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Abstract

Cosmic inflation predicts the production of quantum fluctuations that seed all the structures present

in the universe today. However, these structures (such as Cosmic Microwave Background anisotropies

or the large-scale distribution of galaxies) are classical objects and show no sign of quantumness. The

problem of quantum-to-classical transition arises - how did fluctuations, initially quantum in nature,

become classical? Quantum decoherence is considered the leading mechanism of classicalization

of the primordial perturbations. In the framework of decoherence, the primordial perturbations

are viewed as an open quantum system interacting with a surrounding environment. The Lindblad

equation can model the evolution of these perturbations, which will lead to decoherence and possibly

to corrections to cosmological observables, such as the power spectrum of inflationary perturbations.

This mechanism has been extensively studied in the recent literature in the context of single scalar

field-driven inflation. We apply the Lindblad formalism to the axion models of inflation that involve

the coupling ϕF̃µνFµν to some gauge fields. In our construction, these gauge fields become the

environment that decoheres the inflaton perturbations. This process is modeled using the Lindblad

equation, and we study how decoherence affects the power spectrum of primordial perturbations in

axion models of inflation. We also calculate the rate of decoherence in the said model.

Additionally, we calculate the quantum discord as a measure of quantumness and find that on

observable scales, we get both high and negligibly small values of discord. We also motivate the

need to complement the study of quantum discord with other measures of quantumness, such as the

Bell inequality violation or state separability.
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“What we observe is not nature itself, but

nature exposed to our method of

questioning”

Werner Heisenberg
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1 INTRODUCTION

1 Introduction

Inflation, first introduced by A. Guth [1] to circumvent the shortcomings of the standard hot Big

Bang model, has become paradigmatic in recent decades, given that it is consistent up to now with

a variety of cosmological data. Implementation of inflation into the standard hot Big Bang scenario

goes as follows: before the universe was radiation-dominated and the Robertson-Walker scale factor

a(t) grew as
√
t, there was a period when the energy density of the universe was dominated by

vacuum energy of the inflaton - the field driving inflation - leading to a quasi-exponential growth

of the scale factor. Inflation ends when the inflaton starts to oscillate about the minimum of the

potential, decaying into Standard Model particles and initiating the radiation-dominated epoch of

the universe.

Imposing inflation solved some of the outstanding problems in standard cosmology. Namely,

homogeneity and isotropy of the Cosmic Microwave Background (CMB) on scales that were not in

causal contact according to the hot Big Bang can be explained by an early epoch of accelerated

expansion. It also explains why the universe is observed to be consistent with spatial flatness.

Otherwise, achieving this would require fine-tuning cosmological parameters, which is generally

considered a shortcoming of any physical theory.

In any consistent models of inflation arguably the most profound insight is that all structures in

the universe originated from quantum fluctuations produced during inflation and amplified to cosmic

significance by gravitational instability. This scenario is favored by data, namely the observed nearly

scale-invariant power spectrum of curvature perturbations (explained in detail below).

Even though the inflationary perturbations are quantum in nature, all the cosmic structures we

observe today seem to possess no trace of “quantumness”. The problem of quantum-to-classical

transition in the early universe arises. The answer to this problem is still not conclusive and is

the subject of recent studies [2, 3, 4, 5, 6, 7, 8]. We have no concrete evidence on what causes

classicalization of inherently quantum fluctuations. Moreover, it has been shown, that by replacing

quantum fluctuations of a free scalar field with classical stochastic perturbations, at least in the

lowest order of correlation functions, we obtain essentially the same results, meaning, that if we

stick to the power spectrum of cosmological perturbations, the two scenarios are indistinguishable.

The most probable cause of the classicalization, however, is the effect of quantum decoherence,

which is an experimentally observed phenomenon.

Quantum decoherence in the context of inflation has been studied extensively in recent years

[2, 4, 5, 6]. Decoherence implies that the inflaton is an open quantum system, interacting with its

environment. The two main types of environments studied so far are i) sub-horizon tensor and scalar

modes, that decohere the super-horizon modes of observational interest [7, 9, 10] and ii) other fields

coupled with the inflaton field [2]. We will mostly be interested in the second type of environment

since other fields are bound to exist during inflation, at least the ones resulting in the reheating and

subsequent radiation-dominated epoch.

The evolution of an open quantum system can be described by the Lindblad equation [11, 12],

however, some assumptions are required that will be discussed in this thesis. The Lindblad equation
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1 INTRODUCTION

captures how the interaction with the environment modifies the off-diagonal elements of the quantum

density operator, sometimes referred to as the density matrix in the literature, defined simply by

ρ = |ψ⟩ ⟨ψ|. This modification makes the off-diagonal terms go to zero in a preferred basis chosen

by the interaction form.

Decoherence can also change the diagonal terms in the density matrix, which means that prob-

abilities of the possible outcomes of measurements may be modified. This leads to an important

point studied in Refs. [2, 3, 4, 13, 14, 15]: in the cosmological context, applying decoherence to

the perturbations in the early universe can modify their statistical properties significantly. Since

the latter are well-constrained by data from CMB observations [16, 17, 18], this opens up a new

window to study cosmic decoherence and compare the obtained statistics with observations. This

has recently been done in [2, 4] for the case of a single field scalar inflaton coupled with massive

scalar fields.

Despite the success of the inflationary paradigm throughout the years, there remain open ques-

tions of fundamental importance. Namely, one important caveat is that we do not know what the

inflaton actually is. Therefore we cannot conclusively assume that the inflaton is a scalar field. In

fact, a compelling particle physics scenario is lacking. The problem arises due to the flatness of a

scalar potential V (ϕ) required to maintain inflation for a sufficient amount of time. In order to have

a successful inflation the slow-roll parameters must obey ϵV , |ηV | ≪ 1, with

ϵV ≡ MP

2

(
Vϕ
V

)2

ηV ≡M2
P

Vϕϕ
V

, (1.1)

where the subscript denotes a derivative by ϕ,MP =
√

1/8πG is the reduced Planck mass with G be-

ing the Newton’s constant. These parameters are UV-sensitive, meaning, that quantum corrections

can contribute substantially and possibly ruin inflation.

Generally, these corrections require fine-tuning, which, as mentioned before signals a problem

in the theory. However, these corrections are handled in a natural way by imposing symmetries.

The simplest way to circumvent this problem is to identify the inflaton as a pseudo-scalar field,

such as the axion, and realize inflation naturally. The first proposal by [19], called the ”natural

inflation’ is in disagreement with the current precision measurements, e.g. [17, 18, 20]. Axions enjoy

the continuous shift symmetry ϕ −→ ϕ + const. This symmetry must be slightly broken, so that

ϵ, η ̸= 0, but it must still protect the flatness of the potential and hence ensure sufficient expansion1.

There have been various proposals to this end [19, 21, 22, 23, 24, 25, 26].

Precisely to avoid the UV corrections in the slow-roll parameters, different modifications of

axion inflation models have been proposed and studied extensively. These models enjoy a rich

phenomenology and are well-constrained by data [17, 18, 27].

This thesis aims to apply the concepts of open quantum systems to axion models of inflation

where an axion is coupled with U(1) gauge sector and explore the modified parameter space. In our

construction of the problem, the gauge fields are identified as the environment, while the axion field

1Here sufficient corresponds to at least N ≃ 60, where N = ln
(
af/ai

)
is called the number of e-foldings and ai, af

correspond to the scale factor at the beginning and the end of inflation in this case.
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1 INTRODUCTION

is the system of interest.

Outline. In chapter 2 we review the standard setup and introduce important notions of early

universe cosmology in Sec. 2.1, then in Sec. 2.2 we outline the shortcomings of the standard

cosmological model only to set the stage for introducing inflation in Sec. 2.3. The mechanism for

the standard scalar field-driven slow-roll inflation is presented, which we conclude by the inevitable

generation of scalar quantum fluctuations. The Sec. 2.4 is devoted to explaining the squeezing

formalism and the apparent emergence of classicality within that framework. In 2.5 we summarize

some of the most important features of axion inflation with the coupling ϕFF̃ . We show how the

gauge fields are produced and amplified by tachyonic instability and provide the derivation of the

power spectrum, present in the literature [27].

We assess the quantum decoherence in the early universe in Chapter 3. After a brief introduction

to quantum decoherence in Sec. 3.1, we define formal tools that are used to study decoherence in Sec.

3.2. Equipped with the necessary toolkit, we proceed by introducing quantum master equations in

Sec. 3.3. Here we apply the Born-Markov approximation, a key assumption required by the Lindblad

formalism. In Sec. 3.4 we apply the ideas of the previous chapter to cosmology, as done in [2]. While

the formalism is developed for general environments, a special case of heavy scalar environment is

considered in 3.4.6. The Lindblad formalism allows us to study the power spectrum and quantify

decoherence. We apply the same reasoning to the axion models of inflation in Sec. 3.5 where the

gauge fields are treated as the environment, while the axion field is the system. We assess the validity

of the Lindblad formalism in this scenario and see how the quantum state of the system is decohered

by the presence of the gauge field environment.

In Chapter 4 we delve deeper into the question of detecting the traces of quantumness from

inflation. In Sec. 4.1 we study the CMB Bell experiments and the obstructions one comes across

when trying to observe the Bell inequality violation in cosmology. We provide a comparison between

the different measures of quantumness for Gaussian states in Sec. 4.2. In Sec. 4.3 we calculate the

quantum discord for axion models of inflation. We include the effect of the environment and compare

the results with quantum decoherence obtained before.

A series of technical calculations are presented in the appendices. Appendix A shows the con-

nection between the Heisenberg and the Schrödinger pictures. Namely, we relate the squeezing

parameters used in the Schrödinger picture with the Heisenberg picture mode functions [28, 29].

In Appendix B we complement chapter 2.5 by providing a detailed derivation of the equations of

motion for the axion and the gauge fields. In Appendix C we derive the Lindblad equation, which

we use in the main text [2]. In Appendix D the environment correlation function is derived. The

obtained result is not tractable analytically so we make a numerical fit and extract the correlation

length and the effective correlation time of the environment. Finally, Appendix E is devoted to

computing the integrals that pop up in the solution of the Lindblad equation 3.80 in the slow-roll

approximation.
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1 INTRODUCTION

Notation

Natural units will be used throughout the manuscript as much as possible

c = ℏ = 1. (1.2)

We will use the reduced Planck mass

MPl =

√
1

8πGN
(1.3)

where GN is the Newton’s constant. We also choose the metric signature (- + + +).

When using the Fourier transformation, to make it symmetric with the inverse transform, we

will adopt the following convention

F(x) =

∫
d3k

(2π)3/2
F(k)eik·x. (1.4)

The letter τ will denote the conformal time dt = a(τ)dτ and finally, the Greek indices (e.g.

µ, ν...) take values 0, 1, 2, 3, wile the latin indices i, j, ... = 1, 2, 3.

9



2 THE INFLATIONARY PARADIGM

2 The Inflationary Paradigm

First introduced by A. Guth [1] inflation is supposedly an early epoch of exponential cosmic ac-

celeration. The original motivation for introducing inflation was solving the flatness and horizon

problems. However, as it turns out inflation also enables us to describe tiny deviations from isotropy

observed on CMB and LSS. According to inflation, these anisotropies arise naturally during infla-

tion through quantum fluctuations, which subsequently get stretched to cosmic significance as the

universe expands.

In the simplest models, inflation is driven by a single minimally coupled scalar field. While

solving the flatness and horizon problems, this simple model also produces nearly scale-invariant

density perturbations, whose spectrum is close to that required by the observation of the large scale

structure.

This chapter is dedicated to a (brief) overview of cosmic inflation, with a focus on the primordial

scalar perturbations. For further reading the reader is referred to [30, 31, 32, 33].

2.1 The Standard Cosmological Setup

Modern cosmology is based on Einstein’s theory of General Relativity (GR). GR is one of the well-

tested theories in existence (e.g. [34]) and hence provides a very natural and reliable framework for

building cosmological models.

The central proposition in modern cosmology is that the universe is homogeneous and isotropic.

This is also known as the cosmological principle and it was introduced in the early 20th century

without any observational evidence. One of the key reasons was that in order to study cosmology

in the framework of general relativity, it is rather difficult to work with an arbitrary distribution of

matter. The cosmological principle drastically simplifies the problem.

Modern ground and spaceborne missions are designed to detect a variety of fields (e.g. IceCube

is a ground-based neutrino observatory, Ligo/Virgo detects gravitational waves, while Planck space

observatory specializes in photons) and wavelengths of those fields (e.g. Fermi observatory is used to

detect γ-rays, Chandra can detect x-rays, JWST detects near-visible and infrared radiation). The

obtained data from measurements favor the cosmological principle. One obvious piece of evidence

lies in the Cosmic Microwave Background ( CMB ), which is nearly isotropic. The measure of

anisotropies in the CMB is one part in 10−5 (see figure 1). However, to maintain homogeneity,

isotropy must be complemented with the Copernican principle which means that the universe must

be isotropic for observers at any point in space. This seems like a reasonable assumption since

disregarding the Copernican principle will amount to a fine-tuning related to our position in the

universe.

The small perturbations on CMB mentioned above are the matter density fluctuations, that stem

the large-scale structure observed today.

It is usually convenient to separate the dynamics of the universe into the large-scale homoge-

neous background and short-scale irregularities evolving on that background. These irregularities

can be considered as small perturbations on the unperturbed universe. The metric describing the

10



2 THE INFLATIONARY PARADIGM

Figure 1: Anisotropies of the Cosmic Microwave Background as seen by the Planck satellite.

unperturbed universe is called the Friedman-Lemâıtre-Robertson-Walker ( FLRW ) metric, discussed

below.

2.1.1 Einstein Equations and the FLRW Metric

The Einstein field equations (EFE) can be written as

Gµν = 8πGNTµν
, (2.1)

where G
µν

= Rµν − gµνR/2 is the Einstein tensor. Tµν is the stress-energy tensor that describes the

matter content. gµν (the metric), Rµν (Ricci tensor), and R (Ricci scalar) describe the geometry of

spacetime

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, R = gµνRµν , (2.2)

where commas denote a derivative (e.g. (...),µ = ∂/∂xµ) and Γ are the Christoffel symbols

Γγ
ρσ =

1

2
gγλ (gλσ,ρ + gρλ,σ − gρσ,λ) . (2.3)

One can obtain the EFE by varying the action Stot = SHE + Sm, where

SHE =

∫
d4
√
−g R

16πGN
(2.4)

is the Hilbert-Einstein action,

Sm =

∫
d4x

√
−gLm (2.5)

and Lm denotes the matter Lagrangian density.

The stress-energy tensor can be constructed by taking the functional derivative of the matter

11



2 THE INFLATIONARY PARADIGM

part of the action

Tµν = − 2√
−g

δSm

δgµν
. (2.6)

For a perfect fluid, the energy-momentum tensor takes the form

Tµν = (P + ρ)uµuν + Pgµν , (2.7)

where uµ is the fluid 4-velocity.

When expressing the Einstein equations, one must also take into account the Bianchi identities,

which fix

∇µG
µν = 0, ∇µT

µν = 0, (2.8)

where ∇µ denotes the covariant derivative.

It can be shown from simple geometric arguments, that the most general metric describing the

universe where the cosmological principle holds is of the following form:

ds2 = −c2dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (2.9)

where t is the cosmic time and we have used the conformal coordinates r, ϕ, θ. a(t) is the time-

dependent scale factor that encodes the expansion of the universe and dΩ2 = dθ2 + sin2θdϕ2. The

curvature κ may take positive, negative, or null values. These values will correspond to closed, open

and flat universes respectively

κ =


+1 closed

−1 open

0 flat

(2.10)

So far all evidence suggests a flat universe (κ = 0).

Notice that FLRW metric (2.9) is not invariant under time translations and hence changes with

time. On the other hand, as guaranteed by the cosmological principle, it is symmetric with respect

to spatial translations and rotations. Using the conformal time and putting κ = 0, we can write

ds2 = a2(τ)(−c2dτ2 + dr2 + r2dΩ2). (2.11)

2.1.2 Dynamics

To study the dynamics of an expanding universe we need to solve Einstein equations

Rµν − 1

2
gµνR = 8πGNTµν + gµνΛ, (2.12)

where for completeness, we have added the cosmological constant term. This is the most general

form of the Einstein field equations. The new term acts as an additional form of the stress-energy

12



2 THE INFLATIONARY PARADIGM

tensor with a constant energy density and an isotropic pressure

ρΛ =
Λ

8πG
, PΛ = − Λ

8πG
. (2.13)

Hence the equation of state for the vacuum energy reads w = p/ρ = −1.

If we write down the 00 and ij components of the Einstein equations explicitly for the metric

(2.9) and use the conservation law ∇µT
µν = 0 we obtain the Friedmann equations

H2 =
8πG

3
ρ+

Λ

3
− κ

a2
, (2.14)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
, (2.15)

ρ̇ = −3H(ρ+ P ), (2.16)

where dots denote the derivative with respect to cosmic time and a is the scale factor2. Only two of

these equations are actually independent and describe the dynamics of the universe.

2.2 Problems of the Standard Cosmological Model

While the standard setup appears to describe the dynamics of our universe accurately and describes

a wide range of phenomena that characterize our universe, like the abundance of light elements or

the large-scale structure, there remain problems. Let us briefly consider some of the fundamental

shortcomings of the standard model; More examples can be found in ref. [31], for instance.

The horizon problem. We define the comoving particle horizon, which expresses the maximum

comoving distance light can travel in an FLRW expanding universe from time τi to τ

dH ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

(aH)−1d ln a (2.17)

where (aH)−1 is, by definition, the comoving Hubble radius, corresponding roughly to the distance

light can travel as the scale factor doubles. The comoving Hubble radius grows in the FLRW

universe:

rH ≡ (aH)−1 = ȧ−1 ⇒ ṙH = − ä

ȧ2
, (2.18)

which is always positive for an ordinary-field-dominated universe, since in that case, the equation of

state w = p/ρ is such, that w > −1/3. Then using the standard FLRW solution for the scale factor

a(t) ∝ t
2

3(w+1) (2.19)

therefore, it is clear that rH increases with time for matter-dominated (w = 0) and radiation-

dominated universe (w = 1/3), implying that the causal connection around the observer increases.

However, the issue stemming from observations is that all CMB regions share almost the same

2Notice we kept the curvature (κ ̸= 0)
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2 THE INFLATIONARY PARADIGM

statistical properties without ever being in causal contact with one another3. This marks the first

caveat in the standard hot Big Bang model.

The flatness problem. Since the standard cosmological model is based on the general theory of

relativity, spacetime must be dynamic, curving in the presence of matter in the universe. If we recall

the first Friedmann equation without the cosmological constant term,

H2 =
8πG

3
ρ− κ

a2
, (2.20)

we recognize, that since for the matter and radiation-dominated epochs, the energy density scales as

a−3 and a−4 respectively, at some point, unless κ=0, the curvature term must overcome the energy

density part since its dependence on the scale factor is a−2. We mentioned the possibility of κ = 0,

however, on general grounds, there is no reason for this condition to hold. In fact, κ may take any

value.

To appreciate the gravity of the problem, let us introduce the density parameter Ω(t) = ρ(t)/ρc(t)

and Ωκ = Ω(t) − 1 = κr2H(t), where ρc(t) = 3MPlH
2(t) is the critical energy density, i.e. the total

energy density of a completely flat universe. If we go backward in time, the scale factor will start to

decrease, resulting in the energy density ρ increasing rapidly compared to the curvature term, hence

we may neglect the curvature at very early times Ω = 1. Then for κ ̸= 0 4, it is evident, that Ω(t)

will start to depart from the value 1 at an ever increasing rate.

The obstruction arises from comparing the theoretical prediction with observations. Namely,

from observations |Ω(t0)− 1| < 10−3 at 95% CL. To obtain our present universe, at nucleosynthesis

for example, we would need to require |Ω(tnuc) − 1| ≲ 10−16. If we go further into the past this

value decreases dramatically, leading to an initial value (at Planck epoch) |Ω(tPl) − 1| ≃ 10−60. In

principle, this is not a paradox, because there is no reason to exclude this initial condition, however,

we evidently came across a fine-tuning problem that we would like to explain.

2.3 The Idea of Inflation

Both the flatness and horizon problems can be traced back to the fact that within the standard Big

Bang framework, the comoving Hubble radius increases. Then an elegant way out of this conundrum

is to invert the behavior of the comoving Hubble radius, making it decrease sufficiently in the very

early universe.

Inflation, proposed by A. Guth [1] in 1981, extends the hot Big Bang model by adding a brief

initial period when the universe expanded exponentially. Shrinking the comoving horizon leads to

an expanding universe
d

dt

(
1

aH

)
< 0 ⇒ d2a

dt2
> 0, (2.21)

3In fact on CMB temperature fluctuations are very small δT/T ≃ 10−5.
4As mentioned in sec. 2.1.1, κ may take positive or negative values
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2 THE INFLATIONARY PARADIGM

which, using the Friedmann equations, leads to

ω =
p

ρ
< −1

3
. (2.22)

This requires physical justification, as ordinary matter and radiation do not obey this relation. But

first, let us see how inflation solves the horizon and flatness problems.

Let us recall the FLRW metric (2.9). Introducing the conformal time dτ = dt/a and defining

r = fκ(χ) =


arcsinχ for κ = +1

χ for κ = 0

sinh−1 χ for κ = −1

(2.23)

so that (2.9) becomes

ds2 = a2(τ)
(
−dτ2 + dχ2 + f2κ(χ)dΩ

2
)
. (2.24)

In these coordinates, the causal structure of the universe looks the same as in flat Minkowski space.

This is fundamentally because the FLRW metric is conformally flat. We consider null geodesics

(dτ2 = dχ2) which form lines at angle 45◦ on the conformal diagram, as shown in figure 2. The

upper half of the diagram shows, that the universe started off at τ = 0, two different regions during

recombination would not have had enough time to communicate in the past, so there is no obvious

reason why they share statistical properties to such a great extent unless we impose some very

specific initial conditions for the Big Bang. On the other hand, if inflation were to take place, it

would effectively push the initial singularity to −∞. This mechanism allows for a causal connection

for radiation in the far past, explaining the high levels of isotropy in the CMB. This effectively cures

the horizon problem.

Let us now define the number of e-folds as

N = ln

(
af
ai

)
, (2.25)

where ai, af correspond to the beginning and the end of inflation respectively. Then in order to

solve the horizon problem, the universe must have expanded by at least N ≃ 60÷ 70 e-foldings.

As for the flatness problem, recalling that

Ωκ = Ω(t)− 1 =
κ

(aH)2
, (2.26)

it is evident, that the decreasing Hubble radius decreases Ωκ, allowing the universe to stay sufficiently

flat.

During inflation the Hubble parameter H ≈ const.. The scale factor is

a(τ) = − 1

τH
, (2.27)
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2 THE INFLATIONARY PARADIGM

so while the initial singularity (a = 0) is pushed to −∞, we also see that at τ = 0 the scale factor

becomes infinite, which means, that the inflation goes on forever. This is because we assumed

the Hubble parameter is constant, however, this is not exactly the case. The Hubble parameter is

actually varying, albeit slowly. Hence at some point inflation concludes and reheating takes place

as we enter the radiation-dominated epoch.

Figure 2: Inflationary solution to the horizon problem [35]. Without inflation, the universe is assumed to have started at
τ = 0. Then between the Big Bang and the Recombination epoch, not enough (conformal) time has passed for all scales
observed on CMB to be causally connected. Inflation effectively pushes the initial singularity towards τ → −∞, leaving time
for all the currently observed CMB scales to have been in causal contact in the past.

2.3.1 Scalar Field Dynamics

The inflationary behavior is an unusual one, primarily in the sense that in the standard GR formal-

ism, it requires a negative pressure source (2.22). This can be realized by a simple scalar field ϕ

whose dynamics is governed by the action

Stot = SHE + Sϕ + Sfields =

∫
d4x

√
−g
[
1

2
R+

1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
+ Sfields, (2.28)
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2 THE INFLATIONARY PARADIGM

where SHE denotes the Hilbert-Einstein action, R is the Ricci scalar, and we have included a term

Sfields describing all fields present during inflation5.

The energy-momentum tensor of the scalar field reads

Tφ
µν = − 2√

−g
δSϕ

δgµν
= ∂µϕ∂νϕ− gµν

(
1

2
∂αϕ∂

αϕ+ V (ϕ)

)
, (2.29)

while the equation of motion is

δSϕ

δϕ
=

1√
−g

∂µ(
√
−g∂µϕ) + V,ϕ = 0, (2.30)

where V,φ denotes dV/dϕ. The equation for the dynamics of the scalar field ϕ is the Klein-Gordon

equation for a quantum scalar field in FLRW universe6

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+ V,ϕ = 0, (2.31)

where the second term acts as friction due to the expansion of the universe.

ϕ can be expressed as the sum of a classical background value and small fluctuations

ϕ(x, t) = ϕ0(t) + δϕ(x, t) (2.32)

then focusing on the dominant background value ϕ0(t) components of the energy-momentum tensor

(2.29) read

T 0
0 = −

[
1

2
ϕ̇20 + V (ϕ0)

]
= −ρϕ, (2.33)

T i
j = δij

[
1

2
ϕ̇20(t)− V (ϕ0)

]
= δijPϕ(t). (2.34)

Then the equation of state is

wϕ =
Pϕ

ρϕ
=

1
2 ϕ̇

2
0(t)− V (ϕ0)

1
2 ϕ̇

2
0 + V (ϕ0)

, (2.35)

which shows that the scalar field may lead to an accelerated expansion if the potential energy

dominates the kinetic term. In fact we effectively get a negative pressure dynamics (wϕ < 0) with

an accelerated expansion (ωϕ < −1/3) if the scalar potential is sufficiently larger than the kinetic

term.

As for the background dynamics, using equation (2.30) we get

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 and H2 =
8πG

3
ρϕ =

8πG

3

[
1

2
ϕ̇20 + V (ϕ0)

]
, (2.36)

5It is notable, that this is a minimal setup that allows inflationary dynamics. In practice, the scalar field could
have a non-minimal coupling to the gravity sector, like λφ2R.

6We are considering a flat FLRW metric (κ = 0) since the only difference we would get by including curvature
would be in ∇2, however, the equation would look exactly the same.
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2 THE INFLATIONARY PARADIGM

where we have neglected other contributions to the Hubble rate like ρm ∝ a−3, ρr ∝ a−4 and

ρκ ∝ a−2 which are dominated by ρϕ ≃ V (ϕ) ≃ const.

2.3.2 Slow-Roll

Notice, that we have already identified one of the slow-roll conditions. Namely, this was done when

we imposed that the kinetic term is dominated by the potential energy

V (ϕ) ≫ ϕ̇2. (2.37)

This implies that the scalar potential is sufficiently flat.

The second slow roll condition is formulated by imposing that inflation lasts for a sufficiently

long time, then the equation of motion (2.36) tells us that

|ϕ̈| ≪ |3Hϕ̇|, |V,ϕ|, (2.38)

so the background dynamics is governed by

ϕ̇ ≈ −V,ϕ
3H

, H2 ≈ 1

3M2
Pl

V (ϕ), (2.39)

and spacetime is approximately de Sitter

a(t) ∼ eHt. (2.40)

To quantify the slow-roll behavior we introduce the slow-roll parameters ε and η. The first slow-roll

parameter quantifies how much the Hubble parameter changes during inflation

ε = − Ḣ

H2
(2.41)

Then using equation (2.36) we get

ε = 4πG
ϕ̇2

H2

SR≃ 3

2

ϕ̇2

V (ϕ)
, (2.42)

where the last equation holds only in the slow-roll regime since it is derived by neglecting the kinetic

term in H2 in equation (2.36). This inherently implies that during slow-roll

ε≪ 1. (2.43)

Moreover, the first slow-roll parameter can also be expressed in a way that determines the shape of

the inflationary potential

ε =
MPl

2

(
V,ϕ
V

)2

≪ 1, (2.44)
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meaning that V,ϕ is small so the potential is flat.

The second slow roll parameter is defined as

η = − ϕ̈

Hϕ̇
(2.45)

Recalling equation (2.39) implies ϕ̇ ≃ −V,ϕ/3H, resulting in

η =
V,ϕϕ
3H2

− Ḣ

H2

V,ϕ

3Hϕ̇
= ηV − ε. (2.46)

Since we have already imposed ε ≪ 1, then to keep the second slow-roll parameter small, we need

ηV ≪ 1. Then since the dominant contribution in H2 comes from the potential, we get

ηV ≃M2
Pl

V,ϕϕ
V

≪ 1. (2.47)

Let us recall the definition of the number of e-foldings during inflation which for any interval

(ti, tf ) can be written as

N = ln

[
a(tf )

a(ti)

]
=

∫ tf

ti

Hdt =

∫ ϕf

ϕi

H

ϕ̇

SR
≈
∫ ϕi

ϕf

V

V,ϕ
dϕ. (2.48)

We can also rewrite this using equation (2.44) to obtain

N =

∫ ϕi

ϕf

dϕ√
2ε
. (2.49)

In order to solve the flatness and the horizon problems, we need inflation to last at least ≳ 60

e-folds

Ntot = ln

[
a(tend)

a(tstart)

]
, (2.50)

where |tstart−tend| is the total time it takes for inflation to end. The CMB fluctuations are generated

around 40 ÷ 60 before inflation terminates, so using equation (2.49) we obtain a constraint on the

field value when the aforementioned fluctuations were generated ϕCMB∫ ϕCMB

ϕend

dϕ√
2ε

≈ 40÷ 60. (2.51)

2.3.3 Scalar Perturbations from Inflation

Certainly one of the most promising predictions of inflation is the generation of quantum fluctuations

which later seed the cosmic structure and the measured anisotropies on CMB. In fact, it has been

shown [1, 36, 37, 38] that even the simplest realizations of inflation can account not only for galaxy

formation but also their statistics. The idea behind this premise is that quantum fluctuations of
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the light scalar field will ”freeze” at the horizon exit (See fig. 3). This process is independent of

the theory of gravity and has to do with the fact that the timescale of the given mode that crosses

the horizon a/k becomes larger than the Hubble time H−1. In this section, we will consider the

Figure 3: Fluctuations are generated in the sub-horizon scales and cross the horizon as the Hubble radius (aH)−1 shrinks
during inflation. In the super-horizon regime causal physics is non-existent and the fluctuations freeze until later, when they
reenter the horizon.

first-order perturbation of the light scalar field in near de Sitter spacetime. We will ignore the metric

perturbation and allow the scalar field perturbation to evolve on an unperturbed background.

Notoriously any model of inflation also predicts a generation of tensor perturbations, i.e., pri-

mordial gravitational waves (see [39] for a review of the topic). In this thesis, however, we will focus

mainly on scalar perturbations. We can do this because the scalar and tensor perturbations are

decoupled in the first order. In the case of the matter sector, we make the usual decomposition of

the inflaton into the homogeneous background part ϕ(τ) and fluctuations δϕ(τ,x)

ϕ(t,x) = ϕ(t) + δϕ(t,x). (2.52)

and solve the Klein-Gordon equation (2.31). It is convenient to move to Fourier space, where

δϕ(x, t) =

∫
d3k

(2π)3/2
eik·xδϕk(t), (2.53)

where at the linear level separate modes evolve independently. The Klein-Gordon equation for δϕ

in Fourier space then reads

δ̈ϕk + 3H ˙δϕk + a−2k2δϕk + V,ϕϕδϕk = 0. (2.54)
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We proceed by quantizing the rescaled field δφ = a(t)δϕ:

δφ =

∫
d3k

(2π)3/2

[
uk(τ)âke

−ik·x + u∗k(τ)â
†
ke

ik·x
]
, (2.55)

where â† and â are the creation and annihilation operators respectively and τ(= −1/aH) is the

conformal time. uk(τ) satisfies the following normalization condition u∗k(τ)u
′
k(τ)−uk(τ)u∗k(τ) = −i,

that guarantees the canonical quantization relations for the creation and annihilation operators

[âk, â
†
k′ ] = δ(3)(k− k′), [âk, âk′ ] = 0. (2.56)

Using conformal time, the equation of motion for the rescaled field perturbation writes

δφ′′ − a′′

a
δφ−∇2δφ = −a2V,φφδφ. (2.57)

So The Fourier mode functions uk satisfy

u′′k(τ) +

[
k2 − a′′

a
+ a2V,φφ

]
uk(τ) = 0. (2.58)

Since heavy scalar field perturbations are suppressed, we only consider light fields so we will neglect

V,φφ = m2
φ and solve the equation at first order in slow-roll7

u′′k(τ) +

[
k2 −

ν2 − 1
4

τ2

]
uk(τ) = 0. (2.60)

In this form, this equation is equivalent to the Bessel equation, whose solution can be written using

the Hankel functions

uk(τ) =
√
−τ
[
c1(k)H

(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]
, (2.61)

where (1) and (2) denote the kinds of the Hankel function (first and the second kind respectively).

We require that deep sub-horizon modes (−kτ → ∞) correspond to Bunch-Davies vacuum states

uk(τ) ≈
e−ikτ

√
2k

. (2.62)

This condition is satisfied by imposing c2(k) = 0 and c1(k) =
√
π
2 exp

[
i(ν + 1

2 )
π
2

]
. Then the final

7During slow-roll

τ ≃ −
1

aH(1− ε)
,

a′′

a
=

2

τ2

(
1 +

3

2
ε

)
(2.59)
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solution is8

uk(τ) =
1

2

√
π

k

√
−kτei(ν+

1
2 )

π
2H(1)

ν (−kτ). (2.63)

If we had retained the mass mφ, the form of the equation (2.60) would stay the same, only with

ν2 = 9/4+ 3ε− 3ηV , where ηV = m2
φ/H

2. Thus, if the scalar field is massive enough mφ ≳ H, then

η ≳ 1, which violates the condition necessary to have ”enough” inflation.

