Ref) A\ w?

= *d * B = i( — 200(Ref) + i(ARef)w)
= —xd* B = 2i00(Ref) + (ARef)w

For ¢ € Q°X,L),c(q(¢d)) can be written in diagonal matrix form for its Clifford action on
positive spinors in Q°(X, £) @& Q%2(X, £) ® Q%*(X, L).

£1¢21d 0 0
clqd)) =1 0  —Fl¢ol1d 0
0 0 —%ld1’1d

We also describe the Clifford multiplication of the forms icw and w? on the positive spinors.
‘ foll 00,2 004
iw 41d 0 -41d
w?| -12Id 41d -12Id

Hence,

ol 2
ald) = 55 (4w — w?)

M)‘z _ eS(ifl)f % 673(i+”f_‘¢0|2 _ 676(Ref+1mf)|q)o‘2
The curvature equation (82) reads
Fa —403(Ref) + 2{A(Ref)w = %e—“RSf“m”m)on

1 1
and — EA(Imf) +c= _376—6(Ref+lmf]‘¢o|2

So, to find a solution we have to solve these two equations simultaneously. Say, the initial
hermitian metric on £ was h, we make a conformal change in the metric by a smooth function
A : X — C, the new metric being h’ := e h. Let’s call the corresponding connection on the
curvature equation A’. With respect to this new connection the curvature equation reads:

Fa’ —400(Ref) + 2{A(Ref)w = %e*é“‘ef“m” bolf,w

& Fa — 809N — 403(Ref) + 2iA(Ref)w = %e—G(Ref“m”“\q)on

and
1 1
— SA(mf) + ¢ = — 5 e SR go[7,

1 1

—6(Ref+Imf)+A 2
e
£y [dol
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Now assume Fp = 00g + ic’w (this assumption depends on the first Chern class of £). So, we
solve for:

1
g = 8\ +4Ref, 2A(—Ref) + ge*“‘*ef“mf”ﬂc})oﬁ =c’

1 1
and — EA(Imf) tc= 75676[Ref+1mf)+)\|d)0|2

We replace A by g and Ref in the last two equations and solve them for Ref and Imf and then
we get back A from the first equation. So we solve for Ref and Imf simultaneously from these
two equations.

A(—Ref) + le%e(f%Reffamf)M)O'Z —

16
A(—Imf) + ]1—6e%e(*%R“*GImf)|c(>o|2 =—C
Firstly, these two equations give us ¢’ = —c. Hence we also get

A(Ref —Imf) =0
Which implies
Ref = Imf + a, for a real constant a

So, the two second order pdes above become a single one:

A(—Ref) + ]1—66(%*6“)|d)olze*275Ref =—c
Since |¢o|? is not everywhere zero, this equation has a unique solution for Ref since ¢ < 0 [16].
Notice that ¢/ = —c > 0 is the same condition as —4¢;(Kx) + 8c1(£) being a negative multiple
of w.
Hence, we see that for each ¢ € HO(X, Lo), there is a unique way to solve for f : X — C and
a unitary connection Ay on Ly such that

(b =3 po A = (—4Ak, +8Ao), B = (3 + ) A w)

solves the SW equations.
Let’s see how the solution changes if we scale &y by a non-zero constant 6. Define

fo =1+ a+9

In(0)

If we start with 8¢, instead of ¢y, the above construction would give us a new solution of the
equations:

(311D )a g, (—4AK, +8Aq), (3o +0fe) A w)
= (¢ = po A = (—4Ak, +8A0), B = (3f + of) A w)

And given two different holomorphic sections of £ which are not in the same conformal class

lead to two different sets of solutions. So, modulo gauge the space of solutions we found is
CP(HO(X, £)).
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c1 (K;<4 ® L£8) is a positive multiple of w:

The strategy for this case is very much similar to the one before, one major difference is that
here the choice of our spinor will be a section of A%%(X, £) instead of being a section of A°(X, £).
We start with a three-form B = (9f; + 0f;) A w, f; being a complex-valued smooth function
on X. We also take the Chern connection Ay on £. For ¢ € Q%*(X, L), A = —4Ax, +8Ao,B =
(df + of) A w, the Dirac equation (81) reads:
V235, &+ (1+1)c(B)d =0
& V205, —3V2U(1 +1) « (3fy Ad) =0
Choose a section & € T'(A%*(X, L)) such that 0% & = 0 and define ¢ = e 3t0+0T £ For For
smooth section & € Q%3 (X, £),
(B3, (eI g) o)
= (g, 3011 A, 02
= (g, _31( —1)e3T=IN3f A )2
=3i(1 +1) (P, 0f1 A )p2
=3i(1 <6f1 A, b2

=3i(1 +i) (0f1 A /A %)
JX

~3i1+0)[ (3t Aand)
JX

—3i1+19)[ an«(x0hAP)
JX

= 3i(1 + 1) (o, +(3T1 A )12
= (3i(141) = (0f; A D), )2

Hence, ¢, A, B solves the Dirac equation (81). Notice since ¢ € Q%*(X, L), we have

a(0) =~ (i + 0?)
32
eG(Reﬁflmﬁ ]|E.‘2 ) )
=— 3 (4iw + w”)

Going back to the curvature equation (82) we get

Fa — 403(Refy) + 2iA(Ref1)w = —%eG(Re“*Imﬁ NP w

1 1
d — —A(Imf _ _ _ ,6(Ref;—Imfq)|g2
an 3 (Imf1) +c 3¢ €]
We want to solve these two equations simultaneously. The initial hermitian metric on £ was h,
we make a conformal change in the metric by a smooth function A; : X — C, the new metric
being h’ := e h. We notice that choosing & an anti-holomorphic section of A%* ® £ = K? ®L

is same as choosing the corresponding holomorphic section & of K; RL = (K;<1 ® E)*. Now
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with the natural induced metric from h say, h* on (K? ® £)* we also have |&|,« = |&1|n. For a
conformal change by e on h, we get a scaling by e ' on h*. As this is a conformal change
in the metric, & is still a holomorphic section of K; QL = (K;1 ® L‘)* and now when we go
back to the corresponding anti-holomorphic section of K;l ® L, the norm of this section changes
by e '. Let’s call the corresponding connection on the curvature equation A’. With respect to
this new connection the curvature equation reads:

Far —403(Refq) + 2iA(Refq)w = _geémeﬁ “mie w

& Fo — 800N — 409(Ref1) + 2iA(Refy)w = —%e“‘*eﬁ*‘m“ Mg w
and

1 1
— A(Imfy) + ¢ = —?zeG(Ref' “Imfig2,

1 1
AN _EA(Imﬁ) +c= _3766(Ref1—1mf1 )—A1 ‘E,|2

Assume Fp = 00g; + icw (this assumption depends on the first Chern class of £). So, we solve
for:

g1 = 8A\1 +4Refy, —2A(Ref;) — _ebBehi—Imfit) A g2 &

| —

1 1
and — EA(Imfl) te= _37266(Ref|71mf)7)\1 ‘5‘2

We replace Ay by g; and Ref; in the last two equations and solve them for Ref; and Imf; and
then we get back A; from the first equation. So we solve for Ref; and Imf; simultaneously from
these two equations.