We now go beyond the homogeneous Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.

This step is necessary for the complete treatment of inflationary perturbations. We write down the

perturbed FLRW metric

ds2 = a2(τ){−(1− 2Φ)dτ2 + 2∂iBdx
idτ + [(1− 2ψ)δij + ∂ijE]dxidxj}, (2.64)

where a is the usual FLRW scale factor, τ is the conformal time and Φ, ψ,B,E generally depend on

space and time. Gauge freedom allows us to decrease the number of degrees of freedom in such a way

that the scalar metric perturbations can be encoded into two gauge-invariant9 Bardeen potentials.

The Bardeen potential corresponding to spatial perturbations is

Ψ = ψ − a′

a
(B − E′), (2.65)

where primes denote the derivative by conformal time ∂τ = a∂t, where t is the cosmic time. The

inflaton field perturbations can be represented analogously using a gauge-invariant field

δφGI(τ,x) = δφ(τ,x) + ϕ′(τ)(B − E′). (2.66)

Conveniently, the gauge-invariant field and the Bardeen potential are combined into another gauge-

invariant field, the Mukhanov-Sasaki variable

v(τ,x) = a

(
δφGI(τ,x) +

φ′(τ)

H
Ψ

)
, (2.67)

which is related to the comoving curvature perturbation through

v = −aφ
′(τ)ζ

H
, (2.68)

where H = a′/a = aH, H is the Hubble parameter. One could equivalently replace the conformal

time with cosmic time v = −aϕ̇ζ/H.

8Note that we could have taken c1(k) = 0 and present the final result using the Hankel function of the second kind

H
(2)
ν . The only difference would be the sign in front of the phase factor.
9Gauge freedom can lead to confusion. Namely, due to the spacetime geometry ambiguities between the real

and fake perturbations may arise. This is primarily why gauge-invariant quantities are useful since perturbations in
gauge-invariant quantities cannot be removed by a coordinate transformation.

22



2 THE INFLATIONARY PARADIGM

It can be shown, that the Mukhanov-Sasaki variable vk also satisfies the Bessel equation

v′′k (τ) +

[
k2 −

ν2 − 1
4

τ2

]
vk(τ) = 0 (2.69)

and has solutions similar to (2.61).

2.4 Quantum-to-classical transition

The great advantage of cosmic inflation is that through quantum fluctuations discussed in the pre-

vious section, we obtain an elegant mechanism for generating the initial seeds of structure in the

universe. Primordial perturbations are created deep into the horizon at every length scale. Figure 3

shows that at some point during inflation, the fluctuations cross the Hubble radius, becoming super-

horizon, until later, when the comoving radius starts to increase. Eventually, all of the perturbations

that had crossed the horizon during inflation will reenter the horizon.

However, there is a caveat in understanding how exactly the quantum-to-classical transition

occurs. Specifically, how do the quantum fluctuations seed classical objects like CMB or LSS? We

need a mechanism that allows for classicalization of the primordial fluctuations. Indeed, one of the

most prominent ways to tackle this question is by invoking decoherence [28]. Decoherence, first

proposed by Zeh [40] has been studied extensively and is an experimentally proven phenomenon

[41]. The basic idea is that a quantum system interacts with its environment and this interaction

changes the probabilities of possible outcomes of the measurement and suppresses the interference

between them. Applying these concepts to cosmology leads to understanding the classicalization of

primordial perturbations. On the other hand, since decoherence changes the statistics of the system,

while the statistics of the primordial perturbations are well constrained, this opens a new window

to constrain cosmic decoherence observationally. Decoherence will be the main topic of Chapter 3.

However, there is another mechanism, by which one could explain the apparent classicality of

the observables. The key idea is that the primordial quantum fluctuations are placed in a highly

squeezed state by the end of inflation. Paradoxically, the squeezed states are highly non-classical,

however as we shall see, the very large squeezing also obscures the “quantumness” of the state.

2.4.1 The squeezing formalism for inflationary perturbations

The evolution of the quantum state during inflation is important to understand the late-time pre-

dictions associated with the state. In this section we will introduce the squeezing formalism, applied

to vacuum fluctuations evolving during inflation, producing the so-called two-mode squeezed state

[28, 29, 42], although this mechanism is subject to the same types of ambiguities as particle creation

during inflation (see [43]). State squeezing is a well-established concept and in a way a cornerstone

of quantum optics (see [44] for a review), but also in other fields of physics. We shall work in the

Schrödinger picture, however in Appendix A we derive a simple relation between the two pictures.

On the one hand the produced squeezed state is expected to be highly classical [28, 29, 42, 45,

46, 47, 48], but on the other, squeezing due to inflation also entangles the modes with k⃗ and −k⃗,
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making the final state highly quantum [49].

To understand the squeezing formalism, we start by taking the action for the curvature pertur-

bations [35]

S =

∫
d4xa2εM2

Pl

[
ζ

′2 − (∂iζ)
2
]
. (2.70)

Using the relation (2.68), we can rewrite this action in terms of the Mukhanov-Sasaki variable

v(τ,x) = z(τ)ζ(τ, βx), where z2(τ) = a2M2
Pl2ε is a time-dependent variable. The action reads

Sv =
1

2

∫
dτd3x

[
(v′)2 − (∂iv)

2 +
z′′

z
v2
]
, (2.71)

which is the action of a free scalar field with a time-dependent mass term m2 = −z′′/z [50]. It will

prove convenient to add a total derivative term, obtaining the following equivalent action [29, 51]

Sv =
1

2

∫
dτd3x

[
(v′)2 − (∂iv)

2 − 2
z′

z
vv′ +

(
z′

z

)2

v2

]
. (2.72)

The Hamiltonian of the system now reads

Hv =
1

2

∫
d3x

[
p2 + (∂iv)

2 + 2
z′

z
vp

]
, (2.73)

where p is the conjugate momentum corresponding to v. In order to proceed with the standard

quantization procedure we promote the field variables to operators and perform Fourier decomposi-

tion

v̂ =

∫
d3k

(2π)3/2
v̂ke

ik·x,

p̂ =

∫
d3k

(2π)3/2
p̂ke

ik·x.

(2.74)

We obtain a two-mode Hamiltonian in k-space

Ĥk = p̂−kp̂k + k2v̂−kv̂k +
z′

z
(p̂−kv̂k + v̂−kp̂k). (2.75)

We continue to work in the Schrödinger picture, where the operators are fixed at the initial time.

The creation and annihilation operators can be introduced in the usual way

v̂k =
1√
2k

(
âk + â†−k

)
,

p̂k = −i
√
k

2

(
âk − â†−k

)
.

(2.76)

The two-mode Hamiltonian operator can be rewritten in terms of the creation-annihilation operators

Ĥk = Ĥ(0)
k + Ĥint

k = Fk

(
â†kâk + â†−kâ−k + 1

)
+ iΛk

(
e−2iΦk âkâ−k − h.c.

)
, (2.77)
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where in case of the inflaton (see ref. [29])

Fk = k, Λk =
z′

z
, Φk = −π/2. (2.78)

So the generic quadratic Hamiltonian is comprised of a harmonic part, proportional to the frequency

Fk and a parametric amplification (or the squeezing) part proportional to Rk. The amplification

is attributed to the time-dependent background which results in the effective time-dependent mass

discussed above. The Hamiltonian above generates the following time evolution operator

Û(τ, τ0) = Ŝ[rk, φk]R̂[θk], (2.79)

where R̂k is the two-mode rotation operator defined as

R̂ = exp
[
−iθk

(
â†kâk + â†−kâ−k + 1

)]
(2.80)

and Ŝk is the two-mode squeeze operator

Ŝ = exp
[rk
2

(
e−2iφk â−kâk − h.c.

)]
, (2.81)

where rk is the squeezing parameter, φk is the squeezing angle and θk is the squeezing phase, which

are determined by the details of the studied dynamics and are generally time-dependent. In order to

study the said dynamics for the case of inflation, we need to set the initial conditions of our quantum

field theory. First, we impose, that the modes inside the horizon today, were also inside the horizon

during the initial stages of inflation. It means that k|τ | ≫ 1 Fk = k and z′/z ≃ H = Ha ∝ 1/|τ |.
The total Hamiltonian (2.77) reduces to the free Hamiltonian Ĥ(0)

k . We choose the ground state of

this Hamiltonian as the initial state, which is defined by

âk |0⟩Ĥ(0)
k

= 0, ∀k. (2.82)

Acting on this state by the rotation operator R̂ gives an irrelevant phase

R̂[θk] |0⟩Ĥ(0)
k

= eiθk |0⟩Ĥ(0)
k

, (2.83)

however, when we act on the initial vacuum state by the squeeze operator Ŝ, it becomes a two-mode

squeezed state

|2MSSk⟩ = Ŝ[rk, φk] |0⟩Ĥ(0)
k

=
1

cosh rk

∞∑
n=0

(−1)n(e2iφk tanh rk)
n |n,k;n,−k⟩ , (2.84)

where

|n,k;n,−k⟩ =
∞∑

n=0

1

n!

(
â†kâ−k

)n
|0⟩Ĥ(0)

k

(2.85)
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is the two-mode occupation number state. This part of the evolution operator defined above is

responsible for the amplification of the fluctuations.

In order to assess squeezing, the evolution equations for the squeezing parameters rk, φk and θk

must be derived. We start by recalling the definition of the evolution operator10

Û(τ, τ0) = T̂ exp

[
−i
∫ τ

τ0

dτ ′Ĥk(τ
′)

]
= T̂ exp

[
−i
∫ τ

τ0

dτ ′Ωk

(
â†kâk + â†−kâ−k + 1

)
+

∫ τ

τ0

dτ ′Λk

(
e−2iΦk âkâ−k − h.c.

)]
.

(2.86)

We divide the evolution into infinitesimal time steps ϵ. The evolution operators satisfy the following

composite property

Û(τ + ϵ, τ0) = Û(τ + ϵ, τ)Û(τ, τ0). (2.87)

Then according to our definition of the evolution operator (2.79),

Ŝ[rk, φk]R̂[θk] = Ŝ[δrk, δφk]R̂[δθk]Ŝ[r(0)k , φ
(0)
k ]R̂[θ

(0)
k ]. (2.88)

We now infer, that for small ϵ, δrk = Λk, δφk = Φk and δθk = Ωk. The properties of the squeeze

operators allow us to rewrite the right-hand side of the equation as

RHS = Ŝ[δrk, δφk]Ŝ[r(0)k , φ
(0)
k − δθk]R̂[θ

(0)
k + δθ

(0)
k ] = Ŝ[rk, φk]R̂[θ̄k], (2.89)

where

eiθ̄k cosh rk = cosh r
(0)
k cosh δrk + e−2i(φ

(0)
k −δφk−δθk) cosh r

(0)
k sinh δrk, (2.90)

and

2ei(2(φk−φ
(0)
k +δθk)+θ̄k) sinh rk = sinh r

(0)
k cosh δrk + e−2i(φ

(0)
k −δφk−δθk) sinh δrk cosh r

(0)
k . (2.91)

For small ε one obtains recursion relations for rk, φk and θk, whose differential form reads [29]

r′k = Λk cos 2(Φk − φk),

φ′
k = −Fk +

Λk

2
(tanh rk + cothRk) sin 2(Φk − φk),

θ′k = Fk − Λk tanh rk sin 2(Φk − φk).

(2.92)

Note, that we have provided a simplified version of the parameters in (2.78) (see [29]), since

we are interested in a (nearly) exponentially expanding universe, initially placed in a Bunch-Davies

10Note, that throughout this section, we have been using the Schrödinger picture variables, however, as it is well-
known, Heisenberg and Schrödinger pictures are equivalent in terms of the physics they describe, so we expect to
reproduce the same results in both cases. To see the connection between the two pictures see Appendix A
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vacuum [52]. In this case, the equations of motion can be solved exactly and one obtains

rk = sinh−1 1

2kτ
,

φk = −π
4
− 1

2
arctan

1

2kτ
,

θk = kτ + arctan
1

2kτ
.

(2.93)

Initially, the perturbations start at subhorizon scales (k|τ | ≫ 1), where rk → 0, (and φk → −π/4
and θk → ∞) meaning that there is no squeezing. On the other hand at the superhorizon scales

(k|τ | ≪ 1), rk → ∞ the state is highly squeezed.

2.4.2 How does classicality emerge?

In the previous section, we have introduced the formalism of state squeezing. The question at hand

is, why do we observe a classical universe when the initial fluctuations are of a quantum nature?

As we have mentioned before, there are actually two main problems when talking about observing

any type of imprint of “quantumness” from the very early universe. First, the final inflation puts

the initial quantum state into a very special state - the squeezed state. Second, decoherence - the

main focus of this thesis (see section 3) - caused by interactions is ubiquitous and erases quantum

correlations.

Let us understand why squeezing leads to classical observables. The dynamical evolution of the

quantum modes is governed by the time-dependent Schrödinger equation [46],

iℏψ′(τ, v) = Ĥψ(τ, v). (2.94)

Since the initial adiabatic ground state is a Gaussian state, for the wavefunction Gaussianity will be

preserved throughout the entire time-evolution. However, the accelerated expansion of the universe

squeezes the state. The Solution for equation (2.94) reads

ψ(τ, v) =

(
2ReΩk(τ)

π

) 1
4

exp
[
−Ωk(τ)v

2(τ)
]
, (2.95)

with [28]

Ωk(τ) = k
1− i sin 2φk sinh 2rk

cosh 2rk + cos 2ϕk sinh 2rk
(2.96)

where we can clearly see, that in the limit of large squeezing ImΩk ≫ ReΩk.

Claim: for ImΩk ≫ ReΩk the state (2.95) becomes classical in the WKB sense [29].
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Proof: Let us consider a simple inverted harmonic oscillator. The Hamiltonian reads

Ĥ =
p̂2

2
− q̂2

2
= i

ℏ
2

[
â2e2i

π
4 + h.c.

]
, (2.97)

where â is as usual the annihilation operator. The q-representation of a squeezed state for

this system writes

ψ(q) = N exp

[
− q2

2ℏ
(B + iC)

]
, (2.98)

where

N =

(
B

ℏπ

) 1
4

, B =
1

cosh 2r
, C = tanh 2r, (2.99)

where r is the squeezing parameter. We can rewrite the wavefunction as

ψ(q) = ρ(q)eiS(q). (2.100)

WKB condition: if S(q) varies more rapidly with q than ρ(q) the state can be identified as a

WKB state for which

p̂ ≃ ℏ∂qS(q) |ψ⟩ . (2.101)

When this condition holds the state assigns the position and the momentum simultaneously

with

p(q) = ℏ∂qS(q) (2.102)

representing classical evolution in the phase space. In the case considered ρ(q) = Ne−Bq2/2ℏ

and S(q) = −Cq2/2ℏ. The WKB condition is met when ρ(∂qS(q)/∂qρq) is large. One easily

obtains

∂qS(q) = −C q
ℏ
, ∂qρ(q) = −NBq

ℏ
exp

[
−Bq

2

2ℏ

]
, (2.103)

so finally ∣∣∣∣ρ∂qS∂qρ
∣∣∣∣ = C

B
= sinh 2r. (2.104)

Thus in the limit of large squeezing (r ≫ 1), the state (2.98) is classical in the WKB sense.

The argument can be generalized for (2.95).

The state (2.95) is definitely different from a classical state, however, the reason why we are

unable to find any quantum signatures is because, for example, the CMB observations measure field

amplitudes. In the large squeezing limit the corresponding expectation values of the state (2.95)

cannot be distinguished from a classical Gaussian phase space distribution.

However, as we have noticed above, the field modes are not an isolated system. They interact with

their environment (at least gravitationally) which in turn decoheres the system. A great example of

how ubiquitous decoherence is in the universe is a dust particle in the interstellar medium. Simply
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due to the (weak) coupling with the CMB photons they follow a classical trajectory.

There are many viable models of inflation [53], of which some are distinguished by the types

of couplings with other sectors. In the framework of quantum decoherence, these sectors can be

regarded as environments. We will focus on axion inflation, where axions play the role of the

inflaton and are coupled with a U(1) gauge field, which we will identify as the environment.

2.5 Axion inflation

A somewhat distinguished model of inflation involves a Pseudo-Nambu-Goldstone-Boson (PGNB),

which enjoys a shift symmetry φ → φ+ const, protecting the slow-roll parameters from dangerous

corrections (see e.g. [19, 24, 54]). In this scenario, the shift symmetry is slightly broken either

explicitly or by quantum effects. This allows the slow-roll parameters to maintain values ε, η ≪ 1

but not 0 to allow for inflation. To illustrate why this is important, consider a generic inflationary

potential Vsr, where sr stands for slow-roll. If one considers all operators of five and six dimensions

involving the inflaton, unless forbidden by some symmetry, these operators can contribute with

O(1) corrections to the slow-roll parameters, prematurely ending inflation [55]. Then, for inflation

to be successful, we must ensure that whatever the UV physics is at play, it does not induce such

destructive terms. The situation is even more dangerous when it comes to large-field models of

inflation, where the inflaton vacuum expectation value changes by an amount much larger than

the Planck scale during inflation. Here Planck-suppressed terms of any dimension can contribute

significantly to the slow-roll parameters, so one has to control infinitely many terms not to spoil

inflation.

From a particle physics perspective, PGNBs are ubiquitous. They appear whenever an approxi-

mate global symmetry is broken. We may refer to these PGNBs as axions.

The first model, where axion plays the role of the inflaton [19] exploited a periodic potential

V (φ) = Λ4

[
1− cos

(
φ

f

)]
(2.105)

to drive inflation. Here f is the axion decay constant and Λ is some non-perturbatively generated

scale proportional to e−1/λ, with λ being the gauge coupling. The shift symmetry (continuous) is

valid at all orders in the perturbation theory, but it is generally broken by non-perturbative effects

to a discrete sub-group φ → φ+ 2πf . Unfortunately, this model complies with observations only if

f ≳MPl [56]. This regime is problematic, since in the case of the PGNB, it means that the symmetry

breaking occurs above the quantum gravity scale, where conventional quantum field theory (QFT)

is presumably not valid [57, 58]. To avoid such issues, many extensions to axion models have been

proposed (see e.g.[59, 60, 61, 62]).

The axion decay constant obviously plays an important role in any axion inflation model. The

reasoning behind this is, that it controls the least-irrelevant shift-symmetric coupling, such as the

five-dimensional coupling with the gauge fields φFF̃/f . In any axion model this coupling is expected
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and to be more precise it is manifest as an interaction term in the Lagrangian

Lint = − α

4f
ϕFµν F̃µν . (2.106)

Fµν ≡ ∂µAν − ∂νAµ is the U(1) gauge field strength and F̃µν ≡ ϵµνρσFρσ/2
√
−g is its dual. Here ϵ

denotes the completely antisymmetric tensor. The dimensionless parameter α is order unity from the

perspective of effective field theory, however in [59], it was shown to be larger for some realizations

of axion inflation. To realize a controlled effective field theory it is natural to take α/f ≫ MPl. In

ref [59], a modified slow-roll mechanism was proposed: The gauge fields slow down the inflaton field

φ even on steep potentials. This allows for an elongated duration of inflation. On the other hand

ref [63] took a more conservative approach and showed that even in the standard slow-roll scenario,

the coupling (2.106) can have a significant impact on the phenomenology of the model. We adopt

this approach which is based on the following observation: The motion of the inflaton field amplifies

the gauge field fluctuations δA, which in turn decay into inflaton perturbations via inverse dacay

δA + δA → δφ. This process also allows for excess production of primordial gravitational waves

and large non-Gaussianities [27, 63, 64]. These studies also show, that for α/f ≳ 102M−1
Pl , the new

source of perturbations dominates the standard vacuum fluctuations.

2.5.1 Gauge field production

As advertised, we must show how the gauge fields are produced during inflation. To meet this goal,

we start with the action of a PGNB coupled to U(1) gauge fields [27]

S =

∫
d4x

√
−g
[
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

4
FµνF

µν − α

4f
ϕFµν F̃

µν

]
, (2.107)

where g is the determinant of the spatially flat FRLW metric. R is the Ricci scalar and F, F̃ are the

gauge field strength and its dual (see equation (2.106)). As usual, the inflaton field is made up of

the background and the fluctuating parts ϕ(x, t) = ϕ(t) + δϕ(x, t).

In Appendix B we obtain the equations of motion for the gauge fields and the inflaton field by

varying this action. As a result we obtain(B.7)11(B.11) and (B.21)(
∇⃗ · A⃗

)′
= 0, (2.108)

A⃗′′ − α

f
ϕ′∇⃗× A⃗+ ∇⃗2A⃗ = 0, (2.109)

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2
dV

dϕ
= a2

α

f
E⃗ · B⃗. (2.110)

where ′ ≡ ∂/∂τ and in analogy with the electric and the magnetic field, we have defined

B⃗ =
1

a2
ϵijk∂iAk ≡ 1

a2
∇⃗× A⃗, E⃗ = − 1

a2
∂0Ai ≡ − 1

a2
A⃗′. (2.111)

11Equation (B.7) is actually a constraint equation
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Equations (2.108-2.110) are complemented with the 00 Einstein equation, which determines the

gauge field contribution to the total energy density [63]

H2 =
1

3M2
Pl

[
1

2
(ϕ′)2 +

1

2

(
∇⃗ϕ
)2

+ a2V (ϕ) +
a2

2

(
E⃗2 + B⃗2

)]
. (2.112)

Note, however, that these equations do not complete the treatment of perturbations, since one must

also consider the metric fluctuations by using for example the ADM formalism. For our purposes,

the equations presented will suffice (for more on why this is justified the reader is referred to [27]).

In equation (2.109), it is clear that the second term accounts for the gauge field production due

to the motion of the inflaton field. The effect of the produced gauge fields is twofold: i) gauge fields

source inflaton perturbations through equation (2.110) and ii) the gauge field backreacts on the

background dynamics by equation (2.112), see Sec. 2.5.3.

2.5.2 Tachyonic amplification

The motion of the inflaton field causes instability in the gauge field fluctuations. To see this effect we

turn to equation (2.109) and consider a homogeneous background ϕ(t). The Fourier decomposition

of the gauge field reads

A⃗(x, τ) =

∫
d3k

(2π)3/2

∑
λ=±

[
ε⃗λ(k)aλ(k)Aλ(k, τ)e

ik·x + ε∗λ(k)a
†
λ(k)A

∗
λ(k, τ)e

−ik·x
]
, (2.113)

where λ here denotes different polarizations, ε⃗λ are the polarization vectors that obey the relations

k⃗ · ε⃗±(k⃗) = 0, k⃗× ε⃗± = ∓ikε⃗±(k⃗), ε⃗±(−k⃗) = ε⃗∗±(k⃗), ε⃗∗λ(k⃗) · ε⃗λ′(k⃗) = δλλ′ , (2.114)

and the creation-annihilation operators obey the canonical commutation relations

[aλ(k)a
†
λ′(p)] = δλλ′δ(3)(k− p), (2.115)

[aλ(k)aλ′(p)] = 0, [a†λ(k)a
†
λ′(p)] = 0. (2.116)

Plugging (2.113) into the equation of motion (2.109), the modes A± will obey the following equation:[
d2

dτ2
+ k2 ± 2kξ

τ

]
A±(τ, k) = 0, ξ =

αϕ̇

2fH
, (2.117)

where the dot denotes a derivative with respect to cosmic time. During inflation, the parameter ξ

can be considered as a constant, since the evolution ϕ̇ is subleading in the slow-roll approximation12.

Without loss of generality one can assume α > 0 and ϕ̇ > 0 and therefore ξ > 0. In this case, ” + ”

mode undergoes tachyonic instability and grows exponentially, while the ”−” mode gets suppressed.

12We will generalize to scale dependence of ξ in later sections.
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This is clearer once we divide equation (2.117) by k2 and identify ω2
eff = 1+2ξ/kτ . Since τ ∈ (−∞; 0]

during inflation ω2
eff < 0 for kτ ≲ 2ξ leads to tachyonic amplification of A+(τ, k).

As usual, we require the solutions to be of the Bunch-Davies form at the beginning of inflation

A±(τ, k) =
e−ikτ

√
2k

, kτ → −∞. (2.118)

Then the solutions of (2.117) satisfying this condition can be written in terms of the Coulomb

functions [59]

A±(τ, k) =
1√
2k

(G0(±ξ,−kτ) + iF0(±ξ,−kτ)) , (2.119)

where G0 and F0 are the irregular and regular Coulomb functions respectively. In fig. 4 we see, that

the plus mode dominates over the minus mode near the end of inflation13.

We can make an approximation in the regime 2ξ ≫ −kτ and eπξ ≫ 1

A+(τ, k) ≃
√

−2τ

π
eπξK1(2

√
−2ξkτ), (2.120)

where K1 is the Bessel function of the second kind. The interval (8ξ)−1 ≲ −kτ ≲ 2ξ accounts for

most of the power of the created gauge fields [63]. This can be seen in figure 5 where we have plotted

the exact solution and a relatively tractable approximation

A+(τ, k) ≃
1√
2k

(
−kτ
2ξ

)1/4

eπξ−2
√
−2ξkτ . (2.121)

Figure 4: Behavior of the plus (black) and minus (red) modes at ξ = 2 and k = 0.05. The plus mode is absolutely dominant
close to the end of inflation.

For our purposes, we will be using this approximation in the remainder of the text. In order to

13Although which mode is amplified is completely arbitrary and depends only on the overall sign of ξ
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Figure 5: The exact (black) and the approximated (red) mode behavior in the interval (8ξ)−1 ≲ −kτ ≲ 2ξ, where we have
taken ξ = 3 and k = 0.2.

derive the environment correlation function we will also need its time derivative

A′
+(τ, k) =

(
1

4τ
+

√
2kξ

−τ

)
A+(τ, k) ≃

√
2kξ

−τ
A+(τ, k). (2.122)

2.5.3 Backreaction in the slow-roll Approximation

Since gauge fields undergo an exponential amplification near the end of inflation, it would be natural

to investigate their backreaction on the homogeneous inflaton background.

We will use the mean-field equations (2.110, 2.112), that capture the backreaction of the produced

gauge fields on the homogeneous inflaton background. Switching to physical time, we have

ϕ̈+ 3Hϕ̇+ Vϕ =
α

f
⟨E⃗ · B⃗⟩,

H2 =
1

3M2
Pl

[
1

2
(ϕ̇)2 + V (ϕ) +

1

2
⟨E⃗2 + B⃗2⟩

]
,

(2.123)

where Vϕ ≡ dV/dϕ. Notice that the gradient terms have vanished, because these equations govern

the backreaction on the homogeneous dynamics of ϕ(t) and a(t).

Using eq. (2.113) and neglecting the negative mode altogether, we write

⟨E⃗ · B⃗⟩ = − 1

a4(τ)

∫
d3k

(2π)3/2
d3p

(2π)3/2
p⟨
[
ε⃗+(k) · ε⃗+(p)a+(k)a†+(p)A′

+(τ, k)A
∗
+(τ, p)e

i(k−p)·x
]
⟩

= − 1

(2π)2a4(τ)

∫
dkk3∂τ |A+(τ, k)|2,

(2.124)

where in the first equation we only kept the non-vanishing expectation values.

This derivation can be trivially adopted to calculate ⟨E⃗2 + B⃗2⟩, leading to
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1

2
⟨E⃗2 + B⃗2⟩ = 1

(2π)2a4

∫
dkk2

[
|A′

+(τ, k)|2 + k2|A+(τ, k)|2
]
. (2.125)

While evaluating these integrals, we can disregard the large momentum (k > 2ξaH) modes as

well, since these modes stay in their vacuum states and do not undergo tachyonic instability. This

way one establishes a UV cutoff for the integrals in equations (2.124-2.125): −kτ < 2ξ. However,

since the gauge field production occurs mainly in the interval (8ξ)−1 < k/(aH) < 2ξ, we can extend

the region of integration from 0 to ∞, since the gauge field production rapidly decreases outside this

interval, so their contribution will be negligible. This way, we can approach the integrals analytically.

Plugging equations (2.121), (2.122) into the integral in (2.124)∫
dkk3∂τ |A+(τ, k)|2 = e2πξ

∫ ∞

0

dkk3e−4
√

2ξk/aH . (2.126)

We can make the change of variable p = 2(2ξk/aH)1/4, which leads to a Gaussian integral.

Plugging this into (2.124) produces

⟨E⃗ · B⃗⟩ = − 4

(2π)2a4(τ)
e2πξ

(
aH

32ξ

)4 ∫ ∞

0

dpp15e−p2

≃ −2.4 · 10−4

(
H

ξ

)4

e2πξ. (2.127)

The procedure for evaluating 1/2⟨E⃗2 + B⃗2⟩ is exactly the same and it leads to

1

2
⟨E⃗2 + B⃗2⟩ ≃ 1.4 · 10−4H

4

ξ3
e2πξ. (2.128)

Backreaction effects are twofold. First, we consider the effect on the homogeneous Klein-Gordon

equation (1st equation in (2.123)). It is trivial to show that to trust the usual slow-roll prescription

|3Hϕ̇| ≃ | − Vϕ| ≫ α/f⟨E⃗ · B⃗⟩ we must have

eπξξ−3/2 ≪ 79
ϕ̇

H2
. (2.129)

Second, since the gauge fields are involved in the Friedmann equation (2nd equation in (2.123)), to

ensure that the potential dominates the background evolution of the universe we impose 3M2
PlH

2 ≃
V ≫ 1

2 ⟨E⃗
2 + B⃗2⟩, leading to

eπξξ−3/2 ≪ 146
MPl

H
. (2.130)

If these inequalities are satisfied, then the gauge field backreaction on the homogeneous back-

ground is negligible, which is a good approximation up to the near end of inflation.

Taking into account the standard result for the primordial power spectrum P1/2 = H2/(2πϕ̇) ≃
5 · 10−5, one can obtain a bound for ξ, namely ξ ≤ 4.7.
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2.5.4 Power Spectrum

Even when (2.129) and (2.130) are satisfied the coupling ϕFF can still have a profound effect on

the cosmological perturbations. Here we study the effect of the gauge field production on the scalar

power spectrum following [27].

For perturbations equation (2.110) can be rewritten as

[∂2τ + 2H∂τ −∇2 + a2m2]δϕ(x, τ) = a2
α

f

(
E ·B − ⟨E⃗ · B⃗⟩

)
, (2.131)

where m2 = Vϕϕ. The solution can be split into two independent parts. One is the standard solution

of the homogeneous equation (zero source term) and the second one includes the source term

δϕ(x, τ) = δϕvac(x, τ) + δϕsourced(x, τ). (2.132)

The first term corresponds to the standard vacuum fluctuations, while the second term is produced

through δA+ δA→ δϕ process. This term is actually highly non-Gaussian and may even dominate

the standard vacuum fluctuations [63].

Next, we Fourier decompose (2.132)

δϕ(x, τ) =

∫
d3k

(2π)3/2
Qk(τ)

a(τ)
eik·x. (2.133)

Notice, that the last term in (2.131) is proportional to δ(3)(k) and thus has no effect on modes k ̸= 0.

Then the EOM in Fourier space writes[
∂2τ + k2 + a2m2 − a′′

a

]
Qk(τ) = Sk(τ), (2.134)

where

Sk(τ) ≡ a3(τ)
α

f

∫
d3k

(2π)3/2
E⃗ · B⃗eik·x. (2.135)

From (2.132) it follows, that Q→ Qvac +Qsourced. The homogeneous part can be expanded as

Qvac
k (τ) = b(k)φk(τ) + b†(−k)φ∗

k(τ), (2.136)

where the ladder operators b, b† satisfy[
b(k), b†(p)

]
= δ(3)(k− p). (2.137)

Notice, the homogeneous equations are the the ones considered in section 2.3.3, whose solutions can

be written as

φk(τ) =
i

2

√
π

k

√
−kτH(1)

ν (−kτ), (2.138)
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where we have chosen for convenience the arbitrary phase, such that the solution in the limit−kτ → 0

is real.

The vacuum modes can be employed in the Green function

Gk(τ, τ
′) = iΘ(τ − τ ′) [φk(τ)φ

∗(τ ′)− φ∗(τ)φ(τ ′)] , (2.139)

which obeys [
∂2τ + k2 + a2m2 − a′′

a

]
Gk(τ, τ

′) = δ(τ − τ ′). (2.140)

The sourced part of the solution then takes the following form

Qsourced
k (τ) =

∫ 0

−∞
dτ ′Gk(τ, τ

′)Sk(τ
′). (2.141)

According to our definitions the curvature perturbations on uniform density hypersurfaces (ζ in

section 2.3.3) ζ = −H
ϕ̇

Qk

a .

We now have the ingredients to compute the correlation functions and ultimately, the power

spectrum. The vacuum modes produce the standard result

⟨ζvack ζ vac
k′ ⟩ = 2π2

k3
P (−kτ)ns−1

δ(3)(k− k′), (2.142)

where the spectral index is defined as ns = 1 + 3− 2ν = 1 +O(ε, η) and P1/2 ≡ H2/2πϕ̇.