1 ~
A(Ref]) + ﬁef%e(%Reﬁfﬂmf] )|£|2 —_¢
1
A(—Imfq) + ﬁe*%e(%mf‘*élmﬁ g2 = —c

Firstly, these two equations give us ¢ = ¢. Hence we also get
A(Refy +Imfy) =0
Which implies
Refy + Imf; = ay, for a real constant a;

and the two second order pdes above become a single one:

A(Refy) + 1]—66(9?1*6‘1‘ )IEIZeZTSRef‘ =—C
Since |&|% is not everywhere zero, this equation has a unique solution for Ref; as ¢ < 0 [16].
Notice that ¢ = ¢ < 0 is the same condition as —4cq(Kx) + 8c1(£) being a positive multiple of
w.
Using similar arguments as in the other case, it's straight-forward to see that modulo gauge

the space of solutions we constructed is CP(H® (Kx @ £~ 1)).

76



Remark 35. Notice if £ is the trivial bundle, CP(H°(X, £)) is a singleton point and for £ = Ky,
CP(H°(Kx ® £71)) is again a singleton set, which is reminiscent of the moduli space of 4d SW
equations on Kahler 2-folds.

A class of solutions

We give a class of explicit examples where we have the necessary conditions to have non-trivial
solutions of our equations. From the construction explained above, we see that for the construc-
tion to work, we need a holomorphic line bundle £ on X with the following conditions:

1. dimH°(X, £) > 0

2. c1(Kx* @ £8) = colw] with ¢p < 0 [This implies deg(Ky* ® £3) < 0]
or

1. dimH°(X,Kx ® £71) > 0

2. ¢1(K? @ £3) = colw] with ¢o > 0 [This implies deg(Ky* ® £3) > 0]

Example 1. Take 4 compact Riemann surfaces (Xi, wi)i—1,2,3,4 of the same genus g > 1. w;
denotes the normalized Kahler form on X; such that fx- wi = 1. Define X := X7 x X5 x X3 X X4.

The Kahler form on X is w := Zf:1 m; w; where 7; is the projection of X onto Xj.

Kx = ®!_;7f(Kx,) and ¢1(Kx) = (29 — 2)w. If we choose L to be the trivial line bundle
it satisfies the first two conditions and if we choose £ = Kx, it satisfies the alternative two
conditions.

Example 2. We take X to be a hypersurface in CP* of very high degree, let’s take a holomorphic
section of O(d) — CP>, i.e., a homogeneous polynomial of degree d in 6 variables (d to be
determined later). If we choose this generically, the zero locus is a smooth algebraic variety X.

The Kahler form w on X is given by restricting the Fubini-Study form wfs on X and it lies
in the cohomology class obtained by restricting ¢1(O(1)) on X. Meanwhile, by the adjunction
formula, Kx = O(d — 6)|x.

Take £ = O(k)|x. For m > 0, dim H°(CP>;O(m)) > 0. Restricting these holomorphic
sections to X we can find line bundles on X with non-trivial holomorphic sections. We need k to
satisfy the following two conditions for O(k)|x to satisfy the first two conditions:

1. k > 0 so that there are non-trivial holomorphic sections of

2. 4(6 — d) + 8k < 0. This ensures that c; (K;4 ® £8) is a negative multiple of w.
and for the alternative two conditions we would need

1. d —6 —k > 0 so that there are non-trivial holomorphic sections of Kx ® £
2. 4(6 — d) + 8k > 0. This ensures that ¢ (K;4 ® £3) is a positive multiple of w.

Putting these all together we would need k to be in the following ranges for existence of non-
trivial solution:

d—6
O<k<T

or

d—6
- k —
> <k<d-—6

7



So we get many examples by choosing d > 8 and choosing k as we like in the above ranges.
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Part VII

Seiberg—Witten equations on
Spin(7)-manifolds
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0.7 Spin(7)-manifolds

0.7.1 Spin(7)-structure on a manifold

In the list of the possible holonomy groups for a non-symmetric, irreducible Riemannian mani-
fold, there are two exceptional cases: G and Spin(7) [2]. There are several ways of defining the
group Spin(7), often involving octonians. We will use a more general and certainly one of the
more useful definitions, is the one given below.

Choose xg,X1,...,X7 to be the standard Euclidean coordinates of R8. We also equip R® with
the standard orientation coming from the volume form dxy /\---/\dx; and the Euclidean metric
g= Z;:o dx; ® dx;. Define a four form @, on R® by

Dy :=dxo123 — dxo167 — dX0527 — dx0563 + dX0415 + dxp4a26 + dXx0437

+ dx4567 — dxas523 — dx4163 — dx4127 + dx2637 + dX1537 + dX1526

where dxyimn = dxx Adx; Adxy, Adx,. Notice that @y is self-dual, i.e., *®g = Dy.
The subgroup of GL(8,R) preserving @y is isomorphic to Spin(7), the double cover of SO(7),
which is a compact semi-simple, 21-dimensional Lie group. It is a subgroup of SO(8), so the

metric g can be reconstructed from ®@,.
Let M be an 8-manifold. Consider AM, defined as a sub-bundle of A*T*M by

AMp ={A € (A"T*M)y, : 3 an isomorphism ¢ : TwM — R®, taking A to @)}

A smooth section of AM gives rise to a Spin(7)-structure. Let ® be a smooth section of AM, then
@ is a smooth four form on M and defines a Spin(7)-structure on M. By an abuse of notation
we shall often identify a Spin(7)- structure with its associated 4-form ®. A Spin(7)-structure @
on M induces a natural metric g on M by the inclusion Spin(7) C SO(8).

The fiber of AM is GL(8,R)/Spin(7), so AM is not a vector sub-bundle of A*T*M. Now a
smooth section of AM gives rise to a Spin(7)-structure on M.