The extra part of the power spectrum comes from the sourced scalar perturbations. According

to (2.141) the two-point function reads

⟨ζsourcedk (τ)ζsourcedk (τ ′) =
H2

ϕ̇2a2

∫
dτ ′dτ ′′Gk(τ, τ

′)Gk(τ, τ
′′)⟨Sk(τ

′)Sk′(τ ′′)⟩. (2.143)

Now we make an important approximation. Namely, since we are interested in power spectra of

superhorizon modes (−kτ ≪ 1), this allows us to rewrite the solution (2.138) as

φk(τ) ≃
a(τ)H√
2k3/2

(−kτ)
ns−1

2 . (2.144)

which is real. Using this we can rewrite (2.143) as

⟨ζsourcedk (τ)ζsourcedk (τ ′) ≃ 2H4

ϕ̇2
(−kτ)ns−1

k3

∫ τ

−∞
dτ ′dτ ′′ Im{φk(τ

′)} Im{φk(τ
′′)}⟨Sk(τ

′)Sk(τ
′′)⟩,

(2.145)

where we have already used the fact that the integral vanishes for k ̸= k′. The approximation

(2.144) is used only for the modes that depend on τ ; The rest of them are under the integral that

ranges from −∞ to τ , so we will not make the same approximation.

After explicit evaluation of the correlation function ⟨SkSk′⟩ we arrive at the following integral
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expression

⟨ζsourcedk (τ)ζsourcedk′ (τ)⟩ = α2H6e4πξ

28π3f2ϕ̇2
(−kτ)ns−1

k3
δ(3)(k+ k′)×

×
∫
d3q∗

[
1 +

|q∗|2 − q∗ · ẑ
|q∗||ẑ − q∗|

]2√
|q∗|

√
|q∗ − ẑ|

[√
|q∗|+

√
|q∗ − ẑ|

]2
×

× I2
[
2
√
2ξ

(√
|q∗|+

√
|q∗ − ẑ

)]
, (2.146)

where q∗ ≡ q/|k|, we have put k||ẑ and

I[z] ≡
√
π

2

∫ ∞

−kτ

dxx3/2 Re
[
H(1)

ν (x)
]
e−z

√
x. (2.147)

It should be noted, that in this treatment the slow-roll corrections are omitted and we are working

in zeroth order in slow-roll.

The correlation function can be written conveniently as

⟨ζsourcedk (τ)ζsourcedk′ (τ)⟩ ≡ 2π2

k3
(−kτ)ns−1P2f2(ζ)e

4πξδ(3)(k+ k′), (2.148)

where

f2(ξ) =
ξ2

8π

∫
d3q∗

[
1 +

|q∗|2 − q∗ · ẑ
|q∗||ẑ − q∗|

]2√
|q∗|

√
|q∗ − ẑ|

[√
|q∗|+

√
|q∗ − ẑ|

]2
×

× I2
[
2
√
2ξ

(√
|q∗|+

√
|q∗ − ẑ

)]
. (2.149)

This integral has to be evaluated numerically. For ξ ≫ 1 we have [27]

f2(ξ) ≃
7.5× 10−5

ξ6
, ξ ≫ 1. (2.150)

In terms of phenomenology, the most interesting interval is 2 ≤ ξ ≤ 3. One can obtain a fit for f(ξ)

in this interval

f2(ξ) ≃
3 · 10−5

ξ5.4
, 2 ≤ ξ ≤ 3. (2.151)

The power spectrum is related to the two-point function by

⟨ζkζk′⟩ ≡ Pζζ(k)
2π2

k3
δ(3)(k+ k′). (2.152)
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In our case, there are two independent contributions coming from ζvac and ζsourced, hence

Pζζ(k) = P
(
k

k0

)ns−1 [
1 + Pf2(ξ)e4πξ

]
. (2.153)

In Sec. 3.5.1 we compare this result with the one obtained using our adopted formalism.
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3 Quantum Dechoerence in the Early Universe

In this section, we will introduce a general framework and concepts suited for decoherence. Our

emphasis is on the master equations which allow us to study open quantum systems, i.e. quantum

systems that interact with their environment. The reader may refer to [65, 66, 67] for a more

exhaustive review. We then apply these concepts to the standard paradigmatic single-field model of

inflation, as done in for example in refs [3, 2, 6, 7] and many more. Finally, we apply the developed

formalism to axion inflation.

3.1 A brief introduction to decoherence

Quantum decoherence takes into account the fact that realistic physical systems usually interact

with their environment (broadly defined). Quantum interactions induce entanglement between the

system and large environmental degrees of freedom. These interactions affect the observables of a

given quantum system14, in such a way that the supposed quantum system loses coherence, the main

source of quantum effects, such as interference. This is called the environment-induced decoherence

and it is at the root of quantum-to-classical transition as is evident from our argument. Namely,

since the quantum system has lost all its quantum properties, it now behaves classically. In other

words, decoherence describes how interactions at the quantum level influence the statistics of the

system.

The process of dynamical decoherence is very efficient. In fact, even if the interaction with the

environment is weak, the system still becomes highly entangled with the environment degrees of free-

dom. This is an irreversible process, mainly due to the entanglement with enormous environmental

degrees of freedom, which practically cannot be tracked.

Another property of decoherence is usually called environment-induced superselection. That is,

the environment imposes robust preferred states for the system. Practically, this means, that the

environment limits the physical observables on a given system.

Imagine photons scattering off of a body (see figure 6). In the classical picture when measuring

an observable, such as momentum, photon scattering has a negligible effect, so we usually discard

such contributions.

As for the quantum picture, every scattering event is associated with entangled pairs of photons

and the object constituents. Such quantum correlations carry away coherence from the body, di-

minishing the properties of the quantum nature of the object. Note that decoherence is independent

of photon momentum transfer. This means that the environment may not inflict any classical per-

turbation on the system but cause efficient decoherence. We stress, that nevertheless, decoherence

may occur with classical processes, such as energy dissipation from the system, but it is a strictly

quantum mechanism.

Interestingly, a definite environment is not needed. In fact, the thermal radiation and even the

cosmic microwave background (CMB) are completely enough to realize decoherence. This shows

just how ubiquitous decoherence is in the universe. In the cosmological setting, even with the most

14These are usually referred to as open quantum systems.
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Figure 6: Figure borrowed from [65] for illustrative purposes. On the left: photons scattering on an object do not (or
negligibly) change the classical observable, momentum, of the object. On the right: in the quantum picture every scattering
event contributes to the decoherence of the constituents of the object.

minimalistic choice of environment, decoherence remains a barrier to observing any quantum imprint

from the early universe [7, 9, 10].

3.2 Formal Tools

In this section, we will introduce the basic formalism, crucial for the study of decoherence. For

exhaustive reviews, the reader may refer to [65, 66, 67, 68].

3.2.1 Density matrices

Quantum state vector |ψ⟩ encodes maximum information regarding the state of the physical system.

We can associate the density matrix, also called the density operator to the state vector |ψ⟩

ρ̂ ≡ |ψ⟩ ⟨ψ| . (3.1)

We may express the state |ψ⟩ as a superposition of states

|ψ⟩ =
∑
i

ai |ψi⟩ , (3.2)

so that the density matrix can be rewritten accordingly

ρ̂ =
∑
ij

aiaj |ψi⟩ ⟨ψj | . (3.3)

In the matrix representation of ρ̂ the terms i ̸= j correspond to the off-diagonal terms, also known as

interference terms that encapsulate decoherence, however, there is a subtlety associated with these

terms. Namely, interference is to be understood with respect to a certain basis {|ψi⟩}, however
there always exists a basis in which the density matrix becomes diagonal. Disappearance of the
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interfering matrix elements does not imply loss of quantum properties. Generally in a different basis

interference will reappear, showing the persistent underlying coherence between these basis states.

This prompts the definition of the pointer states which are system states |si⟩, such that when we

consider interactions with the environment, if the initial combined state can be factorized |si⟩ |Ei(0)⟩,
the combined state at t > 0 can also be factorized |si⟩ |Ei(t)⟩. From these states, pointer observables

can be constructed

B̂ =
∑
i

bi |si⟩ ⟨si| . (3.4)

|si⟩ are eigenstates of the interaction Hamiltonian Ĥint, which means, that the pointer projectors

|si⟩ ⟨si| commute with Ĥint. We obtain the so-called commutativity criterion[
B̂, Ĥint

]
= 0. (3.5)

Taking the trace of the density matrix is a common way to differentiate between the system and

the environment. One can choose an orthonormal basis of states, e.g. {|ϕi⟩}, of the Hilbert space of

the quantum system. The trace operation is defined as

Tr{Â} =
∑
i

⟨ϕi|Â|ϕi⟩ , (3.6)

where Â is some operator. The trace operation does not depend on the chosen basis, which means

that it can be evaluated using any orthonormal basis of the Hilbert space of a given system.

Trace is a cyclical operation, e.g.

Tr{ÂB̂Ĉ} = Tr{ĈÂB̂} = Tr{B̂ĈÂ}, (3.7)

it is also linear

Tr{Â+ B̂} = Tr{Â}+ Tr{B̂}. (3.8)

To see how useful the trace operation actually is, let us consider the following operator Â = ρ̂Ô,

where ρ is the usual pure-state ( the difference between the pure and mixed-state density matrices

is explained below ) and Ô is an operator corresponding to a physical observable being measured

on the system. As before, we choose an orthonormal basis |oi⟩, that will correspond to eigenstates

of the operator Ô with corresponding eigenvalues oi. Then according to the definition of the trace

operation, we have

Tr{Â} =
∑
i

⟨oi|(|ψ⟩ ⟨ψ|)Ô|oi⟩ =
∑
i

oi| ⟨oi|ψ⟩ |2. (3.9)

However, it is evident, that according to the Born rule, | ⟨oi|ψ⟩ |2 is the probability of the outcome

oi of the measurement. This means that we have obtained the expectation value of the observable

Ô. This is known as the trace rule

⟨Ô⟩ = Tr{ρ̂Ô}. (3.10)
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If we choose Ô to be the identity operator, we get

Tr{ρ̂} = 1. (3.11)

3.2.2 Mixed States

It is easy to generalize the trace rule to non-pure, or mixed-state density matrices. The mixedness is

linked to our ignorance of the state preparation and is thus associated with classical probabilities15.

We denote |ψi⟩ the possible pure states contained in the mixed state, and their respective prob-

abilities pi. Then the idea is simply weighting the expectation values ⟨ψi|Ô|ψi⟩, that is

⟨Ô⟩ =
∑
i

pi ⟨ψi|Ô|ψi⟩ . (3.12)

To consistently describe the statistics of the system we can introduce the mixed-state density

matrix

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| , (3.13)

where pi ≤ 0 and
∑

i pi = 1. It follows, that

⟨Ô⟩ = Tr{ρ̂Ô}, T r{ρ̂} = 1. (3.14)

We can introduce useful parameters quantifying the level of ”mixedness”. The pure-state density

matrix, defined as ρ̂ = |ψ⟩ ⟨ψ| is a projection operator on the pure state |ψ⟩, which immediately

implies that

ρ̂2 = ρ̂, (3.15)

whereas if we take the mixed-state density matrix, we obtain a different result, namely

ρ̂2 =
∑
ij

pipj |ψi⟩ ⟨ψi|ψj⟩ ⟨ψj | , (3.16)

where generally ⟨ψi|ψj⟩ ̸= 0, but even if this was the case ( one can always choose a state basis in

which the density matrix is diagonal ), we still end up with

ρ̂2 =
∑
i

(pi)
2 |ψi⟩ ⟨ψi| . (3.17)

which is not equivalent to (3.15), since for mixed states pi is strictly less thaan 1. This means that

one can find out if the system is in a pure state, simply by checking if (3.15) holds.

Furthermore, we can actually quantify “mixedness”. To see this we recall (3.13). Obviously if

one of the probability values (e.g. p1) is 1, then the rest are all 0, which means that we are absolutely

15If we consider a system prepared in either one of the two states |ψ1⟩ or |ψ2⟩, we can associate classical probabilities
to these states since such ignorance can be quantified using classical probabilities.
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certain that the system is prepared in some state |ψ1⟩. The opposite extreme is if the ρ̂ ∝ Î, where

Î is the identity operator. In this case, we are absolutely ignorant about the quantum state, which

means that every possible state is associated with the same value of probability. This corresponds

to the maximal degree of ignorance.

A common measure of mixedness is the purity, defined as

γ ≡ Tr{ρ̂2}. (3.18)

If γ = 1, the system is in a pure state (see equations (3.14-3.15)). If we examine the mixed state

density matrix, by plugging (3.17) into (3.18), we obtain

γ =

N∑
i=1

p2i , (3.19)

where N is the dimension of the system Hilbert space. For a maximally mixed state pi = 1/N . Then∑N
i=1 1/N

2 = N/N2 = 1/N , which is the lower bound of the sum in (3.19).

Another tool, commonly used for quantifying purity is the von Neumann entropy, which is

basically a generalization of the notion of entropy from statistical mechanics to the density operator

formalism. It can be written as

S(ρ̂) ≡ −Tr{ρ̂ log2 ρ̂} ≡ −
∑
i

λi log2 λi, (3.20)

where λi are the eigenvalues of ρ̂. λi = 0 is handled by defining 0 log2 0 ≡ 0.

Let us again analyze the extreme cases. First, if ρ̂ is pure, then all λi = 0, except one. By

our definition this means S(ρ̂) = −1 log2 1 = 0. On the other hand, in case of maximal mixing,

all λi = pi = 1/N , which leads to S(ρ̂) = log2N , which is the upper bound for the von Neumann

entropy. The parallel between von Neumann entropy and the classically defined entropy is clear,

namely, it is a measure of information or rather the measure of ignorance about the state of the

system when the system has more than one state available.

3.2.3 The Reduced Density Matrix

Reduced density matrices play a key role in decoherence. The basic idea is to completely extract all

the information from the system with little or no consideration of the specifics of the environment.

This approach is crucial when the environment is inaccessible to the observer.

Consider a system S, entangled to another system E . If the observer can only measure the system

S, the appropriate object that allows the observer to extract all information from S is the reduced

density matrix.

ρ̂S ≡ TrE ρ̂, (3.21)

where we have used the partial trace over the system E . In other words, we have averaged over the

degrees of freedom of the inaccessible system.
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When studying decoherence it is crucial to identify the system and the environment. Usually, the

environment is either uninteresting or practically impossible to completely measure. The reduced

density matrices allow us to trace over the degrees of freedom of the environment of the composite

density matrix and obtain complete statistics of the system of interest. The system-environment

interaction is incorporated into the reduced density matrix, which, by definition, means the reduced

density matrix is strictly mixed.

Let us confirm that we can obtain the expectation values by using the reduced density matrix

instead of the composite one. In other words, let us show that the trace rule applies to the

reduced density matrix.

Consider observables of S, which can be written as Ô = ÔS ⊗ ÎE , where ”⊗” is to be

understood as a tensorial product and ÎE is the identity operator acting on the Hilbert space

of the environment. Let {|ψi⟩} and {|ϕj⟩} be the orthonormal basis states of the system and

environment Hilbert spaces respectively. Using (3.6), (3.14) and (3.21) we obtain

⟨Ô⟩ = Tr{ρ̂Ô} =

=
∑
ij

⟨ψi| ⟨ϕj | ρ̂(ÔS ⊗ ÎE) |ϕj⟩ |ψi⟩ =

=
∑
i

⟨ψi|

∑
j

⟨ϕj |ρ̂|ϕj⟩

 ÔS |ψi⟩ =

=
∑
i

⟨ψi|(TrE ρ̂)ÔS |ψi⟩ ≡

≡
∑
i

⟨ψi|ρ̂SÔS |ψi⟩ =

= Tr{ρ̂SÔS}.

(3.22)

Finally, let us note that the concept of density matrices can in principle be generalized to any

number of subsystems. Specifically the reduced density matrix for a system entangled with N − 1

subsystems will be

ρ̂k = Tr1,...k−1,k+1,...N{ρ̂}. (3.23)

If we want to evaluate the expectation value of the observable on the system k, one can show

that the previous result simply generalizes to

⟨Ô⟩ = Trk{ρ̂kÔk)}. (3.24)

3.2.4 System-Environment Bipartition

As we have seen in the previous sections, the definition of bipartition into a system and its envi-

ronment is crucial to applying the reduced density formalism. In the context of inflation, we can
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identify the perturbations observed on the CMB and the LSS as the system. These are the large

scale perturbations (0.005Mpc−1 ≲ k ≲ 0.2Mpc−1). The environment is poorly specified and usually

inaccessible for observations. In the minimalist approach, one can simply identify the scales crossing

the horizon later than the observed perturbations as the environment that decohere the large scale

perturbations [7, 10]. In addition to the minimal scenario, one may consider other fields coupled to

the system (see [2], Appendix B for an example) as the environment. As we will see in the context

of axion inflation, the U(1)-axion coupling allows us to define the gauge fields as the environment.

For now, we may simply consider bipartition into two fields that compose the entire system

Ψ = χF . Let χ be the system and F the unobservable degrees of freedom that interact with the

system, then the total action can be written as

S[Ψ] = S[χ] + S[F ] + Sint[χ;F ]. (3.25)

The last term represents the interaction between the fields. For instance, it could describe the axion-

U(1) gauge field interaction. The goal then is to obtain the statistics of the system χ by taking into

account the impact of the environment F .

3.2.5 Phase Space Representation - Wigner Function

The Wigner function is frequently used as a phase space representation of reduced density matrices

in systems with continuous degrees of freedom.

Employing the system-environment bipartition, the quantum state is a function of variables

(χ, pχ) and (F , pF ), where pχ and pF are the conjugate momenta of the variables χ and F respec-

tively. The Wigner function is then defined as the Wigner-Weyl transform of the composite density

matrix

W [χ, pχ;F , pF ] =
∫
dadbe−i(pχa+pFb)×(〈

χ+
a

2

∣∣∣⊗〈F +
b

2

∣∣∣∣) ρ̂(∣∣∣χ− a

2

〉
⊗
∣∣∣∣F − b

2

〉)
,

(3.26)

where |χ⟩ and |ζ⟩ are the eigenstates of the position operators for the system and the environment

respectively. Tracing out the environment is equivalent to the marginalization of the phase space of

the environment and the reduced Wigner function reads

Wred[χ, pχ] =

∫
dFdpFW [χ, pχ;F , pF ], (3.27)

which is effectively the Wigner-Weyl transform of the reduced density matrix [69]. This explains

how we can trace the environmental degrees of freedom out in phase-space or in the Hilbert space,

according to which is more convenient for a given problem.

An expectation value of a quantum operator Â can be computed by the phase-space average of
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its weyl transform against the Wigner function

⟨Â⟩ =
∫
dχdζdpχdpζÃ(χ, ζ, pχ, pζ)W [χ, pχ; ζ, pζ ], (3.28)

which is why we may refer to the Wigner function as a quasi-probability distribution function.

3.3 Quantum Master Equations

In this section, we will introduce quantum master equations, which are the cornerstone of Open

Quantum Systems (OQS). Usually, we are interested in a (relatively) small number of degrees of

freedom that are surrounded by an environment (larger number of degrees of freedom). Master

equations are a tool to model the dynamics of a system immersed in a larger environment.

First, we will clarify the formal side of master equations (see e.g. [65], [66], [70] for more extensive

reviews). This section will serve as an intermediate step in applying the master equation formalism

to cosmology.

3.3.1 General formalism

Generally, the total (time-dependent) Hamiltonian governing the evolution of the system+environment

is

H(t) = HS(t)⊗ IE +HE ⊗ IS +Hint, (3.29)

where we have dropped the hats not to cluster notations unnecessarily. The first and the second

terms in the equation act on the system and the environment Hilbert spaces respectively and Hint

is the interaction Hamiltonian.

The composite system (S+E) is a closed system with unitary dynamics, which implies that we

can evolve the system using a unitary operator, also called the propagator U(t0, t), i.e.,

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ (3.30)

where

U(t, t0) = T exp

[
−i
∫ t

t0

dt′H(t′)

]
, (3.31)

where T is the time-ordering operator, which guarantees the time-dependent Hamiltonians are ap-

plied in a chronologically decreasing order16.

In general, for time-dependent Hamiltonians, the total system evolution is governed by the von

Neumann equation
∂ρ̂ES(t)

∂t
= −i [H(t), ρ̂SE(t)] , (3.33)

16A time-independent Hamiltonian would correspond to a closed system and the propagator would be simplified to

U(t, t0) = exp [−iH(t− t0)] . (3.32)

46



3 QUANTUM DECHOERENCE IN THE EARLY UNIVERSE

where [..., ...] is the commutator and ρ̂SE is the density operator of the combined system-environment.

As we have seen in sec. 3.2.3, in order to study the system only, we must trace over the environment

degrees of freedom
∂ρ̂S
∂t

= −iTrE{[H(t), ρ̂SE ]}. (3.34)

The formal solution can be written as an expansion, with every following term representing higher-

order interactions

ρ̂S(t) = ρ̂S(t
0)− i

∫ t

t0

dt′TrE{[H(t), ρ̂SE(t0)]}

+ (−i)2
∫ t

t0

dt′′TrE{[H(t′), [H(t′′), ρ̂SE(t0)]]}+ . . . (3.35)

We can rewrite the von Neumann equation compactly using the Liouville-von Neumann super-

operator
∂ρ̂SE(t)

∂t
= L(t)ρ̂SE(t). (3.36)

Once ρ̂SE(t) is known at a given time, in principle taking the trace over environment degrees of

freedom gives the final system state.

In practice solving equation (3.36) is very difficult if not impossible for the combined system

S+E. Under some simplifying assumptions can be described by dynamical maps. In particular, let

us assume, that the initial composite state is an uncorrelated product state

ρ̂SE(t0) = ρ̂S(t0)⊗ ρ̂E(t0). (3.37)

Since the composite system is closed, this state undergoes unitary evolution, and taking the trace,

the procedure leads to

ρ̂S(t) = Tr{U(t, t0)ρ̂S ∗ t0 ⊗ ρ̂E(t0)U(t, t0)}. (3.38)

The evolution of ρS can now be described by a dynamical map, which solely acts on the initial state

ρ̂S(t0)

ρS(t) = V(t, t0)[ρ̂(t0)], (3.39)

where V is completely positive and trace preserving (CPTP) and allows us to model the system

evolution without also modeling the entire environment. Below is a diagram showing the action of

a dynamical map:
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ρ̂S(t0)⊗ ρ̂E(t0) U(t, t0)ρ̂S ⊗ ρ̂EU(t, t0)

ρ̂S(t0) V(t, t0)[ρ̂(t0)]

unitary evolution

TrE TrE

dynamical map

V is a map from the system reduced density operator space S[HS ] onto itself

V(t, t0) : S[HS ] −→ S[HS ]. (3.40)

A dynamical map can be characterized by operators that act on the system Hilbert space. To show

this we use the spectral decomposition for the environment density matrix

ρ̂(t0) =
∑
i

αi |ϕi⟩ ⟨ϕi| , (3.41)

where |ϕi⟩ form an orthonormal basis in the environment Hilbert space HE and αi are non-negative

numbers that satisfy
∑

i αi = 1. Plugging (3.41) into (3.38) we obtain

V(t, t0)ρ̂S(t0) =
∑
i,j

Wij(t, t0)ρ̂S(t0)W
†
ij(t, t0), (3.42)

where W are indeed operators in HS and are defined as

Wij(t, t0) =
√
αj ⟨ϕi|U(t, t0) |ϕi⟩ . (3.43)

and satisfies ∑
ij

W †
ij(t, t0)Wij(t, t0) = IS . (3.44)

Using the cyclical property of the trace it can easily be shown that this simply translates to

Tr{V(t, t0)ρ̂S(t0)} = Tr{ρS(t0)} = 1, (3.45)

which proves the dynamical map preserves the trace of the density operator.

3.3.2 Born-Markov approximation

Next, we assume, that the system interacts with a large, memoryless environment and the strength of

the said interaction is weak. This significantly simplifies the mathematical analysis of open quantum

systems.

To be more precise, according to the Born approximation, the system does not alter much the
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state of the environment due to two main assumptions: i) the environment is considered to be much

larger than the system, for example, it could be a thermodynamic environment with an effectively

infinite number of degrees of freedom. ii) the interactions between the system and the environment

are weak. So while the (weak) interactions affect the system, the environment, being very large is

practically unaltered by the evolution of the system.

These approximations can also be thought of in terms of characteristic timescales. Since the

environment quickly returns to its original state after interacting with the environment, the envi-

ronment correlation function decays quickly, usually in physical systems CE ∝ exp [−t/tE ], where
tE is the environment correlation time. If t > tE , the environment correlation time decays quickly.

On the other hand, the system retains correlations for a longer time tS , meaning that tS ≫ tE .

Combining these assumptions, we further approximate that the correlations between the system

and the environment decay quickly, allowing us to write the full density matrix as a product state

at all times

ρ̂SE(t) = ρ̂S(t)⊗ ρ̂E(t). (3.46)

The weak coupling limit also entails the environment density matrix does not change in time ρ̂E(t) =

ρ̂E .

These assumptions allow us to construct a dynamical map

ρ̂S(t) = V(t, t0)ρ̂S(t0). (3.47)

however, this map still depends on the initial time t0 and we would like to construct a one-parameter

dynamical map. To this end, we make the second major approximation, the Markov approximation.

According to this approximation, the system retains no memory of past interactions. In other words,

the dynamics of the system do not depend on any past instance and is only determined by the present

state. The memory effects are completely neglected.

Quantum Markovian dynamics is described by a one-parameter dynamical map that satisfies the

semi-group property

V(t1) ◦ V(t2) = V(t1 + t2). (3.48)

The semi-group property ensures that there is no reverse dynamical map and this is expected since

a system immersed in a large environment is prone to decoherence and/or dissipation, which are

irreversible processes.

Given a quantum dynamical semi-group, it is always possible to find a linear operator L, which
is the semi-group generator

V(t) = eLt ⇒ V(t)ρ̂S(t0) = exp [Lt] ρ̂S(t0). (3.49)
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Differentiating by time leads to a general form of a Markovian master equation

∂ρ̂S(t)

∂t
= Lρ̂S(t). (3.50)

It is sometimes convenient to introduce the dissipator

D(ρ̂S) =
∑
k

γk

(
AkρSA

†
k − 1

2
A†

kAkρS − 1

2
ρ̂SA

†
kAk

)
, (3.51)

where γk are positive real numbers and Ak are the so-called Lindblad operators, which act on the

system Hilbert space and are specified by the physics of a given problem.

Equation (3.50) is sometimes written as

∂ρ̂S(t)

∂t
= −i [H, ρ̂S(t)] +D(ρ̂S(t)) (3.52)

where H is not always the free system Hamiltonian. In the weak coupling limit, it is the Lamb-shift

Hamiltonian [66]. The dissipator D describes irreversible processes, such as loss of coherence of the

system state (decoherence) and energy dissipation.

We stress, that this the discussion in this chapter is purely formal. In Appendix C we derive the

following equation (C.39)

dρS
dt

= i[ρS , HS ]−
γ

2

∫
d3xd3yCR(x,y)[A(x), [A(y), ρS ]], (3.53)

which can be applied directly to early universe cosmology. The next chapter will be devoted to

applying this equation to single-field scalar inflation mostly following [2].

3.4 Lindblad Formalism in Early Universe Cosmology

In this section, we discuss the implementation of the Lindblad equation in early universe cosmology

as done by [2]. We will leave the environment as generic as possible until sec 3.4.6 where we specify

an important type of environment which is the massive scalar field. We will see how decoherence

changes the power spectrum and compare new results with observations. We will also see how to

assess decoherence in the early universe using the Lindblad formalism.

3.4.1 The free Hamiltonian

The curvature perturbation encodes both the scalar metric perturbations and the inflaton field fluc-

tuations. In the simplest case of free evolution, the Hamiltonian governing the curvature fluctuations

takes the following form [50]

Ĥv =

∫
R
d3kĤk =

1

2

∫
R
d3k

[
p̂kp̂

†
k + ω2(τ,k)v̂kv̂

†
k

]
, (3.54)
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where p̂k = v̂′k is the conjugate momentum of the Fourier-transformed Mukhanov-Sasaki variable

v̂k(τ) =

∫
d3k

(2π)3/2
v̂(τ,x)e−ik·x. (3.55)

The Hamiltonian (3.54) describes parametric oscillators with frequency

ω(τ,k) = k2 − (a
√
ε)′′

a
√
ε
, (3.56)

where ε is the first slow-roll parameter ε = 1−H′/H2.

3.4.2 Canonical Quantization of Scalar Perturbations

Since v̂(τ,x) is real, it follows from (3.55), that v̂†k = v̂−k. We proceed by decomposing v̂k and

p̂k into real and imaginary parts [2]: v̂k = (v̂Rk + iv̂Ik)/
√
2 and p̂k = (p̂Rk + ip̂Ik)/

√
2, consequently

v̂Rk = v̂R−k, v̂
I
k = −v̂I−k, p̂

R
k = p̂R−k, p̂

I
k = −p̂I−k, so the operators v̂Rk and p̂Ik are Hermitian. It is

evident that not all v̂k are independent degrees of freedom. Namely, we can quantize v̂Rk and v̂Ik on

half of the Fourier space, meaning that k ∈ R3+. Same goes for the conjugate variable p̂k. The

usual canonical commutation relations will read

[v̂k, p̂q] = iδ(3)(k+ q), (3.57)

and

[v̂†k, p̂q] = [v̂k, p̂
†
q] = iδ(3)(k− q). (3.58)

Since we will be working with the density matrix, we note, that in the free theory the density matrix

of perturbations ρ̂v = |Ψ[v]⟩ ⟨Ψ[v]| (here Ψ is the wave functional) factorizes

ρ̂v(τ) =
∏

k∈R3+

∏
s=R,I

ρ̂sk(τ), (3.59)

however, this expression will not hold for non-linear interactions.

As discussed in the previous chapter, evolution of the system is controlled by the Liouville-von

Neumann equation, which is the equivalent of the Schrödinger equation but in the density matrix

formalism
dρ̂v
dτ

= −i
[
Ĥv, ρ̂ν

]
. (3.60)

And if the state is factorizable, we can rewrite this equation in Fourier space. To this end let us

take the time derivative of expression (3.59)

dρ̂v
dτ

=

∫
R3+

d3k

(
dρ̂Rk
dτ

ρ̂Ik + ρ̂Rk
dρ̂Ik
dτ

) ∏
k′ ̸=k

∏
s=R,I

ρ̂sk′(τ). (3.61)

using equation (3.54), we see that Ĥv =
∑

s=I,R

∫
R3+ d

3kĤs
k. Then for the commutator in the
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right-hand side of the equation (3.60), we get[
Ĥv, ρ̂ν

]
=

∫
R3+

d3k
(
[ĤR

k , ρ̂
R
k ]ρ̂

I
k + ρ̂Rk [Ĥ

I
k, ρ̂

I
k]
) ∏

k′ ̸=k

∏
s=R,I

ρ̂sk′(τ). (3.62)

Using equation (3.60), equations (3.61) and (3.62) clearly imply that

dρ̂sk
dτ

= −i[Ĥs
k, ρ̂

s
k], (3.63)

meaning that in the absence of non-linear interactions, each Fourier subspace can be treated inde-

pendently.

3.4.3 Adding the Environment

The free Hamiltonian (3.54) describes a closed system, in the sense that it does not involve any

interaction terms. However, it is reasonable to think, that the primordial perturbations were con-

stantly interacting with other sectors, at least gravitationally. Moreover, interactions with the stan-

dard model fields could have a significant role in subsequent reheating and the radiation-dominated

epoch [2], [71]. Even if the other fields are absent, the perturbations outside our causal horizon and

physics beyond the UV and IR cutoffs of the theory should be considered as the environment [7].

Therefore, it is sensible to consider the primordial perturbations as an open system interacting with

an environment. Thus we can adopt methods used in Open Quantum Systems (OQS). Specifically,

by partitioning the composite system into primordial perturbations (system) and the environment,

which may vary from model to model, we can use the reduced density matrix of the system and

trace the evolution using a master equation. The reduced density matrix of the system is defined

by tracing out the environment degrees of freedom

ρ̂v = TrE{ρ̂composite}. (3.64)

We also rewrite the total Hamiltonian

Ĥ = Ĥv ⊗ ÎE + Îv ⊗ ĤE + gĤint, (3.65)

where Ĥv is defined in (3.54), ĤE is the environment Hamiltonian, Ĥint is the interaction Hamiltonian

with a coupling g. Îv(E) are the identity operators acting on the Hilbert spaces of the system or the

environment respectively. If the system and the environment couple through local interactions only,

then the interaction Hamiltonian can be expressed as

Ĥint =

∫
d3xÂ(τ,x)⊗ R̂(τ,x), (3.66)

where Â is an operator in the system’s sector and R̂ in the environment sector.

The effect of the environment will be encoded in a new, non-unitary term in the Liouville-
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von Neumann equation and will lead to the so-called Lindblad equation. The construction of the

Lindblad equation can be found in Appendix C. Here we simply quote the result

dρ̂v
dτ

= −i[Ĥv, ρ̂v]−
γ

2

∫
d3xd3yCR(x,y)

[
Â(x),

[
Â(y), ρ̂v

]]
, (3.67)

where we have omitted the time dependence for brevity. CR is the same-time correlation function

of the environment R̂. Namely

CR(x,y) = ⟨R̂(τ,x)R̂(τ,y)⟩. (3.68)

The coefficient γ is related to the coupling g between the system and the environment and the

autocorrelation time τc of the environment R̂.

γ = 2g2τc. (3.69)

This parameter is generally time-dependent, so we adopt a power-law dependence on the scale factor

[2]

γ = γ∗

(
a

a∗

)p

, (3.70)

where p is a free parameter and ∗ corresponds to a reference time, that we can conveniently take to

be the time when the pivot scale k∗ = 0.05Mpc−1 crosses the Hubble radius, i.e. k∗ = a∗H∗.