The action of Spin(7) on R® gives an action of Spin(7) on AX(R8)*, which splits A*(R®)*
into an orthogonal direct sum of irreducible representations of Spin(7). Suppose that M is an
oriented 8-manifold with a Spin(7)-structure, so that M has a 4-form ® and a metric g. Then
in the same way, AT*M splits into an orthogonal direct sum of sub-bundles with irreducible
representations of Spin(7) as fibres [15]:

AN =N As AS=ASBAS,
N =AaAs AN =ADA}
A* = AT AT B AL, © AL

The notation A¥ refers to an l-dimensional irreducible Spin(7)-representation which is a subspace
of A*. The decomposition respects the Hodge star * operator since Spin(7) C SO(8). We define
the projection operator on forms 7} : QO — QF, defined as the projection of k-forms onto the
l-dimensional subspace.

It turns out that Spin(7)-manifolds are spin, i.e., w2(M) = 0. We give an equivalent descrip-
tion of Spin(7)-manifolds from a spinorial point of view.

We start with an orientable Riemannian 8-manifold which is spin. Moreover we fix a spin-
structure and take the associated real spin-bundle on M, say S =S, & S_. This basically comes
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from the real spinorial representation p : Spin(8) — SO(16), constructed by restricting the
isomorphism Clg = GL(16) and equipping R'® with a metric (-,-) which makes the Clifford
product a skew-symmetric endomorphism.

At each m € M, the action Spin(8) — SO(S.(M).) is a double covering, so that the
existence of a unitary spinor & € I'(S,) determines an identification between Spin(7) and the
stabilizer of of &, : stab(&,,). We get back the four-form @ associated to the Spin(7)-structure
in the following way [23].

®(v1,Vv2,V3,V4) =(v1,v2)(v3,Va) — (v1,V3)(va,V2) + (V1,V4)(V2,V3)

— (c(v3)ec()&, c(v3)e(vi)E)
v* is defined using the canonical identification between the tangent and the cotangent bundle:
V= g(\), )
0.7.2 Clifford multiplication

Let’s start with a complex spin-bundle S =S, S_ — M on M, S, and S_ are bundles over
M of complex dimension 8. There exists a real Spin(8)-equivariant structure on S which anti-
commutes with Clifford multiplication of one-forms [10]. So, one can get back the real spinors
from the complez spinors.

The Clifford action of the Cayley form @ on I'(S, ) has two eigenvalues: 14 and —2. This
gives us a splitting of S :

Sy=mem"

1 is a unit length positive spinor such that ¢(®)n = 14n and for any ¢ orthogonal to n,c(®)p =
—2@. Recall that the trace-free hermitian endomorphisms of the positive spinors in dimension 8
are given by the Clifford actions of imaginary two forms and the self-dual four forms:

AN @ AL — isu(Sy)
Moreover since, M has a Spin(7)-structure, both iA? and A% splits:
A2 =1iAZ DA,
AL =ATO AT AL,

A} = (@) and as we saw earlier the Clifford action of @ preserves the splitting of S . Together
the two 7-dimensional parts correspond to Hermitian maps which send (n) to (n)* and )+ to

() :
c:iAZ AT = ()t @ M)

Since S, has a real structure, it induces a real structure on (n)* ® (n)*. Hence it can be seen as
the direct sum of two real vector spaces and the direct sum decomposition is indeed

M)t ® Mm)* =c(ind) @ c(A})

Notice that both sides have real dimension 7 x 2 = 14.
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And finally the forms iA3; and A3, preserve (1) and (n)*. In fact their action on n is trivial
and the Clifford actions of these forms give us trace-free Hermitian endomorphisms of )+, i.e.,
the following map is an isomorphism.

c:iAd; D A3, — isu((n)t)
Together with the trace-part, we also get the isomorphism:
¢HAL @ AT B AT = ()T @ ()

Notice for a Hermitian 7 x 7 matrix, the real part is a symmetric 7 x 7 matrix, so 28 real numbers.
Meanwhile the imaginary part is 21 imaginary numbers (because it’s skew, not symmetric). i/\%1
contributes to the imaginary part and /\‘11 <) /\‘217 contributes to the real part.

0.8 Seiberg—Witten equations on a Spin(7)-manifold

Taking inspiration from the original Seiberg-Witten equations in dimension 4, there have been
attempts to devise monopole equations on manifolds with a Spin(7)-structure, e.g., see [3]. We
introduce a new set of elliptic equations on a 8-dimensional manifold M with a Spin(7)-structure
determined by a Cayley form say ®. The equations for ¢ € I'(S, ), x € iQ', B € Q3 are:

Do +cla+p)p =0, (83)
md(da) + 7] 7 (dB) + @ = (13 @ 7 ,) (q(d)) (84)

q($) € 10?2 ® Qf , 77 & m},; is the projection of 0% ® O} onto the subspace iQ3 & O @ QF.
The gauge group G = Map(M, S') acts on (¢, «, B) in the following way:

9€3,9-(d,a,B) = (gb,x — g 'dg, B)

This action preserves the space of solutions to the equations and moreover the equations are
elliptic modulo gauge. One gets Seiberg-Witten equations on manifolds with a G, and SU(3)-
structure by dimensional reductions of the equations above.

The equations came out of the following fantasy.

e Given a Spin(7)-structure ® on a closed 8-manifold M, we hope to “count” solutions to the
SW equations (83), (84) and get an invariant of the isotopy class of the Spin(7)-structure
(allowing an isotopy through the Cayley form ®@).

e If the Spin(7)-structure is torsion-free, i.e., d® = 0, we hope to prove the invariant equals

1.

e With the assumptions of the statements above, let’s say we find a @ for which the invariant
is not 1, that would imply that @ is not isotopic to a torsion-free Spin(7)-structure.
However the fantasy is still far out of reach, especially since the analysis seems to be much
more complicated (see §§0.10) compared to the 4d SW theory. This is a work in progress.

Proposition 36. The Seiberg—Witten equations (83), (84) on a Spin(7)-manifold M are
elliptic modulo gauge, with index zero.
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Proof. The equations (83), (84) define a map
SW:iQ' x Q3 xT(S1) — (1Q2 @ QT @ QF) x T(S_)
SW(ax, B, §) = (n3(doc) + 77 (dB) + ® — (77 © 7ie7)q (), (D +cloc+ B))b)

If 5(A,B, ) = (a,b,0) is an infinitesimal pertubation of («, B, ¢), where a € iQ',b € Q3 and
o0 € I'(S,). The linearisation of SW at («, 3, d) is
dio,p,0)SW: Q'@ QF B T(S4) = (1038 Q& QF) x T(S_)
d(a,p,¢)SW(a,b,0) = (m7da + mig,dp — (77 + mig;)dypq(0), (D + cla+ B))o +c(a+ b))
We supplement this with the Coulomb gauge condition 2d* : Q' — Q° and discard the zeroth
order terms which do not affect ellipticity or the index. This leaves the map
L:1Q"® Q3 xT(S4) — (1Q° @ iQ3) x (Qf © Q3F) x T(S_)
L(a,b,0) = ((d*a + n3(da), 7] (db) + 73 (db), Do)
All three maps
d*4+m2od: Q' - Q%@ Q% (85)
merod: Q — Qf @ 03, (86)
D:T(S+) —=T(S-)
are elliptic [34] and hence so is L.

Joyce [15] showed that S, = (Q° 0 Q2)®@C = (Q100Q3)®@CandS_ =Q'eC=QixC=
Q3 ® C and the operators described in (85),(86) are essentially D_ : I'(S_) — T'(S.) modulo
some rearrangements of constants (D_ is the canonical Dirac operator on negative spinors, the
corresponding connection being the lift of the Levi-Civita connection). The canonical Dirac
operator on positive spinors can be described as:

D,:(Q1®03)eC—-03xC
D (& @ &7) = 8mg(d&y) + 7mg(dé7)
Since D_ is the dual of D, the total index adds up to be zero. [

0.9 Construction of a solution

We call the Spin(7)-structure (say determined by the Cayley form @) torsion free if VO = 0.
Fernadndez [9] showed that this is equivalent to d® = 0 and moreover such a manifold has
holonomy as a subgroup of Spin(7). In fact, it’s an if and only if condition [6].

Proposition 37. If (M, @) s a Spin(7)-mantfold with zero torsion (i.e., ® being a harmonic
form), then the Seiberg—Witten equations (83), (84) have a non-trivial solution.

Proof. An important observation is the spinor 1 (the unit length spinor corresponding to the
form @) is parallel [14]: Vn = O (the connection being the canonical lift of the Levi-Civita
connection). Hence Dn = 0. Notice

e(qlm) = {gld o2 ()

f%Id on (n)+
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Hence

1
—0
am) = 3¢
and ¢ =4n,x =0, = 0 solves the Seiberg-Witten equations (83), (84). O

0.10 A priori estimates

Proposition 38. In dimension 8, for « € Q! and p € Q3, the self-adjoint Dirac operator
Dy,g =D +c(ax+ ) enjoys the following Weitzenbock formula:

§+c(da+ dp) — 2Ip2 (87)

s denotes the scalar curvature, V4 g s a unitary connection depending on both « and f3,

2 *
Doe = VapVap +

an explicit description is given in proposition 11.

Proof. We pick a coframe e; which is stationary at a point p € M with respect to the Levi-Civita
connection. Proposition 11 gives us

D2 g = Vi Vas +, +cldatdp) + % 3 (cley)oclot B) +clot B)ocles))” +cla+ p)?

4 ,
j

D (ele) o cloct B) +cla+ B) ocley))”
—JZc(ej) o (clor) o c(B) +¢(B) o cer) + c()® +c(B)?) o cle;)
;(ZC(ej) oc(a+B)oc(e)) oc(ax+p)
+c(o]<+ Bo () cle)oclax+p)oc(e)) —8c(x+p)?
j
Notice that for & € iQ', ¢(a)? = |«f2. Since c(x + 6)2, c(x)?,c(B)? are all self—adJomt endomor-

phisms of positive spinors, so must be (c(oc)oc([i Bloc(w) ) Hence, c(a)oc(P)+c(B)oc(a) =
c(0), for some 0 € Q2. Notice that for k # 1,

j €{k,l}clej) oclex) ocler) ocle;) = clex) ocler)
j € 1{k,1clej) oclex) ocler) oclej) = —c(ex) ocler)

This says ) _; c(ej) oc(8) oc(ej) = —4c(6). By similar observation, we also get ) ; (c(ej)oc(a)o
c(e; )) = 6¢(a). We borrow two formulas from chapter IV, namely equation 44:

D clej) oc(B)ocley) = 2c(B)
j

and equation 45

> cle)oc(B)?ocley) =8Bl
j
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Assembling all the pieces we get
Z (c(ej) oc(a+B)+cloe+p)o c(ej))2
j
= —4(c(a) o c(B) +c(B) o c(a)) + 8ladl? — 8IBI* + (6¢(ax) + 2¢(B)) o (c(ex) + c(B))
+ (c(a) +¢(B)) o (6c(o) +2¢(B)) — 8(c(ex) 0 ¢(B) + c(B) o e(ex) + [l + c(B)?)
= —4x?> —4(c(x) o c(B) + c(B) o c(x)) —4c(B)* — 8IBI*

So,

1 2
72 (clep)oc(a+B)+clatp)ocle)) +clatp)?
j
= 2B
Finally the Weitzenbock formula reads:

. s
Dip = VapVap + 7 +cldo+dp) — 2

O

Before proceeding further, let’s understand the term (72 & 7'[‘]‘@7) (q(c]))) explicitly. Say ¢ =
M+& f e C®M,C),&eT((n)h). In terms of its Clifford action on S, = (n) ® (), the matrix

representation of c(q(¢)) is:
7\f\zg\5|2 fE
(e - 155 - TR

56

Notice the term (( , &) — g) € I'(isu((n)*)) =103, ® Q3,, hence the matrix representation of
c(md ®nty;)(a(d)) is

[ﬂfzgmlz fE ]
3 7112 =)
f& - 56

2 2
The diagonal entries are given by %Cb € Of and the off-diagonal parts are given by an
element of 102 @ QF.

2 2
e(r & el (a(0)) () = L1612 + 16y + PATHED

S (el ® o) (a(6)), &) = & (11 + 2P1ER + 16l

Lemma 39. Let M be a Spin(7)-manifold with a Spin(7) structure defined by the Cayley

four form ® such that d® = 0. Then if & = fn+ &, «, B solves the SW equations (83), (84),
then f and & satisfy:

J(7If|2 CJEP) =8 x 14
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Proof. Since O is closed we get,
J'(d[ﬁ/\CD) =0
(711> — &)%) _
:>J( s Nene=o0
O

Lemma 40. Let M be a Spin(7)-manifold with a Spin(7) structure defined by the Cayley
four form ® such that d® = 0. Then for o € i_Q%

3 [Imd(do = [ (o)
Proof. Since @ is closed we have
J da Adax A D =0
= J(doc, «(da A @)) =0
= J((n%(doc) + 73 (do)), * (13 (dex) + 734 (de) A D)) =0
= Jm%(dcx) + 73 (dat), 373 (da) — 75 (dex)) = 0
=3 [Imddol = [ i, (o)

O

Lemma 41. Let M be a Spin(7)-manifold with a torsion-free Spin(7)-structure defined by
the Cayley four form ®. Then if d =M+ &, o, p solves the SW equations (83), (84), then
for any € > 0,f, & and 3 satisfy