We assume that the environment is statistically homogeneous and isotropic, leading to CR(x,y) ∝
|x−y|. Furthermore, in the Lindblad formalism, the environment correlation function is required to

decay rapidly compared to the typical evolution time of the system. Usually the decay is exponential

∝ e−τ/τc . However, in order to make the mathematical analysis tractable, the top-hat approximation

is made

CR(x,y) = C̄RΘ

(
a|x− y|

ℓc

)
, (3.71)

where Θ(x) is 1 if x < 1 and 0 otherwise. The presence of the scale factor in this expression is due

to the fact that ℓc is the physical correlation length.

3.4.4 Quantum Mean Values

In order to extract information from the quantum state described by the density matrix ρ̂v, we can

evaluate the quantum expectation values by means of the trace rule:

⟨Ô⟩ = Tr{ρ̂vÔ}, (3.72)

where Ô is an operator acting on the Hilbert space of the system. We can use this method in case

we are able to solve the Lindblad equation exactly and derive the ρ̂v explicitly. However, in most

cases, this is very difficult to achieve. In that case, we solve the equation of motion governing ⟨Ô⟩
directly. Taking the temporal derivative of (3.72) and plugging in the Lindblad equation (3.67), we
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get

d⟨Ô⟩
dτ

=

〈
∂Ô

∂τ

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

∫
d3xd3yCR(x,y)

〈[[
Ô, Â(x)

]
, Â(y)

]〉
, (3.73)

where we have also taken into account a possible explicit time-dependence of the operator Ô through

the first term on the right-hand side. Importantly, the third term, corresponding to the system-

environment interaction can be rewritten in the Fourier space [2], leading to

d⟨Ô⟩
dτ

=

〈
∂Ô

∂τ

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2
(2π)3/2

∫
d3kyC̃R(k)

〈[[
Ô, Âk

]
, Â−k

]〉
. (3.74)

3.4.5 Power Spectrum

In previous sections, we have shown that the interactions with the environment are described by the

addition of a non-unitary term to the evolution equation of the reduced density matrix ρ̂v. This term

suppresses the off-diagonal elements of the density matrix and leads to decoherence. However, notice

in the Lindblad equation (3.67), there is a unitary term as well coming from the free Hamiltonian of

the system. If that term couples the evolution of the diagonal elements with the non-diagonal ones,

the Lindblad term also has an effect on the diagonal elements of the density matrix. This changes

the values of statistical observables such as the power spectrum, which is the point we would like to

outline in this chapter.

Let us assume a linear coupling of the system to the environment. Hence Â(x) = v̂(x). In

this case, the Lindblad equation can be solved exactly, meaning that all of the matrix elements of

ρ̂v can be obtained explicitly. As stressed in 3.4.4 this means, that there are two ways to obtain

the curvature power spectrum with reasonable effort [2], [4]. The first one amounts to solving the

Lindblad equation exactly and then applying the trace rule to obtain the quantum mean values. In

this case

Pvv(k) =
〈
|v̂k|2

〉
=
〈
(v̂sk)

2
〉
= Trv{(v̂sk)2ρ̂v} =

∫
dv̂sk ⟨ρ̂k|v̂sk|ρ̂k⟩ (v̂sk)2, (3.75)

with s = I, R stand for the real and imaginary parts, and the convention of summing over repeated

indices is adopted. The second method amounts to directly solving equation (3.74) when Ô = |v̂k|2.
The two methods are equivalent for the linear interactions, however at higher orders the first method

is not applicable since no explicit solution to the Lindblad equation can be found in this case.

We highlight the main steps required for solving the Lindblad equation for linear interactions

Â(x) = v̂(x). But first, we derive the Lindblad equation in Fourier space. We will show, that

much like the free evolution equation (3.60), the Lindblad equation also decouples into independent

Lindblad equations for each Fourier subspace. Since the difference between the two equations is the

non-unitary Lindblad term, it is enough to show that this term decouples for each Fourier subspace.
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The Lindblad term for the linear interaction reads∫
d3xd3yCR(x− y) [v̂(x), [v̂(y), ρ̂v]] = (2π)3/2

∫
R3

d3pC̃R(p)
[
v̂†p, [v̂p, ρ̂v]

]
=

(2π)3/2

2

∫
R
d3pC̃R(p)

([
v̂Rp ,

[
v̂Rp , ρ̂v

]]
+
[
v̂Ip,
[
v̂Ip, ρ̂v

]]
−
[
v̂Ip,
[
v̂Rp , ρ̂v

]]
+
[
v̂Rp ,

[
v̂Ip, ρ̂v

]])
,

(3.76)

where we first Fourier-expanded the equal-time correlator CR and the variables v̂ and then we used

the decomposition into the real and imaginary parts v̂p = (v̂Rp + iv̂Ip)/
√
2 as in sec. 3.4.2. If we split

the integral over R3 into two parts R3+ and R3−, the last two terms will vanish because of relations

v̂Rp = v̂R−p, v̂
I
p = −v̂I−p and the fact that the environment correlation function does not depend on

the sign of p. On the other hand, the first two terms will be doubled, leading to∫
d3xd3yCR(x− y) [v̂(x), [v̂(y), ρ̂v]] =

= (2π)3/2
∫
R3+

d3pC̃R(p)
([
v̂Rp ,

[
v̂Rp , ρ̂

R
p

]]
ρ̂Ip + ρ̂Rp

[
v̂Ip,
[
v̂Ip, ρ̂

I
p

]]) ∏
p′ ̸=p

∏
s=R,I

ρ̂sp′ ,
(3.77)

where we have we have assumed that the state is initially factorizable. The linearity of the interaction

term preserves the fact that each Fourier mode evolves separately allowing us to write the Lindblad

equation in Fourier space as

dρ̂sk
dτ

= −i
[
Ĥs

k, ρ̂ks

]
− γ

2
(2π)3/2C̃R(k) [v̂

s
k, [v̂

s
k, ρ̂

s
k]] , (3.78)

where we notice, that the second term on the right-hand side must be homogeneous with a square

of a comoving wavenumber in order to have the correct dimensions. This scale, denoted kγ can be

written as [2]

kγ ≡

√
8π

3
C̄Rℓ3c

γ∗
a3∗
. (3.79)

Equation (3.78) can be solved exactly for the linear interaction. First we define the eigenvectors

|vsk⟩ of the operator v̂sk. These are defined so that they satisfy the following eigenvalue equation

v̂sk |vsk⟩ = vsk |vsk⟩. We project equation (3.78) onto
〈
v
s,(1)
k

∣∣∣ and ∣∣∣vs,(2)k

〉
and use the free Hamiltonian

Ĥv defined in (3.54) along with the definition of the momentum operator in the position basis,
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p̂sk = −i∂/(∂vsk). The result obtained in [2] reads:

〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)k

〉
=

(2π)−1/2√
|vk|2 + Jk

exp


(
v
s,(1)
k

)2
+
(
v
s,(2)
k

)2
+ i
(
|vk|2

)′ [(
v
s,(2)
k

)2
− [
(
v
s,(1)
k

)2]
4 (|vk|2 + Jk)


× exp

[
−

[
v
s,(2)
k − v

s,(1)
k

]2
2 (|vk|2 + Jk)

(
IkJk −K2

k + |v′k|2Jk + |vk|2Ik −
(
|vk|2

)′ Kk

)
− iKk

2 (|vk|2 + Jk)

[(
v
s,(2)
k

)2
−
(
v
s,(1)
k

)2] ]
,

(3.80)

which is an exact solution of the Lindblad equation and where

Ik(τ) ≡ 4(2π)3/2
∫ τ

−∞
dτ ′γ(τ ′)C̃R(k, τ

′)Im2{vk(τ ′)v∗′
k (τ)}, (3.81)

Jk(τ) ≡ 4(2π)3/2
∫ τ

−∞
dτ ′γ(τ ′)C̃R(k, τ

′)Im2{vk(τ ′)v∗k(τ)}, (3.82)

K ≡ 4(2π)3/2
∫ τ

−∞
dτ ′γ(τ ′)C̃R(k, τ

′)Im{vk(τ ′)v∗′
k (τ)}Im{vk(τ ′)v∗k(τ)}. (3.83)

It is worth mentioning that vk(τ) are the solutions of the free Mukhanov-Sasaki equation v′′k +

ω2(k)vk = 0, whose initial conditions are set to be the Bunch-Davies vacuum. This implies that our

ability to set the initial conditions for the primordial perturbations to the Bunch-Davies vacuum is

preserved by the Lindblad equation.

Because of the linearity of the interaction term, (3.80) still describes a Gaussian state. Moreover,

we can show that by turning off the interaction (γ = 0) we recover the two-mode squeezed state,

which is the standard solution when no interactions are involved. We put I = J = K = 0, leading

to 〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)k

〉 ∣∣
γ=0

= Ψ(v
s,(1)
k )Ψ∗(v

s,(2)
k ), (3.84)

where

Ψ(v) =

(
1

2π|vk|2

) 1
4

exp

[
−1− i|vk|2

′

4|vk|2
v2

]
, (3.85)

which we can rewrite using a new parameter Ωk ≡ −iv′k/(2vk) as

Ψ(v) =

[
2Re(Ωk)

π

] 1
4

e−Ωkv
2

. (3.86)

Indeed, this corresponds to the two-mode squeezed state, which is a pure state.

In (3.80) it is evident that the diagonal elements of the density matrix are modified by the

presence of the environment. Namely, if we put v
s,(1)
k = v

s,(2)
k , we see, that the solution depends on

Jk. This simply shows that the observable statistics of the system are modified by the presence of
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the environment and since the state is still Gaussian, this modification is encapsulated entirely by

the two-point correlation function.

To calculate the correlator, we recall (3.75). The integral is Gaussian and can be easily evaluated

leading to

Pvv(k) = ⟨|v̂sk|2⟩ = Tr{(vsk)2ρ̂sv} =

∫ ∞

−∞
dvsk ⟨v̂sk|ρ̂sk|v̂sk⟩ = |vk|2 + Jk, (3.87)

where the first term is the usual result we get in the absence of interactions. Exploiting the well-

known relation between the power spectrum and the two-point function

⟨ζkζk′⟩ = 2π2

k3
Pζζδ

(3)(k+ k′), (3.88)

and using the relation between the Mukhanov-Sasaki variable and the curvature perturbations ζk =

−Hvk/(aϕ̇) we get the combined curvature power spectrum

Pζζ =
k3

2π2

H2Pvv(k)

a2ϕ̇2
= P standard

ζζ (1 + ∆Pk), (3.89)

where

∆Pk ≡ Jk

|vk|2
. (3.90)

Let us also recall, that the standard result is

P standard
ζζ = P

(
k

k∗

)ns−1

, (3.91)

where ns = 1+3−2ν, ν = 3/2+ε+η/2, ϵ and η being the first and the second slow-roll parameters.

We also used the definition

P1/2 =
H2

2π|ϕ̇|
(3.92)

Alternative derivation of the power spectrum. The technique developed above is restricted

only to interactions linear in the system variable, however, there is a more general way, that does

not require solving the Lindblad equation explicitly. This can be done by focusing on the two-point

correlators.

Recalling equation (3.74) and taking ⟨Ô⟩ = ⟨Ôk1
Ôk1

⟩, with Ô = v̂k1
or p̂k2

, we get the so-called
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transport equations in ref. [6],

d

dτ
⟨v̂k1

v̂k2
⟩ = ⟨vk1

p̂k2
+ p̂k1

v̂k2
⟩, (3.93)

d

dτ
⟨v̂k1

p̂k2
⟩ = ⟨p̂k1

p̂k2
⟩ − ω2(k2)⟨v̂k1

v̂k2
⟩, (3.94)

d

dτ
⟨p̂k1 v̂k2⟩ = ⟨p̂k1 p̂k2⟩ − ω2(k1)⟨v̂k1 v̂k2⟩, (3.95)

d

dτ
⟨p̂k1

p̂k2
⟩ = −ω2(k2)⟨p̂k1

v̂k2
⟩ − ω2(k1)⟨v̂k1

p̂k2
⟩+ γ(2π)3/2C̃R(k1)δ(k1 + k2). (3.96)

Notice the last term does depend on γ and CR, however, since these equations are coupled, it actually

affects all two-point functions. The Dirac delta ensures that the interaction with the environment

preserves statistical homogeneity, i.e. it allows for solutions like

⟨Ôk1
Ô′

k2
⟩POO′(k1)δ(k1 + k2). (3.97)

For the heavy scalar field, just as for the axion environment to be considered in future chapters, the

correlator actually preserves statistical isotropy C̃R(k) = C̃R(k) so that the solutions can actually

be both isotropic and homogeneous with POO′ depends on the modulus of the wavenumber.

This leads to three coupled differential equations that can be written as a third-order differential

equation for Pvv:

P ′′′
vv + 4ω2P ′

vv + 4ω′ωPvv = S1 (3.98)

where

S1(k, τ) = 2(2π)3/2γC̃R(k). (3.99)

It can be shown that (3.87) does solve equation (3.98).

Now all that is left is to evaluate ∆Pk/|vk|2. Let us work at first order in the slow-roll parameters

ε and η.

To proceed, two additional approximations are made: first, we are interested in the power spec-

trum at the end of inflation, so we take −kτ ≪ 1. Second, the environment correlation time tc must

be shorter than the typical time in which the system evolves. For the inflaton field that would be

∼ H−1. Furthermore, if the correlation time and length are similar (as in the case of a heavy scalar

field as we will see in section 3.4.6), by the connection (E.13) this leads to Hℓc ≪ 1.

Imposing these limits, the dominant contribution depends on the parameter p. If p > 3 + (2 +

2ν)/(1 + ε∗), where ν = 3/2 + ε∗ + η∗/2 with the star denoting that ε is evaluated when the pivot

sale k∗ crosses the horizon,
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∆Pk

∣∣
1
≃ π2−1−2ν

ν2Γ2(ν)

(
kγ
k∗

)

)2(
k

k∗

)2ν (
η

η∗

)2+2ν−(p−3)(1+ϵ∗)
[

2

2− (p− 3)(1 + ε∗)

− 1

2(1 + ν)− (p− 3)(1 + ε∗)
− 1

2(1 + ν)− (p− 3)(1 + ε∗)

]
; (3.100)

for 3 + 1/(1 + ε∗) < p < 3 + (2 + 2ν)/(1 + ε∗) we have

∆P
∣∣
2
≃

√
π

4

(
kγ
k∗

)2(
k

k∗

)(p−3)(1+ε∗)−2 Γ
[
(p−3)(1+ε∗)−1

2

]
Γ
[
1 + ν − (p−3)(1+ε∗)

2

]
Γ
[
(p−3)(1+ε∗)

2

]
Γ
[
(p−3)(1+ε∗)

2 + ν
] ; (3.101)

and finally, for p < 3 + 1/(1 + ε∗),

∆Pk

∣∣
3
≃
(
kγ
k∗

)2(
k

k∗

)(p−3)(1−ε∗)(1+ε∗)+ε∗−2
(1 + ε∗)

1−(p−3)(1+ε∗)

2− 2(p− 3)(1 + ε∗)
. (3.102)

For consistency, these must also be expanded in slow-roll. At first order for the three cases

(i = 1, 2, 3) we have

∆Pk

∣∣
i
≃ Ai(k)

[
1 + Biε∗ + Ciε∗ + (Diε∗ + Eiε∗) ln

(
k

k∗

)]
, (3.103)

where for the three cases

A1(k) =

(
kγ
k∗

)2(
k

k∗

)3(
η

η∗

)2+2ν−(p−3)(1+ε∗) 2

(p− 2)(p− 5)(p− 8)
, (3.104)

B1 = 2γE + ln 4− 7 +
1

2− p
+

3

8− p
+

2

5− p
, (3.105)

C = γE + ln 2− 2 +
6

(p− 2)(p− 8)
, D1 = 2, E1 = 1; (3.106)

A2(k) =

(
kγ
k∗

)2(
k

k∗

)p−5
(6− p)π

26−p(p− 2) sin(πp/2)Γ(p− 3)
, (3.107)

B2 = −2
(p− 1)(p− 3)

(p− 4)(p− 2)
− 1

2
(p− 5)ψ(4− p

2
)− ψ(−2 +

p

2
)− 1

2
(p− 3)ψ(−3

2
+
p

2
), (3.108)

C2 =
1

2
ψ
(
4− p

2

)
− 1

2
ψ
(p
2

)
, D2 = p− 3, E2 = 0; (3.109)

A3(k) =

(
kγ
k∗

)2(
k

k∗

)p−5
(H∗ℓc)

p−4

2(4− p)
, (3.110)

B3 = 3− p+
1

4− p
+ ln(H∗ℓc), C3 = 0, D3 = 1, E3 = 0. (3.111)

where γE is the Euler constant and ψ(z) is the digamma function. It is important to note, that only
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in the third case do we see the dependence on the correlation length ℓc, which means that in this

case the result depends on the form of the correlation function, hence the top-hat approximation in

this case may not be accurate. However, in the first two cases, the form of the correlation function

is irrelevant, so the top-hat approximation works just as well as a more physically justifiable form

like an exponential decay CR ∼ e−a|x−y|/ℓc , for example.

It should be noted, that in the second and third case, the power spectrum settles to a stationary

value at late times, whereas in the first case, the power spectrum evolves and is not frozen at large

scales. This can be seen by rewriting A1 as

A1(k) =

(
kγ
k∗

)2(
k

k∗

)3(
η

η∗

)2+2ν−(p−3)(1+ε∗) 2

(p− 2)(p− 5)(p− 8)
exp

[
∆N∗

(
p− 3− 2(1 + ν)

1 + ε∗

)]
(3.112)

where ∆N∗ = N−N∗ is the number of e-folds passed since the pivot scale crosses the Hubble radius.

Since we are considering the case in which p > 3 + (2 + ν)/(1 + ε∗), the sign of the exponential is

positive, leading to the late-time enhancement of the power spectrum.

The CMB measurements suggest a scale-independent power spectrum. However, we have two

branches, one of which is scale-dependent and one is not. The scale-dependent branch must be

constrained so that it is beyond the observable scales. We introduce the transient scale kt, at which

the transition between the two branches occurs. This must be such that Ai(kt) ∼ 1. This gives rise

to

kt
k∗

∣∣∣∣∣
1

≃
(
kγ
k∗

)−2/3

exp

[
−∆N∗

3

(
p− 3− 2(1 + ν)

(1 + ε)

)]
, (3.113)

kt
k∗

∣∣∣∣∣
2

≃
(
kγ
k∗

)− 2
p−5

, (3.114)

kt
k∗

∣∣∣∣∣
3

≃
(
kγ
k∗

)− 2
p−5

(H∗ℓc)
− p−4

p−5 , (3.115)

where ∆N∗ corresponds to N −N∗, but evaluated at the end of inflation, i.e. Nend −N∗.

In fig. 7 we see, that the corrections grow at small scales. In that case, we must ensure these

scales are outside the observable window, kt ≫ k∗. Taking equation (3.113) into account, we obtain

a constraint of the interaction strength at small scales,

kγ
k∗

≪ exp

[
−∆N∗

2
(p− 8 + 3ε∗ − η∗)

]
. (3.116)

Similar treatment for the cases i = 2 and 3 leads to

kγ
k∗

∣∣∣∣∣
2

≪ 1 (3.117)
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Figure 7: Comparison of the Power spectra for different values of p obtained numerically and using analytical approximations.
The vertical dotted lines correspond to the transient scale kt. The values chosen are ε∗ = 10−4, η∗ = 1 − 0.96 − 2ε∗,
H∗ℓc = 10−3, kγ/k = 10−3, and ∆N∗ = 50. [2].

and
kγ
k∗

∣∣∣∣∣
3

≪ (H∗ℓc)
4−p
2 . (3.118)

The only case that does not constrain the interaction strength is p = 5, for which the power spectrum

is scale-invariant.

3.4.6 Concrete example: heavy scalar field environment

Consider the inflaton field ϕ coupled to a much heavier scalar field ψ. The corresponding action

reads

S = −
∫
d4x

√
−g
[
1

2
∂µϕ∂µϕ+ V (ϕ) +

1

2
∂µψ∂µψ +

M2

2
ψ2 + λµ4−n−mϕnψm

]
, (3.119)
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where V is the potential, M is the mass of scalar field ψ, which is assumed to be larger than the

Hubble scale M ≫ H. λ is a small coupling constant and µ is the mass scale that appears in the

power-law coupling between the two fields evolving in the de Sitter background.

According to (C.18), the action should be written in such a way that the quantum mean of the

interacting term vanishes in the stationary configuration. This is done by adding and subtracting

λµ4−n−m⟨ψm⟩stϕn,

S = −
∫
d4x

√
−g

[
1

2
∂µϕ∂µϕ+ V (ϕ) +

1

2
∂µψ∂µψ +

M2

2
ψ2 + λµ4−n−mϕn⟨ψm⟩

+ λµ4−m−nϕn(ψm − ⟨ψm⟩st)

]
. (3.120)

The 4th term can be added to the potential forming

Veff = V (ϕ) + λµ4−n−mϕn⟨ψm⟩. (3.121)

We can now easily identify the interaction Hamiltonian

Ĥint = λµ4−m−na4
∫
d3xϕ̂n(τ,x)ψ̂m(τ,x). (3.122)

Assuming that Veff(ϕ) = m2ϕ2/2 in Fourier space we can write

Sϕ =
1

2

∫
dτ

∫
R3

d3k

[
v′kv

′∗
k −

(
k2 − a′′

a
+ma2

)
vkvk∗

]
, (3.123)

where v(τ,x) ≡ a(τ)ϕ(τ,x). In case m = 0 we recover the action for the curvature perturbations if

the metric perturbations are ignored. This means that we can identify v(τ,x) with the Mukhanov-

Sasaki variable in the uniform curvature gauge.

The interaction Hamiltonian now reads

Hint = λµ4−m−na4−n

∫
d3xvn(τ,x) [ψm(τ,x)− ⟨ψm⟩st] . (3.124)

Looking back at equations (3.65)-(3.66) we can identify the system and the environment part of the

interaction Hamiltonian: A = vn and R = ψm − ⟨ψm⟩st. The effective coupling constant then reads

g = λµ4−n−m, and according to (C.40) γ = 2g2τc, where now τc is the conformal correlation time

and is related to the physical correlation time by tc = aτc, the ansatz (3.70) is satisfied if

γ∗ = 2tcλ
2µ8−2n−2ma7−2n

∗ , (3.125)

and p = 7− 2n.

As mentioned before, the crucial part after identifying the environment is deriving its correlation
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function. This can be done by point-splitting renormalization in the small separation limit ϵ ≡
[(t1 − t2)

2 − a2(x1 − x2)
2]/4 ≪ min(1/H2, 1/M2). Here we simply quote the result in [2]:

CR(t1,x1; t2,x2) =
[
(2m− 1)!!− σ(m)[(m− 1)!!]2

]( 37

504π2

H6

M4

)m

×

×
[
1− m2(2m− 3)!!

(2m− 1)!!− σ(m)[(m− 1)!!]2
M2Σϵ2

2

]
, (3.126)

where σ(m) is 1 if m is even and 0 if m is odd and Σ = ±1 depending on whether the separation

between the two points (t1,x1) and (t2,x2) is spacelike or timelike. It should be noted that in

deriving the correlation function one eventually needs to evaluate ⟨ψm⟩st. In this construction the

result is

⟨ψm⟩st = σ(m)(m− 1)!!

(
37

504π2

H6

M4

)m/2

. (3.127)

It is now possible to identify C̄R, the correlation time tc and the correlation length ℓc, specifically

C̄R =
[
(2m− 1)!!− σ(m)[(m− 1)!!]2

]( 37

504π2

H6

M4

)m

, (3.128)

tc = ℓc = 2
√
2

√
(2m− 1)!!− σ(m)[(m− 1)!!]2

m2(2m− 3)!!

1

M
. (3.129)

By plugging this into (3.125) we obtain

γ∗ = 4
√
2

√
(2m− 1)!!− σ(m)[(m− 1)!!]2

m2(2m− 3)!!

λ2

M
µ8−2n−2ma7−2n

∗ . (3.130)

It should be noted that under this construction, the scalar field ψ is considered to be a test particle

(this is not a necessary requirement). The idea is that the contribution of ψ to the energy budget

of the universe is negligible. The Friedmann equation ρ = 3M2
PlH

2 leads to the following condition

M2⟨ψ2⟩st ≪ 3M2
PlH

2. (3.131)

If we now use equation (3.127) for m = 2 we can write

M2⟨ψ2⟩st
3M2

PlH
2

=
37

1512π2

H4

M2M2
Pl

. (3.132)

By our assumption M ≫ H and from observational bounds H/MPl ≲ 10−5, hence the condition

(3.131) is satisfied.

Second, if we take ϕ to be the inflaton field, we must ensure, that the correction to V (ϕ) presented

in equation (3.121) is small so that it does not spoil slow-roll inflation. In this case, as we have seen
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in equation (2.39), 3M2
PlH

2 ≃ V (ϕ). Then the condition reads

λµ4−n−m⟨ψm⟩stϕn ≪ 3M2
PlH

2. (3.133)

This also guarantees that we can use perturbation theory to assess the effect of the environment on

the system. By plugging in (3.127) we obtain

σ(m)(m− 1)!!

(
37

504π2

H6

M4

)m/2

λ
µ4−n−mϕnH3m−2

MPlM2m
≪ 1. (3.134)

The constraint here actually depends on the value of ϕ, which is specified once a concrete model of

inflation is considered.

Third, the interaction term must not affect much the behavior of the environment

λµ4−n−mϕnψm ≪M2ψ2. (3.135)

Since we have assumed ψ is a test field, the condition (3.131) readily ensures that (3.135) is satisfied.

Using (3.127) we get

λµ4−m−nϕn⟨ψm⟩st
M2⟨ψ2⟩st

= (m− 1)!!

(
37

504π2

)m
2 −1

λ
µ4−m−nϕn

H6−3mM2m−2
. (3.136)

Lastly, we need to ensure, that when the environment is in the stationary state, R = ψm−⟨ψm⟩st,
it has autocorrelation time that is smaller than the typical evolution time of the system. Since the

system is a light scalar field, we expect it to evolve at timescales of order T̃A = H−1. According to

(3.128) the environment correlation time tc ∼ 1/M , so that

tc

T̃A
∼ H

M
, (3.137)

and since by our initial assumption the environment is massive (M ≪ H), this condition is always

satisfied.

Power spectrum constraints. For n = 1, interaction with the heavy scalar field environment

the parameter p = 5, or to be more precise (see ref [2]) p = 5 − 6mε∗. Combining the standard

expression to the power spectrum with equations (3.89) and (3.101), one obtains

Pζζ =
H∗

(
1 + π

6

k2
γ

k2
∗

)
8π2εM2

Pl

[
1 +Q

(
kγ
k∗
,
k

k∗
, ε∗, η∗,m

)]
. (3.138)

First, notice the amplitude depends on kγ/k∗, so if we assume the tensor perturbations are

unaffected by the environment, the tensor-to-scalar ratio r = Phh/Pζζ , where Phh is the tensor
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power spectrum, now writes

r =
r|standard
1 + π

6

k2
γ

k2
∗

, (3.139)

where r|standard = 16ε∗. If kγ/k∗ ≪ 1, the standard result is recovered, however when this is not

the case the tensor-to-scalar ratio becomes smaller.

Second, the spectral index ns ≡ 1 + d lnPζζ/d ln k also changes

ns = ns|standard −
π
6

k2
γ

k2
∗

1 + π
6

k2
γ

k2
∗

(6m− 2)ε∗. (3.140)

For kγ/k∗ ≪ 1, the standard result is recovered, however if kγ/k∗ ≫ 1 one obtains ns ≃ n|standard −
(6m− 2)ε∗. The shift is negative, at least for m > 1/3.

Figure 8: Spectral index ns and the tensor-to-scalar ratio r for various values of kγ/k∗ and m, for different models of single-
field inflation: Higgs inflation (“HI”), power-law inflation (“PLI”), and natural inflation (“‘Ni”). The blue color corresponds
to the standard results without decoherence and other colors describe the result when decoherence is present. The black lines
correspond to the one and two-sigma contours obtained from Planck 2015 data. [2].

The comparison of these findings with data is shown in Fig. 8, which shows how decoherence

affects the compatibility of three scenarios (Higgs inflation, natural inflation, power-law inflation)

with data.

� Decoherence has almost no effect on the observables of Higgs inflation.

� Natural inflation is already disfavoured by data and decoherence makes it even worse.

� Power-law inflation was disfavoured by data, however, decoherence cures this and as m in-

creases it agrees with data even better.
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3.4.7 Decoherence

We move to quantifying decoherence of the inflaton perturbations due to the environment, i.e. gauge

fields. Specifically, the non-unitary term in the Lindblad equation (3.78) suppresses the off-diagonal

elements of the reduced density matrix.

In the case of linear interactions with the environment, the Lindblad equation can be solved

exactly and leads to Eq. (3.80).

We consider an off-diagonal element of the density matrix, with a distance from the diagonal

∆vk. Then according to equation (3.80)∣∣∣∣〈vsk +
∆vk
2

∣∣∣∣ ρ̂sk ∣∣∣∣vsk − ∆vk
2

〉∣∣∣∣ = | ⟨vsk| ρ̂sk |vsk⟩ | exp
[
−
δk + 1

4

2

∆v2k
Pvv(k)

]
, (3.141)

where we have used (3.87) for Pvv(k) and introduced the decoherence parameter

δk ≡ IkJk −K2
k + |v′k|2Jk + |vk|2Ik − |vk|2

′
Kk. (3.142)

We have separated the 1/4 term from the decoherence parameter since it is present even in the free

theory, whereas if we turn off the interactions, δk = 0 (see equations (3.81-3.83)). Hence, δk is the

environment contribution to the suppression of the non-diagonal elements.

Heuristically, since 1/4 corresponds to the standard decrease of the off-diagonal elements it

makes sense to compare it with the contribution coming from δk. If δk ≫ 1, it means that the

environment strongly suppresses the off-diagonal elements, so the environment-induced decoherence

is dominating.

Moreover, the state purity is defined as the trace of the reduced density matrix squared, Tr{ρ̂s2k }
and it is one of the simplest measures of decoherence. Using equation (3.80), we can write it as a

Gaussian integral and obtain

Tr{ρ̂s2k } =

∫ ∞

−∞
dv

s,(1)
k

∫ ∞

−∞
dv

s,(2)
k |

〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)k

〉
|2 =

1√
1 + 4δk

(3.143)

which implies that when δk ≪ 1, the purity is 1. On the other hand when δk ≫ 1, the purity

decreases. Decoherence can be considered complete if Tr{ρ̂sk} → 0, or in terms of the decoherence

parameter δk ≫ 1. We shall adopt this criterion in what follows.

First, we notice, that some of the terms in equation (3.142) are quadratic in γ, since I,J ,K are

actually linear in γ. However, the Lindblad equation was derived in the linear order in γ, so we can

neglect higher order terms, leading to

δk(τ) ≃ |vk|2Ik + |v′k|2Jk − |vk|2
′
Kk. (3.144)

I,J and K can be computed by taking the relevant integrals (3.81)-(3.83).

If we require that decoherence is complete (very large δk) by the end of inflation we get the
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following condition

kγ
k∗

≫

(H∗ℓc)
1−(p−3)(1+ε∗)

2 if p < 3 + 2−2ν
1+ε∗

e(
1−ν
1+ε∗ − p−2

2 )∆N∗ if p > 3 + 2−2ν
1+ε∗

.
(3.145)

Combining these with the upper bounds on kγ/k∗ obtained before, we can see the range of

possible values that comply with both bounds. The analysis is summarized in figure 9.

Figure 9: Regions of parameter space (p, kγ/k∗) depicting the validity of parameter values. The coloured regions correspond
to values for which decoherence is complete and the scale invariance preserved. The light gray region depicts parameter
values that are not allowed due to insufficient decoherence. Medium gray color depicts invalid values due to violation of
scale invariance and the dark gray region is where both conditions are violated. Decoherence is assumed to be complete for
δk > 10, and quasi scale invariance is assumed to be preserved if |ns − n̄s| < 5σns , where n̄s ≃ 0.96 and σns ≃ 0.006 are
the mean value and the standard deviation of the spectral index as measured by Planck. [2].

An important feature of figure 9 is the thin vertical line at p = 5, which derives from the scale-

invariance of the Lindblad term associated with this particular value. Note, that this is indeed the

value we obtain for heavy scalar fields (Sec. 3.4.6).
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3.5 Lindblad formalism in axion inflation

The goal now is to apply the formalism introduced in the previous chapter to axion models of

inflation, which we discussed at some length in section 2.5.

Let us rewrite the action of the model for clarity

S =

∫
d4x

√
−g
[
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

4
FµνF

µν − α

4f
ϕFµν F̃

µν

]
. (3.146)

where MPl is the Planck mass, R is the Ricci scalar, Fµν ≡ ∂µAν − ∂νAµ is the U(1) gauge field

strength and F̃µν ≡ ϵµνρσFρσ/2
√
−g is its dual. Here ϵ denotes the Levi-Civita tensor. f is the

axion decay constant and α is the adimensional coupling constant, which is expected to be ∼ O(1).

The axion inflaton field ϕ embodies the shift symmetry, hence the axion is invariant under a (slightly

broken) symmetry ϕ −→ ϕ + const.. The dimension of f can easily be obtained by comparing the

last term in the action with others. This yields [f ] = [M ].

We will apply the Lindblad equation to this model by identifying the gauge fields as the envi-

ronment and the inflaton field as the system.

First, notice that the coupling between the system and the environment is yet again linear in the

system sector. This means that we can use the same form of the solution to the Lindblad equation

as (3.80), at least at lowest-order in the perturbations. However, of course, the correlation function

CR (3.68) and the γ (3.69) parameter will be specific to the model at hand.