[ e+ 2ie21e + 1e) <2 [1gR072 + 1) + = [1021e + 5 [1el* + 16 x 14
Proof. Using the Weitzenbock formula (87) we get
0=V pVepd+c(dat+dp)d—2B1
Taking point-wise inner product with ¢ yields

0= (Vi,pVa,pd, &) + (c(da+dB) b, d) — 21|

Since we are working with a torsion-free Spin(7)-structure and p € Q3,dp ™ has no component
in Q3. [8]. Hence we get

0= (Vs Ve, ) + (7 (der) +dB)b, &) — 2IBPIbI + {c(73, (dB))b, )
7 1
= 0= (Vi Veop by &) + g (If1* + 228 + =5 [€]) — 141612 + 20&]* — 2IBI* |01 + (c(73, (dB))E, &)
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We have

1
SAIDI = (Vi Vapd &) = [Va,pdl*

7 1
= —g(\fl4 + 201 1E1 + 77|£\4) + 207112 — [E]7) + 2IBI2 )1 — (c(3 (dB))E, €) — [V, p I

Integrating both sides we get

[ e+ 2ieR1e + i) <2 [1BRTE +162) + [y (@B)EF + 2 | 7107 - )

: .
< 2| 1BRO + IER) + 5 |w%1(drs)>|2+§j\a|4+16x14
r 3 r
= 2[1BPO +16P) + 2
eu

2 (dR))]? + gj\al“ +16x 14

[ 370 €
< 2| 1BRO + IER) + 5 |f|2\5|2+§J|£|4+16><14

We are using the Peter-Paul inequality and the two lemmas proved above and also the fact that
the following isomorphism is also an isometry with respect to the usual norms on both sides.

cC:AZB AT - Mt M CcS, ®St
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Appendix A

Clifford multiplication of
(p, q)-forms

A.1 Clifford multiplication on Kahler 3-folds

The appendix involves calculating explicit formulae of Clifford multiplication of (p, q)-forms on
spinors. From now on, for a form « and a spinor v we will write o - v instead of ¢(x)v to denote
Clifford action of « on v (this is purely to make my typing job easier and hopefully it won’t
confuse the reader). Clifford multiplication by a real one-form o« € Q'(X,R) on a spinor v is
given by the formula [20]:

o v=vV2(n" o) Av— 7" () V)

Now we need to calculate its complex-linear extension to the complexified forms. For a,b €
Q'(X,R),
(a+ib)-v=a-v+ib-v
=vV2(n® (@) Av—n""(a)ov) +ivV2(n®' (b) Av — 7% (b) 1v)

As contraction is complex anti-linear in the first variable, i(n®'(b).v) = (—in®'(b))_v. Hence,

V2(r N (@) Av —n®T(a)ov) +iV2(n® T (B) Av —n® T (b))
=V2((n® (@) + i (b)) Av — (1 (a) — in®' (b)) )
= \/E(Tto‘l (a+ib) Av—mn"O(a+1ib)v)

A.1.1 Clifford action on positive spinors

We take local holomorphic coordinates {zi = xx + yx}k—1,2,3 centered at a point x € X so that
the Kahler metric is standard to second order at the point.

03°(X,C) acting on Q°(X, Lo) ® Q%2(X, Lo) : Trivial action as we are contracting three
times.

Q%3(X,C) acting on Q°(X, Lo) : For p € Q%3(X,C),A € Q°(X,Lo), n-A = 2V2uAA €
Q3(X, Lo).
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0%3(X,C) acting on Q%2 (X, Lo) : Trivial action.

Q2(X,C) acting on Q°(X, Lo) : Say A € Q°(X, Ly). There are basically two cases we need
to consider here.

Case 1: j #1 #k, then (dz; Adzi Adzy) - A =dz; - dZy - dz; - A =0.

Case 2: j # k, then (dz; A dz;) Adz = —2i(dx; A dyj) Adzi = —2idz A (dxy A dy;).
dik AN (dX) A dyl) A= dik : de . dy] - A and 7'[0’1 (dyl) = %de,T[O‘] (dX]) = %dil SO,

dy; - A= V23 (dZ AN)

d; - dy; - A = —dZ;(dZ; AN

_ i s s
de : de . dy] SA = —\ﬁdzk AN (deJ(de /\)\))

i
=———dz; A (|dzi|*A

ﬁ k (| )‘ )
= —V2idz AN € QX Lo)

We also notice that for j # 1 # k, (dz; Adzi Adzx) A w = 0, where w = i dxm A dym is the
Kahler form. To understand the second case let’s look at the element dizm/T 1d.)q Adys.

(dz; Adxy Adyr) Aw =dx; Ady; Adz, Adxs Adys
and

x(dzy Adxy Adyz A w) = x(dx; Ady; Adz, Adxs Adys)
Zdyz + idx;
=1idz;

Here and on-wards * on complexified forms will mean the complex-linear extension of the Hodge-*
operator on real forms. Similarly checking all other cases, we observe that for k # j,

#(dz Adxy; Ady; A w) =1idzi
Hence we see that for any p € Q"?(X,C),A € Q°(X, L),
oA =—V2(* (LA w) AA)
Now for 1 =1/ w, we get

MAwW) A =—V2(x MAw?) AN
= -2V2in A
Q12(X,C) acting on Q%2(X, Ly) : Say A € Q%2(X, Lo), n € Q12(X,C).

Locally let’s say we write A = A;dz; /A dz; + Aydz; /A dzsz + A3dzz A dz;. Now similar to the
last case, for j # k # 1,

(dszde/\dil)J\:dzj dedil?\:O
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and for j # k,
(dzx Adx; Ady;) - A =dzy - dx; - dyj - A
Let’s look at the case j =1,k = 2.
(dx1 Adyy) - A =dx; - (dyy -

A)
=dxq - (\/> %(dm AN+ dzy J)\))
= (\/2)2 X % X %(di] A (dZ72A) —dz2(dz4 /\?\))
(dZ] AN (dZ] _17\) dZ1_|(dZ1 /\?\))

2
%(d:q A (Mdz;12dz; — Az|dz;[2dz3) — Apdzyo(dZ) Adzy A dz3))

=5 (27\1 dz; Adz; — 2M,dz; Adzz + 2A3dz3 A dzy)

=1(Mdzy Adz; —Axdzy Adzz 4+ Azdzz Adzy)
So we get

dz, - dxy - dy; - A =1dz; - (A1dzy AdZy — A\2dzy AdZz + Asdzs Adzy)
= V2iA3dz; Adzz Adzy

Similar to the last case we notice that for j # 1 # k, (dz; Adzi Adzx) A w = 0, where w =
i1 dxm /A dyy, is the Kahler form and *(dz, Adx; Ady; A w) = idz,. Hence
m=

(dzz Adxy Adyr) - A = V2(* (dzZa Adxg Adyr Aw) AR)
Similarly the same can be proved for any j # k. Hence we get
HoA=V2(* (LA W) AR)
For u =n A w, we get
MA W) A=V2(xMnAw?) AN
:2\[111/\?\

0%1(X,C) acting on Q°(X, L) : Trivial action.