As in the case of the heavy scalar field, in the stationary configuration of the environment, the

expectation value (EV) of the interacting term must vanish, so we would like to write the interaction

action as

Sint =

∫
d4x

√
−g α

4f
ϕ
(
Fµν F̃

µν − ⟨Fµν F̃
µν⟩stat

)
. (3.147)

Notice, that the new term ⟨Fµν F̃
µν⟩stat corresponds to (2.127). This would translate to a corre-

sponding shift in the potential

V̄eff = V̄ (ϕ) +
α

4f
ϕ⟨Fµν F̃

µν⟩stat, (3.148)

where we have introduced bars so as not to confuse the notations with the previous chapter.

We again define v̂(τ,x) = a(τ)ϕ(x, τ). This will be useful since it will correspond to the

Mukhanov-Sasaki variable in the uniform curvature gauge. In appendix B we showed that Fµν F̃
µν =

4a−4∂τ A⃗ · (∇⃗ × A⃗) (see Eq. (B.16)). Then, the corresponding interaction Hamiltonian reads

Hint =
α

af

∫
d3xv̂(τ)

(
∂τ A⃗ · (∇⃗ × A⃗)− ⟨∂τ A⃗ · (∇⃗ × A⃗)⟩stat

)
. (3.149)

We can identify this Hamiltonian as the one in (C.38):

gHint = g

∫
d3xA(t,x)⊗R(t,x), (3.150)
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where g is the coupling, A(η,x) represents the system and R(t,x) the environment. As seen from

the expression the interaction is local. By analogy

A(τ,x) = v̂(τ,x), R(τ,x) =
(
∂τ A⃗ · (∇⃗ × A⃗)− ⟨∂τ A⃗ · (∇⃗ × A⃗)⟩stat

)
. (3.151)

Then we immediately see g = α
af .

17

According to (C.39), γ = 2g2τc, where τc is the autocorrelation time for the environment. Notice,

that we are using the conformal autocorrelation time τc instead of conventional physical tc, which

is constant. The two are connected by the relation tc = τca(τ).

To continue we consider the form given by Eq. (3.70) for γ

γ = γ∗

(
a

a∗

)p

. (3.152)

Then,

γ = 2
α2

a2f2
tc
a

⇒ γ∗ =
2α2tc
a3∗f

2
, (3.153)

where we have obtained p = −3 for this model. As mentioned in the previous chapter, this indicates,

that the top-hat approximation may not be good enough and one may need a more complicated,

albeit more physical form of the correlation function. To this end, we would like to evaluate the

gauge field correlation function, but also make the top-hat approximation to see if it can still be

used.

Therefore, we need to evaluate the following correlation a4(τ ′)a4(τ ′′)⟨(B⃗ ·E⃗)(k, τ ′)(B⃗ ·E⃗)(k, τ ′′)⟩.
In Appendix D it is shown, that this leads to the following form of the correlation function

CR(k, τ̃) =
1

16

k5

(2π)3
e4πξ×

×
∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)
e
−
√
κ
(√

|p|+
√

|ẑ−p|
)
,

(3.154)

where p is adimensional, ẑ is a unit vector along k and we have defined κ = −32ξkτ̃ , with 2τ̃ =

τ ′+τ ′′. It is clear already from this result, that the Markovian approximation is likely not a good one

in this case since it clearly violates our starting assumption of stationary environment18. In fact, the

environment is evolving as the gauge fields get amplified because of the background dynamics. This

suggests that the Lindblad formalism may not be applicable and that a more accurate treatment

would involve non-Markovian master equations (see e.g., [72]).

Nevertheless, we proceed with the Lindblad equation for reasons of tractability and with a

pragmatic justification: we will measure the success of the approach by comparing our results for

the power spectrum, with those already present in the literature, and if we find that the two are

17Notice that g is time-dependent.
18The correlation function in this case cannot be written as a function of a difference |τ ′ − τ ′′|, which is a necessary

condition to derive the Lindblad equation (see Appendix C).
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in agreement, we will deem the Lindblad formalism as an acceptable approximation within this

particular context.

The integral (3.154) above can be evaluated numerically by fitting formulae19. As for the fit,

we would like to have a result for 2 ≤ ξ ≤ 3, which is the most interesting range in terms of

phenomenology (see Sec. 2.5). The fit leads to

CR(k, τ̃) =
367

16

k5

(2π)3
e4πξe0.11·2

8ξkτ̃ 2 ≤ ξ ≤ 3; (3.155)

Using this form of the correlation function, we can identify an effective (conformal) correlation time

|τc| ≡ (0.11 · 28ξk)−1. One of the novelties in this work is in fact the scale dependence of the

correlation time. In this particular case, we see that the shorter modes decohere more efficiently

compared to longer modes (we will quantify this in the following sections).

As mentioned in 3.4.6, the conformal correlation time is related to the cosmic correlation time

by tc = aτc, which immediately implies that tc = (βξkphys), where kphys = k/a and β = 0.11 · 28.
Furthermore, let us make the following observation: at first order in slow-roll

ξ =
αMPl

f

√
ε

2
, (3.156)

where we have used the definition of ξ = 2αϕ̇/fH and ε = ϕ̇2/2M2
PlH

2. Since all modes of astro-

physical interest today had crossed the horizon during inflation, we can evaluate ξ at the horizon

crossing (k = aH). This amounts to evaluating the slow-roll parameter at the horizon crossing and

we can write ε|k=aH = −Ḣ/k2phys and by plugging this into the expression for the correlation time

tc, we obtain

tc =
1

βξH
. (3.157)

Notice, that the correlation time is smaller when ξ ≫ 1. This is because as ξ grows the environment

looks more and more like a thermal bath, whose characteristic is a small correlation time. In any

case, the requirement that the correlation time needs to be smaller than the typical timescale in

which the system evolves is satisfied for ξ ≥ O(1), since the system - the inflaton field - evolves with

the characteristic time ∼ H−1.

In Appendix D we have also computed the environment (physical) correlation length

ℓc =
βξ

H
. (3.158)

Note, that this implies, that for values of ξ ≳ (0.11 · 28)−1 the correlation length can become super-

Hubble, so the correlations are not spatially local, but this is not necessarily a contradiction; e.g.

In Sec. 3.4.6 the correlation time and the correlation length are similar, so it is rightfully expected

that the correlation length must be shorter than the Hubble radius because the Lindblad formalism

imposes a short correlation time. However, if the correlation length is different compared to the

19Although an analytical expression can be found in Appendix D for ξ ≫ 1.
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correlation time, which is precisely the case studied in this thesis, the correlation length can take

larger values.

Using the exponential form for the environment correlation function characterizes the physics

well, but is less tractable analytically for the purposes of our future discussions, which is why we

also use the top-hat approximation

CR(k, τ̃) =
367

16(2π)3
k5e4πξ ×Θ

(
τ̃

τc

)
, (3.159)

where

Θ

(
τ̃

τc

)
=

1 τ̃ < τc

0 τ̃ ≥ τc,
(3.160)

and |τc| ≡ (0.11 · 28ξk)−1 is the environment autocorrelation time. The use of the top-hat approxi-

mation is twofold. First, since the calculations can be done analytically, we obtain more insight into

the physics and how the interplay of different parameters affects the final results. Second, as stated

by [2], in certain regimes the top-hat approximation cannot be trusted and one needs to resort to

more physical forms (like the exponential) of the correlation function. Having both forms, we will

be able to explicitly check the validity of the top-hat approximation by comparing the final results

obtained using both approaches.

Let us conclude by specifying the conditions, under which our model is compatible with the base

assumptions, such as the Born approximation used to derive the Lindblad equation.

First, we must notice, that V̄eff(ϕ) contains the inflationary potential and a correction. To ensure

that the new term does not spoil slow-roll inflation, we must make sure the correction is small

compared to the original potential. In slow-roll approximation V̄ (ϕ) ≃ 3H2M2
Pl. If we recall the

equation (2.127), the requirement, that V̄ (ϕ) ≫ α
4f ϕ⟨Fµν F̃

µν⟩stat is equivalent to

0.2 · 10−4α

f
ϕ
H2

M2
Pl

e2πξ

ξ4
≪ 1. (3.161)

It is not very clear what this bound entails, however, we can use ξ = αMPl

f

√
ε/2 to rewrite this

bound in a clearer form

0.2 · 10−4 H
2

M2
Pl

ϕ

MPl

√
2

ε

e2πξ

ξ3
≪ 1. (3.162)

If we assume ε = 10−3 (which is within the current observational bounds, see [73]), from the condition

that the backreaction is negligible, (2.130), at most e2πξξ3 = 103M2
Pl/H

2. So the largest value the

LHS can possibly take is O(1)ϕ/MPl. This translates to

ϕ

MPl
≪ 1. (3.163)

Whether this bound is satisfied or not will depend solely on the specific value of ϕ in a given model.

In large field models, this bound is manifestly violated, however small-field models would comply
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with this bound.

The second requirement is that the interaction term must not affect the environment much. In

terms of the action (3.146), the condition reads

α

f
ϕFµν F̃

µν ≪ FµνF
µν . (3.164)

If we use the mean field approximation, using equations (2.127) and (2.128) we obtain

α

f
ϕ≪ 0.58. (3.165)

While this bound suggests a small value of the coupling α/f , again, this depends on the specific

value of ϕ in a given model. Using (3.156) we can also rewrite this inequality in the following manner

ξ
ϕ

MPl
≪ 0.38

√
ε. (3.166)

In large-field models of inflation, where ϕ can take values ≳ MPl, this bound requires a very small

value of ξ. Hence, we can only use the Lindblad formalism in case we have a small field model,

where ϕ≪MPl.

3.5.1 Power Spectrum in the Lindblad Formalism

In this section, we compute the power spectrum using the Lindblad formalism, which we compare

to the standard results (e.g., ref [27]). We do this in two different ways: i) we use the complete form

of the environment correlation function (3.154) and obtain the power spectrum numerically, ii) we

approximate the environment correlator using a top-hat ansatz (3.159) and proceed analytically.

In Appendix E, we use the top-hat anzats (CR ∝ Θ(τ/τc)) to compute the correction to the

power-spectrum analytically. We rewrite equation (E.23) as

∆Pk =
Jk

|vk|2
= −

√
2

π

367e4πξ

32

(
H

MPl

)2
2ξ

ε

(
k

k∗

)−3ε
1

β
Γ2(1− ν)

sin2(πν)

π2ν2
×{

1

4ν(1− α+ 2ν)

[
(βξ)(ε−1)(1+α+2ν) −

(
k

k∗

)1+α+2ν

exp

[
−(N −N∗)

1 + α+ 2ν

1 + ε

]]

+
2−4ν(−kτ)4ν

4−ν(1− α− 2ν)

[
(βξ)(ε−1)(1+α−2ν) −

(
k

k∗

)1+α−2ν

exp

[
−(N −N∗)

1 + α− 2ν

1 + ε

]]

− 2
2−2ν(−kτ)2ν

1 + α

[
(βξ)(ε−1)(1+α) −

(
k

k∗

)1+α

exp

[
−(N −N∗)

1 + α

1 + ε

]]}
, (3.167)

where we have used the equation (E.13) and

−kτ =

(
−kτ
−k∗τ∗

)
(−k∗τ∗) ≃

(
k

k∗

)(
a

a∗

)− 1
1+ε

=

(
k

k∗

)
e−

1
1+ε (N−N∗), (3.168)
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where N −N∗ is the number of e-folds passed since a pivot scale k∗ crossed the Hubble radius. The

time domain that we are interested in is when N > N∗
20. The time-dependent part in Eq. (3.167)

gets exponentially suppressed and the correction to the power spectrum is effectively constant in

time. In this limit, it is clear, that the second term in Eq. (3.167) dominates the rest. Note also,

that this expression was obtained after taking two important approximations: First, since we are

interested in superhorizon scales, −kτ ≪ 1. Second, since we are interested in ξ ≥ O(1), then by

our identification of the conformal correlation time τc = (βξk)−1, it is clear, that −kτc ≪ 1.

Figure 10: time dependence of the relative difference between the top-hat result (3.167) for the power spectrum using the
Lindblad formalism and the standard result (2.153) is depicted for different values of ξ. The time dependence becomes

negligible as one approaches N > N∗ as expected. This plot is obtained for k = k∗, P = 2.1× 10−9, ε = 10−3, η = 2× 10−2

and H/MPl = 10−5 .

In ref. [27] they have derived the correction to the power spectrum due to the presence of the

gauge fields in axion inflation (see Sec. 2.5). A comparison of the latter with our results is depicted in

Fig 10, where the y-axis is the relative difference |∆Pζζ |/Pζζ (notice ∆Pζζ is the difference between

the power spectrum obtained in this thesis and the power spectrum in ref [27], not to be mistaken

with ∆Pk defined in (3.90) ) and the x-axis corresponds to N −N∗. It is clear, that, at least when

considering the top-hat approximation of the gauge field correlation function, as ξ increases, the

relative error |∆Pζζ |/Pζζ between the two results increases. In particular, the relative difference

crosses the 10% threshold at ξ = 2.63 (see also Fig. 11) and reaches as much as 80% near ξ = 3.

This naturally prompts us to check what happens if we do not use the top-hat approximation

20Note, that we cannot treat the regime N < N∗, since in that case, the second term in each line of Eq. (3.167)
becomes larger than the first one, which is forbidden since we are using the top-hat ansatz that imposes a cutoff (see
how the boundaries of the integrals (E.11)-(E.12) were obtained) and we need −kτ ≪ 1.
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and use equation (3.154) instead. We may proceed by plugging it into (3.82):

Jk(τ) =
δ(3)(k+ k′)

4

k5

(2π)3/2
e4πξ

∫ τ

−∞
dτ ′γ(τ ′)Im2{vk(τ ′)v∗k(τ)}×

×
∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)
e
−
√
κ
(√

|p|+
√

|ẑ−p|
)
.

(3.169)

In Appendix E, we have derived an expression for Jk, (E.25), similar to the top-hat approxima-

tion. The correction to the power spectrum can obtained by dividing this expression by |vk|2. The
resulting power spectrum is compared to (2.153) in figure 11. This plot suggests, that even though

the relative difference is quite large in both cases for ξ ≳ 2.7, using the full integral form of the

environment correlator slightly alleviates the tension between our results and the standard power

spectrum available in the literature.

We note, however, that this does not yet mean, that our approach is unreliable for ξ > 2.7,

since in order to derive equation (2.153), a series of approximations were used, so we are practically

comparing approximations, that are bound to have error-bars.

Figure 11: The power spectrum derived using the integral (blue) and the top-hat(black) forms are compared to the power
spectrum in [27]. The dashed lines correspond to the 10% error threshold, which are very close. This plot is obtained for

k = k∗, P = 2.1 × 10−9, ε = 10−3, η = 1 − 0.96 − 2ε and H/MPl = 10−5 .

Alternative derivation. We notice, that the integrals Jk and (2.143) are quite similar, there-

fore, we may follow along the same line and derive the correction using the same approximations as

in [27]. This will allow us to put the Lindblad formalism to the test more rigorously.

As we have done in section 2.5.4, we write

vk(τ) = i

√
π

4k

√
−kτH(1)

ν (−kτ), (3.170)
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whereH
(1)
ν is the Hankel function of the first kind. We are interested in the late-time power spectrum

when −kτ → 021. In this approximation

vk(τ) =
1√
2

aH

k3/2
(−kτ)

ns−1
2 . (3.171)

We can rewrite equation (3.169):

Jk(τ) =
δ(3)(k+ k′)

4

k5

(2π)3/2
e4πξ

∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)
I(ξ, |p|, |ẑ − p|),

(3.172)

where we have defined

I(ξ, |p|, |ẑ − p|) ≡
∫ τ

−∞
dτ ′γ(τ ′)Im2{vk(τ ′)v∗k(τ)}e−

√
κ(
√

|p|+
√

|ẑ+p|). (3.173)

Recall that in our model the factor γ(τ) is given by (C.40)

γ(τ) =
2α2tc
f2a3

. (3.174)

Using this equation with (3.171), we get

I(ξ, |p|, |ẑ − p|) ≃ α2tc
f2

a2(τ)H2

k3
(−kτ)ns−1×

×
∫ τ

−∞
dτ ′a−3(τ ′)Im2{vk(τ ′)}e−

√
κ(
√

|p|+
√

|ẑ+p|). (3.175)

It is crucial to note that we do not use the approximation (3.171) on vk(τ
′) since τ ′ is the integration

variable. Nevertheless, we may use the complete solution (3.170), leading to

I ≃ πα2tc
4f2

a2(τ)H5

k3
(−kτ)ns−1

∫ τ

−∞
dτ ′τ ′4Re2{H(1)

ν (−kτ ′)}e−
√
κ(
√

|p|+
√

|ẑ+p|). (3.176)

Finally, we make a change of variable x = −kτ , leaving us with

I ≃ πα2tc
4f2

a2(τ)H5

k3
(−kτ)ns−1 1

k5

∫ ∞

x

dx′x′4Re2{H(1)
ν (x′)}e−4

√
2ξ

√
x′(

√
|p|+

√
|ẑ−p|). (3.177)

Since we are interested only in super-horizon modes, −kτ → 0, we may set the lower limit of the

integral to zero. It is now evident that we can put ν = 3/2, since the slow-roll corrections will not

affect the scale dependence, but only the amplitude of the power spectrum by a negligible amount.

21Notice that in fact, we have chosen the arbitrary phase such that vk(τ) will be real in the limit −kτ ≪ 1.
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This leads to

I ≃ α2tc
2f2

a2(τ)H5

k3
(−kτ)ns−1 1

k5

∫ ∞

0

dx′x′3

(
sin2(x′)

x′2
− sin(2x′)

x′
+ cos2(x′)

)
×

× e−4
√
2ξ

√
x′(

√
|p|+

√
|ẑ−p|). (3.178)

The integral presented here must be carried out numerically, and for future convenience, we denote

it simply by J(4
√
2ξ(
√
|p|+

√
|ẑ − p|). We now rewrite the curvature power spectrum as follows

Pζζ = P standard
ζζ

1 + 2πPf(ξ)e4πξHtc︸ ︷︷ ︸
∆Pk

 , (3.179)

where

f(ξ) =
ξ

β
√
2π

∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)
J(4
√
2ξ(
√

|p|+
√

|ẑ − p|)). (3.180)

Generally, we need to evaluate the integral (3.180) numerically. However, if we consider a large

argument for J , which automatically means large ξ, a simplification is reached. Namely, in (3.178),

only small values of x will contribute since for larger values the integral goes to zero exponentially.

For what follows, we denote the argument of J by u

J(u) ≃ 5

18

∫ ∞

0

dx′x′7e−u
√
x′
. (3.181)

We can simply change the integration variable to y = x′1/4 leading to a Gaussian integral

J(u) ≃ 10

9

∫ ∞

0

dyy31e−uy2

=
726485760000

u16
, u≫ 1. (3.182)

Indeed if
√
|p| +

√
|ẑ − p| ≃ O(1) this approximation holds true for large values of ξ. Then, the

rest of the integral can be evaluated numerically and we find

f(ξ) ≃ 30

ξ6
. (3.183)

The regime 2 ≤ ξ ≤ 3 is the most interesting regime phenomenologically, so it is interesting to

at least have a numerical fit

f(ξ) = 0.75 · 10−4ξ−6.4, 2 ≤ ξ ≤ 3. (3.184)

We compare our results to [27] in figure 12. We see that for lower values of ξ the two results are in

good agreement. Interestingly, it appears, that the Lindblad formalism starts to fail as we increase

ξ as before. In figures 11 and 12 the 10% threshold of validity is crossed at around the same value,
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Figure 12: The relative error |∆Pζζ |/Pζζ between the power spectrum obtained using the Lindblad formalism and the
standard one found in the literature (see [27]). The results are in good agreement (below 10 % relative error) for values of ξ

from 2 to 2.7, which is marked by the blue dashed line. The plot is evaluated for P = 2.1 × 10−9.

ξ ≃ 2.7. We speculate, that this is because as we increase ξ, we effectively increase the coupling

α/f with the environment, as described by Eq. (3.156). The tension arises because in deriving the

Lindblad equation, one of the key assumptions is that the coupling between the system and the

environment is weak. Hence, if we increase the interaction strength, the environment backreaction

becomes important and the Lindblad approximation fails.

3.5.2 Decoherence

We follow the analysis done in Sec. 3.4.7 and apply it to our current construction. Recalling, that

the decoherence parameter, at linear order in γ can be written as (3.142)

δk(τ) ≃ |vk|2Ik + |v′k|2Jk − |vk|2
′
Kk. (3.185)

For axion inflation, Appendix E contains explicit forms of the constituents of this equation. We

consider first the top-hat approximation since this leads to an approximate analytical expression

that can be interpreted physically.

After many cancellations, in the slow-roll approximation, the resulting expression is

δ
(top-hat)
k (τ) =

367

16
√
2π

ξe4πξ

β sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε

[I1(ν) + I1(−ν)− 2I2(ν) cos(πν)] , (3.186)

where I1 and I2 are given by (E.11-E.12). Note, that the integral has a cutoff at −kτc produced by

the top-hat form of the environment correlation function. In the limit −kτ,−kτc ≪ 1, the integrals

I1 and I2 is also obtained in Appendix A (E.18-E.19). Through simple analysis, one concludes

that among the three terms present in the above equation, the second term (∝ I1(−ν)) gives the
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dominant contribution. This observation allows us to write an approximate analytical expression

for the decoherence parameter, yielding

δ
(top-hat)
k ≃ 1√

2π

367e4πξ

16 sin2(πν)

(
αH

f

)2(
k

k∗

)−3ε

×{
1

4−ν(1 + α− 2ν)Γ2(1− 2ν)

[
(βξ)(1+ε)(1+α−2ν) −

(
k

k∗

)
e−(N−N∗)(

1+α−2ν
1+ε )

]}
. (3.187)

This way we can interpret the behavior of the decoherence parameter. According to (3.187), for

N > N∗ regime, the time dependence of δk quickly becomes negligible due to the exponential

suppression. The decoherence parameter reaches a constant value, as seen in the left panel in

Fig. 13. We argue, that this is expected since the gauge fields are amplified close to the horizon

crossing of a given mode k. This implies, that the scalar perturbations effectively decouple from the

environment, hence the purity (see equation (3.143)) of the state remains unaltered.

Figure 13: The decoherence parameter (rescaled by (H/MPl)
−2) is evaluated using the top-hat form of the environment

correlation function. In these plots: (left) the decoherence parameter is plotted as a function of time (here number of e-
folds) for given values of the parameter ξ for k = k∗. (right) Decoherence parameter is plotted against the parameter ξ for
N − N∗ = 15 for various values of k/k∗.

Next, we use the integral form of the environment correlation function (3.154). Using the ex-

pressions (E.24-E.26) we may construct the decoherence parameter similar to (3.186)

δ
(integral)
k (τ) =

1

16
√
2π

ξe4πξ

β sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε

[F1(ν) + F1(−ν)− 2F2(ν) cos(πν)] , (3.188)

where F1 and F2 are defined in Appendix E, Eqs. (E.27)-(E.28). We produce a fit for these functions

that read

F1(ν) = 1.15 · 10−6 · ξ−0.57 F1(−ν) = 312 · ξ−0.51 F2(ν) = −9.76 · 10−5 · ξ−0.41. (3.189)

The result, which we deem as more reliable compared to the previous one, is plotted in figure 14.

The values of the decoherence parameter are shifted compared to the top-hat case by ∼ 103 ÷ 104.
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This result shows a more critical difference between the two approaches.

Figure 14: The decoherence parameter (rescaled by (H/MPl)
−2) evaluated using the integral form of the environment

correlation function for various values of k/k∗. The result is practically scale-independent as the lines on the plot are

indistinguishable. To obtain the plot, we have fixed ε = 10−3 and η = 1 − 0.96 − 2ε.

In order to reach successful decoherence we require Tr{ρ̂(s)2k } ≪ 1, or equivalently δk ≫ 1.

We compare this result to observational constraints. According to [73] the upper bound on the

energy scale of inflation is equivalent to an upper bound H < 2.5 × 10−5MPl, or equivalently

M2
Pl/H

2 > 6.25 × 1010. The top hat approach (Fig. 13) results in a saturation of this bound for

values ξ ≈ 2, leading to largely incomplete decoherence. On the other hand, using the integral

form of the gauge field correlation function allows for a large amount of decoherence for all values

2 < ξ < 3. This shows, that in our case the top-hat approximation should be taken with a grain of

salt since it can lead to dangerous conclusions.

3.5.3 Accounting for the scale dependence of ξ

As we have noted before, ξ is not really a constant during inflation, in fact, it is expected to increase

as inflation proceeds. This is because the value of ϕ̇ increases and H decreases (for a detailed work

utilizing this effect see e.g. [74, 75]). On the other hand, this means that ξ also depends on scale.

The specific form of the dependence is given by [76]

ξ = ξ∗

[
1 +

η∗
2

log

(
k

k∗

)]
, (3.190)

where ξ∗ is the value taken when the pivot scale (k∗ = 0.05 Mpc−1) crosses the horizon. The current

upper bound is ξ∗ ≤ 2.3 [17]. Even though the dependence appears to be weak, we would like to

know how this affects both the power spectrum and the decoherence parameter.

The results are presented in Fig. 15. On the left side we see, the relative difference between

our results and (2.153). Notice, that for both the top-hat approximation and the integral form the
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relative difference starts to deviate (meaningfully) from 0 around k ≈ k∗. The increasing relative

error is consistent with the previous result, since large k corresponds to large ξ. The two curves

closely follow each other, but at small scales (large k) the difference between the two approaches is

more pronounced.

Figure 15: (Left) Power spectrum, evaluated by using Eq. (3.190) is compared to (2.153). (Right) The decoherence parameter

(rescaled by H2/M2
Pl) is obtained likewise for very large and very small scales. The plots are obtained for ε = 10−3,

η = 1 − 0.96 − 2ε, P = 2.1 · 10−9 and for the power spectrum we have fixed H2/M2
Pl.

On the right side we have evaluated the decoherence parameter on scales ranging from very

large to very small. To do this, however, we made a new fit for the correlation function, since

restricting to 2 < ξ < 3 does not produce any meaningful results22. Instead, we considered a

larger interval to encompass all the scales (0.1 ≤ ξ ≤ 8). We see that as we move to larger scales,

decoherence gets weaker. While the large values of ξ are arguably inconsistent with the Born-Markov

approximations, it is still interesting to see which scales do not decohere according to our prescription.

The observational bounds on the Hubble parameter during inflation (M2
Pl/H

2 > 6.25·1010) suggests,
that at very large scales, k/k∗ ≲ 10−15, decoherence is insufficient.

This is expected in our construction since as ξ increases with scale k, the interaction strength

effectively becomes larger, increasing the effect of decoherence on smaller scales. So the correlation

structure is such, that there are quantum correlations on large scales that are less affected by

decoherence, while smaller scales suffer larger decoherence.

Another important point is that the region of insufficient decoherence is well outside the observ-

able scales, meaning, that, for example, for the scales probed on the CMB decoherence is complete.

Notice that we have evaluated the power spectrum near the end of inflation, but we also used

ε ≪ 1, which may be a gross oversimplification, since the end of inflation is characterized by the

slow-roll parameters becoming O(1), so the scale dependence may be more significant, however for

the scope of this thesis, we neglect the evolution of ε.

22Importantly when making a new fit, we also change the correlation time by a numerical factor. For values
0.1 ≤ ξ < 8, which we have used for the fit the physical correlation time is tc = (0.35 · 25ξH)−1. One can easily verify
that for the mentioned values of ξ, the tc < H−1 still holds.
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4 Traces of “Quantumness” from the Early Universe

In this section, we overview the challenges associated with differentiating between classical and quan-

tum correlations from the early universe. We introduce the cosmological Bell inequalities following

[8] where we conclude that any violation of the Bell inequalities is likely unattainable from data.

We then connect the Bell inequalities with other measures of quantum correlations such as

quantum discord and state-separability [77].

Finally, we expand on the quantum discord and calculate it for the case of axion inflation.

4.1 CMB Bell inequalities

As we have seen in Sec. 2.4 the initial quantum fluctuations are placed in the squeezed state at the

end of inflation. These states are highly entangled and therefore, highly non-classical. One draws

the conclusion, that, at least if the inflationary mechanism truly describes the physical reality of

the early universe, the correlations observed on the CMB must be characterized by the quantum

theory. However, it has been shown (see, e.g. [49]) that at the level of the power spectrum (or the

curvature two-point function ⟨ζ̂(τ,x)ζ̂(τ,y)⟩), the classical stochastic theory works just as well. In

the same reference, it was found, that due to the fact that the quantum state is highly discordant,

the correlation functions ⟨ζ̂(τ,x)ζ̂ ′(τ,y) + ζ̂(τ,x)ζ̂(τ,y)⟩ and ⟨ζ̂ ′(τ,x)ζ̂ ′(τ,y)⟩ deviate from their

classical counterparts significantly.

The measurement of quantum entanglement of the inflationary squeezed state has been done

using the quantum discord [49], and the resulting discord reads

δ(k,−k) = cosh2 rk log2(cosh
2 rk)− sinh2 rk log2(sinh

2 rk) ≃
2

ln 2
rk − 2

1

ln 2
+O(e−2rk). (4.1)

So large squeezing corresponds to large quantum discord which means the quantum correlations

become more pronounced.

The difficulty in measuring any quantum signatures from the early universe is also due to the

fact, that the quantum mechanical phase space of cosmic perturbations is made up of two non-

commuting variables - the growing (ζ̂) and the decaying mode (ζ̂ ′). As the name suggests, one of

the modes rapidly decays, making any attempts to measure quantities related to its amplitude, such

as the correlators defined above, hopeless. So according to the standard scenario, we cannot measure

“quantumness” using the commutator of the phase space variables23.

Yet, there are reasons to establish Bell CMB experiments [78, 79]. Specifically, we note the three

most obvious reasons

� The validity of the statement that observing the decaying mode amplitude is hopeless is vague,

in the sense, that we would like to assess how severe this problem is when establishing Bell

experiments;

23Although, it should be noted, that higher order correlators, such as the four-point correlation function cannot be
reproduced by any classical state, even at the level of the growing mode.
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� The power spectrum measures correlations for a single wavenumber k, while typically in Bell

experiments include modes k and −k;

� In non-minimal cases the decaying mode can be accessible [79, 80].

As we shall see, the Bell inequalities are violated, even when one mode decays.

The key question is, how do we extract Bell inequalities from CMB observations? and can it

even be done in practice?

4.1.1 CMB Bell experiment with pseudo-spin operators

Let us first write down the Hamiltonian for the scalar perturbations

Ĥ =

∫
R3

d3k

[
k

2

(
ĉkĉ

†
k + ĉ−kĉ

†
−k

)
− i

2

z′

z

(
ĉkĉ−k − ĉ†−kĉ

†
k

)]
, (4.2)

where ĉ and ĉ† are the annihilation and the creation operators respectively. They satisfy [ĉk, ĉ
†
p] =

δ(k − p). z ≡ aMPl

√
2ε, as before. The creation and annihilation operators are related to the

curvature perturbations ζ̂k through v̂k = (ĉk+ c−k)/
√
2k and p̂k = −i

√
k/2(ĉk− ĉ†−k) by ζ̂k = v̂k/z

and ζ̂ ′k = p̂k/z. We can now introduce the quantities q̂k = (ĉk+ ĉ
†
k)/

√
2k and π̂k = −i

√
k/2(ĉk− ĉ†k),

which are advantageous in the sense, that they do not mix k modes with −k modes like ζ̂. One may

look at them as the position and the momentum at the scale k.

Typically, when constructing the Bell experiment, one deals with discrete variables, however, ζ̂,

or the Mukhanov-Sasaki operator v̂, are complex variables, with continuous spectra. To apply the

concepts of Bell experiments in this case, one can define the pseudos-spin operators.

Banaszek-Wodkiewitz pseudo-spin operators [81]. One possible way is by defining the

following operators

ŝx(k) =

∞∑
n=0

(|2nk + 1⟩ ⟨2nk|+ |2nk⟩ ⟨2nk + 1|) (4.3)

ŝy(k) =
∞∑

n=0

(|2nk⟩ ⟨2nk + 1| − |2nk + 1⟩ ⟨2nk|) (4.4)

ŝz(k) =

∞∑
n=0

(|2nk + 1⟩ ⟨2nk + 1| − |2nk⟩ ⟨2nk|) (4.5)

and similar expressions for −k. The states |nk⟩ are the eigenvectors of the particle number op-

erator. These operators satisfy the usual SU(2) commutation relations, and if one defines n =

(sin θn cosϕn, sin θn sinϕn, cos θn), one gets (n · ŝ)2 = Î, so that the outcome of the Hermitian oper-

ator n · ŝ is ±1. From this point, it is possible to proceed with analogy with the standard way of

constructing the Bell inequality [8]. The Bell operator in this construction is

B̂(k,−k) = n·ŝ(k)⊗m·ŝ(−k)+n·ŝ(k)⊗m′ ·ŝ(−k)+n′ ·ŝ(k)⊗m·ŝ(−k)−n′ ·ŝ(k)⊗m′ ·ŝ(−k), (4.6)
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where n′, m, and m′ are also unit vectors. Then taking the mean value of B̂ in the two-mode

squeezed state, one obtains

⟨2MSS|B̂(k,−k)|2MSS⟩ = 2

√
⟨2MSS| ŝz(k)⊗ ŝz(−k) |2MSS⟩2 + ⟨2MSS| ŝx(k)⊗ ŝx(−k) |2MSS⟩2.