0Q>1(X,C) acting on Q%?(X, Lo) : Say A € Q%2(X, Lo), u € Q1 (X, C).

Locally let’s say we write A = Aydz; A dz; + Aydzy; A dzz + Azdz; /A dzy. We observe that
Q%1(X, C) consists of two types of forms, namely dz; Adz; NAdz; for k # 1 # j and dzy Adz; AdZ,
for k # 1. We'll prove a formula for the Clifford action of u for an element of each type, the rest
can be checked doing similar calculation.

(dzy ANdzy AdZ3) - A =dzy -dz; -dZ3 - A
=dz; -dz, - (V2Mdz3 Adz; Adzy)
=dz; - (—2\|dz;|*dz5 A dzy)
= —2V2\|dz;*|dz,[*dz;
= —8V2Adz;
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We also notice that
*((dZ] Adz, /A\dzz) /\7\) = *((d21 Adzy Adzz) /\ (Adz; /\diz))
= ?\1 * (dl] VAN dZ] VAN de VAN d:Z3 AN dZZ)
= —A7 % (dZ] ANdzy; Adzy Adzy A dig,)
= —A1 x (=2i)% % (dx7 Adyy Adxa Adys A (dxs —idys))
=4\ x (idz3)
= 4i\dz3
So,
(dzy Adzy AdZ3) - A = 2v2ix ((dz1 Adzo AdZ3) AA)
Now let’s look at another type of form.
(dX] /\dy] /\de) A= de . dX] . dy] -A
=1dz; - (A7dZ7 AdZ; — A2dZ; AdzZs + A3dzz Adzq)
= —V2i(—A1ldz, 2 dz; — Apldz, |2 dzs)
= 2v/2i(AdzZ; + A,dz3)
We also have
*((d)q Adys A dzy) /\7\) = *(qu Ady; Adzy A (Adza A dig))
= 721)\2 * (dX] AN dy1 N\ dXz N\ dyz A\ d23)
= —2iAy x idz3

— 2\,dz;3

and

x(dx1 Adyy Adzo A w)iAd = x(dxy Adyy Adzy; Adxs Adysz)iA
= (—idz2) A
= (idz2)A
= —i(dzyJA)
= —i(—2A1dzy + 2A,dZ3)
= 2i(Adz; — Apdz3)

Hence

(dx; Adyy Adzy) - A =2v2ix ((dx1 Adyy Adza) AN) + ﬁ(*(dm Adyr Adza A w)oA)

One can check that all other type of (2,1) forms satisfy the same formula. So, we get for any
ne Q>'(X,C) and A € Q%2(X, Lo), locally we have

HoA=2V2ix (WAA) + V2(x( A w)JA)
Hence for u =¥y with y A w =0, we get
V-A=2V2ix (AN
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0%°(X,C) acting on Q°(X, L) : Trivial action.
0%9(X,C) acting on Q%?(X, Ly) : Say A € Q%2(X, Lo), u € QO*°(X,C),j #K,
(dzy Adzy) - A= z(deJ(deJ)\)). Let’s say in local coordinates

A =Adzy Adz; + Apdzy; Adzs + Azdzz Adzy, u= «ydzy Adzy + axdzy A dzs + azdzs A dzy.

(dzy Adzy)-A=dzq -dzy - A
=dz; - (—V2)(dZ20(M1dzy A dZs + A2dzy A dZ3))
=2dz; - (—A|dZz;[%dzy)
= —2\|dz;[%|dz,
= —8\q
= —2\|dz; Adz,)?
= —2(\,dzy Adzz)

So, locally we get w-A = —2(\, i) € Q°(X, Lo). Also observe

*A = Adxz Adys /Adz; Adzy + Adxy Adyy Adzy; Adzz + Azdxy Ady; Adzs Adz
=wAA

and

*((dz1 Adzs) /\*7\) = A1 * (dzy Adzy; Adxs Adysz Adz; Adz;)
=A1 % (— (dz71 Adz1) A (dzy AdzZy) Adxs /\dy3)
= A1 x (=21)?
=4)\

Hence we get
peA=—=2x (/A *A)

Q%2(X,C) acting on Q°(X, Ly) : Say A € Q°(X, Lo), u € Q%2(X,C).

w-A=2uAAe Q%2(X, Lo).

Q%2(X,C) acting on Q%?(X, L) : Trivial action.
QLT (X, C) acting on Q°(X, L) : Say A € Q°(X, Lo),u € Q11 (X, C).
Now for j # k,dz; Adzx - A = V2dz; - (dzx AA) = 0.

i

2
i

= —31dz;"A

de . dy] A =— de_l(de /\?\)
= —iA

So, we get 1A = —i(u, w)A € Q°(X, L), where w is the Kahler form.

3
w = Y dxj Ady;j in local coordinates.
j=1
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QbT(X,C) acting on Q%2(X, Lo) : Say A € Q%2 (X, Lo),u € QN1 (X, C). In local coordinates,
w =dx; Ady;y +dx; Ady, +dxs Adys. Say,

A =Adz; Adzp +A,dz; Adzz + Azdzz A\dzg

(dx1 Adyq) - A =dxq - (dys -

A)
= dx; - (V2 x %(dm AA+dziA))

1
= (ﬁ)2 x % 5 (@1 A\ (d210) — d215(d2) AN))
E (dZ] A (dzZ2A) —dzqa(dzy A )\))
%(dm A (M1dz1 2z, — Asldzy2dzs) — A2dz; o(dZ) A dzy A dzs))

= 5 (27\1 dz; Adzy; — 2A,dz, A\ dzs + 2A3dzs A dzg )
=1(A1dz; AdzZy; — ApdZ; Adzz + AzdzZz /A dz,)
Similarly we get,

(dxo Adyz) - A =1i(Adzy Adzy + Axdzy AdzZs — Azdzsz Adzy)
(dx3 N\ dyg,) A= i(—A1dZ] Adzy + Adzy; Adzz + Azdzs /A\dzq)