(4.7)

where |2MSS⟩ is the two-mode squeezed state and can be written as

|2MSS⟩ = 1

cosh rk

∞∑
n=0

e−2inφk tanhn rk |nk, n−k⟩ (4.8)

and one can easily check that Eq. (4.7) can be written as

⟨2MSS|B̂(k,−k)|2MSS⟩ = 2
√
1 + tanh(2rk) cos(2φk). (4.9)

On superhorizon scales rk → ∞ and φk → −π/2. Hence ⟨2MSS|B̂(k,−k)|2MSS⟩ → 2
√
2, which

means the Bell inequality is violated. This is known as the Cirel’son bound and it represents the

maximal value the Bell operator can take. As expected from the large discord, the CMB is placed

in a highly quantum state that maximally violates the Bell inequality.

Gour-Khanna-Mann-Revzen pseudo-spin operators [82, 83]. The choice of the pseudo-

spin operators is not unique. Cosmological Bell inequalities can be studied using the GKMR oper-

ators. To see this, let us define

|Ek⟩ =
1√
2
(|qk⟩+ |−qk⟩) , (4.10)

|Ok⟩ =
1√
2
(|qk⟩ − |−qk⟩) . (4.11)

Using these we can construct

Ŝx =

∫ ∞

0

dqk (|Ek⟩ ⟨Ok|+ |Ok⟩ ⟨Ok|) , (4.12)

Ŝy = i

∫ ∞

0

dqk (|Ok⟩ ⟨Ek| − |Ek⟩ ⟨Ok|) , (4.13)

Ŝz = −
∫ ∞

0

dqk (|Ek⟩ ⟨Ek| − |Ok⟩ ⟨Ok|) . (4.14)

When constructing the Bell operator, one obtains the same equation (4.7) with ⟨2MSS|Ŝz(k)⊗ Ŝz(−k)|2MSS⟩ =
1 and a more complicated form for the second term

⟨2MSS| Ŝx(k)Ŝx(−k) |2MSS⟩ = 2

π
arctan

 2 tanh(rk) cos(2φk)√
tanh4(rk)− 2 tanh2(rk) cos(4φk) + 1

 . (4.15)

In Fig. 16 it is clear, that for various values of φk, the Bell inequality violation is slightly weaker
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than the BW case. On superhorizon scales again, we have rk → ∞ and ϕk → −π/2, which leads

again to the saturation of the Cirel’son bound, ⟨2MSS| B̂GKMR(k,−k) |2MSS⟩ → 2
√
2.

Figure 16: Mean value of the Bell operator using the BW pseudo-spin operators (solid lines) and the GKMR operators
(dashed lines) as a function of the squeezing parameter for various values of φk. The horizontal blue line corresponds to
φk = −π/4 since in both BW and GKMR case the second term in (4.7) vanishes. The black horizontal line corresponds to
the Cirel’son bound.

In Ref. [8] another possibility is discussed using the Larson spin operators which we do not

discuss here.

4.1.2 Can we measure the pseudo-spin operators?

The answer to this question is probably no and here’s why. Let us consider the temperature

anisotropy operator

δ̂T

T
(θ, ϕ) =

∞∑
l=2

m=l∑
m=−l

âlmYlm(θ, ϕ), (4.16)

which is an observable. Here âlm is are non-Hermitian operators. We can connect the temperature

anisotropies with the curvature operator ζ̂k by utilizing the Sachs-Wolfe effect

δT

T
(e) =

∫
dk

(2π)3/2
[F (k) + ik · eG(k)] e−ik·e(τlss−τ0)+ik·x0 , (4.17)

84



4 TRACES OF “QUANTUMNESS” FROM THE EARLY UNIVERSE

where F and G are the form factors that track the post-inflationary evolution of the perturbations.

Importantly, the form factors are proportional to ζ̂k(τend) evaluated at the end of inflation:

δT

T
(e) =

∫
dk

(2π)3/2
[F (k) + ik · eG(k)] ζ̂k(τend)e−ik·e(τlss−τ0)+ik·x0 . (4.18)

The operators δ̂T /T (e) and δ̂T /T (e′) will commute, since
[
ζ̂k, ζ̂p

]
= 024.

Let us now construct the position operator using the curvature perturbations. This can easily

be done and leads to

q̂k =
z

2

(
ζ̂k + ζ̂−k

)
+

z

2k

(
ζ ′k − ζ ′−k

)
. (4.19)

So the knowledge of ζ̂ is not sufficient to understand q̂. However, we can neglect the decaying mode,

so that the measurement of ζ̂ translates to the measurement of q̂. If we have measured q̂, then it is

possible to measure the spin operators only if they commute with q̂, since in cosmology unlike in the

lab situations, we cannot perform a new measurement, so any operator that does not commute with

q̂ cannot be measured. This is exactly the case for all the considered spin operators. Namely, at

least two of the spin operators do not commute with q̂, rendering measurements of Bell inequalities

impossible.

Hence, we conclude, that measuring the pseudo-spin operator is probably not possible due mostly

to the nature of the experiment in cosmology, which cannot be repeated.

4.2 Comparing different measures of quantumness

As mentioned before, Bell inequalities are not the only measures of “quantumness”. Any genuine

quantum signatures of inflationary fluctuations can significantly improve our understanding of fun-

damental issues, like the need to quantize gravity or how exactly classicality emerges [6, 8].

The problem of measuring quantumness is not new in physics and is important in many areas. For

example, in quantum computing, maintaining quantumness is crucial as a computational resource

[84]. The same goes for quantum cryptography [85, 86].

This led to various notions of ”quantumness”. We distinguish two main approaches. i) study

the correlations between a system and the environment and see if it can be reproduced by classical

random variables. This method leads to different measures such as the Bell inequalities [87] (as

discussed above), non-separability of states [88], quantum discord [89, 90, 91], etc.. ii) making use

of the phase space representation of quantum mechanics. This leads for example, to non-positivity

of the Wigner function or the absence of P-representation as signals of quantumness [92, 93].

These measures can be related, depending on the circumstances. For example, it is well known,

that if we consider pure states, the quantum discord reduces to entanglement entropy [91] which

vanishes for separable states. On the other hand, all non-separable states violate the Bell inequality

[88]. But if the states are mixed, the connections become more vague.

24We note that in principle there is also another contribution proportional to the decaying mode, but we neglect it
since it is weak.
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We follow [77] to relate different criteria of quantumness for special (but ubiquitous in many areas

of physics) states and see how these criteria respond to decoherence. Specifically, two continuous

degrees of freedom are studied in the two-mode squeezed states (see section 2.4.1) and we compare

three measures of quantumness: the Bell inequality, quantum discord, and non-separability.

4.2.1 Gaussian two-mode squeezed states

Let us consider two continuous degrees of freedom q1, q2 and their conjugate momenta p1, p2. These

variables can be combined into the phase-space vector R̂1/2 = (q1, q2, p1, p2)
T with [qi, pj ] = iδij

and whose quantum state is described by a density matrix ρ̂. The Wigner function of the Gaussian

state is Gaussian (See the formal definitions in Sec. 3.2), hence all information about the state can

be extracted from the covariance matrix

Γab = ⟨{R̂a, R̂b}⟩, (4.20)

where {, } stands for the anti-commutator. The Wigner function can be written as

W (R1/2) =
1

π2
√

|Γ|
exp

[
−R̂T

1/2γR̂1/2

]
, (4.21)

where |Γ| is the determinant of the covariance matrix. Let us recall the definition of purity p ≡
Tr{ρ̂2}. The state is considered pure if p = 1 and mixed if p < 1. For Gaussian states, purity can

be written in terms of the determinant of the covariance matrix as [94]

p =
1√
|Γ|
. (4.22)

Two-mode squeezed vacua (TMSV) are states, whose covariance is determined exclusively by

two squeezing parameters r and φ (See section 2.4.1 for more details of the squeezing formalism)[95]

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
, (4.23)

where

Γ11 = Γ22 ≡ cosh(2r)I2, (4.24)

and

Γ12 = Γ21 ≡ − sinh(2r)

(
cos 2φ sin 2φ

sin 2φ − sin 2φ

)
. (4.25)

Thus, having determined the squeezing parameters, one can use equation (4.22) to evaluate state

purity. It should be stressed, that the two-mode squeezed vacua lose quantum properties by the

effect of decoherence [96, 97]. We only consider two-mode thermal squeezed states, whose covariance
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matrix is

Γ =
ΓTMSV

√
p

. (4.26)

These states are ubiquitous in physics, including cosmology, for example, when the primordial per-

turbations are linearly coupled with the environment while preserving homogeneity [98].

Under the canonical transformation R̂ → TR̂, whereT is a symplectic matrix which preserves the

commutation relations, the covariance matrix obeys Γ → TΓTT . This implies the covariance matrix

depends on the canonical variables describing the system. For instance, there exists a partition, in

which the covariance matrix is block-diagonal

ΓD =
1
√
p
diag(ΓOMSV,ΓOMSV), (4.27)

where

ΓOMSV ≡

(
Γqq Γqp

Γpq Γpp

)
, (4.28)

and

Γqq = [cosh(2r)− cos(2φ) sinh(2r)] , (4.29)

Γqp = γpq = − sin(2φ) sinh(2r), (4.30)

Γpp = [cosh(2r) + cos(2φ) sinh(2r)] . (4.31)

So that the Wigner function can be factorised W (qD1 , p
D
1 , q

D
2 , p

D
2 ) = W (qD1 , p

D
1 )W (qD2 , p

D
2 ). In this

partition, the quantum state is a product of two uncorrelated one-mode squeezed states. Then it is

obvious that the quantumness criteria, which characterize the correlations between two sub-systems

depends on the chosen partition. Usually, there is a preferred basis of operators chosen by the form

of the interaction which corresponds to separately measurable physical quantities. We nevertheless

use the partition (4.27). The Wigner functions can be represented as ellipses on phase space (see fig.

17). the squeezing parameter r controls the eccentricity of the ellipse, while φ is the angle between

the semi-minor axis and the qi axis.

4.2.2 quantumness criteria

We distinguish three criteria of quantumness.

Quantum Discord. Quantum discord is comprised of two measures of correlations between

sub-systems that coincide in the classical limit but may differ for quantum correlations. The first

measure called the mutual entropy, is the sum of the von-Neumann entropy of both sub-systems

minus the entropy of the entire system. The second measure is the entanglement entropy, defined as

the entropy of a sub-system minus the entropy of the same sub-system once all other sub-systems

have been measured, where an extremisation is performed over the possible ways to measure the

other subsystems. Denoted by D, for the Gaussian states quantum discord can be expressed by the

local symplectic invariants of the covariance matrix, which means that the discord is invariant under
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Figure 17: Contours of the Wigner function W in phase space. The red circle corresponds to the pure vacuum state p = 1
and r = 0, and the green ellipse is still a pure state (p = 1) but slightly squeezed with r = 1 along the φ = π/4 direction.

The Blue ellipse has purity p = e−4 and its semi-minor axis is the same as for the vacuum state. Figure taken from [77].

local sympletic transformations that mix qi with pi, but not with qj or pj .

D(p, r) = f [σ(p, r)] = 2f [p−1/2] + f

[
σ(p, r) + p−1

σ(p, r) + 1

]
, (4.32)

where for x ≥ 1

f(x) ≡
(
x+ 1

2

)
log2

(
x+ 1

2

)
−
(
x− 1

2

)
log2

(
x− 1

2

)
, (4.33)

and

σ(p, r) =
cosh(2r)

√
p

. (4.34)

The quantum discord depends only on p and r. This is because the local sympletic invariance allows

for φ to be changed arbitrarily by performing a phase-space rotation in each sector, so the final

result is independent of φ.

It should be noted, that for pure states quantum discord, entanglement entropy, and mutual

entropy coincide up to numerical factors. While this guarantees the correlated pure states have

quantum correlations, quantum discord does not add any value to the analysis and is usually not

taken into account since entanglement entropy is simply easier to compute. The true advantage of

the quantum discord becomes transparent when we consider mixed states instead.
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Bell Inequality. The GKMR operators, found in Sec. 4.1 can be written as

σ̂i
x =

∫ ∞

−∞
sign(qi) |qi⟩ ⟨qi| dqi, (4.35)

σ̂i
y = −i

∫ ∞

−∞
sign(qi) |qi⟩ ⟨−qi| dqi, (4.36)

σ̂i
z = −

∫ ∞

−∞
|qi⟩ ⟨−qi| dqi. (4.37)

These operators obey the SU(2) commutation relations [σ̂i
µ, σ̂

j
ν ] = 2iϵµνλσ̂

i
λδ

ij , where ϵµνλ is the

totally anti-symmetric tensor. The Bell inequality can be constructed using these operators

⟨B̂⟩ = 2
√

⟨σ̂1
z σ̂

2
z⟩2 + ⟨σ̂1

xσ̂
2
x⟩ ≤ 2. (4.38)

The operators σ̂1
µ and σ̂2

µ act on different sectors. This means, that the Weyl transform of their

product factorizes σ̃1
µσ

2
ν = σ̃1

µσ̃
2
ν . The Weyl transforms can be shown to yield

σ̃i
x = sign(qi), σ̃i

z = −πδ(qi)δ(pi). (4.39)

We can now evaluate the expectation values

⟨σ̂i
zσ̂

j
z⟩ = p, ⟨σ̂i

xσ̂
j
z⟩ = − 2

π
arcsin[| cos(2φ)| tanh(2r)]. (4.40)

Plugging these into equation (4.38) we obtain

⟨B̂⟩ = 2

√
p2 +

4

π2
arcsin2[| cos(2φ)| tanh(2r)]. (4.41)

Non-separability. A state is considered to be separable in a certain partition if we can write its

density matrix as a statistical mixture of products of the density matrices of the sub-systems

ρ̂ =
∑
i

αiρ̂
i
1

⊗
ρ̂i2, (4.42)

where αi are real. For Gaussian states, it has been shown [99], that the so-called Peres-Hordenski

criterion is a necessary and sufficient way to tell if the state is separable. We cite the resulting

condition on separability for the Gaussian state with the covariance (4.26) found in [77]:

e−2r ≥ √
p. (4.43)

As for the partition (4.27), the state is always separable.
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4.2.3 Comparing quantumness criteria

Let us compare the three criteria of quantumness introduced above. First of all, the squeezing angle

φ can be fixed by rotating the direction of the measurement in the phase space. To maximize the

Bell inequality, we fix it to φ = 0. Then all three criteria depend only on purity p and the squeezing

parameter r as depicted in Fig. 18. The color in the figure corresponds to different values of the

quantum discord, while the black and white lines are the thresholds of the Bell inequality and the

state (non-)separability.

Figure 18: Hyperbolic tangent of the quantum discord as a function of the purity p and the hyperbolic tangent of the
squeezing parameter r using equation (4.92). The black and white dashed curves correspond to the thresholds of the Bell
inequality (see (4.41)) and the state (non-)separability (see (4.43)) respectively. The figure is taken from [77].

All the criteria are equivalent for p = 1 except for the vacuum state r = 0. Namely, all pure

states have a non-vanishing quantum discord, the state is non-separable and the Bell inequality is

violated. We also see that non-separability is necessary but not sufficient for the violation of the

Bell inequality. Also, the states with low discord are separable.

This plot is also useful for understanding the interplay of the squeezing parameter and decoher-

ence (characterized by purity in this context). Namely, as we know, the squeezed states are highly

quantum and it is interesting to see how it responds to decoherence. As the squeezing parameter

r increases, the state with fixed purity p becomes more quantum, in the sense, that it crosses the

non-separability and Bell inequality thresholds while moving into an increasingly discordant state.

Instead, if we also vary p, it becomes evident, that we need more decoherence (less values of p) as r

increases to obtain a classical state25.

25The term classical is used since the three measures of the quantumness criteria cannot distinguish these states
from classical states.
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Figure 18 also requires some comments about the values of quantum discord. The plot shows

that the discord can take large or small values even after crossing both the non-separability and the

Bell inequality thresholds. Compare the points A and B in the plot; The Bell inequality is violated

at A, however, the quantum discord takes on low values. On the other hand, at point B the Bell

inequality is not violated, but the discord is large. This suggests that the numerical value of the

quantum discord does not have a clear interpretation, at least in this case and compared to the other

criteria we have considered.

4.3 Quantumness From Axion Inflation: Discord and Decoherence

We would like to expand the topic of quantum discord. This chapter is largely inspired by [6]. We

first delve into the formal structure of Gaussian states and discuss some notions from the previous

chapter in a more rigorous and detailed way, then we apply the formalism to axion models of inflation,

utilizing our construction from Ch. 3.

4.3.1 Partitions

As mentioned in the previous chapter, evaluating measures of quantumness depends on the chosen

partition. To understand why, we start by partitioning a system into sub-parts and look for quantum

correlations.

We want to characterize our system by Hermitian operators, satisfying the canonical commuta-

tion relations. For instance, for a system of n particles, we can choose the position q̂i and momenta

π̂i, where i=1,. . . , n and [q̂i, π̂j ] = iδij . The quantum state of the system is an element of the Hilbert

space

E =
⊗

i=1,...,n

Ei. (4.44)

To characterize the system, we can introduce a vector

R̂ = (q̂1, π̂1, . . . , q̂n, π̂n)
T . (4.45)

The canonical commutation relations associated with the components of R̂ can be written compactly

as [
R̂a, R̂b

]
= iJ

(n)
ab , (4.46)

where J is a block-diagonal matrix

J (n) =


J (1)

. . .

J (1)

 , J (1) =

(
0 1

−1 0

)
. (4.47)
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One can equivalently describe the system using the creation-annihilation operators since

q̂i =
1√
2
(ĉi + ĉ†i ) π̂ = − i√

2
(ĉi − ĉ†i ). (4.48)

and a corresponding vector

Ĉ =
(
ĉ1, . . . , ĉi, . . . ĉn, ĉ

†
1, . . . ĉ

†
i , . . . ĉ

†
n

)T
. (4.49)

Notice that the components are not gathered according to their numerical labels as before. To gather

such terms, we may use the permutation matrix P (n), such that

ˆ̄C = P (n) · Ĉ =
(
ĉ1, ĉ

†
1 . . . ĉi, ĉi

† . . . , ĉn, ĉ
†
n

)
. (4.50)

This will be useful since the relation between R̂ and Ĉ is linear and thus can be written as R̂ =

M (n) ·Ĉ. To establishM (n) we first write R̂ = M̄ (n) · ˆ̄C, where M̄ (n) is now obviously a block-diagonal

matrix,

M̄ (n) =


M̄ (1)

. . .

M (1)

 , M̄ (1) =
1√
2

(
1 1

−i i

)
. (4.51)

Since P (n) is orthogonal, M̄ (n) = P (n) ·M (n) ⇒ M (n) = M̄ (n) · P (n)T . The final expression

allows us to calculate M (n) using M̄ (n) established above. Let us also notice, that M̄ (1)M̄ (1)† =

I2 ⇒ M̄ (n)M̄ (n)† = In, which automatically guarantees M (n)M (n)† = In. We can write down

the commutation relations using vectors Ĉ as

[
Ĉa, Ĉb

]
= Ω

(n)
ab , Ω(n) = iM (n),−1J (n)M (n),−1,T =

(
0 In

−In 0

)
. (4.52)

We can always partition into two subsets as long as n ≥ 2. For instance, if we take n = 4,

R̂ = (q̂1, π̂1, q̂2, π̂2, q̂3, π̂3q̂4, π̂4)
T , we may choose R̂A = (q̂1, π̂1, q̂2, π̂2)

T and R̂B = (q̂3, π̂3q̂4, π̂4)
T ,

which is by definition a partition. We may as well choose to assemble R̂ by combining components

with all possible combinations of numeric labels associated with the position and the momenta.

Choosing a partition corresponds to a canonical transformation that preserves the commutator

structure. So, R̂ → R̂′ = TR̂, where T must be real so that R̂′ is kept Hermitian. T must also be

such that
[
R̂′

a, R̂
′
b

]
=
[
R̂a, R̂b

]
. Also, (4.46) implies TJTT = J , which defines a symplectic matrix

T , whose determinant must be 1 (as is true for any symplectic matrix). The same applies to Ĉ.

Namely, SΩST = Ω, where S =M−1TM =MTTM , which implies det |S| = 1. Another important
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observation is, that the partition Ĉ has the property Ĉ† = A · Ĉ, where

A =

(
0 In
In 0

)
(4.53)

. Then, since R̂ =M · Ĉ, we get M =M∗A. Now, by definition S =M−1TM , so that its complex

conjugate can easily be found to be

S∗ = ASA (4.54)

We should note that the local canonical transformations within the partitions do not mix the

subsystems, so they do not represent a change in partition.

For two partitions to share the same vacuum state, S must not mix the creation and annihilation

operators. The way that Ĉ is established implies S is block-diagonal. On the other hand, according

to (4.54), the blocks must be complex conjugates to each other

S =

(
s(n) 0

0 s(n)∗

)
. (4.55)

Since S is sympletic, s(n)s(n)† = In, which means s(n) belong to the unitary group. We may

conclude that the space of partitions is the group U(n). Any parametrization of that group is a

reparametrization of all partitions. For example, if we take n = 2, the matrices of U(2) can be

written as

S(2) =

(
eiα cos θ −eiδ sin θ
eiβ sin θ ri(δ+β−α) cos θ

)
. (4.56)

where α, βδ and θ are arbitrary real parameters, that determine the partition. In other words, they

are changing these parameter amounts to changing partitions. We can now rewrite the symplectic

matrix T in terms of these parameters

T =


cosα cos θ − sinα cos θ − cos δ sin θ sin δ sin θ

sinα cos θ cosα cos θ − sin δ sin θ − cos δ sin θ

cosβ sin θ − sinβ sin θ cos(α− β − δ) cos θ sin(α− β − δ) cos θ

sinβ sin θ cosβ sin θ − sin(α− β − δ) cos θ cos(α− β − δ) cos θ

 . (4.57)

The 4-parameter symplectic matrices that change partitions form an isomorphic group to the more

general symplectic group Sp(4,R), which is 10-dimensional for 4 × 4 matrices. In agreement with

the U(n) group structure

T 1/2→1′/2′ = T 1/2→1′′/2′′ · T 1′′/2′′→1′/2′ (4.58)

and

T 1/2→1′/2′ =
(
T 1′/2′→1/2

)−1

. (4.59)

Example: scalar field with a quadratic Hamiltonian. Let us now recall the free Hamilto-
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nian (3.54) defined in Ch. 3

Ĥv =

∫
R
d3kĤk =

1

2

∫
R
d3k

[
p̂kp̂

†
k + ω2(τ,k)v̂kv̂

†
k

]
. (4.60)

To keep the discussion generic, we shall not specify ω, which encodes the physics of a given setup,

and τ is to be understood as a generic time variable. In the said chapter, we made a canonical

transformation that allowed us to proceed using Hermitian operators

v̂Rk =
v̂k + v̂†k√

2
; v̂Ik =

v̂k − v̂†k
i
√
2

; p̂Rk =
p̂k + p̂†k√

2
; p̂Ik =

p̂k − p̂†k
i
√
2

. (4.61)

One can easily check that the commutation relations are unchanged. We can rewrite the Hamiltonian

in terms of v̂R and p̂I:

Ĥv =

∫
R3+

d3k
∑
s=R,I

Ĥs
k =

1

2

∫
R3+

d3k
∑
s=R,I

[
(p̂sk)

2 + ω2(τ,k)(v̂sk)
2
]
. (4.62)

The advantage of this last parametrization is that the Hamiltonian is sum separable. In other

words, the Hamiltonian describes independent parametric oscillators. If the initial state of the

system can be factorized, it remains factorized at any later time, so the dynamics does not generate

any entanglement between different subspaces.

In the lab, Bell experiments partitioning appears to be trivial: one can spatially separate the

systems, which is a natural partition because Bell experiments are designed to test locality. For

quantum fields, the situation is less obvious. If one considers two spatially distant regions, one

would have to deal with mixed states since observing the field at two distinct locations implies

tracing over all field configurations in all other locations. This is where Fourier space is extremely

useful, since different Fourier subspaces are uncoupled. This way, the state mixing effect of the

environment-induced decoherence is isolated from that of the effect coming from the aforementioned

effective mixing effect.

In Fourier space, however, there is no obvious way to partition the system. For example, one

could construct operators for a single mode

q̂k =
1√
2k

(
ĉk + ĉ†k

)
π̂k = −i

√
k

2

(
ĉk − ĉ†k

)
, (4.63)

where notice that compared to (4.48), we have included additional factors of k to maintain correct

dimensions. These equations, along with Eq. (4.61), define different partitions. Namely, a partition

between imaginary and real sectors and k/ − k sectors, both with correlations of different nature

and amounts.

We can conveniently form a vector using different partitions (see Eq. (4.45) ). For example, in
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the case of the R/I partition, we get

R̂R/I =
(
k1/2v̂Rk , k

−1/2p̂Rk , k
1/2v̂Ik, k

−1/2p̂Ik

)T
(4.64)

where the first two entries correspond to the first subsystem, and the second two correspond to

the second subsystem. The commutation relations are non-vanishing only between the first and the

second, along with the third and the fourth entries. If we choose the ±k partition, we can construct

a similar vector

R̂±k =
(
k1/2q̂k, k

−1/2π̂k, k
1/2q̂−k, k

−1/2π̂−k

)
. (4.65)

We focus on partitions that are linearly related to the reference partition R/I

R̂1/2 = TR/I→1/2R̂R/I (4.66)

This way, the quadratic nature of the Hamiltonian density is preserved. Since we want different

parametrisations to have the same vacuum state, the matrix TR/I→1/2 corresponds to (4.57), which

depends on 4 parameters, α, β, δ and θ. We can set α = 0, β = 3π/2 + 2θ, and δ = π/2 to obtain a

one-parameter subset of partitions

TR/I→1/2(θ) =


cos θ 0 0 0

0 cos θ − sin θ 0

sin θ sin(2θ) sin θ cos(2θ) cos θ cos(2θ) − cos θ sin(2θ)

− sin θ cos(2θ) sin θ sin(2θ) cos θ sin(2θ) cos θ cos(2θ).

 (4.67)

So the rotations by θ correspond to different partitions. For θ = 0, we get TR/I = I4 and the

partition is unchanged. Notice also, that for θ = −π/4, we move to ±k partition. This subclass is

enough to see how partitioning affects the final results; hence, for simplicity, we will focus mainly

on the one-parameter partitions.

4.3.2 Covariance matrix

The Hamiltonian, being quadratic, the dynamics allows for Gaussian states as solutions. In this

context by Gaussian we mean, that the Wigner function is Gaussian. As we already know, the

Gaussian states are characterized by the two-point functions (see Eq. (4.20)) and upon a change of

partition Γ′ = TΓTT .

For the R/I partition, the two sectors will have the same reduced Hamiltonian and the two sectors

decouple. The complete covariance matrix will have the form (recall the block diagonal partition in

Ch. 4.2)

ΓR/I =


Γ11 Γ12 0 0

Γ12 Γ22 0 0

0 0 Γ11 Γ12

0 0 Γ12 Γ22

 . (4.68)
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which depends only on three parameters

Γ11 = 2k⟨(v̂Rk )2⟩ = 2k⟨(v̂Ik)2⟩ = k⟨{v̂k, v̂†k}⟩, (4.69)

Γ12 = Γ21 = ⟨v̂Rk p̂Rk + p̂Rk v̂
R
k ⟩ = ⟨v̂Ikp̂Ik + p̂Ikv̂

I
k⟩ = ⟨v̂kp̂†k + p̂kv̂

†
k⟩ (4.70)

Γ22 =
2

k
⟨(p̂Rk )2⟩ =

2

k
⟨(p̂Ik)2⟩ =

1

k
⟨{p̂k, p̂†k}⟩ (4.71)

A generic form for a 4× 4 covariance matrix is

Γ =

(
ΓA ΓC

ΓC ΓB .

)
(4.72)

where ΓA, ΓB and ΓC are 2× 2 matrices. By using Γ′ = TΓTT and Eq. (4.67), we can obtain the

representation of the covariance matrix in different partitions. Explicit evaluation gives

ΓA =

(
Γ11 cos

2 θ + Γ22 sin
2 θ Γ12 cos(2θ)

Γ12 cos(2θ) Γ22 cos
2 θ + Γ11 sin

2 θ

)
, (4.73)

ΓB =

(
ΓB |11 ΓB |12
ΓB |21 ΓB |22

)
, (4.74)

ΓC =

(
1
2 (Γ11 − Γ22) sin

2(2θ) + 1
2Γ12 sin(4θ) − 1

4 (Γ11 − Γ22) sin(4θ) + Γ12 sin
2 θ

− 1
4 (Γ11 − Γ22) sin(4θ) + Γ12 sin

2(2θ) − 1
2 (Γ11 − Γ22) sin

2(2θ)− 1
2Γ12 sin(4θ)

)
. (4.75)

where

ΓB |11 =
1

2
Γ11 +

1

2
Γ22 +

1

2
(Γ11 − Γ22) cos(2θ) cos(4θ)− Γ12 cos(2θ) sin(4θ), (4.76)

ΓB |12 = ΓB |21 = Γ12 cos(2θ) cos(4θ) +
1

2
(Γ11 − Γ22) cos(2θ) sin(4θ), (4.77)

ΓB |22 =
1

2
Γ11 +

1

2
Γ22 −

1

2
(Γ11 − Γ22) cos(2θ) cos(4θ) + Γ12 cos(2θ) sin(4θ). (4.78)

4.3.3 Quantum discord for Gaussian homogeneous states

Classical Correlations. Consider two systems A and B, with possible configurations {ai} and

{bj}. Probabilities associated with these configurations are pi and pj respectively. Measure of

uncertainty about the configuration of a system is described by the von Neumann entropy

S(A) = −
∑
i

pi log2(pi) (4.79)

and similar for the system B. The joint uncertainty of the systems A and B is

S(AB) = −
∑
ij

pij log2(pij), (4.80)
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where pij is the probability of finding A in configuration ai and B in bi.

The mutual information is defined as

I(A,B) = S(A) + S(B)− S(A,B). (4.81)

If A and B are uncorrelated, i.e. pij = pipj , I = 0. This can easily be shown using the fact, that∑
i(j) pi(j) = 0.

We can further generalize pij using Baye’s theorem pij = pjpi|j , where pi|j is the probability of

finding A in ai, given that B is already found in bi. Then the mutual information becomes

I = −
∑
i

pi log2(pi) +
∑
ij

pjpi|j log2(pi|j). (4.82)

The last quantity on the RHS will be denoted as S(A|B) from now on. The above equation prompts

for an alternative expression for mutual information

J = S(A)− S(A|B). (4.83)

Note, that for classical systems I = J

Quantum correlations. We have to define similar quantities for quantum systems. Since using

the density matrix formalism, the information on the system A is given by ρ̂A = TrB{ρ̂A,B}, the
von Neumann entropy in this case can be expressed as

S(A) = −Tr{ρA log2(ρA)}. (4.84)

Of course, the same holds for the system B and the combination AB. To complete the analogy we

also need S(A|B). To obtain this entropy measure we define a complete set of projectors Πj , which

projects on a quantum state |bj⟩: Π̂j = IA ⊗ |bj⟩ ⟨bj |. Notice, just as a complete basis of states |bi⟩
is not unique, neither is the complete set of projectors Π̂j . Probability of finding B in bj is given by

pj = Tr{ρ̂Π̂j} and the measurement of B that results in configuration bj is given by ρ̂→ Π̂j ρ̂Π̂j/pj .

Therefore, we now introduce

ρ̂A|Π̂j
= TrB

(
Π̂j ρ̂Π̂j

pj

)
. (4.85)

Then in terms of the conditional entropy S(A|B) =
∑

j pjS(ρ̂A|Π̂j
). Then, we can define I and J in

the same exact manner.

Quantum discord is defined as

D(A,B) = min
{Π̂j}

[I(A,B)− J(a,B)] , (4.86)

where we minimize over all possible complete sets of projectors, so that a non-vanishing discord

signals a genuine quantum correlation in any basis.
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The von Neumann entropy for Gaussian states can be written as

S(ρ̂) =

n∑
i=1

f(σi), (4.87)

where f(x) is defined for x ≥ 1 and is given by

f(x) =

(
x+ 1

2

)
log2

(
x+ 1

2

)
−
(
x− 1

2

)
log2

(
x− 1

2

)
, (4.88)

and σi are the sympletic eigenvalues of the covariance matrix, which depends on the choice of

partition, and, therefore θ. The expression for σ(θ) reads

σ(θ) =

√
(Γ11Γ22 − Γ2

12) cos
2(2θ) +

(
Γ11 + Γ22

2

)2

sin2(2θ). (4.89)

and the mutual information I can be written as [6]

I = 2f [σ(θ)]− 2f [σ(0)]. (4.90)

As for the mutual information J, using the singular-value decomposition theorem, one can show

that it is given by the following expression [6]

max
{Π̂i}

J = f [σ(θ)]− f

[
σ2(0) + σ(θ)

1 + σ(θ)

]
. (4.91)

So by subtracting the expressions for the mutual information we obtain the quantum discord

D(θ) = f [σ(θ)]− 2f [σ(0)] + f

[
σ2(0) + σ(θ)

1 + σ(θ)

]
. (4.92)

As expected, to find quantum discord of a system, the knowledge of the covariance matrix in any

partition will suffice. Additionally, it is evident, that for the R/I partition the quantum discord is

zero.

4.3.4 The case of axion inflation

We now move on to calculating the discord for axion inflation. So we look at how the decohering

effect of the gauge fields on the axion fluctuations influence the quantum discord of the system.

First off, let us quote the results for the quantum discord in the absence of an environment [6].

Notice, from Eq. (4.89), σ(0) = det |Γs|, which for pure states is always 1. Hence quantum discord

reduces to

D(θ) = f [σ(θ)]. (4.93)
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The parameter σ(θ) can be expressed in terms of the squeezing parameters

σ(θ) =

√
1 + sinh2(2rk) sin

2(2θ), (4.94)

where rk is the squeezing parameter. What this indicates was expected, since as we have mentioned,

different partitions induce a mixing effect, which translates to larger entanglement between the

system degrees of freedom.