So,
w-?\:(dx1 /\dy1 +dX2/\dyz+dX3/\dy3)'7\:i)\

Next, we'll try to find out a formula for elements in Q"' (X, C) perpendicular to w. Let’s look
at the Clifford action of an element of the form:

n = x12dzy AdzZy + ap3dzy Adzs + «z31dzz Adzy + ap1dzy AdZy + «zodzz Adzo + «3dzy Adzs
We get

oA =—4[(x3172 + ®32A3)dZ1 AdZs + (1223 + a13A1)dZ2 AdZs + (231 + a21A2)dZ3 A dZy |
and

UwWAAN=xq2A3dzy Adzy; Adzs Adzy + ap3A1dzy Adzs Adzy Adzy + az1A2dzs Adzy Adzy Adzs
+ op1A2dzo AN dzy Adzy Adzs + azoAszdzs Adzy Adzs Adzy + «i3Aidzy Adzs Adzy Adzy
= (0t12As + a13A1)dzr A (dZ3 AdZy AdZy) + (31 + 0o1A2)dzs A (dZ3 A dzy Adzy)
+ (x31A2 + o32A3)dz3 A (dzz Adz; Adz))

Notice

*(dZ1 A (dzz Adzi N de)) = *((dZ1 Adz1) A (dza A d23))
= x(—2idx1 A dyq) A (dzx Adz3)
= —2idz; A\ dz;3

93



and

*(de VAN (d23 VAN dZ1 AN de)) = 721di3 AN di]
*(ng A (dzz Adz; N de)) = —2idz; A\dz,
Hence we get
p-A=-=2ix(LARA)

We claim that for any u L w,pu-A = —2i% (LAA). Enough to check that with this new formula,
(dxx Adyy) - A gives back the same element we calculated before explicitly for k =1, 2, 3.

w w
dx1 Adys = (dx Adyr — (dxg Ady1,w>§) +3 € (W)t @ (W)l
= %((de Ady; —dxa Ady; —dxz Adys) —|—w)

—2i % ((2dX1 AN dy1 — dXz A\ dyz — dX3 /\ dyg) /\)\) = 721(27\2(122 /\ dfg — }\3d23 /N di] — A]di] /\ dZZ)

—2i(2)\2d22 ANdzz — Azdzz Adz; — Aqdz1 A de) +1iA = 1i(A1dz; Adzpy — AdZr Adzz + Azdzz Adzp)

Similarly one can check that the formula works for k = 2,3. So, we get that for any p €
Q]’] (X,(C),}\ € QO’Z(X) LO)»

H-)\:fZi*(HL/\A)Jr%(H»wV‘ € 0%%(X, Lo), where ”l:”’““‘”%
Hence,
. w i
u-)\:—zl*((u—<u,w>§m7\)+§<u,w>7\

g
3
21 i

§<H, w>}\ + §<H-, (U)?\
= =2ix (WAAN) 4+ i, w)A

==2ix (LAAN) + = (1, w) * (W AN) + %(u,wﬁ\

=-2ix% (WAA)+

A.1.2 Clifford action on negative spinors

03°(X,C) acting on Q%' (X, £1) : Trivial action.
030(X, C) acting on Q%3(X, L) : Let’s have u € Q3°(X,C),A € Q%3(X, L1).

(dz1 ANdzy Adzz) - (dZq AdzZ; AdzZz) = dzq - dzp - dz3 - (dZ7 Adz; AdzZ3)
= dz; - dzp - (—V2|dz57dz; A dzy)
= dz; - (—2|dz,|*|dz;|*dzs)
= 2/2(dz; *|dz,|*|dzs
=2V2x8
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We also see

dZ] A\ de A dZ3 VAN di] AN dzz A dzg = dZ] N d21 A de VAN dZ3 AN diz N d23

= —dZ] A dZ] AN dZZ A dZZ A dZ3 AN ng
= —(=2i)3dx; Ady; Adxa Ady; Adxs Adys
=8 dX] /\dy1 VAN dXz A\ dyz A\ dX3 A\ dy3

Hence

*((d21 Adzy ANdzz) A (dz7 Adzx; A dig)) =-8i
So, we get
oA =2V2ix (WAN) € QO(X, L1)
Q%3(X,C) acting on Q%' (X, £1) @ Q%3(X, L1) : Trivial action.

Q"2(X,C) acting on Q%' (X, L) : Let's take p € Q"2(X,C) and A € Q%'(X, L1). Say, lo-
cally A = A1dzy + Apdzy + Azdzs

(dzy Adzy Adz3) - (MdZ; + A2dZ; 4 Azdzs) =dz; -dzy - (V2AdZ3 AdZy — V2dz, Adzs)
=2dzy - (V2A1dz, Adz3 Adz)
= —2V2\|dz, ?dz; A dzs
= —4v2A1dz; Adzs

We also observe that

*((dZ] Adzy; Adzz) A (Adzy + Aydz; + )\3di3)) = *()\1 dz; Adzy Adz, A dig)
= *( — 21)\1dX1 /\dy1 /\dZZ /\dZ3)

= —2i\dz; Adzs
Hence

(dzy Adzy Adz3) - (A1dzy + A2dZy + Azdzs)

= —2v2i* ((dz1 AdZ Adz3) A (Midzy + A2dZ; + A3dzs3))
and

(dzz Adxy Adyt) - (AMdzy + A2dzz + A3dzs)

= dz; - dxr (V2 x 5 (Aadzy AdZy +AsdEr AdEs) + V2 x Shdz )
i1
—dz; - (2 x % x 5 (2ndz) — 2hpd2; — 2N3dz3)

= —iv2(Mdz; AdzZ, + A3dzy Adzs)
Also notice that

*((diz Adxy Adyr) A (Adzy +Adzy + 7\3di3)) = *()\3dX1 Adyr ANdz, /\dig)
= A3dz, Adz;
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and

* ((dzz Adxy Adyr) Aw) A (AMdzy +A2dZ; + A3dzs)

= x(dxy Ady; Adzy Adxz Adys) A (Adzy + A2dZ; + Azdzs)
= idz) A (MdZ; + A2dzs + A3dz3)

— i(—A1dZ; AdZy + Asdz, Adz3)

So we get

—2V2ix ((dza Adxy Adyr) AX) + V2 (dzy Adxg Adyr Aw) AA
= —2V2iA3dzy Adzs + V2i(—A\dZ Adz + Asdzy AdZs)
= —V2i(A1dzy Adzy + A3dZp A dz3)

One can check that the other forms satisfy the same formula, hence we get
WA= —2V2i% (LWAN) + V25 (LA w) AN e QO2(X, L1)
So, if u =7y with y A w =0, then we get
v-A=—=2V2ix(yAN)

Q"2(X,C) acting on Q%3(X, L) : Trivial action.
Q>1(X,C) acting on Q%' (X, L) : Let’s say p € Q%' (X,C) and A € Q%' (X, L7). Say, locally

A =Mdz; +A2dZ; + Azdzs
We notice that for j # k # 1,
(dzj Adzik Ndzy) - A =dz; - dzj - dzi - A =0
and

(dlz/\dX1 /\dy]) -A :dlz . (dX] /\dy1) -A
=dz; - (i(?\]di] —Adzy; — }\3d23))
= 2V2i\;

We also see that

(dzy Adxq Adys Aw) AN = (dx; Adys Adzy Adxz Adysz) AA
=dx; Ady; Adzy; Adxs Adys AAdz,
= —2i7\2(dx1 /\dy] /\dXz /\dyz /\dX3 /\dy3)

and
*((dzz Adxy Adyr) A w /\7\) = —2iA,
One can check that all other forms enjoy the same formula. Hence we get

HA=—vV2x (LA WA
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We also notice that for any k € {1, 2, 3}

*de = *(dxk + ldyk)
w? w?
:dyk/\T—lka/\T

2

w

= —idzx N\ —
1Az 2

Hence forn € Q%'(X,C) and p =1 A w,

AAW) A=—V2x ([{HAWIAN)
= —2V2ix (fj A *A)

Q%1(X,C) acting on Q%3(X, L) : Let’s say € Q> (X,C) and A € Q%3(X, L;). We notice
that for j # k # 1,

(dz; Adzi Adzy) -A =0
and
(dza Adxy Adyq) - (dz) Adzy Adzs) = dxg - dy; - (2v/2dz; Adzs)
=dx;(4 x % x 2dz3)
=4ix V2 x %dz] Ndz;
=2v2idz; Adzs
We also see that

#((dzo Adxy Adyr) Aw) = =((dxg Adyy Adzy Adxz Adys))
:—idlz
and
#(# (dza Adxy Adyr Aw) AA) = =+(—idzy AA)

:—i*(dlz/\di] /\diz/\dig,)
=1x* (dzy ANdz; AdzZ; /A\dz3)
=1x (=21) * (dxa Adyy ANdz; Adzs)
=2% (dXz/\dyz/\dZ1 /\dfg)
= 2dz; A dzs

Hence we get

H-A= V2 (% (LA W) AN) € Q%% (X, L)
Hence forn € Q%'(X,C) and p =1 A\ w,

AAW)-A=—V2ix (x @AW AN
=2V2x (AN
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0%2(X,C) acting on Q%1 (X, L) : Let’s say p € Q%2(X,C) and A € Q%' (X, £1).

w-A=2uAAe Q%X L)

0%2(X,C) acting on Q%3(X, L) : Trivial action.
QLT (X,C) acting on Q%T(X, L) : Let'ssay p € Q"'(X,C) and A € Q%' (X, L1). Say locally

A =A1dzZq + A2dzZ; + A3dzs

(dzy AdZy) - A = V2dz; - (AdZ; AdZy + A3dzZa Adzs)
=2\ (|di1 |Zdiz)
= 4)\dz,

(dX] AN dy] ) A= 1(7\1 dZ1 — Azdiz — >\3dz3)
(dx2 Adyz) - A =1i(—A1dzy + A,dZz; — Asdzs3)
(dx3 Adys) - A =1i(—A1dzy —Adzy + A3dz3)

So we observe

w - A= (dx; Adyy +dxa Adys +dxz Adys) - A
= —iA

We notice that

#(* (dzy AdZ2) AN) = #( — (dz1 AdZa) A (dxs Adys) AA)
= x(— (dz1 Adzz) A (dx3 Adys) A (A1dzy))
— (M (dz Adzy) Adzy A (dxs A dys))
= —2iAy = ((dx1 Ady;) Adzx A (dx3 Adys))
— _2iA x (id2)
=2\dz;

and
*( * (2dx1 AN dy1 — dXz AN dyz — dX3 A\ dyg) /\)\)
= *((Zd)Q /\dyz /\dX3 /\dyg — dX] /\dg1 A\ dX3 A\ dyg — dX] /\dy1 A\ dXz A\ dyz) /\)\)
= % (27\1 dz; Adxp Adyz Adxsz Adysz —Azdx Ady Adz, Adxs Adys—Azdx; Ady; AdXZ/\dgz/\dig)
=1(2A1dzZ7 — A»dZ; — A3dzZ3)
Similar calculations for other forms would ultimately prove that for p L w,

w-A=2x(xu/AA)
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Hence for any u, we get

:2*(*}1/\7\)7§<u,w>*(*w/\?\)f%

=2 (xp AN — §<u,w> x (iA) — %(u,wﬁ\

=2 (xuAAN) —i{u, W)A € Qo1 (X, £1)

{1y w)A

QN1(X,C) acting on Q%3(X, L) : Let’s say u € Q11 (X,C) and A € Q%3(X, L1). For k # 1,

(dzi Adzy) - (dz; Adz; Adzz) =0
and for any k € {1,2,3}
(dxi Adyy) - (dzy ANdzy; Adzz) =1idzy Adz; Adzs
Hence we get
A =i, w)A € Q%3 (X, £y)

029(X, C) acting on Q%' (X, L) : Trivial action.
0%9(X,C) acting on Q%3(X, L) : Let’s say p € Q11 (X,C) and A € Q%3(X, £4).

(dzq Adza) - (dzy Adz, Adz3) =dzq - (2v2dz; Adzs)
= —8dzs

We also notice that

*((dZ] /\de) A (di] /\dZZ /\di3)) = *(721..)2 * (dX] /\dy1 /\dXz /\dyz /\dZ3)
= 4idz3

Using similar calculations for other forms, we see that

w-A=2ix (AN € QO (X, L1)

A.2 Clifford multiplication on Kahler 4-folds

We take local holomorphic coordinates {zi = xx + iyx}k=1,2,4 centered at a point x € X so that
the Kahler metric is standard to second order at the point.
M%! A w) acting on Q°(X, £): Enough to calculate when 1 = dz;. In local coordinates

4

w = Z de /\dy)
j=1
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Hence, n A\ w =dz; A Z;‘:z dx; Adyj and for ¢ € Q°(X, L),

4
MAwW)-b=dz - () dxAdy;)-d
j=2

=dz; - (—3id)
=—3V2idz; N
In general

MOTAw) - =-3vV2in> Ao

(Mm% A w) acting on Q°%4(X, £): Enough to consider the case when n'° = dz;. Notice n A w =
dzy A (X, dx Ady;). For ¢ € Q%4(X, L),

4
MAW) - ¢ =dz (D dxyAdy;)- ¢

j=2
=dz; - (3i¢)

= —3v2i(dz; )

= —3V2ix(dz1 A ¢)

In general we get the following formula:

MO Aw) - =-3V2ix " Ad)
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