It is therefore interesting to see how much environment induced decoherence may be sufficient

to erase traces of “quantumness”, which prompts us to study this effect in axion inflation.

In case of the axion inflation, the environment is made up of gauge fields and we already have

the solution for the state of our system. Since the state (3.80) is Gaussian, one can readily apply

the formalism developed above to inflation. We shall study the case of axion inflation. Notice, that

in Sec. 3 we have used the I/R partition throughout for convenience.

Since Gaussian states are completely characterized by their covariance matrix, we first evaluate

the entries of Γs, where as usual s = R, I. Using Eq. (4.64) and (4.20) we get

Γs =

(
2k⟨(v̂sk)2⟩ ⟨v̂skp̂sk + p̂skv̂

s
k⟩

⟨v̂skp̂sk + p̂skv̂
s
k⟩ 2

k ⟨(p̂
s
k)

2⟩

)
. (4.95)

So we need to evaluate the two-point correlators. According to Eq. (3.87), the first correlator

⟨(v̂sk)2⟩ = Pvv = |vk|2 + Jk. (4.96)

The other correlators can also be evaluated by performing a similar, albeit more involved integrals.

The results read

⟨v̂skp̂sk + p̂skv̂
s
k⟩ = |vk|2′ + 2Kk, (4.97)

⟨(p̂sk)2⟩ = |v′k|2 + Ik. (4.98)

The purity of the Gaussian state is related to the determinant of its covariance matrix by (4.22).

However, as we have shown in Eq. (3.143), the purity can be expressed using the decoherence pa-

rameter p = 1/
√
1 + 4δk. As a consistency check let us show, that the determinant of our covariance

matrix really boils down to 1 + 4δk:

det |γs| = 4⟨(v̂sk)2⟩⟨(p̂sk)2⟩ − ⟨v̂skp̂sk + p̂skv̂
s
k⟩ = 4(|vk|2|v′k|2 + |vk|2Ik + |v′k|2Jk + IkJk)−

−
((

|vk|2′
)2

+ 4|vk|2′Kk + 4K2
k

)
= 1 + 4(IkJk −K2

k + |v′k|2J + |vk|2Ik − |vk|2′Kk) =

= 1 + 4δk,

(4.99)

where we have used the Wronskian condition vkv
∗′
k − v∗kv

′
k = i.

The quantity σ(θ) can be expressed in terms of the two-point functions (4.96)-(4.98) by plugging

these expressions into (4.89).
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An analogue to (4.94) was used in [6] to calculate decoherence in the presence of an environment

σ(θ) = λ
1/2
k

√
1 + sinh2(2rk) sin

2(2θ) (4.100)

where λk ≡ det |γs| and rk are the effective squeezing parameters and θ is the partition angle. The

additional squeezing parameter λk appears since the determinant of the covariance matrix is no

longer one due to the presence of the environment.

By equating Eq. (4.100) with (4.89) the effective squeezing parameter rk can be expressed in

terms of the covariance matrix. Namely,

rk =
1

2
sinh−1

√ 1

det |Γs|

(
Γ11 + Γ22

2

)2

− 1

 . (4.101)

The next step is to plug in the expressions (4.96)-(4.98) into this equation. This way it is possible

to see the influence of the model parameters, such as ξ for the axion inflation, on the squeezing

parameter rk. We proceed and find

rk =
1

2
sinh−1

(√
1

1 + 4δk

[
k2 (|vk|2 + Jk)

2
+ 2 (|vk|2 + Jk) (|v′k|2 + Ik) +

1

k2
(|v′k|2 + Ik)2

]
− 1

)
.

(4.102)

Approximations similar to the ones used in Ch. 3 can be used26. First, the terms proportional to

γ2 can be neglected since the Lindblad equation was derived at first order in γ. Second, out of the

remaining terms the dominant terms can be identified from Eqns. (E.20)-(E.21) and (E.24)-(E.25)

rk ≃ 1

2
sinh−1

{(
π2

16 sin4(πν)

1

1 + 4δk

(
k

k∗

)−4ν−2

e
2

1+ε (N−N∗)(2ν+1)×

[(
1

2
+ ν

)
2ν

Γ(1 + ν)
+

2ν+1
]4

×

[
1 +

2

π

e4πξ

64

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ

β
F1

]
− 1

)1/2}
, (4.103)

where Γ here represents the Gamma function and must not be confused with the covariance matrix.

F1 is defined by Eq. (E.27).

Equation (4.103) is plotted on Fig. 19, which indicates, that the squeezing parameter decreases

with increasing ξ. Since state squeezing enhances the quantum correlations, this behavior should

be compared to decoherence (Fig. 14), which, instead increases with increasing ξ. In both cases

increasing the production rate of the gauge fields has the effect of decreasing “quantumness”.

Another feature we see on Fig. 19 is that rk increases with scale, meaning, that the larger scales

become more squeezed than the smaller scales. This is in total agreement with the expectation in

the literature (e.g.[28]), because the decaying mode decreases rapidly on superhorizon scales (See

26In what follows the integral form of the environment correlation function will be used.
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Figure 19: The generalized squeezing parameter evaluated for different scales as a function of ξ according to Eq. (4.103).

This plot was obtained for ε = 10−3, η = 1 − 0.96 − 2ε and H/MPl = 10−5.

also Eq. (2.93) ).

By plugging Eq. (4.103) into (4.100) and (4.92) we obtain quantum discord, which is plotted

in Fig. 20 for two different partitions corresponding to θ = 0.01 and θ = −π/4. The plots show

dependence of quantum discord D on ξ and k/k∗. As expected, the result depends on the partition

angle. Namely, we see that the quantum discord is larger for the ±k partition.

Figure 20: Quantum discord as a function of scale and ξ for two different partitions specified by θ = 0.01 (left) and θ = −π/4
(right). The bright colors indicate large discord, while the regions covered in purple correspond to near-zero discord. This

heat map was obtained for ε = 10−3, η = 1 − 0.96 − 2ε and H/MPl = 10−5.

Discord increases for large scales and small ξ. This behavior can be compared both to quantum

decoherence and state squeezing. First, in Sec. 3.5.2 we showed that decoherence increases with

larger gauge field production, i.e. large ξ and in 3.5.3, we also showed that it decreases with increasing

comoving scale. As for the state squeezing, which in some sense has an opposite effect on quantum

correlations compared to decoherence, we see that the squeezing amplitude rk decreases with ξ and

increases with scale k/k∗. Therefore the quantum discord shown in Fig. 20 is in complete agreement
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with previous results. Moreover, it highlights the competition between the state squeezing and

decoherence mentioned in Sec. 4.2.

A word of caution is due when interpreting quantum discord. An interesting feature of the

heat maps produced above is that if we fix ξ, we get both highly discordant and almost zero-

discord results within observable scales. However, as we discussed in Sec. 4.2, the numerical value

of quantum discord may contradict the results given by other measures of quantumness, such as

Bell inequalities and state separability, so a conclusive assessment would require complementing the

quantum discord with other measures.
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5 Conclusion

In this thesis, we have studied the quantum-to-classical transition in the early universe. Namely,

we have seen how the initial quantum fluctuations can evolve into classical states. We discussed the

prospect of detecting any traces of “quantumness” and introduced its measures, such as the CMB

Bell inequality and quantum discord. Moreover, we applied the concepts of open quantum systems

to axion inflation models to study decoherence in this model. Below, we summarize the key points

of each chapter.

After motivating the main study of this thesis in chapter 1, we study inflation in chapter 2, where

we discuss the standard cosmological setup and introduce inflation as the leading mechanism that

solves the shortcomings of the Hot Big Bang cosmology. We formally derive the scalar perturbations

from inflation and confront the problem of quantum-to-classical transition using the squeezed state

formalism. We also touch upon decoherence, which, along with state squeezing, is a mechanism by

which the classicality of the current cosmological observables, like CMB or LSS, can be explained.

Afterward, we study axion inflation, which is the model that is mainly studied under the scope of

open quantum systems (OQS) theory in later chapters. We focused on the phenomenology of axion

inflation and ultimately derived the power spectrum while taking the axion-U(1) gauge field coupling

into account.

Chapter 3 tackles quantum decoherence of primordial fluctuations. We use the master equation

formalism to assess decoherence during inflation. Specifically, we use the simplest kind of master

equation, the Lindblad equation (C.39). We apply the formalism developed in [2] to axion inflation

to understand how decoherence affects the model parameters. An important step in this thesis is

to identify the environment and compute its equal time correlation function, which was done in

Appendix D. We made a numerical fit to an exponential and retrieved the effective correlation time

tc and correlation length ℓc. One of the novel features of our work is the scale-dependent correlation

time. We also derive bounds that allow us to use the Lindblad formalism and conclude that the

validity of our approach depends on the explicit model and the value of ϕ in that model.

Since the exponential form of the environment correlation function can lead to intractable ex-

pressions, in order to continue analytically, we also make the top-hat approximation (3.159) and use

both to check for consistency in the rest of the analysis. While the rest of the work is done using

the Lindblad formalism, there is another point regarding the environment correlation function that

requires a clear explanation. Namely, the correlation function (3.154) increases as we approach the

end of inflation τ → 0, which is in stark contrast with the assumption of stationarity that was used

in Appendix C to derive the Lindblad equation. Yet, we did not abandon the Lindblad formalism

and used the power spectrum as a sort of test: If by using the Lindblad formalism, we can reproduce

the results for the power spectrum in the literature, we deem it acceptable to use. In Sec. 3.5.1,

we found that indeed, for values up to ξ ≃ 2.7, the relative difference between our results and the

standard result (2.153) is within 10% accuracy by using both the top-hat approximation and the

entire integral form of the environment correlation function. Notice, that since the current upper

bound on ξ∗ is 2.3 [17], the Lindblad formalism seems to be accurate within the current observa-
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tional bounds. In both cases, for smaller values of ξ, the Lindblad formalism is remarkably accurate.

However, the accuracy appears to decrease with increasing ξ. This is expected since increasing ξ ef-

fectively increases the axion-gauge field coupling, which means that the backreaction effects become

significant, and the Lindblad formalism starts to fail altogether. The error significantly increases for

larger ξ and reaches 60% for the integral form of the correlation function and 80% for the top-hat

ansatz.

We continued by quantifying quantum decoherence in axion inflation. The results obtained using

the top-hat ansatz and the complete integral form of the environment correlator turned out to be

drastically different, with values of the decoherence parameters (see Eq. (3.142)) differing by as

much as 103÷104. Moreover, the top-hat solution predicts insufficient decoherence for values ξ ≃ 2,

which appears to put a lower bound on the interaction strength. However, this is not really the

case since the integral form, which is more accurate, predicts that decoherence is sufficient for all

values of interest 2 < ξ < 3. Another important point is that decoherence increases with increasing

ξ (see Fig. 14), which is also expected because the enhanced production of gauge fields should have

a greater decohering effect.

Finally, in 3.5.3, noticing that ξ is not a constant, we once again analyzed the power spectrum and

the decoherence parameter using the scale-dependent expression for ξ. The power spectrum remains

in good agreement with the standard result in the literature but starts to deviate on small scales. As

for decoherence, using the current bound on the Hubble rate during inflation H/MPl ≲ 2.5 ·10−5, we

obtained that for scales k/k∗ ≤ 10−15, where k∗ = 0.05Mpc−1 decoherence is insufficient. Needless

to say, these scales are far beyond what the current instruments can probe. However, in contrast

with a heavy scalar environment, where if anything, decoherence increases at large scales, we find

that the structure of decoherence in axion inflation such that erasure of quantum correlations is

more pronounced on smaller scales compared to their larger counterparts.

Chapter 4 shows the obstructions one faces when it comes to detecting any traces of quantumness,

however large, from the early universe. If we neglect decoherence, the emergent squeezed state is

considered highly quantum, but detecting its quantum nature using something like the CMB Bell

experiment appears to be doomed partially because the decaying mode is inaccessible for current-day

probes, but more importantly because unlike experiments performed in the lab, the experiments in

cosmology cannot be repeated. We also compare different measures of quantumness for Gaussian

states. The quantum discord or the state separability can also be used to differentiate quantum and

classical states and are compared in Fig. 18.

For the case of axion inflation, quantum discord is evaluated in Sec. 4.3. According to Fig. 20

discord decreases for increased gauge field production, which is logically consistent with the fact

that decoherence increases and that the squeezing parameter decreases with ξ. This is also the case

for scale dependence. Namely, discord increases on large scales, while decoherence decreases and

squeezing amplitude increases with scale.
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Outlook

Here, we present some of the possible future directions of research based on the content of this thesis

� As we have already noticed, the gauge field correlation function appears to grow as we reach

the end of inflation, suggesting that the environment cannot be regarded as stationary, which

violates one of the base assumptions used to derive the Lindblad equation. While we have

circumvented this problem in a pragmatic way by comparing the power spectrum obtained

within our framework with the standard one present in the literature, a more precise analysis

can be done using non-Markovian master equations [72] such as the time-convolutionless (TCL)

master equation. It should be stressed that this approach would make the analysis far more

complicated compared to using the Lindblad equation.

� In Sec. 4, we have introduced some measures of “quantumness”, such as the Bell inequalities or

the quantum discord, which can, in principle, be utilized in cosmology. It would be interesting

to extend the work done in this thesis by computing these measures for axion inflation. In

principle, this can be done, because due to the linearity of the coupling in the system sector, the

final state of the said system is still Gaussian. Analytical techniques developed for continuous-

variable quantum information can be directly applied.

� A natural extension of our work is to treat higher-order correlation functions, such as the

bispectrum, trispectrum, and so on. Recent observations of CMB have suggested possible hints

of parity-odd signatures, though these remain tentative and require further confirmation. Such

features could, in principle, originate from parity-violating interactions in the early universe

— as predicted by axion inflation models through the coupling ϕFF̃ . Studying higher-order

primordial correlation functions within this framework is, therefore, especially compelling. A

promising future direction would be to apply the open quantum systems formalism to such

scenarios in order to explore how parity-violating quantum correlations evolve and potentially

decohere during inflation.

� As stressed at the end of Sec. 4.3.4, for a more complete assessment, quantum discord must be

complemented with other measures of quantumness. A potential extension to the work done

in this thesis could be to work out the regimes in which the Bell inequality is violated, or when

the states remain separable. This would shed more light on our current result for quantum

discord.
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Appendices

A Relation between the Heisenberg and Schrödinger pic-

tures

In the main text, we have defined the squeezing parameters in the Schrödinger picture. However,

since the physics described by the Heisenberg representation is the same as the one described by

the Schrödinger picture, we would like to make a connection and try to relate the mode functions,

typically used in the Heisenberg picture, with the squeezing parameters, introduced in the main text

using the Schrödinger picture (see refs. [29, 28]).

We start by introducing the Heisenberg picture operators v̂(x, τ) and p̂(x, τ), which can be written

as

v̂(x, τ) = Û†(τ, τ0)v̂(x, τ0)Û(τ, τ0) =
∫

d3k

(2π)3/2
eik·x

(
u∗k(τ)âk + u−k(τ)â

†
−k

)
,

p̂(x, τ) = U†(τ, τ0)p̂(x, τ0)Û(τ, τ0) =
∫

d3k

(2π)3/2
eik·x

(
w∗

k(τ)âk + w−k(τ)a
†
−k

)
.

(A.1)

The mode functions uk(τ) and wk(τ) obey the Heisenberg equations of motion. These equations

have the following form

u′k = wk +
z′

z
uk,

w′
k = −k2uk − z′

z
wk

(A.2)

and equations correspond to the configuration and conjugate momentum variables of the field theory

given by the Hamiltonian (2.75). We impose the initial conditions corresponding to the (right

oriented) moving wave uk(τ0) =
√
2k and wk(τ0) = i

√
k/2. The solution to equations (A.2) are now

uniquely defined for all times. At the inintial time, one obtains the Schrödinger picture operators

given by (2.76). At later times we have

v̂k(τ) =
1√
2k

(
âk(τ) + â†−k(τ)

)
,

p̂k(τ) = −i
√
k

2

(
âk(τ)− â†−k(τ)

)
,

(A.3)

where âk(τ) and â
†
k(τ) are the Heisenberg picture (thus time-dependent) creation and annihilation

operators

âk(τ) ≡ Û†(τ, τ0)âk(τ0)Û(τ, τ0) = R̂†[θk]Ŝ†[rk, φk]âkŜ[rk, φk]R̂[θk]

= cosh rke
−iθkak − sinh rke

i(θk+2φk)a†k.
(A.4)
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Then plugging this into equation (A.3), we get

v̂k(τ) =
1√
2k

[
ak

(
cosh rke

−iθk − sinh rke
−i(θk+2φk)

)
+ a†−k

(
cosh rke

iθk − sinh rke
i(θk+2φk)

)]
.

(A.5)

p̂k(τ) = −i
√
k

2

[
ak

(
cosh rke

−iθk − sinh rke
−i(θk+2φk)

)
+ a†−k

(
cosh rke

iθk − sinh rke
i(θk+2φk)

)]
.

(A.6)

By simply comparing these equations to (A.1), we obtain a connection between the Schrödinger

picture variables and the Heisenber picture mode functions

uk(τ) =
1√
2k

(
cosh rke

iθk − sinh rke
−i(θk+2φk)

)
,

wk(τ) = i

√
k

2

(
cosh rke

iθk + sinh rke
i(θk+2φk)

)
.

(A.7)

After some algebra one can easily reproduce the equations of motion (2.93) by solving the Hamilton’s

equations.

B Axion and gauge field equations of motion

Let us vary the action (3.146) with respect to A0. Recalling the definition of a functional derivative

δf

δg
≡ ∂f

∂g
− ∂µ

(
∂f

∂(∂µg)

)
, (B.1)

then in our case
∂L
∂A0

− ∂ρ

(
∂L

∂(∂ρA0)

)
= 0. (B.2)

Since the action depends only on the derivatives of the gauge field, the first term is zero. Let us

continue with the second term. We first calculate the term in the round brackets and then apply

the derivative.

∂L
∂(∂ρA0)

=
√
−g ∂

∂(∂ρA0)

[
−1

4
FµνFµν − α

4f
ϕ ˜FµνFµν

]
=

=
√
−g
[
−(∂ρA0 − ∂0Aρ)

]
,

(B.3)

where we have used
∂(∂αAβ)

∂(∂σAγ)
= δσαδ

γ
β . (B.4)

Notice the derivative of the second term vanished because
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ϵµναβ [δµρδν0(∂αAβ − ∂βAα) + δνρδµ0(∂βAα − ∂αAβ) + (µν ↔ αβ)] = 4[∇× A⃗−∇× A⃗] = 0,

(B.5)

where we have used the definition of a vector product A×B = ϵijkAiBk
27.

Then applying the derivative

∂ρ [−(∂ρA0 − ∂0Aρ)] = a4[∇2A0 − ∂0(∇⃗ · A⃗)] = [∇2A0 − ∂0(∇⃗ · A⃗)] = 0. (B.6)

Since we are not considering charger particles,

(∇⃗ · A⃗)′ = 0. (B.7)

which means that ∇⃗ · A⃗ is constant in time and we can set it to zero.

Gauge field equation of motion. Now we vary the action WRT the vector Ai. Following the

procedure above

∂ρ

[
∂L

∂(∂ρAi)

]
= 0 (B.8)

leads to

∂ρ

[
∂S

∂(∂ρAi)

]
= ∂ρ

[
−(∂ρAi − ∂iAρ) +

2α

f
ϕ(ϵρiαβ∂αAβ + ϵµνρi∂µAν)

]
. (B.9)

Where we have used FµνFµν = gαµgβνFαβFµν and equation B.4. Then finally, after plugging ρ = 0

and ρ = j, we get

−A⃗′′ +
α

f
ϕ′∇⃗× A⃗+

α

f
ϕ
(
∇⃗× A⃗

)′
︸ ︷︷ ︸

ρ=0

+ ∇⃗2A⃗− α

f
ϕ
(
∇⃗× A⃗

)′
︸ ︷︷ ︸

ρ=j

= 0. (B.10)

Finally, the equation of motion for the gauge field reads:

A⃗′′ − α

f
ϕ′∇⃗× A⃗+ ∇⃗2A⃗ = 0. (B.11)

Inflaton equation of motion. Varying the action WRT ϕ leads to

∂L
∂ϕ

− ∂ρ

(
∂L

∂(∂ρϕ)

)
= 0. (B.12)

Let us compute the first term

∂L
∂ϕ

= −
√
−g
[
∂V

∂ϕ
+

α

4f
F̃µνFµν

]
. (B.13)

27Repeated indices are summed over throughout the appendix.
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Claim: If we define

B⃗ =
1

a2
ϵijk∂iAk ≡ 1

a2
∇⃗× A⃗, E⃗ = − 1

a2
∂0Ai ≡ − 1

a2
A⃗′, (B.14)

in analogy with electromagnetism, we then get F̃µνFµν = −4E⃗ · B⃗.

Proof :

F̃µνFµν =
1

2a4
ϵµναβ [∂αAβ∂µAν − ∂αAβ∂νAµ − ∂βAα∂µAν + ∂βAα∂νAµ] . (B.15)

The completely antisymmetric tensor is zero if two of its indices coincide, therefore, one of

the indices must be temporal. For example, if µ = 0, then να, β must be spatial indices,

which we will denote as i, j, k respectively

F̃ 0iF0i =
1

2a4
ϵ0ijk [∂jAk∂0Ai − ∂kAj∂0Ai] =

1

a4
˙⃗
A
(
∇⃗× A⃗

)
= −B⃗ · E⃗. (B.16)

It is trivial to show that switching the temporal index to ν, α and β yield the same result.

Therefore by summing these terms we finally get

F̃µνFµν = −4B⃗ · E⃗. (B.17)

Using (B.17) we immediately see that

∂L
∂ϕ

= −a4
[
∂V

∂ϕ
− α

f
E⃗ · B⃗

]
. (B.18)

As for the second term in B.12,

∂ρ

(
∂L

∂(∂ρϕ)

)
= ∂ρ

(
a4

2

∂

∂(∂ρϕ)
(gµν∂µϕ∂νϕ)

)
=

= ∂ρ

(
a4

2
(gρν∂νϕ+ gµρ∂µϕ)

)
= ∂ρ(a

4gµρ∂µϕ) =
√
−g□ϕ.

(B.19)

where we have used the general definition of the D’Alambertian in curved spacetimes. Expanding

it out explicitly

□ϕ =
1

a4
∂0

(
a4
(
− 1

a2

)
∂0ϕ

)
+

1

a4
∂i(a

4 1

a2
∂iϕ) = − 2

a3
a′ϕ′ − 1

a2
ϕ′′ +

1

a2
∇2ϕ. (B.20)

Finally the equation of motion reads

ϕ′′ + 2Hϕ′ −∇2ϕ+ a2
dV

dϕ
= a2

α

f
E⃗ · B⃗. (B.21)
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C Derivation of the Lindblad equation

We follow ref [2] and derive the Lindblad equation, that can be implemented directly in a cosmological

scenario.

A combined Hilbert space of the system (”S”) and the environment(”E”) is a tensorial product

of the separate Hilbert spaces H = HS ⊗HE . Thus the full Hamiltonian can be written as

H = H0 +Hint = HS ⊗ IE +HE ⊗ IS + gHint, (C.1)

with HS acting on the Hilbert space of our system and HE on the environment, both being parts

of the free Hamiltonian H0. IS(E) being identity operators acting in corresponding Hilbert spaces.

g plays the role of the coupling between the system and the environment and Hint describes the

interactions.

As we have seen in Sec. 3.3, evolution of the density matrix ρ̂ is governed by the Liouville-von

Neumann equation

dρ̂

dt
= −i[H, ρ̂]. (C.2)

Moving to the interaction picture, we can factor out the time dependence due to the free Hamil-

tonian from ρ. To do this we can introduce28

ρ̃(t) = U†(t)ρ̂(t)U(t),

H̃int(t) = U†(t)HintU(t).
(C.3)

where U(t) = e−i
∫ t
o
dt′H0(t

′) is the unitary evolution operator. Then the time evolution of this

operator is given by

dU(t)

dt
= −iH0(t)U(t), (C.4)

so that

dρ̃

dt
= iH0ρ̃(t)− iU†(t)[H, ρ(t)]U(t)− iρ̃(t)H0 = i[H0, ρ̃(t)]− i(U†(t)ρ(t)U(t)U†(t)HU(t)+

+U†(t)HU(t)U†(t)ρ(t)U(t)) = �����
i[ ˜H0, ρ(t)] −�����i[H0, ρ̃(t)] − ig[H̃int, ρ̃(t)].

(C.5)

We can formally integrate this, yielding

ρ̃(t+∆t) = ρ̃(t)− ig

∫ t+∆t

t

dt′[H̃int(t
′), ρ̃(t′)], (C.6)

28By equations C.3, the evolution of the states is governed by Hint, whereas the evolution of the operators will be
governed by H0.
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which we expanding iteratively

ρ̃(t+∆t) = ρ̃(t)− ig

∫ t+∆t

t

dt′[H̃int(t
′), ρ̃(t)]+

(−ig)2
∫ t+∆t

t

dt′
∫ t′

t

dt′′[H̃int(t
′), [H̃int(t

′′), ρ̃(t)]] +O(g3).

(C.7)

Here we have neglected higher order terms by imposing the Born approximation (weak coupling).

Switching the dependence of ρ̃ with respect to t in the second term of the sum by t′′ yields a

correction of a higher order in g, which we are neglecting since we are focusing on up to second order

expansion in g, hence

ρ̃(t+∆t)− ρ̃(t) = −ig
∫ t+∆t

t

dt′[H̃int(t
′), ρ̃(t)]+

(−ig)2
∫ t+∆t

t

dt′
∫ t′

t

dt′′[H̃int(t
′), [H̃int(t

′′), ρ̃(t′′)]] +O(g3).

(C.8)

Since the interaction should not have any significant effect on the environment, we can restrict

ourselves to the reduced density matrix (see section 3.2.3):

ρ̃S(t) = TrE{ρ̃(t)}, (C.9)

where the environment degrees of freedom have been traced out. We rewrite (C.8) as

ρ̃S(t+∆t)− ρ̃S(t) = −ig
∫ t+∆t

t

dt′TrE{[H̃int(t
′), ρ̃(t)]}+

(−ig)2
∫ t+∆t

t

dt′
∫ t′

t

dt′′TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃(t′′)]]}+O(g3).

(C.10)

In practice, we can also define a reduced density matrix for the environment in the same way:

ρ̃E = TrS{ρ̃(t)}, however this does not always mean that ρ̃(t) = ρ̃S(t)⊗ ρ̃E(t), but in fact

ρ̃(t) = ρ̃S(t)⊗ ρ̃E(t) + gpρ̃(t)corr. (C.11)

Here p is an integer. The last term characterizes interactions between the environment and the

system, that is if we start from a situation, in which the density operators can be factorized and

ρ(t)corr = 0, we will obtain the non-zero correlation term only if we switch on the interaction.
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Claim: TrE{ρ̃corr} = 0 = TrS{ρ̃corr}.
Proof : Lets focus on TrS{ρ̃corr} = 0, the second relation can be shown in the same manner.

utilizing the fact that TrS{ρ̃E(t)} = ρ̃E(t) and the normalization Tr{ρ̃(t)} = TrSTrE(ρ̃(t)) =

1, we have:

TrS{ρ̃(t)} = TrS{ρ̃S(t)}ρ̃E(t) + gpTrS{ρ̃corr(t)} =

ρ̃E(t) + gpTrS{ρ̃corr(t)}
(C.12)

however, as defined before TrS{ρ(t)} = ρE , which leads to TrS{ρcorr(t)} = 0.

(C.11)→ (C.10):

ρ̃S(t+∆t)− ρ̃S(t) = −ig
∫ t+∆t

t

dt′TrE{[H̃int(t
′), ρ̃S(t)⊗ ρ̃E(t)]} − AO

−igp+1

∫ t+∆t

t

dt′TrE{[H̃int(t
′), ρ̃corr(t)]}+ BO

(−ig)2
∫ t+∆t

t

dt′
∫ t′

t

dt′′TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃E(t
′′)⊗ ρ̃S(t

′′)]]}+ CO

+(−ig)p+2

∫ t+∆t

t

dt′
∫ t′

t

dt′′TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃corr(t
′′)]]}+O(g3) DO.

(C.13)

Now we assume the interacting Hamiltonian of the form

Hint(t) = A(t)⊗R(t), (C.14)

where A acts on HS and R on HE . Then U(t) can be factorized: U(t) = US ⊗ UE
29.

Let us evaluate the term AO. In this term we have30

TrE{[H̃int(t
′), ρ̃S(t)⊗ ρ̃E(t)]} = Ã(t′)ρ̃S(t)⊗ TrE{R̃(t′)ρ̃E(t)}+

ρ̃S(t)Ã(t
′)⊗ TrE{ρ̃E(t)R̃(t′)} = [Ã(t′), ρ̃S(t)]Tr{R̃(t′)ρ̃E(t)}

(C.16)

because of the cyclic property of the trace.

Let us now make some approximations:

1. The influence of the interaction is negligible for the environment −→ ρ̃E(t) ≃ ρ̃E ≡ ρ̃E in

the interaction picture, which is not to say that ρ is time-independent, however in the typical

time-frame in which the system evolves due to interactions the evolution of the environment

two-point correlation function decays rapidly.

29Equation (C.14) is introduced without the tildes, however we can trivially show that it also holds for the associated
quantities with tildes. Namely,

H̃int(t) = (U†
S ⊗ U†

E)(A⊗R)(US ⊗ UE) = (U†
SAUS)⊗ (U†

ERUE) = Ã⊗ R̃ (C.15)

.
30A and ρS come out of the trace obviously and operators acting on different Hilbert spaces will commute.
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2. Stationary state for the environment ⇒ HE is not explicitly time dependent and [ρ̃E , HE ] = 0.

Then by the definition of the evolution operator UE , we immediately get [ρE , UE ] = 0. This

also implies that ρE(t) = e−iHEtρ̃Ee
iHEt, which means that ρE = ρ̃E . On the other hand this

means that [ρE , HE ] = 0.

Now we can write

ρ̃E =
∑
n

pn |n⟩ ⟨n| , (C.17)

where |n⟩ are eingenvectors of HE , with eingenvalue En, and pn is a real constant.31

3. the mean value of the environment part of the Hamiltonian vanishes, namely

⟨R⟩ = TrE{Rρ̃E} = 0. (C.18)

This means that AO = 0. Notice that this also means that ⟨R̃⟩ = 0. Namely using the cyclic

property of the trace along with the fact that ρ̃E commutes with UE

TrE{R̃ρ̃E} = TrE{U†
ERUE ρ̃E} = TrE{UE ρ̃EU

†
ER} =

= TrE{ρ̃EUEU
†
ER} = TrE{ρ̃ER} = 0.

(C.19)

Now, going back to eq. (C.13) and noticing that the LHS should be proportional to gp at

leading order in g, since in the absence of interaction ρ̃S does not evolve in the interaction

picture. Then since the RHS is proportional to g of order p+1, 2 and p+2, the only possibility

left is to identify p = 2.

Out of the three terms left over, the dominant one is obviously CO, so

ρ̃S(t+∆t)− ρ̃S(t) ≃ (−ig)2
∫ t+∆t

t

dt′
∫ t′

t

dt′′TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃E ⊗ ρ̃S(t
′′)]]}. (C.20)

4. Eq. (C.20) is valid at leading order in g, which is why the fourth approximation must be made.

Namely the interaction should evolve the system perturbatively. We can see how the trace in

31One can easily see that in fact ρ̃EHE −HE ρ̃E ∝ En − En = 0
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(C.20) can be rewritten using equation (C.14) and again the cyclicity of the trace operation:

TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃E ⊗ ρ̃S(t
′′)]]} =

= Ã(t′)Ã(t′′)ρ̃S(t
′′)TrE{R̃(t′)R̃(t′′)ρ̃E} − Ã(t′)ρ̃S(t

′′)Ã(t′′)TrE{R̃(t′)ρ̃EÃ(t′′)}−

−Ã(t′′)ρ̃S(t′′)Ã(t′)TrE{R̃(t′′)ρ̃EÃ(t′)}+ ρ̃S(t
′′)Ã(t′′)Ã(t′)TrE{ρ̃ER̃(t′′)R̃(t′)} =

= Ã(t′)Ã(t′′)ρ̃S(t
′′)TrE{ρ̃ER̃(t′)R̃(t′′)} − Ã(t′)ρ̃S(t

′′)Ã(t′′)TrE{ρ̃ER̃(t′′)R̃(t′)}−

−Ã(t′′)ρ̃S(t′′)Ã(t′)TrE{ρ̃ER̃(t′)R̃(t′′)}+ ρ̃S(t
′′)Ã(t′′)Ã(t′)TrE{ρ̃ER̃(t′′)R̃(t′)} =

=
(
Ã(t′)Ã(t′′)ρ̃S(t

′′)− Ã(t′′)ρ̃S(t
′′)ÃS

)
CR(τ)+

+
(
ρ̃S(t

′′)Ã(t′′)Ã(t′)− Ã(tρ)S(t
′′)Ã(t′′)

)
CR(−τ),

(C.21)

where we have introduced the correlation function of the environment

CR(t
′, t′′) = CR(τ) = TrE{ρ̃ER̃(t′)R̃(t′′)}. (C.22)

Environment being stationary, we can actually show that the two-point function depends on

τ = t′ − t′′ only:

CR(t
′, t′′) = TrE{ρ̃EeiHEt′R̃(0)e−iHEt′eiHEt′′R̃(0)e−iHEt′′} =

= TrE{ρ̃EeiHEt′′eiHEτ R̃(0)e−iHEτ R̃(0)e−iHEt′′} =

= TrE{ρ̃EeiHEt′′R̃(τ)R̃(0)e−iHEt′′} =

= TrE{ρ̃ER̃(τ)R̃(0)} ≡ CR(τ),

(C.23)

where we used the cyclicity of the trace along with the commutation relation [ρE , HE ] = 0.

We can put the correlator in a more explicit form. We can use (17) and write

CR(τ) =
∑
m

⟨m|

(∑
n

pn |n⟩ ⟨n| R̃(τ)R̃(0)

)
|m⟩ =

=
∑
/n

∑
m

pnδmn ⟨n| R̃(τ)R̃(0) |m⟩ =

∑
n

pn ⟨n| R̃(τ)R̃(0) |n⟩ =

=
∑
n

pn ⟨n| eiHEτ R̃(0)e−iHEτ R̃(0) |n⟩ =

=
∑

n,m,p,q

pn ⟨n| eiHEτ |m⟩ ⟨m| R̃(0) |p⟩ ⟨p| e−iHEτ |q⟩ ⟨q| R̃(0) |n⟩ =

=
∑
n,p

pne
i(En−Ep)τ | ⟨n| R̃(0) |p⟩ |2,

(C.24)

where we have used the properties of the Kronecker delta twice. Particularly, one can imme-
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diately see that CR(−τ) = C∗
R(τ). In the limit where the environment contains (an alsmost)

continuous number of energy levels, destructive interference occurs and quickly drives CR(τ)

to zero within a characteristic time tc, CR(τ) ≃ C(0)e−τ/tc .

Using (C.21), we can make a further simplification

∫ t+∆t

t

dt′
∫ t′

t

dt′′TrE{[H̃int(t
′), [H̃int(t

′′), ρ̃E(t
′′)⊗ ρ̃S(t

′′)]]} =

=

∫ t+∆t

t

dt′
∫ t′

t

dt′′
([

Ã(t′)Ã(t′′)ρ̃S(t
′′)− Ã(t′′)ρ̃S(t

′′)Ã(t′)
]
CR(t

′ − t′′)−

−
[
Ã(t′)ρ̃(t′′)Ã(t′′)Ã(t′)

]
CR(t

′′ − t′)

)
.

(C.25)

We can reparametrize the integration domain using t′ and τ = t′ − t′′. τ obviously takes on

values from 0 to ∆t because if we fix t′′ to be equal to t the maximum value acquired by τ

within the previous domain is τ = t+∆t− t = ∆t. Once τ is fixed the t′ obviously varies from

t+ τ to t+∆t: ∫ t+∆t

t

dt′
∫ t′

t

dt′′ =

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′. (C.26)

We can consider an extended integration domain, however it should be noted that because

of the existence of the two point functions in (25) the integrand vanishes for τ ≫ tc, so the

integrand support is limited by this condition. Let us extend the integrand in the following

way32 ∫ ∞

0

dτ

∫ t+∆t

t

dt′. (C.27)

Where the upper bound on τ has been extended to ∞ and the lower bound on t′ to t.

5. In the limit where tc ≪ ∆t, the new integration domains imposed by extending the previous

one contribute negligibly to the entire integral. Hence the fifth assumption

tc ≪ ∆t, (C.28)

which means that the enviromnent correlation time must be much shorter than the evolution

time of the density matrix. Under this assumption we get

ρ̃S(t+∆t)− ρ̃S(t) ≃

−g2
∫ ∞

0

dτ

∫ t+∆t

t

dt′
(
[Ã(t′)Ã(t′ − τ)ρ̃S(t

′ − τ)− Ã(t′ − τ)ρ̃S(t
′ − τ)Ã(t′)

]
CR(τ)−

−
[
Ã(t′)ρ̃(t′ − τ)Ã(t′ − τ)Ã(t′)− ρ̃S(t

′ − τ)Ã(t′ − τ)Ã(t′)
]
CR(−τ)

)
.

(C.29)

32This will render the computation much easier and will not change the outcome significantly
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If ∆t is smaller than the time-frame in which A varies33, Ã(t′) ≃ Ã(t) and Ã(t′−τ) ≃ Ã(t−τ).
The integral WRT t′ can now be taken trivially. Furthermore, we can divide both sides by ∆t

to finally obtain the time derivative; On the RHS ∆t will actually cancel with the one coming

from the integration by t′

∆ρ̃S
∆t

= −g2
∫ ∞

0

dτ
(
[Ã(t)Ã(t− τ)ρ̃S(t)− Ã(t− τ)ρ̃S(t)Ã(t)

]
CR(τ)−

−
[
Ã(t)ρ̃(t)Ã(t− τ)Ã(t)− ρ̃S(t)Ã(t− τ)Ã(t)

]
CR(−τ)

)
,

(C.30)

where we have also used the fact that since the variation of ρ̃S between t and t+∆t is of order

g2 and the RHS is already of that order, we can simply write ρ̃(t) because the corrections

arising from this change gives rise to higher order terms which we can neglect.

We can define

L1(t) ≡ g2
∫ ∞

0

dτCR(τ)Ã(t− τ),

L2(t) ≡ g2
∫ ∞

0

dτC∗
E(τ)Ã(t− τ) = L†

1,

(C.31)

where we have used CR(−τ) = C∗
R(τ). The last equation holds if in fact Ã is Hermitian.

Before we plug these definitions into (C.30), note that under the fifth assumption L1(t) and

L2(t) can be simplified. Specifically, because the correlation function decays as ∝ e−|τ |/tc , the

integrals above are dominated by the contribution of a finite interval τ ∈ [0 , few tc]. Since Ã

varies on timescales much longer than ∆t (recall ∆t ≫ tc), it will obviously not vary much

within this interval. This allows us to perform the integral analytically:

L1(t) = g2
∫ ∞

0

dτCR(0)e
−|τ |/tcÃ(t) = g2Ã(t)CR(0)tc (C.32)

and the same for L2(t). Then we get

dρ̃S
dt

= −g2CR(0)tc

(
Ã(t)Ã(t)ρ̃S(t)− Ã(t)ρ̃S(t)Ã(t)− Ã(t)ρS(t)Ã(t)− ρ̃S(t)Ã(t)Ã(t)

)
=

= −g2CR(0)tc

(
Ã(t)[Ã(t), ρ̃S(t)]− [Ã(t), ρ̃S(t)]Ã(t)

)
=

= −g2CR(0)tc[Ã(t), [Ã(t), ρ̃S(t)]].

(C.33)

By going back to the standard picture we re-obtain the free evolution term; in particular,

dρ̂S
dt

= i[ρ̂S , HS ]− g2CR(0)tc[A, [A, ρ̂S ]]. (C.34)

This is called the Lindblad equation.

33This, in turn means, thatA should vary on timescales much larger than the autocorrelation time of the environment
(see eq. (28)).
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It can be generalized easily by considering a more generic interaction Hamiltonian

Hint =
∑
i

Ai(t)⊗Ri(t). (C.35)

The environment correlator in this case will be defined as

CR,ij(t, t
′) = TrE{ρ̃ER̃i(t)R̃j(t

′)}. (C.36)

And naturally, the Lindblad equation will take the following form

dρS
dt

= i[ρS , HS ]− g2
∑
i,j

CR,ij(0)tc,ij [Ai, [Aj , ρS ]] (C.37)

where in addition to the assumptions made before, we also imposed CR,ij = CR,ji.

Furthermore, we can consider continuous parameters x and y, instead of i and j that leads to

the interacting Hamiltonian of the form

Hint =

∫
d3xA(t,x)⊗R(t,x), (C.38)

that will modify (C.37):

dρS
dt

= i[ρS , HS ]−
γ

2

∫
d3xd3yCR(x,y)[A(x), [A(y), ρS ]], (C.39)

where

γ = 2g2tc, (C.40)

because any dependence of tc on x and y can be absorbed into CR(x,y).

D Gauge field correlator

In Appendix C we found that the environment correlation function plays a crucial role in the Lindblad

equation. Given the coupling ϕF̃F , we identify the gauge fields as the environment as we did in sec.

3.5 (see equation (3.151)). First, we notice that the Fourier transform of the last term in (3.151),

⟨∂τ A⃗ · (∇⃗× A⃗)⟩stat is proportional to δ(3)(k) and so it will not affect modes with k ̸= 034. Therefore,

we need to compute a4(τ ′)a4(τ ′′)⟨(B⃗ · E⃗)(k, τ ′)(B⃗ · E⃗)(k, τ ′′)⟩ ≡ ⟨jk(τ ′)jk′(τ ′′)⟩. Let us write jk(τ ′)

34According to [27], the right-hand-side of the first equation in 2.123 will not source any k ̸= 0 perturbations and
since we are interested in the latter, we may neglect it in deriving the power spectrum all together.
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more explicitly

jk(τ
′) =

∫
d3x

(2π)3/2
[∇× A⃗(x, τ ′)] · [∂0A⃗(x, τ ′)]eik·x =∫

d3x

(2π)3/2
d3q

(2π)3/2
d3q′

(2π)3/2
e−i(k−q−q′)·xq(ε⃗(q) · ε⃗(q′))×(

a(q)A(τ ′, q) + a†(−q)A∗(τ ′, q)
) (
a(q′)A′(τ ′, q′) + a†(−q′)A′∗(τ ′, q′)

)
(D.1)

Finally, using the properties of the delta function, the triple integral simplifies to

jk(τ
′) =

∫
d3q

(2π)3
q (ε⃗(q) · ε⃗(k− q))×

[a(q)A(τ ′, |q|)a(k− q)A′(τ ′, |k− q|) + a(q)A(τ ′, |q|)a†(q− k)A′∗(τ ′, |q− k|)+

a†(−q)A∗(τ ′, |q|)a(k− q)A′(τ ′, |k− q|) + a†(−q)A∗(τ ′, |q|)a†(q− k)A′∗(τ ′, |q− k|)].

(D.2)

Now that we have the explicit form, we can calculate the correlation function

⟨jk(τ ′)jk′(τ ′′)⟩ =
∫

d3q

(2π)3/2
d3q′

(2π)3/2
qq′|ε⃗(q)ε⃗(k− q)||ε⃗(q′)ε⃗(k′ − q′)|×

⟨[a(q)A(τ ′, |q|)a(k− q)A′(τ ′, |k− q|) + a(q)A(τ ′, |q|)a†(q− k)A′∗(τ ′, |q− k|)+

a†(−q)A∗(τ ′, |q|)a(k− q)A′(τ ′, |k− q|) + a†(−q)A∗(τ ′, |q|)a†(q− k)A′∗(τ ′, |q− k|)]×

[a(q′)A(τ ′′, |q′|)a(k′ − q′)A′(τ ′′, |k′ − q′|) + a(q′)A(τ ′′, |q′|)a†(q′ − k′)A′∗(τ ′′, |q′ − k′|)+

a†(−q′)A∗(τ ′′, |q′|)a(k′ − q′)A′(τ ′′, |k′ − q′|) + a†(−q′)A∗(τ ′′, |q′|)a†(q′ − k′)A′∗(τ ′′, |q′ − k′|)]⟩.
(D.3)

It can be confirmed, that the only terms surviving after the contractions are the following

⟨a(q)a(k− q)a†(−q′)a†(q′ − k′)⟩+ ⟨a(q)a(k− q)a†(−q′)a†(q′ − k′) =

⟨a(q)a†(−q′)⟩⟨a(k− q)a†(q′ − k′)⟩+ ⟨a(q)a†(q′ − k′)⟩⟨a(k− q)a†(−q′)⟩ =

δ(3)(q+ q′)δ(3)(k− q− q′ + k′) + δ(3)(q− q′ + k′)δ(3)(k− q+ q′).

(D.4)

which simply leads to

⟨jk(τ ′)jk′(τ ′′)⟩ = δ(3)(k+ k′)

4

∫
d3q

(2π)3
|q|
∣∣∣∣1 + |q|2 − k · q

|q||k− q|

∣∣∣∣2 ×[
|q|A′(τ ′, q)A(τ ′, |k− q|)A∗(τ ′′, q)A′∗(τ ′′, |k− q|)+

|k− q|A′(τ ′, q)A(τ, |k− q)A∗(τ ′′, |q− k|)A′∗(τ ′′, q)

]
,

(D.5)
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where we have used the relations

|ε⃗(q) · ε⃗(k− q)|2 =
1

4

∣∣∣∣1 + |q|2 − k · q
|q||k− q|

∣∣∣∣2 , ε⃗(−k) = ε⃗∗(k). (D.6)

We proceed by plugging expressions (2.121) and (2.122) into (D.5)

⟨jk(τ ′)jk′(τ ′′)⟩ = δ(3)(k+ k′)

16
e4πξ

∫
d3q

(2π)3
|q|
∣∣∣∣1 + |q|2 − k · q

|q||k− q|

∣∣∣∣2 [|q|+ |q|1/2|k− q|1/2
]
×

×e−4
√
−2ξτ̃

(√
|q|+

√
|k−q|

)
,

(D.7)

where we define 2τ̃ = τ ′ + τ ′′. Now we change the integration variable to p = q/|k| and let k||ẑ.
which leads to

⟨jk(τ ′)jk′(τ ′′)⟩ = δ(3)(k+ k′)

16

k5

(2π)3
e4πξ×

×
∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)
e
−
√
κ
(√

|p|+
√

|ẑ−p|
)
,

(D.8)

where κ = −25ξτ̃ |k|. Evaluating this integral is highly non-trivial and requires numerical techniques.

However, one can make a numerical fit for the range of values of ξ, that are relevant in terms of

observations. In particular the range 2 ≤ ξ ≤ 3 is of particular interest, since it both complies with

observations and dominates gauge production. Let I(ξ) denote the integral in the equation above.

After fitting the integral in (D.8) reads

I(κ) ≃ 367× e−0.88κ, 2 ≤ ξ ≤ 3. (D.9)

We notice here, although it is quite clear from equation (D.7), that as expected, due to the

dynamical nature of the background in which the fields evolve, assuming the environment to be

stationary is an erroneous assumption. We see, this in the temporal behavior of the correlation

function, whose exponential suppression appears to be weakening as we approach τ −→ 0.

Nevertheless, one may identify an effective correlation time τc = (0.88 · 25ξ|k|)−1 which leads to

I ∝ exp(τ̃ /τc). This makes sense physically, since shorter wavelengths evolve faster. Notice, that

the scale-dependent correlation time is a novelty in our model.

It will prove useful to calculate the correlation function for the case of large ξ. First, we notice,

that for ξ ≫ 1, the integrand is highly peaked at at |p| ≪ 1. We expand the integrand, keeping only

the leading order terms
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⟨jk(τ ′)jk′(τ ′′)⟩ = δ(3)(k+ k′)

16

k5

(2π)3
e4πξ×

× 2π

∫ π

0

dθ sin θ

∫ ∞

0

dpp4(p+ 1)2(1− cos θ)2(1 + 2p cos θ)

(
1 +

1
√
p
−

√
p

2
cos θ

)
e−

√
κ(1+

√
p) =

=
πδ(3)(k+ k′)

8

k5

(2π)3
e4πξ120960πe−

√
κ×

=

(
−257400κ3/2 + 660κ5/2 + 9κ7/2 + κ4 + 90κ3 − 18810κ2 − 4684680κ− 43243200

√
κ− 302702400

)
κ17/2

.

(D.10)

According to this expression, the power spectrum is suppressed by powers of κ, but more importantly,

it is suppressed by an exponential e−
√
κ.

For the Lindblad formalism, we will only require the equal-time correlation function of the envi-

ronment. This is largely due to the Markovian approximation embedded in the Lindblad equation

(see AppendixC).

Equation (2.121) is a good approximation for (8ξ)−1 ≲ −kτ ≲ 2ξ. Hence in deriving (D.8), we

must require a common region of integration space in (D.5), for which both functions A+ can be

approximated by (2.121). This automatically ensures that (2.122) is a good approximation. The

requirements read (we following the analysis of [27]):

1

8ξ
≲ −|q|τ ′ ≲ 2ξ ⇒ 1

8ξ
≲ |p|u ≲ 2ξ, (D.11)

1

8ξ
≲ −|k− q|τ ′ ≲ 2ξ ⇒ 1

8ξ
≲ |ẑ − p|u ≲ 2ξ, (D.12)

where u = −kτ ′ and p = q/|k| as before. We know that u extends from 0 to ∞ for super-horizon

modes that are relevant for phenomenology. This means that for any value of p there exists a value

of u, such that either A+(τ
′, |p|) or A+(τ

′, |ẑ − p|) is maximal so that it can be approximated by

(2.121). On the other hand, this approximation must be valid for both modes in order to proceed.

For the same u, this can only happen if |p| ≃ |ẑ − p|. Then the approximation in (2.121) can be

used safely in the entire integration region in (D.8) if the integrand is highly peaked at |p| ≃ O(1).

We have checked explicitly that this is indeed the case.

In Appendix C, we derived a generic Lindblad equation in terms of the usual laboratory time t.

In the cosmological context, this time corresponds to the cosmic time. However, one may write the

cosmological Lindblad equation using some arbitrary time label (in our case the conformal time τ).

In that case eq. (C.40) reads γ = 2g2τc. As in section 3.4.6, one obtains the physical correlation

time tc = a(τ)τc = (0.11 · 28ξkphys)−1, where kphys = |k|/a. Notice also, that for a given physical

scale, the correlation time decreases as ξ−1, which means that more gauge field production enlarges

the environment, making it act more and more like a thermal bath35.

35In principle, the the correlation function for the case of large ξ (see equation(D.10)) also primarily decays expo-
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Correlation function in real space. Let us Fourier transform the gauge field correlation

function for ξ ranging from 2 to 3.

CR(r, τ) =
367

16

e4πξ

(2π)3

∫
d3k

(2π)3
k5e−λke−ik·r, (D.13)

where λ ≡ −0.11 · 28ξτ > 0 since −∞ ≤ τ ≤ 0. We may use spherical coordinates to evaluate the

integral.

2π

∫ ∞

0

dkk7e−λk

∫ π

0

dθ sin(θ)e−ikr cos(θ) =
4π

r

∫
dkk6e−λk sin(kr)

= 4π

[
720

(λ2 + r2)7
(
7λ6 − 35λ4r2 + 21λ2r4 − r6

)]
,

(D.14)

where in the first equation we used the change of variables dθ −→ d cos(θ) to evaluate the angular

integral. The second integral is listed in chapter 3 of ref [100]. Rewriting the environment correlation

function

CR(r, τ) = 33030× e4πξ

(2π)5

[
7λ6 − 35λ4r2 + 21λ2r4 − r6

(λ2 + r2)7

]
. (D.15)

Using this expression, even though it is not an exponential decay, one can roughly estimate the

effective correlation length of the environment. Namely, we see, that the correlation function decays

quickly, dominated by (λ2 + r2)7. Thus, the correlation function decays significantly when r ∼ |λ|,
which we will identify as the correlation length lc. Of course this would be the comoving length, but

the physical correlation length is easily extracted using τ = −(aH)−1, resulting in ℓc = 0.11 ·28ξ/H.

E The slow-roll approximation

The density matrix given in (3.80), can be computed explicitly if we can compute the integrals

(3.81)-(3.83) exactly. To this end, we employ the slow-roll approximation. This allows us to obtain

Ik,Jk and Kk which will be used to assess decoherence for axion models of inflation. In what follows

we shall retain first-order slow-roll corrections.

vk(τ) in (3.80) are solutions of the following Mukhanov-Sasaki equation

d2vsk
dτ2

+ ω2(k)vsk = 0, (E.1)

where at first order in the slow-roll parameters ω2 ≃ k2 − 2[1 + 3(2ε∗ + η∗)/4]/τ
2 with ε∗ and η∗

being the first and the second slow-roll parameters evaluated at the time of horizon crossing of the

pivot scale k∗. The full solution of this equation, normalized to the Bunch-Davies vacuum in the

sub-Hubble limit is given by

vk =
1

2

√
π

k

√
−kτH(2)

ν (−kτ)e−iπ
2 (ν+

1
2 ), (E.2)

nentially, so one could identify the correlation time to be tc = (0.11 · 28ξkphys)−1.
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where H
(2)
ν (−kτ) is the Henkel function of the second kind of order ν, with ν = 3/2+ ε∗ + η∗/2. In

order to compute the integrals (3.81)-(3.83) we restrict our analysis to the regime 2 ≥ ξ ≥ 3, where

the gauge field correlation function is given by (3.159)

C̃R(k, k
′, τ̃) =

δ(3)(k+ k′)

16(2π)3
k5e4πξ367×Θ

(
τ̃

τc

)
. (E.3)

and finally, at first order in the slow-roll parameters, the scale factor scales like a ∝ τ−1−ε∗ . Com-

bining this with (C.40) gives

γ = γ∗

(
τ

τ∗

)3(1+ε∗)

. (E.4)

To work with the Henkel function in (E.2), we will use the following relations that allow us to express

H
(2)
ν in terms of the Bessel function of the first kind Jν :

H(2)
ν (x) = Jν(x)− iYν(x), (E.5)

dH
(2)
ν (x)

dx
=
ν

x
H(2)

ν −H
(2)
ν+1(x), (E.6)

where

Yν(x) =
Jν cos(πν)− J−ν(x)

sin(πν)
. (E.7)

We are now ready to calculate Ik, Jk, and Kk. Since the calculation of all three parameters is

similar, and Jk is the simplest among the three to calculate, we present the derivation of Jk as an

example.

By plugging (E.2), (E.3) and (E.4) into (3.82) we obtain

Jk = 4(2π)3/2γ∗τ
−3(1+ε∗)
∗ k5e4πξ367(−kτ) π2

256(2π)3/2k2
×∫ τ

−∞
dτ ′τ ′3(1+ε∗)(−kτ ′)Θ

(
τ ′

τc

)
Im2{H(2)

ν (−kτ ′)H(2)∗
ν (−kτ)}. (E.8)

Next we use the relations (E.5-E.7) to get

Im2{H(2)
ν (−kτ ′)H(2)∗

ν (−kτ)} =
1

sin2(πν)

[
J2
ν (−kτ ′)J2

−ν(−kτ) + J2
−ν(−kτ ′)J2

ν (−kτ)

− 2Jν(−kτ ′)J−ν(−kτ ′)Jν(−kτ)J−ν(−kτ)
]
. (E.9)

We plug this back and change the integration variable τ ′ → −kτ ′, which finally gives

Jk =
√
2π

367e4πξ

128k sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ(−kτ)
β

×

×
[
J2
−ν(−kτ)I1(ν) + J2

ν (−kτ)I1(ν)− 2J−ν(−kτ)Jν(−kτ)I2(ν)
]
, (E.10)
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where β = 0.11 · 28 and we have defined

I1(ν) =

∫ −kτc

−kτ

dxxαJ2
ν (x), (E.11)

and

I2(ν) =

∫ −kτc

−kτ

dxxαJν(x)J−ν(x), (E.12)

where α ≡ 3(1 + ε∗) + 1. The upper limits on these integrals correspond to the time when the

corresponding physical wavelength a/k crosses the correlation length of the environment ℓc. At

leading order in the slow roll parameters, this condition reads

−kτc = (1 + ε∗)(H∗ℓc)
ε∗−1

(
k

k∗

)ε∗

. (E.13)

One can check the validity of this equation explicitly at zeroth order in slow-roll parameters. Indeed

our definition for the correlation length and the correlation time gives this precise result.

Ik and Kk can be computed in a similar fashion, resulting in the following expressions

Ik = −
√
2π

367e4πξ

128 sin2(πν)
k

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ(−kτ)−1

β
×{[(

1

2
+ ν

)
J−ν(−kτ) + (−kτ)J−ν−1(−kτ)

]2
I1(ν) +

[(
1

2
+ ν

)
Jν(−kτ)−

− (−kτ)Jν+1(−kτ)
]2
I1(−ν)− 2

[(
1

2
+ ν

)
J−ν(−kτ) + (−kτ)J−ν−1(−kτ)

]
×

×
[(

1

2
+ ν

)
Jν(−kτ)− (−kτ)Jν+1(−kτ)

]
I2(ν)

}
, (E.14)

Kk =
√
2π

367e4πξ

128 sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ

β
×

×

{
Jν(−kτ)

[(
1

2
+ ν

)
Jν(−kτ)− (−kτ)Jν+1(−kτ)

]
I1(ν) + J−ν(−kτ)

[(
1

2
+ ν

)
J−ν(−kτ)+

(−kτ)J−ν−1(−kτ)
]
I1(−ν)−

[
(−kτ)J−ν(−kτ)Jν+1(−kτ)− (−kτ)Jν(−kτ)J−ν−1(−kτ)−

− 2

(
1

2
+ ν

)
Jν(−kτ)J−ν(−kτ)

]
I2(ν)

}
. (E.15)

The integrals I1(ν) and I2(ν) are of the Weber-Schafheitlin type and can be expressed in terms
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of the generalized hypergeometric functions [2]:

I1(ν) =
1

4ν(1 + α+ 2ν)Γ2(1 + ν)
×{

(−kτc)1+α+2ν
pF q

[
1

2
+ ν,

1 + α

2
+ ν; 1 + ν,

3 + α

2
+ ν, 1 + 2ν;−(−kτc)2

]

− (−kτ)1+α+2ν
pF q

[
1

2
+ ν,

1 + α

2
+ ν; 1 + ν,

3 + α

2
+ ν;−(−kτ)2

]}
, (E.16)

I2(ν) =
sin(πν)

πν(1 + α)
×{
(−kτc)1+α

pF q

[
1

2
,
1 + α

2
;
3 + α

2
, 1− ν, 1 + ν;−(−kτc)2

]

− (−kτ)1+α
pF q

[
1

2
,
1 + α

2
;
3 + α

2
, 1− ν, 1 + ν;−(−kτ)2

]}
. (E.17)

These expressions are exact, but they lack insight due to their complicated form. For this reason,

two approximations can be made [2]. The first limit comes from the regime we are considering,

namely 2 ≲ ξ ≲ 3. Since by our definition the (conformal) correlation time is τc = (0.11 · 28ξk)−1,

we immediately see, that for values ξ ≳ O(1), we have −kτc ≪ 1.36 The second approximation

consists of considering the above expressions when the physical wavelength a/k has crossed well

outside the Hubble radius H−1. This regime is important since all modes of astrophysical interest

today were outside the horizon near the end of inflation. This condition is expressed as −kτ ≪ 1.

Using these approximations would mean expanding the hypergeometric functions in (E.16) and

(E.17) in the small third arguments. The outcome can be written as follows

I1(ν) ≃
1

4ν(1 + α+ 2ν)Γ2(1 + ν)

[
(−kτc)1+α+2ν − (−kτ)1+α+2ν

]
, (E.18)

I2(ν) ≃
sin(πν)

πν(1 + α)

[
(−kτc)1+α − (−kτ)1+α

]
. (E.19)

In order to assess decoherence, we need to calculate the decoherence parameter δk(τ) ≃ |vk|2Ik+
|v′k|2Jk − |vk|2

′Kk (see section 3.4.7). Here we also present |vk|2, |v′k|2 and |vk|2
′
at first order in

slow roll:

|vk|2 =
π

4 sin2(πν)

(−kτ)
k

(
J2
ν (−kτ) + J2

−ν(−kτ)− 2Jν(−kτ)J−ν(−kτ) cos(πν)
)
, (E.20)

36Note, that according to (E.13) this also implies H∗ℓc ≫ 1. On the contrary, for the massive scalar field environ-
ment, Ref. [2] used H∗ℓc ≪ 1, which can be traced back to the fact, that in case of the gauge field environment the
correlation time is actually larger than the Hubble scale.
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|v′k|2 =
πk

4 sin2(πν)
(−kτ)−1

{(
1

2
+ ν

)2 (
J2
ν (−kτ)− 2Jν(−kτ)J−ν(−kτ) cos(πν) + J2

−ν(−kτ)
)

+ (−kτ)2
(
J2
ν+1(−kτ) + 2Jν+1(−kτ)J−ν−1(−kτ) cos(πν) + J2

−ν−1(−kτ)
)

− 2

(
1

2
+ ν

)
(−kτ)

[
Jν(−kτ)Jν+1(−kτ)− (J−ν(−kτ)Jν+1(−kτ)− Jν(−kτ)J−ν−1(−kτ)) cos(πν)

− J−ν(−kτ)J−ν−1(−kτ)
]}
, (E.21)

|vk|2
′
= − π

4 sin2(πν)

{(
J2
ν (−kτ) + 2(−kτ)Jν(−kτ)

[
ν

−kτ
Jν(−kτ)− Jν+1(−kτ)

])
+

(
−J2

−ν(−kτ) + 2(−kτ)J−ν(−kτ)
[
J−ν−1 −

ν

(−kτ)
J−ν(−kτ)

])
− 2

(
Jν(−kτ)J−ν(−kτ) cos(πν)

−(−kτ)
[

ν

(−kτ)
Jν(−kτ)− Jν+1(−kτ)

]
J−ν(−kτ) cos(πν)−(−kτ)Jν(−kτ)

[
J−ν−1 −

ν

(−kτ)
J−ν(−kτ)

]
cos(πν)

)}
,

(E.22)

When computing the decoherence parameter, many cancellations occur leading to δk ∝ [I1(ν) +

I1(−ν) − 2I2(ν) cos(πν)], see (3.186). It can be shown through simple analysis that the dominant

term comes from I1(−ν).
As we have seen in equation (3.89), the correction to the power spectrum corresponds exactly to

Jk/|vk|2. We apply the same approximations, −kτc ≪ 1 and −kτ ≪ 1 to (E.10) and (E.20) that

leads to

Jk

|vk|2
= −

√
2

π

367e4πξ

32

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ

β
Γ2(1− ν)

sin2(πν)

π2ν2
×{

1

4ν(1− α+ 2ν)

[
(−kτc)1+α+2ν − (−kτ)1+α+2ν

]
+

2−4ν(−kτ)4ν

4−ν(1− α− 2ν)

[
(−kτc)1+α−2ν − (−kτ)1+α−2ν

]
− 2

2−2ν(−kτ)2ν

1 + α

[
(−kτc)1+α − (−kτ)1+α

]}
. (E.23)

It will also be interesting, to consider a more complicated form of correlation function (D.8) which

should be more precise compared to the top-hat approximation. Following this direction, however,

means that abandoning the prospect of an analytical solution. Yet, exploring this complicated

version of the correlation function will allow us to compare it with the top-hat approximation used

before. It is easy to confirm, the functions I,J and K are quite similar to those seen before, which

126



E THE SLOW-ROLL APPROXIMATION

is expected, since we only change the form of the correlation function

Ik =
√
2π

e4πξ

128 sin2(πν)
k

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ(−kτ)−1

β
×{[(

1

2
+ ν

)
J−ν(−kτ) + (−kτ)J−ν−1(−kτ)

]2
F1(ν) +

[(
1

2
+ ν

)
Jν(−kτ)−

− (−kτ)Jν+1(−kτ)
]2
F1(−ν)− 2

[(
1

2
+ ν

)
J−ν(−kτ) + (−kτ)J−ν−1(−kτ)

]
×

×
[(

1

2
+ ν

)
Jν(−kτ)− (−kτ)Jν+1(−kτ)

]
F2(ν)

}
, (E.24)

Jk =
√
2π

e4πξ

128k sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ(−kτ)
β

×

×
[
J2
−ν(−kτ)F1(ν) + J2

ν (−kτ)F1(ν)− 2J−ν(−kτ)Jν(−kτ)F2(ν)
]
, (E.25)

Kk =
√
2π

e4πξ

128 sin2(πν)

(
H

MPl

)2
2

ε

(
k

k∗

)−3ε
ξ

β
×

×

{
Jν(−kτ)

[(
1

2
+ ν

)
Jν(−kτ)− (−kτ)Jν+1(−kτ)

]
F1(ν) + J−ν(−kτ)

[(
1

2
+ ν

)
J−ν(−kτ)+

(−kτ)J−ν−1(−kτ)
]
F1(−ν)−

[
(−kτ)J−ν(−kτ)Jν+1(−kτ)− (−kτ)Jν(−kτ)J−ν−1(−kτ)−

− 2

(
1

2
+ ν

)
Jν(−kτ)J−ν(−kτ)

]
F2(ν)

}
, (E.26)

where

F1(ν) =

∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)∫ ∞

−kτ

dxxαJ2
ν (x)e

−
√
κ
(√

|p|+
√

|ẑ−p|
)
,

(E.27)

F2(ν) =

∫
d3p

∣∣∣∣1 + |p|2 − ẑ · p
|p||ẑ − p|

∣∣∣∣2 |p|2(1 + |ẑ − p|1/2

|p|1/2

)∫ ∞

−kτ

dxxαJν(x)J−ν(x)e
−
√
κ
(√

|p|+
√

|ẑ−p|
)
,

(E.28)

with x and α defined as in equations (E.11-E.12). We can evaluate these integrals numerically by

fitting, see Sec. 3.5.3.
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[77] Jérôme Martin, Amaury Micheli, and Vincent Vennin. Comparing quantumness criteria. Eu-

rophysics Letters, 142(1):18001, 2023.

[78] David Campo and Renaud Parentani. Inflationary spectra and violations of bell inequalities.

Physical Review D—Particles, Fields, Gravitation, and Cosmology, 74(2):025001, 2006.

[79] Juan Maldacena. A model with cosmological bell inequalities. Fortschritte der Physik,

64(1):10–23, 2016.

[80] Samuel M Leach, Misao Sasaki, David Wands, and Andrew R Liddle. Enhancement of super-

horizon scale inflationary curvature perturbations. Physical Review D, 64(2):023512, 2001.
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